

PDF issue: 2025-05-08

G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway

Fujiwara, Ryosuke ; Nakano, Mariko ; Hirata, Yuuki ; Otomo, Chisako ; Nonaka, Daisuke ; Kawada, Sakiya ; Nakazawa, Hikaru ; Umetsu, Mitsuo ;…

(Citation) Metabolic Engineering,72:68-81

(Issue Date) 2022-07

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

© 2022 International Metabolic Engineering Society. Published by Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/90009278

Highlights

•Periplasmic expression of β -glucosidase (BGL) increases L-Phe production in *E. coli*

- •Two key factors involved in this phenomenon, G6P and EIIC^{Glc} domain, were defined
- •Cytoplasmic G6P is secreted into the periplasm via EIIC^{Glc} domain and captured by BGL
- •Periplasmic expression of other G6P-capturing proteins also increase L-Phe production
- •This technique can be applied to produce other shikimate pathway derivatives

Author Contributions

Ryosuke Fujiwara: Conceptualization, Methodology, Formal Analysis, Investigation,

Writing–Original Draft.

Mariko Nakano: Investigation.

Yuuki Hirata: Investigation.

Chisako Otomo: Investigation.

Daisuke Nonaka: Investigation.

Sakiya Kawada: Investigation.

Hikaru Nakazawa: Investigation.

Mitsuo Umetsu: Investigation.

Tomokazu Shirai: Methodology.

Shuhei Noda: Conceptualization, Methodology, Formal Analysis, Investigation,

Writing–Review & Editing.

Tsutomu Tanaka: Conceptualization, Methodology, Formal Analysis, Investigation,

Writing–Review & Editing.

Akihiko Kondo: Supervision

1	G6P-capturing molecules in the periplasm of <i>Escherichia coli</i> accelerate the
2	shikimate pathway
3	
4	Ryosuke Fujiwara ^{a,†} , Mariko Nakano ^a , Yuuki Hirata ^a , Chisako Otomo ^a , Daisuke
5	Nonaka ^a , Sakiya Kawada ^b , Hikaru Nakazawa ^b , Mitsuo Umetsu ^b , Tomokazu Shirai ^c ,
6	Shuhei Noda ^{c,*} Tsutomu Tanaka ^{a,*} , Akihiko Kondo ^{c,d}
7	
8	^a Department of Chemical Science and Engineering, Graduate School of Engineering,
9	Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
10	^b Department of Biomolecular Engineering Graduate School of Engineering, Tohoku
11	University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
12	^c Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku,
13	Yokohama, Kanagawa 230-0045, Japan
14	^d Graduate School of Science, Technology and Innovation, Kobe University, 1-1
15	Rokkodai, Nada, Kobe 657-8501, Japan
16	
17	[†] Current address: R. Fujiwara Center for Sustainable Resource Science, RIKEN, 1-7-22
18	Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
19	
20	Corresponding authors:
21	* Shuhei Noda, Email: <u>shuhei.noda@riken.jp</u>
22	* Tsutomu Tanaka, Email: <u>tanaka@kitty.kobe-u.ac.jp</u>
23	

24 Abstract

Escherichia coli, the most studied prokaryote, is an excellent host for producing valuable 25 chemicals from renewable resources as it is easy to manipulate genetically. Since the 26 27 periplasmic environment can be easily controlled externally, elucidating how the localization of specific proteins or small molecules in the periplasm affects metabolism 28 may lead to bioproduction development using *E. coli*. We investigated metabolic changes 29 30 and its mechanisms occurring when specific proteins are localized to the E. coli periplasm. We found that the periplasmic localization of β -glucosidase promoted the 31 32 shikimate pathway involved in the synthesis of aromatic chemicals. The periplasmic localization of other proteins with an affinity for glucose-6-phosphate (G6P), such as 33 inactivated mutants of Pgi, Zwf, and PhoA, similarly accelerated the shikimate pathway. 34 Our results indicate that G6P is transported from the cytoplasm to the periplasm by the 35 glucose transporter protein EIICB^{Glc}, and then captured by β -glucosidase. 36 37

38 Keywords

- 39 Periplasm, shikimate pathway, *Escherichia coli*, glucose-6-phosphate,
- 40 phosphotransferase system

41 Introduction

Technologies allowing for the bioproduction of fuels and chemicals from renewable 42 resources are in great demand. Extensive research efforts aim to develop technologies to 43 produce aromatic compounds for chemical, pharmaceutical, food, feed, and other 44 industries (Fujiwara et al., 2018; Shen et al., 2017; Sun et al., 2016). In Escherichia coli, 45 46 most aromatic chemicals are synthesized endogenously through the shikimate pathway (Noda and Kondo, 2017). Production of shikimate derivatives could be increased by 47 48 promoting the shikimate pathway (Nakagawa et al., 2011) and/or disrupting the 49 competing pathways (Niu et al., 2019; Noda et al., 2016; Rodriguez et al., 2013). For example, salicylate, an important chemical in the pharmaceutical industry, is a main 50 shikimate pathway derivative (Noda et al., 2016). Phenol and styrene, which have major 51 industrial applications worldwide, can also be produced using microbial catalysis under 52 moderate reaction conditions (Chung et al., 2015; Lian et al., 2016). The aromatic amino 53 acids L-phenylalanine (Phe), L-tyrosine (Tyr), and L-tryptophan (Trp) are produced via 54 enzymatic reactions from chorismate, the end product of the shikimate pathway (Lütke-55 Eversloh and Stephanopoulos, 2007; Olson et al., 2007; Wu et al., 2018). Important 56 57 dicarboxylic acids as raw materials for polymers with high industrial demand, such as cis,cis-muconic acid (MA) and maleate, could also be obtained from chorismate 58 59 (Fujiwara et al., 2018; Noda et al., 2016; Thompson et al., 2018; Zhang et al., 2015). 60 Therefore, the microbial production of shikimate pathway derivatives represents a potentially game-changing technology for both the environment and economy. 61 62

63	The periplasm is a space between the inner and outer membranes of gram-negative
64	bacteria, which generally contains a peptidoglycan layer. Estimates of periplasmic
65	thickness in E. coli vary from 10 to 50 nm (Sochacki et al., 2011), accounting for
66	approximately 20%–40% of their cellular volume (Stock et al., 1977). The periplasm of
67	<i>E. coli</i> contains > 60 known proteins, including amino acid-, sugar-, vitamin-, and ion-
68	binding proteins; degradative enzymes (phosphatases, proteases, and endonucleases); and
69	antibiotic detoxifying enzymes. (Schmidt T., 2019). In bioproduction using bacteria, the
70	periplasm is used as a localization site for proteins during heterologous protein
71	production (Bodelón et al., 2013; Fernández, 2004; Malherbe et al., 2019) or as a
72	localization site for hydrolases to provide bacteria the ability to use carbon sources that
73	are originally unavailable (Georgiou and Segatori, 2005; Kurumbang et al., 2020). In E.
74	<i>coli</i> , periplasmic expression of Tfu0937, a β -glucosidase (BGL) from <i>Thermobifida fusca</i>
75	YX that hydrolyzes β -glycosidic bonds in cellobiose and cello-oligosaccharides, has been
76	used for the production of valuable chemicals from cello-oligosaccharides (Tanaka et al.,
77	2011). For instance, periplasmic BGL expression has been used to produce mevalonate
78	and 1,2-propanediol from cellobiose (Nonaka et al., 2021; Satowa et al., 2020). Although
79	periplasmic protein expression methods are now well-established (Gonzalez-Perez et al.,
80	2021; Mirzadeh et al., 2020), the mechanisms by which periplasmic expression of
81	proteins such as BGL affect metabolism remain largely undetermined.
82	
83	Here, we demonstrate that the periplasmic expression of BGL or inactivated BGL
84	increased L-phenylalanine (Phe) production from glucose. We investigated factors related

to this phenomenon and found that EIICB^{Glc} and glucose-6-phosphate (G6P) were

86	involved. E. coli with heterologous BGL expression exhibited accumulation of
87	intracellular phosphoenolpyruvate (PEP), which accelerates the shikimate pathway. We
88	hypothesized that G6P is transported from the cytoplasm to the periplasm by $EIICB^{Glc}$
89	and then captured by BGL in the periplasm. We confirmed that periplasmic expression of
90	other proteins that capture G6P also increases Phe production, thus supporting our
91	hypothesis. Furthermore, the production of other shikimate pathway derivatives, Tyr and
92	MA, was also increased by the method expressing BGL in the periplasm.
93	
94	Material and methods
95	Media
96	Lysogeny broth (LB) medium comprising 10 g L^{-1} tryptone, 5 g L^{-1} yeast extract, and 5 g
97	L^{-1} NaCl was used for preculture. For L-phenylalanine and MA production, a modified
98	M9 medium was used. The M9 minimal medium (0.5 g L^{-1} NaCl, 17.1 g L^{-1}
99	Na ₂ HPO ₄ •12H ₂ O, 3 g L ^{-1} KH ₂ PO ₄ , 1 g L ^{-1} NH ₄ Cl, 246 mg L ^{-1} MgSO ₄ •7H ₂ O, 14.7 mg
100	L^{-1} CaCl ₂ •2H ₂ O, 2.78 mg L^{-1} FeSO ₄ •7H ₂ O, 10 mg L^{-1} thiamine hydrochloride) was
101	supplemented with 5 g L^{-1} yeast extract, 10 mM sodium pyruvate, a carbon source (20 g
102	L^{-1} glucose, xylose or fructose), 40 mg L^{-1} L-tyrosine and 40 mg L^{-1} of L-tryptophan.
103	The inclusion of L-tyrosine and L-tryptophan aimed to prevent auxotrophic effects of the
104	ATCC31882 strain on these amino acids. For L-tyrosine production, a modified M9
105	medium supplemented with 100 mg L^{-1} L-phenylalanine without adding L-tyrosine was
106	used. When comparing the capability of glucose and G6P as carbon sources, 55.5 mM of
107	these components were added to this modified M9 medium. For L-tyrosine production, a
108	modified M9 medium supplemented with 10 g L^{-1} glucose was instead used. Ampicillin,

109 kanamycin or chloramphenicol were added to the media with a final concentration of 110 100, 20 or 30 mg L^{-1} , respectively.

111

112 Culture conditions

- 113 Engineered strains were precultured in test tubes containing LB medium for one day at
- 114 37° C with shaking at 220 rpm. Each preculture medium was centrifuged at $12,000 \times \text{g}$ for
- 115 3 min and the pellet washed with M9 minimal medium without sugars. The preculture
- was then used to inoculate the appropriate media at an initial optical density of 0.1,
- measured at a wavelength of 600 nm (OD₆₀₀). As needed, 0.1 mM isopropyl β -D-1-

thiogalactopyranoside (IPTG) was also added to the media. Test tube-scale cultures were

119 incubated at 37°C with shaking at 220 rpm.

120

121 Strains and plasmid construction

122 Supplementary Table 1 lists the strains and plasmids used in this study. Escherichia coli

123 NovaBlue competent cells (Novagen, Cambridge, MA, USA) were employed for gene

124 cloning. We conducted polymerase chain reaction (PCR) using KOD FX Neo (Toyobo,

- 125 Osaka, Japan) and synthesis of custom DNA oligonucleotide primers using Invitrogen
- 126 custom DNA oligos (Thermo Fisher Scientific, Tokyo, Japan) (Supplementary Table 2).
- 127 The In-Fusion HD Cloning Kit (Takara Bio, Shiga, Japan) was used to assemble multiple
- 128 DNA fragments and circularize linearized DNA fragments. Supplementary Table 3

summarizes the detailed construction methods for all plasmids.

130

131 Deletion of chromosomal genes

132 Supplementary Table 1 lists the plasmids used to delete chromosomal genes. The deletion 133 strains were constructed in this study using the CRISPR-Cas two-plasmid system (Jiang et al., 2015). A pCas plasmid was first introduced in the parental strain. Subsequently, an 134 135 appropriate $pT\Delta$ plasmid was introduced in the pCas-harboring strain, followed by overnight incubation in LB medium with 10 g L^{-1} arabinose as an inducer for λ -Red. 136 without kanamycin or spectinomycin. The culture was plated on LB agar containing 50 137 mg L^{-1} kanamycin and 100 mg L^{-1} spectinomycin after culture recovery. Targeted gene 138 deletion was confirmed using colony PCR and the plasmids pCas and pT Δ were 139 140 eliminated from the bacterial target-gene-deficient strain. All fragments inserted in the plasmids to inactivate respective genes were amplified using colony PCR, employing the 141 E. coli MG1655 strain as a template and appropriate primer, as listed in Supplementary 142 143 Table 2. The plasmids pT Δ ptsG, pT Δ crr, pT Δ pheA, pT Δ sgrS, and pT Δ pgi were used to delete *ptsG*, *crr*, *pheA*, *sgrS*, and *pgi*, respectively. The plasmid pTtrpE::tyrfbr was used 144 to insert $tyrA^{fbr}$ in the trpE gene loci and pTptsG::galP-glk to insert galP-glk in the ptsG145 146 gene loci.

147

148 Transformation of *E. coli* strains

Escherichia coli strains were transformed using electroporation with a 1350 kV, 600 Ω,
and 10 µF electric pulse in a 0.1-cm cuvette using a Gene Pulser (Bio-Rad Laboratories,
Hercules, CA, USA).

152

153 Analytical methods

154	Cell growth was analyzed by measuring OD_{600} using an UVmini-1240 spectrophotometer
155	(Shimadzu Corporation, Kyoto, Japan). Glucose, xylose and fructose levels were
156	measured using a Prominence high-performance liquid chromatography (HPLC) system
157	(Shimadzu Corporation) equipped with a Shodex SUGAR KS-801 column (grain
158	diameter, 6 µm; L × I.D., 300×8.0 mm; Showa Denko, Tokyo, Japan). Water was used
159	as the mobile phase with a flow rate of 0.8 mL min ^{-1} and the column was maintained at
160	50°C. The HPLC profile was monitored using a refractive index detector.
161	
162	L-phenylalanine and L-tyrosine were analyzed using an HPLC system equipped with a
163	PBr column (grain diameter, 5 $\mu m;$ L \times I.D., 250 \times 4.6 mm; Nacalai Tesque, Inc., Kyoto,
164	Japan). A dual-solvent system was used, in which solvent A was 0.2% phosphate buffer
165	and solvent B methanol. The mobile phase flow rate was 1.0 mL min^{-1} and the column
166	was maintained at 40°C. A gradient was initiated with an 80:20 mixture of solvents A
167	and B (0–15 min), replaced by a 50:50 mixture of solvents A and B (15–20 min), and
168	subsequently by an 80:20 mixture of solvents A and B (20–25 min). The HPLC profile
169	was monitored using an ultraviolet-visible (UV-Vis) detector at a wavelength of 240 nm.
170	
171	PEP, pyruvate, acetyl coenzyme A (CoA), G6P, F6P, F16BP, 6PG, Ru5P, Ro5P, E4P,
172	S7P and 3PG + 2PG were analyzed using liquid chromatography-mass spectrometry
173	(LC-MS), as detailed in the Metabolome analysis section.
174	

175 Metabolome analysis

176	Metabolome analysis was conducted as previously reported with some modifications
177	(Shirai et al., 2013). Briefly, cells were cultured in M9Y medium supplemented with 20 g
178	L^{-1} glucose until a mid-logarithmic growth phase was reached, corresponding to 18 h for
179	$E\Delta HI0$, $BP\Delta HI1$, $E\Delta HIG0$ and $BP\Delta HIG1$. Afterwards, culture broth was harvested via
180	rapid filtration. Filtered cells were dropped into cold methanol to rapidly quench
181	metabolic flow and their intracellular metabolites were extracted in a 2.5:2.5:1 ($v/v/v$)
182	CHCl ₃ :CH ₃ OH:H ₂ O mixture. Following centrifugation at $15,000 \times g$ at 4°C for 15 min,
183	the upper phase was collected. Metabolites were quantified by HPLC coupled with an
184	electrospray ionization tandem mass spectrometry (LCMS-8040 triple quadrupole
185	LC/MS/MS spectrometer; Shimadzu Corporation), using the Method Package for
186	Primary Metabolites.

