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Abstract

The lift force acting on an ellipsoidal bubble is known to change its sign, depending on

the bubble aspect ratio. The lift reversal has often been modeled in terms of the Eötvös

number defined by using the bubble major axis to account for the deformation effect on the

negative lift component. This paper presents a physically reliable scaling accounting for the

two mechanisms in competition related to the two sources of vorticity: the lift controlled by

the shear flow and contribution from the interfacial vorticity source. This scaling is used for

developing a correlation that makes possible the lift modeling with the reversal.
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1. Introduction

Multi-fluid models and bubble tracking methods (Tomiyama, 1998; Lucas et al., 2007;

Lucas and Tomiyama, 2011; Hosokawa and Tomiyama, 2009; Darmana et al., 2009) have been

widely used to simulate bubbly flows in practical systems. These methods require models of

hydrodynamic forces acting on bubbles, e.g. the drag and lift forces. Hence reliable models of5

these forces are required to obtain accurate predictions. Tomiyama et al. (1998) proposed a

drag correlation for a wide range of flow conditions. This correlation has been widely utilized

in bubbly flow simulations. The drag coefficient, CD, in the viscous force dominant regime

was developed based on the Hadamard-Rybczynski model (Hadamard, 1911; Rybczynski,

1911) extended by accounting for an inertial effect and Levich’s drag model. The aspect10
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ratio of a bubble however does not appear in this correlation. Rastello et al. (2011) extended

Mei’s drag correlation for clean spherical bubbles (Mei et al., 1994) to account for the effects

of the bubble aspect ratio. The Rastello correlation has been confirmed to be more accurate

than other available drag correlations for the viscous force dominant regime. Its functional

form is however somewhat complicated. Chen et al. (2019) therefore proposed a simpler drag15

correlation accounting for the aspect ratio effect by extending the Tomiyama correlation,

and the correlation makes use of the aspect ratio correlation proposed by Aoyama et al.

(2016). Drag coefficients of clean ellipsoidal bubbles in the surface tension force dominant

regime can be accurately evaluated using another Tomiyama’s correlation (Tomiyama et al.,

2002) expressed in terms of the Eötvös number. Ziegenhein et al. (2018) confirmed that the20

drag correlation proposed by Bozzano and Dente (2001) also agrees with their experimental

data in the surface tension force dominant regime. The drag coefficients of clean ellipsoidal

bubbles can thus be accurately evaluated by using the available correlations. On the other

hand, the accuracy of available lift coefficient correlations is still insufficient.

A shear-induced lift force acting on a bubble is usually expressed as (Žun, 1980; Auton,25

1987; Auton et al., 1988; Legendre and Magnaudet, 1998)

FL = −CL(ρLπd
3/6)VR ×∇× VL (1)

where CL is the lift coefficient, ρL the liquid density, d the sphere-volume-equivalent bubble

diameter, and VR the bubble velocity relative to the liquid velocity VL. Auton (1987) derived

an analytical solution, CS∞
L , of CL for a spherical bubble in a linear shear flow of an inviscid

fluid:30

CS∞
L = 1/2 (2)

where the superscript S denotes a spherical bubble. Legendre and Magnaudet (1998) carried

out numerical simulations of spherical bubbles in linear shear flows. Their numerical results

showed that CS
L approaches CS∞

L as the bubble Reynolds number, Re, increases and they

obtained the following empirical correlation for bubbles of intermediate and high Reynolds

numbers:35

CSH
L =

1

2

(
1 + 16/Re

1 + 29/Re

)
(3)
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where the superscript H denotes high Reynolds numbers and

Re = ρLVRd/µL (4)

where µL is the liquid viscosity and VR = |VR|. Legendre and Magnaudet (1997, 1998)

applied a matched asymptotic procedure to a low Re bubble and derived the following CL

in the Stokes regime:

CSL
L =

6

π2

2.255√
SrRe [1 + 0.2Re/Sr]3/2

(5)

where the superscript L denotes low Reynolds numbers (Re < 1) and Sr is the dimensionless40

shear rate defined by

Sr = Ωd/VR (6)

and Ω is the shear rate (vorticity) of a linear shear flow. Legendre and Magnaudet (1998)

combined Eqs. (3) and (5) to cover a wide range of Re as follows:

CS
L = ([CSL

L ]2 + [CSH
L ]2)1/2 (7)

This correlation was confirmed to give good evaluations of CL for spherical bubbles for a

wide range of Re (Aoyama et al., 2017).45

A deformed bubble is known to have a negative lift coefficient and laterally migrates in

the direction opposite to a spherical bubble. Kariyasaki (1987) found in his experimental

study on the motion of bubbles in linear shear flows that the direction of the lift force

acting on a deformed bubble is opposite to that on a solid sphere. The reversal of the lift

force was also observed in numerical simulations of two-dimensional bubbles (Tomiyama50

et al., 1993), in experiments of ellipsoidal bubbles (Tomiyama, 1998; Tomiyama et al., 2002;

Tomiyama, 2004) and in three-dimensional single bubble simulations (Ervin and Tryggvason,

1997; Bothe et al., 2006; Adoua et al., 2009; Dijkhuizen et al., 2010; Hayashi and Tomiyama,

2018). The above-mentioned CL models for spherical bubbles give positive values at any

Re, and therefore, the negative component of the lift force has been considered to have a55

relation with the shape deformation of a bubble. Adoua et al. (2009) carried out numerical

simulations of ellipsoidal bubbles of various aspect ratios to investigate the mechanism of
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the reversal of the lift force. They pointed out that the interaction between the vorticity, Ω,

of the uniform shear and the vorticity, ω, generated at the bubble surface plays a key role in

the lift reversal. Tomiyama et al. (2002) took into account the deformation effect by using60

the major axis, dH , of a bubble as the characteristic length scale to correlate CL:

CL =

 min[0.288 tanh(0.121Re), fT (EoH)] for EoH < 4

fT (EoH) for 4 ≤ EoH ≤ 10.7
(8)

where

fT (EoH) = 0.00105Eo3H − 0.0159E2
H − 0.0204EoH + 0.474 (9)

and EoH is the Eötvös number defined by

EoH = ∆ρgd2H/σ (10)

Here ∆ρ is the difference between the liquid and gas densities, g the magnitude of the accel-

eration of gravity and σ the surface tension. The function of Re (CL = 0.288 tanh(0.121Re))

is for small bubbles of positive lift, whereas fT (EoH) is used for deformed bubbles of positive

or negative lift. Dijkhuizen et al. (2010) carried out numerical simulations of single bubbles

in linear shear flows and correlated CL in the following form:

CL = min
[
CS
L , fD(EoH)

]
(11)

fD(EoH) = 0.5− 0.11EoH + 0.002Eo2H (12)

where CS
L is given by Eq. (7). Ziegenhein et al. (2018) and Lucas and Ziegenhein (2019)

proposed the following empirical correlation for EoH > 1.2:

CL = max [fZ(EoH),−0.33] (13)

fZ(EoH) = 0.5− 0.1EoH + 0.002Eo2H (14)

where the second coefficient of fZ was slightly modified from that of fD by fitting the

functional form to Ziegenhein’s data for bubbles in a low viscosity system. Figure 1 compares65

CL data (Aoyama et al., 2017) with the correlations, fT , fD and fZ , for deformed bubbles.

