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Abstract

Global Load Balancer libraries should be easy to use and allow users to easily obtain good

performance for their applications on a variety of distributed systems. In this paper, we

introduce a new tuning mechanism to our Java implementation of the Lifeline-based Global

Load Balancer which automatically adjusts the task granularity to reach good performance

based on some selected runtime metrics. We evaluate our system against four backtrack-

search problems on both a many-core supercomputer environment and on a Beowulf server,

achieving ideal performance with our tuning mechanism on the supercomputer. We also

identify the limits of our mechanism in handling situations with reduced imbalance.

KEYWORDS:
Java, Distributed Computation, Load Balance, Cluster of SMP

1 INTRODUCTION

Distributed computation involves splitting the overall computation in several fragments and assign-

ing these fragments to computing resources for them to be processed in parallel. Achieving good

performance is a challenge, especially with unpredictable or irregular computation. Without inter-

vention during the computation, some compute nodes may �nish their fragments earlier than others

and remain idle while busy nodes are still processing their larger fragments. This problem is known

as load imbalance. A kind of problem likely to su�er from this issue is backtrack-search algorithms.

They usually involve a depth-�rst traversal of an exploration tree whose branches can be explored in

parallel. However, branches are unlikely to bear similar-size sub-trees, resulting in load imbalance.

To address this issue, dynamic load balancers relocate fragments of the computation from busy

nodes to idle nodes during the computation, trying to keep as many compute nodes busy for as

long as possible. With the now widespread use of multi- and even many-core computers, load

balancers are expected to balance the load both between and within compute nodes. Implement-

ing such load balancing schemes is di�cult and requires careful synchronization between compute

nodes. Programmers therefore rely on existing libraries or frameworks to load-balance their com-

putation. We believe they should be easy to use for programmers and not require any complicated

adjustments/con�gurations.
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Over-decomposition with pro�le-based approaches1 can be successful in adjusting parameters of a

load balancer in iterative applications. However, we cannot apply these techniques to our backtrack

search applications as the computation needs only be performed once. We focus on the multithreaded

lifeline load balancer �rst created in X102. This scheme provides simple abstractions to programmers.

However, there remain some settings that can greatly in�uence performance. In particular, the task

granularity, which determines how often load balance operations are performed, can either produce

excessive overhead if set too low or starvation if set too high. We introduce a novel tuning mechanism

to this library which dynamically adjusts this parameter based on some selected runtime metrics.

Users of the library no longer need to go through a tedious trial and error process to determine a

good value for this setting as the tuner will automatically adjust it to a suitable level, achieving

reasonable performance.

This is an extended version of our previous publication in which we demonstrated the capabilities

of our �rst tuning mechanism design on the Oakforest-PACS supercomputer3. In this article, we

improve on our �rst design by using a new metric, making it more robust against variations in

problem implementation. We also expand our evaluation to a Beowulf server. The main contributions

of this paper are:

� The porting of the X10 multithreaded lifeline-based global load balancer to Java

� The integration of a tuning mechanism to the load balancer which dynamically adjusts the

granularity to increase performance

� The evaluation of our tuning mechanism on a many-core supercomputer environment as well

as a multi-core Beowulf server

The remainder of this article is organized as follows. We �rst recall some useful context in Section 2

before introducing the design of our tuning mechanism in Section 3. We evaluate the capability

of our tuning mechanism to automatically achieve performance obtained with manually adjusted

settings in Section 4. We discuss some related works in Section 5 before concluding in Section 6.

2 BACKGROUND

2.1 Distributed Computation with APGAS

The Partitioned Global Address Space (PGAS)4 is a programming model that allows programmers to

manage a distributed environment. The address-space is split into several partitions (called �Places�

in X10 terminology5) on which a process operates. The mapping of places to physical machines can

be adjusted freely. A typical use in our situation generally involves a single process (or �place�) per

physical machine but it is entirely possible to map several places to a single computer. The address

space is �global� in the sense that any data present in one partition can be accessed remotely from

another.
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1 import s t a t i c apgas . Constructs . * ;

2

3 import apgas . Place ;

4

5 c l a s s HelloWorld {

6 pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

7 System . out . p r i n t l n ( "Running main at " + here ( ) + " o f " + p la c e s ( ) . s i z e ( ) + " p l a c e s " ) ;

8

9 f i n i s h ( ( ) => {

10 f o r ( Place p : p l a c e s ( ) ) {

11 asyncAt (p , ( ) => System . out . p r i n t l n ( "He l lo from " + here ( ) ) ) ;

12 }

13 }) ;

14

15 System . out . p r i n t l n ( "Bye" ) ;

16 }

17 }

Listing 1: Distributed Hello World in Java

1 Running main at p lace (0 ) o f 4 p l a c e s

2 Hel lo from place (0 )

3 Hel lo from place (3 )

4 Hel lo from place (1 )

5 Hel lo from place (2 )

6 Bye

Listing 2: Sample output of the Hello World program of Listing 1 running with 4 places

The Asynchronous Partitioned Global Address Space (APGAS) programming model extends the

PGAS model by integrating features in the language to manage asynchronous tasks operating on

the various partitions. In X105, which implements the APGAS programming model, asynchronous

activities are spawned and controlled by using speci�c keywords such as async, at, and finish.
More recently, the constructs used in X10 were ported to Java in a pure Java implementation6.

