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Abstract

Scaling of the lift reversal for a deformed bubble in the surface tension-inertial force dom-

inant regime was discussed. Lift data of bubbles in water recently reported in literature

were used. The negative lift component was well correlated in terms of the drag coefficient,

which, in turn, implies that the vorticity produced at the bubble surface plays a key role in

both drag and lift forces as is the case with the viscous force dominant regime. The scaling

was confirmed to give good evaluations of the lift coefficients.
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1. Introduction

Modeling the lift force acting on bubbles in liquids is of great importance to predict

the distributions of volume fractions of each phase in bubbly flows. The lift coefficient,

CL, of bubbles has therefore been studied so far. It is well known that the lift coefficient

of a spherical bubble is positive (positive lift) whatever the bubble Reynolds number is5

(Legendre and Magnaudet, 1998), while an ellipsoidal bubble experiences a negative lift

force at large Reynolds numbers (Kariyasaki, 1987; Ervin and Tryggvason, 1997; Tomiyama,

1998; Tomiyama et al., 2002b; Adoua et al., 2009; Aoyama et al., 2017; Ziegenhein et al.,

2018; Hessenkemper et al., 2020, 2021; Lee and Lee, 2020).
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Tomiyama et al. (2002b) carried out experiments of single ellipsoidal bubbles in linear10

shear flows in the viscous force dominant regime (the µ regime) and proposed a CL correlation

using a modified Eötvös number, in which the bubble major axis is used for the characteristic

length to account for the deformation effect on the lift reversal. Though several authors

developed similar correlations to reproduce the lift reversal, such correlations using the

modified Eötvös number only cannot account for the effects of the Morton number on the15

lift coefficient observed in experiments (Aoyama et al., 2017). Lee and Lee (2020) proposed

a lift model for bubbles in the µ regime, which is expressed in terms of the bubble aspect ratio

and the Ohnesorge number. Though their model can reproduce the lift reversal depending

on the Morton number, the deviation from the experimental data increases with increasing

shape deformation. We (Hayashi et al., 2020) proposed simple scaling for the lift reversal20

in the µ regime by connecting the negative lift with the vorticity produced at the bubble

surface, which also plays a dominant role in the drag force (Legendre, 2007); in other words,

the lift force is connected to the drag force via the vorticity (see Sec. 2 for detail).

With increasing the bubble size or with decreasing the liquid viscosity, a bubble is apt to

be in the surface tension-inertial force dominant regime (the σ-i regime), e.g. the rise velocity25

of an air bubble larger than about 1.5 mm in stagnant water is to be governed by the Eötvös

number, which is the ratio of the buoyancy to the surface tension force (Clift et al., 1978;

Tomiyama et al., 1998). Since the bubble shape and motion exhibit complex oscillations

it is not easy to obtain reliable data of the lift coefficient. Recently some studies reported

novel measurement techniques for the lift coefficient of deformed bubbles with shape and30

path oscillations and provided lift databases (Hessenkemper et al., 2021; Lee and Lee, 2020),

which would be of great use for scaling of the lift acting on deformed bubbles in the σ-i

regime.

In this study, scaling of the lift reversal for deformed bubbles in linear shear flows in the

surface tension-inertial force dominant regime is presented by making use of the available35

experimental databases of air bubbles in water.
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2. Brief Review of CL Models with Lift Reversal

The direction of the lateral migration of a bubble due to the shear-induced lift force

depends on the sign of the lift coefficient CL. The negative component of the lift is induced

by the vorticity, ω, produced at the bubble surface (Adoua et al., 2009), which increases40

with increasing the aspect ratio, χ (= dH/dV ), of an ellipsoidal bubble, where dH and dV

are the major and minor axes of the bubble. Legendre (2007) pointed out that the drag is

proportional to the vorticity, and the viscous contribution appears in the lift of a spherical

bubble in the form of Re−1, being similar to the drag (Legendre and Magnaudet, 1998),

where Re is the bubble Reynolds number defined by45

Re =
ρLVRd

µL
(1)

where ρL is the liquid density, VR the bubble relative velocity, d the sphere-volume-equivalent

bubble diameter, and µL the liquid viscosity. Therefore the drag and the negative lift in the

µ regime are connected as follows (Hayashi et al., 2020):

