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4
A-Hypergeometric Functions

Nobuki Takayama

4.1 Introduction

The A-hypergeometric differential equations in the present form were introduced by Gel’fand,
Zelevinsky, Kapranov [21] about 30 years ago. Series solutions are multivariable hypergeo-
metric series defined by a matrix A. Although, there have been analogous approaches before
their work, they found that affine toric ideals and their algebraic and combinatorial properties
describe solution spaces of the A-hypergeometric differential equations, which also opened
new research areas in commutative algebra, combinatorics, polyhedral geometry, and alge-
braic statistics. Several text books describe some topics of these new research areas, see [30],
[56], [62] and their references. The book [49] and its reference give a comprehensive presenta-
tion on the A-hypergeometric equations at the year 2000, and the study has made a substantial
progress after it. This chapter hopes to give a directory for these new advances as well as to
describe fundamental facts. Applications of A-hypergeometric functions are getting broader.
Early applications were mainly for period maps and the algebraic geometry. An interplay with
the commutative algebra and combinatorics has been a source of new ideas for both of these
and the theory of hypergeometric functions. Recent new applications are for the multivariate
analysis in statistics.

This chapter starts with systems of differential equations and examples of matrices A which
define A-hypergeometric functions. We briefly describe an interplay with combinatorics, Grö-
bner basis, and software systems. Series solutions are discussed with some important exam-
ples. In Sections 4.6 and 4.7, we illustrate that contiguity relations, isomorphisms, holonomic
ranks, reducibility conditions have simple descriptions in terms of algebra and combinatorics.
Recent new applications to statistics will be briefly discussed in the last section.

4.2 A-hypergeometric equations

Let A be a d × n matrix with integer entries ai j. We denote by the point a j in Zd the j-th
column vector of A. We suppose that a j’s generate the lattice Zd, in other words, we have∑n

j=1 Za j = Zd. Let β = (β1, . . . , βd)T ∈ Cd be a vector of parameters. The ring of differential
operators

C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩, x jx j = x jxi, ∂i∂ j = ∂ j∂i, ∂ix j = x j∂i + δi j
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is denoted by D or by Dn. We use the multi-index notations xp = xp1
1 · · · x

pn
n and ∂q =

∂
q1
1 · · · ∂

qn
n . The action of xp∂q to a function f (x) is defined by xp∂q • f (x) = xp ∂|q| f (x)

∂xq1
1 ···∂x

qn
n

.

Definition 4.2.1 [21] We call the following system of differential equations an A-hypergeo-
metric system or a GKZ hypergeometric system:

(Ei − βi) • f = 0, where Ei − βi =

n∑
j=1

ai jx j∂ j − βi, (i = 1, . . . , d)

□u • f = 0, where □u =
∏

{i | 1≤i≤n,ui>0}
∂ui

i −
∏

{ j | 1≤ j≤n,u j<0}
∂
−u j

j

with u ∈ Zn running over all u such that Au = 0, u , 0.

We denote by IA the ideal in S n = C[∂1, . . . , ∂n] generated by □u for all u ∈ Zn such
that Au = 0. This is an affine toric ideal, see [56]. The left ideal in D generated by Ei − βi,
i = 1, . . . , d and IA is denoted by HA(β) and is called the A-hypergeometric ideal. The quotient
left D-module D/HA(β) is denoted by MA(β) and called the A-hypergeometric D-module.
When the points ai’s lie on a hyperplane which does not pass through the origin, the D-module
MA(β) is regular holonomic [34]. Such matrix A is called a configuration matrix.

Several invariants of the D-module can be described in terms of the set of points {a1, . . . , an}
as we will see later. We also denote the set of points by A in this chapter; the symbol A stands
for a matrix or a set of points. When the meaning of A is clear in the context, we do not say
which it means. N0A and ZA mean

∑n
i=1 N0ai and

∑n
i=1 Zai respectively where N0 is the set of

non-negative integers, which is also denoted by Z≥0.
Although the A-hypergeometric system can be defined for any matrix A, there are nice

classes of matrices A (or sets of points ai) which lead to systems having well-known special
functions as solutions. Let us introduce some of them. Take integers k and k′ satisfying 1 ≤ k ≤
k′. Put e1 = (1, 0, . . . , 0)T ∈ Zk+1, e2 = (0, 1, 0, . . . , 0)T ∈ Zk+1, . . ., and e′1 = (1, 0, . . . , 0)T ∈
Zk′+1, e′2 = (0, 1, 0, . . . , 0)T ∈ Zk′+1, . . .. Let A(k, k′) be a (k+ k′ + 1)× (k+ 1)(k′ + 1) matrix of
which columns consist of p(ei ⊕ e′j) where p is the projection to the first k+ k′ + 1 coordinates
(the projection which removes the last coordinate). A(1, 1), A(1, 2), A(2, 2) are given in Table
4.1.

The columns of A(k, k′) generate Zk+k′+1 and they lie on the hyperplane
∑k+1

j=1 y j = 1 in
Rk+k′+1 = {(y1, . . . , yk+k′+1)}. Since the convex hull of e1, . . . , ek+1 is the simplex ∆k and that of
e′1, . . . , e

′
k′+1 is the simplex ∆k′ , we call this A-hypergeometric system ∆k×∆k′ -hypergeometric

system or the hypergeometric system E′(k + 1, k + k′ + 2). The latter naming comes from a
relation of this system with the hypergeometric system E(k, n) (Section 4.5). For this hyper-
geometric system, we often denote the variable xp by xi j where p = (i − 1)k′ + ( j − 1) + 1,
1 ≤ i ≤ k, 1 ≤ j ≤ k′. This double index notation is convenient. We also regard a vector of
length (k + 1)(k′ + 1) as a matrix under this double index notation. For example, for a vector
e, the condition A(k, k′)e = β means that the row sums and the column sums of e expressed in
terms of the (k+1)×(k′+1) matrix are (β1, . . . , βk+1) and (βk+2, . . . , βk+k′+1,

∑k+1
i=1 βi−

∑k+k′+1
j=k+2 β j)

respectively.
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A(1, 1) =


x11 x12 x21 x22

1 1 0 0
0 0 1 1
1 0 1 0

, A(1, 2) =


x11 x12 x13 x21 x22 x23

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0



A(2, 2) =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0



A(FA, 2) =


1 0 0 0 0 1 1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1

 , A(FC , 2) =


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 1 1 1 1 1



A(0134) =
(
1 1 1 1
0 1 3 4

)
, As =

1 1 1 1 1 1
0 2 3 0 2 3
0 0 0 1 1 1

 , A(P4) =


1 1 1 1 1
1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2



Table 4.1 A

The ideal IA for A = A(k, k′) is generated by

∂iq∂ jp − ∂ip∂ jq, 1 ≤ i < j ≤ k + 1, 1 ≤ p < q ≤ k′ + 1.