188 Measurement of BGL enzymatic activity

189 Each strain was cultured in LB medium at 37°C for 24 h. The periplasmic activity of

190 BGL was evaluated using *p*-nitrophenyl- β -D-glucopyranoside (pNPG; Nacalai Tesque)

191 as a substrate. One unit of BGL activity was defined as the amount of enzyme that

192 produced 1 μ mol min⁻¹ of p-nitrophenol at 37°C and pH 5.0. The amount of p-

193 nitrophenol produced was determined using a Synergy H1 microplate reader (BioTek

194 Japan, Tokyo, Japan) at a wavelength of 400 nm. Apparent inhibition constants were

195 calculated by curve-fitting the experimental values to the Morrison equation (Eq. 1)

196 (Morrison, 1969).

197

198
$$\frac{v_i}{v_0} = 1 - \frac{\left([E] + [I] + K_{i-app}\right) - \sqrt{\left([E] + [I] + K_{i-app}\right)^2 - 4[E][I]}}{2[E]}$$
(Eq. 1)

[E], enzyme concentration; [I], inhibitor concentration; Ki-app, apparent inhibition
constant; v0, initial rate observed in the absence of the inhibitor; vi, initial rate observed
in the presence of the inhibitor.

203

204 Immunoblotting

205 Each strain was cultured at 37°C for 24 h in a modified M9 medium supplemented with 206 glucose. The cells were subsequently centrifuged at $12,000 \times g$ at 4°C for 5 min, washed and resuspended in 500 μ L of phosphate-buffered saline at pH 7. Afterwards, they were 207 208 disrupted using a Micro Smash MS-100R (Tomy Seiko, Tokyo, Japan). Sodium dodecyl 209 sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) buffer (2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.002% bromophenol blue, 0.125 M Tris-HCl; pH 6.8) was added 210 to the supernatant, followed by boiling at 95°C for 5 min. Proteins were analyzed by 211 SDS-PAGE using an e-PAGEL (Atto, Tokyo, Japan), including dual-color prestained 212 213 Precision Plus protein standards (Bio-Rad Laboratories, Richmond, CA, USA) to serve as 214 molecular weight markers. Proteins were electroblotted with an Amersham Hybond-P system (GE Healthcare, IL, USA) and incubated with an ANTI-FLAG M2 monoclonal 215 216 antibody (Sigma-Aldrich, MO, USA) followed by an anti-rabbit IgG (Fc) AP conjugate (Promega Corp., Madison, WI, USA). Relative expression levels were calculated using 217 NIH ImageJ v.1.8.0 software (http://rsbweb.nih.govij). 218 219

220 Measurement of surface plasmon resonance

221 The interaction between BGL and the glucose or G6P analytes was determined by SPR spectroscopy (Biacore T200; GE Healthcare). β-glucosidase was immobilized on a CM5 222 223 sensor chip with up to 8000 resonance units using 10 mM sodium acetate buffer (pH 4.2) containing 160 μ g mL⁻¹ BGL, delivered at a flow rate of 5 μ L min⁻¹ at 25°C. The 224 running buffer was phosphate-buffered saline containing 0.005% Tween-20 and the 225 analytes (glucose or G6P) were injected for 300 s at concentrations of 391–200 mM. 226 227 228 Quantification of mRNA transcription levels using real time PCR The transcriptional expression of *uhpT* was quantified in each strain using real time PCR. 229 Briefly, total RNA was isolated from individual cultures using a NucleoSpin RNA 230 column (Takara Bio) according to the manufacturer's instructions. Reverse transcription 231 and quantitative real time PCR were then performed using an Mx3005P real time QPCR 232 system (Agilent Technologies, Santa Clara, CA, USA) with an RNA-direct SYBR green 233 real time PCR master mix (Toyobo). Supplementary Table 2 lists the primer pairs. The 234 normalized transcriptional level of each mRNA was lastly calculated and compared with 235 236 the housekeeping gene *mdoG* (encoding glucan biosynthesis protein G) (Heng *et al.*, 2011). 237 238

239 Jar fermenter cultivation

Batch scale cultures were performed in 1.0 L jar fermenters with a 400 mL working

volume at 37°C. For Phe production at this scale, we used the medium containing 3.29 g

242 L^{-1} NaCl, 1.64 g L^{-1} KCl, 10 g L^{-1} (NH₄)₂SO₄, 10 g L^{-1} MgCl₂•6H₂O, 14.7 mg L^{-1}

243 Ca	$Cl_2 \bullet 2H_2O_2$	2.78 mg L	$^{-1}$ FeSO ₄ •7H ₂ O,	10 mg L^{-1}	¹ thiamine h	ydrochloride,	20 g L ⁻	-1
--------	------------------------	-----------	---	------------------------	-------------------------	---------------	---------------------	----

- yeast extract, 50 g L⁻¹ glucose, 100 mg L⁻¹ L-tyrosine, 100 mg L⁻¹ L-tryptophan, and 100
- 245 mg L^{-1} ampicillin. The medium (400 mL) in the jar fermenter was inoculated with
- preculture medium to an initial OD₆₀₀ of 0.03. DO was maintained at 2.04 p.p.m. by
- automatically controlling the agitation speed from 200 to 800 r.p.m and supplementing
- with air at 0.40 L min⁻¹. The pH was maintained above 6.8 with the automatic addition of
- 249 10% ammonia solution.

250 **Results**

251 BGL expression in the *E. coli* periplasm increases Phe production

252 The periplasmic expression of BGL is often employed in bioproduction, with cellobiose or

cello-oligosaccharide as carbon sources (Georgiou and Segatori, 2005; Kurumbang et al.,

254 2020; Nonaka et al., 2021; Satowa et al., 2020; Tanaka et al., 2011). Serendipitously, we

found that periplasmic BGL expression altered the Phe production titer when glucose was

used as a carbon source, even though glucose is not a BGL substrate. We thus focused on

257 investigating how periplasmic expression of BGL affects Phe production.

258 We derived BGL from the *T. fusca* YX's Tfu0937 protein (UniProt Q47RE2), which

exhibits enzymatic activity in *E. coli* (Soma et al., 2012; Tanaka et al., 2011). To induce

260 periplasmic localization of Tfu0937, we used cell surface display, which anchors a target

261 protein to the outer cell membrane, and signal sequence-mediated transport strategies.

262 The C-terminus of the anchor protein Blc (UniProt P0A901), a lipoprotein localized to

the outer cell membrane that is exposed to the periplasm, was fused to the N-terminus of

264 Tfu0937, resulting in the periplasmic localization of Tfu0937 (Tanaka et al., 2011).

Alternatively, the PelB signal peptide corresponding to the first 22 residues of pectate

lyase B from *Erwinia carotovora* (UniProt P0C1C1) (Choi and Lee, 2004) was fused to

the N-terminus of Tfu0937, thereby facilitating its transport to the periplasm withoutanchoring.

269

270 Phenylalanine-overproducing *E. coli* strain ATCC31882 was used as the parent strain for

271 Phe production (https://www.atcc.org/products/all/31882.aspx, ATCC). We constructed

four strains (named BD1, BP1, BC1, and E0). The E0 strain, harboring a high-copy

273	empty vector, was used as control. Strain BD1 harbored a high-copy plasmid expressing
274	Tfu0937 fused with Blc (B-Tfu), strain BP1 harbored a high-copy plasmid expressing
275	Tfu0937 fused with the PelB signal peptide (P-Tfu), and strain BC1 harbored a high-copy
276	plasmid expressing intact Tfu0937, which is localized in the cytoplasm. After 48 h of
277	cultivation using glucose as a substrate, BD1 and BP1 produced 1.46 \pm 0.05 and 2.19 \pm
278	0.10 g/L of Phe, respectively, which were 1.49- and 2.23 times higher than E0 (control
279	strain; 0.98 \pm 0.03 g L ⁻¹), respectively (Fig. 1A). By contrast, compared with E0, BC1
280	produced 1.04 \pm 0.21 g L ⁻¹ of Phe. There was no significant difference in cell growth
281	(OD ₆₀₀) of these four strains after 48 h of culture (Fig. S1A). Figure S1B shows specific
282	BGL activity per cell density. There was no significant difference in specific BGL
283	activity per cell density of BD1, BP1, and BC1. We confirmed Tfu0937 in strains by
284	immunoblotting. Whole-cell extracts from BC1, BD1, and BP1 exhibited Tfu0937, B-
285	Tfu, and P-Tfu expressions, respectively, at comparable levels (Fig. 1B). As described in
286	a previous report, we observed in B-Tfu-expressing BD1 a band corresponding to the
287	mass of unfused Tfu0937 (Ikeda et al., 2013). B-Tfu and P-Tfu were detected in
288	periplasmic extracts of BD1 and BP1, respectively, at levels comparable to those in
289	whole-cell extracts. However, Tfu0937 in the BC1 periplasmic extract was significantly
290	decreased compared with that in the whole-cell extract (Fig. 1B). These results suggested
291	that BGL localization to the periplasm positively affected Phe production, regardless of
292	the localization method.

Next, we investigated how changing the number of plasmid copies would affect the Pheproduction. We constructed low- and medium-copy number plasmids for B-Tfu

296	expression that were introduced into ATCC31882, generating the strains BD1L (the low-
297	copy plasmid) and BD1M (the medium-copy plasmid). We used the strains E0L and
298	E0M, containing low- and medium-copy empty plasmids, respectively, as controls.
299	Figure 1C shows the relative amount of Phe produced from glucose in strains with
300	different copy numbers of plasmids. Phenylalanine production was increased 1.21, 1.39
301	and 1.48 times in strains BD1L, BD1M and BD1 (high-copy), respectively. We
302	confirmed a positive correlation between the copy number and BGL activity or
303	expression (Fig. 1D, S1C), indicating that Phe production and the B-Tfu expression
304	levels exhibit a positive, not directly proportional correlation. We confirmed the
305	correlation between BGL activity and Phe production. Based on these results, we used a
306	high-copy plasmid as the expression vector in the following experiments. We constructed
307	a strain, referred to as BD2, expressing an inactivated mutant BGL (Tfu0937 ^{E388A}) fused
308	with Blc (B-Tfu ^{E388A}). As Glu388 is a putative nucleophilic residue required for
309	enzymatic activity in Tfu0937, the Glu388Ala mutant (Tfu0937 ^{E388A}) is rendered inactive
310	(Chir et al., 2011; Spiridonov and Wilson, 2001). Although the BD2 strain showed no
311	BGL activity (Fig. S1C), expectedly, it produced 1.86 g $L^{-1} \pm 0.07$ g L^{-1} Phe from
312	glucose, which was 1.90 times higher than the control strain (E0) (Fig. S1D). The
313	periplasmic localization of inactivated BGL also had a positive effect on Phe production,
314	indicating that BGL enzymatic activity was not required to increase Phe production.
315	Thus, we suspected that an unknown mechanism could underlie the increased Phe
316	production driven by periplasmic BGL localization.
317	

318 Periplasmic BGL localization does not affect Phe production in EIIC^{Glc} domain-

319 deficient strains

The phosphotransferase (PTS) system simultaneously mediates sugar transport and 320 321 phosphorylation (Fig. 2A). Glucose uptake in *E. coli* involving the PTS system comprises four proteins located in either the inner membrane or cytoplasm: enzyme I (EI, encoded 322 by *ptsI*), HPr (encoded by *ptsH*), enzyme IIA (EIIA, encoded by *crr*) and EIICB^{Glc} 323 (encoded by ptsG). The enzymes EI, HPr and EIIA are cytoplasmic, whereas EIICB^{Glc} is 324 a transmembrane protein with two domains: an N-terminal membrane-spanning EIIC^{Glc} 325 domain containing a carbohydrate-binding site and a C-terminal cytoplasmic EIIB^{Glc} 326 domain containing a phosphorylation site (Cys421). EI and HPr are involved in the 327 transport of numerous sugars, whereas EIIA, EIIB and EIIC are sugar-specific. In the 328 PTS system, 1 mol PEP is converted to 1 mol pyruvate during the transport of 1 mol 329 glucose into the cell. The phosphate group of PEP is transferred to the EI, then relayed to 330 the HPr and EIIB domains. Glucose is subsequently transported from the periplasm to the 331 cytoplasm via the EIIC^{Glc} domain of EIICB^{Glc} and simultaneously converted to G6P via 332 phosphoryl transfer from the phosphorylated EIIB^{Glc} domain. Although the PTS system is 333 334 the main glucose transport system in bacteria, E. coli also uses the galactose permease/glucokinase (GalP/Glk) system (Fig. 2A). The GalP is a galactose permease 335 with 12 transmembrane α helices (Zheng et al., 2010) involved in the transport of 336 337 galactose, its main substrate, and glucose. Its expression is repressed when E. coli is grown in the presence of glucose (Hernández-Montalvo et al., 2003). The Glk, a 338 339 glucokinase, localizes to the cytoplasm where it catalyzes ATP-dependent glucose 340 phosphorylation (Hernández-Montalvo et al., 2003).

342 The PTS system is a major metabolic reaction that competes with the shikimate pathway for PEP consumption (Fujiwara et al., 2020). Replacing the PTS system with another 343 sugar-specific transport system, such as the GalP/Glk system, is often employed to 344 increase the amount of PEP available for the shikimate pathway (Hernández-Montalvo et 345 al., 2003). Previously, we constructed an ATCC31882-derived strain named CFT1, in 346 which two PTS-related genes, *ptsI* and *ptsH*, were replaced with the GalP/Glk system 347 (Noda et al., 2016). To investigate the effects of periplasmic BGL localization in our 348 349 metabolically engineered system, we evaluated Phe production using the CFT1 strain. 350 The BD Δ HI1 (CFT1 expressing B-Tfu) and BP Δ HI1 (CFT1 expressing P-Tfu) strains produced 3.51 ± 0.10 and 3.44 ± 0.12 g/L Phe (Fig. 2B), which were 1.30- and 1.27 times 351 352 higher, respectively, than the E Δ HIO strain (CFT1 harboring an empty vector) (2.70 ± 0.24 g L⁻¹ Phe). Using glucose as the sole carbon source in BP Δ HI1 strains, the Phe 353 yields was 0.24 mol mol⁻¹ close to the highest values reported previously (0.26 mol mol⁻¹) 354 in a fed-batch culture, 0.23 mol mol⁻¹ in batch culture) (Zhou et al., 2010). In BD Δ HI1 355 and BPAHI1 strains, intracellular PEP increased by 1.2 and 2.6 times, respectively, 356 357 compared to the $E\Delta$ HI0 strain (Fig. S2A, B). Contrastingly, intracellular pyruvate and acetyl-CoA levels were decreased in BDAHI1 and BPAHI1 strains compared to the 358 $E\Delta$ HIO strain (Fig. S2A, B). This finding suggested that periplasmic BGL localization 359 360 increased PEP accumulation in *ptsHI*-deficient strains, an effect that was most pronounced in BP Δ HI1. We thus used the PelB signal peptide to drive periplasmic 361 362 protein localization in subsequent experiments.