CL = CS∞
L −Gr(χ,Re)CD (2)

where CD is the drag coefficient, Gr(χ,Re) a function of χ and Re, and CS∞
L (= 1/2) the

lift coefficient of a spherical bubble in an inviscid shear flow (Auton, 1987). We obtained50

the following expression of CL, which is explicitly relating with the vorticity:

CL = CS∞
L − γr

16

Re
φ(χ,Re)ω∗∞

max(χ) (3)

where γr = 0.078, ω∗∞
max is the dimensionless maximum vorticity in the infinite Reynolds

number limit (Magnaudet and Mougin, 2007)

ω∗∞
max(χ) =

2χ5/3(χ2 − 1)3/2

χ2 sec−1 χ− (χ2 − 1)1/2
(4)

and φ(χ,Re) (= 0.25χ1.9Re0.32) is the deformation-inertia factor in the drag correlation

proposed by Chen et al. (2019). Equation (3) expresses well the behavior of CL of a de-55

formed bubble. We, therefore, proposed the following empirical correlation by connecting
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the negative lift and CL of spherical bubbles to cover low and intermediate Re:

CL = CS
L −

g(M)(χ− 1)h(M)

Re
(5)

where

g(M) = a exp(−bM c) (6)

h(M) = p exp(−qM r) (7)

and M is the Morton number defined by

M =
µ4
L∆ρg

ρ2Lσ
3

(8)

where ∆ρ is the density difference between the two phases, g the acceleration of gravity, and

σ the surface tension. The constants in Eqs. (6) and (7) are as follows: a = 500, b = 6.0,60

c = 0.0735, p = 3.46, q = 5.4 and r = 0.191. The CS
L is the lift coefficient of a spherical

bubble (Legendre and Magnaudet, 1998):

CS
L = ([CSL

L ]2 + [CSH
L ]2)1/2 (9)

where the lift coefficients of a low Reynolds number bubble, CSL
L , and a high Reynolds

number bubble, CSH
L , are defined by

CSL
L =

6

π2

2.255
√
SrRe [1 + 0.2Re/Sr]3/2

(10)

65

CSH
L =

1

2

(

1 + 16/Re

1 + 29/Re

)

(11)

Here the dimensionless shear rate, Sr, is defined by

Sr =
Ωd

VR
(12)

where Ω is the vorticity of a linear shear flow. Equation (5) agrees well with the experimental

data of CL in the µ regime (Aoyama et al., 2017). Lee and Lee (2020) also accounted for
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the effects of ω on CL in their lift modeling and proposed the following CL correlation for

bubbles in the µ regime:70

CL =







CS∞
L − 2.8χ2.2Oh for Re > 4

max
[

CSL
L , CS∞

L − 2.8χ2.2Oh
]

for Re ≤ 4
(13)

where Oh is the Ohnesorge number defined by

Oh =
µL√
ρLσd

(14)

which can be expressed as Oh =
√

Ca/Re, where Ca is the capillary number defined by

Ca = µLVR/σ. The lift reversal is reproduced by the correlation and good agreement with

Aoyama’s data can be obtained at large M numbers, while the deviation from the data

increases as M decreases. This would be due to the use of the relation, ω∗
max = χ, which is75

valid only for low Reynolds number bubbles (Legendre, 2007).

Bubbles in the µ regime rectilinearly rise in a stagnant liquid without shape oscillation.

With increasing bubble diameter and/or decreasing the liquid viscosity, the motion of a bub-

ble becomes unstable and the bubble path becomes zigzagging or spiraling. Larger bubbles

exhibit wobbling motion and the path oscillation is more complicated due to capillary waves80

formed at the bubble surface. A difficulty in forming a fully-developed linear shear flow of

a low viscosity liquid in a lab scale apparatus and a stochastic nature of the fluctuating

bubble path make it difficult to obtain reliable CL databases for bubbles in the σ-i regime.