More precisely, it is the reduced Gröbner basis with respect to the graded reverse lexicographic
order ≻ with ∂1,1 ≻ ∂1,2 ≻ · · · ≻ ∂1,k ≻ ∂2,1 ≻ · · · [56, Prop 5.4]. For any A, generators of
IA can be obtained by a Gröbner basis computation [56, Alg. 4.5]. Generators of IA is called
the Markov basis in algebraic statistics. There are theoretical and computational efforts to find
explicit Markov basis. We have a database of Markov bases for several matrix A ([1] or [26]).

The matrix A(1, k′) stands for the Lauricella function FD of k′ variables (see Example 4.4.4
for the correspondence). In particular, when k′ = 1, it stands for the Gauss hypergeomet-
ric function. As we will see later, the correspondence can be described in terms of series
solutions or integral representations. In a more sophisticated context, a categorical correspon-
dence is given in [61]. Here, we explain an elementary correspondence in the case of Gauss
hypergeometric equation (A(1, 1) case) as an introduction. Put A = A(1, 1) and suppose that
f (x) = xvF(z), xv =

∏2
i, j=1 xvi j

i j , z = x11 x22
x12 x21

, is a solution of the A-hypergeometric system HA(β).
We denote xi j∂i j by θi j. Then, we have

(θ11 + θ12 − β1) • xvF(z) = (v11 + v12 − β1)xvF(z)

(θ21 + θ22 − β2) • xvF(z) = (v21 + v22 − β2)xvF(z)

(θ11 + θ21 − β3) • xvF(z) = (v11 + v21 − β3)xvF(z)

by the relation θi jxv = xv(θi j + vi j) in the ring of differential operators, and θii • F(z) = zF′(z),
θi j • F(z) = −zF′(z), (i , j). These are equal to 0 by (Ei − βi) • f = 0, which implies
Av = β where v = (v11, v12, v21, v22)T and β = (β1, β2, β3)T . Since, Ker (A : Z4 → Z3) =
Z(1,−1,−1, 1)T , we can show that the toric ideal IA is generated by ∂12∂21 − ∂11∂22. Note that
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the basis of the kernel is not enough to generate the toric ideal IA in the case of A(1, k′), k′ > 1.
Act the operator x11x22(∂11∂22 − ∂12∂21) = θ11θ22 − zθ12θ21 to the function xvF(z), then we
have

xv ((θz + v11)(θz + v22) − z(θz − v12)(θz − v21)) • F(z) = 0

where θz = z∂z. When v11 = 0 or v22 = 0, this is the Gauss hypergeometric equation. Other
vi j’s are determined by Av = β.

Let us give matrices A for other Lauricella functions (see this volume, Chapter 3 on these
functions). Let e0, e1, . . . , e2m be the standard basis of Z2m+1. Put A = {e0, e1, . . . , e2m, e0+e1−
em+1, e0+e2−em+2, . . . , e0+em−e2m}. Then A is a (2m+1)× (3m+1) matrix, which stands for
the Lauricella function FA of m variables [44]. They lie on the hyperplane y0+y1+· · ·+y2m = 1
in R2m+1 = {(y0, . . . , y2m)}. We denote the matrix by A(FA,m). The associated toric ideal IA

is generated by ∂0∂ j − ∂m+ j∂2m+ j, j = 1, . . . ,m. Here, we use the variables u0, u1, . . . , u3m as
independent variables instead of x1, . . . , xn. When m = 2, it is the Appell function F2; the
matrix is given in Table 4.1.

Let e1, . . . , em+1, em+2 be the standard basis of Zm+2. Put A = {e1+em+2, e2+em+2, . . . , em+1+

em+2,−e1 + em+2,−e2 + em+2, . . . ,−em+1 + em+2}. Then A is an (m+ 2)× 2(m+ 1) matrix, which
stands for the Lauricella function FC of m variables [44]. They lie on the hyperplane zm+2 = 1
in Rm+2. We denote the matrix by A(FC ,m). Note that the lattice generated by the columns of
A(FC ,m) is a proper sublattice of Zm+2. Then, we need to regard the sublattice as Zm+2. The
associated toric ideal IA is generated by ∂ j∂− j − ∂m+1∂−(m+1), j = 1, . . . ,m. Here, we use the
variables u1, . . . , um+1, u−1, . . . , u−(m+1) as independent variables. When m = 2, it is the Appell
function F4; the matrix is given in Table 4.1. The notion of binomial D-modules is proposed
and studied in [16]. Binomial D-modules are generalizations of A-hypergeometric equations
and they fit to study Appell-Horn equations and their generalizations to several variables in
algebraic methods.

A-hypergeometric systems associated to smooth fano polytopes have importance in stud-
ies of period maps for K3 and Calabi-Yau varieties (see, e.g., [7], [32], [33], [55] and their
references). For example, the matrix A(P4) [40] appears in this context.

Let us discuss on integral representations of solutions of A-hypergeometric equations. Sup-
pose that we are given nk points ai ∈ Zm. We divide these points into k groups and construct
m × ni matrices A1 = (a1, . . . , an1 ), . . . , Ak = (ank−1+1, . . . , ank ). For each group, define the
polynomial f j(x, t) =

∑n j

i=n j−1+1 xitai where tai =
∏m

j=1 t(ai) j

j . Note that we use the multi-index
notation for t = (t1, . . . , tm). Take complex numbers α j, γ = (γ1, . . . , γm). We consider the
integral

Φ(α, γ; x) =

∫
C

k∏
j=1

f j(x, t)α j tγdt1 · · · dtm,

where C is any twisted m-cycle defined for
∏k

j=1 f j(x, t)α j tγ. Define (k + m) × nk matrix
A(A1, . . . , Ak), which is called the Caylay matrix,as in Figure 4.1. The function Φ(α, γ; x) sat-
isfies the A-hypergeometric system HA(β) for A = A(A1, . . . , Am) and β = (α1, . . . , αk,−γ1 −
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1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 1
a1 · · · an1 an1+1 · · · an2 ank−1+1 · · · ank


Figure 4.1 Caylay matrix A(A1, . . . , Ak)


1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
· · · · · · ·
0 0 · · · 1 0


Figure 4.2 Ek′ ⊕ 0

1, . . . ,−γm − 1)T . When f j are linear with respect to the variable t, we call the function Φ hy-
pergeometric function for hyperplane arrangements. Note that when A1 = . . . = Ak = ∆k′ ,
in other words, all Ai’s are equal to k′ × (k′ + 1) matrix Ek′ ⊕ 0 in Figure 4.2, we have
A(A1, . . . , Ak) = A(k, k′). As to studies on these hypergeometric functions in terms of twisted
cohomology groups, see [5], [6], [3], [42].

