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This paper analyzes the properties of the non-equilibrium singular point in one-dimensional1

elementary catastrophe. For this analysis, the Kosambi-Cartan-Chern (KCC) theory is applied2

to characterize the dynamical system based on differential geometrical quantities. When both3

the nonlinear connection and deviation curvature are zero, that is, when the geometric stability4

of the KCC theory is neutral, two bifurcation curves are obtained: one is the known curve5

with an equilibrium singular point, and the other is a new curve with a non-equilibrium singular6

point. The two singular points are distinguished based on the vanishing condition of the Berwald7

connection. Applied to the ecosystem described by the Hill function, the absolute value of the8

cuspidal curvature of the non-equilibrium singular point is larger than that of the equilibrium9

singular point. The ecological interpretation of this result is that the range of bistability of the10

ecosystem in the non-equilibrium state is greater than that in the equilibrium state. The type11

of singular points in equilibrium and non-equilibrium bifurcation curves are not necessarily the12

same. For instance, there is a combination in which even if the former has one cusp, the latter13

may show various types, depending on the parametric space. These results demonstrate that14

there are cases where simply shifting the system from the equilibrium to non-equilibrium state15

expands the range of bistability and changes the type of singularity. Although singularity analysis16

is often performed near the equilibrium point, non-equilibrium analysis, i.e., analysis based on17

the KCC theory, provides a useful perspective for analyzing singularity theory according to the18

bifurcation phenomenon.19

Keywords: singular point; KCC theory; bifurcation theory; non-equilibrium; elementary catas-
trophe; differential geometry

20

1. Introduction21

The Kosambi-Cartan-Chern (KCC) theory can be used to characterize systems from the properties of22

ordinary differential equations, such as bifurcation and stability, based on differential geometric quantities23

(e.g., [Antonelli et al., 1993; Yamasaki & Yajima, 2017; Gupta, & Yadav, 2019; Huang et al., 2019; Chen et24

al., 2020]). KCC theory has been well studied in the field of differential geometry, especially Finsler geometry25

[Antonelli & Bucataru, 2001; Balan & Neagu, 2010; Neagu, 2013], and it has been applied to various fields26

1
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such as biology [Antonelli et al., 2002] and physics [Boehmer & Harko, 2010; Harko & Sabău, 2008; Harko et27

al., 2015; Dănilă et al., 2016; Gupta & Yadav, 2017], among others [Liu et al., 2021]. For instance, Yamasaki28

and Yajima (2020) performed KCC analysis of bifurcation phenomena including catastrophe. Given that29

catastrophe is closely related to the singularity of the system [Thom, 1972; Zeeman, 1977; Gilmore, 1981;30

Arnol’d, 2003; Izumiya et al., 2016], this implies that the KCC and singularity theories are related through31

bifurcation phenomena. The main focus of catastrophe theory is, of course, the catastrophe shift exhibited32

by singularities, which are in a non-equilibrium state during the shift. Therefore, non-equilibrium stability33

analysis of the various shifts exhibited by singularities is necessary, but not sufficient. KCC theory has shown34

utility for non-equilibrium stability analysis. Thus, we performed KCC analysis of the basic singularities35

of catastrophe theory and analyzed their behavior in the non-equilibrium region.36

The logistic equation with the Hill function is a typical example of a catastrophe in ecology [Ludwig et37

al., 1978; Scheffer et al., 2009; Strogatz, 2014]. Applying the KCC theory to this equation, we can derive38

the differential geometric quantities governing the stability of the system: nonlinear connection N i
j and39

deviation curvature P i
j . When both N i

j and P i
j are zero, i.e., the geometrical stability becomes neutral, we40

can obtain two bifurcation curves with a singular point [Yamasaki & Yajima, 2020]. (Their concrete forms41

are described by Eqs. (36) and (37) in Section 3.) The first is a known bifurcation curve with a singular42

point; however, the second curve with a singular point has not been fully analyzed. The main purpose of43

this study is to clarify the reason for the two types of singular points: the well-known equilibrium singular44

point and the lesser-known non-equilibrium singular point. Catastrophe theory is mainly concerned with45

singularities at equilibrium. However, as mentioned above, the catastrophe shift contains a non-equilibrium46

state. Here, we examine whether non-equilibrium singularities exist and their properties. The results are47

expected to provide a new perspective on singular points in relation to bifurcations. To quantitatively show48

the difference between equilibrium and non-equilibrium singularities, this study introduces the concept of49

curvature at a singularity. Calculations at singularities almost always fail; however, recent research has50

made it possible to calculate the curvature of singularities [Saji et al., 2010; Umehara, 2011]. Comparing51

the curvature among singularities will reveal a case in which the range of bistable states increases by simply52

shifting the system from an equilibrium to non-equilibrium state.53

From the viewpoint of catastrophe theory, there are various types of singular points [Thom, 1972;54

Arnol’d, 2003; Izumiya et al., 2016]. In the case of the Hill function given above, we see that the singular55

points in the equilibrium and non-equilibrium states are of the same type, i.e., that of a cusp. However,56

this does not always hold. Here, we also consider the difference in the types of singular points between57

the two states based on well-known singular points in elementary catastrophe theory: cusp, swallowtail,58

and butterfly. This analysis will show, for instance, that there are combinations in which the equilibrium59

singular point is the cusp, but the non-equilibrium singular point is the swallowtail. This result indicates60

that the type of singularity changes when the system shifts from an equilibrium to non-equilibrium state,61

even if the control parameters do not change. Such non-equilibrium analysis will be possible by focusing on62

the basic geometric quantities in KCC theory, especially the deviation curvature and Berwald connection.63

The structure of this paper is as follows. In Section 2, we provide a brief review of KCC theory in64

terms of time-like potential, and apply it to the normal form of elementary catastrophe as an example. In65

this example, there is one bifurcation curve with a singular point. In Section 3, we consider the logistic66

equation with the Hill function and show that there are two types of singular points: equilibrium and67

non-equilibrium ones. This result indicates the geometrical conditions necessary for the existence of non-68

equilibrium singularities. This condition is applied to the elementary catastrophe considered in Section 4,69

to show the existence and difference in non-equilibrium singular points among various parametric spaces.70

