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Abstract: With the increasing availability of large datasets and improvements in prediction algorithms,
machine-learning-based techniques, particularly deep learning algorithms, are becoming increasingly
popular. However, deep-learning algorithms have not been widely applied to predict container
freight rates. In this paper, we compare a long short-term memory (LSTM) method and a seasonal
autoregressive integrated moving average (SARIMA) method for forecasting the comprehensive
and route-based Shanghai Containerized Freight Index (SCFI). The research findings indicate that
the LSTM deep learning models outperformed SARIMA models in most of the datasets. For South
America and the east coast of the U.S. routes, LSTM could reduce forecasting errors by as much
as 85% compared to SARIMA. The SARIMA models performed better than LSTM in predicting
freight movements on the west and east Japan routes. The study contributes to the literature in four
ways. First, it presents insights for improving forecasting accuracy. Second, it helps relevant parties
understand the trends of container freight markets for wiser decision-making. Third, it helps relevant
stakeholders understand overall container shipping market trends. Lastly, it can help hedge against
the volatility of freight rates.

Keywords: Shanghai Containerized Freight Index; long short-term memory; seasonal autoregressive
integrated moving average; deep learning; machine learning; forecasting

1. Introduction

Robust market forecasting is a critical and practical requirement in the management of
shipping companies [1]. Prominent stakeholders in maritime business, such as carriers, freight
forwarders, and shippers, rely on container freight-rate forecasts for operational decision making.
Accordingly, various organizations continue to conduct periodic studies [2,3] on forecasting,
and numerous researchers have actively studied improved prediction models.

Building reliable and robust forecasting models is essential in predicting market
behavior and movements. Several techniques have been developed to build models that
can estimate and forecast future time points, which can aid calculated decision-making
to reduce risk and increase returns. The time-series forecasting method is becoming
increasingly popular in various industries, including shipping.

In this study, we analyzed methods for predicting the Shanghai Containerized Freight
Index (SCFI), which was chosen as the research object for three reasons. First, it has been
studied in detail because it is one of the few container shipping freight indices that covers
most of the global container trade volumes. It targets spot freight markets, which reflect up-
to-date market trends and market equilibrium, and it provides high-frequency time-series
data forecasts that reflect fluctuations in spot freight rates in Shanghai’s export container
transport market. To calculate the SCFI, the Shanghai Shipping Exchange collects spot
freight cost, together with insurance and freight (CIF) rates from the export container
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market, based on 13 shipping routes departing from the port of Shanghai on a container-
yard-to-container-yard basis. The focus of this research, therefore, was the comprehensive
SCFI, which is the weighted average of the 13 shipping routes.

Second, the SCFI is an underlying asset in freight derivatives [4]. In addition, time-
series data forecasting, such as that provided by the SCFI, is highly important for business
managers because these data reflect the overall trends in the corresponding container
shipping market and provide implications for its future state.

Third, to date, the application of models for forecasting container freight rates has
been relatively limited. Due to the high complexity, irregularity, randomness, and nonlin-
earity of time-series data, conventional econometric models cannot achieve a satisfactory
forecasting accuracy.

Overall, few studies have been conducted on forecasting container freight rates by
applying deep-learning algorithms. The goal of this study was to propose a novel LSTM-
based forecasting model. The results of our evaluations complement the existing literature
and indicate the need to develop more efficient forecasting techniques.

Our study resulted in three primary contributions. First, its findings can provide
insights on improving forecasting accuracy. Second, the results of the study can aid in the
understanding of freight trend forecasting in the corresponding container shipping market
and enhance decision-making rationality in the shipping sector. Finally, the study provides
implications for future investment in forward freight agreements or other risk-hedging
freight derivatives.

The remainder of this paper is organized as follows: In Section 2, we review the litera-
ture on forecasting approaches in the shipping sector. Sections 3–5 present the properties of
the associated data and describe the selected forecasting methods. In Section 6, we present
our experimental results, including an assessment of forecasting accuracy in a given context.
Finally, Section 7 presents discussions on our key findings and highlights the relevance of
our work for practice and future research.