When the toric ideal IA is not a homogeneous ideal (the case that ai’s do not lie on an affine
hyperplane), the integral

Φ(γ; x) =

∫
C

exp

 n∑
i=1

xitai

 tγdt1 · · · dtd

satisfies HA(β) with β = (−γ1 − 1, . . . ,−γd − 1)T for any rapid decay d-cycle under some
conditions [18].

4.3 Combinatorics, polytopes and Gröbner basis

The matrix A is said to be pointed when a1, . . . , an lie in a single open half-space. For example,
A = (−1, 1) is not pointed and all A’s in Table 4.1 are pointed. The set of points A is called
normal, when A satisfies (

∑
R≥0ak) ∩ Zn =

∑
Z≥0ak.

For a facet σ of the cone pos(A) = R≥0A, Fσ is a linear function on RA = Rd uniquely
determined by the conditions:
1. Fσ(ZA) = Z, 2. Fσ(ai) ≥ 0 for all i = 1, . . . , n , 3. Fσ(ai) = 0 for all ai ∈ σ.
We call Fσ the primitive integral support function of σ.
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For ∆k×∆k′ embedded in Rk+1×Rk′+1 = {(x1, . . . , xk+1; y1, . . . , yk′+1)}, the support functions
are xi and y j. When we project the points to Rk+1×Rk′ , the primitive integral support functions
are xi (i = 1, . . . , k + 1), and y j ( j = 1, . . . , k′), and 1 −∑k′

j=1 y j.
The supporting functions for A(FA,m) are s j, s j + sm+ j, 1 ≤ j ≤ m and s0 +

∑
j∈J sm+ j, J ⊆

[1,m] where {si} is the dual basis of {ei}. Those for A(FC ,m) are (1/2)(sm+2+
∑

j∈J s j−
∑

j<J s j),
J ⊆ [1,m + 1] [44].

Let ZA be the lattice generated by the columns of A. Let us set the volume of the convex
hull U of the lattice base and the origin to 1. The volume of polytopes in RA normalized with
the U is called the normalized volume. The normalized volume of the convex hull of A and the
origin is denoted by vol(A). The normalized volume of A(k, k′) is known to be equal to

(
k+k′

k

)
.

For given A, it can be evaluated by geometry software systems like polymake, or by computer
algebra systems which use a formula degree(IA) = vol(A).

An interplay of theory and computation has been indispensable in the study of A-hyper-
geometric systems. A lot of algorithms and software systems have been developed to study it
and its related areas. The text book [30] gives an introduction to them including mathematical
software systems. Here, we give a few examples.

Example 4.3.1 Macaulay2 [25] commands to evaluate the volume (the degree) of A(0134).
Here, o5 is IA.
loadPackage "FourTiTwo"
M=matrix "1,1,1,1; 0,1,3,4"
R=QQ[a..d]
I=toricGroebner(M,R)
o5 = ideal (bˆ3 - aˆ2*c, b*c - a*d, - a*cˆ2 + bˆ2*d, cˆ3 - b*dˆ2 )

degree(I)
o6 = 4

For a given weight vector w ∈ Rn (Weights below), consider points {(ai,wi)} in Rd+1 and
the convex hull of them. The projection of the convex hull to the first d coordinates naturally
induces a triangulation of the set of points A for a generic weight w, which is called a regular
triangulation [24], [56, Chapter 8], [30, 5.5.2]. We compute a regular triangulation of ∆1 ×∆2
for w = (4, 2, 0, 10, 8, 6) by the computer algebra system Macaulay2
i1 : loadPackage "FourTiTwo"
i2 : M=matrix "1,1,1,0,0,0; 0,0,0,1,1,1; 1,0,0,1,0,0; 0,1,0,0,1,0"
i3 : R=QQ[x11,x12,x13,x21,x22,x23, MonomialOrder=>{Weights=>{4,2,0,10,8,6}}]
i4 : I=toricGroebner(M,R)
o4 = ideal (x13*x21 - x11*x23, x12*x21 - x11*x22, x13*x22 - x12*x23)

i5 : J=leadTerm(I)
o8 = | x13x22 x13x21 x12x21 |

i6 : associatedPrimes(ideal(J))
o12 = {ideal (x22, x21), ideal (x13, x12), ideal (x13, x21)}

By taking the complements of the indices of each associated primes, we get a regular triangu-
lation (11, 12, 13, 23), (11, 21, 22, 23), (11, 12, 22, 23).

4.4 A-hypergeometric series

Let us introduce A-hypergeometric series following [21] and [49, 3.4]. Let v = (v1, . . . , vn)T

be a vector in Cn and u = (u1, . . . , un)T a vector in Zn. We omit the sign of the transpose T

to change a row vector to the column vector in the sequel as long as no confusion arises. We
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decompose u into positive and negative parts, u = u+ − u−, where u+ and u− are non-negative
vectors with disjoint support. Consider the following two scalars in C, which can be expressed
by falling factorials:

[v]u− =
∏

i:ui<0
∏−ui

j=1 (vi − j + 1),

[u + v]u+ =
∏

i:ui>0
∏ui

j=1 (ui + vi − j + 1) =
∏

i:ui>0
∏ui

j=1 (vi + j).

For example, when v = (v1, v2, 0, v4) and u = (−2, 2, 2,−2), we have [v]u−
[v+u]u+

=
v1(v1−1)v4(v4−1)
(v2+2)(v2+1)2! .

Note that when v ∈ (C \ Z<0)n, we have [u + v]u+ , 0. We set L = Ker(Zn A→ Zd).

Theorem 4.4.1 Suppose that v ∈ (C \ Z<0)n and Av = β. Then the formal series

ϕv :=
∑
u∈L

[v]u−

[v + u]u+
· xv+u (4.4.1)

is well-defined and is a formal solution of HA(β).

As to the proof of this theorem, see [49, Prop. 3.4.1]. We call the formal series the A-
hypergeometric series in the falling factorial form.

Let us introduce another expression of the series. We set Γ(u + v + 1) =
∏n

i=1 Γ(ui + vi + 1)
and when ui + vi ∈ Z<0 for an i, we define 1/Γ(u + v + 1) = 0. Under this convention,
we have 1

Γ(v+u+1) =
[v]u−

[v+u]u+

1
Γ(v+1) for u ∈ L and v ∈ (C \ Z<0)n (use Γ(α + m) = Γ(α)(α)m,

Γ(α − m + 1) = Γ(α + 1)(−1)m/(−α)m ). Define

Φv :=
∑
u∈L

1
Γ(u + v + 1)

xv+u. (4.4.2)

Then, we have Φv =
1

Γ(v+1)ϕv when none of vi is negative integer. We call the formal series the
A-hypergeometric series in the gamma function form. Note that when vi is a negative integer,
two series are different. For example, if vi = −1 and ui = 1, then we have [ui + vi]ui = 0 and
ϕv is not well-defined, but Γ(ui + vi + 1) = 1. When v = (1,−2, 3, 0) and L = Z(1,−1,−1, 1),
ϕv is a non-zero polynomial, but Φv is identically 0.