The keywords of X10 were translated into static methods taking lambda expressions as parameters.

Java programmers can now write X10-style programs by simply importing the APGAS for Java

library into their program. The asyncAt method is used to spawn an asynchronous activity on the

place speci�ed as parameter. The finish method is used to wait until all the asynchronous activities

(recursively) spawned within its closure complete.

A short distributed �Hello World� program with a sample output are presented in Listings 1 and 2.

In this example, the main thread running at Place 0 will not progress further than the finish
method until all the places (including itself) have written their message to the standard output

before writing �Bye.�

2.2 The multithreaded lifeline-based load balancing scheme

Using the constructs of X10, the IBM team was able to develop a new load balancing scheme,

the Lifeline-based Global Load Balancer2. Its main feature consists in establishing pre-determined

channels for work stealing between places, the so-called �lifelines.� When a place runs out of work

and is unable to steal some from a randomly selected victim, it signals its �lifelines� that it needs

some work and passively waits until either work is sent to it, or the computation completes. This

mechanism allowed the load balancing scheme to maintain high e�ciency even for large cluster sizes

up to several thousand processors2.
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FIGURE 1 Overview of the multithreaded global load balancer operations within a place

A later evolution of this scheme, the multithreaded lifeline-based global load balancer7 keeps the

same computation abstraction and lifeline mechanism between places but makes each place run

multiple worker threads in parallel instead of a single one as per the original scheme. With this

scheme, it is no longer necessary to use multiple places (or processes) per host. Instead, a single place

containing as many workers as there are cores on the underlying processor can be used. This also

brings the opportunity for workers on the same host to easily share information as they operate in

shared-memory. A graphical representation of the design including the main load balance operations

that occur within a host is depicted in Figure 1.

Instead of making remote steals when a worker runs out of work, the remote steals are made when

all the parallel workers on the host run out of work. Within a place, each worker holds its own

dedicated bag instance throughout the computation. Load balance operations are achieved through

the use of two additional bag instances that are not processed by any worker. One bag - the intra-bag

- is primarily used to handle load unbalances within a host, while the second bag - the inter-bag- is

used to handle steals attempts coming from remote places. The workers on the place collaboratively

maintain some work available in both of these bags for a potential thief, be it a local worker or a

remote place. In its original X10 implementation, this load balancer su�ered from a few problems

concerning the scheduling of messages. These were resolved in our Java implementation.

The abstractions provided to the programmer under both of these schemes are summarized in

the Bag abstraction. In our Java implementation of the load balancer, it comes as an interface that

programmers need to implement in their class that contain the data-structures that represent the

computation at hand. The methods that programmers need to implement are the following:

� void process(int, R): processes a certain amount of computation, that amount being spec-

i�ed by the integer parameter of the method. An instance of the result type R is also provided

to the worker to read and/or write information shared with the other workers on the same host

during the computation.

� B split(boolean): returns a new bag instance containing a fragment of the computation held

by the current bag. The boolean parameter is here to indicate that in the event the instance

cannot be split, all of its contents should be given away.

� void merge(B): merges the contents of the bag instance given as parameter into this instance.

� boolean isEmpty(): indicates if this bag is empty, i.e. if it does not contain any work.

� boolean isSplittable(): indicates if this bag can be further split, i.e. if work can be taken

from it without emptying it altogether.
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� void submit(R): is called when the computation has ended and the result gathering phase

begins. This method gives the opportunity to the bag to put its contribution to the �nal result

into the instance provided as parameter.

To balance the load, a fragment of the computation can be obtained from a bag by calling the

split method on it before being transferred and merged into another bag instance. The split and

merge methods' implementation is entirely left to the programmer. This grants complete control

over the internal data structure used to represent the computation. The library remains oblivious

to the data structure used by the bags, and while programmers are advised to program the split
method such that half of the contents of the bag are given away, there is no actual mechanism to

enforce it. The library guarantees that calls to the split and merge methods on any bag are made

sequentially. Programmers do not have to concern themselves about potential concurrent accesses

made to their Bag implementation as they do not occur in the multithreaded lifeline-based global

load balancer.

3 TUNING MECHANISM

There are several parameters that the user of the load balancing library can set to their preference.

Parameters related to the distributed nature of the computation such as the �lifelines� seem to have

satisfactory heuristics2. As for the number of concurrent workers per host, we set it to the number

of cores available on the processor to use as much computing power as possible.

Our main contribution focuses on the task granularity. This is a more sensitive setting since this

integer parameter does not have any meaning outside the context of a speci�c application. Setting

an arbitrary value on the library side is not satisfactory. Also, we cannot expect users of the library

to be able to predict what a good value would be for their application. The ideal grain size will

vary depending on the problem at hand, as well as the size of the cluster used. Small changes to

the implementation of a problem may also dramatically change the performance characteristics of

a problem.

We aim at eliminating the need for users to guesstimate this value by integrating a tuning mech-

anism into the load balancer library that will automatically adjust the grain size to achieve good

performance. In Section 3.1 we detail how the grain size in�uences the behavior of the load bal-

ancer. We then discuss the assumptions and heuristics on which our tuning mechanism relies in

Section 3.2. Implementation details are brie�y discussed in Section 3.3.