2. Literature Review

Forecasting shipping markets, particularly container freight-rate movements, has
always been challenging. Over the past two decades, the global container shipping market
has experienced turbulence due to several historical events. The first such event was the
destruction of the shipping conference system in 2008 for port calls across all trades in the
European Union (EU), marking the end of the cartel of shipping companies comprising the
liner conference system [5]. The second was the global financial crisis of 2007–2008, which
caused the container shipping freight market to significantly fluctuate along a generally
downward-trending trajectory [2]. The third was the development of an unstable market
environment characterized by the mergers and acquisitions of shipping lines, reformations
of shipping alliances, and the commissioning of large container ships during the past
decade, all of which contributed to heavy fluctuations in freight rates [6,7]. Recently, in the
wake of the COVID-19 pandemic and the Suez Canal blockage, container shipping markets
have become more unpredictable.

The methodologies applied in modeling container shipping include conventional
econometric models, artificial intelligence (AI) models, or combinations of both, often
referred to as hybrid models. Examples of research on econometric models include that
of Chou et al. [8], in which a vector autoregression (VAR) model was used to forecast
container trade volumes to Taiwan; Xie et al. [9] used autoregressive integrated moving
average (ARIMA), SARIMA, and least-squares support vector regression (LSSVR) models
to forecast container port throughputs; Schulze and Prinz [10], who reported that SARIMA
models produced better results; and Kawasaki and Matsuda [11,12], who assessed the
applicability of SARIMA and VAR models in forecasting container trade volumes.

Examples of AI model research include that of Chen and Chen [13], in which a genetic
programming (GP) model was shown to outperform an ARIMA model by approximately
30%. An example hybrid model study is that of Xiao et al. [14], in which a transfer
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forecasting model guided by a discrete particle swarm optimization (TF-DPSO) algorithm
was shown to outperform several existing models in terms of forecasting performance.

In recent years, other examples of hybrid models have emerged. Huang et al. [15] pro-
posed a combination of projection pursuit regression (PPR) and GP algorithms. Xie et al. [16]
proposed several hybrid approaches based on the LSSVR model and reported that their
hybrid models achieved better forecasting performance than preprocessing methods such
as SARIMA. Mo et al. [17] developed a hybrid model that applied SARIMA to the linear
part of the data and support vector regression (SVR), back-propagation (BP), and GP to the
nonlinear part; their research results indicated that the performance of the hybrid model
was better than the other evaluated models.

Many approaches focus on forecasting container trade volumes and/or port through-
put, but there are relatively few methods for forecasting container freight rates, especially
the SCFI. Stopford [1] and Luo et al. [18] were pioneers in forecasting container freight rates
by using supply and demand factors. Koyuncu and Tavacıoğlu [19] compared SARIMA and
Holt–Winters Methods in forecasting the SCFI, and they concluded that the SARIMA model
provided comparatively better results than the existing freight-rate forecasting models
while performing short-term monthly forecasts. Chen et al. [20] applied a decomposition–
ensemble method that combines empirical mode decomposition (EMD) and the grey wave
forecasting model to forecast the China Container Freight Index (CCFI), and they found
that the proposed method performed better than random walk and autoregressive moving
average model (ARMA) in multi-step-ahead prediction. Munim and Schramm [2] recently
deployed an autoregressive conditional heteroscedasticity (ARIMARCH) model to forecast
container freight rates in Asia–North Europe routes. They observed that the ARIMARCH
model provided better results than existing freight-rate forecasting models while enabling
short-term forecasts on weekly and monthly bases. In his most recent research, Munim [21]
reported that a state-space Trigonometric seasonality, Box–Cox transformation, ARMA
errors, Trend and Seasonal components (TBATS) model outperformed seasonal neural
network autoregression (SNNAR) and SARIMA models.

Like real-world time-series data, a container freight index features high complexity,
irregularity, randomness, and nonlinearity. It is often difficult for conventional methods
such as ARIMA to achieve a high prediction accuracy. As a result, models based on arti-
ficial neural networks (ANNs) are gaining increasing attention because of their ability to
effectively manage the nonlinearity of time-series data [22]. In addition, machine learning
methods can be used to build nonlinear prediction models using large quantities of histori-
cal time-series data, making it possible to obtain prediction results that are more accurate
than those of conventional statistical models through repeated and iterative training and
learning to approximate real models.