Section 5 provides our conclusions.71

2. A brief review of KCC theory72

2.1. Differential geometrical quantities and stability73

The KCC theory was first applied to study the geometric invariance of second-order ordinary differential74

equations (ODEs) [Kosambi, 1933; Cartan, 1933; Chern, 1939; Antonelli et al., 1993]. Since then, KCC75

theory has been applied to study the stability of dynamical systems (e.g., [Antonelli et al., 1993; Udriste &76
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Nicola, 2009; Abolghasem, 2013; Yamasaki & Yajima, 2013]). Even more recently, numerous studies have77

investigated the geometric aspects of various dynamic structures, including those of physical (e.g., [Kumar et78

al., 2019; Krylova et al., 2019; Alawadi et al., 2020; Liu et al., 2020; Klën, & Molina, 2020; Wang et al.,79

2021]), biological (e.g., [Antonelli et al., 2014; Antonalli et al., 2019; Kolebaja, & Popoola, 2019; Mishra, &80

Tiwari, 2021]), and general (e.g., [Gupta, & Yadav, 2017; Sulimov et al., 2018; Chen, & Yin, 2019; Feng et81

al., 2020; Salnikova et al., 2020; Liu et al., 2021]) systems.82

Let us consider the second-order ODE:83

ẍi + gi(x, ẋ) = 0, (1)

where gi(x, ẋ) is a function. According to KCC theory, a small perturbation in the trajectory of (1) gives84

the covariant form of the variational equation (e.g., [Antonelli, & Bucataru, 2003]):85

D2ui

Dt2
= P i

ju
j , (2)

where D(· · ·)/Dt is a covariant differential, and the initial conditions are given by u(0) = 0 and u̇(0) ̸= 0.86

P i
j is the geometric object or deviation curvature tensor, defined by the following relation:87

P i
j = − ∂gi

∂xj
+

∂N i
j

∂xk
ẋk −Gi

jkg
k +N i

kN
k
j , (3)

where N i
j is a nonlinear connection:88

N i
j =

1

2

∂gi

∂ẋj
, (4)

and Gi
jk is a Berwald connection:89

Gi
jk =

∂N i
j

∂ẋk
. (5)

From the Berwald connection, the Douglas tensor is defined by Di
jkl = ∂Gi

jk/∂ẋ
l. Because this paper90

considers the one-dimensional case, we set x1 = x, g1 = g, G1
11 = G, N1

1 = N , P 1
11 = P , and D1

11 = D for91

simplicity.92

The deviation curvature (3) determines the Jacobi stability of the system, i.e., the robustness of93

its trajectory[Sabău, 2005a; Harko et al., 2016; Lake & Harko, 2016]. The trajectory of a one-dimensional94

system is Jacobi-stable when P is negative, and Jacobi-unstable when P is positive [Antonelli, & Bucataru,95

2003; Sabău, 2005a,b]. For convenience, we refer to the system as being J-stable when P < 0, as J-unstable96

when P > 0, and as J-neutral when P = 0. Moreover, we consider the nonlinear connection (4), as this97

is also related to the stability of the system ([Yamasaki & Yajima, 2013, 2016]). The system is considered98

to be N-stable when N > 0, as N-unstable when N < 0, and as N-neutral when N = 0. Around the99

equilibrium points, J-stable and J-unstable correspond to a spiral and a node, respectively [Sabău, 2005a].100

N-stable and N-unstable correspond to linear stable and linear unstable, respectively ([Yamasaki & Yajima,101

2013, 2016]). For instance, J-stable and N-stable around the equilibrium point correspond to a stable spiral102

(see [Yamasaki & Yajima, 2013] for more details).103

2.2. Time-like potential and elementary catastrophe104

The subject of KCC theory is a second-order ODE; thus, KCC theory cannot be applied to a first-order105

ODE. Antonelli et al., (1993) introduced the production process concept, which enables the application106

of KCC theory to first-order ODEs such as the logistic equation. This second-order logistic equation has107

been applied to the real growth data of several species ([Antonelli, 1985; Antonelli et al., 1993]), and to108
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evolution in biology([Antonalli et al., 2019, 2021]). The similar formulation has been also used to study109

transient behaviors during the production process, such as the effects of time feedback ([Hutchinson, 1948;110

Wright, 1955]). Moreover, Yamasaki and Yajima (2017) applied this technique to typical one-dimensional111

bifurcations described by first-order ODEs, such as saddle-node, transcritical, and pitchfork bifurcations,112

to obtain the same bifurcation as the original equation. Yamasaki and Yajima (2020) focused on the jump113

phenomenon (bifurcation), referred to as a catastrophic shift based on the time-like potential.114

This paper defines x as a time-like potential of variable n. Time-like potentials do not always exist,115

because their existence essentially depends on properties of n such as integrability. In this paper, the116

variable n physically exists, whereas the time-like potential x is purely a mathematical construct. Therefore,117

it would be appropriate to express the analytical results in terms of n, rather than the time-like potential118

x. Specifically, this paper considers bifurcation stability, so it is appropriate to express the geometric119

quantities related to stability in terms of n. As we will see in the later section, the nonlinear connection120

related to N-stability and deviation curvature related to J-stability are expressed in terms of n in the last121

step. Thus, the time-like potential can be used as part of the analytical process, but is not necessary for122

the final interpretation of the bifurcation stability (see [Yamasaki & Yajima, 2020] for more details).123

This paper applies the KCC theory to one-dimensional elementary catastrophe based on the time-like124

potential. We will show that the previous results can be obtained by an analysis based on the time-like125

potential. In addition, this approach allows for the analysis of non-equilibrium stability. Let us consider126

the dynamical system given by127

ṅ = F (n), (6)

where F is a function of n. This paper assumes that F and n satisfy the integrability conditions, so there128

is potential for fc and x, as follows. In the elementary catastrophe, the potential function of the dynamical129

system, fc(n) is introduced as [Thom, 1972; Thompson, 1982]:130

F = −∂fc
∂n

= −∂nfc. (7)

This paper uses the time-like potential defined by (e.g., [Antonelli et al., 1993])131

n =
dx

dt
= ẋ. (8)

Therefore, this paper considers the equation:132

ẍ+ ∂nfc(n) = 0. (9)

That is, g = ∂nfc(n) in the basic form of the KCC theory (1): ẍ + g = 0. Therefore, the concrete forms133

of fc(n) give various differential geometrical quantities of the dynamical system. This paper considers the134

elementary catastrophe of one active variable given by the following, and the normal form [Thom, 1972;135