3.1 Influence of the granularity on the Worker activity

The multithreaded global load-balancing scheme relies on several kinds of asynchronous activities to

handle the distributed computation7. The details of the various interactions between these activities

are beyond the scope of this paper. However, it is worth discussing the main routine of the �worker

activity� along with some of the load-balancing mechanisms within a host as they are directly

relevant to how our tuning mechanism operates. The main routine of the worker activity is presented

in Listing 3. Note that some elements pertaining to synchronization were removed for clarity.
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1 void workerAct iv i ty (Bag workerBag ) {

2 do {

3 do {

4 // Step 1 = i f able , spawn a worker a c t i v i t y

5 i f (Nb o f running workers < workerLimit && workerBag . i s S p l i t t a b l e ( ) ) {

6 Bag fragment = workerBag . s p l i t ( f a l s e ) ;

7 idleWorkerBag . merge ( fragment ) ;

8 asyncAt ( here ( ) , ( )=> workerTask ( idleWorkerBag ) ) ;

9 }

10

11 // Step 2 = i f the int ra=bag i s empty and the worker ' s bag can be s p l i t , f e ed the int ra=bag .

12 i f ( intraBagEmpty ) { // v o l a t i l e boolean f l a g

13 i f ( workerBag . i s S p l i t t a b l e ( ) ) {

14 // Workers may accumulate here

15 synchronized ( intraBag ) {

16 // intraBagEmpty = f a l s e ; // Previous des ign with " ea r l y " f l a g update

17 Bag b = workerBag . s p l i t ( f a l s e ) ;

18 intraBag . merge (b) ;

19

20 intraBagEmpty = f a l s e ; // Se t t ing the f l a g l a t e r

21 }

22 }

23 }

24

25 // Step 3 = i f f e ed ing the in t e r=bag i s needed and the workerBag can be s p l i t , f e ed the in t e r=bag

26 // Step 4 = Check i f the re are remote th i e v e s that can be answered

27 // Step 5 = Yie ld to load=ba lanc ing a c t i v i t i e s i f needed

28

29 // Step 6 = Do some work

30 workerBag . p roce s s (n , sharedResu l t ) ;

31

32 // Repeat from step 1 un t i l the workerBag i s empty

33 } whi le ( ! workerBag . isEmpty ( ) ) ;

34

35 // Step 7 attempt to s t e a l from the int ra=bag

36 i f ( the int ra=bag i s not empty ) {

37 workerBag . merge ( intraBag . s p l i t ( t rue ) ) ;

38 intraBagEmpty = intraBag . isEmpty ( ) ; // Update the v o l a t i l e boolean f l a g

39 }

40 // Step 7=b i s i f unable to s t e a l from the int ra=bag attempt to s t e a l from the in t e r=bag

41 e l s e i f ( the in t e r=bag i s not empty ) {

42 workerBag . merge ( interQueue . s p l i t ( t rue ) ) ;

43 }

44 // I f work could be obtained , repeat from step 1 .

45 } whi le ( ! bag . isEmpty ( ) ) ;

46 // The worker could not get work from e i t h e r bag , i t s tops .

47 // I t may be spawned again by another worker per forming step 1 .

48 }

Listing 3: Worker activity main procedure

When an idle host receives work, the computation received is merged into one of the workers'

bag and a �rst worker activity is spawned with that bag given as parameter. While the worker has

some work in its bag, they will loop through steps 1 to 6 of their main procedure (lines 3 to 33 in

Listing 3), with step 6 consisting in performing the computation. In its �rst step, the worker checks

if it is possible to spawn an additional worker activity in the �rst step of its main routine. Provided

this �rst worker's bag can be split, another worker activity will be spawned, which will in turn

(recursively) spawn other workers until the maximum number of concurrent workers on the host is

reached.

In steps 2 and 3, the workers try to maintain work in both shared bags on the place. If a worker

performing step 2 �nds that the intra-bag is empty and that it is capable of splitting its bag, the

worker splits a fragment from its bag and merges it in the intra-bag. The inter-bag involved in step

3 follows a similar scheme. We do not detail steps 4 and 5 which are involved in guaranteeing the

scheduling of work stealing activities coming from remote hosts.
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When a worker runs out of work after performing step 6 and exits the inner do-while loop of

its procedure, it will attempt to take some computation from the intra-bag in step 7, or as a last

result from the inter-bag in step 7-bis, to immediately resume its computation (lines 35 to 44 in

Listing 3). If the intra-bag gets emptied as a result, another worker performing step 2 will place

some computation back into it. The next worker to run out of work will therefore be able to take

some computation from the intra-bag again.

If a worker runs out of work when neither the intra-bag nor the inter-bag contain any work, it will

escape the outer do while loop (line 45 in Listing 3) and terminate. A new asynchronous worker

activity may be spawned back again by a worker performing step 1 of its main routine.

The attentive reader will have noticed the parameter �n� of the process method in step 6 of the

worker's main procedure (line 30 in Listing 3). This integer determines the grain size. In general, it

should be seen by programmers as the number of indivisible computation units to be performed in a

call to method process before returning. As a consequence, the grain size is correlated to how much

time workers spend in step 6, in�uencing how often they go through the inner do-while loop. If this

parameter is low, the worker activities will go through their loop more frequently. Conversely if the

chosen grain is large, workers will spend more time in step 6 and go through the loop less frequently.