The machine learning (ML) methods that have been applied include SVR and ANN.
These methods have strong nonlinear function approximation abilities and can be applied
to tree-based ensemble learning [23]. Hassan et al. [24] proposed a new approach based
on typical time-series and ML to forecast freight demand in the US market. Their model
self-enhances through a reinforcement learning framework applied over a rolling hori-
zon. Barua et al. [25] thoroughly reviewed ML models applied in international freight
transportation management (IFTM), stating that ML is a powerful tool that enables better
prediction and more robust support in IFTM.

A review of the existing literature that focuses on applied methodologies is summa-
rized in Table 1. To the best of our knowledge, the LSTM model has not been previously
applied in container shipping-related research.

This study was intended to contribute to the existing literature by filling these research
gaps. We propose a deep-learning-based LSTM model for forecasting SCFI time-series data.
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Table 1. Literature review summary of forecasting techniques in the shipping sector.

Reference Application Method Findings

Chou et al. [8] Container trade volumes VAR A modified regression model for forecasting
Taiwan’s inbound container volumes was proposed.

Kawasaki and Matsuda [11] Container trade volumes SARIMA
The residual had no autocorrelation, and the defined

model could reproduce volumes of container
movement with high accuracy.

Kawasaki and Matsuda [12] Container trade volumes VAR
The VAR model clarified the length of time that U.S.

economic indicators affect the container trade
movement from East Asia to the U.S.

Chen and Chen [13] Container port throughput Decomposition approach,
SARIMA, GP

The GP model predictions were approximately
32–36% better than the decomposition approach and

SARIMA.

Huang et al. [15] Container port throughput PPR with GP, ANN,
SARIMA, and PPR

The proposed PPR-with-GP method significantly
outperformed ANN, SARIMA, and PPR models.

Mo et al.
[17] Container port throughput SARIMA, SVR, BP, and GP

A hybrid model was developed by applying
SARIMA for the linear part and SVR, BP, and GP for
the nonlinear part of the data. Results showed that

the hybrid model performed better than others.

Xiao et al. [14] Container port throughput
TF-DPSO, ARIMA, and
Elman Neural network

(ENN)

The forecasting performance of TF-DPSO was better
than that of several existing models.

Xie et al. [16] Container port throughput LSSVR and OLS The proposed hybrid LSSVR approach achieved
better forecasting performance than OLS.

Xie et al. [9] Container port throughputs ARIMA, SARIMA, and
LSSVR

Data characteristic analysis results suggest that
hybrid models can perform better than other

methods.

Schulze and Prinz [10] Container port throughput
and trade volumes

SARIMA and exponential
smoothing approach

The SARIMA approach yielded slightly
better-modeled values of container throughput than

the exponential smoothing approach.

Luo et al. [18] Container freight Three-stage Least Squared
(3SLS)

The overall model could explain more than 90% of
the fleet capacity and freight-rate variations.

Munim and Schramm [2] Container freight—FE–FE
route of SCFI ARIMARCH The ARIMARCH model provided better results than

the existing freight-rate forecasting models.

Munim and Schramm [23] Container freight—SCFI, 4
routes

ARIMA, VAR, ANN, and
SVR

Overall, VAR/VEC models outperformed ARIMA
and ANN in training-sample forecasts.

Al Haji Hassan et al. [24] Freight demand in the U.S.
time-series models with
reinforcement learning

framework

A new approach building on typical time-series and
machine learning models to forecast the freight

demand in the U.S. market was proposed.

Ubaid et al. [26] Container freight,
Asia/Oceania route SVR, RFR, and GBR The GBR model outperformed other models, with a

test accuracy of 84%.

Chen et al. [20] Container freight—CCFI

Decomposition–ensemble
method based on EMD and

grey wave forecasting
model

The proposed method performed better than random
walk and ARMA in multi-step-ahead prediction.

Koyuncu and Tavacıoğlu
[19] Container freight—SCFI SARIMA and Holt–Winters

Methods

The SARIMA model provided better results than the
existing freight-rate forecasting models while

performing short-term forecasts on a monthly rate.

