神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/90009239
このアイテムのアクセス数:
151
件
(
2025-05-16
13:51 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
90009239 (fulltext)
pdf
1.44 MB
60
メタデータ
ファイル出力
メタデータID
90009239
アクセス権
open access
出版タイプ
Version of Record
タイトル
eFL-Boost: Efficient Federated Learning for Gradient Boosting Decision Trees
著者
Yamamoto, Fuki ; Ozawa, Seiichi ; Wang, Lihua
著者名
Yamamoto, Fuki
著者ID
A1729
研究者ID
1000070214129
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=5d6ba4d6ae71eb49520e17560c007669
著者名
Ozawa, Seiichi
小澤, 誠一
オザワ, セイイチ
所属機関名
数理・データサイエンスセンター
著者名
Wang, Lihua
言語
English (英語)
収録物名
IEEE Access
巻(号)
10
ページ
43954-43963
出版者
Institute of Electrical and Electronics Engineers (IEEE)
刊行日
2022-04-22
公開日
2022-05-25
抄録
Privacy protection has attracted increasing attention, and privacy concerns often prevent flexible data utilization. In most industries, data are distributed across multiple organizations due to privacy concerns. Federated learning (FL), which enables cross-organizational machine learning by communicating statistical information, is a state-of-the-art technology that is used to solve this problem. However, for gradient boosting decision tree (GBDT) in FL, balancing communication efficiency and security while maintaining sufficient accuracy remains an unresolved problem. In this paper, we propose an FL scheme for GBDT, i.e., efficient FL for GBDT (eFL-Boost), which minimizes accuracy loss, communication costs, and information leakage. The proposed scheme focuses on appropriate allocation of local computation (performed individually by each organization) and global computation (performed cooperatively by all organizations) when updating a model. It is known that tree structures incur high communication costs for global computation, whereas leaf weights do not require such costs and are expected to contribute relatively more to accuracy. Thus, in the proposed eFL-Boost, a tree structure is determined locally at one of the organizations, and leaf weights are calculated globally by aggregating the local gradients of all organizations. Specifically, eFL-Boost requires only three communications per update, and only statistical information that has low privacy risk is leaked to other organizations. Through performance evaluation on public data sets (ROC AUC, Log loss, and F1-score are used as metrics), the proposed eFL-Boost outperforms existing schemes that incur low communication costs and was comparable to a scheme that offers no privacy protection.
キーワード
Costs
Organizations
Decision trees
Data models
Boosting
Privacy
Histograms
Machine learning
privacy-preserving
gradient boosting
federated learning
decision tree
カテゴリ
数理・データサイエンスセンター
学術雑誌論文
権利
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
関連情報
DOI
https://doi.org/10.1109/ACCESS.2022.3169502
詳細を表示
資源タイプ
journal article
eISSN
2169-3536
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る