Ziegenhein et al. (2018) developed a novel technique for lift force measurement in the σ-i

regime of an air-water system, which makes use of a bubble plume to form a linear shear85

field about a single bubble. The lift reversal in this low viscosity system takes place at

Re ≈ 1000, which corresponds to EoH ≈ 5, where EoH is the Eötvös number using dH for

the characteristic length (Tomiyama et al., 2002b):

EoH =
∆ρgd2H

σ
(15)

Hessenkemper et al. (2020) applied the measurement technique to study effects of sodium

chloride on CL and more data of CL were accumulated in Hessenkemper et al. (2021) for90

purified and slightly impure systems.
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Lee and Lee (2020) modeled the lift acting on a deformed bubble with a sinusoidally

oscillating path in an air-water system based on the estimation of the orders of the lift

induced by double-threaded vortex filaments formed behind a bubble (de Vries et al., 2002)

and of the decay of the vortex filaments due to the viscosity (Saffman, 1992). The wake-95

induced negative lift was expressed in terms of the characteristic time tc for the diffusion of

vortex filaments detaching from a bubble, the characteristic length l of the detached vortex

filaments, the amplitude X of the zigzagging path, and the dimensionless vorticity ω∗
max at

the bubble equator. The tc was estimated as tc = 1/f(2,0) (Veldhuis et al., 2008), where

f(2,0) is the shape oscillation frequency (Lunde and Perkins, 1998). The l was assumed to be100

l = dH , and X was estimated as dH/2 from their experiments, which is much smaller than

some measured data in stagnant water (Tomiyama et al., 2002a). Equation (4) was used

for ω∗
max. By using these expressions for tc, l, X and ω∗

max, Lee and Lee (2020) obtained the

following correlation:

CL = CS∞
L −

12π

2−1/4

χ4/3(χ2 + 1)3/4(χ2 − 1)3/2

χ2 sec−1 χ− (χ2 − 1)1/2
Oh (16)

The constant in the denominator is given as 23/4 in the original paper, however it should105

read 2−1/4. Lee and Lee (2020) also carried out experiments on CL of bubbles in linear shear

flows in water, in which d ranged from 2 to 20 mm and Re ranged from 440 to 7180. The

model was compared with the experimental data and was confirmed to express the trend

of CL with increasing EoH . Although their model reproduces the decay of CL due to the

negative lift component, the deviation between the model and the data is apt to be large110

except around the critical bubble diameter for the onset of lift reversal as shown in Sec. 4.1.
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3. Datasets

A dataset of 19 data points for bubbles in purified water presented in Hessenkemper et al.

(2021) is used in the following data analysis. Lee and Lee (2020) tabulated their data (11

data points) of bubbles in filtered water. They provided two sets of CL data: CL were eval-115

uated based on the force balance between the drag, lift and buoyancy in one of them, while

in the other set they evaluated CL by additionally accounting for the accelerated motion of

a bubble. We use the former in this study since some data in the latter largely scatter and

exhibit standard deviations much larger than the former. The ranges of relevant dimension-

less groups in the experimental data are summarized in Table 1. Both datasets cover the120

positive and negative lift regimes. The order of Re ranges from O(102) to O(103), and the Re

range of the Lee data is wider than that of Hessenkemper’s data. The dimensionless shear

rate, Sr, is much smaller than unity, and therefore, the lift discussed here is for bubbles

under weak shear flows. The Eötvös number, Eo, and Weber number, We, in the table are

defined by125

Eo =
∆ρgd2

σ
(17)

We =
ρLV

2
Rd

σ
(18)

4. Discussion

4.1. Data analysis

Figure 1 shows a Re-Eo map (Tomiyama et al., 1998) and the dataset are plotted on it.

The dashed line represents the transition from the Re-controlling regime (µ regime) to the130

Eo-controlling regime (σ-i regime). Most of the data in Aoyama et al. (2017) lie below the

transition line and their bubbles rose rectilinearly with no path/shape oscillation, and there-

fore, their data were in the µ regime. On the other hand, the data of Hessenkemper et al.

(2021) and Lee and Lee (2020) are in the Eo-controlling regime and bubbles showed fluctu-

ating paths. Their data were therefore in the σ-i regime.135
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Table 1: Ranges of dimensionless groups in dataset (∗:Hessenkemper et al. (2021), †: Lee and Lee (2020))

Source H∗ L†

Number of data 19 11

Water purified filtered

logM −10.58 −10.84

Re 680 - 1470 440 - 7170

Eo 0.70 - 5.6 0.63 - 55

We 2.9 - 4.7 0.92 - 26

Sr O(10−2) O(10−3) - O(10−2)

χ 1.96 - 2.1 1.13 - 3.26

CD 0.32 - 1.58 0.919 - 2.78

CL −0.34 - 0.38 −2.74 - 0.57

The CD in the dataset are shown in Fig. 2. The solid line represents the following drag

correlation applicable to the σ-i regime (Tomiyama et al., 1998):

CD =
8

3

Eo

Eo+ 4
(19)

The data of Hessenkemper et al. (2021) agree well with the correlation. Though the de-

pendence of CD on Eo is the same in Lee’s data, they are systematically larger than Eq.