Munim [21] Container freight—CCFI SARIMA, SNNAR, and the
state-space TBATS model

The TBATS model or a combination of TBATS and
SARIMA forecasts outperformed SARIMA and

SNNAR, as well as their combinations.

Source: Author-compiled (models in bold letters indicate machine-learning-based models).

3. Deep Learning

Deep learning is a subfield of machine learning techniques concerned with ANNs. The
most popular deep learning algorithms include convolutional neural networks (CNNs),
recurrent neural networks (RNN), and stacked auto-encoders (SAE), among others. LSTM
is an RNN architecture that can process a sequence of inputs. Since its introduction by
Hochreiter and Schmidhuber [27], it has been refined by many researchers.

3.1. Model Description

As a special type of RNN, LSTM processes the input in a sequential manner by
computing the output from the input of the previous step. However, typical RNNs suffer
from vanishing (and exploding) gradients arising from the repeated use of recurrent weight
matrices. As they are calculated using the chain rule, RNN gradients must undergo
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continuous matrix multiplications during the backpropagation process, which causes the
gradients to either exponentially shrink (vanish) or exponentially blow up (explode). LSTM
does not suffer from this problem because its models introduce gating functions to prevent
gradient vanishing.

The LSTM is illustrated in Figure 1. It comprises a cell, input gate, output gate, and
forget gate. The three gates regulate the flow of information into and out of the cell, and the
cell remembers the values over any time interval. The gating functions enable the network
to determine the extent to which the gradient vanishes and to obtain values at each time
step. In other words, LSTM can process time-series data as a unit and can store, discard
(forget), or add important information for making predictions, thus making it suitable for
the analysis of time-series data.

Figure 1. Architecture of LSTM (author-created).

3.1.1. Forget Gate (F)

The first step in LSTM is to identify the information to be discarded. The forget gate
determines which information from the long-term memory is not required and should be
discarded. This is performed by multiplying the incoming long-term memory with a forget
vector generated by the current input and the incoming short-term memory:

Ft = σ(XtWF
x + Ct−1WF

h + BF) (1)

where Xt is the current input vector, Ct−1 is the output from the previous time step, WF
h is

the weight, and BF is the bias in the forget gate layer.

3.1.2. Input Gate (I)

The second step in LSTM is the input gate that determines whether the new informa-
tion is to be stored in the long-term memory. It works with information based on current
input and short-term memory from the previous time step. The input gate is defined
as follows:

It = σ(XtW I
x + Ct−1W I

h + BI) (2)

where Xt is the input vector, Ct−1 is the output from the previous time step, W I
h is the

weight, and BI is the bias at the input gate layer.

3.1.3. Output Gate (O)

The output gate computes the current input, previous short-term memory, and newly-
computed long-term memory to produce a new short-term memory or hidden state to be
passed on to the cell in the next time step:

Ot = σ(XtWO
x + Ct−1WO

h + BO) (3)
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where Xt is the input vector, Ct−1 is the output from the previous time step, WO
h is the

weight, and BO is the bias in the output gate layer.

3.1.4. Activating Function

A hyperbolic tangent function (tanh) was used as the activating function in the pro-
posed model. The tensor G applied to the input gate is expressed as follows:

Gt = tanh(XtWG
x + Ct−1WG

h + BG) (4)

The new cell that stores long-term memory Ct is then given by:

Ct = Gt ⊗ It + Ft ⊗ Ct−1 (5)

where ⊗ is the point-wise product.
The short- and long-term memories produced by the three gates are carried over to

the next cell, and the neural network functions by repeating this process. The output of
each time step obtained from the short-term memory is also called the hidden state, whose
layer H is defined as:

Ht =Ot ⊗ tanhCt (6)

where ⊗ is the point-wise product.
Unlike standard neural networks, LSTM has feedback connections, which enable it to

remember values from earlier stages for future use. This ability to store information over a
period of time is useful for managing time-series data.

LSTM has been applied to not only the processing of single data points for uses such
as image captioning and generation but also the processing of entire data sequences for
machine translation.