3.2 Heuristics

Diagnosis of a grain too large

The purpose of the two shared bags on the host is for workers that run out of work to steal from

them and continue to participate in the computation. An issue that arises when the grain is too large

is that when these queues become empty, there is a delay until a worker checks the queues status

in steps 2 and 3 and puts some computation back into them. As a result, workers that run out of

work are more likely not to be able to steal any work in step 7 and terminate, reducing throughput.

These workers will eventually be spawned back by other workers performing step 1. However, this

will also happen after a delay for the same reason. A situation where the grain size is too large on

a host will therefore be characterized by intervals of time where fewer than the maximum number

of concurrent workers are running.

As an indicator that the task granularity is too large, we use the proportion of the time spent

with the maximum number of workers. Based on the characteristics of static grain executions of the

Unbalanced Tree Search benchmark, we deem the grain size to be too large if less than 90 % of the

elapsed time is spent with the maximum number of workers.

Diagnosis of a grain too small

As workers go through the inner loop of their procedure, various checks are made. These consists of

reading some volatile boolean �ags and calling methods of atomic data structures. These are quite

lightweight, but they will still generate some overhead if they are made too often. Moreover, with

many workers running in parallel, there is also an increased risk of contention on the bags used for

load balancing when load-balancing operations are actually needed. Since these operations are made

sequentially, we risk creating a bottleneck by using a grain size too low.
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We developed two heuristics to detect cases where the grain is too low. Both rely on a subtle e�ect

low grain executions have on the handling of the intra-bag. When a worker empties the intra-bag,

it sets the boolean intraBagEmpty �ag to true in line 38 of Listing 3. The next worker to perform

the second step of its main routine will read the value of the �ag as true in line 12 and (if able),

place some work back into the intra-bag before setting the intraBagEmpty �ag back to false in

line 20. Any subsequent worker to perform the check in line 12 will read the updated value of the

boolean �ag and move on to the next step of its routine without placing work into the intra-bag.

However, it is possible for multiple workers to read the value of the intraBagEmpty �ag as true
in line 12 before the �rst worker sets it back to false. In this case, the workers that read the value

of the �ag before it was updated by the �rst worker will also place some work back into the intra-

bag. This situation is more likely to occur if the workers very frequently check on the bag's status,

as is the case when the grain size is low. As a consequence, the intra-bag is likely to be fed several

times after getting emptied only once in situations where the grain is low. Our tuning mechanism

attempts to leverage that fact to detect this situation.

We could eliminate the redundant feeding of the intra-bag, either by checking the value of volatile

boolean �ag again inside the synchronized block (lines 15 to 21 in Listing 3) or by changing our

volatile boolean �ag for an atomic integer. However, the redundant feeding of the intra-bag isn't a

performance problem problem in itself. Rather, the fact that it occurs beyond a reasonable level is

the sign that workers go through their loop too often, creating overhead. As our tuning mechanism

detects this situation and increases the grain size, the problem disappears.

Early “split/merge” design

In the �rst design we introduced3, we used the ratio between the number of times work is split
from the intra-bag and the number of times work is merged back into the bag to determine if

multiple workers were able to redundantly feed the intra-bag. We call the tuner that relies on this

criterion �split/merge tuner.� This indicator, however, relies on the assumption that the programmer

implements the split method of its bag such that successive calls to this method recursively give

away half of the contents of the bag. Under this assumption, if the intra-bag is fed by multiple

workers as a result of being emptied once, it will take comparatively fewer split calls to empty it

again than it would have if a single worker placed work into the intra-bag each time it got emptied.

In our previous work, we showed that we can use this metric in our tuning mechanism by setting

an adequate �trigger� level below which the grain size is deemed too small.

New “merge/empty” design

We have since departed from this criterion and designed a new version of our tuning mechanism. We

now directly measure the number of redundant feedings of the intra-bag by comparing the number

of times the intra-bag was emptied in lines 37�38, with the number of times a worker puts work

back into the intra-bag in lines 17�20 of Listing 3. We call this new criterion �merge/empty� ratio

because in the context of our global load balancer library, it corresponds to the number of times

workers merge work into the intra-bag divided by the number of times the intra-bag gets emptied.

From a runtime perspective, it is the ratio between the number of workers that go through the if
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block in lines 13�20, and the number of times the boolean �ag which guards this if block is set to

true, allowing workers to enter it.

3.3 Integration with the GLB runtime

The tuning mechanism is implemented as an extra asynchronous activity - the tuning activity -

on each place of the global load balancer's runtime. The tuner is periodically called and remains

inactive the rest of the time.

When the tuner is called, it directly reads the information accumulated in the load balancer's local

logger. By comparing the current values with the ones from the previous time the tuner was called,

the tuner is able to determine what took place during the last interval. It is then able to draw its

conclusion and modify the grain size if necessary.

Initial experiments showed that the two indicators we use to detect if the grain is too low or too

high are not infallible. Throughout the execution, there are times when the indicators draw the

�wrong� conclusion or contradict themselves. As a moderation mechanism, we choose to only modify

the grain size if the same conclusion is drawn by the tuner twice in a row.