Poston, & Stewart, 1978]:136

Fold : fc(n) =
n3

3
+ an, (10)

Cusp : fc(n) =
n4

4
+

an2

2
+ bn, (11)

Swallowtail : fc(n) =
n5

5
+

an3

3
+

bn2

2
+ cn, (12)

Butterfly : fc(n) =
n6

6
+

an4

4
+

bn3

3
+

cn2

2
+ dn, (13)
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where a, b, c and d are parameters. Since the fold, i.e., saddle-node bifurcation, has already been considered137

[Yamasaki & Yajima, 2017], this paper will consider other types, specifically, the cusp, swallowtail, and138

butterfly. In the variable dynamical system with the time-like potential, the non-linear connection (4),139

Berwald connection (5), and deviation curvature (3) can be simplified as follows [Yamasaki & Yajima,140

2017]:141

N =
1

2
∂ẋg =

1

2
∂ng, (14)

G = ∂ẋN = ∂nN, (15)

P = −Gg +N2. (16)

For elementary catastrophe, the equation of the bifurcation curve is derived from the condition: ∂nfc =142

0 and ∂n∂nfc = 0 [Thom, 1972]. From g = ∂nfc and Eq. (14), this condition is expressed geometrically as143

g = 0, N = 0. (17)

In this section, the bifurcation curve is derived by this condition: N-stability is neutral (N = 0) in equilib-144

rium state (g = 0). The other quantities G and P are not relevant in this case. However, we derive them145

here as they are necessary for the non-equilibrium analysis discussed in the following section.146

First, we consider the cusp defined by Eq. (11). From g = ∂nfc, Eqs. (14), (15), and (16) give the147

following geometric quantities:148

N =
1

2
(3n2 + a), (18)

G = 3n, (19)

P =
1

4
(−3n4 − 6an2 − 12bn+ a2). (20)

Therefore, Eq. (17) gives the parametric equations of the bifurcation curve: γ(n) = (b, a) = (2n3,−3n2).149

The curve has a cusp, as shown in the upper part of Fig. 1. The details of the figure are described in150

Section 2.3. Let us check the type of singular point with calculations. dγ/dn|n=0= γ′(0) = 0 shows that151

the point n = 0 is the singular point. At the singular point, we obtain det(r′′, r′′′) ̸= 0. This means that152

the type of singular point is cuspidal [Porteous, 2001; Izumiya et al., 2016].153

Next, we consider the swallowtail defined by Eq. (12). The same calculation used for the cusp case154

gives155

N = 2n3 + an+
1

2
b, (21)

G = 6n2 + a, (22)

P = −ac− 3an4 +
b2

4
− 4bn3 − 6cn2 − 2n6. (23)

Equation (17) gives b = −4n3 − 2an and c = 3n4 + an2. Therefore, the bifurcation curve is a swallowtail156

type, as shown in the upper part of Fig. 2. Because the curve is recognized as the cross-section of the wave157

front f(n, a) = (3n4 + an2,−4n3 − 2an, a), we can obtain the identifier of the singularity from ∂nf × ∂af ,158

as follows [Saji & Teramoto, 2020]: Λ = 6n2 + a. At the singular point n = 0, we have ∂nΛ = 0 and159

∂n∂nΛ ̸= 0. This means that the type of singular point is swallowtail [Kokubo et al., 2005; Fujimori et al.,160

2008; Saji et al., 2009; Izumiya et al., 2010].161
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Fig. 1. Upper part shows the bifurcation curve with the cusp obtained by the condition g = 0, N = 0, i.e., the N-stability is
neutral in the equilibrium state. By fixing the parameter, we obtain the lower part of the figure that shows the stable equilibrium
curve (white solid line), the unstable equilibrium curve (white dotted line), and the KCC stability region described by the
following gray-scale. The white region shows N-unstable and J-stable parts; the black region shows N-unstable and J-unstable
parts; the light-gray region shows N-stable and J-stable parts; and the dark-gray region shows N-stable and J-unstable parts.

Finally, we consider the butterfly defined by Eq. (13). The same calculation used for the cusp case162

gives163

N =
1

2

(
3an2 + 2bn+ c+ 5n4

)
, (24)

G = 10n3 + 3an+ b, (25)

P =
1

4

(
3an2 + 2bn+ c+ 5n4

)2 − (3an+ b+ 10n3
) (

an3 + bn2 + cn+ d+ n5
)
. (26)

Equation (17) gives c = −3an2 − 2bn − 5n4 and d = n2
(
2an+ b+ 4n3

)
. Therefore, the bifurcation curve164

is of the butterfly type, as shown in the upper part of Fig. 3. The identifier of the singularity is given by165

Λ = 10n3 + b when a → 0, c → −c. This satisfies ∂nΛ(p) = ∂n∂nΛ(p) = 0 and ∂n∂n∂nΛ(p) ̸= 0 at the166

singular point p, so the singular point is a butterfly type [Izumiya, & Saji, 2010; Izumiya et al., 2010].167

As mentioned above, geometrical quantities related to stability, such as N , G, and P , are expressed168

in terms of n in the last step, so this paper uses the time-like potential as part of the analytical process.169

However, this does not mean that the time-like potential is always a purely mathematical concept, even in170

other analyses. Especially with unusual phenomena in which production processes (history) predominate,171

it becomes an explicit quantity. For instance, if we consider the number of paleontological species as n,172

the number of fossils x observed in the stratum that formed during sedimentation is proportional to the173

time integral of n (e.g., [Raup & Stanley, 1978]). The differential form of this relationship corresponds to174

Eq. (8). Another example is the free rotation of a rigid body system, in which n corresponds to angular175

velocities and x corresponds to the Euler angles; here, the general form of Eq. (8) reveals the non-holonomic176

geometric structures of a rigid body system [Yajima et al., 2018].177
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Fig. 2. Upper part shows the bifurcation curve with the swallowtail. The lower part is obtained by fixing the parameter and
shows the KCC stability.
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Fig. 3. Upper part shows the bifurcation curve with the butterfly. The lower part is obtained by fixing the parameter and
shows the KCC stability.