363 Considering that EI and HPr (lacking in the strain CFT1) are localized in the cytoplasm, we suspected that these proteins are not involved in this phenomenon. To determine the 364 contribution of other PTS proteins in improving Phe production, we constructed strains 365 that disrupted other PTS proteins crr or ptsG, which encode EIIA (cytoplasm) and 366 EIICB^{Glc} (transmembrane), respectively, in CFT1 strain. We named the resultant strains 367 CFT1 Δcrr and CFT1 $\Delta ptsG$. We cultured BP Δ HIC1 (CFT1 Δcrr expressing P-Tfu), 368 $E\Delta HIC0$ (CFT1 Δcrr harboring an empty vector), BP $\Delta HIG1$ (CFT1 $\Delta ptsG$ expressing P-369 Tfu), and E Δ HIG0 (CFT1 Δ ptsG harboring an empty vector) in a medium containing 370 glucose as the sole carbon source. The BP Δ HIC1 strain produced 3.00 ± 0.19 g L⁻¹ of 371 Phe, 1.57 times higher than that produced by the E Δ HIC0 strain (1.91 ± 0.13 g L⁻¹; Fig 372 2C). By contrast, BP Δ HIG1 produced a similar amount of Phe (2.34 ± 0.12 g L⁻¹) as 373 E Δ HIGO (2.39 ± 0.25 g L⁻¹; Fig. 2C), indicating that *ptsG* was required for periplasmic 374 BGL localization to facilitate increased Phe production in the CFT1-derived strain. 375 BPAHIG1 exhibited a significant decrease in intracellular PEP compared with the 376 377 $E\Delta$ HIG0 control (Fig. S2C), contrary to the effect observed between BP Δ HI1 and E Δ HI0 shown in Figure S2B. We found no significant differences in intracellular pyruvate and 378 379 acetyl-CoA levels between $E\Delta$ HIG0 and BP Δ HIG1 (Fig. S2C), which also differed from the result shown in Figure S2B. Cumulatively, these results indicate that *ptsG* is a key 380 factor mediating the BGL-dependent increase in Phe production. 381 382 To further elucidate the effects of ptsG disruption, we constructed the strain disrupting 383

ptsG in the ATCC31882 background and named it ATCC31882 $\Delta ptsG$. We cultured

BP Δ G1 (ATCC31882 Δ *ptsG* expressing P-Tfu) and E Δ G0 (ATCC31882 Δ *ptsG* harboring

386	an empty vector) using glucose as the sole carbon source. Consistent with our previous
387	results, the E Δ G0 and BP Δ G1 strains produced 1.57 ± 0.06 and 1.54 ± 0.09 g L ⁻¹ of Phe,
388	respectively, with no significant difference (Fig. 2D). We found no significant differences
389	in intracellular PEP, pyruvate, and acetyl-CoA levels between $E\Delta G0$ and $BP\Delta G1$
390	(Fig. S2D). These results strongly support that $ptsG$ is a key factor in this phenomenon.
391	We constructed an ATCC31882 strain containing the endogenous EIICB ^{Glc} protein
392	inactivated via point mutation and named it C421S. During glucose transport, EIICB ^{Glc}
393	receives a phosphate group from EIIA on Cys421, which allows it to serve as a phosphate
394	group donor for glucose; therefore, we eliminated the phosphorylation capability of
395	EIICB ^{Glc} by creating the Cys421Ser mutant. The strain BP ^{C421S} 1 (C421S expressing P-
396	Tfu) produced 2.03 \pm 0.03 g L^{-1} of Phe, 1.36 times higher than that produced by $E^{C421S}0$
397	(C421S harboring an empty vector) (Fig. 2D). These results indicate that although
398	EIICB ^{Glc} presence is required for periplasmic BGL-dependent Phe production,
399	phosphorylation of Cys421 is unnecessary. To investigate specific roles of the EIIB ^{Gk}
400	and EIIC ^{Glc} domains in this phenomenon, we constructed two strains derived from
401	ATCC31882 $\Delta ptsG$ —strain dGB (ATCC31882 $\Delta ptsG$ harboring pZA23-EIIB ^{Glc})
402	expressed only the EIIB ^{Glc} domain, strain dGC (ATCC31882 $\Delta ptsG$ harboring pZA23-
403	EIIC ^{Glc}) expressed only the EIIC ^{Glc} domain. Strains EdGB0 (dGB harboring an empty
404	vector) and BPdGB1 (dGB expressing P-Tfu), which express only the EIIB ^{Glc} domain,
405	produced Phe with insignificant difference in production (Fig. 2E). By contrast, strains
406	EdGC0 (dGC harboring an empty vector) and BPdGC1 (dGC expressing P-Tfu), which
407	express only the EIIC Glc domain, produced 0.73 \pm 0.03 and 1.85 \pm 0.07 g L^{-1} of Phe,
408	respectively, and the titer in BPdGC1 was 2.5 times higher than that in the EdGC0

409 control (Fig. 2E). These results demonstrate that the EIIC^{Glc} domain is specifically
410 necessary for the periplasmic BGL-dependent increase in Phe production, unlike the
411 EIIB^{Glc} domain.

412

413 G6P—a key metabolite, as demonstrated via metabolome analysis

Our results indicate that EIICB^{Glc}, encoded by *ptsG*, is a key factor in increasing Phe
production. However, the direct interaction between B-Tfu and the EIIC^{Glc} domain is
likely impossible because B-Tfu is anchored at the cell's outer membrane, whereas
EIIC^{Glc} domain is present on the cell's inner membrane. Therefore, we hypothesized that
EIIC^{Glc} domain could act as a transporter for another key metabolite that would interact
with B-Tfu in the periplasmic space.

420

To identify metabolites involved in periplasmic BGL-dependent Phe production, we 421 422 cultured E Δ HIO and the strain expressing P-Tfu derived from CFT1 (BP Δ HI1) using glucose as a substrate and measured the intracellular concentration (including cytosol and 423 periplasm) of glycolysis and pentose phosphate pathway (PPP) metabolites (Fig. 3A, B). 424 Although intracellular levels of 6-phosphogluconate and erythrose-4-phosphate were 425 slightly decreased in BP Δ HI1 compared with E Δ HI0, most other glycolysis and pentose 426 427 phosphate pathway (PPP) metabolites were also not significantly different between the strains or were decreased in BPAHI1 (Fig. 3B). Interestingly, intracellular G6P 428 concentration was increased by 2.25 times in BP Δ HI1 compared with that in E Δ HI0 (Fig. 429 3B). Moreover, we found no significant differences in the G6P concentration between 430

431 E Δ HIGO and BP Δ HIG1 (CFT1 Δ *ptsG* expressing P-Tfu) (Fig. S3A).

433	Metabolome analysis suggested that G6P was a candidate metabolite potentially involved
434	in improving periplasmic BGL-mediated Phe production. To confirm this, we examined
435	Phe production using non-G6P sugars (xylose or fructose) as carbon sources. In the E .
436	coli catabolic pathway, glucose entering the cell through the PTS or GalP/Glk systems is
437	converted to G6P to initiate glycolysis. Both G6P and F6P are readily interconverted by
438	G6P isomerase. Xylose is transported into the cell by xylose-specific ATP-binding
439	cassette transporters or the xylose-proton symporter and converted to xylulose, which is
440	subsequently converted to xylulose-5-phosphate entering PPP. Fructose is further
441	transported by the fructose-specific PTS and converted to fructose-1-phosphate (F1P),
442	which, in turn, is converted to F16BP entering glycolysis (Fig. S3B). When xylose or
443	fructose are used as a carbon source, carbon flows into G6P and F6P in low proportions
444	due to its utilization via PPP or gluconeogenesis. Therefore, the xylose and fructose used
445	as a carbon source are catabolized with less conversion to G6P, reducing the intracellular
446	G6P concentration. When xylose or fructose were used as carbon source, BP Δ HI1
447	produced 0.49 \pm 0.02 and 0.21 \pm 0.06 g L^{-1} of Phe (Fig. S3C), respectively, which is
448	comparable to the amounts produced by the control (E Δ HI0) (0.52 ± 0.05 and 0.21 ± 0.02
449	g L^{-1} , respectively). The intracellular G6P concentrations did not significantly differ
450	between BP Δ HI1 and E Δ HI0 (Fig. S3D, E). This observation suggested that G6P is a key
451	metabolite in the periplasmic BGL localization as proposed (Fig. 3C).
452	

For G6P to act as a key metabolite, its interaction with BGL is required. We measured thefractional enzymatic activity of BGL in the presence of excess G6P or glucose and found

455 that it decreased more in response to G6P compared with excess glucose. The apparent inhibition constants were 595 and 295 mM for glucose and G6P, respectively (Fig. 3D). 456 This finding indicated that Tfu0937 has a higher affinity for G6P than glucose, although 457 Tfu0937 has no catalytic activity against G6P. We used surface plasmon resonance to 458 measure the interaction between BGL and glucose or G6P. The sensorgrams indicate that 459 460 although BGL interacts with both metabolites, it exhibits a higher affinity for G6P than glucose (Fig. 3E). These results support our hypothesis that BGL interacts with G6P in 461 the periplasm. 462

463

464 **G6P secretion and accumulation in the periplasm**

Metabolome analysis revealed that intracellular G6P levels, comprising both cytoplasmic 465 and periplasmic fractions, increased significantly with periplasmic BGL localization. To 466 ensure that the EIIC^{Glc} domain functions as a cytoplasm-to-periplasm G6P transporter, 467 quantifying G6P levels in the periplasm exclusively would be required. However, we 468 were unable to quantify the periplasmic G6P, while excluding cytoplasmic content. We 469 thus measured the messenger RNA (mRNA) of *uhpT* as a strong indicator of periplasmic 470 471 G6P concentration. Expression of the hexose phosphate transporter (UhpT) is strictly controlled by the UhpABC regulatory system (also named the Uhp system, Fig. 4A). A 472 non-linear positive correlation also exists between the induction of *uhpT* transcription and 473 474 G6P concentration in the medium (Västermark and Saier, 2014; Verhamme et al., 2002, 2001). When UhpC senses periplasmic G6P, the UhpBC complex changes conformation, 475 476 leading to the autophosphorylation of UhpB (P-UhpB) using ATP as the phosphoryl 477 group donor(Västermark and Saier, 2014). The phosphoryl group of P-UhpB is then

478	transferred to UhpA, which binds to the transcriptional regulatory promoter region of
479	<i>uhpT</i> , enhancing <i>uhpT</i> transcription (Västermark and Saier, 2014; Verhamme et al., 2002,
480	2001). We determined whether the presence of G6P in the medium increased $uhpT$
481	transcription levels, as previously reported (Verhamme et al., 2002). We observed a non-
482	linear positive correlation between <i>uhpT</i> transcription levels in ATCC31882 and the
483	quantity of G6P supplemented in the medium (Fig. 4B). Therefore, we were able to
484	successfully use <i>uhpT</i> transcription level to measure periplasmic G6P concentration.
485	
486	We cultured E0, E Δ G0, and E ^{C421S} 0 strains using glucose as the carbon source and
487	measured the <i>uhpT</i> transcription levels. Figure 4C shows the relative <i>uhpT</i> transcription
488	levels in strains E0, E Δ G0, and E ^{C421S} 0. The <i>uhpT</i> transcription in E Δ G0 was
489	significantly lower than that in the control (E0), whereas the $uhpT$ transcription in E ^{C421S} 0
490	was comparable to that in E0. Considering that $E^{C421S}0$ expressed a variant EIICB ^{Glc}
491	protein with an inactivated phosphate donor domain (EIIB ^{Glc} domain) and native
492	membrane-spanning domain (EIIC ^{Glc} domain), these results support our hypothesis that
493	the EIIC ^{Glc} domain acts as a G6P transporter regardless of whether the EIIB domain
494	exhibits phosphorylation activity.
495	

496 Second, we investigated how the periplasmic BGL localization affects the periplasmic
497 G6P concentration. The *uhpT* expression levels were compared in the glucose-containing

- 498 medium between E0 and BP1 or between E Δ G0 and BP Δ G1. BP1 exhibited significantly
- higher uhpT levels compared with the control (E0), suggesting that periplasmic BGL
- 500 localization causes periplasmic G6P accumulation (Fig.4D). Alternatively, the *uhpT*

501	levels were comparable between E Δ G0 and BP Δ G1 (Fig. 4E), suggesting that <i>uhpT</i>
502	transcription was not activated by the periplasmic localization of BGL when EIICB ^{Glc}
503	was absent and incapable of secreting G6P into the periplasm (Fig. 4C, E).

505	To investigate further G6P transport via the EIIC ^{Glc} domain, we constructed another
506	ATCC31882-derived EIICB ^{Glc} -deficient strain, named P2Gs. In the P2Gs strain, <i>ptsG</i>
507	was replaced by the galP-glk operon and disrupted sgrS which encodes a small RNA
508	triggering the degradation of $ptsG$ mRNA that can be activated by the accumulation of
509	intracellular G6P (Poddar et al., 2021). This sgrS disruption prevented the unintended
510	mRNA degradation when EIIC ^{Glc} was overexpressed. We constructed two strains, P2GsE
511	(P2Gs harboring an empty vector) and P2GsC (P2Gs harboring pZA23-EIIC ^{Glc}), and
512	cultured them with glucose as a carbon source. The intracellular G6P concentration
513	(including the cytoplasmic- and the periplasmic-G6P) and $uhpT$ expression levels were
514	compared between P2GsE and P2GsC in the logarithmic phase (7 h after cultivation). No
515	significant difference could be observed in the intracellular G6P levels between P2GsE
516	and P2GsC (Fig. 4F). This result indicated that the presence or absence of EIIC ^{Glc} does
517	not affect the total amount of intracellular G6P. However, <i>uhpT</i> expression in P2GsC was
518	2.82 times higher than in P2GsE (Fig. 4F). This result indicated that overexpressing the
519	EIIC ^{Glc} domain increased periplasmic G6P concentration, by transporting G6P from the
520	cytoplasm to the periplasm. We constructed a G6P-accumulating strain by disrupting pgi
521	from P2Gs, named P2Gs Δpgi , and confirmed an increase in <i>uhpT</i> expression resulting
522	from increased G6P secretion. The strain P2GsC Δpgi (P2Gs Δpgi harboring pZA23-
523	EIIC ^{Glc}) was cultured with glucose as a carbon source. The intracellular G6P

524 concentration in the P2GsC Δpgi strain increased 4.34 times compared to the P2GsC

strain, while *uhpT* expression in the P2GsC Δpgi strain was 6.23 times higher than in the

526 P2GsC strain. These results support further our hypothesis that the EIIC^{Glc} domain

527 transports cytoplasmic G6P into the periplasm.

528

529 We also investigated the *uhpT* levels in the glucose-containing medium between E Δ HI0

and BP Δ HI1. The *uhpT* level was 4.18-times higher in BP Δ HI1 than in E Δ HI0 (Fig. 4G).

531 In BP Δ HI1, the intracellular G6P (including the cytoplasmic- and the periplasmic-G6P)

also increased compared with that in E Δ HI0 (Fig. 3B). Taken together, these results

suggest that the BGL-related G6P capture in the periplasm increased the periplasmic G6P

concentration, resulting in an increased total amount of intracellular G6P.

535

Next, we confirmed the effect of the periplasmic G6P, supplied from outside the cell, on 536 Phe production. We cultured strain E0 with G6P as a sole carbon source instead of 537 glucose. Cell growth and Phe production in E0 were at the same levels using G6P as a 538 carbon source or glucose (Fig. S4A, B). Since direct G6P supplementation to the medium 539 540 did not improve Phe production, we considered the increased periplasmic G6P concentration insufficient to increase Phe production. To clarify the necessary 541 requirements for this phenomenon to activate Phe production, we examined Phe 542 543 production in strains localizing BGL to the periplasm, BP1 and BP Δ G1, with G6P as a carbon source. The BP1 strain produced 1.3 times higher levels of Phe than the control 544 strain E0 (0.93 \pm 0.01 and 0.70 \pm 0.02 g L⁻¹, respectively; Fig. S4C). However, no 545 546 significant difference could be observed between BP Δ G1 and the control strain E Δ G0

547	$(0.47 \pm 0.04 \text{ and } 0.42 \pm 0.01 \text{ g L}^{-1}$, respectively; Fig. S4D). This result suggests that the
548	interaction between G6P and BGL is an important factor in increasing Phe production. In
549	addition, it was suggested that the secretion of G6P into the periplasm via the EIIC ^{Glc}
550	domain is necessary to increase Phe production even when G6P is sufficiently
551	supplemented in the periplasm from the medium.
552	
553	Application of other proteins using the proposed mechanism
554	As we have previously described, the EIIC ^{Glc} domain and G6P are key factors for
555	improving Phe production. Our current and previous results on G6P support a leading
556	hypothesis that G6P is transported from the cytoplasm to the periplasm via the $EIIC^{Glc}$
557	domain and accumulates in the periplasm, where G6P-capturing proteins including BGL
558	localize (Fig. 5A). Based on this mechanism, we assumed that the periplasmic
559	localization of other enzymes with an affinity for G6P would also positively affect Phe
560	production.
561	
562	We selected three enzymes, G6P isomerase (Pgi), encoded by <i>pgi</i> ; G6P 1-dehydrogenase

(Zwf), encoded by *zwf*; and alkaline phosphatase (PhoA), encoded by *phoA*, and their
inactivated mutants as candidates. To facilitate their periplasmic localization, we fused
Pgi, Zwf, Pgi^{H386A} (inactivated form), and Zwf^{H239A} (inactivated form) with the PelB
signal peptide and named them PelB-Pgi, PelB-Zwf, PelB-Pgi^{H386A}, and PelB-Zwf^{H239A},
respectively. PhoA is a native periplasmic enzyme (Chung Nan Chang et al., 1986).
Using ATCC31882, we constructed eight strains localizing these proteins to the
cytoplasm or periplasm: PC1 (expressing Pgi), ZC1 (expressing Zwf), PP1 (expressing

PelB-Pgi), ZP1 (expressing PelB-Zwf), AP1 (expressing PhoA), PP2 (expressing PelBPgi^{H386A}), ZP2 (expressing PelB-Zwf^{H239A}), and AP2 (expressing PhoA^{S124A}, inactivated
form). In addition, we constructed a strain expressing green fluorescent protein (GFP), a
non-enzymatic protein, in the periplasmic space as a control and called this GP1.