When changing the value, we double (or divide) the current value by a factor 2. Combined with a

tuning interval of 1 millisecond, this allows us to cover the very large range of values that the grain

can take over a short period of time. We purposely set the initial grain size at a very low value of

10. The tuner activities of each place are free to adjust the grain as soon as the computation starts,

and do so independently from one another. As a result, the chosen grain on two di�erent compute

nodes of the distributed computation may di�er.

We did not witness any overhead imputable to this extra activity. This was checked by running

distributed computations with the tuner activity active but keeping the chosen grain �xed. These

executions produced the same execution time as regular �xed grain executions without this addi-

tional activity. This can be explained by the fact that the decision making takes an insigni�cant

amount of computing power.

4 EVALUATION

4.1 Benchmarks used

To evaluate the performance of our tuning mechanism, we use four backtrack-search applications:

N-Queens, Pentomino, the Traveling Salesman Problem (TSP), and the Unbalanced Tree Search

(UTS).

We implemented these problems in a similar manner, using a pair of arrays to describe ranges of

branches at each level of the exploration tree. Splitting the exploration is reduced to dividing this

interval into two, matching the lowerbound of the thief to the upper bound of the victim for each

layer of the exploration. This operation is therefore bounded in time and space by the depth of the

exploration. As the branches are implicitly described, the size of the data transfered from host to

host during load balance operations is independent from the actual amount of work transferred.

In this section, we brie�y introduce each application and discuss some selected details about our

implementations.
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FIGURE 2 A particular solution to the Pentomino and the One-sided Pentomino problems

N-Queens

N-Queens consists in �nding all possible arrangements such that a maximum number of queens are

placed on a chessboard of width N without two queens able to attack one-another. We model the

problem as an exact cover problem, which consists in �nding all the di�erent subsets of rows of a

matrix of 0s and 1s such that for each column of the matrix, exactly one row has a 1 in that column.

In the case of the N-Queens problem, the columns of the cover matrix correspond to the �les, ranks,

and diagonals of the chessboard. Each row in the matrix corresponds to a possible queen placement

on the board and contains four 1s: one for the rank, the �le, the diagonal, and the anti-diagonal

that the queen occupies.

We use Knuth's �Dancing Links� data structure8 to represent the sparse matrix of the cover

problem. This data structure exploits doubly linked lists to hide and restore parts of the matrix as

the backtrack exploration progresses. Exploration is made in a depth-�rst manner. At each step in

the exploration, the �rst column of the cover matrix that remains to be covered is arbitrarily chosen.

The various rows that can cover this column represent the options available in the exploration and

can be explored in parallel.

Pentomino

The pentominoes are the 12 di�erent shapes that can be formed by stitching 5 square tiles edge-

to-edge. The Pentomino problem consists in enumerating all the possible ways to arrange these 12

shapes to cover a rectangle of width 10 and height 6. The One-sided Pentomino is an analogous

problem but treats the face-down variations of the chiral pentominos as pieces of their own. As a

result, the problem is signi�cantly larger, consisting of arranging 18 pieces on a rectangular board

of width 10 and height 9. A solution to the Pentomino and the One-sided Pentomino problems are

presented in Figure 2.

In our implementation, we use a single array with sentinels to represent the rectangular board. We

recursively attempt to place every rotation of every piece on the top-most and left-most unoccupied

tile of the board. If the piece can be placed, the exploration proceeds and we attempt to place the

remaining pieces of the board. If the chosen piece cannot �t on the board, the next orientation

and/or piece is selected as a candidate. When all the candidates at a certain stage of the exploration

have been attempted, the exploration backtracks by removing the last piece that was placed and

selecting a new candidate. Some restrictions on piece placement and orientation can be made to

eliminate the symmetries of the problem and only enumerate the fundamentally di�erent solutions

to the problem. This also reduces the size of the exploration tree. In terms of scaling potential, this

problem shows a wide exploration tree and a low computation cost for exploring individual nodes.

Of all our applications, the Pentomino has the greatest potential for strong scaling on larger clusters.
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Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is an optimization problem which consists in �nding the

shortest round-trip through a number of cities. In our implementation, we use an exact Branch &

Bound algorithm. The nearest neighbor heuristic is used to favor exploration of cities that are close

to the current city �rst. The length of the best round-trip found so far is kept in a shared object on

every place in the computation. Our library periodically checks on each place if a better bound has

been found and, if so, recursively propagates this newly found bound to remote places through the

lifelines.

We should note that the non-deterministic nature of the load balancer can introduce great varia-

tions in the execution times of this problem as it may in�uence how early better solutions are found

and parts of the exploration tree trimmed. This problem is also prone to poor scalability when tested

in strong scaling due to the parallel exploration of branches that would be trimmed out if a better

bound was found.

UTS

The Unbalanced Tree Search9 consists in a depth-�rst traversal of a randomly-generated tree. We

use geometric trees in which the number of children of each tree node follows a geometric distribution

of average 4. The resulting tree is unbalanced by construction as two nodes on the same level are

unlikely to spawn similar size sub-trees. The size of the exploration is adjusted by setting a maximum

depth to the tree. The shape and the size of the tree are entirely deterministic following an initial

seed and the maximum depth. Parallel traversal is done by exploring nodes that have not been

traversed yet and whose sub-trees have yet to be generated.

We conduct the evaluation of this problem in weak-scaling, that is, we use increasingly larger trees

for increasingly larger clusters.

