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Abstract 

Despite several attempts to compare and examine the predictive accuracy of real estate sales and rent prices between the regression-based and 
neural-network (NN)-based approaches, the results are largely mixed. Prior study limitations include small sample size and a disregard for 
spatial dependence, which is an essential characteristic of real estate properties. Hence, this study aims to add new empirical evidence to the 
literature on comparing regression-based with NN-based rent price prediction models through sophistications by (1) examining different and 
relatively large-scale sample sizes (n = 104, 105, 106), and (2) considering the spatial dependence of either the application of nearest neighbor 
Gaussian processes (NNGP) or the latitude-longitude coordinate function (in the case of a deep neural network [DNN]). A case study of 
apartment rent prices in Japan shows that, given an increase in sample size, the out-of-sample predictive accuracies of the DNN approaches and 
that of NNGP are nearly equal in the order of n = 106. However, the DNN may have higher predictive accuracy than the NNGP for both higher- 
and lower-end properties whose rent prices deviate from the median.  
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1. Introduction 

The real estate industry has been observed to lag behind other businesses in terms of digitalization. In recent years, however, 

efforts to streamline operations and price assessments using new technologies have gained momentum under the name of ReTech (Real 

Estate Tech). Regarding price assessments or predictions, several online automated services such as Zestimate1 (a service provided by 

the Zillow Group in the U.S.) or Price Map2 (a service provided by LIFULL Co., Ltd. in Japan) have gained popularity. Price Map, for 

instance, represents properties on a map one can use to review reference sales and monthly rent prices by entering information such as 

room layout and room size. Other similar services also exist. They are typically supported by the vast accumulation of property data 

and statistics- or machine learning (ML)-based sales and rent price prediction algorithms. These algorithms are progressing rapidly and 

they affect the real estate industry significantly.  

Both real estate agencies and end users require automated price assessment and prediction.3 From the agency perspective, there is 

merit in reducing appraisal costs and improving transparency. For example, in Japan, licensed real estate appraisers provide property 

assessments based on the expected cash flow and by comparison with similar properties. However, since all real estate properties are 

unique, that is, there are no identical properties, and an appraisal must be conducted considering the supply-demand balance, in addition 

to the property characteristics themselves, explaining the basis for the appraisal to end users requires a tremendous effort. From the end-

user perspective, aside from appraisal costs, there is the issue of information asymmetry between real estate agencies and end users, as 

observed in the limited disclosure of purchase prices due to privacy policy.4 This issue implies that if real estate sales or rent prices can 

be reasonably and quickly predicted, then the information asymmetry between end users and real estate agencies would, at least partially, 

disappear, thus leading to the revitalization of the real estate market.  

While the automated assessment of real estate sales and rent prices using big data and ML approaches in ReTech has garnered 

attention (Abidoye and Chan 2017; Čeh et al. 2018), regression-based approaches have also been widely used for predicting real estate 

sales and rent prices. Efron (2020) provided a comparison checklist of the differences between regression-based and ML-based 

approaches. He suggested that most traditional regression methods depend on some sort of surface plus noise formulation, where the 

surface describes the scientific truths (long-term) we wish to learn (estimate), while ML-based approaches typically focus on empirical 

predictive accuracy (possibly short-term). He also mentioned that we usually use regression-based approaches not only for prediction but 

also for attribution, that is, the assignment of significance to individual predictors (i.e., significance testing). The tactic of combining 

weak learners in ML-based approaches (e.g., random forests and XGBoost) is not available for attribution and, therefore, prediction is 

much easier than attribution.  

The economic theory behind attribution is known as the hedonic approach (Rosen 1974; Taylor 2008), under which the marginal 

benefits of attributes can be evaluated using estimated regression coefficients. Despite these merits, the pure prediction perspective typically 

adopts simple functional forms, such as linear or logarithmic, which may be insufficient to fully capture nonlinearity in data.5 Hence, it is important to 

test the extent to which its predictive accuracy differs from that of the ML-based approach. In relation to the ML-based approach, we focus on a deep 

neural network (DNN) model. This is because, compared to other ML-based methods centered on trees and forests (Pace and Hayunga 2020), 

little is known about its predictive accuracy in terms of rent price prediction. Since a DNN is expected to perform well when sample size is 

large, it is important to assess its performance with a large data set. As will be discussed in the next section, existing studies have 

limitations in this regard.  
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Further, in real estate appraisal or prediction, some factors are challenging to accommodate as explanatory variables, such as 

neighborhood quality (Dubin 1988). It is, therefore, important to consider how these unobserved or omitted factors can be incorporated 

into the model (Von Graevenitz and Panduro 2015). In geo- (spatial) statistics, regression-based kriging was established as a method of 

handling these variables as the spatial dependence among errors, typically with assuming a Gaussian process (GP) to the error term (e.g., 

Dubin 1988; Cressie and Wikle 2011). Studies such as those of James et al. (2005), Bourassa, Cantoni, and Hoesli (2010), and Seya et al. 

(2011) have reported that kriging provides high predictive accuracy compared to simple multiple regression models (hereinafter, ordinary 

least squares [OLS]) in the property field. Since the model structure of OLS is fairly simple, parameters can be determined with relatively 

small samples. With kriging, however, since the price information of neighboring properties is reflected in the predicted results through 

spatial dependence, the situation is different from that of OLS. That is, there are many benefits of increasing sample size for prediction. 

This study compares and discusses the results of rent price predictions using two different approaches (regression- and ML-based) for various 

sample sizes.  

Regarding the former, we focus on kriging. However, we also employ OLS as a popular benchmark. As the sample size increases (e.g., 

when n = 105), it is increasingly challenging to directly apply kriging, which requires the computational cost of O (n3) for inverting the variance-

covariance matrix. Hence, we use a nearest neighbor Gaussian process (NNGP) model, which allows for the application of kriging to big data 

via sparse approximation (Datta et al. 2016; Finley et al. 2017; Zhang, Datta, and Banerjee 2019). While there are various approaches for spatial 

statistical modeling using big data (Yamagata and Seya 2019), NNGP performs consistently well in a comparative study (Heaton et al. 2019). 