2.3. KCC stability of elementary catastrophe178

The upper parts of Figs. 1-3 show bifurcation curves with singularities in elementary catastrophe. The179

lower parts show the equilibrium curves (white solid and dotted lines) and the geometric stability in the180

non-equilibrium region (gray-scale region). The white solid line shows the stable equilibrium, and the white181

dotted line shows the unstable equilibrium. The white region shows N-unstable and J-stable parts; the black182

region shows N-unstable and J-unstable parts; the light gray region shows N-stable and J-stable parts; and183

the dark gray region shows N-stable and J-unstable parts. In the following paragraphs, we will look at the184

details of each figure. As the equilibrium results are similar, the difference in singularity can be seen by185

focusing on non-equilibrium stability, i.e., KCC analysis.186

Figure 1 shows the bifurcation curve given by the set of coefficients (a, b) satisfying Eq. (17), which is187

confirmed to be cusp. The figure below shows the KCC stability of the cusp based on Eqs. (18) and (20).188
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Fixing b = −0.1 and crossing the cusp from bottom to top is the left side of the lower part of Fig. 1. This is189

a typical example of an incomplete bifurcation, i.e., the equilibrium curve (white curve) has separated into190

two parts. This separated region is the non-equilibrium region because it extends between the equilibrium191

curves. Equations (18) and (20) allow us to express the stability of this separated region (non-equilibrium192

region) as the gray scale. As the parameter a increases, a catastrophe occurs on the left side of the cusp193

(dotted arrow). Fixing a = −1.5 and crossing the cusp from right to left is the right side of the lower part194

of Fig. 1. Similarly, a catastrophe occurs on the left side of the cusp (dotted arrow). In both cases, the195

dotted arrow goes from the black region through the dark gray region. This is a typical result of stability196

change during the catastrophe process, as described in earlier works [Yamasaki & Yajima, 2020].197

Figure 2 shows the bifurcation curve given by the set of coefficients (b, c) satisfying Eq. (17), which is198

confirmed to be swallowtail (a < 0) and fold (a > 0). The figure below shows the KCC stability based on199

Eqs. (21) and (23). Fixing c = 0.4 and crossing the bifurcation curves, the equilibrium curve (white curve)200

shows a similar separation pattern for a < 0 (Fig. 2 left) and a > 0 (Fig. 2 right), but the stability of the201

non-equilibrium region (gray scale) is different.202

Figure 3 shows the bifurcation curve given by the set of coefficients (d, c) satisfying Eq. (17), which is203

confirmed to be butterfly. The figure below shows the KCC stability based on Eqs. (24) and (26). Since204

b is bias parameter [Bröcker, & Lander, 1975], we set b = 0 for simplicity in Fig. 3. Moreover, since case205

a > 0 is essentially the same as a cusp, we will only analyze case a < 0. The bending pattern of the206

equilibrium curve in the lower left of Fig. 3 (c = −0.4) is typical in catastrophe phenomena. For instance,207

the cusp in the lower right of Fig. 1 (a = −1.5) shows a similar bending pattern. However, the stability of208

the non-equilibrium region, i.e., during the catastrophe process (dotted arrow), can vary as follows. The209

arrow on the lower left of Fig. 3 (c = −0.4) passes through the white region. At the bottom center of Fig.210

3 (c = 0.1), the arrow passes through the light gray region (N-stable and J-stable). It is interesting that211

the most stable region exists in the non-equilibrium region. The bottom right of Fig. 3 (c = 0.3) shows a212

pattern unique to butterfly, where two catastrophic shifts occur. This is different from the others, but the213

non-equilibrium region is a typical pattern, i.e., transition from a black to dark-gray region.214

2.4. Douglas tensor of elementary catastrophe215

The analysis in the previous section shows that non-equilibrium stability during the catastrophic shift can216

vary, even though the pattern of the equilibrium curve is similar. Previous analyses have shown that the217

Douglas tensor is useful for describing stability changes during catastrophic shifts [Yamasaki & Yajima,218

2020]; thus, here we apply the method to elementary catastrophe. We can see that just as KCC stability is219

represented by the combination of the non-linear connection N and deviation curvature P , changes in KCC220

stability during the shift are represented by the combination of the Berwald connection G and Douglas221

tensor D.222

The catastrophic shifts shown in Figs. 1-3 occur in the vertical (n-axis direction); thus, it is necessary223

to consider the change in stability along the n-axis. Then, we consider the expression of P (J-stability)224

differentiated into n [Yamasaki & Yajima, 2020]:225

dP

dn
= D

dn

dt
, (27)

where D is the Douglas tensor [Douglas, 1927]. The Douglas tensor is one of the invariants of KCC theory226

(Douglas, 1927). In one-dimensional space, it is defined by D = ∂nG; thus, combining Eqs. (1), (3), (4),227

and (5) gives Eq. (27). Because this contains dn/dt, it is essentially an equation for the non-equilibrium228

region. Geometrically, this equation shows that the Douglas tensor affects the deviation curvature during229

a catastrophic shift. In the one-dimensional case, D = ∂nG, so calculating D for each catastrophe from230

(19), (22), and (25) gives231

Dcusp = 3, (28)

Dswallowtail = 12n, (29)
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Dbutterfly = 30n2 + 3a. (30)

Dbutterfly contains the parameter a. When a > 0 i.e., D > 0, it is the same as the cusp. When a < 0,232

it can be factored as D = 30(n +
√
−a/10)(n −

√
−a/10), such that dP/dn < 0 is valid. Therefore, even233

if P > 0 at the start of the shift (i.e., equilibrium point), there can be regions where P < 0 during the234

shift (i.e., non-equilibrium region/s). For instance, we see the shift of the lower left of Fig. 3, in which235

c = −0.4, d ≈ −0.51, and dn/dt > 0 (arrow direction). The calculations show that the range dP/dn < 0 is236

−0.32 < n < 0.32 from D ∝ (n+ 0.32)(n− 0.32), and the range P < 0 is 0.026 < n < 0.51 from Eq. (26).237

In a similar fashion, the Berwald connection G = ∂N/∂n controls N-stability during catastrophic shifts.238

In the case of butterfly without ”bias” (i.e., b = 0), the Berwald connection is given by G = 3an+10n3. As239

shown in the center of Fig. 3, when c = 0.1 and there is a shift, dn/dt > 0; thus, from the calculations, the240

range ∂N/∂n > 0 is −0.55 < n < 0 and n > 0.55 from G ≈ 10(n+0.55)n(n−0.55), and the range N > 0 is241