4. Data
Data Description

The dataset used in this study contained time-series data extracted from the composite
SCFI from its inception in 2009 to April 2020. The total sample size was 548 for each data
series, with 7672 data points (Table 2). The time granularity of the data was one week.

Table 2. Description of data.

Index Count Mean Standard
Deviation Minimum 25% 50% 75% Maximum

SCFI (comprehensive index 548 994 324 400 795 951 1117 2885
NCMP (North Europe) 548 1027 513 205 738 907 1218 4452
MED (Mediterranean) 548 1070 508 195 761 944 1262 4298
USEC (U.S. East Coast) 548 1873 630 725 1457 1774 2115 4080

USWC (U.S. West Coast) 548 3068 744 1448 2563 3099 3455 5049
Persian (Persian Gulf and Red Sea) 548 739 298 211 530 711 902 1995

ANZ (Australia/New Zealand) 548 798 378 249 542 760 958 2490
WAF (East/West Africa) 548 2023 697 841 1624 1943 2323 6630

SAF (South Africa) 548 949 381 307 748 869 1081 3307
SAM (South America) 548 1713 1081 99 1097 1609 2119 8907

JPNW (West Japan) 548 253 75 77 215 231 332 382
JPNE (East Japan) 548 259 70 66 214 238 333 389

SEA (Southeast Asia) 548 204 119 53 145 185 235 974
KOR (Korea) 548 162 37 86 125 162 191 234

First, a stationarity check of dataset was conducted using the Dickey–Fuller (DF) test.
Time-series data are said to be stationary if their statistical properties, such as the mean
and variance, remain constant over time. In DF testing, the null hypothesis is that the time
series is non-stationary, and the test results comprise a test statistic and some critical values
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relating to the different confidence levels. If the test statistic is less than the critical value,
the null hypothesis can be rejected and the series can be considered stationary.

In this study, we chose to apply an augmented version of the DF test that is often
applied to larger and more complicated sets of time-series models. The augmented DF
(ADF) statistic we used is a negative number that firmly rejects the hypothesis that there
is a unit root at some level of confidence as it becomes smaller. For a stationary series,
the p-value (0 ≤ p ≤ 1) should be as low as possible and the critical values at different
confidence intervals should be close to the test statistic value.

Prior to the treatment, the ADF test statistic was less than 5% of the critical value
(Table 3); therefore, the stationarity of the time series was rejected with 95% confidence.

Table 3. Results of DF test for SCFI.

Before Treatment After Treatment

Test Statistic −0.1205 −4.6303
p-value 0.9474 −0.0001

Number of Lags Used 12 17
Number of Observations Used 550 544

We conducted differencing, seasonal, and trend decomposition treatments using
locally estimated scatterplot smoothing (LOESS STL) [28] to decompose trends and season-
ality (Figure 2).

Figure 2. STL decomposition of data.

After treatment, the ADF test statistic was significantly lower than the 1% critical value
(Table 3), indicating that the adjusted time series was close to stationary.

For the implementation, the dataset was split into training and testing sets. Cross-
validation was performed with a time step of three for the training dataset (equaling 76%
of the total dataset size). The testing dataset (24% of the total dataset size) was used to
evaluate the performance of the models outside the training set while avoiding overfitting.

5. Methods

For comparison, we built a SARIMA model and a LSTM model.

5.1. SARIMA Model

The SARIMA model is one of the most important and widely used time-series models.
The ARIMA model is the most general class of models for time-series forecasting because it
can represent several different types of time series, that is, pure autoregressive (AR, often
denoted as p), pure moving average (MA, often denoted as q), and integrated versions of
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stationary series (I, often denoted as d). ARIMA accepts data that are either non-seasonal
or have the seasonal component removed, e.g., data that are seasonally adjusted via
methods such as seasonal differencing. A non-seasonal ARIMA model can be classified as
ARIMA(p, d, q), where:

p: trend autoregressive order.
d: trend difference order (the number of non-seasonal differences needed for stationarity).
q: trend moving average order (the number of lagged forecast errors in the predic-

tion equation).
The general form of the ARMA(p, q) equation for forecasting time series y is given as:

yt = c + θ1yt−1 + θ2yt−2 + . . . + θpyt−p + εt − ϕ1εt−1 − ϕ2εt−2 − . . . − ϕqεt−q (7)

where c is a constant; yt and εt are the actual value and random error at time period
t, respectively; and θi(i = 1, . . . , p) and ϕj(j = 0, . . . , q) are the AR and MA parameters,
respectively. The error terms εt are assumed to be independently and evenly distributed,
with a mean of zero and a constant variance of σ2. If q = 0, then Equation (7) becomes an
AR model of order p; if p = 0, the model reduces to an MA model of order q. To consider
the integration (I) part, d is defined in terms of y, the nth difference of Y, as follows:

If d = 0: yt = Yt;
If d =1: yt = Yt−1;
If d = 2: yt = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2.
Frequent seasonal effects come into play in many time-series datasets, especially in

the case of SCFI data because of the seasonal demand of container freight. In response, an
SARIMA model can be formulated by including additional seasonal terms in the ARIMA
model [29]. As an ARIMA model does not support seasonal data that reflect repeating cycles
within a time series, we implemented an SARIMA model to reflect the clear seasonality of
the SCFI (e.g., [30]), The seasonal part of the model comprised terms that are very similar to
the non-seasonal components but include the backshifts of the seasonal period. In addition
to the three hyperparameters p, d, and q in the ARIMA model, four seasonal elements
(P, D, Q, S) were configured as follows:

P: seasonal autoregressive order
D: seasonal difference order.
Q: seasonal moving average order
S: number of time steps for a single seasonal period.
The general form of the SARIMA model is denoted as ARIMA(p, d, q) (P, D, Q)s,

where p is the non-seasonal AR order, d is the non-seasonal differencing, q is the non-
seasonal MA order, P is the seasonal AR order, D is the seasonal differencing, Q is the
seasonal MA order, and s is the time span of the repeating seasonal pattern. The SARIMA
model can be written as follows:

yt = c +
p

∑
i=1

θ1yt−1 +
P

∑
i=1

Θiyt−is + εt −
q

∑
j=1

ϕjεt−j −
Q

∑
j=1

Φjεt−js (8)

where p, q, P, Q, θi, and ϕj are as defined previously and Θi (i = 1, . . . , is) and
Φj(j = 1, . . . , js) are their seasonal counterparts.

Box and Jenkins [31] proposed the use of the ACF and PACF of the sample data as the
basic tools for identifying the order of an ARIMA model. The ACF is used to measure the
amount of linear dependence between observations in a time series that are separated by a
lag of p, whereas the PACF is used to determine the number of necessary autoregressive
terms (q). Using this approach, it is possible to identify the preliminary values of p, d, q,
P, D, and Q. Parameter d is the order of the difference that depends on the stationarity of
the time series. To assess stationarity, the order of differencing (d) needs to stationarize the
series and remove the gross features of seasonality is determined; if d = 0, the data do not
tend to fluctuate over the long term, that is, the model is already stationary.
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5.1.1. Autocorrelation Function (ACF)

The ACF is a measure of the correlation between a time series and a lagged version of
itself. For instance, the ACF at a lag of five would compare the series at time instant ‘“t1”
. . . “tn” with the same series at ‘“t1−5” . . . “tn−5” (where t1−5 and tn−5 are the end points).
The value of q was obtained from the ACF at y = 0.

5.1.2. Partial Autocorrelation Function (PACF)

The PACF measures the correlation between a time series and a lagged version of
itself after eliminating all variations that have already been explained by intervening
comparisons. For example, the PACF at a lag of five checks the correlation described in
Section Data Description. but removes the effects already explained by lags one to four.
The value of p was obtained from the PACF at y = 0. Plots of the ACF and PACF are shown
in Figure 3.

Figure 3. ACF and PACF.

5.1.3. Parameters for SARIMA Model

The values used for the SARIMA model are summarized in Table 4.

Table 4. Parameter ranges used for the SARIMA model.