Regarding the latter, we employ a DNN. A DNN can construct complicated non-linear functions and consider spatial dependence through a 

non-linear function for position coordinates without explicitly modeling the spatial dependence.  

Despite several attempts to compare and examine the predictive accuracy of real estate sales and rent prices between the 

regression- and neural-network (NN)-based approaches, the results are largely mixed. Prior study limitations include [1] a small sample 

size (except for Zurada, Levitan, and Huan [2011]), [2] disregard for spatial dependence (except for Georgiadis [2018]), and [3] tailored 

and ad-hoc settings of the hyperparameters in DNN (or artificial neural networks [ANN]). Hence, this study [1] examines different and 

relatively large-scale sample sizes (n = 104, 105, 106), [2] considers the spatial dependence of either the application of NNGP (kriging) or 

the latitude-longitude coordinate function (in the case of DNN), and [3] optimizes the hyperparameters in DNN. It also provides a new 

empirical evidence base to the literature on comparing regression- and NN-based rent price prediction models through these 

sophistications. 

For empirical validation, this study employs LIFULL HOME’s data set6 for monthly residential apartment rent prices in Japan.7 

Since there is generally less research on rental prices than on sales prices, it may be a valuable data set,8 as it comprises snapshots (cross-

section data) of rental property data or image data as of September 2015. The former shows rent, lot size, location (municipality, zip code, 

nearest station, and walk time to nearest station), year built, room layout, building structure, and equipment for 5.33 million properties 

throughout Japan, whereas the latter comprises 83 million pictures that show the floor plans and interior details for each property. This 

study employs only the former data. Nevertheless, the latter information may be useful to improve prediction accuracy.  

Out of the approximately 5.33 million properties, 4,588,632 properties were retained after excluding missing data, from which n = 

104, 105, and 106 properties were randomly sampled. While focusing on the difference in sample size, the accuracies of the out-of-sample 

prediction for property rent prices based on the OLS, NNGP, and DNN approaches were compared via a validation process. Our analysis 

showed that, with an increase in sample size, the predictive accuracy of DNN was observed to approach that of NNGP. Moreover, in the order 



 

 

of n = 106, they were nearly equal. During this experiment, the conventional explanatory variables that had been incorporated into the 

regression-based hedonic model were used. Our findings suggest that, given these standard settings, even if the sample size is very large (in the 

order of n = 106), the use of regression-based NNGP may be a promising option. 

The rest of the article is structured as follows. Section 2 reviews the relevant literature. Section 3 briefly explains the models used in the 

comparison study. Section 4 presents the results of the comparative analysis using the LIFULL HOME’s data set. Section 5 presents the 

conclusion and the scope for future research.  

 

2. Literature review 

This section reviews the existing literature on the prediction of real estate sales and rent prices. Existing studies posit a high 

predictive accuracy for spatial regression models compared to the OLS model (e.g., James et al., 2005). Seya et al. (2011) examined the 

performance of various spatial prediction models that consider spatial dependence. To this end, they employed a data set of apartment 

rents in Tokyo’s 23 wards for empirical comparison and showed the usefulness of considering spatial dependence in the error term 

(kriging, geoadditive model, spatial error model) or regression coefficients (geographically weighted regression [GWR] model). However, 

their sample size was fairly small (i.e., 529 for parameter estimation and 150 for validation). 

Geostatistical models (known as kriging) and spatial econometric models are widely used for considering spatial dependence 

among errors.9 A considerable number of studies have applied both methods for hedonic price modeling (e.g., Pace, Barry, and Sirmans 

1998; James et al. 2005). However, for spatial (i.e., out-of-sample) prediction purposes, although the latter method can be used (Kelejian 

and Prucha 2007), the former, which does not utilize a spatial weight matrix, is more natural and flexible (Tsutsumi and Seya 2009). Note 

that, according to the comparison made by Seya et al. (2011), the differences in the predictive accuracy of kriging and of the spatial 

econometric model were negligible compared to the differences between those of OLS and kriging. In the case of kriging, an application 

to big data in the order of a million is possible through various approximations (Heaton et al. 2019).  

For the modeling of spatial dependence among regression coefficients, various methods have been developed in different fields, 

including geography, statistics, and ML (e.g., Brunsdon, Fotheringham, and Charlton 1998; Fotheringham, Brunsdon, and Charlton 2002; 

Gelfand et al. 2003; Murakami et al. 2017; Inoue, Ishiyama, and Sugiura 2020). Since the housing market is often segmented, applying 

the local model (i.e., spatially varying coefficient [SVC] model) is a reasonable option. Hence, many studies have employed SVC models 

for hedonic price modeling (e.g., Carruthers and Clark 2010; Huang, Wu, and Barry 2010).10 However, the application of SVC models to 

big data is still in the early stages (Bussas et al. 2017; Li and Fotheringham 2020; Murakami et al. 2020). For instance, we applied the 

scalable GWR model, proposed by Murakami et al. (2020), to our data set. Unfortunately, the parameter estimation procedure (i.e., 

bandwidth selection procedure) could not complete its processing within 24 hours when n = 105. Thus, currently, it is not easy to apply 

the model to a data set with a sample size of n = 106 and above. 

Considering the regression-based and NN-based approaches in terms of prediction of real estate sales and rent prices, Kontrimas 

and Verikas (2011) employed data on home sale transactions to compare the predictive accuracy of the ML approach, including multi-

layer perceptron (MLP), which is a subset of DNN, and OLS. They found that the mean absolute percentage differences for MLP and 

OLS were 23% and 15%, respectively, and OLS outperformed MLP. However, the sample size of their study was no greater than 100. 
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Similarly, Georgiadis (2018) compared the predictive accuracies of regression-based models and ANN on sales prices of 752 apartments 

in Thessaloniki, Greece, and found that the GWR model outperformed ANN. While these two studies have shown that the regression-

based approach outperformed the NN-based approach in terms of predictive accuracy, the sample sizes used for these studies were merely in the 

order of n = 102. Abidoye and Chan (2018) compared ANN with OLS using sales transaction data for 321 residential properties in Lagos, 

Nigeria. They concluded that ANN outperformed OLS. Similarly, Yalpır (2018) and Selim (2009) compared ANN with OLS and 

suggested that the former performed better. Yalpır (2018) used 98 observations, whereas Selim (2009) used a relatively larger sample 

(5,741). Yalpır (2018) used three activation functions (the sigmoid, tangent hyperbolic, and adaptive activation functions) to build an 

ANN. However, hyperparameters other than activation functions were fixed in the validation process.  