574

Because Pgi and Zwf are enzymes involved in glycolysis and PPP, we first examined 575 how overexpressing these enzymes in the cytoplasm affects Phe production. There was 576 no significant difference in Phe production observed between PC1 and E0 (control 577 578 strain), whereas the strain ZC1 resulted in 1.6 times higher Phe production compared to E0 (Fig. S5A). The Zwf enzyme catalyzes the first reaction of PPP. Because erythrose 4-579 phosphate, a PPP intermediate, is another starting metabolite for the shikimate pathway, 580 581 Zwf overexpression might have increased carbon flux into PPP, thereby enhancing the shikimate pathway. 582

583

584 Figure 5B shows the results for Phe production in the strains PP1, ZP1, AP1, PP2, ZP2,

and AP2. The control strain GP1 produced 0.74 ± 0.03 g L⁻¹, whereas strains PP1, ZP1,

and AP1 produced 0.62 ± 0.01 , 0.99 ± 0.14 , and 1.16 ± 0.19 g L⁻¹ of Phe, respectively.

587 PP1 produced lesser Phe than the control (E0), and we found no significant difference in

588 Phe production between ZP1 and E0 and between AP1 and E0. Although Zwf

overexpression in the cytoplasm in strain ZC1 increased Phe production, the strain ZP1,

590 which overexpresses Zwf in the periplasm, produced the same level of Phe as E0.

591 Contrastingly, strains PP2, ZP2, and AP2, which lacked an enzymatic activity, produced

592 1.69 ± 0.09 , 1.43 ± 0.09 , and 1.64 ± 0.09 g L⁻¹ of Phe, respectively, which was

593	significantly higher than that produced by E0. Although Zwf expression in the periplasm
594	was similar between ZP1 and ZP2, only ZP2 exhibited increased Phe production
595	compared with E0 (Fig. S5B). These results suggest that the mechanism of increased Phe
596	production in ZP2 is not attributed to increased PPP. In the strains with periplasmic
597	localization of inactivated enzymes (PP2, ZP2, and AP2), the intracellular G6P levels
598	were significantly increased compared with E0 (Fig. S5C). These results suggest that the
599	periplasmic localization of proteins that have affinity for G6P but do not exhibit
600	enzymatic activity for it can facilitate increased Phe production, supporting the
601	hypothesized mechanism (Fig. 5A).
602	
603	Production of other metabolites using G6P-capturing proteins
604	To demonstrate our method's ability to increase the production of other shikimate
605	pathway derivatives, we investigated Tyr and MA production using the strains that
606	localize G6P-capturing proteins in the periplasm (Fig. 6A). For Tyr production, we
607	constructed a CFT1-derived strain, named TYR, by disrupting <i>pheA</i> encoding chorismate
608	mutase/prephenate dehydratase and inserting tyrA into the trpE gene locus. We further
609	constructed two TYR-derived strains: TYR1 (expressing B-Tfu) and TYR0 (harboring an
610	empty vector). We cultured TYR1 and TYR0 using glucose as the carbon source. Strains
611	TYR0 and TYR1 produced 2.20 \pm 0.03 and 2.73 \pm 0.05 g L^{-1} of Tyr, respectively, while
612	Tyr production was 1.24 times higher in TYR1 compared to TYR0 (Fig. 6B). In the strain
613	TYR1, Tyr yield from glucose was $0.15 \text{ mol mol}^{-1}$. In the Tyr production, two bottleneck
614	reactions were identified in the shikimate pathway (Juminaga et al., 2012). In this study,
615	TYR1 strain was not modified to relieve those bottlenecks. However, the technique of

616	expressing G6P-capturing protein in the periplasm is compatible with traditional
617	metabolic engineering techniques, such as relieving bottlenecks; thus, we believe that Tyr
618	yield could be increased in TYR1-derived strains by optimizing the shikimate pathway.
619	
620	For MA production, we selected the MA synthesis pathway that starts from 3-
621	dehydroshikimate (DHS), a shikimate pathway intermediate. In this pathway, which has
622	the highest theoretical yield among all MA synthetic pathways, DHS is converted to
623	protocatechuate (PCA) by DHS dehydratase (aroZ), then PCA is converted to catechol
624	(CA) by PCA decarboxylase (<i>aroY</i>), and finally CA is converted to MA by CA 1,2-
625	dioxygenase (<i>catA</i>) (Fujiwara et al., 2020). We first constructed the CFT1 Δ pheA strain
626	derived from CFT1 by disrupting <i>pheA</i> , then the CFT1 Δ <i>pheA</i> MA strain by introducing
627	CFT1 Δ pheA into the MA synthesis pathway. We also constructed two CFT1 Δ pheAMA-
628	derived strains: MA1 (expressing P-Tfu) and MA0 (harboring an empty vector). Finally,
629	we cultured MA1 and MA0 using glucose as the carbon source. Strains MA1 and MA0
630	produced 2.50 \pm 0.21 and 1.49 \pm 0.03 g L^{-1} MA, respectively, while MA production was
631	1.68 times higher in MA1 than MA0 (Fig. 6C). In the strain MA1, MA yield from
632	glucose was $0.15 \text{ mol mol}^{-1}$. Previously, we succeeded at producing high-yield MA (0.28
633	mol mol ^{-1}) using metabolically engineered <i>E. coli</i> expressing fused enzymes (Fujiwara et
634	al., 2018). These findings reveal that a combination of periplasmic G6P-capturing protein
635	technique and existing technology has the potential of increasing MA yield beyond Tyr
636	production.

Together, the results of the Tyr and MA production experiments indicate that the

639 periplasmic expression of G6P-capturing proteins can increase the production of

640 metabolites derived from chorismate, i.e., the end product of the shikimate pathway, and

641 from shikimate pathway intermediates.

642

644

643 Phe production using a 1-L jar fermenter

645 modified M9 medium with 50 g L^{-1} of glucose was used. Figure 7 shows the E Δ HI0 and

Batch cultures of E Δ HI0 and BP Δ HI1 were performed using a 1-L jar fermenter. The

646 BP Δ HI1 culture profiles in the jar fermenter. BP Δ HI1 produced 6.32 g L⁻¹ of Phe after

647 48 h of cultivation, which is 1.46 times higher than that produced by E Δ HIO (4.34 g L⁻¹).

In the BP Δ HI1 strain, the Phe yield from glucose was 0.13 mol mol⁻¹, which is 1.41

times higher than that in E Δ HI1, although it decreased compared to the test tube culture

of the BP Δ HI1 strain (0.24 mol mol⁻¹). This result indicates that periplasmic GCP

localization leads to enhancement of the shikimate pathway even in the case of jar

652 fermenter cultivation. The Phe production yield in BPΔHI1 was lower than the highest

Phe production yield reported to date $(0.26 \text{ mol mol}^{-1} \text{ in a fed-batch culture}, 0.23 \text{ mol})$

 mol^{-1} in batch culture) (Zhou et al., 2010). Zhou et al. used the L-tyrosine auxotrophic

655 strain *E. coli* WSH-Z06, which is a laboratory strain of unknown genetic background, for

656 Phe production. Since the L-tyrosine and L-tryptophan auxotrophic strains were used for

657 Phe production in the present study, our strategy is likely applicable to the other strains

that produced high yield shikimate pathway derivatives reported in previous studies.

659 Discussion

We demonstrated that localization of G6P-capturing proteins, including BGL, in the periplasm of *E. coli* accelerates the shikimate pathway. Positive effects of this BGL periplasmic localization on Phe production were also observed in strains metabolically engineered using a traditional approach. Other proteins with affinity for G6P similarly exerted a positive effect on Phe production when they localized to the periplasm. This phenomenon further resulted in the production of other shikimate pathway derivatives, i.e., Tyr and MA.

667

To reveal the underlying mechanisms, we identified key factors involved in this 668 phenomenon: the G6P-capturing protein, G6P, and EIIC^{Glc} domain. Acceleration of the 669 670 shikimate pathway was prevented with the absence of any one of these key factors. We confirmed the interaction between BGL and G6P by investigating enzymatic activity and 671 SPR, as well as G6P secretion via the EIIC^{Glc} domain by measuring *uhpT* expression. 672 Based on the results, we propose that the EIIC^{Glc} domain functions as a G6P transporter 673 secreting G6P into the periplasm, while G6P dynamically binds to and detaches from 674 G6P-capturing proteins in the periplasm. As intracellular PEP was increased by the 675 periplasmic BGL localization, it was suggested that the accumulation of intracellular PEP 676 accelerates the shikimate pathway. However, the mechanisms by which the proposed 677 678 model causes intracellular PEP accumulation remain unclear.

679

680 Suppression of the PTS system has been used in many studies as a metabolic engineering

approach to strengthen the shikimate pathway (Nakagawa et al., 2011; Noda and Kondo,

2017). The first step of the PTS system, the transfer of phosphate groups from PEP to EI, 682 is a major PEP consumption reaction that contributes to reducing carbon flux in the 683 shikimate pathway. A recent study reported a reverse reaction producing PEP from 684 pyruvate when a phosphate group was received from phosphorylated EI (Long et al., 685 686 2017). Hence, the PTS system is deeply involved in regulating the balance between PEP 687 and pyruvate, two metabolic branch points. In the present study, the strain disrupting ptsHI, encoding EI, had a positive effect on Phe production through periplasmic BGL 688 localization. This result implies that an acceleration of the shikimate pathway by the 689 690 periplasmic BGL localization is not due to PEP consumption suppression in the PTS system. In addition, the intracellular PEP concentration was increased by periplasmic 691 BGL localization in the *ptsHI*-deficient strain, which indicates that the intracellular PEP 692 accumulation results from a mechanism other than suppressing PEP consumption by the 693 PTS system. 694

695

696 To transduce environmental information into appropriate cellular responses, the twocomponent system (TCS) is widely used in organisms that include E. coli (Jacob-697 698 Dubuisson et al., 2018). The TCS system comprises a sensor histidine kinase (SHK) and 699 a cognate cytoplasmic response regulator (Jacob-Dubuisson et al., 2018). The SHK 700 sensor domain is exposed to the periplasm and senses signals such as chemicals. When 701 the SHK sensor domain senses signals, the response regulator takes a phosphorylated form through several steps. The phosphorylated response regulators can control the 702 703 cellular condition, such as metabolism, by functioning as DNA-binding transcription 704 factors. They can also display RNA-binding, protein-binding, or even enzymatic

705 activities (Jacob-Dubuisson et al., 2018). The Uhp system is a TCS that induces uhpT706 expression, encoding the hexose-6-phosphate:phosphate antiporter, by its periplasmic G6P (Västermark and Saier, 2014; Verhamme et al., 2002, 2001). In the present study, 707 708 when using G6P as a carbon source instead of glucose, Phe production did not increase in the strain without G6P-capture proteins localization to the periplasm. This result 709 suggested that increasing periplasmic G6P concentration is only insufficient to accelerate 710 the shikimate pathway. In other words, the acceleration of the shikimate pathway does 711 not result from the periplasmic G6P concentration by TCSs, including the Uhp system. In 712 713 the G6P containing medium, periplasmic BGL localization increased Phe production in the strain where *ptsG* remained intact, which did not occur in a *ptsG*-deficient strain. This 714 result suggested that G6P secretion from the cytoplasm into the periplasm via the EIIC^{Glc} 715 domain is essential for accelerating the shikimate pathway, even in the presence of high 716 levels of periplasmic G6P. The ratio of cytoplasmic G6P concentration or G6P 717 concentration between the periplasm and cytoplasm might contribute to this 718 719 phenomenon.

720

The regulatory mechanisms of the cytoplasmic metabolism have been well studied and
various applied techniques for bioproduction have been developed (Nielsen and Keasling,
2016). However, the mechanisms regulating the periplasmic environment remain largely
unknown. Changes in the periplasmic environment, including those in the periplasmic
G6P levels, can affect overall metabolism. In the present study, periplasmic GCP
expression results in an increased intracellular G6P concentration (Fig. 3B and S5C). Fig.
4D shows that the *uhpT* expression level in BP1 was significantly higher than that in E0,
728 indicating that the periplasmic concentration of free G6P was increased due to 729 periplasmic BGL expression. We demonstrated that the periplasmic localization of intact/inactivated BGL or the three kinds of GCPs increased the Phe production (Figs. 1 730 731 and 5). Further, we confirmed that when a protein with no G6P affinity (GFP) was localized in the periplasm, no positive effect was observed on the Phe production. Even 732 when the periplasmic concentration of free G6P is the same, the total G6P concentration 733 in the periplasm (including free G6P and GCP–G6P complex) is higher when GCP is 734 present in the periplasm (Supplementary Discussion 1). However, when the dissociation 735 736 constant between GCP and G6P (Kd) is comparable to the apparent inhibition constant (Ki, Fig. 3D), the contribution of G6P-GCP affinity to the increasing G6P concentration 737 would be limited. These results suggest that the periplasmic expression of GCP activates 738 unknown mechanisms that increase the amount of G6P secreted in the periplasm and/or 739 decrease the amount of G6P reuptake in the cytoplasm. 740

741

A hypothesis that explains the phenomenon identified in this study is that changes in the 742 periplasmic environment resulted in a change in the intracellular G6P level and its 743 744 balance between the cytoplasm and periplasm, affecting the overall metabolism, resulting in PEP accumulation and the acceleration of the shikimate pathway. Further elucidation 745 of the mechanism requires individual G6P concentration measurement both in the 746 747 periplasm and the cytoplasm, but it is technically difficult at present, partially because it is difficult to separate the small molecules present in the periplasm from the whole cell 748 749 components and their concentrations cannot be measured accurately.

750

751 **Conclusions**

- Here, we successfully discovered a new phenomenon that is beneficial for bioproduction
- and identified three key factors involved in this phenomenon—the G6P-capturing
- protein, G6P, and EIIC^{Glc} domain. Modification of the periplasmic environment via the
- expression of proteins having affinity for G6P is an original approach to increase target
- 756 metabolite yield in bioproduction.