For a given weight vector w ∈ Zn and ℓ ∈ IA, inw(ℓ) is the sum of the highest w-order terms
in ℓ. The ideal in S n generated by inw(ℓ), ℓ ∈ IA is denoted by inw(IA) and is called the initial
ideal of IA [56]. Two weight vectors w and w′ are equivalent with respect to the ideal I when
inw(I) = inw′(I). Fix w. The closure of the equivalent class of the weight vector w is called
the Gröbner cone for w [56, Chapter 1], [49, 2.1], [30, 5.3.2]. Let C be the Gröbner cone of
IA for a generic weight vector w. The initial ideal inw′(IA) does not change by definition when
w′ runs over the relative interior of C [56], [49, Chap 2]. For a series f with a support on a
translate of the dual cone C∗, for which we may assume (w,C∗ \ {0}) > 0, the starting term of
f is the sum of the lowest weight terms in f with respect to w. If f is a solution of ℓ • f = 0,
ℓ ∈ D, then the starting term of f is a solution of in(−w,w)(ℓ), which is the sum of the highest
order terms in ℓ with respect to the weight (−w,w) where −w (resp. w) stands for x (resp.
∂). This observation gives us the following method [49, Chapter 2] to find series solutions
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of HA(β); (1) determine the initial ideal in(−w,w)(HA(β)), (2) solve it to determine the starting
terms, (3) extend the starting terms to series solutions.

Theorem 4.4.2 For generic β, the initial ideal in(−w,w)(HA(β)) is generated by Ei − βi, 1 ≤ i ≤
d and inw(IA).

We note that the proof of [49, Th. 3.1.3] needs to be corrected to utilize the homogenized
Weyl algebra. We suppose that IA is a homogeneous ideal and take a generic weight vector w
such that inw(IA) is a monomial ideal. Let G be the reduced Gröbner basis of IA with respect
to the order ≺w [56]. We consider the system of differential equations

(Ei − βi) • s = 0, i = 1, . . . , d, and ℓ • s = 0, ℓ ∈ inw(G) (4.4.3)

Let v be a solution of algebraic equations

Av = β,
n∏

i=1

vi(vi − 1) · · · (vi − ei + 1) = 0 for ∂e ∈ inw(G) (4.4.4)

It is called a fake exponent. We note that the fake exponents can be expressed in terms of
standard pairs of the monomial ideal inw(IA) [49, 3.2]. When βi are generic, there are linearly
independent vol(A) solutions of (4.4.3) of the form s = xv =

∏n
i=1 xvi

i where v is a fake
exponent and they span the solution space over C when v runs over the fake exponents.

Theorem 4.4.3 [21], [49, Th 3.4.2] If v is a fake exponent and v ∈ (C \ Z<0)n, then ϕv is a
formal solution of HA(β) with the support in v + (C∗ ∩ L).

Note that Gel’fand, Kapranov, Zelevinsky constructed series solutions by regular triangu-
lations of A [21]. Our construction differs with their construction, but it is related with the
construction via the theorem [56, Th 8.3] “

√
inw(IA) is the Stanley-Reisner ideal for the reg-

ular triangulation by w”. The function ϕv converges when (− log |x1|, . . . ,− log |xn|) lies in a
translate of the secondary cone attached to the regular triangulation.

For a good class of A-hypergeometric functions, more explicit form of A-hypergeometric
series is known as we will describe. For A = A(p − 1, q − 1), the stair case Gröbner basis
in [56, Prop.5.4] gives series solutions. A sequence of indexes {(1, 1), . . . , (p, q)} is called a
stair if (i, j) is an element of the stair and is not (p, q), then the next element of (i, j) is either
(i + 1, j) or (i, j + 1) (see Table 4.2).

The initial ideal of IA for the reverse lexicographic order is generated by ∂iℓ∂ jk, 1 ≤ i < j ≤
p, 1 ≤ k < ℓ ≤ q [56, Prop.5.4]. We can obtain the fake exponents from this initial ideal by
solving (4.4.4). It is known that there is a one-to-one correspondence between the roots of the
system of equations and the stairs. For a given stair S , the system has a unique solution such
that vi j = 0 for (i, j) < S . In other words, the support of each exponent has the form of the
stair for generic β. In the sequel, we use e rather than v to denote exponents. The support of
the series solution standing for the exponent e has the form

e + L′, L′ =
∑

(i, j)∈supp(e)

Z≥0b(i, j)
e
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where b(i, j)
e is an element of Ker A such that (i, j)-th element of b(i, j)

e is 1 for (i, j) ∈ supp(e)
and (i′, j′)-th element is 0 for (i′, j′) ∈ supp(e) \ {(i, j)}. Here, S denotes the complement of
the set S .

Let us see some A’s of which series solutions can be written in terms of solutions of Lauri-
cella systems (this volume, Chapter 3, Section 3.4).

Example 4.4.4 We put A = A(1,N − 1) in this example. Let a, b1, . . . , bN−1, c be (generic)
constants. Put bN = a + 1 − c and

e(k) =
 −b1 · · · −bk−1 −∑N

j=k b j + a 0 · · · 0 0
0 · · · 0

∑N
j=k+1 b j − a −bk+1 · · · −bN−1 −bN

 ,
which is the fake exponent standing for the k-th stair.
Put m = (m1, . . . ,mk−1,mk+1, . . . ,mN), mk = −

∑k−1
j=1 m j +

∑N
j=k+1 m j, and z j =

x2 j x1N

x1 j x2N
for 1 ≤

j ≤ N. Note that zN = 1. Define a series ϕk(e; z) by∑
m∈ZN−1

≥0

∏k−1
j=1[e1 j]m j

∏N
j=k+1[e2 j]m j∏k−1

j=1 m j!
∏N

j=k+1 m j!
cm

k−1∏
j=1

(
z jz−1

k

)m j
n∏

j=k+1

(
zkz−1

j

)m j
(4.4.5)

where e = e(k), cm = [e1k]mk/[e2k +mk]mk when mk > 0, and cm = [e2k]−mk/[e1k −mk]−mk when
mk < 0, and cm = 1 when mk = 0. For β = (−∑

bi + c − 1,−a,−b1, . . . ,−bN−1, c − 1 − a), the
function xe(k)ϕk(e(k); z), 1 ≤ k ≤ N is a solution of HA(β) and xe(k)−e(N)ϕk(e(k); z) is a solution
of the Lauricella system ED(a, (b), c). The series ϕN(e(N); z) is the Lauricella’s FD. The series
ϕk’s have a common domain of convergence |z1| < · · · < |zN−1| < 1.