According to Valier (2020), there were 57 cases in which ML-based models, including NN, were more accurate in predicting 

value, as compared to 13 cases in which regression performed better. Zurada, Levitan, and Guan (2011) suggested that, although there 

have been many studies in the recent years that compare regression with AI-based methods in a mass appraisal context, a meaningful 

comparison of published results is challenging. A reason they suggested is that, in many studies, the models have been built on relatively 

small samples. They, thereby, employed a large data set containing over 16,000 transactions of sales to conduct a more comprehensive 

comparative study, and found that non-traditional regression-based methods performed better in all simulation scenarios, especially with 

homogeneous data sets. AI-based methods performed well with less homogeneous data sets under some simulation scenarios.  

 

3. Models 

This section introduces the NNGP and DNN models employed in our empirical comparison. 

 

3.1. NNGP 

Let D be the spatial domain under study and 𝒔 be a coordinate position, (x, y). The spatial regression model, often termed as the 

spatial process model, can then be expressed as follows (Banerjee, Carlin, and Gelfand, 2014; Yamagata and Seya, 2019): 

 

𝑦ሺ𝒔ሻ ൌ 𝑚ሺ𝒔ሻ ൅ 𝑤ሺ𝒔ሻ ൅ 𝜀ሺ𝒔ሻ, 𝜀ሺ𝒔ሻ~𝑁ሺ0, 𝜏𝟐ሻ, 
(1) 

where the spatial process on real estate rental prices, 𝑦ሺ𝒔ሻ, is decomposed to 𝑚ሺ𝒔ሻ, 𝑤ሺ𝒔ሻ, and 𝜀ሺ𝒔ሻ. 𝜏ଶ is a variance parameter, which is 

also termed as a nugget, which represents micro-scale variation and measurement error. Normally, we assume that 𝑚ሺ𝒔ሻ ൌ 𝒙ሺ𝒔ሻᇱ𝜷, 

where x is an explanatory variable vector at point s and 𝜷 is the corresponding regression coefficient vector. Further, 𝑤ሺ𝒔ሻ is assumed 

to follow the GP: wሺ𝒔ሻ~𝐺𝑃൫0, 𝐶ሺ∙,∙ |𝜽ሻ൯, where the mean is zero and the covariance function is 𝐶ሺ∙,∙ |𝜽ሻ (𝜽 is a parameter vector that 

typically includes the parameter 𝜙 [where 1/𝜙 is called the range], which controls the range of spatial dependence, and variance 

parameter 𝜎ଶ represents the variance of the spatial process and is termed as the partial sill). Finally, 𝜀ሺ𝒔ሻ is an uncorrelated pure error 

term. 

Let the sample be obtained at point s1, …, sn, and let y(si) and x(si) denote the dependent and explanatory variables observed at 

location si. Thus, wൌ ൫𝑤ሺ𝒔ଵሻ, 𝑤ሺ𝒔ଶሻ, … , 𝑤ሺ𝒔௡ሻ൯
ᇱ
 follows the multivariate Gaussian distribution: w~N (0, 𝑪ሺ𝜽ሻ), where the element of 



 

 

nൈn matrix 𝑪ሺ𝜽ሻ is given by 𝐶൫𝒔௜, 𝒔௝ห𝜽൯ ሺ𝑖 ൌ 1, … , 𝑛; 𝑗 ൌ 1, … , 𝑛ሻ. The spatial process model can then be expressed as y~N (X𝜷,

𝜦ሺ𝜏ଶ, 𝜽ሻ), where 𝜦ሺ𝜏ଶ, 𝜽ሻ ൌ 𝑪ሺ𝜽ሻ ൅ 𝜏ଶ𝑰, where I is an nൈn identity matrix.  

The prediction of response 𝑦ሺ𝒔଴ሻ at any given point 𝒔଴ is termed as kriging.11 The kriging predictor requires the inverse of nൈn 

variance-covariance matrix 𝜦. Thus, the computation requires the cost of O(n3). This implies that the computation is challenging in the 

order of n = 105. Hence, various approaches have been proposed to approximate the spatial process w(s) (Heaton et al., 2019). Among 

the alternatives, this study employs the NNGP model based on Vecchia (1988). The joint density of the spatial process w (full GP), is 

expressed as the product of conditional densities, that is, 𝑝ሺ𝒘ሻ ൌ 𝑝ሺ𝑤ሺ𝒔ଵሻሻ ∏ 𝑝ሺ𝑤ሺ𝒔௜ሻ|𝑤ሺ𝒔ଵሻ, … , 𝑤ሺ𝒔௜ିଵሻሻ௡
௜ୀଶ .12 Vecchia (1988) then 

assumes the following approximation to this joint density:  

 𝑝෤ሺ𝒘ሻ ൌ 𝑝ሺ𝑤ሺ𝒔ଵሻሻ ∏ 𝑝ሺ𝑤ሺ𝒔௜ሻ|𝒘ሺ𝑁ሺ𝒔௜ሻሻሻ௡
௜ୀଶ . (2) 

Here, 𝑁ሺ𝒔௜ሻ is a neighbor set of 𝒔௜  and is given as the k-nearest neighbors of 𝒔௜  in NNGP. Thus, NNGP approximates the full GP 

expressed as a joint density using the nearest neighbors. Datta et al. (2016) demonstrated that the approximation of Equation (2) leads to 

an approximation of precision matrix 𝑪ିଵ to 𝑪෩ିଵ provided in the following equation:  

 𝑪෩ିଵ ൌ ሺ𝑰 െ 𝑨ሻ′𝑫ିଵሺ𝑰 െ 𝑨ሻ, (3) 

where A is a sparse and strictly lower triangular matrix, with its diagonal given by zero, and has non-zero entries at most k-entries in 

each row. D = diag(dii) is a diagonal matrix whose elements are conditional variances based on the full GP model. Here, because A and 

D can be provided as kൈk (k << n) matrices and 𝑪෩ିଵ is sparse, the computational load can be significantly reduced. The spatial process 

model provided through NNGP may be expressed as follows: 

 y~N(X𝜷, 𝜦෩ሺ𝜏ଶ, 𝜽ሻ), (4) 

where 𝜦෩ሺ𝜏ଶ, 𝜽ሻ ൌ 𝑪෩ሺ𝜽ሻ ൅ 𝜏ଶ𝑰. 