As Aoyama et al. (2017) pointed out, the data for various Morton numbers, M , cannot be
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correlated only with EoH , and the functions of EoH for the Eo-regime cannot account for

the Morton number dependence, where M is defined by

M =
µ4
L∆ρg

ρ2Lσ
3

(15)

Though an accurate evaluation of the lift force is indispensable in multi-fluid and bub-70

ble tracking simulations to obtain good predictions, the available CL correlations do not

satisfactorily account for the characteristics of CL of ellipsoidal bubbles. In this study we

consider physical arguments for scaling of CL of single clean ellipsoidal bubbles by making

use of the experimental data of CL (Aoyama et al., 2017) to obtain the basis for development

of a CL correlation applicable to a wide range of relevant dimensionless parameters and to75

reproduce the lift reversal induced by deformation.
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Figure 1: CL plotted against EoH and comparison with available correlations (data quoted from Aoyama

et al. (2017))

2. Dataset

Aoyama et al. (2017) carried out experiments on single air bubbles in liner shear flows to

obtain a CL database. The measured CL, CD, Re, Sr and bubble aspect ratios, χ (= dH/dV ),

were tabulated in their paper, where dV is the minor axis of an ellipsoidal bubble. It should80

be noted that the aspect ratio, E, in Aoyama et al. (2017) is the inverse of the present
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Figure 2: Dataset of CL quoted from Aoyama et al. (2017) (−6.6 ≤ logM ≤ −3.2)

definition, i.e. E = 1/χ. Liquid flows in their experiments were laminar and no turbulent

effects were present in the transverse motion of bubbles.

Figure 2 shows the dataset of CL. The range of M is −6.6 ≤ logM ≤ −3.2. The

Aoyama data cover low to intermediate Re, i.e. 0.1 < Re < 120, in which the bubble shape85

changes from sphere to ellipsoid with increasing Re. The CL for Re < 1 decreases as Re

increases. The rate of decrease in CL becomes smaller for Re > 1, while CL decreases and

falls into the negative lift regime at a certain Re depending on M . The ranges of the relevant

dimensionless groups in the dataset are shown in Table 1. The CD in the dataset are also

shown in Fig. 3.90
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Figure 3: Dataset of CD quoted from Aoyama et al. (2017) (−6.6 ≤ logM ≤ −3.2)

Table 1: Ranges of dimensionless groups in dataset

logM −3.2 −3.9 −4.8 −5.5 −6.6

Number of data 56 114 139 146 107

Re 0.11-14 0.22-28 0.26-51 0.17-71 5.7-120

Eo 0.11-4.2 0.10-5.0 0.063-5.0 0.027-3.7 0.14-2.6

Sr 0.088-0.43 0.076-0.42 0.059-0.34 0.048-0.26 0.034-0.077

χ 1.0-1.35 1.0-1.6 1.0-2.0 1.0-1.96 1.0-2.0

CD 2.3-169 1.6-81 1.2-76 0.93-121 0.66-4.3

CL −0.042-5.7 −0.084-3.3 −0.28-5.22 −0.14-5.4 −0.16-0.44

Figure 4 shows a Re-Eo map (Tomiyama et al., 1998) and the dataset are plotted on it,

where Eo is the Eötvös number defined by

Eo = ∆ρgd2/σ (16)

The dashed line represents the transition boundary between the Re-controlling regime (CD =

H/Re where H = 48 (Levich, 1962) or 16(1 + 0.15Re0.687) (Schiller and Nauman, 1933))

and the Eo-controlling regime (CD = 8Eo/3(Eo + 4)). Most of the data lie below the95

transition boundary and Aoyama et al. (2017) confirmed that bubbles rose rectilinearly with

no path/shape oscillation, and therefore, they were in the viscous force dominant regime.
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Figure 4: Dataset on Re-Eo plane (Tomiyama et al., 1998). Labels represent logM

3. Scaling for Lift Reversal

3.1. Effects of Deformation and Reynolds Number on Negative Lift

Naciri (1992) showed that CL of a bubble of non-deformable ellipsoidal shape in a weak100

inviscid shear flow increases with increasing the shape deformation. Numerical simulations

of ellipsoidal bubbles carried out by Adoua et al. (2009) reproduced Naciri’s results, and

they obtained the following empirical correlation:

CL = 0.5gN(χ) (17)

where gN is the deformation effect multiplier given by

gN = 1 + 1.22(χ− 1) (18)

This correlation can be regarded as an extension of Auton’s solution for a spherical bubble105

at high Re, i.e. CS∞
L = 1/2. The χ increases with increasing Re, and therefore, according

to Eq. (17) CL increases with Re. This tendency does not agree with the experimental

results as shown in Fig. 5, and therefore, the Naciri solution does not serve as a base for
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Figure 5: CL data of logM = −5.5 and −6.6 compared with available CL correlations, i.e. Eqs. (2), (7) and

(17)

the description of the lift for large Re. The deviation of Eq. (17) from the data may be due

to the shape effect, i.e., the bubble shape is not an exact ellipsoid and shows fore-aft and110

left-right asymmetries in reality, which was not accounted for in their simulation in spite of

the strong sensitivity of the lift to shape deformation. The dependence of CL on Re observed

in the experiments was reproduced in level set simulations (Hayashi and Tomiyama, 2018),

in which the deviation of the bubble shape from the exact ellipsoid was accounted for. This

fact supports the above speculation.115

As Re increases, Eq. (3) asymptotically approaches

CS
L = 0.5− 6.5

Re
(19)

The viscous contribution to the lift force behaves like Re−1 and it coincides with the well-

known behavior of the drag force, i.e. CD = 48/Re (Levich, 1962). This drag force results

from the existence of a thin layer of vorticity on the bubble surface of magnitude ω = O(U/r),

where r = d/2 (Legendre, 2007). When a bubble deforms while keeping an ellipsoidal shape,120

the vorticity generated at the bubble surface is known to increase with the shape deformation
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Figure 6: Deformation effect multiplier, f(χ) (= (1/2−CL)Re). The lines represent f(χ) = αχβ (see Table

2 for the values of α and β).

as ω = O(χ3U/rH), where rH = dH/2 (Adoua et al., 2009; Magnaudet and Mougin, 2007).

As a consequence a similar effect on the bubble lift can be speculated as

CL = 0.5− f(χ)

Re
(20)

where f(χ) is a function accounting for the negative lift component due to shape deformation.

As explained in Adoua et al. (2009) the tilt and stretching of the interfacial vorticity results125

in the generation of a downstream axial vorticity in the opposite direction of rotation, which

is generated by the incident vorticity of the shear flow. This results in a reversal of the lift.

Let us check the validity of the speculation for the CL data by using Eq. (20). Figure 6

shows f(χ) = (0.5 − CL)Re, which clearly shows that the deformation effect on CL is well

scaled with the factor of Re−1 and χ is a primal factor correlating the deformation effect.130

The lines are the following fitting equation: f(χ) = αχβ, where the coefficients, α and β, are

adjusted for each Morton number system as given in Table 2. Equation (20) can therefore
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Figure 7: Eq. (21) with coefficients in Table 2. Closed symbols: calculated values, Open symbols: experi-

mental data.

be rewritten as

CL = 0.5− αχβ

Re
(21)

Comparisons between Eq. (21) and the CL data are shown in Fig. 7. Equation (21) is able

to reproduce the CL decrease and the lift reversal. However Eq. (21) cannot be applied to135

low Re. Indeed, when Re→ 0 the trend in Re−1 dominates and imposes a decay of the lift.

Table 2: Coefficients in Eq. (21)

logM −3.2 −3.9 −4.8 −5.5 −6.6

α 3.1 3.0 2.8 2.4 2.3

β 2.9 3.5 3.8 4.4 5

3.2. Physical Description of Lift Reversal

The simple analysis in the previous section clearly showed that (1) the functional form of

the viscous contribution in the negative lift is similar to the drag, i.e. Re−1, and (2) the shape
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deformation increases the negative lift. In fact, the relation, Eq. (21), would be justified as140

the consequence of two conjugate effects: the drag is proportional to the interfacial vorticity