Example 4.4.5 The function

u−a
0

m∏
j=1

u−b j

j

m∏
j=1

uc j−1
m+ j fA

(
a, b1, . . . , bm, c1, . . . , cm;

um+1u2m+ j

u0u1
, . . . ,

um+mu2m+m

u0um

)
(4.4.6)

is a solution of HA(FA,m)(β), βT = (−a,−b1, . . . ,−bm, c1 − 1, . . . , cm − 1) when fA is a solution
of the Lauricella’s EA(a, (b), (c)). Any classical solution of HA(FA,m)(β) can be expressed as
(4.4.6).

Example 4.4.6 The function

u−a
m+1u−b

−m

m∏
j=1

uc j−1
− j fC

(
a, b, c1, . . . , cm;

u1u−1

um+1u−(m+1)
, . . . ,

umu−m

um+1u−(m+1)

)
(4.4.7)

is a solution of HA(FC ,m)(β), βT = (1 − c1, . . . , 1 − cm, b − a,
∑m

j=1 c j − a − b − m) when fc is a
solution of the Lauricella’s EC(a, b, (c)). Any classical solution of HA(FC ,m)(β) can be expressed
as (4.4.7).

Example 4.4.7 Series solutions for A(2, 2) and βT = (α1, α2, α3, γ1, γ2) (E′(3, 6)) have at-
tracted special interests [37], [54]. We present a set of series solutions of this system. When
we express an exponent as a 3 × 3 matrix under the double index notation, αi is the i-th row
sum and γ j is the j-th column sum.
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stair e : exponent∗ ∗ ∗
0 0 ∗
0 0 ∗

 e(1) =

γ1 γ2 α1 − γ1 − γ2
0 0 α2
0 0 α3


∗ ∗ 0
0 ∗ ∗
0 0 ∗

 e(2) =

γ1 α1 − γ1 0
0 −α1 + γ1 + γ2 α1 + α2 − γ1 − γ2
0 0 α3


∗ ∗ 0
0 ∗ 0
0 ∗ ∗

 e(3) =

γ1 α1 − γ1 0
0 α2 0
0 −α1 − α2 + γ1 + γ2 α1 + α2 + α3 − γ1 − γ2


∗ 0 0
∗ ∗ ∗
0 0 ∗

 e(4) =

 α1 0 0
−α1 + γ1 γ2 α1 + α2 − γ1 − γ2

0 0 α3


∗ 0 0
∗ ∗ 0
0 ∗ ∗

 e(5) =

 α1 0 0
−α1 + γ1 α1 + α2 − γ1 0

0 −α1 − α2 + γ1 + γ2 α1 + α2 + α3 − γ1 − γ2


∗ 0 0
∗ 0 0
∗ ∗ ∗

 e(6) =

 α1 0 0
α2 0 0

−α1 − α2 + γ1 γ2 α1 + α2 + α3 − γ1 − γ2


Table 4.2 Exponents

stair b1
e b2

e b3
e b4

e∗ ∗ ∗
0 0 ∗
0 0 ∗


−1 0 1

1 0 −1
0 0 0


0 −1 1
0 1 −1
0 0 0


−1 0 1

0 0 0
1 0 −1


0 −1 1
0 0 0
0 1 −1


∗ ∗ 0
0 ∗ ∗
0 0 ∗


0 −1 1
0 1 −1
0 0 0


−1 1 0

1 −1 0
0 0 0


−1 1 0

0 −1 1
1 0 −1


0 0 0
0 −1 1
0 1 −1


∗ ∗ 0
0 ∗ 0
0 ∗ ∗


0 −1 1
0 0 0
0 1 −1


−1 1 0

1 −1 0
0 0 0


0 0 0
0 −1 1
0 1 −1


−1 1 0

0 0 0
1 −1 0


∗ 0 0
∗ ∗ ∗
0 0 ∗


−1 1 0

1 −1 0
0 0 0


−1 0 1

1 0 −1
0 0 0


 0 0 0
−1 0 1
1 0 −1


0 0 0
0 −1 1
0 1 −1


∗ 0 0
∗ ∗ 0
0 ∗ ∗


−1 1 0

1 −1 0
0 0 0


−1 0 1

1 −1 0
0 1 −1


0 0 0
0 −1 1
0 1 −1


 0 0 0
−1 1 0
1 −1 0


∗ 0 0
∗ 0 0
∗ ∗ ∗


−1 1 0

0 0 0
1 −1 0


−1 0 1

0 0 0
1 0 −1


 0 0 0
−1 1 0
1 −1 0


 0 0 0
−1 0 1
1 0 −1


Table 4.3 Bases of Ker A

Hypergeometric series associated to the exponent e(i) is written as

ϕe(i)(x) = xe(i)
∑

m∈N4
0

[e(i)]u−

[e(i) + u]u+
xu, u =

4∑
j=1

b j
e(i)m j. (4.4.8)
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For other series solutions, see [54] and its references. An interesting series solution of E′(3, 6),
which is not obtained with the method in this section, is studied in [39] in terms of arithmetic
and geometric means.

In case of non-generic parameters, we have series solutions containing logarithmic func-
tions. We can construct vol(A) linearly independent solutions when IA is homogeneous by
introducing a perturbation parameter ε in parameters and expand the series solution in terms
of ε [49, 3.5, Th 3.5.1]. We will explain the procedure by an example.

Example 4.4.8 We consider the case of αi = γi = 1/2 for E′(3, 6) (Table 4.2). The system
with this parameter has a special importance in the algebraic geometry ([37], [60]). Let us
construct a set of series solutions for this case. The exponents e(1) and e(6) are not degenerated
and give two linearly independent solutions. The exponents e(i), i = 2, . . . , 5 are degenerated:
e(2) = e(3) = e(4) = e(5) = diag(1/2, 1/2, 1/2). We will construct four linearly independent
solutions for the degenerated exponent. We set α1 = 1/2+3ε, α2 = 1/2+2ε, α3 = 1/2+ε, γ1 =

1/2 + ε, γ2 = 1/2 + 2ε, γ3 = 1/2 + 3ε. We put yi = xbi
e(2) . Then, we have the following series

containing the parameter ε.