4.2 On many-core clusters

We �rst perform an evaluation of the global load balancer library without the tuning mechanism on

the OakForest-PACS supercomputer to determine the best performance achievable on each of our

problems. Due to space constraints, we can only show a selection of the relationship between the

grain size and the execution times on our problems in Figure 3. On each problem, we have a range

of acceptable values grain values, which can be wide (such as Pentomino) or more narrow (like TSP

and UTS). Although the range of acceptable grain sizes tend to overlap between di�erent clusters,

they can shift or get narrower as we increase the cluster size. We therefore need to conduct this

thorough evaluation for all cluster con�gurations to identify the best performance possible for each

of our problem. We then compare how both our tuning mechanisms fare against this best �Fixed

Grain� executions. The main hardware characteristics of the OakForest-PACS supercomputer are

summarized in Table 1 while the problem parameters used are shown in Table 2. The results are

summarized in Figure 4. Part of the results presented here were �rst published in the PMAM'20

workshop3.

As a general remark, both our tuning mechanism operate as intended on NQueens, Pentomino, the

Traveling Salesman problems, and UTS, delivering close to the best �xed grain executions recorded.
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FIGURE 3 Relationship between the grain size and the execution time of our four benchmarks when running on 16 hosts of the OakForest-

PACS supercomputer
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FIGURE 4 Execution time comparison between the best �xed grain and our �split/merge� and �merge/empty� tuning mechanisms on the

OakForest-PACS supercomputer

We even achieve slightly better performance on the TSP when running on 4 to 16 hosts with our new

�merge/empty� tuner. We also note that our new �merge/split� design shows identical performance

(on Pentomino and UTS) or better performance (on N-Queens and TSP) than the �split/merge�

tuner. This is a net improvement over our �rst design and is not the only advantage brought about

by the new criterion, as we will discuss in the following section.

4.3 Robustness of the merge/empty criterion over the split/merge criterion

To demonstrate the robustness of our new tuner design, we implemented two variants of the

Unbalanced Tree Search (UTS) benchmark which di�er in the implementation of their split
method.

� UTS split 1: The intra-bag gives away its entire contents when the split method is called on it.

As a result, the maximum split/merge ratio is 1, and lower if the intra-bag is redundantly fed

as is the case at lower grain sizes.

� UTS split 2: The intra-bag makes a diagonal cut for each work fragment received. The number

of split operation needed to empty the intra-bag is therefore proportional to the number of

times it was fed. As a result, the split/merge ratio remains largely the same, regardless of if

there were redundant merges made.
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The relationship between the grain size, the execution time, and the two ratios that we used in our

tuning mechanisms to detect when the grain size is too low are presented in Figure 5. We can see

that the execution time depends on the proper balance of the grain chosen for the execution. We can

also recognize just how much the intra-bag is redundantly fed at lower grain sizes by looking at the

�merge/empty ratio� plot. We note that the merge/empty curves of the regular UTS implementation

and the two variants are almost identical. We therefore expect our new tuning mechanism which

relies on this criterion to be able to accommodate for these vastly di�erent splitting implementations.

On the contrary, the split/merge ratio on which our previous design relies shows great di�erence.

We had chosen to describe programs whose split/merge ratio was below 2 as having a grain size too

low. This worked for the original splitting implementation (labeled �UTS� in Figure 5) but will not

for the other two implementations.

With the �split 1� and �split 2� variants, the �split/merge� ratio remains respectively below or

above 2 regardless of the grain size used. As a result, our original �split/merge� tuner will fail to

recognize the situation correctly for both of these problems and yield poor performance.

Looking at the results on the two UTS variants in Figure 4, the limits of our �split/merge�

tuner become evident, sometimes presenting execution times more than double the best �xed grain

achieved. By contrast, our new design yields execution times almost identical to the best �xed grain

executions on the �split 1� variant. The largest gap occurred on the 16 hosts con�guration with an

execution time longer by just 30 seconds.

On the �split 2� variant, our new tuner design clearly outperforms our �rst �split/merge� design.

However, we observe a certain performance gap to the best �xed grain executions with run times

about 20 % longer (the largest gap being 40 % on the 16 nodes execution). This can be explained
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by the grain value chosen by our tuning mechanism. Figure 6 presents the evolution of the grain

size as chosen my our �merge/empty� tuner on an eight host execution of the TSP and the UTS

�split 2� variant. On the TSP execution, our tuner mechanism behaves as intended, increasing the

grain size from its initial value on all the hosts. However, on the UTS split 2 variant, Place 0 keeps

a very small value for the �rst 5 minutes presented here. It is only in the last �ve seconds of this

execution (not shown in Figure 6) that the grain size on host 0 is �nally increased. We are able to

account for this phenomenon, which we discuss in Section 4.4.

4.4 Limitations when load-balance operations are not needed

So far, we focused our analysis on clusters of many-core processors. However, nothing is preventing

us from using our library on clusters of ordinary multi-core processors. In fact, this load-balancing

scheme was �rst designed for such systems7.

We were concerned that our tuning mechanism would not work with fewer workers per place. In

particular, the criterion that determines if the grain size is too low relies on multiple worker threads

entering the same branch of their main routine before one of them completes it. As we arbitrarily

choose to launch our computation with a small grain value, our tuning mechanism may fail to raise

the grain size from this original value to a satisfactory level by lack of contention in the workers'

main procedure.