(Legendre, 2007) and the lift reversal is induced by the interfacial vorticity (Adoua et al.,

2009)). Therefore the reversal in the lift of ellipsoidal bubbles can be connected to the drag:

CL = 0.5−G(χ,Re)CD (22)

where G(χ,Re) is a function of χ and Re.145

Let us discuss the contributions of χ and Re to the lift reversal by investigating the

functional form of CD in terms of χ and Re. Legendre (2007) pointed out that CD of

ellipsoidal bubbles is expressed as

CD =
16

Re
fd(χ,Re)ω

∗
max(χ,Re) (23)

where ω∗max (= ωmaxr/U) is the dimensionless maximum vorticity produced at the bubble

surface and fd(χ,Re) the deformation effect multiplier. Although numerical results of fd150

and ωmax were graphically given in Legendre (2007), their functional forms have not been

obtained. In the following, we therefore make use of the vorticity in the infinite Reynolds

number limit (Magnaudet and Mougin, 2007) and the deformation multiplier (Legendre,

2007) obtained by using Moore’s drag model for high Reynolds number bubbles (Moore,

1965) to express the drag as CD(χ,Re). Magnaudet and Mougin (2007) derived ω∗max as a155

function only of χ in the infinite Re limit, i.e.

ω∗∞max(χ) =
2χ5/3(χ2 − 1)3/2

χ2 sec−1 χ− (χ2 − 1)1/2
(24)

where ω∗∞max → 4χ8/3/π as χ becomes very large, i.e. sec−1 χ → π/2. Moore (1965) derived

the following CD model of ellipsoidal bubbles at high Re:

CD =
16

Re

χ4/3(χ2 − 1)3/2
[
(χ2 − 1)1/2 − (2− χ2) sec−1 χ

]
[χ2 sec−1 χ− (χ2 − 1)1/2]

2 (25)

By combining this model and Eq. (24), f∞d (χ) (= fd(χ,∞)) can be expressed as (Legendre,

2007)160

f∞d (χ) =
1

2χ1/3

(χ2 − 1)1/2 − (2− χ2) sec−1 χ

χ2 sec−1 χ− (χ2 − 1)1/2
(26)
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Equation (23) can therefore be written as

CD =
16

Re
F (χ,Re)f∞d ω

∗∞
max (27)

where F (χ,Re) is a multiplier connecting CD with that at high Re, i.e. CH
D (χ,Re) =

16f∞d ω
∗∞
max/Re (Moore drag). The F (χ,Re) calculated using the present dataset is shown

in Fig. 8. It increases with increasing χ and approaches a constant value depending on M .

Chen et al. (2019) proposed the following empirical drag correlation for ellipsoidal bubbles165

in the viscous force dominant regime:

CD =
16

Re
[1 + φ(χ,Re)] (28)

where the second term in the brackets is a function for the deformation-inertia effect multi-

plier:

φ(χ,Re) = 0.25χ1.9Re0.32 (29)

The M dependence of F (χ,Re) is well expressed using φ as shown in Fig. 9. The ratio,

F (χ,Re)/φ(χ,Re), of deformed bubbles is a function of χ, and F (χ,Re) can be fitted as170

F (χ,Re) = 0.91f∞d (χ)3.65φ(χ,Re). Hence

CD(χ,Re) =
16

Re
(0.91f∞d (χ)4.65)φ(χ,Re)ω∗∞max(χ) (30)

It should be noted that this expression is valid for deformed bubbles of χ larger than about

1.1.
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Figure 8: Function, F (χ,Re) = CDRe/(16f∞d ω∗∞max), connecting CD with that at high Re
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Figure 9: F (χ,Re)/φ(χ,Re)

Then let us consider the functional form of G in Eq. (22). The G calculated from the

database is shown in Fig. 10, in which f∞d is used for the horizontal axis. The collapse175

of the data onto the single curve expressed as 0.086/f∞4.65
d means that G is a function of

χ and the product GCD can be approximated as GCD ∼ 16γφω∗∞max/Re, where γ = 0.078.