The parameters in the NNGP model can be estimated using (Bayesian) Markov chain Monte Carlo (MCMC) (Datta et al. 2016), 

Hamiltonian Monte Carlo (Wang et al., 2018), and maximum likelihood methods (Saha and Datta 2018). This study employs the MCMC. 

Since the NNGP parameters are 𝜷, and 𝝓 ൌ ሺ𝜏ଶ, 𝜎ଶ, 𝜙ሻ′ ൌ ሺ𝜏ଶ, 𝜽ሻ′, when using MCMC, we must set a prior distribution for each 

parameter and multiply it by the likelihood function to obtain the conditional posterior distributions (full Bayesian NNGP). Since this 

study employs massive data to a maximum of n = 106, it is challenging to implement the full Bayesian NNGP within a practical 

computational time. Accordingly, the study employs the conjugate NNGP, as proposed by Finley et al. (2017). Suppose 𝑷෩ሺ𝜙ሻ is the 

approximate nearest neighbor of a spatial correlation matrix that corresponds to an approximate nearest neighbor of 𝑪෩ሺ𝜽ሻ. The conjugate 

NNGP can then be provided as follows: 

 y~N(X𝜷, 𝜎ଶ𝑴෩ ), (5) 

where  𝑴෩ ൌ  𝑷෩ሺ𝜙ሻ ൅ 𝛼𝑰  and 𝛼 ൌ 𝜏ଶ/𝜎ଶ . The conjugate NNGP is employed because, when assuming that 𝛼 and 𝜙  are known, the 

conjugate normal-inverse Gamma posterior distribution for 𝜷 and 𝜎ଶ can be used, and the predictive distribution for y(𝒔଴) can also be 

obtained as a t-distribution. Thus, it is straightforward to perform MCMC sampling. The empirical section explains how we set the 
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values of 𝛼 and 𝜙. 

 

3.2. DNN 

DNN is a mathematical model with a network structure in which layered units are connected with neighboring layers. It thus 

allows for the construction of extremely complicated non-linear functions. Each element that comprises a network is termed a unit or 

node. The first layer is termed the input layer and the last, the output layer; all the other layers are referred to as hidden layers. Next, the 

index for layers is expressed as l = 1, …, L, where the first layer is the input layer and the Lth layer is the output layer. In a DNN, the 

results of non-linear transformations on inputs received from the previous layer are transmitted to the next layer to derive outputs at the 

output layer as an estimation result. Thus, for each observation, linear transformations via a weight matrix 𝑾௟ାଵ (𝑚௟  ൈ 𝑚ሺ௟ାଵሻ) and 

non-linear transformations via an activation function f(.) are conducted in each layer. The transformation from the lth layer output zl 

(𝑚௟  ൈ 1) to the l + 1th layer output zl+1 (𝑚ሺ௟ାଵሻ  ൈ 1) can be performed according to the following equations:  

𝒖௟ାଵ ൌ   𝑾௟ାଵ 𝒛௟ ൅ 𝒃௟ାଵ, ሺ6ሻ 

𝒛௟ାଵ ൌ 𝒇ሺ𝒖௟ାଵ ሻ, ሺ7ሻ 

where 𝒃௟ାଵ  is the 𝑚௟  ൈ 1  bias vector and 𝒇ሺ𝒖௟ାଵ ሻ  is the activation function vector. The final output is given as (𝑧௅ ≡ 𝑦ොሻ . In 

determining 𝑾௟ାଵ and 𝒃௟ାଵ for regression (where y is continuous), the following mean squared error (MSE) of the actual value 𝑦 and 

the predictive value 𝑦ො is often used as a loss function h.  

ℎ ൌ
1
𝑛

෍ሺ𝑦௜ െ 𝑦ො௜ሻଶ

௡

௜ୀଵ

. ሺ8ሻ 

The process of searching 𝑾௟ାଵ and 𝒃௟ାଵ that minimize h is termed as DNN learning. Learning is performed by the gradient algorithm, 

while backpropagation is used to calculate the gradient. In contrast to the case of usual statistical estimation, partial derivatives are 

computed from the output layer (LeCun, Bengio, and Hinton 2015). 

 Although the structure of the standard DNN model is simple, there are many hyperparameters we must calibrate, including the 

number of layers, number of units in the hidden layers, learning rate, and batch size. Additionally, the DNN parameter space has a tree 

structure, which means we must be alert to the presence of conditional parameters. For example, the number of units in each layer cannot be 

determined until the number of layers is determined. The presence of these hyperparameters is undoubtedly a source of the plasticity and high 

predictive accuracy of a DNN. Conversely, there is no denying that the difficulty (and personalization) of the setting is an obstacle for 

applied researchers and practitioners. The grid and random searches are widely used methods for DNN parameter tuning (Bergstra and 

Bengio 2012). In the empirical section, we report our strategies of hyperparameter tuning to obtain a well-tuned DNN model. 

 

4. Empirical comparison 

4.1. Data set 

This study employed LIFULL HOME’s data set for rent price predictions. Out of approximately 5.33 million properties, 

4,588,632 properties (after excluding missing data) were used as original data. Although the original data did not explicitly contain 

property positional coordinates s, they contained zip codes. Hence, the barycentric coordinates for zip codes (X, Y coordinates projected 



 

 

to the UTM54N WGS84 reference system) were used instead. When multiple properties share the same location (e.g., a different room in 

the same apartment), small perturbations (random noise) are given to each positional (X, Y) coordinate within the zip code. This process 

may bring about some positional errors, but, given that our study is nationwide in scope, these errors are negligible.  