ϕe(2) = xe(2) f2(ε; y1, y2, y3, y4),

ϕe(3) = xe(2)(1 − 2ε log y4 + 2ε2(log y4)2 + O(ε3)) f3(ε; y1y4, y2, y4, y3/y4),

ϕe(4) = xe(2)(1 − 2ε log y2 + 2ε2(log y2)2 + O(ε3)) f4(ε; y2, y2y2, y3/y2, y4),

ϕe(5) = xe(2)(1 − 2ε log(y2y4) + 2ε2(log(y2y4))2 + O(ε3)) f5(ε; y2, y1y2y4, y4, y3/(y2y4)),

where fi(ε; z1, z2, z3, z4) =
∑

m∈N4
0

[e(i)]u−
[e(i)+u]u+

zm, u =
∑4

j=1 m jb
j
e(i). We expand fi in ε as f (0)

i +

ε f (1)
i + ε

2 f (2)
i + O(ε2). We note that all ϕe(i), i = 2, 3, 4, 5 gives the same series when ε = 0,

which implies f (0)
i , i = 2, 3, 4, 5 are the same series. Therefore, we have

ϕe(3) − ϕe(2) = ε(x11 x22 x33)1/2(−2 f (0)
2 log y4 + f (1)

3 − f (1)
2 ) + O(ε2),

ϕe(4) − ϕe(2) = ε(x11 x22 x33)1/2(−2 f (0)
2 log y2 + f (1)

4 − f (1)
2 ) + O(ε2),

ϕe(5) − ϕe(2) = ε(x11 x22 x33)1/2(−2 f (0)
2 log(y2y4) + f (1)

5 − f (1)
2 ) + O(ε2).

The coefficients of ε are solutions. Let us find the fourth solution. We have limε→0
1
ε

f2345 = 0,
f2345 = (ϕe(5) − ϕe(2)) − (ϕe(3) − ϕe(2)) − (ϕe(4) − ϕe(2)). Therefore, the series f2345 starts with ε2

and the coefficients ε2 of f2345 is the fourth solution. It is

(x11 x22 x33)1/2(2(log y2)(log y4) f (0)
2 − 2 log(y2y4) f (1)

5 + f (2)
5

−2 log(y2) f (1)
3 + f (2)

3 − 2 log(y4) f (1)
4 + f (2)

4 + f (2)
2 ).

Example 4.4.9 Let β = (1, 2) and A = A(0134). We set w = (0, 1, 2, 0). Then, the Gröbner
basis of IA with respect to this order is

∂2∂3 − ∂1∂4, ∂1∂
2
3 − ∂2

2∂4, ∂
3
2 − ∂2

1∂3, ∂
3
3 − ∂2∂

2
4.

Therefore, fake exponents are
v(1) = (1/2, 0, 0, 1/2), v(2) = (1/4, 1, 0, 1/4), v(3) = (1/4, 0, 1,−1/4), v(4) = (−1, 2, 0, 0).
ϕ(1), ϕ(2) and ϕ(3) are convergent series solutions, but ϕ(4) ≡ 0. By examining in(−w,w)(IA),
we can find two more solutions: x2

2/x1, x2
3/x4, [13], [57].
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Series solutions with logarithms are constructed for a class of non-generic β’s to apply for
the mirror symmetry [32], [33], [55]. For non-homogeneous IA, series solutions are divergent
in most cases, but there are a class of series solutions which are convergent. They are studied
in [41] and [17]. The Gevrey order of divergent series solutions is studied in [52], [19]. The
notion of fully supported series solutions is introduced in [28]. Rational solutions of HA(β)
are studied in [14]. Algebraic solutions of it are studied in [9].

4.5 E(k, n)

We fix two numbers k and n satisfying n ≥ 2k ≥ 4. Let α j be generic parameters satisfy-
ing

∑n
j=1 α j = n − k. The hypergeometric function of type E(k, n) or the Aomoto-Gel’fand

hypergeometric function is defined by the integral

Ψ(α; u) =
∫

C

n∏
j=1

(
k∑

i=1

ui jsi)α j ds2 · · · dsk,

where we put s1 = 1 and u is a k × n matrix and C is a bounded (k − 1)-cell in the hyperplane
arrangement defined by

∏n
j=1

∑k
i=1 ui jsi = 0 in the (s2, . . . , sk)-space [20].

The hypergeometric function of type E(k, n) is quasi-invariant under the action of com-
plex torus (C∗)n and the general linear group GL(k) = GL(k,C). In fact, we have, for h =
diag(h1, . . . , hn) ∈ (C∗)n and g ∈ GL(k),

Ψ(α; uh) =

∏
j

hα j

j

Ψ(α; u), Ψ(α; gu) = |g|−1Ψ(α; u).

It follows from the quasi-invariant property and the integral representation that the function
Ψ(α; u) satisfies a system of first order equations and a system of second order equations
respectively.

Theorem 4.5.1 [20] The function f = Ψ(α; u) satisfies
 k∑

i=1

uip
∂

∂uip
− αp

 f = 0, p = 1, . . . , n,

 n∑
p=1

uip
∂

∂u jp
+ δi j

 f = 0, i, j = 1, . . . , k,

(
∂2

∂uip∂u jq
− ∂2

∂uiq∂u jp

)
f = 0, i, j = 1, . . . , k, p, q = 1, . . . , n.

We call this system of equations E(k, n).
When we restrict the hypergeometric system E(k, n) to ui j = δi j for 1 ≤ i ≤ k, 1 ≤ j ≤ k,

we obtain the A-hypergeometric system associated to A(k − 1, n − k − 1) and β = (−α1 −
1, . . . ,−αk − 1, αk+1 − 1, . . . , αn−1 − 1). We denoted it by E′(k, n). Here, ui, j+k stands for the
variable xi j in Section 4.2.

If Ψ(α; u) is a solution of E(k, n), then Ψ(αs; us), s ∈ Sn is also a solution. This Sn symme-
try leads us Kummer type relations [58]. The confluent E(k, n) is geometrically studied and a
general framework to derive Kummer type relations are given (see [36] and its references).
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4.6 Contiguity relations

4.6.1 Contiguity relations

We note the relation in the Weyl algebra D n∑
j=1

ai jθ j − βi

 ∂k = ∂k

 n∑
j=1

ai jθ j − βi − aik

 .
Since ∂k commutes with □u, we can see that if f is a solution of HA(β − ak), then ∂k • f is a
solution of HA(β).

We consider the ideal Bk which is the intersection of C[s1, . . . , sd] and the left ideal gener-
ated by ∂k and HA(s) in D[s1, . . . , sd]. When A is normal and IA is homogeneous, this ideal
can be expressed in terms of primitive support functions.

Theorem 4.6.1 [43] The ideal Bk is the principal ideal generated by∏
σ∈S

Fσ(ak)−1∏
i=0

(Fσ(s) − i) ,

where S is a set of the facets of the convex hull of A for which Fσ(ak) > 0 holds.