Substituting this approximation into Eq. (22) yields

CL = 0.5− γ 16

Re
φ(χ,Re)ω∗∞max(χ) (31)
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Figure 10: G(χ,Re) in Eq. (22)

Expanding this equation using Eqs. (24) and (29) gives

CL = 0.5− γ 4χ1.9Re0.32

Re

[
2χ5/3(χ2 − 1)3/2

χ2 sec−1 χ− (χ2 − 1)1/2

]
(32)

This equation well expresses the decay of CL due to the increase in the negative lift as Re180

increases as shown in Fig. 11. Thus it has become clearer that the negative lift is correlated

with the drag, and in both forces ω plays an important role. It is interesting that the part

of CD, i.e. f∞4.65
d , relating with the correction factor f∞d does not appear in the negative

lift.

4. Lift Coefficient Correlation185

The lift reversal has been well scaled in terms of Re and χ. Then we have to find an

appropriate expression for the lift coefficient for spherical and ellipsoidal bubbles with a

good compromise between physical consistency and fitting efficiency. The functional form

of Eq. (21) needs to be connected with CL at small Reynolds number.

As shown in Fig. 5, CL of ellipsoidal bubbles are smaller than CS∞
L = 0.5. However190

they agree with the Legendre-Magnaudet correlation up to certain Re, e.g. Re < 60 at

logM = −6.6 and Re < 20 at logM = −5.5. We therefore use CS
L given by Eq. (7) as the

15
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Figure 11: Equation (32) compared with measured data. Closed symbols: calculated values, Open symbols:

experimental data.
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Figure 12: C = CSL − CL (χ > 1.02)

basis of an expression for ellipsoidal bubbles instead of CS∞
L (= 0.5):

CL = CS
L − C (33)

where C is the component for the negative lift due to shape deformation. Figure 12 shows
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Figure 13: C plotted against χ (χ > 1.02)

C = CS
L − CL, where only data of χ > 1.02 (deformed bubbles) are used. The negative lift195

component clearly increases with increasing Re. It would be better to use a dimensionless

group more tightly relating with shape deformation, e.g. EoH (Tomiyama et al., 2002) or

Eo1.1Re (Aoyama et al., 2017), or a shape parameter, i.e. χ, instead of Re. The function

C is therefore replotted against χ in Fig. 13. The fact that the negative lift is produced by

the shape deformation effect can be more clearly observed, i.e. C increases with increasing200

χ. The magnitude of C depends on M , e.g. even at the same χ (χ ≈ 1.02), i.e. C ≈ 0.2 at

logM = −3.2 whereas C ≈ 0 at logM = −6.6.

As already confirmed in Fig. 7, the negative lift can be correlated in terms of χ and Re

at each M . The Morton number is therefore used as an additional parameter in correlating

C due to the following reasons: M consists of the three representative dimensionless groups,205

i.e. M = EoCa2/Re2, where Ca (= µLVR/σ) is the Capillary number representing the ratio

of the viscous force to the surface tension force. Owing to its structure, M can be used to

represent complex behavior of CL. Furthermore, as reported by Tsuge and Hibino (1977),

the critical Reynolds number, ReO, for the instability of the wake behind a bubble causing

bubble oscillatory motion is given by ReO = 9M−0.173, the trend of which is the same as210

the critical Reynolds number for the reversal of the sign of CL for −6.6 ≤ logM ≤ −3.2

(Aoyama et al., 2017). This is due to the fact that the wake instability plays a key role in
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Table 3: Coefficients in Eq. (34)

logM −3.2 −3.9 −4.8 −5.5 −6.6

g 14.8 24.2 33.6 49.3 71.7

h 0.98 1.23 1.73 2.30 2.53
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Figure 14: (CSL − CL)Re (χ > 1.02). Curves are fitted to data in terms of g(χ− 1)h.

the lift reversal as pointed out by Adoua et al. (2009). Hence we assume the following form

for CL:

CL = CS
L −

g(M)(χ− 1)h(M)

Re
(34)

It should be noted that χ in Eq. (21) was replaced with χ − 1 in this expression to make215

CL → CS
L as χ → 1, and the coefficients, g and h, in the second term should be expressed

in terms of M to account for the M effect on the negative lift. The C scaled with Re−1 is

shown in Fig. 14, where g and h are obtained by fitting to the data as shown in Table 3.