Non-Seasonal Seasonal

Parameters p Q d P Q D
3 1 2 0 1 1

5.2. The Proposed LSTM Architecture

The LSTM parameters include a sequence length, which determines how long the
LSTM method should remember information and the dropout, that floats between zero and
one. The method also counteracts overfitting and includes other parameters that control
training. The values are listed in Table 5. The LSTM model assessed in this study applied
the mean-squared loss function over 200 epochs. Here, “epoch” is a hyperparameter,
wherein one epoch corresponding to an iteration comprises one forward and one backward
pass through the neural network model. Because an entire epoch is too large to be fed into
a computer in one step, it is often divided into several smaller batches. We used Adam as
our optimizer to control the number of iterations using an early stopping criterion [32].

We tested different parameters of the LSTM model, and the parameters that generated
the best results were applied and reported for each freight index. The LSTM model used a
neural network with one input layer, 120 hidden layers (dimensions), and one output layer.
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Table 5. Values used for respective LSTM model parameters.

Parameter Value

Sequence Length 120

Dropout 0.0 (do not drop for the linear transformation of
the inputs)

Epochs 200
Input dimension 120

Activation Function Tanh
Recurrent Activation Function Sigmoid

Optimization Function Adam
Loss Mean squared error

5.3. Assessment Metric

The RMSE, which is often used to evaluate trained models for accuracy, is the standard
deviation of the residuals or differences between the predicted and observed values. The
formula for computing the RMSE is as follows:

RMSE =

√
1
n ∑ n

i=1(yi − ŷi)
2 (9)

where n is the total number of observations, yi is the observed value, and ŷi is the predicted
value. The main benefit of using the RMSE is that it penalizes large errors and scales the
scores into the same units as the forecast values (i.e., per week for this study).

A smaller RMSE indicates a lesser noise and, therefore, a trained model with higher accuracy.

6. Results

The prediction algorithms were implemented using Python version 3.7.3 in MacOS
Catalina (10.15.3, MacBook Pro; processor: 2.4 GHz Quad-Core Intel Core i5; memory: 16
GB, 2 × 133 MHz LPDDR3).

The selected SARIMA and LSTM models with the lowest predication errors were used
to predict freight indices. Figure 4 shows the prediction of the comprehensive SCFI using
SARIMA and LSTM.

Figure 4. Plots of (a) SARIMA and (b) LSTM prediction results for comprehensive SCFI.

We compared the results of different time steps and reported those that generated
better performance. The results of the average RMSEs obtained using the rolling SARIMA
and LSTM models, presented in Table 6, indicate that for all major routes, the LSTM models
significantly outperformed the SARIMA models. The highest forecasting error reduction
was 85% for the SAM and SAF routes, reflecting the practices observed in current market.
Deep-sea shipping routes (NCMP, MED, USWC, USEC, Persian, ANZ, WAF, SAF, and
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SAM) are of long distance, require large vessels and containers, and are limited in the
number of companies that can participate. In addition, because of the high freight rates of
these shipping routes, the majority of shipments are moved under fixed long-term freight
contracts while the rest are moved under spot rates. Freight rates under the long-term
contracts for these routes are fixed and generally lower than spot rates. Although the SCFI
is an indicator of spot rates, shippers decide whether to carry cargo at spot or contract rates
depending on market conditions. Therefore, both short-term changes and long-term trends
in contracted freight rates affect spot rates.

LSTM is capable of capturing the patterns of both long-term trends such as yearly
pattern and short-term trends such as weekly patterns, which explains why LSTM outper-
formed SARIMA in forecasting deep-sea shipping routes. In addition, deep-sea shipping
routes, such as the Europe, America, South America, and South Africa routes, are subject to
the influence of multiple expected and unforeseen factors. Deep-learning-based algorithms
accommodating both long-term and short-term memories are therefore more suitable for
this type of shipping route.

Notably, there were also two trade lanes, namely JPNW and JPNE, where the SARIMA
models performed better than LSTM. For short-sea shipping routes, linear models, such
as SARIMA, often generate better performance. In addition to the small proportion of
long-term contracts, the effect of unanticipated factors is small, which can be attributed to
the high explanatory power of the ordinary seasonal fluctuations.