−0.19 < n < 0.19 and n > 0.75 from (24). An N-stable region exists in non-equilibrium, −0.19 < n < 0.19;242

thus, the light-gray region (N-stable and J-stable) can exist in the range 0.01 < n < 0.19.243

As can be seen from Eqs. (28) and (29), the Douglas tensor for cusp and swallowtail are either constant244

or linear in n, such that the stability pattern during a catastrophic shift is not as complicated as for the245

butterfly above.246

3. Non-equilibrium singular point of the Hill function247

3.1. Bifurcation curve and differential geometrical quantities248

In ecology, the logistic equation with the Hill function is a typical example of a catastrophe [Ludwig et249

al., 1978; Scheffer et al., 2009; Strogatz, 2014]. KCC analysis, however, shows that its bifurcation curve250

has different characteristics from the elementary catastrophe considered in Section 2, as shown below. As251

mentioned in Section 2.2, this paper considers the following dynamical system:252

ṅ+ g = 0, (31)

where g = ∂nfc(n) with fc as the potential function. The potential function of the logistic equation is253

(n3r)/(3K) − (n2r)/2, and that of the Hill function is n − tan−1(n) from n2/(1 + n2) = 1 − 1/(1 + n2).254

Therefore, the potential function fc of the logistic equation with the Hill function is given by255

fc =
n3r

3K
− n2r

2
+ n− tan−1(n).

In ecology, n, r, and K are all positive and correspond to biomass, the growth rate, and the carrying256

capacity, respectively. The potential fc has the following known form:257

g = ∂nfc = −rn+
r

K
n2 +

n2

1 + n2
. (32)

Therefore, Eqs. (14), (15), and (16) give the differential geometrical quantities of the system:258

N = n

(
r

K
+

1

(n2 + 1)2

)
− r

2
, (33)

G =
r

K
+

1− 3n2

(n2 + 1)3
, (34)

P = −
n3r

(
4K + n3 − 3n

)
K (n2 + 1)3

+
3n4

(n2 + 1)4
+

r2

4
. (35)
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Fig. 4. Two bifurcation curves with cusps obtained by the condition: N = 0, P = 0, i.e., the stability is neutral. The solid
line is the equilibrium curve (G|N0P0

̸= 0) given by Eq. (36). The dotted line is the non-equilibrium curve (G|N0P0
= 0) given

by Eq. (37).

Yamasaki and Yajima (2020) showed that when N = 0 and P = 0, i.e., the geometrical stability259

is neutral, we can obtain the parametric equations of the bifurcation curve. Let K, r that satisfies the260

conditions of N = 0 and P = 0 be K0, r0. In this case, Eqs. (33) and (35) give the following two bifurcation261

curves:262

γ(K0, r0) =

(
2n3

n2 − 1
,

2n3

(n2 + 1)2

)
, (36)

or

γ(K0, r0) =

(
8n3

3n2 − 1
,

8n3

(n2 + 1)3

)
. (37)

Figure 4 shows the parametric plots of Eqs. (36) and (37). The cusp is observed in both cases. The solid line263

given by Eq. (36) agrees with the known bifurcation curve (e.g., [Strogatz, 2014]). The dotted line given264

by Eq. (37) is the new bifurcation curve obtained from KCC analysis. Yamasaki and Yajima (2020) did265

not provide a sufficient reason for the existence of this new solution (37); thus, we consider it here. Based266

on this consideration, the concept of bifurcation curves in non-equilibrium states will be presented. This267

bifurcation curve has a singular point, which implies the existence of a singular point in the non-equilibrium268

state.269

3.2. Non-equilibrium singular point270

As described in Section 2.2, the bifurcation curve of the dynamical system can be derived by (17): g =271

0, N = 0. From ṅ+ g = 0, this gives ṅ = 0, i.e., an equilibrium state. Moreover, Eq. (16): P = −Gg +N2
272

shows P = 0. Therefore, the bifurcation curve in equilibrium satisfies the following equation:273

N = 0, P = 0. (38)

Conversely, let us consider the bifurcation curve starting from condition (38). From P = −Gg +N2, this274

means Gg = 0. Let the parametric set that satisfies the condition (38) be N0P0. For instance, the compo-275

nents (K0, r0) in Eqs. (36) and (37) correspond to this. The equation Gg = 0 means three combinations:276

g|N0P0= 0, G|N0P0 ̸= 0, (39)

g|N0P0 ̸= 0, G|N0P0= 0, (40)
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g|N0P0= G|N0P0= 0. (41)

The relation (39) gives a known equilibrium bifurcation curve, as described earlier. In this case, the Berwald277

connection G is generally non-zero. When G vanishes, the relation (40) holds and gives another bifurcation278

curve. Since g ̸= 0 means ṅ ̸= 0, this is in the non-equilibrium state. The relation (41) does not hold in gen-279

eral, but is valid at the equilibrium singular point. Equations (40) and (42) describe the geometric relation280

for the usual singularity in the equilibrium state, while Eq. (41) pertains to the non-equilibrium states.281

We cannot discuss non-equilibrium singularities without considering the Berwald connection introduced282

by KCC theory.283

Let us check the above results using the Hill function. The substitution of the parametric set satisfies284

(38), i.e., the components of (36) into (32) and (34) gives the relation (39):285

g|K0,r0= 0, G|K0,r0=
n2
(
n2 − 3

)
(n2 + 1)3

. (42)

Since ṅ = 0 from ṅ + g = 0, it is confirmed that the known solution (36) is the bifurcation curve in286

equilibrium. The substitution of the components of (37) into (32) and (34) gives the relation (40):287

g|K0,r0=
n4
(
n2 − 3

)
(n2 + 1)3

, G|K0,r0= 0. (43)

Since ṅ ̸= 0 in general, the new solution (37) is the bifurcation curve in non-equilibrium. Thus, the condition288

N = 0, P = 0 in the KCC theory encompasses not only the known equilibrium bifurcation curve (36), but289

also the non-equilibrium bifurcation curve (37). As can be seen from Fig. 4, the bifurcation curve (36) and290

(37) are tangent at the equilibrium singular point n =
√
3. At the point, G|K0,r0 in (42) and g|K0,r0 in (43)291

become zero, such that the relation (41) holds.292

Let us consider the condition under which two bifurcation curves can be obtained, such as (36) and293