The dependent variable is the natural logarithm of the monthly rent price (including maintenance fees) [yen];13 the explanatory 

variables shown in Table 1 were used. We selected standard variables to include descriptors of the location of the condominium (location 

variables) and descriptors of the condominium itself (structural variables). For location variables, we employ “Walk time to nearest (train) 

station” [m]; “Floor-area ratio” [%]; and “Use district” [dummies]. For structural variables, we employ “Years built” [month]; Number of 

rooms [#]; “Direction” [dummies]; “Building structure” [dummies], and “Room layout” [dummies]. The number of explanatory variables 

(K) is 43. Table 1 presents the descriptive statistics.14 Fig. 1 shows the natural logarithm of the rent price (yen) for each prefecture.  

 

[Table 1-1 Descriptive statistics (continuous variables)] near here 

[Table 1-2 List of explanatory variables (discrete variables)] near here 

[Table 1-3 Descriptive statistics (discrete variables)] near here 

[Figure 1. Log (rent price) for each prefecture.] near here 

 

4.2. Experimental design 

We compared the rent prediction accuracy of the NNGP with that of the DNN. We also show the OLS results as a benchmark. 

Regarding the prediction for the 4,588,632 properties, they were randomly selected at various sizes (n =104, 105, 106), and 80% of these data 

were used as training data for the learning models. Moreover, the remaining 20% were used as testing data (validation data) to test the 

prediction accuracy. The sample size for the training and testing data had three patterns: (8000 vs. 2000), (80,000 vs. 20,000), and (800,000 vs. 

200,000). Since sampling was completely random, there were no containment relations where, for instance, 104 samples are contained in 105 

samples. However, since the data size was sufficiently large, it would be highly unlikely that the sample bias would conceal trends. Thus, this 

study design (based not on conditionalization but complete random sampling) would not significantly affect the results. The OLS and the 

NNGP are estimated using R, whereas the DNN is estimated using Python. To use the same random seed for R and Python, we used a 

reticulate package that provides an R interface to Python modules, classes, and functions. 

For predictive accuracy assessment, the following error measures were used: mean absolute error [MAE], root mean squared error 

[RMSE], and mean absolute percentage error [MAPE]. Here, 𝑦ොm and ym are the out-of-sample predictive and observed values, respectively, for 

the m th data. Note that the first two measures are not robust to outliers for skewed distributions because the noise is unlikely to be Gaussian 

with constant variance. If we calculate RMSE on a skewed response variable, the resulting statistic is going to be mainly driven by the 

observations of the highest magnitude (see descriptive statistics). Hence, we calculate all error measures while keeping ym log-transformed. 

Note, however, that MAPE for log-transformed variables does not have means that are interpretable as percentages (see Swandon, Tayman, 

and Barr 2000). Hence, we also calculated MAPE for real-scale. 
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4.3. Model settings 

4.3.1. OLS 

Table 1 presents the explanatory variables, except for the X and Y coordinates. For reference, Table 2 presents the regression 

analysis results based on the OLS estimation when n = 106. The adjusted R2 value is 0.5165.  

[Table 2 Regression analysis results using OLS (example of n = 106)] near here 

 

4.3.2. NNGP  

We use the conjugate NNGP proposed by Finley et al. (2017) (Section 3.1). The conjugate NNGP is a pragmatic approach that 

accelerates sampling by assuming 𝛼 and 𝜙 to be “known.” The full Bayesian NNGP is theoretically sound. This study, however, employs 

massive data with up to n = 106 of data. Hence, it is practically challenging to implement a full Bayesian NNGP. In such cases, the 

conjugate NNGP is a beneficial alternative. Finley et al. (2017) proposed to assign values to 𝛼 and 𝜙 via the grid point search algorithm 

based on the cross-validation (CV) score. However, the computational load remains high for performing a grid point search for n = 106 of 

data. Therefore, this study undertakes the following ad-hoc strategy in assigning values to 𝛼 and 𝜙.15  

From the remaining data not used for comparison, 10,000 properties were randomly sampled, and parameters were defined by 

iteratively re-weighted generalized least squares (Schabenberger and Gotway 2005, 256–9) in semivariogram 𝛾ሺ𝑑ሻ ൌ 𝐶ሺ0ሻ െ 𝐶ሺ𝑑ሻ, which 

is conversely related to the covariance function. Fig. 2 shows the fitting results of the empirical variogram, where distance d is divided into 

R units of sections ℏ௥ሺ𝑟 ൌ 1, . . . , 𝑅ሻ without mutually overlapping ranges and determines the average value of non-similarity of each 

section to the theoretical functions by the Cressie–Hawkins’s robust estimation (Cressie and Hawkins 1980). Starting from the left, the 

Gaussian, spherical, and exponential models are shown; the Gaussian model had the best CV score and, hence, it was used. We can see that 

the Gaussian model is a particularly good fit for near-distances that are subject to prediction results. Given these observations, the values 

for each parameter are as follows: ϕ=1/25.8, τ2 = 0.04, and σ2 = 0.03. 

Next, the model parameters were used to develop an NNGP model. The spConjNNGP function in the spNNGP package of R 

was used for implementation. An NNGP model requires a determination of the number of nearest neighbors to consider. In the 

default setting of the spConjNNGP function, it is 15.16 When the relationship between the number of nearest neighbors k and CV score 

(MSE) was plotted,17 there was a tendency for the MSE to decrease to approximately k = 30 and increase thereafter (Fig. 3). Thus, the 

number of nearest neighbors was set as k = 30 in performing the validation.  

 

[Figure 2. Fitting of variogram functions (Gaussian model; Spherical model; Exponential model).] near here 

[Figure 3. Change in the MSE according to the number of nearest neighbors (in the case of n=105).] near here 

 



 

 

4.3.3. DNN  

This subsection explains the DNN settings. As noted in the DNN subsection of the methodology section, DNN has several 

hyperparameters to be determined. The grid and random searches are widely known as typical methods for DNN parameter tuning. However, they 

are inefficient. This study adopts a more efficient optimization technique, known as the tree-structured Parzen estimator (TPE) (Bergstra et al. 