We evaluated the performance of our tuning mechanisms on our Beowulf server which is �tted

with two 12-core Intel Xeon processors. The hardware details of this server are presented in Table 1.

We evaluate the performance of our four benchmarks in three di�erent con�gurations:

� 24(worker/process)x1(process)

� 12(worker/process)x2(process)

� 6(worker/process)x4(process)

The results are presented in Figure 7. With the exception of the UTS benchmark, executions

with either of our tuning mechanisms show a performance gap compared to the best performance

obtained with �xed grain executions. However, the cause of these gaps was not what we anticipated.

A detailed look at the grain chosen by our tuning mechanisms allows us to obtain more insights.

Representative grain evolutions over time for each cluster con�guration are presented in Figure 8.

On the execution with a single process, the tuner keeps the grain size at its initial value of 10 for

a long time. On the particular execution shown in Figure 8, only after 2 and a half minute have

elapsed does the grain size is suddenly increased to the ideal range around 10 thousands.

We can explain this phenomenon by the nature of the criteria used to detect that the grain is too

low. In its current design, the intra-bag needs to be emptied for the tuner to obtain data to be able

to make its decision. In such an execution where all the work is concentrated on the single process

participating in the computation, the workers all obtain a large amount of work to begin with. They

will therefore be able to keep going through their loop without running out of work for a long time.

Moreover, a large amount of computation is likely to have been placed in the intra-bag. This means
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that even when the workers start running out of work, it may also take a while to empty the intra-

bag a �rst time. Only when load imbalance actually occurs on the single place of the computation

is the tuning mechanism able to recognize that the grain is too low and �nally increases it.

We see a similar pattern on the two- and four-process executions, with place 0 keeping its grain

value at its initial value of 10 up to the very end of the computation where it �nally jumps. On the

other places however, the grain size is increased by the tuning mechanism from the start. This can

be explained by the fact that these places obtain a fragment of the computation held by place 0

through their lifeline steals. This fragment being smaller, they encounter load imbalance very soon

in the computation.

This is con�rmed by how frequently the intra-bag is emptied throughout the computation. If

we focus on Figure 9, we can see that the places 1, 2, and 3 face situations where the intra-bag
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is emptied from the start of the computation. By contrast, the intra-bag is emptied on place 0

after 240 seconds have elapsed in the 270 second execution. This reassures us in the capability of

our tuning mechanism to operate on systems with fewer concurrent workers as it appears that the

reduced number of worker per place is not what causes the tuner to fail. Rather it is the lack of load

imbalance that prevents it from recognizing situations where the grain is too low.

We believe this also explains the performance gap we saw with our �merge/empty� tuner design

on the UTS split 2 variant on the OFP supercomputer. The particular implementation of the UTS

split 2 variant (which yields little work when the split method is called on a bag) causes the

workload to have greater di�culty trickling down from the bags used for load balancing on place

0. As a result, it will take longer for the intra-bag of place 0 to get emptied and for the tuning

mechanism to detect the overhead.

We have attempted to resolve this problem by spuriously setting the intraBagEmpty �ag to true,
making workers feed the intra-bag as if it had being emptied (see lines 12�23 in Listing 3). However,

these e�orts have yet to come to fruition.

Conclusion on the new “merge/empty” tuner design

Our new tuning mechanism is more robust than our �rst design and is capable of correctly adjusting

the grain size of the computation on both cluster of many-core processors and on more common

multi-core environments. However, to be able to successfully achieve this, it requires some load

balance operations to take place. In cases where the computation remains concentrated on a single

host, either through an inadvisable work splitting implementation (such as the UTS �split 2�

variant) or by running on a small (maybe single host) cluster, it is possible for our current design

to miss the presence of overhead and keep grain sizes that are too low to deliver good performance.

5 RELATED WORKS

The most popular programming model for parallel computation relies on the Fork/Join model.

Typical implementations in shared memory processor rely on a pool of threads, with each thread

having its own queue of tasks to process. Tasks can generate new tasks which are added to the

worker's queue. When a worker runs out of work, it attempts to steal tasks from a neighboring thread

to resume its computation. Several works elaborate on this scheme to reduce the overhead due to

the task creation, such as Wang et al10, or in�uence the tasks stolen to favor cache consistency,

as in LAWS11 and Constrained Work Stealing12. Min, Iancu and Yelick also present their own

implementation of a distributed task library over UPC. In HotSLAW13 they de�ne a hierarchy that

matches the characteristics of the (distributed) hardware at hand (cache, socket, and node level).

Workers that run out of work try to steal on workers that are close to them �rst, only stealing from

workers further away in the hierarchy if failing to obtain some from close workers. Moreover, they

adapt the number of tasks stolen at each level, with closest level steals stealing only 1 or 2 tasks and

remote steals stealing half of the tasks contained in the queue. This is a characteristic not supported

under our current global load balancer design as we do not control how much work is transferred

when a bag is split.
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Our tuning mechanism bears some resemblance with the adaptive grain mechanism presented

by Cong et al. in XWS14. They reuse the task-parallelism model of Cilk and enhance it with the

capabilities of the X10 language to target graph algorithms. In their target applications, each node

of the graph at hand represents one task. Coarsening is achieved by grouping the nodes in the

workers' queues in batches. Working threads always process and steal batches in their entirety.