(37). Two equations for the bifurcation curve require a quadratic equation for the coefficients. Since the294

nonlinear connection is linear with respect to g fromN = (1/2)∂ng, the equationN = 0 does not correspond295

to this. On the other hand, from P = −Gg + N2, the deviation curvature contains a nonlinear term, so296

the equation P = 0 is needed for two bifurcation curves. Moreover, the coefficients of the variables are297

important because they remain after differentiation by n. In other words, when considering the coefficients298

of the constant term, only one bifurcation curve is obtained (examples will be given in Section 4). In the299

case of the Hill function, the relation (40) can be obtained because Eq. (32) shows that all of the coefficients300

K, r are on the variable n. Usually, if there is a single bifurcation curve, it is an equilibrium one.301

3.3. Cuspidal curvature of a non-equilibrium singular point302

In Fig. 4, both equilibrium and non-equilibrium singular points appear to be cusps. This can be confirmed303

using the discriminant condition [Porteous, 2001]. The results of this calculation can be used to estimate304

curvature at the singular point [Umehara, 2011; Saji et al., 2010; Shiba & Umehara, 2012]. This is useful305

for quantifying the differences between equilibrium and non-equilibrium cusps.306

First, we consider the equilibrium bifurcation curve (36). The derivative gives307

dγ

dn
= γ′ =

{
2n2

(
n2 − 3

)
(n2 − 1)2

,−
2n2

(
n2 − 3

)
(n2 + 1)3

}
. (44)

This is zero at n =
√
3 in n > 0, so it is the singular point. Moreover, det(γ′′, γ′′′) gives308

∣∣∣∣∣∣
4n(n2+3)
(n2−1)3

4n(n4−8n2+3)
(n2+1)4

−12(n4+6n2+1)
(n2−1)4

−12(n6−15n4+15n2−1)
(n2+1)5

∣∣∣∣∣∣ = 192n3
(
3n6 − 7n4 − 27n2 + 15

)
(n2 − 1)4 (n2 + 1)5

. (45)
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This is not zero at n =
√
3. Since γ′ = 0 and det(γ′′, γ′′′) ̸= 0 at the singular point, the discriminant309

condition shows that the type of equilibrium singular point is cusp [Porteous, 2001; Izumiya et al., 2016].310

In a similar fashion, the non-equilibrium bifurcation curve (37) gives γ′ and det(γ′′, γ′′′) as follows:311

{
24n2

(
n2 − 1

)
(1− 3n2)2

,−
24n2

(
n2 − 1

)
(n2 + 1)4

}
, (46)

∣∣∣∣∣∣
48(n3+n)
(3n2−1)3

48(2n5−5n3+n)
(n2+1)5

−48(9n4+18n2+1)
(1−3n2)4

−48(10n6−45n4+24n2−1)
(n2+1)6

∣∣∣∣∣∣ = −
9216n3

(
3n6 − 34n4 + 49n2 − 10

)
(1− 3n2)4 (n2 + 1)5

. (47)

At the singular point n = 1 (γ′ = 0), we have det(γ′′, γ′′′) ̸= 0. Therefore, the non-equilibrium singular312

point is also a cusp.313

From the above calculations, it is confirmed using the Hill function that both the equilibrium and non-314

equilibrium singular points are cusp type. Of course, this has only been confirmed with the Hill function;315

in general, it is possible to have different types of singular points (e.g., swallowtail or butterfly). In fact,316

examples of this are provided in the next section.317

Catastrophe theory, which was introduced in the 1960s, has influenced various research areas (e.g.,318

singularity theory). Recently, Umehara (2011) introduced the new concept of singular curvature at the319

cusp. Saji et al. (2010) considered cuspidal curvature based on the duality between singular points and320

inflection points. According to recent studies, we can characterize the system in terms of curvature even321

at the singular point [Umehara, 2011; Saji et al., 2010; Shiba & Umehara, 2012]. Thus, we estimate the322

curvature of the two singular points in Fig. 4 and show that they are the same in terms of quality (both323

cusp) but differ in quantity. When the curve γ(n) has a cusp at n = c, the cuspidal curvature is defined as324

[Saji et al., 2010; Shiba & Umehara, 2012] :325

µ =
det(γ′′(c), γ′′′(c))

|γ′′(c)|5/2
. (48)

Since det(γ′′, γ′′) ̸= 0 at the cusp, the cuspidal curvature is always non-zero. If the sign of the curvature is326

positive (negative), it is called zig (zag), and the bifurcation curve turns to the right (left) of the growth327

direction at the singular point (Fig. 4.1 in [Saji et al., 2010]). The sign is invariant under an orientation328

preserving diffeomorphism of the plane [Shiba & Umehara, 2012]. That is, the sign changes when the329

orientation of the curve is reversed. The magnitude of the curvature indicates the degree of opening of the330

cusp. The number (1/µ)2 is called the cuspidal curvature radius, which corresponds to the radius of the331

best approximating cycloid at the cusps ([Saji et al., 2010; Shiba & Umehara, 2012]).332

Using the results of Eqs. (45) and (47), Eq. (48) indicates that the cuspidal curvature of the equilibrium333

singular point is about −0.047 and that of the non-equilibrium singular point is about −0.27. The difference334

in magnitude of cuspidal curvature reflects the difference in the degree of the opening of the two bifurcation335

curves, as shown in Fig. 4. This enclosed area is the so-called bistable state, where rapid changes in biomass336

occur [Ludwig et al., 1978; Scheffer et al., 2009; Strogatz, 2014]. Thus, this phenomenon occurs over a wider337

range of parameters in the non-equilibrium regime. In this way, calculation of the cuspidal curvature at338

the singular point is useful for identifying the range of bistable states in parametric space.339

As mentioned above, studies of singular curvature are mainly mathematical. Therefore, it is useful to340

show that singular curvature is also applicable to natural science and gives an important perspective. For341

instance, the range of bistable states of the ecosystem, and usually changes with the form of the equation.342

However, the results of this paper show that the cusp curvature of the non-equilibrium state is larger than343

that of the equilibrium state. Thus, the range of bistable states is increased simply by shifting the system344

from an equilibrium state to a non-equilibrium state, even if the equation itself does not change. It has345

long been accepted that actual ecosystems may be in a state of non-equilibrium [Pickett, 1980; Sprugel,346