758 Acknowledgments

- 759 This work was supported by the JST-Mirai Program (Grant Number JPMJMI17EI), Japan
- 760 (to S.N. and T.T.). Additionally, it was supported by the Japan Society for the Promotion
- of Science (JSPS) Grant-in-Aid for Scientific Research (B) (Grant Number 19H02526),
- Japan (to T.T.). R.F. received support from Research Fellowship for Young Scientists
- from JSPS. This work was supported by the RIKEN Center for Sustainable Resource
- Science, Special Postdoctoral Researcher Program (to S.N.). The authors would like to
- thank Enago (<u>www.enago.jp</u>) for the English language review.
- 766

767 Author contributions

- Conceptualization, R.F., T. S., S.N., and T.T.; Methodology, R.F., T. S., S.N., and T.T.;
- 769 Formal Analysis, R.F., T. S., S.N., and T.T.; Writing–Original Draft, R.F.; Writing–
- 770 Review & Editing, S.N., and T.T.; Investigation, R.F., M.N., Y.H., C.O., D.N., S.N.,
- T.T., S. K., H. N., and M. U.; Supervision, A.K.
- 772

773 Declaration of competing interest

- Kobe University has filed a patent application related to this technology on behalf of
- R.F., S.N., and T.T. The patent application number is JP 2019-123262. Other authors
- 776 declare no competing interests.

779

after 48 h cultivation in E0, BD1, BP1, and BC1. (B) Immunoblotting of BC1, BD1, and BP1.

782 Leftmost lanes: protein marker. (C) Phe production after 48 h cultivation in E0L, BD1L, E0M,

- BD1M, E0, and BD1. (D) Immunoblotting of BD1L, BD1M and BD1 (whole-cell extracts).
- 784 Leftmost lane: protein marker. Data are presented as the average of three independent
- respective text and error bars indicate standard error. P values were determined using two-tailed
- 786 Student's t-tests (NS, P > 0.05; *P < 0.05; **P < 0.01). NS: non-significant.

787

788 Fig. 2. Periplasmic BGL localization does not affect Phe production in EIIC^{Glc}

789 domain-deficient strains. (A) Glucose transport by the PTS and GalP/Glk system. The

lower table indicates disrupted, edited, and overexpressed genes in each strain. " Δ ," "X"

and "+" indicate gene disruption, inactivating mutation and overexpression, respectively.

(B) Phe production after 48 h cultivation. Light- and dark-blue bars indicate the

production titers in E Δ HI0 (control strain) and BGL-expressing strains (BD Δ HI1 and

BP Δ HI1), respectively. (C) Phe production after 48 h cultivation in E Δ HIC0, BP Δ HIC1,

E Δ HIG0 and BP Δ HIG1. (D) Phe production after 48 h cultivation in E Δ G0, BP Δ G1,

Figure 796 EC⁴²¹S0 and BPC⁴²¹S1. (E) Phe production after 48 h cultivation in EdGB0, BPdGB1,

EdGC0, and BPdGC1. Data are presented as the average of three independent

- ros experiments, and error bars indicate standard error. P values were determined using two-
- tailed Student's t-tests (NS, P > 0.05; *P < 0.05; **P < 0.01). NS: non-significant.

Fig. 3. G6P—a key metabolite, as demonstrated via metabolome analysis. (A)

801 Metabolism of glucose. (B) Intracellular concentrations of glycolysis and PPP

- metabolites in BP Δ HI1 compared to E Δ HI0 (control strain). (C) Diagram of the
- 803 hypothesized mechanism described in the text. (D) In vitro examination of BGL activity
- inhibition by glucose and G6P. Blue circle and red diamond symbols indicate fractional

- enzymatic activity with the addition of glucose and G6P, respectively. (E) SPR
- sensorgrams for β -glucosidase against glucose and G6P. For SPR measurements, the flow
- rate was 30 μ L min⁻¹, the immobilized amount of β -glucosidase was 8000 RU and the
- analyte concentrations (glucose or G6P) were 391–200 mM. Data are presented as the
- average of three independent experiments, and error bars indicate standard error. *P* values
- 810 were determined using two-tailed Student's t-tests (NS, P > 0.05; *P < 0.05; *P < 0.01).
- 811 NS: non-significant.

Fig. 4. G6P secretion and accumulation in the periplasm. (A) Diagram of the Uhp

system. (B) Relative expression levels of *uhpT* in ATCC 31882 incubated in G6P-

- supplemented medium. ATCC 31882 was precultured overnight, then washed with LB
- 816 medium. Subsequently, ATCC31882 was inoculated into LB medium supplemented with
- each G6P concentration at the initial $OD_{600} = 1.0$, shaken at 37°C and 1000 rpm for 1 h
- 818 with Maximizer MBR-022UP (TAITEC, Saitama, Japan), then sampled. (C) Relative
- 819 *uhpT* expression levels in E0, E Δ G0 and E^{C421S}0 cultured in a glucose-containing
- 820 medium. (D) Relative *uhpT* expression levels in E0 and BP1 cultured in a glucose-
- containing medium. (E) Relative *uhpT* expression levels in E Δ G0 and BP Δ G1 cultured in
- 822 a glucose-containing medium. " Δ " indicates gene disruption. "+" indicates
- 823 overexpression. (F) Relative intracellular G6P concentration (magenta bars) and relative

- 824 *uhpT* expression levels (cyan bars) in P2GsE, P2GsC and P2GsC Δpgi cultured in a
- glucose-containing medium. (G) Relative uhpT expression levels in E Δ HI0 and BP Δ HI1
- cultured in a glucose-containing medium. Data are presented as the mean of three
- 827 independent experiments, and the error bars indicate the standard error. *P* values were
- determined using two-tailed Student's t-tests (NS, P > 0.05; *P < 0.05; **P < 0.01). NS:
- 829 non-significant.

Fig. 5. Application of other proteins using the proposed mechanism. (A)

831 Hypothesized mechanism of G6P transport from the cytoplasm to the periplasm by the

- 832 EIIC^{Glc} domain and G6P sequestration by the G6P-capturing protein (GCP). (B) Phe
- production in the periplasmic enzyme-expressing strains after 48 h cultivation. Data are
- 834 presented as the average of three independent experiments, and the error bars indicate the
- standard error. *P* values were determined using two-tailed Student's t-tests (NS, P > 0.05;
- 836 **P* < 0.05; ***P* < 0.01). NS: non-significant.

Fig. 6. Production of other metabolites using G6P-capturing proteins. (A) Diagram of the metabolic pathways that synthesize Tyr and MA. (B) Tyr production after 48 h of cultivation in TYR0 and TYR1. (C) MA production after 48 h of cultivation in MA0 and MA1. Data are presented as the average of three independent experiments, and the error bars indicate the standard error. *P* values were determined using two-tailed Student's ttests (**P < 0.01).

Fig. 7. EΔHIO and BPΔHI1 culture profiles in a jar fermenter. Red, black, and blue

symbols indicate cell growth, glucose concentration, and Phe concentration, respectively.
The EΔHI0 and BPΔHI1 profiles are indicated with dash lines, open symbols, and solid
lines, closed symbols, respectively.

847

849 **References**

- Bodelón, G., Palomino, C., Fernández, L.Á., 2013. Immunoglobulin domains in
- 851 *Escherichia coli* and other enterobacteria: from pathogenesis to applications in
- antibody technologies. FEMS Microbiol. Rev. 37, 204–250.
- 853 https://doi.org/10.1111/j.1574-6976.2012.00347.x
- Cabell, L.A., Monahan, M.K., Anslyn, E. V., 1999. A competition assay for determining
- glucose-6-phosphate concentration with a *tris*-boronic acid receptor. Tetrahedron

Lett. 40, 7753–7756. https://doi.org/10.1016/S0040-4039(99)01651-2

- 857 Chir, J.L., Wan, C.F., Chou, C.H., Wu, A.T., 2011. Hydrolysis of cellulose in synergistic
- 858 mixtures of β -glucosidase and endo/exocellulase Cel9A from *Thermobifida fusca*.

Biotechnol. Lett. 33, 777–782. https://doi.org/10.1007/s10529-010-0500-9

- 860 Choi, J.H., Lee, S.Y., 2004. Secretory and extracellular production of recombinant
- proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–635.
- 862 https://doi.org/10.1007/s00253-004-1559-9
- Chung, H., Yang, J.E., Ha, J.Y., Chae, T.U., Shin, J.H., Gustavsson, M., Lee, S.Y., 2015.
- Bio-based production of monomers and polymers by metabolically engineered
- microorganisms. Curr. Opin. Biotechnol. 36, 73–84.
- 866 https://doi.org/10.1016/j.copbio.2015.07.003
- 867 Chung Nan Chang, Wun-Jing, K., Chen, E.Y., 1986. Nucleotide sequence of the alkaline
- phosphatase gene of *Escherichia coli*. Gene 44, 121–125.
- 869 https://doi.org/10.1016/0378-1119(86)90050-8
- 870 Fernández, L.A., 2004. Prokaryotic expression of antibodies and affibodies. Curr. Opin.
- 871 Biotechnol. 15, 364–373. https://doi.org/10.1016/J.COPBIO.2004.06.004

070	Г	NL-1- C	T	TUZ	1 2020	N / 1 1.		
×//	FIIIIWara R	NODA N	Tanaka	I KONdo	A 2020	Netabolic	enginee	ering of
0,2	I uji muiu, IC	., 1 10000, D.,	I ununu,	1 ., 1 01100, 2	· •., 2020.	metaoome	onginee	ning or

- 873 *Escherichia coli* for shikimate pathway derivative production from glucose–xylose
- co-substrate. Nat. Commun. 11, 1–12. https://doi.org/10.1038/s41467-019-14024-1
- Fujiwara, R., Noda, S., Tanaka, T., Kondo, A., 2018. Muconic acid production using
- gene-level fusion proteins in *Escherichia coli*. ACS Synth. Biol. 7, 2698–2705.
- 877 https://doi.org/10.1021/acssynbio.8b00380
- 878 Georgiou, G., Segatori, L., 2005. Preparative expression of secreted proteins in bacteria:
- status report and future prospects. Curr. Opin. Biotechnol. 16, 538–545.
- 880 https://doi.org/10.1016/j.copbio.2005.07.008
- Gonzalez-Perez, D., Ratcliffe, J., Tan, S.K., Wong, M.C.M., Yee, Y.P., Nyabadza, N.,
- Xu, J.-H., Wong, T.S., Tee, K.L., 2021. Random and combinatorial mutagenesis for
- improved total production of secretory target protein in Escherichia coli. Sci. Rep.

884 11, 5290. https://doi.org/10.1038/s41598-021-84859-6

- Heng, S.S.J., Chan, O.Y.W., Keng, B.M.H., Ling, M.H.T., 2011. Glucan biosynthesis
- protein G is a suitable reference gene in *Escherichia coli* K-12. ISRN Microbiol.
- 887 2011, 469053. https://doi.org/10.5402/2011/469053
- 888 Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F.,
- 689 Gosset, G., 2003. Expression of *galP* and *glk* in a *Escherichia coli* PTS mutant
- restores glucose transport and increases glycolytic flux to fermentation products.
- Biotechnol. Bioeng. 83, 687–694. https://doi.org/10.1002/bit.10702
- Ikeda, N., Miyamoto, M., Adachi, N., Nakano, M., Tanaka, T., Kondo, A., 2013. Direct
- cadaverine production from cellobiose using β-glucosidase displaying *Escherichia* β
- *coli*. AMB Express 3, 1–7. https://doi.org/10.1186/2191-0855-3-67

- Jacob-Dubuisson, F., Mechaly, A., Betton, J.-M., Antoine, R., 2018. Structural insights
- into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol.

2018 1610 16, 585–593. https://doi.org/10.1038/s41579-018-0055-7

- Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Yang, S., 2015. Multigene editing in the
- *Escherichia coli* genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol.
- 900 81, 2506–2514. https://doi.org/10.1128/AEM.04023-14
- Juminaga, D., Baidoo, E.E.K., Redding-Johanson, A.M., Batth, T.S., Burd, H.,
- 902 Mukhopadhyay, A., Petzold, C.J., Keasling, J.D., 2012. Modular engineering of L-
- 903 tyrosine production in *Escherichia coli*. Appl. Environ. Microbiol. 78, 89–98.
- 904 https://doi.org/10.1128/AEM.06017-11
- 905 Kurumbang, N.P., Vera, J.M., Hebert, A.S., Coon, J.J., Landick, R., 2020. Heterologous
- 906 expression of a glycosyl hydrolase and cellular reprogramming enable *Zymomonas*
- 907 *mobilis* growth on cellobiose. PLoS One 15, e0226235.
- 908 https://doi.org/10.1371/journal.pone.0226235
- Lian, J., McKenna, R., Rover, M.R., Nielsen, D.R., Wen, Z., Jarboe, L.R., 2016.
- 910 Production of biorenewable styrene: utilization of biomass-derived sugars and
- 911 insights into toxicity. J. Ind. Microbiol. Biotechnol. 43, 595–604.
- 912 https://doi.org/10.1007/s10295-016-1734-x
- Long, C.P., Au, J., Sandoval, N.R., Gebreselassie, N.A., Antoniewicz, M.R., 2017.
- 914 Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in
- 915 Escherichia coli. Nat. Commun. 8, 14316. https://doi.org/10.1038/ncomms14316

916	Lütke-Eversloh,	T., Stephanopoul	los, G., 2007	⁷ . L-Tyrosine	production b	y deregul	ated
-----	-----------------	------------------	---------------	---------------------------	--------------	-----------	------

- 917 strains of *Escherichia coli*. Appl. Microbiol. Biotechnol. 75, 103–110.
- 918 https://doi.org/10.1007/s00253-006-0792-9
- 919 Malherbe, G., Humphreys, D.P., Davé, E., 2019. A robust fractionation method for
- 920 protein subcellular localization studies in *Escherichia coli*. Biotechniques 66, 171–
- 921 178. https://doi.org/10.2144/btn-2018-0135
- 922 Mirzadeh, K., Shilling, P.J., Elfageih, R., Cumming, A.J., Cui, H.L., Rennig, M.,
- 923 Nørholm, M.H.H., Daley, D.O., 2020. Increased production of periplasmic proteins
- 924 in *Escherichia coli* by directed evolution of the translation initiation region. Microb.
- 925 Cell Fact. 19, 85. https://doi.org/10.1186/s12934-020-01339-8
- 926 Morrison, J.F., 1969. Kinetics of the reversible inhibition of enzyme-catalysed reactions
- 927 by tight-binding inhibitors. Biochim. Biophys. Acta Enzymol. 185, 269–286.
- 928 https://doi.org/10.1016/0005-2744(69)90420-3
- 929 Nakagawa, A., Minami, H., Kim, J.-S., Koyanagi, T., Katayama, T., Sato, F., Kumagai,
- H., 2011. A bacterial platform for fermentative production of plant alkaloids. Nat.
- 931 Commun. 2, 326. https://doi.org/10.1038/ncomms1327
- Nielsen, J., Keasling, J.D., 2016. Engineering Cellular Metabolism. Cell 164, 1185–1197.
- 933 https://doi.org/10.1016/J.CELL.2016.02.004
- Niu, H., Li, R., Liang, Q., Qi, Q., Li, Q., Gu, P., 2019. Metabolic engineering for
- 935 improving L⁻ tryptophan production in *Escherichia coli*. J. Ind. Microbiol.
- Biotechnol. 46, 55–65. https://doi.org/10.1007/s10295-018-2106-5

- 937 Noda, S., Kondo, A., 2017. Recent advances in microbial production of aromatic
- 938 chemicals and derivatives. Trends Biotechnol. 35, 785–796.
- 939 https://doi.org/10.1016/j.tibtech.2017.05.006
- 940 Noda, S., Shirai, T., Oyama, S., Kondo, A., 2016. Metabolic design of a platform
- 941 *Escherichia coli* strain producing various chorismate derivatives. Metab. Eng. 33,
- 942 119–129. https://doi.org/10.1016/j.ymben.2015.11.007
- 943 Nonaka, D., Fujiwara, R., Hirata, Y., Tanaka, T., Kondo, A., 2021. Metabolic
- 944 engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-
- 945 expressing E. coli. Bioresour. Technol. 329, 124858.
- 946 https://doi.org/10.1016/j.biortech.2021.124858
- 947 Olson, M.M., Templeton, L.J., Suh, W., Youderian, P., Sariaslani, F.S., Gatenby, A.A.,
- 948 Van Dyk, T.K., 2007. Production of tyrosine from sucrose or glucose achieved by
- 949 rapid genetic changes to phenylalanine-producing *Escherichia coli* strains. Appl.
- 950 Microbiol. Biotechnol. 74, 1031–1040. https://doi.org/10.1007/s00253-006-0746-2
- 951 Poddar, A., Azam, M.S., Kayikcioglu, T., Bobrovskyy, M., Zhang, J., Ma, X.,
- 252 Labhsetwar, P., Fei, J., Singh, D., Luthey-Schulten, Z., Vanderpool, C.K., Ha, T.,
- 953 2021. Effects of individual base-pairs on in vivo target search and destruction
- kinetics of bacterial small RNA. Nat. Commun. 12, 1–15.
- 955 https://doi.org/10.1038/s41467-021-21144-0
- 956 Rodriguez, A., Martínez, J. a, Báez-Viveros, J.L., Flores, N., Hernández-Chávez, G.,
- 957 Ramírez, O.T., Gosset, G., Bolivar, F., 2013. Constitutive expression of selected
- 958 genes from the pentose phosphate and aromatic pathways increases the shikimic