It follows from the theorem above that if β < V(Bk), then there exists an operator Qk ∈ D
such that Qk∂k = 1 modHA(β). The operators ∂k and Qk give contiguity relations for A-
hypergeometric series.

The symmetry algebra introduced in [45] gives contiguity relations of A-hypergeometric
system in a general framework. The ideal Bk is a special case of the b-ideal introduced in the
paper.

4.6.2 Contiguity relations for E′(k, n)

We give a contiguity relation for E′(k, n) following [51]. We use the variable ui j instead of xi j

as in Section 4.5. Put

Xpa = −uap −
n∑

q=k+1

uaq

k∑
i=1

uip∂iq. (4.6.9)

Let φ(α; u) be a solution of the system E′(k, n) with the set of parameters α and 1a the a-th
unit vector in Zn.

Theorem 4.6.2 [51]. We have ∂apφ(α; u) = φ(α + 1a − 1p; u), Xpaφ(α; u) = φ(α − 1a + 1p; u)
and Xpa∂ap − (αp − 1)αa ∈ HA(β)

Introducing extra variables to hypergeometric series in several variables was done in the
pioneering work of [35] to study contiguity relations. Contiguity relations for the Lauricella
functions FA, FB, and FC are derived with this idea and by utilizing the b-ideal Bk for them in
[44]. See also Section 3.5 (of this volume, Chapter 3) as to some explicit contiguity relations
of Lauricella functions.
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4.6.3 Isomorphism among MA(β)’s

We gave contiguity operators ∂k and Qk. If they exist, they give an isomorphism ∂k : MA(β −
ak)→ MA(β).

The question if MA(β) and MA(β′) are isomorphic or not as left D-modules is a fundamental
question. It was studied in [49, §4.4, §4.5] and a final answer was given in [45]. Let τ be a
face of pos(A). Define

Eτ(β) = {λ ∈ C(A ∩ τ)/Z(A ∩ τ) | β − λ ∈ N0A + Z(A ∩ τ)} (4.6.10)

Theorem 4.6.3 [45], [46, Th. 3.4.4] The left D-modules MA(β) and MA(β′) are isomorphic
if and only if Eτ(β) = Eτ(β′) for all faces τ of pos(A).

The condition can be rewrited to a condition on the primitive integral supporting function
when A is normal.

Theorem 4.6.4 [45, Th 5.2] Assume A is normal and IA is homogeneous. The left D-module
MA(β) is isomorphic to MA(β′) if and only if β − β′ ∈ ZA and

{σ |σ is a facet and Fσ(β) ∈ N0} = {σ |σ is a facet and Fσ(β′) ∈ N0}. (4.6.11)

4.7 Properties of A-hypergeometric equations

4.7.1 Rank formula and the Euler-Koszul complex

The holonomic rank HA(β) is the dimension of R/(RHA(β)) as the vector space over the field
of rational functions C(x1, . . . , xn). Here, R is the ring of differential operators with rational
function coefficients. The rank of HA(β) is equal to the normalized volume of A for generic
β and we have the inequality rank HA(β) ≥ vol(A), [2], [21], [49]. More precise discussion
requires the Euler-Koszul complex [27], [8].

We assume that A is pointed in the subsection. For ∂v ∈ S n = C[∂1, . . . , ∂n], we define the
A-multidegree of ∂v by −Av ∈ Zd. We denote it by deg(∂u). Its i-th component is denoted by
degi(∂

u). This multidegree is naturally extended to the Weyl algebra D as deg(xu∂v) = Au−Av.
Put Ei =

∑n
j=1 ai jθ j. The multidegree of Ei is 0. The identity ∂vEi = Ei∂

v − degi(∂
v)∂v =(

Ei − degi(∂
v)
)
∂v is fundamental.

Let S A be the ring C[∂1, . . . , ∂n]/IA which is isomorphic to C[ta1 , . . . , tan ] = C[N0A]. We
denote Dn ⊗S n S A ≃ Dn/(DnIA) by DA. We consider the complex

K• : 0
d0←− D(n

0)
A

d1←− D(n
1)

A
d2←− · · · dn−1←− D( n

n−1)
A

dn←− D(n
n)

A ←− 0.

For A-homogeneous a⊗b ∈ DA, we define (Ei −βi)◦ (a⊗b) = (Ei −βi −degi(a⊗b))a⊗b. We

denote the basis of D(d
k)

A by ei1,...,ik , 1 ≤ i1 < · · · < ik ≤ d. The boundary map dk is defined by

D(d
k)

A ∋ (a ⊗ b)ei1...,ik 7→
∑

i j∈{i1,...,ik}
(Ei j − βi j ) ◦ (a ⊗ b)(−1) j−1e{i1,...,ik}\{i j} ∈ D( d

k−1)
A . (4.7.12)

The complex is called the Euler-Koszul complex over DA.
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The Euler-Koszul complex on DA by Ei − βi, i = 1, . . . , d is well-defined, because we have
(Ei − βi) ◦ (a ⊗ □u) = (a□u(Ei − βi)) ⊗ 1 = (a(Ei − βi − degi(∂

u+))□u) ⊗ 1 ≡ 0. The homology
groupHi(E−β; S A) = Hi(ker di/Im di−1) of the Euler-Koszul complex has a natural A grading
by the A-multidegree. The 0-th homology group is nothing but MA(β). This leads us to more
functorial object to study A-hypergeometric system, which is the Euler-Koszul homology for
toric modules [27]. We fix E − β and replace S A by (A-)toric modules. We only present an
example of toric modules. Let A be A(0134) and Ã be its saturation. Note that n = 4 and the

multigrading is defined by A. We may suppose Ã =
(

1 1 1 1 1
0 1 3 4 2

)
and S Ã = D5/IÃ.

Then, we have a short exact sequence

0 −→ D4 ⊗S 4 S A −→ D4 ⊗S 4 S Ã −→ D4 ⊗S 4 S Ã/S A −→ 0

All modules are A-graded and toric modules. C = D4 ⊗ S Ã/S A has the support only at the
degree (1, 2). We haveH0(E−β; D4⊗S Ã) ≃ D5/x5D5⊗D5 MÃ(β) ≃ MÃ(β) and H0(E−β; C) = 0
(resp. = D4 ⊗ [∂5]) when β , (1, 2) (resp. β = (1, 2)).

Theorem 4.7.1 [27] Put m = ⟨∂1, . . . , ∂n⟩, which is a maximal ideal in S n = C[∂1, . . . , ∂n].

1. If k equals the smallest homological degree i for which −β is a quasi degree of Hi
m(S A),

then the Euler-Koszul homologyHd−k(E−β; S A) is non-zero rank andHi = 0 for i > d−k.
Here, γ is called the quasi degree when γ is contained in the Zariski closure of the non-zero
degrees of the homology group.