2011). It was adopted for its ability to adequately address the tree-structured parameter space of DNNs and its numerous records of adoption; 

moreover, its performance has been proven to some degree (Bergstra et al. 2011; Bergstra, Yamins, and Cox 2013). The parameter space (range of 

search) and obtained parameters were set, as shown in Tables 3 and 4.  

Typical activation functions include the traditional sigmoid, hyperbolic tangent, softmax, and the recently popularized rectified 

linear unit (ReLU). ReLU has an advantage over the others in terms of computation because it induces sparsity in the hidden units 

(Glorot, Bordes, and Bengio 2011), as well as the non-saturation of its gradient, which accelerates convergence (Krizhevsky, Sutskever, 

and Hinton 2012). Hence, this study adopts ReLU. Regarding the optimizer for the DNN, since relatively large differences were found in the 

results according to the type of algorithm used, only the results using typical algorithms, RMSprop (Tieleman and Hinton 2012), and adaptive 

moment estimation (Adam) (Kingma and Ba 2014) are shown. This study did not use techniques designed to prevent overtraining, such 

as regularized terms and dropouts. It instead employed Keras18 for the development of a DNN and Optuna19 for TPE implementation with 

Python.  

The learning procedure for a concrete model was as follows. First, based on the tth hyperparameter candidate vectors 𝜹௧ and the results of 

applying five-fold CV with training data for each  𝜹௧ (MSE, eq. [8]), a 50-fold search was performed using TPE. Second, a model was 

created once again using the optimal hyperparameter vector and all the training data to assess the predictive accuracy of the testing data. 

The explanatory variables used were standardized in advance. Table 4 shows the optimization results of the hyperparameters.  

 

[Table 3 DNN hyperparameters and search range] near here 

[Table 4 DNN hyperparameters after optimization (Adam)] near here 

 

4.4. Results 

The predictive accuracies by sample size for each model are shown in Figs. 4 (for log-scale) and 5 (MAPE for real-scale). These 

figures show that, for DNN, when the sample size is relatively small (i.e., n = 104), the RMSprop optimizer performed better; however, 

when the sample size is large (i.e., n = 105 and 106), the Adam optimizer performed better for log-scale. For real-scale, the differences 

in the performance are minor. The predictive accuracies of OLS did not show large differences, even if the sample size increased, 

because OLS, which does not use local spatial information, has a simple model structure such that n = 104 was sufficiently large for 

determining the parameters. In fact, in the case of real-scale, increased sample size worsened the predictive accuracy. This is caused by 

the increase in the number of high-priced properties in test data.  

The NNGP showed the best results of all three models, for any sample size and any error measures. Even with a relatively 

smaller sample size (n = 104), it had a high accuracy (MAPE = 1.110 for log-scale and 12.63 for real-scale). At n =104, DNN 

(Adam) had a larger error than that of OLS in terms of the MAE (OLS = 0.2113; DNN (Adam) = 0.2118). However, it had a larger 

margin of improvement in accuracy with an increase in sample size. Further, at n = 106, it reached the same level as that of the NNGP. 
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These results implied that the DNN could be useful, particularly in a context in which the sample size is large. That is, in a context in 

which the sample size is relatively small (i.e., n = 104), its predictive accuracy does not differ significantly from that of the OLS. The 

latter result would likely have led to the mixed results of prior studies, as discussed in Section 2. Fig. 6 shows the scatter plots 

depicting predicted and actual rent prices at n = 106 for log-scale. 

From Fig. 7, we can see that, across all models, predictive accuracy is poor in areas where the rent price is high. The MAPE per 

logarithmic rent price range for each model is shown in Fig. 7 for a closer evaluation. The comparison between NNGP and DNN 

shows that the DNN was more accurate in the high-rent areas with a logarithmic rent price of 12 or greater and low-rent areas with a 

logarithmic rent price of 10.5 or less. By contrast, NNGP performed better in the median-rent areas with a logarithmic rent price of 11 

to 12, where the number of cases is large. The number after the log rent range in Fig. 7 denotes the number of cases. 

These results suggest that, regarding rent price prediction models using standard explanatory variables, if the sample size is 

moderate (n = 104, 105), kriging (NNGP) is useful, whereas the DNN may be promising if a sufficient sample size is secured (n = 106). 

The DNN is especially useful for the prediction of apartment rent prices in higher-end markets. 

 

[Figure 4. Prediction results by sample size for each model (log-scale).] near here 

[Figure 5. Prediction results by sample size for each model (real-scale).] near here 

[Figure 6. Scatter plot of predicted (horizontal axis) and actual (vertical axis) rent prices for each model (in the case of n = 106).] near here 

[Figure 7. MAPE per log rent (in the case of n = 106).] near here 

 

5. Concluding remarks 

As mentioned in the introduction, there is a need for an accurate prediction model of real estate sales and rent prices for businesses 

and end users. Despite several attempts to compare and examine the predictive accuracy of real estate sales and rent prices between the 

regression- and NN-based approaches, the results are largely mixed. Prior study limitations include a small sample size and the disregard for 

spatial dependence, which is an essential characteristic of real estate properties. Hence, this study compared and discussed the rent price prediction 

accuracy of regression approaches ([1] OLS, [2] spatial statistical model [kriging] and, [3] the DNN) using various sample sizes. According to 

Efron (2020), although the ML-based approaches have been popularized recently, regression-based models are still useful because the obtained 

coefficients can be used not only for prediction but also for attribution (i.e., significance testing). 

As the sample size increases (e.g., n = 105), it is increasingly more challenging to straightforwardly apply kriging, which requires the cost 

of O (n3) for the inverse matrix calculation of a variance-covariance matrix. Hence, as a spatial statistical model, NNGP was used, which allows 

for the application of kriging to big data. For empirical validation, this study employed LIFULL HOME’s data set20 for apartment rent 

prices in Japan—which includes data on rent, lot size, location (municipality, zip code, nearest station, and walk time to nearest station), 

year built, room layout, building structure, and equipment for approximately 5.33 million properties across Japan. Thus, to assess the effect 

that the sample size has on the difference in predictive accuracy, properties with missing data were eliminated. Furthermore, n = 104, 105, and 

106 properties were completely randomly sampled to compare the rent price prediction accuracy based on approaches [1], [2], and [3].  