959	acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS
960	and pykF. Microb. Cell Fact. 12, 86. https://doi.org/10.1186/1475-2859-12-86
961	Satowa, D., Fujiwara, R., Uchio, S., Nakano, M., Otomo, C., Hirata, Y., Matsumoto, T.,
962	Noda, S., Tanaka, T., Kondo, A., 2020. Metabolic engineering of E. coli for
963	improving mevalonate production to promote NADPH regeneration and enhance
964	acetyl- CoA supply. Biotechnol. Bioeng. 117, 2153–2164.
965	https://doi.org/10.1002/bit.27350
966	Schmidt T., 2019. Encyclopedia of Microbiology, 4th Editio. ed. Academic Press,
967	Amsterdam.
968	Shen, X., Wang, Jia, Wang, Jian, Chen, Z., Yuan, Q., Yan, Y., 2017. High-level De novo
969	biosynthesis of arbutin in engineered Escherichia coli. Metab. Eng. 42, 52–58.
970	https://doi.org/10.1016/j.ymben.2017.06.001
971	Shirai, T., Matsuda, F., Okamoto, M., Kondo, A., 2013. Evaluation of control
972	mechanisms for Saccharomyces cerevisiae central metabolic reactions using
973	metabolome data of eight single-gene deletion mutants. Appl. Microbiol.
974	Biotechnol. 97, 3569-3577. https://doi.org/10.1007/s00253-012-4597-8
975	Sochacki, K.A., Shkel, I.A., Record, M.T., Weisshaar, J.C., 2011. Protein diffusion in the
976	periplasm of <i>E. coli</i> under osmotic stress. Biophys. J. 100, 22–31.
977	https://doi.org/10.1016/j.bpj.2010.11.044
978	Soma, Y., Inokuma, K., Tanaka, T., Ogino, C., Kondo, A., Okamoto, M., Hanai, T.,
979	2012. Direct isopropanol production from cellobiose by engineered Escherichia coli
980	using a synthetic pathway and a cell surface display system. J. Biosci. Bioeng. 114,
981	80-85. https://doi.org/10.1016/j.jbiosc.2012.02.019
	51

- 982 Spiridonov, N.A., Wilson, D.B., 2001. Cloning and biochemical characterization of
- 983 BglC, a β -glucosidase from the cellulolytic actinomycete *Thermobifida fusca*. Curr.
- 984 Microbiol. 42, 295–301. https://doi.org/10.1007/s002840110220
- 985 Stock, J.B., Rauch, B., Roseman, S., 1977. Periplasmic space in Salmonella typhimurium
- 986 and *Escherichia coli*. J. Biol. Chem. 252, 7850–7861.
- 987 https://doi.org/10.1016/S0021-9258(17)41044-1
- 988 Sun, J., Lin, Y., Shen, X., Jain, R., Sun, X., Yuan, Q., Yan, Y., 2016. Aerobic
- 989 biosynthesis of hydrocinnamic acids in *Escherichia coli* with a strictly oxygen-
- sensitive enoate reductase. Metab. Eng. 35, 75–82.
- 991 https://doi.org/10.1016/j.ymben.2016.02.002
- 992 Tanaka, T., Kawabata, H., Ogino, C., Kondo, A., 2011. Creation of a
- 993 cellooligosaccharide-assimilating *Escherichia coli* strain by displaying active beta-
- glucosidase on the cell surface via a novel anchor protein. Appl. Environ. Microbiol.
- 995 77, 6265–70. https://doi.org/10.1128/AEM.00459-11
- ⁹⁹⁶ Thompson, B., Pugh, S., Machas, M., Nielsen, D.R., 2018. Muconic acid production via
- alternative pathways and a synthetic "Metabolic Funnel." ACS Synth. Biol. 7, 565–
- 998 575. https://doi.org/10.1021/acssynbio.7b00331
- 999 Västermark, A., Saier, M.H., 2014. The involvement of transport proteins in
- transcriptional and metabolic regulation. Curr. Opin. Microbiol. 18, 8–15.
- 1001 https://doi.org/10.1016/j.mib.2014.01.002
- 1002 Verhamme, D.T., Arents, J.C., Postma, P.W., Crielaard, W., Hellingwerf, K.J., 2001.
- 1003 Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component

- regulatory system. Microbiology 147, 3345–3352.
- 1005 https://doi.org/10.1099/00221287-147-12-3345
- 1006 Verhamme, D.T., Postma, P.W., Crielaard, W., Hellingwerf, K.J., 2002. Cooperativity in
- signal transfer through the Uhp system of *Escherichia coli*. J. Bacteriol. 184, 4205–
- 1008 4210. https://doi.org/10.1128/JB.184.15.4205-4210.2002
- 1009 Wu, W., Guo, X., Zhang, M., Huang, Q., Qi, F., Huang, J., 2018. Enhancement of L-
- 1010 phenylalanine production in *Escherichia coli* by heterologous expression of
- 1011 Vitreoscilla hemoglobin. Biotechnol. Appl. Biochem. 65, 476–483.
- 1012 https://doi.org/10.1002/bab.1605
- 1013 Zhang, H., Pereira, B., Li, Z., Stephanopoulos, G., 2015. Engineering Escherichia coli
- 1014 coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci.
- 1015 112, 8266–8271. https://doi.org/10.1073/pnas.1506781112
- 1016 Zheng, H., Taraska, J., Merz, A.J., Gonen, T., 2010. The prototypical H+/galactose
- symporter GalP assembles into functional trimers. J. Mol. Biol. 396, 593–601.
- 1018 https://doi.org/10.1016/j.jmb.2009.12.010
- 1019 Zhou, H., Liao, X., Wang, T., Du, G., Chen, J., 2010. Enhanced l-phenylalanine
- biosynthesis by co-expression of *pheA*^{fbr} and *aroF*^{wt}. Bioresour. Technol. 101, 4151–
- 1021 4156. https://doi.org/10.1016/j.biortech.2010.01.043
- 1022

Supplementary materials

This file includes:

Figures S1 to S5

Supplementary discussion 1

Tables S1 to S3

SI References

Fig. S1. Effect of BGL expression level or enzymatic activity on Phe production. (A) Bacterial cell growth in glucose medium. Blue bars indicate the OD600 of the control strain (E0) and strains expressing Blc-Tfu0937, PelB-Tfu0937, and Tfu0937 (BD1, BP1, and BC1, respectively). (B) Whole-cell activity of BGL in E0, BD1, BP1 and BC1. (C) Whole-cell activity of BGL in E0, BD1L, BD1M, BD1 and BD2. (D) L-phenylalanine production after 48 h cultivation in E0 and a strain expressing inactivated BGL (BD2). n.d., not detected. Data are presented as the average of three independent experiments, and error bars indicate standard error. *P* values were determined using two-tailed Student's t-tests (NS, *P* > 0.05; ***P* < 0.01). BGL, β-glucosidase; NS, non-significant.

Fig. S2. Intracellular PEP, pyruvate, and acetyl-CoA concentrations. Intracellular PEP, pyruvate, and acetyl-CoA concentrations in BDΔHI1 relative to EΔHI0 (A), BPΔHI1 relative to EΔHI0 (B), BPΔHIG1 relative to EΔHIG0 (C) and BPΔG1 relative to EΔG0 (D). Data are presented as the mean of three independent experiments, and error bars indicate standard error. *P* values were determined using two-tailed Student's t-tests (NS, *P* > 0.05; **P* < 0.05; ***P* < 0.01). NS, non-significant; PEP, phosphoenolpyruvate.

Fig. S3. Metabolome analysis of glycolysis and the PPP in strains with periplasmic BGL localization. (A) Intracellular G6P concentrations in BPΔHIG1 relative to EΔHIG0 (control strain). (B) Catabolic pathway for glucose, xylose and fructose. (C) Phe production after 48 h cultivation in BPΔHI1 and EΔHI0 using xylose or fructose as a carbon source. (D) Intracellular G6P concentrations with xylose as the substrate in BPΔHI1 relative to EΔHI0. (E) Intracellular G6P concentrations with fructose as the substrate in BPΔHI1 relative to EΔHI0. Data are presented as the mean of three independent experiments, and error bars indicate standard errors. *P* values were determined using two-tailed Student's t-tests (NS, P > 0.05; *P < 0.05; **P < 0.01). BGL, β-glucosidase; G6P, glucose-6-phosphate; NS, non-significant; PPP, pentose phosphate pathway.

Fig. S4. Phe production in G6P-containing medium. Analysis of *uhpT* expression. (A) Phe production in strain E0 cultured in media containing 55.5 mM glucose or G6P. (B) Bacterial cell growth of E0 cultured in media containing 55.5 mM glucose or G6P. (C) Lphenylalanine production in E0 and BP1 cultured in media containing 55.5 mM G6P. (D) L-phenylalanine production in E Δ G0 and BP Δ G1 cultured in media containing 55.5 mM G6P. Data are presented as the mean of three independent experiments, and error bars indicate standard error. *P* values were computed using two-tailed Student's *t*-test (NS, *P* > 0.05; **, *P* < 0.01). G6P, glucose-6-phosphate.

Fig. S5. Analysis of the application of G6P-capturing proteins. (A) L-phenylalanine production after 48 h cultivation in Pgi and Zwf overexpression strains. Light- and dark-green bars indicate L-phenylalanine production by E0 (control strain) and strains expressing native Pgi and Zwf in the cytoplasm (PC1 and ZC1), respectively. (B) Western blotting of Zwf. As indicated in the figure, the left four lanes correspond to a molecular weight protein marker and whole-cell extract samples (ZC1, ZP1, and ZP2). The right four lanes correspond to a protein marker and periplasmic extract samples (ZC1, ZP1, and ZP2). Zwf expression levels in the periplasmic extracts of strains ZP1 and ZP2 were 6.1- and 5.8-times higher than those in ZC1. An ANTI-FLAG M2 monoclonal antibody (Sigma-Aldrich) and an anti-rabbit IgG (Fc) AP conjugate (Promega Corp.) were used to detect Zwf and PelB-Zwf fused with a FLAG-tag. (C) Intracellular G6P concentrations in strains expressing G6P-capturing proteins in the periplasm relative to E0 (control strain). Data are presented as the mean of three

independent experiments, and error bars indicate standard error. *P* values were computed using two-tailed Student's t-test (NS, P > 0.05; *P < 0.05). G6P, glucose-6-phosphate.

Supplementary discussion 1

The assumed reaction mechanism, in which one GCP molecule captures one G6P molecule to form a GCP-G6P complex, then dissociating to GCP and G6P, is shown in Eq. 2:

$$GCP + G6P \rightleftharpoons GCP - G6P (Eq. 2)$$

Assuming that this reaction has reached the equilibrium rapidly, the dissociation constant (K_d) is set as follows.

$$K_{d} = \frac{[GCP][G6P]}{[GCP-G6P]}$$
 (Eq. 3)

Focusing on the periplasmic concentration of the GCP-G6P complex, converting Eq. 3 results in the following Eq. 4.

$$[GCP-G6P]_{p} = \frac{[GCP]_{p}[G6P]_{p}}{K_{d}} (Eq. 4)$$

[GCP-G6P]_P, [GCP]_P, and [G6P]_P indicate the periplasmic concentration of the GCP-G6P complex, free GCP, and freeG6P, respectively. The total concentration of the periplasmic GCP ([GCP]_{P0}) is the sum of [GCP]_P and [GCP-G6P]_P, Eq. 4 results in the following Eq. 5.

$$[GCP-G6P]_{p} = \frac{[G6P]_{P}[GCP]_{P0}}{[G6P]_{P} + K_{d}} (Eq. 5)$$

The total concentration of the periplasmic G6P ($[G6P]_{P0}$) is the sum of $[G6P]_P$ and $[GCP-G6P]_P$, Eq. 5 results in the following Eq. 6.

$$[G6P]_{P0} = \left(1 + \frac{[GCP]_{P0}}{[G6P]_P + K_d}\right) \cdot [G6P]_P (Eq. 6)$$

Eq.6 means that even if the periplasmic concentration of free G6P is the same, the total G6P concentration in the periplasm (including free G6P and GCP-G6P complex) is higher when GCP is present in the periplasm.

Strains	Genotype	Source or reference
ATCC31882	L-Phenylalanine-overproducing strain	ATCC
ATCC31882 $\Delta ptsG$	$ATCC31882\Delta ptsG$	This study
CFT1	ATCC31882 ptsHI:: P AllacO-1 -glk-galP	Noda et al., 2016
CFT1∆ <i>crr</i>	ATCC31882 ptsHI:: $P_{A1lacO-1}$ -glk-galP Δcrr	This study
$CFT1\Delta ptsG$	ATCC31882 $ptsHI::P_{A1lacO-1}$ -glk-galP $\Delta ptsG$	This study
CFT1∆ <i>pheA</i>	ATCC31882 ptsHI:: $P_{A1lacO-1}$ -glk-galP $\Delta pheA$	This study
C421S	ATCC31882 ptsG::ptsG ^{C421S}	This study
P2Gs	ATCC31882 $ptsG::P_{A1lacO-1}$ -glk-galP $\Delta sgrS$	This study
P2Gs∆pgi	ATCC31882 $ptsG::P_{A1lacO-1}$ -glk-galP $\Delta sgrS$ Δpgi	This study
TYR	ATCC31882 trpE::tyrA ^{fbr} ΔpheA	This study
E0	ATCC31882 harboring pHLA	This study
BD1	ATCC31882 harboring pHLA-blc-Tfu0937	This study
E0L	ATCC31882 harboring pSAK	This study
BD1L	ATCC31882 harboring pSAK-blc-Tfu0937	This study
E0M	ATCC31882 harboring pZA23MCS	This study
BD1M	ATCC31882 harboring pZA23-blc-Tfu0937	This study
BD2	ATCC31882 harboring pHLA-blc- Tfu0937E ³⁸⁸ A	This study
BP1	ATCC31882 harboring pHLA-pelB-Tfu0937	This study
BC1	ATCC31882 harboring pHLA-Tfu0937	This study
ΕΔΗΙΟ	CFT1 harboring pHLA	This study
BDAHI1	CFT1 harboring pHLA-blc-Tfu0937	This study
BPΔHI1	CFT1 harboring pHLA-pelB-Tfu0937	This study
ΕΔΗΙC0	CFT1 Δcrr harboring pHLA	This study
ΒΡΔΗΙC1	CFT1∆ <i>crr</i> harboring pHLA-pelB-Tfu0937	This study
EΔHIG0	$CFT1\Delta ptsG$ harboring pHLA	This study
BP∆HIG1	CFT1 $\Delta ptsG$ harboring pHLA-pelB-Tfu0937	This study
EΔG0	ATCC31882 $\Delta ptsG$ harboring pHLA	This study
BPAG1	ATCC31882∆ <i>ptsG</i> harboring pHLA-pelB- Tfu0937	This study
E ^{C421S} 0	C421S harboring pHLA	This study
BP ^{C421S} 1	C421S harboring pHLA-prlB-Tfu0937	This study