For KOR, there was no significant improvement in the RMSE between the LTSM
and SARIMA. These routes have shorter distances than other routes, with relatively large
numbers of shipping companies and a few small companies participating. As a result, the
average size of the ships in operation is small. For example, as of 2018, there were at least
40 companies on the route between Japan and China and at least 24 companies between
China and Korea. The average vessel size is only approximately 1000 TEUs on the Japan–
China and China–Korea routes. In addition, Chinese state-owned shipping companies
occupy significant positions on all the routes. These carriers sometimes transport cargo
without profit, and the base rates sometimes even fall below USD 0. Differences in market
environments might influence the forecast accuracy of SARIMA and LTSM.

Table 6. RMSE results.

RMSE SARIMA LSTM Time Steps Reduction in
RMSE

SCFI 49.13 17.62 5 64%
NCMP 124.26 28.43 9 77%
MED 129.84 39.01 9 70%

USWC 144.52 26.47 9 82%
USEC 140.00 20.97 4 85%

Persian 55.32 9.98 3 82%
ANZ 54.88 9.46 4 83%
WAF 110.38 22.45 7 80%
SAF 70.76 15.15 3 79%
SAM 223.80 32.58 3 85%

JPNW 3.19 7.75 9 −143%
JPNE 2.71 7.73 8 −185%
SEA 25.78 10.86 3 58%
KOR 7.66 6.99 3 9%

7. Discussions and Future Studies

Time-series forecasting has been a popular research topic in many fields over the past
few decades. The accuracy of time-series forecasting is fundamental to many decision pro-
cesses. Therefore, concerted efforts have been made to improve the accuracy of forecasting
models. In addition to conventional econometric methods, the collection of machine-
learning-based techniques for time-series forecasting has grown in recent years. However,
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there have been no comparative studies between conventional and machine-learning-based
models in terms of their ability to forecast the comprehensive SCFI.

The authors of this study presented a deep-learning-based LSTM model for forecasting
the SCFI. The results indicated that the LSTM model is effective in predicting freight-rate
movement for deep-sea routes, which are easily affected by various factors during each
voyage. For example, in predicting freight indices for South America and South Africa
routes, LSTM reduced the forecasting error by 76% compared to an SARIMA model.
However, for short-sea routes, the SARIMA models outperformed the LSTM models.

Our results are significant due to four major reasons. First, while the study comple-
ments the existing literature, LSTM has, to the best of our knowledge, not been previously
applied to predict the SCFI.

Second, our results provide insights for improving forecasting accuracy. With the
growing availability of large datasets and improvements in algorithms, deep-learning algo-
rithms are becoming increasingly popular in many fields, including shipping. Determining
the accuracy and power of these newly introduced approaches relative to conventional
methods is of significant interest. The study showed that LSTM is superior to SARIMA in
predicting the SCFI for some deep-sea routes and hence highlights the relative advantage
of newly introduced approaches. One of the significant contributions of this study is
that it highlights that the preferred method may depend on the market conditions of the
shipping routes.

Third, our research findings can help relevant parties to understand the overall trends
in the container shipping market. The SCFI is one of the most cited metrics for assessing
the health and conditions of global trade. Global top carriers refer to the SCFI in their
annual reports [33]. The composite SCFI reached its highest value of 5109 on 7 January
2022. This booming market is partially a result of decreased supply and increased demand
owing to COVID-19 and the proliferation of e-commerce. During the COVID-19 crisis,
carriers blanked large numbers of sailings, which led to a decrease in capacity. Further
surges in the demand to prepare for the subsequent spread of infectious diseases have led
to a worldwide lack of available container boxes. These conditions contribute to a state
of market instability, and better prediction accuracy is essential for planning, managing,
and optimizing the use of resources [4]. By offering a better forecasting model, our study
provides governments, shippers, carriers, and analysts with insights into the mechanisms
of container freight and the health of the container shipping industry.

Fourth, our results have implications for future investments. As the SCFI is often
used as the underlying asset in freight derivatives, such as forward freight agreements
(FFAs) [4], better predictions of the index would lead to better decision-making by the
shipping industry, trading companies, and shippers regarding the use of freight derivatives
to hedge against the volatility of freight rates.

Relevant data samples are still limited due to the short history of the SCFI. Future
studies may focus on experimenting with other forecast techniques to further improve
forecasting accuracy.
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