Our analysis showed that, with an increase in sample size, the predictive accuracy of the DNN approached that of the NNGP. 

Moreover, they were nearly equal in the order of n = 106. During this experiment, standard explanatory variables that had typically been 

incorporated into the regression-based hedonic model were used. It is no exaggeration to say that, under these standard settings, the use of 



 

 

regression-based NNGP is sufficient even if the sample size is in the order of n = 106. Note, however, that the DNN is expected to be useful in 

contexts where K is even larger (e.g., when image data is used for explanatory variables). This possibility must await further investigation.  

Moreover, regarding both higher-end and lower-end properties whose rent prices deviate from the median, our study suggested that the 

DNN may have higher predictive accuracy than the NNGP because, unlike the NNGP, the DNN can explicitly consider the nonlinearity of 

the function form. Thus, the usefulness of the regression approaches that consider the nonlinearity of the function form, as in the 

geoadditive model (Kammann and Wand, 2003), was demonstrated by the experiment of Seya et al. (2011) using small samples. It will 

be worthwhile to test such semiparametric approach using big data in the future. 

In this study, many DNN hyperparameters were determined using optimization techniques to eliminate tailored and ad-hoc settings as 

much as possible. Nevertheless, a certain portion of this procedure, including the setting of the parameter search range, had to depend on trial and 

error. Since the difficulty of setting hyperparameters in DNNs poses an obstacle to their actual operation for applied researchers and practitioners 

who are involved in the prediction of real estate sales and rent prices, there is an urgent need to accumulate study results to resolve this issue. 

Additionally, it is also important to establish an effective means to set NNGP hyperparameters, as well as compare it to other neural network 

models, including graph convolutional networks or even other ML methods such as gradient boosting families.  

Notes 
1 https://www.zillow.com/ 
2 https://www.homes.co.jp/price-map  
3 See Glumac and Des Rosiers (2020) for more details on automated valuation. 
4 For example, although information on individual transactions of real estate properties is officially available from the Land General 
Information System (http://www.land.mlit.go.jp/webland/) of the Ministry of Land, Infrastructure, Transport and Tourism in Japan, 
location and price details are not available. That is, only approximate locations and prices are available.  
5 Semiparametric functional forms, such as penalized spline, can also be used (Seya et al. 2011). Kuminoff, Parmeter, and Pope (2010) 
noted that it may be time to reconsider the quadratic Box-Cox model and other flexible specifications for empirical hedonic research. 
6 https://www.nii.ac.jp/dsc/idr/lifull/homes.html 
7 This was provided by LIFULL Co., Ltd. to the researchers free of charge through the National Institute of Informatics. 
8 Fotheringham and Park (2018) conducted hedonic rent price modelling for Seoul. See Melser (2020) about the merit of rents in terms of 
the hedonic analysis. 
9 Semiparametric methods such as the geoadditive model are also employed (Seya et al. 2011; Von Graevenitz and Panduro 2015). 
10 Recently, Murakami et al. (2019) suggested the importance of scale in SVC models. 
11 Or 𝑚ሺ𝒔଴ሻ ൅ 𝑤ሺ𝒔଴ሻ, see Cressie (1993). 
12 Although the results depend on the ordering of the samples, Datta et al. (2016) showed that the NNGP is insensitive to ordering. We 
performed ordering based on the x-coordinate locations. 
13 We also considered the linear functional form, but predictive accuracy assessed at real-scale was worse compared to the log-linear form 
for all the cases. 
14 Of all explanatory variables, information regarding use district (zoning) and floor-area ratio was often lacking in the original database. 
Therefore, these data were separately prepared from the National Land Numerical Information database (http://nlftp.mlit.go.jp/ksj-
e/index.html) 
15 One possible means of improvement is to apply the methods of hyperparameters value setting for the DNN, as mentioned in the next 
section. Future studies can consider the development of a concrete algorithm.  
16 In the default setting of the spConjNNGP function, the value is 15.  
17 Since n = 104, and n = 106 did not produce large differences, the results for n = 105 are shown here. 
18 https://keras.io 
19 A framework developed via Preferred Networks, Inc. (https://optuna.org) 
20 https://www.nii.ac.jp/dsc/idr/lifull/homes.html 
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Figures  
 
 

 
Figure 1: log (rent prices) for each prefecture 
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Figure 2: Fitting of variogram functions  
(Gaussian model; Spherical model; Exponential model) 

 
  



 
 

 

 
 

Figure 3: Change in the MSE according to the number of nearest neighbors  
(in the case of n=105) 
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Figure 4: Prediction results by sample size for each model (log scale) 
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Figure 5: MAPE by sample size for each model (real scale) 
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Figure 6: Scatter plot of predicted (horizontal axis) and actual (vertical axis) log rent prices 
for each model (in the case of n = 106) 

  



 
 

 

 

 
Figure 7: MAPE per log rent range (in the case of n = 106) 
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Tables 

 
Table 1-1: Descriptive statistics (continuous variables) 

 

Min Max Median Mean SD 

Rent price (yen) 5250 1250000000 63000 72850 1381893 

Years built (month) 5 1812 228 236 135.6 

Walk time to nearest (train) station 
(m) 

1 88000 640 781.5 661.3 

Number of rooms (#) 1 50 1 1.48 0.71 

Floor-area ratio (%) 50 1000 200 234.1 130.6 

X (km) −841 783.1 352.2 181.5 273.3 

Y (km) 2958 5029 3931 3942 195.3 
The “rent price” includes maintenance fees 

 
  



 
 

 

Table 1-2: List of explanatory variables (discrete variables) 
 

Direction North, Northeast, East, Southeast, South, Southwest, West, Northwest, 
Other 

Building 
structure 

W，B，S，RC，SRC，PC，HPC， 
LS，ALC，RCB，Others 

Room layout R, K, SK, DK, SDK, LK, SLK, LDK, SLDK 

 
 