Table S1. Strains and plasmids used in this study

dGB	ATCC31882 $\Delta ptsG$ harboring pZA23-EIIB ^{Gle}	This study
dGC	ATCC31882 <i>AptsG</i> harboring pZA23-EIIC ^{Glc}	This study
EdGB0	dGB harboring pHLA	This study
BPdGB1	dGB harboring pHLA pHLA-pelB-Tfu0937	This study
EdGC0	dGC harboring pHLA	This study
BPdGC1	dGC harboring pHLA pHLA-pelB-Tfu0937	This study
P2GsE	P2Gs harboring pZA23-MCS	This study
P2GsC	P2Gs harboring pZA23-EIIC ^{Glc}	This study
P2GsC∆pgi	P2Gs∆pgi harboring pZA23-EIIC ^{Glc}	This study
AP1	ATCC31882 harboring pHLA-pelB-phoA	This study
AP2	ATCC31882 harboring pHLA-pelB- phoAS ¹²⁴ A	This study
PP1	ATCC31882 harboring pHLA-pelB-pgi	This study
PP2	ATCC31882 harboring pHLA-pelB-pgiH ³⁸⁶ A	This study
PC1	ATCC31882 harboring pHLA-pgi	This study
ZP1	ATCC31882 harboring pHLA-pelB-zwf	This study
ZP2	ATCC31882 harboring pHLA-pelB-zwfH ²³⁹ A	This study
ZC1	ATCC31882 harboring pHLA-zwf	This study
GP1	ATCC31882 harboring pHLA-pelB-gfp	This study
TYR0	TYR harboring pHLA	This study
TYR1	TYR harboring pHLA-blc-Tfu0937	This study
MA0	CFT1∆ <i>pheA</i> harboring pSAK-ZYc and pHLA	This study
MA1	CFT1∆ <i>pheA</i> harboring pSAK-ZYc and pHLA- pelB-Tfu0937	This study
Plasmids		
pHLA	P _{HCE} , ColE1 ori, Amp ^r	Tanaka et al., 2011
pHLA-blc-Tfu0937	pHLA expressing Blc-Tfu0937	This study
pHLA-blc-Tfu0937 ^{E388A}	pHLA expressing Blc-Tfu0937E ³⁸⁸ A	This study
pHLA-pelB-Tfu0937	pHLA expressing PelB-Tfu0937	This study
pHLA-Tfu0937	pHLA expressing Tfu0937	This study
pHLA-blc-Tfu0937- FLAG	pHLA expressing Blc-Tfu0937E ³⁸⁸ A fused with FLAG-tag	This study
pHLA-pelB-Tfu0937- FLAG	pHLA expressing PelB-Tfu0937 fused with FLAG-tag	This study
pHLA-Tfu0937-FLAG	pHLA expressing Tfu0937 fused with FLAG- tag	This study

pHLA-pelB-phoA	pHLA expressing PelB-PhoA	This study
pHLA-pelB-phoA ^{S124A}	pHLA expressing PelB-PhoAS ¹²⁴ A	This study
pHLA-pelB-pgi	pHLA expressing PelB-Pgi	This study
pHLA-pelB-pgi ^{H386A}	pHLA expressing PelB-PgiH ³⁸⁶ A	This study
pHLA-pgi	pHLA expressing Pgi	This study
pHLA-pelB-zwf	pHLA expressing PelB-Zwf	This study
pHLA-pelB-zwf ^{H239A}	pHLA expressing PelB-ZwfH ²³⁹ A	This study
pHLA-zwf	pHLA expressing Zwf	This study
pHLA-pelB-zwf-FLAG	pHLA expressing PelB-Zwf fused with FLAG- tag	This study
pHLA-pelB-zwf ^{H239A} - FLAG	pHLA expressing PelB-ZwfH ²³⁹ A fused with FLAG-tag	This study
pHLA-zwf-FLAG	pHLA expressing Zwf fused with FLAG-tag	This study
pHLA-pelB-gfp	pHLA expressing PelB-GFP	This study
pSAK	P_{AlacO1} , SC101 ori, and Cm^r	Noda et al., 2017
pSAK-blc-Tfu0937	pSAK expressing Blc-Tfu0937	This study
pSAK-blc-Tfu0937- FLAG	pSAK expressing Blc-Tfu0937 fused with FLAG-tag	This study
pSAK-P _{trc}	P_{trc} , SC101 ori, and Cm^r	Fujiwara et al., 2020
pSAK-ZYc	pSAK-P _{trc} containing <i>aroZ</i> , <i>aroY</i> , and <i>catA</i>	Fujiwara et al., 2020
pSAK-tyrA ^{fbr}	pSAK-P _{trc} containing <i>tyrA</i> ^{fbr} and feedback- inhibition-resistant (fbr) derivatives of <i>tyrA</i>	Fujiwara et al., 2020
pZA23MCS	P _{AllacO-1} , p15A ori, Km ^r	Expressys
pZA23-blc-Tfu0937	pZA23MCS expressing Blc-Tfu0937	This study
pZA23-blc-Tfu0937	pZA23MCS expressing Blc-Tfu0937 fused with FLAG-tag	This study
pZA23-EIIB ^{Glc}	pHLA expressing EIIB ^{Gle} domain	This study
pZA23-EIIC ^{Glc}	pHLA expressing EIIC ^{Gle} domain	This study
pTargetF	Constitutive expression of sgRNA	Addgene
pCas	Constitutive expression of cas9 and inducible expression of λ RED and sgR	Addgene
pT∆ptsG	Constitutive expression of sgRNA with donor- editing template DNA for <i>ptsG</i> disruption	This study
pT∆crr	Constitutive expression of sgRNA with donor- editing template DNA for <i>crr</i> disruption	This study
pT∆pheA	Constitutive expression of sgRNA with donor- editing template DNA for <i>pheA</i> disruption	Fujiwara et al., 2020

pT∆sgrS	Constitutive expression of sgRNA with donor- editing template DNA for <i>sgrS</i> disruption	This study
pT∆pgi	Constitutive expression of sgRNA with donor- editing template DNA for <i>pgi</i> disruption	This study
pTtrpE::tyr ^{fbr}	Constitutive expression of sgRNA with donor- editing template DNA for <i>tyrA</i> ^{fbr} insertion in <i>trpE</i> locus	This study
pTptsG::galP-glk	Constitutive expression of sgRNA with donor- editing template DNA for <i>galP-glk</i> insertion in <i>ptsG</i> locus	This study

Plasmids	Primers	Sequences
pHLA-blc-	E388A_for	CTACCCGGGCCTGCCGCTGTACATCACCGCGAAC GGCGCCGCCTTCGAGGAC
tfu0937 ^{E388A}	E388A_re	GTCCTCGAAGGCGGCGCCGTTCGCGGTGATGTAC AGCGGCAGGCCCGGGTAG
	pelB_Tfu0937_f1	CCGCTGCTGCTGGTCTGCTGCTGCTCGCCCAG CCGGCGATGGCCATGACCTCGCAATCGACGACTC C
pHLA-pelB- tfu0937	XhoI_Tfu0937_re	GCCAAGCTTCTCGAGCTATTCCTGTCCGAAGATT CCCCCG
	Bgl2_pelB_for	TGGAAAAAGGAGATCTGATGAAAATACCTGCTGCC GACCGCTGCTGCTGGTCTGCTGC
pHLA-	n.stfu0937_f	TGGAAAAAGGAGATCTGATGACCTCGCAATCGAC GACTCC
tfu0937	n.stfu0937_r	GCCAAGCTTCTCGAGCTATTCCTGTCCGAAGATT CCCCCG
	phoA_f	TGGAAAAAGGAGATCTGATGAAACAAAGCACTA TTGCACTGGCACTCTTACCG
phla-phoa	phoA_r	AGCCAAGCTTCTCGAGTTATTTCAGCCCCAGAGC GGCTTTC
pHLA-	phoA_S124A_f	GTTGCTGATGCGGCCGCGTCGGTGACGTAGTCCG GTTTGCCG
phoA ^{S124A}	phoA_S124A_r	CGTCACCGACGCGGCCGCATCAGCAACCGCCTGG TCAACCG
pHLA-pelB-	pelB_pgi_f1	CCGCTGCTGCTGGTCTGCTGCTGCTCGCTGCCCAG CCGGCGATGGCCATGAAAAACATCAATCCAACGC AGACCG
pgi	XhoI_pgi_re	GCCAAGCTTCTCGAGTTAACCGCGCCACGCTTTA TAGCGG
pHLA-pelB-	pgi_H386A_smaI _for	CAGACTGGCCCGATTATCTGGGGTGAACCCGGGA CTAACGGTCAGGCCGCGTTCTACCAGCTGATCCA CCAGGGAAC
pgi ^{H386A}	pgi_H386A_smaI _re	GTTCCCTGGTGGATCAGCTGGTAGAACGCGGCCT GACCGTTAGTCCCGGGTTCACCCCAGATAATCGG GCCAGTCTG
pHLA-pelB-	pelB_zwf_f1	CCGCTGCTGCTGGTCTGCTGCTGCTCGCTGCCCAG CCGGCGATGGCCATGGCGGTAACGCAAACAGCC CAG
ZWI	XhoI_zwf_re	GCCAAGCTTCTCGAGTTACTCAAACTCATTCCAG GAACGACCATC

Table S2.	Primers	used	in	the	present	study
-----------	---------	------	----	-----	---------	-------

pULA polB	zwf_H239A_pstI_ for	CGGTCAGATGCGCGACATGATCCAGAACGCCCTG CTGCAGATTCTTTGCATGATTGCGATGTCTCCGCC
zwf ^{H239A}	zwf_H239A_pstI_ re	GGCGGAGACATCGCAATCATGCAAAGAATCTGC AGCAGGGCGTTCTGGATCATGTCGCGCATCTGAC CG
pHI A_zwf	no-sigzwf_Fw	GGAAAAAGGAGATCTGATGGCGGTAACGCAAAC AGCCCAG
prilA-2wi	no-sigzwf_Rv	GCCAAGCTTCTCGAGTTACTCAAACTCATTCCAG GAACGACCAT
	gfp_f1	CCGCTGCTGCTGGTCTGCTGCTCGCTGCCCAG CCGGCGATGGCCATGGTGAGCAAGGGCGAGGAG CTG
pHLA-pelB- gfp	gfp_f2	TGGAAAAAGGAGATCTGATGAAAATACCTGCTGCC GACCGCTGCTGCTGGTCTGCTGC
	gfp_r	GCCAAGCTTCTCGAGCTACTTGTACAGCTCGTCC ATGCCGAGAGTGATC
nHI A nai	no-sigpgi_Fw	GGAAAAAGGAGATCTGATGAAAAAACATCAATCC AACGCAGACCG
prillA-pgi	no-sigpgi_Rv	GCCAAGCTTCTCGAGTTAACCGCGCCACGCTTTA TAGCG
pSAK-blc- tfu0937	c.nTfu0937_f	TCGTCTTCACCTCGAGGCTCCAGATCGCTAGCTTG ATCTCTCC
pZA23-blc- tfu0937	c.nTfu0937_r	ATTCGATATCAAGCTTCATTTATCAGGGTTATTGT CTCATGAGCGGATAC
pZA23-	pZ_EIIB_f	TTAAAGAGGAGAAAGGTACC ATGGCGACTGAAG ATGCAAAAGCGACAG
EIIB ^{Glc}	pZ_EIIB_r	ATTCGATATCAAGCTCTATTAGTGGTTACGGATG TACTCATCCATCTCGG
pZA23-	pZ_EIIC_f	TTAAAGAGGAGAAAGGTACC ATGTTTAAGAATG CATTTGCTAACCTGCAAAAGG
EIIC ^{Glc}	pZ_EIIC_r	ATTCGATATCAAGCTCTATTAGTCTTCACGACCCG GCGTTTTCAG
	sgRNA ptsG Fw	GATTGGTTCTGCAATCCAGCTAGCATTATACCTA GGACTGAGCTAGCTGTCAAGG
	sgRNA ptsG Rv	GATTGCAGAACCAATCGGGGGTTTTAGAGCTAGAA ATAGCAAGTTAAAATAAGGC
pT∆ptsG	HomSeq Up ptsG Fw	TGCTTTTTTTGAATTCGCTTAGATGCCCTGTACAC GGCGAG
	HomSeq Up ptsG Rv	CTGTCTGGTGGCTTCCACCGGAGATAATCCCTCC GAGTACGC
	HomSeq Dw ptsG Fw	GAGGGATTATCTCCGGTGGAAGCCACCAGACAGT TTACCCGCAGTC

	HomSeq Dw ptsG Rv	GCTTCTGCAGGTCGACCTGATCCACTTTAGACAC ATCAGCAACGC
	sgRNA crr Fw	GCTGGAAGAGAAAGCCAAGCTAGCATTATACCTA GGACTGAGCTAGCTGTCAAGG
	sgRNA crr Rv	GGCTTTCTCTTCCAGCAGGGTTTTAGAGCTAGAA ATAGCAAGTTAAAATAAGGC
nTAcre	HomSeq Up crr Fw	TGCTTTTTTTGAATTCTTGCTGGCGATGAACGTGC TACACTTC
przen	HomSeq Up crr Rv	GATAACCGGGGTTTCACCCGGCACGTCTTCGATA TTGACGATCTC
	HomSeq Dw crr Fw	GAAGACGTGCCGGGTGAAACCCCCGGTTATCCGCA TCAAGAAGT
	HomSeq Dw crr Rv	GCTTCTGCAGGTCGACGATCTCGACAGTGCCATT GCTGCCG
	sgRNA pheA Fw	CCATTGTTTGTTGGTCTCGTTTTAGAGCTAGAAAT AGCAAGTTAAAATAAGGCTAGTCCG
	sgRNA pheA Rv	ACCAACAAACAATGGTCACTCGTATTATACCTAG GACTGAGCTAGCTGTCAAGGATCCAG
aT Aaba A	HomSeq Up pheA Fw	TGCTTTTTTTGAATTCTACCGTTTTTCTTCGCATTC TTTTTTACCT
рідрпеА	HomSeq Up pheA Rv	TCAGACACGTTACTAGTGCCTGCTGAGTTAATAC GGAATCTTCAA
	HomSeq Dw pheA Fw	ACTCAGCAGGCACTAGTAACGTGTCTGATCAGGT TCCGGC
	HomSeq Dw pheA Rv	AATAGATCTAAGCTTATACGCACAGCGTTTTCAG AGTGAA
	sgRNA sgrS Fw	AGTCAACTTTCAGAATTGGTTTTAGAGCTAGAAA TAGCAAGTTAAAATAAGGCTAGTCCG
	sgRNA sgrS Rv	TTCTGAAAGTTGACTTGACTCGTATTATACCTAGG ACTGAGCTAGCTGTCAAGGATCCAG
nT AcorS	HomSeq Up sgrS Fw	TCGGTGCTTTTTTTGAATTCGTCTTCCGCCCGCTG TTGCT
p12sg13	HomSeq Up sgrS Rv	GCGCGGCGAGACTAGTGACTTAATATAGGGAAA ATAAAATTGCTGTCTTTTGCACAG
	HomSeq Dw sgrS Fw	CCCTATATTAAGTCACTAGTCTCGCCGCGCTAAA AAGGGAACG
	HomSeq Dw sgrS Rv	AGGGTAATAGATCTAAGCTTAGCACACCACAGGT GATAAGCGTC
nTAngi	sgRNA pgi Fw	CCCAGAACTCGAACATGTGTTTTAGAGCTAGAAA TAGCAAGTTAAAATAAGGCTAGTCCG
μιαρβι	sgRNA pgi Rv	TGTTCGAGTTCTGGGACACTCGTATTATACCTAG GACTGAGCTAGCTGTCAAGGATCCAG
	HomSeq Up pgi Fw	TCGGTGCTTTTTTTGAATTCTCACTGAAGAGACGC TGGCGA
----------------------------	----------------------	---
	HomSeq Up pgi Rv	AAGAAATTGTTACTAGTGCACTTCCGCGATGTGA GTCC
	HomSeq Dw pgi Fw	CGCGGAAGTGCACTAGTAACAATTTCTTTGGTGC GGAAACTGA
	HomSeq Dw pgi Rv	AGGGTAATAGATCTAAGCTTCGGCACCACGTAGT CAAGCG
	sgRNA trpE Fw	GCTGCCAGTGGTTTCCGTGCTAGCATTATACCTA GGACTGAGCTAGCTGTCAAGG
pTtrpE::tyr ^{fbr}	sgRNA trpE Rv	GGAAACCACTGGCAGCGGGGTTTTAGAGCTAGA AATAGCAAGTTAAAATAAGGC
	HomSeq Up trpE Fw	TGCTTTTTTTGAATTCGCAATCAGATACCCAGCCC GCCTAATGAG
	HomSeq Up trpE Rv	GGGTGAAATCGCGGCCGCCACAAGGTCATAAGA GAACAGGCCGCCG
	HomSeq Dw trpE Fw	GACCTTGTGGCGGCCGCGATTTCACCCTATTTGG CGCGTCGC
	HomSeq Dw trpE Rv	GCTTCTGCAGGTCGACGTGGCGATACCGTTTTCC ACCAGC
	tyr_ins Fw	GGGTGAAATCGCGGCCGCCCAGTCTTTCGACTG AGCCTTTCG
	tyr_ins Rv	GACCTTGTGGCGGCCGCATAGGCGTATCACGAGG CCCTTTCGTC
	pTptsG_inv.Fw	CCGCCCTAGACCTAGGGACTGCGGGTAAACTGTC TGGTGGCTTC
pTptsG::galP -glk	pTptsG_inv.Rv	GCTCACAATTCTCGAGCACCGGAGATAATCCCTC CGAGTACGC
	galP-glk_ins Fw	CTCGAGAATTGTGAGCGGATAACAATTGACATTG TGAG
	galP-glk_ins Rv	CCTAGGTCTAGGGCGGCGGATTTGTC
Real-time	mdoG_Fw	TTGCACGACTCTAACGGTCT
for <i>mdoG</i>	mdoG_Rv	TTCCATGGAGAAGCTGCTGA
Real-time	uhpT_Fw	TCTTTGCGTTGGGTTTCCTG
for <i>uhpT</i>	uhpT_Rv	TGGCAAAGCTGTCACCAATC