1991; Mori, 2011]; thus, singularity curvature is useful for interpreting the diversity of ecosystems.347
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In the above, only cuspidal curvature is considered; however, there are various geometric invariants348

that characterize a singular point, such as cusp-directional torsion, singular curvature, and so on[Saji et349

al., 2009; Hasegawa et al., 2015; Martins, & Saji, 2016; Martins et al., 2016]. Based on these geometric350

quantities, a more detailed analysis of the singular point of the ecosystem is a future research target.351

4. Non-equilibrium singular point of elementary catastrophe352

In Section 2, we analyzed the singular points of elementary catastrophe from the geometrical expression353

of known viewpoints as (17): g = 0, N = 0, i.e., the N-stability is neutral in equilibrium. In this section,354

we reanalyze it from the viewpoint obtained in Section 3 as (38): N = 0, P = 0, i.e., stability is neutral.355

The latter viewpoint does not include g; thus, it does not matter whether it is in equilibrium or not.356

Since the bifurcation curve is related to linear stability, the neutral condition for N-stability (N = 0) is357

necessary for both viewpoints. Moreover, one more equation is needed to obtain two variables describing358

the bifurcation curve. The previous analysis used the equilibrium state (g = 0), whereas here we use the359

J-stability (P = 0). Since the deviation curvature P is introduced by KCC theory, the theory is useful for360

considering the non-equilibrium singular point.361

4.1. Cusp362

We will show that the normal form of a cusp contains only an equilibrium singular point. The dynamical363

system with a cusp is ṅ+ g = 0 with364

g = n3 + an+ b. (49)

Thus, as obtained in Section 2.2, the differential geometric quantities of cusp can be obtained from equations365

(14), (15), and (16). For convenience, we redescribe the results:366

N =
1

2
(3n2 + a), G = 3n, P =

1

4
(−3n4 − 6an2 − 12bn+ a2). (50)

Therefore, the solutions (a0, b0) of (38): N = 0, P = 0, give the following bifurcation curve:367

γ(a0, b0) = (−3n2, 2n3). (51)

This is the known equilibrium bifurcation curve of cusp (Fig. 1). In fact, from (51), g|a0,b0= 0 and G = 3n368

is generally non-zero, so the relation (39) is satisfied.369

4.2. Swallowtail370

The dynamical system with swallowtail is ṅ+ g = 0 with371

g = n4 + an2 + bn+ c. (52)

We redescribe the differential geometric quantities of swallowtail obtained in Section 2.2:372

N = 2n3 + an+
1

2
b, G = 6n2 + a, P = −ac− 3an4 +

b2

4
− 4bn3 − 6cn2 − 2n6. (53)

Therefore, from the solutions (b0, c0) of (38),373

γ(b0, c0) = (−2(an+ 2n3), n2(a+ 3n2)). (54)

This gives the known equilibrium bifurcation curve of swallowtail (Fig. 2). From g|b0,c0= 0, G|b0,c0= 6n2+a,374

the relation (39) is satisfied. In the (b, c)-space of swallowtail, the identifier of singularity Λ is equal to375
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the Berwald connection G, so the vanishing condition Λ = 0 at the equilibrium singular point corresponds376

to the relation (41). In this case, the condition of discrimination (differentiation of Λ) is related to the377

Douglas tensor.378

Next, we consider the solutions (a0, c0) of (38):379

γ(a0, c0) =

(
−b− 4n3

2n
,
1

2

(
2n4 − bn

))
. (55)

Since g|a0,c0= 0, G|a0,c0= 4n2 − b/2n, this also gives the equilibrium bifurcation curve.380

Finally, we consider that the combination does not contain a coefficient of the constant term: c, that381

is, (a, b). In this case, we can obtain two solutions of Eq. (38):382

γ(a0, b0) =
(
−6n2, 8n3

)
, (56)

γ(a0, b0) =

(
c− 3n4

n2
,
2
(
n4 − c

)
n

)
. (57)

The curve (56) gives g|a0,b0= c + 3n4, G|a0,b0= 0, i.e., the relation (40), so it is a non-equilibrium one.383

Therefore, the point n = 0 is a non-equilibrium cusp. The curve (57) gives g|a0,b0= 0, G|a0,b0= (c+3n4)/n2,384

i.e., the relation (39); thus, it is an equilibrium one.385

4.3. Butterfly386

The dynamical system with butterfly is ṅ+ g = 0 with387

g = n5 + an3 + bn2 + cn+ d. (58)

We redescribe the differential geometric quantities of butterfly obtained in Section 2.2:388

N =
1

2

(
3an2 + 2bn+ c+ 5n4

)
, (59)

G = 10n3 + 3an+ b, (60)

P =
1

4

(
3an2 + 2bn+ c+ 5n4

)2 − (3an+ b+ 10n3
) (

an3 + bn2 + cn+ d+ n5
)
. (61)

Therefore, the solutions (c0, d0) of (38) give389

γ(c0, d0) =
(
−3an2 − 2bn− 5n4, n2

(
2an+ b+ 4n3

))
. (62)

This gives the known equilibrium bifurcation curve for a butterfly type (Fig. 3). In fact, this gives g|c0,d0=390

0, G|c0,d0= 10n3 +3an+ b. As in the swallowtail case, the identifier of singularity in (c, d)-space is equal to391

the Berwald connection.392

In the following, we consider combinations that do not contain a coefficient of the constant term: d.393

The solutions (a0, b0) of (38) give the equilibrium curve (g|a0,b0= 0, G|a0,b0= (3d+ cn+ 3n5)/n2):394

γ(a0, b0) =

(
cn+ 2d− 3n5

n3
,
−2cn− 3d+ 2n5

n2

)
, (63)

and the non-equilibrium curve (g|a0,b0= (3d+ cn+ 3n5)/3, G|a0,b0= 0):395

γ(a0, b0) =

(
c− 15n4

3n2
,
5n4 − c

n

)
. (64)
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b = −2, d = 1
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Fig. 5. Bifurcation curves for the combination of parameters do not contain a coefficient for the constant term d. The upper
part is the parametric space (a0, b0), the middle part is (a0, c0), and the lower part is (b0, c0). In each space, the solid line is
the equilibrium bifurcation curve, and the dotted line is the non-equilibrium one.