Use district 

Category Ⅰ exclusively low residential zone (1 Exc Low), Category II 
exclusively low residential zone (2 Exc Low),  Category Ⅰ exclusively 
high-medium residential zone (1 Exc Med), Category II exclusively high-
medium residential zone (2 Exc Med), Category I residential zone (1 Res), 
Category II residential zone (2 Res), Quasi-residential zone (Quasi-Res), 
Neighborhood commercial zone (Neighborhood Comm), Commercial zone 
(Commercial), Quasi-Industrial zone (Quasi-Ind), Industrial zone 
(Industrial), Exclusive industrial zone (Exc Ind), Others (Others) 

 
 
For building structure: W: Wooden; B: Concrete block; S: Steel frame; RC: Reinforced concrete; SRC: 
Steel frame reinforced concrete; PC: precast concrete; HPC: Hard precast concrete; LS: Light steel, RCB: 
Reinforced concrete block 
 
For room layout: The R refers to a room where there is only one room and there is no wall to separate the 
bedroom from the kitchen. For the others, K: includes a kitchen; D: includes a dining room: L: includes a 
living room; S: additional storage room. For example, LDK is a Living, Dining, and Kitchen area.  
 
For use district: Category I exclusively low residential zone, Category II exclusively low residential zone, 
Category I exclusively medium-high residential zone, Category II exclusively medium-high residential zone, 
Category I residential zone, Category II residential zone, Quasi-residential zone, Neighborhood commercial 
zone, Commercial zone, Quasi-industrial zone, Industrial zone, Exclusively industrial zone 
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Table 2: Regression analysis results using OLS (example of n = 106) 
Variables Estimate t-values Pr(>|t|) sig.code 
Constant term 1.08E+01 4.50E+03 2.00E-16 *** 
Years built -1.15E-03 -4.42E+02 2.00E-16 *** 
Walk time to nearest station -4.88E-05 -9.87E+01 2.00E-16 *** 
Floor-area ratio 1.30E-03 2.30E+02 2.00E-16 *** 
Number of rooms 1.49E-01 2.57E+02 2.00E-16 *** 
Direction_Northeast 8.09E-02 2.80E+01 2.00E-16 *** 
Direction_East -4.45E-03 -2.32E+00 2.05E-02 * 
Direction_Southeast 5.40E-03 2.72E+00 6.63E-03 ** 
Direction_South -2.33E-02 -1.29E+01 2.00E-16 *** 
Direction_Southwest 2.46E-03 1.23E+00 2.19E-01   
Direction_West 1.94E-02 9.67E+00 2.00E-16 *** 
Direction_Northwest 7.39E-02 2.53E+01 2.00E-16 *** 
Direction_Others -6.85E-02 -3.53E+01 2.00E-16 *** 
Structure_B 1.88E-01 6.39E+00 1.66E-10 *** 
Structure_S 9.41E-02 9.39E+01 2.00E-16 *** 
Structure_RC 2.40E-01 2.71E+02 2.00E-16 *** 
Structure_SRC 3.67E-01 2.06E+02 2.00E-16 *** 
Structure_PC 2.14E-01 3.48E+01 2.00E-16 *** 
Structure_HPC 9.13E-02 4.19E+00 2.78E-05 *** 
Structure_LS 5.34E-02 4.75E+01 2.00E-16 *** 
Structure_ALC 9.17E-02 3.19E+01 2.00E-16 *** 
Structure_RCB 1.20E-01 4.55E+00 5.44E-06 *** 
Structure_Others 1.61E-01 1.81E+01 2.00E-16 *** 
Room layout_K 4.22E-02 3.62E+01 2.00E-16 *** 
Room layout_SK 1.10E-01 1.39E+01 2.00E-16 *** 
Room layout_DK 1.37E-01 1.00E+02 2.00E-16 *** 
Room layout_SDK 3.65E-01 3.95E+01 2.00E-16 *** 
Room layout_LK 2.79E-01 1.01E+01 2.00E-16 *** 
Room layout_SLK 3.04E-01 5.75E+00 9.07E-09 *** 
Room layout_LDK 2.76E-01 2.12E+02 2.00E-16 *** 
Room layout_SLDK 6.06E-01 1.39E+02 2.00E-16 *** 
Use district_2 Exc Low -1.15E-01 -2.72E+01 2.00E-16 *** 
Use district_1 Exc Med -1.52E-01 -1.22E+02 2.00E-16 *** 
Use district_2 Exc Med -2.77E-01 -1.83E+02 2.00E-16 *** 
Use district_1 Res -2.36E-01 -1.97E+02 2.00E-16 *** 
Use district_2 Res -2.48E-01 -1.38E+02 2.00E-16 *** 
Use district_ Quasi-Res -2.92E-01 -9.98E+01 2.00E-16 *** 
Use district_ Neighborhood Comm -2.63E-01 -1.56E+02 2.00E-16 *** 
Use district_ Commercial -4.63E-01 -1.83E+02 2.00E-16 *** 
Use district_ Quasi-Ind -1.91E-01 -1.26E+02 2.00E-16 *** 
Use district_ Industrial -2.46E-01 -9.76E+01 2.00E-16 *** 
Use district_ Exc Ind -3.17E-01 -5.13E+01 2.00E-16 *** 
Use district_Others 5.00E-01 3.57E+00 3.62E-04 *** 
Adjusted R2 0.5165 

* significant at 5%; ** significant at 1%; *** significant at 0.1%.         
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Table 3: DNN hyperparameters and search range 

 

 
Hyper parameters Search range 

# of hidden layers [1, 5] 
# of unites [10, 50] 

Batch size [32, 128] 

# of epochs [10, 30] 

Learning rate [10−5,  10−2] (log) 

 

  



 
 

 

Table 4: DNN hyperparameters after optimization (Adam) 

 
 n = 104 n = 105 n = 106 

# of hidden layers 5 4 4 

# of unites [10, 10, 42, 37, 10] [48, 26, 50, 36] [37,43, 50, 42] 

Batch size 34 71 103 

# of epochs 27 29 22 

Learning rate 0.002896 0.007036 0.0007060 
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