神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/90009313
このアイテムのアクセス数:
95
件
(
2025-06-08
13:28 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
90009313 (fulltext)
pdf
1.61 MB
31
メタデータ
ファイル出力
メタデータID
90009313
アクセス権
open access
出版タイプ
Version of Record
タイトル
Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment
著者
著者ID
A2583
研究者ID
1000020791891
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=f8b7f2a728a56636520e17560c007669
著者名
Hirata, Enna
平田, 燕奈
ヒラタ, エンナ
所属機関名
数理・データサイエンスセンター
著者名
Matsuda, Takuma
言語
English (英語)
収録物名
Journal of Marine Science and Engineering
巻(号)
10(5)
ページ
593
出版者
MDPI
刊行日
2022-05
公開日
2022-06-21
抄録
With the increasing availability of large datasets and improvements in prediction algorithms, machine-learning-based techniques, particularly deep learning algorithms, are becoming increasingly popular. However, deep-learning algorithms have not been widely applied to predict container freight rates. In this paper, we compare a long short-term memory (LSTM) method and a seasonal autoregressive integrated moving average (SARIMA) method for forecasting the comprehensive and route-based Shanghai Containerized Freight Index (SCFI). The research findings indicate that the LSTM deep learning models outperformed SARIMA models in most of the datasets. For South America and the east coast of the U.S. routes, LSTM could reduce forecasting errors by as much as 85% compared to SARIMA. The SARIMA models performed better than LSTM in predicting freight movements on the west and east Japan routes. The study contributes to the literature in four ways. First, it presents insights for improving forecasting accuracy. Second, it helps relevant parties understand the trends of container freight markets for wiser decision-making. Third, it helps relevant stakeholders understand overall container shipping market trends. Lastly, it can help hedge against the volatility of freight rates.
キーワード
Shanghai Containerized Freight Index
long short-term memory
seasonal autoregressive integrated moving average
deep learning
machine learning
forecasting
カテゴリ
数理・データサイエンスセンター
学術雑誌論文
権利
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
関連情報
DOI
https://doi.org/10.3390/jmse10050593
詳細を表示
資源タイプ
journal article
eISSN
2077-1312
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る