2. Hi
m(S A) = 0 holds for 0 ≤ i < d, if and only if S A is Cohen-Macaulay.

3. The rank of HA(β) equals to the normalized volume of A if and only if β is not a quasi-
degree of Hi

m(S A).

Put εA =
∑

ai. The degree −α + εA part of the local cohomology group is Hn−i
m (S A)−α+εA =

HomC
(
ExtiS n

(S A, S n)α,C
)
.

Example 4.7.2 We consider the case A = A(0134), εA = (4, 8)T . Construct A-graded reso-
lution of R/IA by Schreyer’s method. Then, we have Ext4 = 0 and Ext3 = C at the degree
(5, 10), which implies that H4−3

m , 0 at the degree −(1, 2). In fact, the rank of the system is 5
when β = (1, 2) and it is 4 when β , (1, 2).

4.7.2 Characteristic variety and principal A-determinant

Let I be a left ideal in D. The initial ideal in(0,1)(I) is the ideal in C[x1, . . . , xn, ξ1, . . . , ξn]
generated by the principal symbols of I. The ideal is called the characteristic ideal of I, and
the zero set of the ideal in C2n is called the characteristic variety of D/I and is denoted by
Ch(D/I). The projection of Ch(D/I) \ V(ξ1, . . . , ξn) to Cn = {x} is called the singular locus of
D/I and is denoted by Sing(D/I) (see, e.g., [49, p.36]).

Theorem 4.7.3 [21], [23]
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1. If H1(gr(0,1)K•) = 0, then the characteristic ideal of HA(β) is generated by Axξ and I′A =
IA|∂→ξ. Here, we denote by Axξ the ideal generated by

∑n
j=1 ai jx jξ j, (i = 1, . . . , d).

2. If IA is Cohen-Macaulay, then the first homology above vanishes.

Characteristic varieties and micro-characteristic varieties of MA(β) are combinatorially stud-
ied in [21], [52].

Let EA be the principal A-determinant [24]. The projection of V(⟨Axξ, I′A⟩) \ V(ξ1, . . . , ξn)
to Cn is expressed as V(EA).

Theorem 4.7.4 [24, p.300] The principal A-determinant for A(k, k′) (k ≤ k′) is the product
of the determinants of all p × p minors of the matrix (xi j) where 1 ≤ p ≤ k.

Example 4.7.5 For A = A(1, k′ − 1), we have

EA =

2∏
i=1

k′∏
j=1

xi j

∏
1≤ j< j′≤k′

∣∣∣∣∣∣ x1 j x1 j′

x2 j x2 j′

∣∣∣∣∣∣ .
The variety V(EA) is the singular locus of HA(β).

4.7.3 Reducibility and monodromy groups

We consider the set ∪τ (ZA + τ) where the union is taken over all linear subspaces τ of Cd

that form a boundary component of pos(A). The set is called the resonant parameters and is
denoted by Res(A).

Let R be the ring of differential operators with rational function coefficients. We consider
the left R-module C(x1, . . . , xn)⊗Dn MA(β) = R/(RHA(β)). If this module has a non-zero proper
R-submodule, it is called reducible.

Theorem 4.7.6 [10] When IA is homogeneous and A is not a pyramid, C(x1, . . . , xn)⊗MA(β)
is reducible if and only if β < Res(A).

An analog of this theorem holds without the homogeneous condition. See [53]. The irreducible
quotients as D-modules of MA(β) are combinatorially discussed in [47].

The reducibility of a Lauricella system can be described by the reducibility of the corre-
sponding A-hypergeometric system. See [29, §6] as to the case of Lauricella’s FC . A sys-
tematic approach to study reducibilities for Appell-Horn or Mellin type systems is given in
[61].

Connection formulas are studied for A(1, n) by restrictions [50]. The global monodromy
groups are calculated for some interesting A’s. See [37], [38], [60] for the case of A(2, 2).
See [40] for some of 3-dimensional Fano polytopes related to families of K3 surfaces. See
this volumne, Chapter 3, Section 3.7 for monodromy groups for Lauricella functions. The
monodromy at infinities is discussed; see [4] and its references. Recently, a general method to
compute a subgroup of monodromy groups is proposed [11].
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4.8 A-hypergeometric polynomials and statistics

We assume A is a configuration matrix. The A-hypergeometric polynomial [48] for the con-
figuration A and the parameter vector β ∈ Nd

0 is defined by

Z(β; p) =
∑

Au=β,u∈Nn
0

pu

u!
, (4.8.13)

where pu =
∏n

i=1 pui
i and u! =

∏n
i=1 ui!. It is a solution of the A-hypergeometric system

HA(β). Set pi = exp ξi and let exp ξ denote the vector (exp ξ1, . . . , exp ξn). We fix β , 0 such
that β ∈ N0A =

∑n
i=1 N0ai. Let U ∈ Nn

0 be a random variable of the (A, β) hypergeometric
distribution with the parameter p ∈ Rn

>0 (or ξ ∈ Rn), which is defined by the probability that
U takes the value u

P(U = u | Au = β) =
p(ξ)u

u!Z(β; p(ξ))
=

exp(u · ξ)
u!Z(β; p(ξ))

, u · ξ =
n∑

i=1

uiξi. (4.8.14)

It is the conditional distribution of u given by β = Au under the Poisson distribution

P(U = u) =
pu

u!
exp(−1 · p), 1 = (1, . . . , 1). (4.8.15)

The polynomial Z is the normalizing constant or the partition function of the (A, β) hyperge-
ometric distribution. The (A(k, k′), β) hypergeometric distribution has been called the gener-
alized hypergeometric distribution for (k + 1) × (k′ + 1) contingency tables with the marginal
sum β in statistics [30, 4.1].

Let A be an n × (n − d) matrix with integer entries satisfying the conditions AA = 0 and
that the rank of A as a Q-matrix is n − d. We denote by ai the i-th column vector of A. An
asymptotic study of the probability distribution (4.8.14) gives the following theorem, which
gives an approximate value when the parameter vector of the A-hypergeometric polynomial
becomes large as κβ, (κ → +∞).

Theorem 4.8.1 [59] We fix p ∈ Rn
>0 and β ∈ N0A∩ int(R≥0A). There exists a unique m ∈ Rn

>0
such that Am = β, mai = pai . When κ → +∞, we have

Z(κβ; p) ∼

(∏
pmi

i

)κ
Γ(κm + 1)

(2πκ)n−d

det(AM−1A
T

)1/2
,

where M = diag(m).

Conversely, applications of A-hypergeometric equations to statistics are given in [31], [59].
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