The appropriate batch size for each worker is dynamically adjusted following a heuristic on the

current size of its queue. The abstractions o�ered by the Lifeline-based GLB are di�erent. First,

while programmers may choose to implement their bag as double-ended queue of tasks, there is not

obligation for them to do so. Secondly, our library guarantees that bags are only manipulated by a

single thread at a time. Load balance operations using either of the shared work reserve are done in

mutual exclusion whereas in XWS, a worker is allowed to steal from another while it is processing a

batch. Moreover, in GLB there is no relationship between the size of the grain used and the amount

of work which can be stolen from a bag.

Hiraishi, Yasugi, Umatani, and Yuasa introduced their own programming and execution framework

dedicated to backtrack applications called Tascell15. By introducing speci�c constructs into a C

program, they eliminate the need for the programmer to explicitly spawn tasks. Instead when a

worker runs out of work, their runtime automatically makes one of the concurrent workers backtrack

its search to a fork-able stage in the exploration tree, perform the necessary work transfer, and

return to its prior state in the exploration tree. Their approach eliminates the costly data copies

that are necessary when preemptively spawning tasks as load balance is only performed on a �per

need� basis. They are also able to maintain a certain degree of data locality by maintaining a �xed

"workspace" for each worker thread. In these two regards, our framework approach is also e�ective.

Our implementations of the exploration problems have some similarities with the techniques

described by Leroy et al16. In their article, the authors describe a technique that allows them to

number all the nodes of a permutation combinatorial problem using a single interval, regardless

of where they are located in the tree. A single pair of integers for the lower bound and the upper

bound is therefore su�cient to describe an entire sub-tree and splitting the exploration is reduced

to merely splitting this single interval. In our implementations, we rely on two arrays to describe

the intervals of nodes for each level of the exploration tree. This allows us to represent the tree in

a more compact way than a pool of nodes kept in a doubly-ended queue. Splitting the tree is done

by duplicating these lower and upper bound arrays and matching the lower bound of the thief to

the upper bound of the victim, e�ectively giving away half of the unexplored nodes of each level.

Posner and Fohry also experimented with the APGAS for Java library17 on which our implemen-

tation of the Global Load Balancer relies. They introduced a new construct to the library, asyncAny,
which creates an asynchronous task that can be executed on any place of the cluster. They then

use the same lifeline scheme to dynamically relocated these asynchronous tasks between compute

nodes. Their implementation of the TSP problem uses the same heuristics as ours but requires many

array copies as they spawn as many asynchronous tasks as there are nodes in the �rst layers of the

exploration tree. As a result, their implementation is about twice as slow as ours.

All the approaches mentioned above focus on spreading the work to keep as many computing

resources busy for as long as possible. In Palirria18, Varisteas and Brorsson tackle the reverse problem
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consisting of matching the computing resources to the (varying) degree of parallelism of an applica-

tion. On single applications, they are able to maintain ideal performance with higher e�ciency by

adjusting the number of allocated cores to the computation based on its potential for paralleliza-

tion. Similar to our approach, they are able to make a decision on whether to change the number

of cores allocated to their program based on the measurement of some selected runtime metrics

over the most recent elapsed interval. Their approach makes it possible to envision several programs

running concurrently and making the most of the available computing power of a shared memory

processor. Transposing their approach to distributed environments seems feasible.

6 CONCLUSION

We integrated a tuning mechanism into our Java implementation of the multithreaded lifeline-based

global load balancer which dynamically adjusts the grain size of the computation at hand based

on some selected runtime metrics. We evaluated the capability of our tuning mechanism to adjust

the granularity on four backtrack-search applications on a many-core supercomputer and a Beowulf

server. We manage to automatically obtain ideal performance on all four of our benchmarks in our

supercomputer environment. We also established the robustness of our tuning mechanism against

signi�cant variations in problem implementation.

Finally, we have identi�ed a limit to our current system which requires load imbalance to be able

to correctly adjust the granularity of the computation at hand. In future work, we will attempt

to integrate other criteria into the decision process of our tuning mechanism to make it capable of

handling situations of reduced load imbalance.
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TABLE 1 Characteristics of the environments used for our evaluation

Characteristics Oakforest-PACS Beowulf cluster

Number of servers 8208 1

CPU Intel Xeon Phi 7250 (Knights Landing) Intel Xeon E5-2680 v3

CPU per node (threads) 1 (68) 2 (12 + 12)

Frequency 1.4 GHz 2.5 GHz

Memory 96 GB(DDR4) + 16 GB(MCDRAM) 135 GB (DDR4)

Interconnections Intel Omni-Path (100 Gbps)

Java version OpenJdk v1.8.0_222 OpenJdk v1.8.0_172

TABLE 2 Problem settings used for the experiments involving varying number of workers on the Oakforest-PACS supercomputer and our

Beowulf server

Problem Oakforest-PACS Beowulf server

UTS Branching factor: 4, Depth: 18 on 4 hosts, 19 on 8 and

16 hosts, 20 on 32 hosts, 21 on 64 hosts

Branching factor: 4, Depth: 17

Pentomino One-sided, Board width: 9, Board height: 10, with

symmetry removal

One-sided, Board width: 9, Board height: 10,

with symmetry removal

N-Queens N = 19 N = 17
TSP 35 cities 24 cities
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