Table S3. Plasmids construction

Products	Primers or Restriction enzymes	Template	Methods
fragment 1	E388A_for E388A_re	pHLA-blc- Tfu0937	PCR
pHLA-blc-Tfu0937 ^{E389A}	-	fragment 1	In-Fusion HD cloning kit
fragment 2	pelB_Tfu0937_f1 Bgl2 pelB for	pHLA-blc- Tfu0937	PCR
fragment 3	Bgl2_pelB_for XhoI Tfu0937 re	fragment 2	PCR
fragment 4	BglII XhoI	pHLA	Restriction enzyme digestion
pHLA-pelB-Tfu0937	-	fragment 3 fragment 4	In-Fusion HD cloning kit
fragment 5	n.stfu0937_f n.stfu0937_r	pHLA-blc- Tfu0937	PCR
pHLA-Tfu0937	-	fragment 5 fragment 4	In-Fusion HD cloning kit
fragment 6	Tfu0937-FLAG_Fw Tfu0937-FLAG_Rv	pHLA-blc- Tfu0937	PCR
pHLA-blc-Tfu0937- FLAG	-	fragment 6	In-Fusion HD cloning kit
fragment 7	Tfu0937-FLAG_Fw Tfu0937-FLAG_Rv	pHLA-pelB- Tfu0937	PCR
pHLA-pelB-Tfu0937- FLAG	-	fragment 7	In-Fusion HD cloning kit
fragment 8	Tfu0937-FLAG_Fw Tfu0937-FLAG_Rv	pHLA-Tfu0937	PCR
pHLA-Tfu0937-FLAG	-	fragment 8	In-Fusion HD cloning kit
fragment 9	phoA_f phoA_r	<i>E. coli</i> MG1655 genomic DNA	PCR
pHLA-phoA	-	fragment 8 fragment 4	In-Fusion HD cloning kit
fragment 10	phoA_S124A_f	pHLA-phoA	PCR

	P		
pHLA-phoA ^{S124A}	-	fragment 10	In-Fusion HD cloning kit
fragment 11	pelB_pgi_f1 XhoI_pgi_re	<i>E. coli</i> MG1655 genomic DNA	PCR
pHLA-pelB-pgi	-	fragment 11 fragment 4	In-Fusion HD cloning kit
fragment 12	pgi_H386A_smaI_for pgi_H386A_smaI_re	pHLA-pelB-pgi	PCR
pHLA-pelB-pgi ^{H386A}	-	fragment 12	In-Fusion HD cloning kit
fragment 13	no-sigpgi_Fw no-sigpgi_Rv	pHLA-pelB-pgi	PCR
pHLA-pgi	-	fragment 13	In-Fusion HD cloning kit
fragment 14	pelB_zwf_f1 XhoI_zwf_re	<i>E. coli</i> MG1655 genomic DNA	PCR
pHLA-pelB-zwf	-	fragment 14 fragment 4	In-Fusion HD cloning kit
fragment 15	zwf_H239A_pstI_for zwf_H239A_pstI_re	pHLA-pelB-zwf	PCR
pHLA-pelB-zwf ^{H239A}	-	fragment 15	In-Fusion HD cloning kit
fragment 16	no-sigzwf_Fw no-sigzwf_Rv	pHLA-pelB-zwf	PCR
pHLA-zwf	-	fragment 16	In-Fusion HD cloning kit
fragment 17	zwf-FLAG_Fw zwf-FLAG_Rv	pHLA-pelB-zwf	PCR
pHLA-pelB-zwf-FLAG	-	fragment 17	In-Fusion HD cloning kit
fragment 18	zwf-FLAG_Fw zwf-FLAG_Rv	pHLA-zwf	PCR
pHLA-zwf-FLAG	-	fragment 18	In-Fusion HD cloning kit
fragment 19	zwf_H239A_pstI_for zwf_H239A_pstI_re	pHLA-pelB-zwf- FLAG	PCR

phoA_S124A_r

pHLA-pelB-zwf ^{H239A} - FLAG	-	fragment 19	In-Fusion HD cloning kit	
frogmont 20	gfp_f1	»ECED	DCD	
fragment 20	gfp_r	реогр	LCK	
fragment 21	gfp_f2	fragment 20	PCR	
	gfp_r	Hughlen 20		
nHI A_nelB_afn	-	fragment 21	In-Fusion HD	
prillA-peill-gip		fragment 4	cloning kit	
fragment 22	c.ntfu0937_f	pHLA-blc-	DCD	
	c.ntfu0937_r	Tfu0937	PCK	
fragment 23	HindIII	pSAK	Restriction enzyme digestion	
fragment 25	XhoI	pSAR		
pSAK blc Tfu 0037		fragment 22	In-Fusion HD cloning kit	
pSAK-010-1100957	-	fragment 23		
fragment 24	Tfu0937-FLAG_Fw	pSAK-blc-	PCR	
fragment 24	Tfu0937-FLAG_Rv	Tfu0937		
pSAK-blc-Tfu0937- FLAG	-	fragment 24	In-Fusion HD cloning kit	
fragment 25	HindIII	p7423MCS	Restriction enzyme	
	XhoI	per 25 mes	digestion	
p7A23-blc-Tfu0937	-	fragment 22	In-Fusion HD cloning kit	
		fragment 25		
fragment 26	Tfu0937-FLAG_Fw	pZA23-blc-	PCR	
	Tfu0937-FLAG_Rv	Tfu0937		
pZA23-blc-Tfu0937- FLAG	-	fragment 26	In-Fusion HD cloning kit	
fragment 27	pZ_EIIB_f	E. coli MG1655	PCR	
fragment 27	pZ_EIIB_r	genomic DNA		
fragmant 28	HindIII	p7423MCS	Restriction enzyme	
fragment 28	KpnI	pZA25WC5	digestion	
p7A22 EIIPGk		fragment 27	In-Fusion HD	
	-	fragment 28	cloning kit	
fragment 20	pZ_EIIC_f	E. coli MG1655	PCR	
11agiiiciii 29	pZ_EIIC_r	genomic DNA		
pZA23-EIIC ^{Glc}	-	fragment 29		

		fragment 28	In-Fusion HD cloning kit
N20 fuerment atoC	sgRNA ptsG Rv	pTargetF	PCR
N20 fragment pisG	sgRNA ptsG Fw		
pT∆ptsGF	-	N20 fragment ptsG	In-Fusion HD cloning kit
H.S. fragment ptsG Up	HomSeq Up ptsG Fw	<i>E. coli</i> MG1655	DCD
	HomSeq Up ptsG Rv	genomic DNA	ICK
H.S. fragment ptsG Dw	HomSeq Dw ptsG Fw	E. coli MG1656	PCR
	HomSeq Dw ptsG Rv	genomic DNA	
HS fragment ptsG	HomSeq Up ptsG Fw	H.S. fragment ptsG Up	PCR
n.s. nagnen piso	HomSeq Dw ptsG Rv	H.S. fragment ptsG Dw	Tek
nTAntsGF fragment	HindIII	nTAntsGF	Restriction enzyme digestion
p12ptsO1 fragment	EcoRI	p12ptsO1	
	-	H.S. fragment ptsG pT∆ptsGF fragment	In-Fusion HD cloning kit
pT∆ptsG	-		
NOOG	sgRNA crr Rv	pTargetF	PCR
N20 fragment crr	sgRNA crr Fw		
pTΔcrrF	-	N20 fragment crr	In-Fusion HD cloning kit
H.S. fragment crr.Un	HomSeq Up crr Fw	<i>E. coli</i> MG1655	PCR
n.s. nagment en op	HomSeq Up crr Rv	genomic DNA	
HS fragment crr Dw	HomSeq Dw crr Fw	<i>E. coli</i> MG1656 genomic DNA	PCR
11.5. fragment en Dw	HomSeq Dw crr Rv		
H.S. fragment crr	HomSeq Up crr Fw	H.S. fragment crr Up H.S. fragment crr Dw	PCR
	HomSeq Dw crr Rv		
nTAcrrF fragment	HindIII	pT∆crrF	Restriction enzyme
produir fragment	EcoRI		digestion
nTAcrr	-	H.S. fragment crr	In-Fusion HD
P 1 2011	-	pT∆crrF fragment cloning	cloning kit
N20 fragment pheA	sgRNA pheA Rv	nTargetF	PCR
	sgRNA pheA Fw	Prugen	

pT∆pheAF	-	N20 fragment pheA	In-Fusion HD cloning kit
H.S. fragment pheA Up	HomSeq Up pheA Fw HomSeq Up pheA Rv	<i>E. coli</i> MG1655 genomic DNA	PCR
H.S. fragment pheA Dw	HomSeq Dw pheA Fw HomSeq Dw pheA Rv	<i>E. coli</i> MG1656 genomic DNA	PCR
	HomSeq Up pheA Fw	H.S. fragment pheA Up	DCD
H.S. fragment pneA	HomSeq Dw pheA Rv	H.S. fragment pheA Dw	PCR
pT∆pheAF fragment	HindIII EcoRI	pT∆pheAF	Restriction enzyme digestion
pT∆pheA	-	H.S. fragment pheA pT∆pheAF fragment	In-Fusion HD cloning kit
N20 fragment sgrS	sgRNA sgrS Rv sgRNA sgrS Fw	pTargetF	PCR
pT∆sgrSF	-	N20 fragment sgrS	In-Fusion HD cloning kit
H.S. fragment sgrS Up	HomSeq Up sgrS Fw HomSeq Up sgrS Rv	<i>E. coli</i> MG1655 genomic DNA	PCR
H.S. fragment sgrS Dw	HomSeq Dw sgrS Fw HomSeq Dw sgrS Rv	<i>E. coli</i> MG1656 genomic DNA	PCR
U.S. freement com	HomSeq Up sgrS Fw	H.S. fragment sgrS Up	PCR
H.S. fragment sgrS	HomSeq Dw sgrS Rv	H.S. fragment sgrS Dw	
pT∆sgrSF fragment	HindIII EcoRI	pT∆sgrSF	Restriction enzyme digestion
pT∆sgrS	-	H.S. fragment sgrS pT∆sgrSF fragment	In-Fusion HD cloning kit
N20 fragment pgi	sgRNA pgi Rv sgRNA pgi Fw	pTargetF	PCR
pT∆pgiF	-	N20 fragment pgi	In-Fusion HD cloning kit
H.S. fragment pgi Up	HomSeq Up pgi Fw		PCR

	HomSeq Up pgi Rv	<i>E. coli</i> MG1655 genomic DNA		
HS fragment ngi Dw	HomSeq Dw pgi Fw	<i>E. coli</i> MG1656 genomic DNA H.S. fragment pgi Up	DCD	
n.s. tragment pgi Dw	HomSeq Dw pgi Rv		PCR	
H S fragment ngi	HomSeq Up pgi Fw		PCR	
	HomSeq Dw pgi Rv	H.S. fragment pgi Dw		
nTAngiF fragment	HindIII		Restriction enzyme	
propgir nuglion	EcoRI	propen	digestion	
nTAngi	-	H.S. fragment pgi	In-Fusion HD	
pīΔpgī	-	pT∆pgiF fragment	cloning kit	
	sgRNA trpE Rv		DCD	
N20 fragment trpE	sgRNA trpE Fw	plargetF	PCK	
pT∆trpEF	-	N20 fragment trpE	In-Fusion HD cloning kit	
U.S. frequent trace Un	HomSeq Up trpE Fw	E. coli MG1655	DCD	
n.s. hagment upe op	HomSeq Up trpE Rv	genomic DNA	PCK	
	HomSeq Dw trpE Fw	<i>E. coli</i> MG1656	DCD	
H.S. fragment trpE Dw	HomSeq Dw trpE Rv	genomic DNA		
U.S. functionant tumE	HomSeq Up trpE Fw	H.S. fragment trpE Up		
H.S. fragment tipe	HomSeq Dw trpE Rv	H.S. fragment trpE Dw	PCK	
	HindIII		Restriction enzyme	
p1 drpEF fragment	EcoRI	pIΔtrpEF	digestion	
	-	H.S. fragment trpE	In-Fusion HD	
pT∆trpE	-	pT∆trpEF fragment	cloning kit	
fue amount 20	tyr_ins Fw		DCD	
Tragment 30	tyr_ins Rv	pSAK-tyrA ^{tor}	FCK	
fragment 31	SpeI	pT∆trpE	Restriction enzyme digestion	
		fragment 30	In-Fusion HD	
pTtrpE::tyrfbr	-	fragment 31	cloning kit	
fue and 22	pTptsG_inv.Fw		PCR	
iragment 52	pTptsG_inv.Rv	p 1 Aptsu		
fragment 32	galP-glk_ins Fw		PCR	

	galP-glk_ins Rv	CFT1 genomic DNA	
nTateCuselD all	-	fragment 32	In-Fusion HD
		fragment 33	cloning kit

SI References

Fujiwara, R., Noda, S., Tanaka, T., Kondo, A., 2020. Metabolic engineering of *Escherichia coli* for shikimate pathway derivative production from glucose–xylose co-substrate. Nat. Commun. 11, 1–12. https://doi.org/10.1038/s41467-019-14024-1

Noda, S., Shirai, T., Mori, Y., Oyama, S., Kondo, A., 2017. Engineering a synthetic pathway for maleate in *Escherichia coli*. Nat. Commun. 8, 1153. https://doi.org/10.1038/s41467-017-01233-9

- Noda, S., Shirai, T., Oyama, S., Kondo, A., 2016. Metabolic design of a platform *Escherichia coli* strain producing various chorismate derivatives. Metab. Eng. 33, 119–129. https://doi.org/10.1016/j.ymben.2015.11.007
- Tanaka, T., Kawabata, H., Ogino, C., Kondo, A., 2011. Creation of a cellooligosaccharide-assimilating *Escherichia coli* strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Appl. Environ. Microbiol. 77, 6265–70. https://doi.org/10.1128/AEM.00459-11