神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/90009433
このアイテムのアクセス数:
112
件
(
2025-05-20
13:52 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
90009433 (fulltext)
pdf
693 KB
37
メタデータ
ファイル出力
メタデータID
90009433
アクセス権
open access
出版タイプ
Version of Record
タイトル
DOC-IDS: A Deep Learning-Based Method for Feature Extraction and Anomaly Detection in Network Traffic
著者
Yoshimura, Naoto ; Kuzuno, Hiroki ; Shiraishi, Yoshiaki ; Morii, Masakatu
著者名
Yoshimura, Naoto
著者ID
A3179
研究者ID
1000030882386
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=912f4b3c221010bd520e17560c007669
著者名
Kuzuno, Hiroki
葛野, 弘樹
クズノ, ヒロキ
所属機関名
工学研究科
著者ID
A0372
研究者ID
1000070351567
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=210a85879e6855c4520e17560c007669
著者名
Shiraishi, Yoshiaki
白石, 善明
シライシ, ヨシアキ
所属機関名
工学研究科
著者ID
A0450
研究者ID
1000000220038
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=c99ab490e69627de520e17560c007669
著者名
Morii, Masakatu
森井, 昌克
モリイ, マサカツ
所属機関名
工学研究科
言語
English (英語)
収録物名
Sensors
巻(号)
22(12)
ページ
4405
出版者
MDPI
刊行日
2022-06
公開日
2022-07-05
抄録
With the growing diversity of cyberattacks in recent years, anomaly-based intrusion detection systems that can detect unknown attacks have attracted significant attention. Furthermore, a wide range of studies on anomaly detection using machine learning and deep learning methods have been conducted. However, many machine learning and deep learning-based methods require significant effort to design the detection feature values, extract the feature values from network packets, and acquire the labeled data used for model training. To solve the aforementioned problems, this paper proposes a new model called DOC-IDS, which is an intrusion detection system based on Perera's deep one-class classification. The DOC-IDS, which comprises a pair of one-dimensional convolutional neural networks and an autoencoder, uses three different loss functions for training. Although, in general, only regular traffic from the computer network subject to detection is used for anomaly detection training, the DOC-IDS also uses multi-class labeled traffic from open datasets for feature extraction. Therefore, by streamlining the classification task on multi-class labeled traffic, we can obtain a feature representation with highly enhanced data discrimination abilities. Simultaneously, we perform variance minimization in the feature space, even on regular traffic, to further improve the model's ability to discriminate between normal and abnormal traffic. The DOC-IDS is a single deep learning model that can automatically perform feature extraction and anomaly detection. This paper also reports experiments for evaluating the anomaly detection performance of the DOC-IDS. The results suggest that the DOC-IDS offers higher anomaly detection performance while reducing the load resulting from the design and extraction of feature values.
キーワード
deep learning
feature extraction
anomaly detection
convolutional neural network
autoencoder
intrusion detection
カテゴリ
工学研究科
学術雑誌論文
権利
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
関連情報
DOI
https://doi.org/10.3390/s22124405
詳細を表示
資源タイプ
journal article
eISSN
1424-8220
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る