Figure 15 shows comparisons between the data and Eq. (34). Good agreements are obtained

although errors tend to be large in the transition from spherical to ellipsoidal shapes as seen220

in logM = −4.8, i.e. 5 < Re < 20 (1.02 < χ < 1.18).
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Figure 15: Comparison of empirical correlation, Eq. (34), with CL dataset. Closed symbols: calculated with

Eq. (34), Open symbols: experimental data. CL curves (dashed lines) are also drawn using Eq. (34) with

the Aoyama and Chen correlations to evaluate χ and Re. The lines are drawn with Sr = 0.1.

The coefficients are given by

g(M) = a exp(−bM c) (35)

h(M) = p exp(−qM r) (36)

where a = 500, b = 6.0, c = 0.0735, p = 3.46, q = 5.4 and r = 0.191.

To evaluate CL of clean ellipsoidal bubbles using Eq. (34), a correlation of χ is required.

Aoyama et al. (2016) proposed the following χ correlation for clean ellipsoidal bubbles in

the viscous force dominant regime:225

χ = (1 + 0.016Eo1.12Re)0.388 (37)

Substituting this correlation into the Chen correlation (Chen et al., 2019), Eq. (28), gives

good evaluations of Re. Equations (28) and (37) were therefore used to evaluate Re and χ.

The broken lines in Fig. 15 are drawn by using Eq. (28), (34) and (37), which agrees well

with the experimental data. Figure 16 shows Eq. (34) drawn against EoH . Equation (34)
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expresses well the complex trend of CL against EoH . The predictions taking into account230

the effects of M are better than the available correlations for ellipsoidal bubbles shown in

Fig. 1.
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Figure 16: CL curves drawn for EoH by using Eq. (34) (Legends are the same as in Fig. 14)

5. Conclusion

Scaling for the lift force acting on single ellipsoidal bubbles in linear shear flows was

carried out. The Naciri solution, Eq. (17), for ellipsoidal bubbles does not serve as a235

base for the description of the lift for large Re observed in the experiments by Aoyama

et al. (2017), i.e. the lift coefficient, CL, increases with Re in the Naciri solution, while the

measured CL of ellipsoidal bubbles decreases with increasing Re. To reproduce the correct

tendency of CL we proposed a simple scaling, Eq. (21), which clearly includes the two

mechanisms in competition related to the two sources of vorticity: the lift controlled by240

the shear flow (CL = 0.5), i.e. the positive component, and contribution from the interface

vorticity source (CL ∼ −χβRe−1), the negative component. The negative lift was found to

be clearly related with the drag, and in both forces the vorticity produced at the bubble

surface plays a key role. The scaling was then used to develop a lift correlation, in which

the negative lift scaled with αχβ/Re is connected to the lift coefficient, CS
L , of spherical245

bubbles deduced by Legendre and Magnaudet (1998), i.e. CL = CS
L − g(M)(χ− 1)h(M)/Re.
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This correlation agrees well with the experimental data for −6.6 ≤ logM ≤ −3.2 and the

complex behavior of CL on the EoH-CL plane is well reproduced. Bubbles in this study are

in the viscous force dominant regime, while those at a larger Reynolds number or a lower

Morton number could be in the surface tension-inertial force dominant regime. It should be250

examined whether the present scaling for CL is applicable to the latter case or not. We will

report some results of an application of the scaling to bubbles in the surface tension-inertial

force dominant regime in the near future.
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