For instance, if we consider the case of c = −0.4, d = 1 (upper of Fig. 5), the equilibrium curve (solid line)396

gives one cusp, whereas the non-equilibrium curve (dotted line) gives two cusps. The solutions (a0, c0) of397

(38) give the equilibrium curve (g|a0,c0= 0, G|a0,c0= −b/2 + 3d/2n2 + 4n3):398

γ(a0, c0) =

(
−bn2 + d− 4n5

2n3
,
−bn2 − 3d+ 2n5

2n

)
, (65)

and the non-equilibrium curve (g|a0,c0= (2/3)n2(−b/2 + 3d/2n2 + 4n3), G|a0,c0= 0):

γ(a0, c0) =

(
−b− 10n3

3n
, 5n4 − bn

)
. (66)
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For instance, if we consider the case of b = −2, d = 1 (middle of Fig. 5), both curves (solid line and399

dotted line) have one cusp. The solutions (b0, c0) of (38) give the equilibrium curve (g|b0,c0= 0, G|b0,c0=400

d/n2 + an+ 6n3):401

γ(b0, c0) =

(
−2an3 + d− 4n5

n2
,
an3 − 2d+ 3n5

n

)
, (67)

and the non-equilibrium curve (g|b0,c0= n2(d/n2 + an+ 6n3), G|b0,c0= 0):402

γ(b0, c0) = (−3an− 10n3, 3(an2 + 5n4)). (68)

For instance, if we consider the case of a = −1, d = 1 (lower part of Fig. 5), the equilibrium curve (solid403

line) gives one cusp and the non-equilibrium curve (dotted line) gives swallowtail.404

The above results show that although the equilibrium bifurcation curve has one cusp regardless of405

the parameters, the non-equilibrium bifurcation curve shows singular points that vary depending on the406

parameters. This implies that the non-equilibrium singular points clarify the properties of catastrophe in407

each parametric space. Moreover, bifurcation curves with non-equilibrium singular points are expected to408

produce a diverse range of dynamical phenomena in nature. Usually, qualitative changes in the singularity409

are accompanied by changes in the parameters. The lower part of Fig. 5 shows that there are cases where410

the type of singularity changes from cusp to swallowtail, simply by changing from equilibrium to non-411

equilibrium, even if the parameters do not change. Although singularity analysis is often performed near412

the equilibrium point, this result indicates that non-equilibrium analysis, i.e. KCC theory, provides a useful413

perspective for analyzing singularity theory.414

5. Conclusions415

Our main conclusions are as follows.416

(1) KCC theory is applied to three kinds of singularities in elementary catastrophe theory; these singulari-417

ties show various stabilities in the non-equilibrium region (Sections 2.2 and 2.3; Figs. 1 ‒ 3). Although418

the equilibrium curves of the cusp and butterfly show the same bending type, the change in stabil-419

ity during the shift (i.e., the non-equilibrium state) is different (Section 2.4. Table 1). Therefore, the420

differences in singularities become clearer when the analysis focuses on non-equilibrium stability, i.e.,421

KCC analysis. Additionally, not only the stabilities, but also their changes during the shift, can be422

described by the basic geometric quantities in KCC theory (Table 2).423

(2) We have shown that the typical bifurcation curve can be derived from the neutrality of N-stability424

in equilibrium (Section 2.2). We have also derived new types of bifurcation curves by considering the425

neutrality of both J-stability and N-stability (Sections 3.1 and 3.2). Because P contains a nonlinear426

term, its neutral condition is quadratic, so two bifurcation curves can be derived. In this case, a non-427

equilibrium bifurcation curve is derived from the vanishing condition of the Berwald connection (Table428

3). This curve contains a singularity, suggesting the existence of a non-equilibrium singularity. Given429

that J-stability is unique to KCC theory, this result implies that KCC theory is useful for extending430

the singularity theory to non-equilibrium fields. Just as singularities are closely related to ordinary431

bifurcations, non-equilibrium singularities are closely related to non-equilibrium bifurcations.432

(3) In the case of Hill functions, the cuspidal curvature of a non-equilibrium singular point is larger than433

that of an equilibrium singular point (Section 3.3). Biologically, this is interpreted as follows: the range434

of bistability of the ecosystem in the non-equilibrium state is greater than that in the equilibrium435

state. This means that the range of bistable states increases as the system shifts from equilibrium to436

non-equilibrium, even if the equation itself does not change (Fig. 4). Since the ecosystem is sometimes437

in non-equilibrium, calculation of the curvature of each singularity (equilibrium and non-equilibrium)438

is useful for understanding the diversity in nature.439

(4) The singular points in equilibrium and non-equilibrium bifurcation curves are not necessarily the same440

(Section 4, Fig. 5). For instance, in the case of a butterfly type, the former is always a cusp, whereas the441
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latter varies depending on the parametric space. This means that even if the parameters do not change,442

there are cases where the type of singularity changes when the system shifts from an equilibrium to non-443

equilibrium state (Table 4). Therefore, the existence of non-equilibrium singular points may produce444

a diverse range of dynamics.445

Table 1. Stabilities of singular points. Abbreviations are defined as follows. WH:
N-unstable & J-stable parts; BL: N-unstable & J-unstable parts; LG : N-stable &
J-stable parts; and DG: N-stable & J-unstable parts.

Equilibrium stability Non-equilibrium stability during the shift

Cusp Bending type From BL to DG

Butterfly Bending type From BL to DG via WH and LG

Table 2. Stabilities and geometric quantities in KCC theory.

Stability Stability change during the shift

N-stability Non-linear connection N Berwald connection B

J-stability Deviation curvature P Douglas tensor D

Table 3. Types of bifurcation curves and their conditions in KCC
theory.

Equilibrium curve Non-equilibrium curve

g = 0, N = 0 Always NA

N = 0, P = 0 GN0P0
̸= 0 GN0P0

= 0

Table 4. Singular points in equilibrium and non-equilibrium curves considered in
this paper.

Equilibrium singular points Non-equilibrium singular points

Cusp Cusp NA

Swallowtail Swallowtail, Cusp Cusp

Butterfly Butterfly, Cusp Swallowtail, Cusp
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Bröcker, T., & Lander, L. [1975] Differentiable Germs and Catastrophes, (Lect. Note Series, 17, London471

Math. Soc.).472

Cartan, E. [1933] “Observations sur le mémoire précédent,” Math. Z. 37, 619–622.473
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