(19) in the whole Eo range. Though the liquid flows in their experiments exhibited some140

turbulence fluctuations, the CD data in the linear shear flows agreed well with their CD data

in stagnant water. The turbulence effect is therefore not the cause of the large CD of Lee’s

data. See Appendix A for brief discussion on the turbulence effect on the drag and the lift.

The other possibility is unintentional contamination of water, which increases CD due to

Marangoni effect.145

Bubbles in the air-water experiments showed wobbling and/or meandering motion. The

longest axis of a bubble shape projected on the front-camera view was therefore used as dH .

The aspect ratio data of Hessenkemper et al. (2021) are shown in Fig. 3 with the data of

Sugihara et al. (2007) for bubbles in ultra purified water in the µ regime. The χ increases
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Figure 1: Dataset on Re-Eo plane (Tomiyama et al., 1998). Labels represent logM .

with increasing Eo in the µ regime and reaches about χ = 2 at Eo = 0.5. Then χ also150

increases with Eo in the σ-i regime, whereas the increasing rate is drastically smaller than

in the µ regime. Sugihara et al. (2007) fitted the functional form proposed by Wellek et al.

(1966)

χ = 1 + aEob (20)

to their data and obtained a = 6.5 and b = 1.925. Fitting this functional form to the

Hessenkemper data gives much smaller values for the coefficients, i.e. a = 0.94 and b =155

0.0875, as shown in the figure (solid line). The χ in Lee’s data also show monotonous

increase and Lee and Lee (2020) proposed a = 0.21 and b = 0.58 as represented by the

dotted line, which agrees well with the data.

The χ of Hessenkemper et al. (2021) seems to be continous with those in the µ regime. On
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CD = 8Eo/3(Eo + 4) (Tomiyama et al., 1998)

CD = ge(Eo)ω∗∞

max
[8Eo/(Eo + 16(χ2

− 1)/χ8/3)]

CD = f (χ,Eo) (Tomiyama et al., 2002)

Lee and Lee

Hessenkemper et al. (purified)

Figure 2: Drag coefficient CD. Eqs. (24) and (19) are used for χ in CD(χ,Eo). The solid and dashed lines

are overlapped.

the other hand, Lee’s data show much weaker shape deformation, e.g. χ ≈ 1.1 at Eo = 0.63.160

This value is close to that of a bubble in a contaminated system rather than a clean system

(Clift et al., 1978). In addition, the following shape correlation for contaminated bubbles

proposed by Fan and Tsuchiya (1990) agrees well with Lee’s data.

χ =



















1 for Ta < 1

[0.81 + 0.20 tanh(2.0(0.80− log Ta))]−3 for 1 ≤ Ta ≤ 40

4.17 for Ta > 40

(21)

where Ta is the Tadaki number defined by

Ta = ReM0.23 (22)

Thus bubbles in Lee’s data must have been contaminated.165

It would be worth discussing the dependence of χ on We. Figure 4 shows the data of

Hessenkemper et al. and Sugihara et al. on the χ-We plane. Being similar to the trend on

the χ-Eo plane, those data seem continuous and the change in the dependence of χ on We
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Figure 3: Bubble aspect ratio χ.

from the µ regime to the σ-i regime is obvious. The critical We for the regime transition is

about 3, which is consistent with the experimental result of Duineveld (1995). The dashed170

line represents the following empirical correlation proposed by Sugihara et al.:

χ = 1 +
9

64
We+

0.04We2
√
3.7−We

(23)

This correlation developed for the µ regime rapidly increases for We larger than 3 due to

the factor of (3.7−We)−1/2. The solid line is a fitting equation for Hessenkemper’s data in

terms of We:

χ = 1 + cWed (24)

where c = 0.62 and d = 0.376. Experimental data of Aybers and Tapucu (1969) and175

Duineveld (1995) obtained for bubbles in filtered and ultra pure water, respectively, are also

shown in the figure. Duineveld’s data are similar to Sugihara’s data and Duineveld reported

We = 3.3 for the onset of the bubble path instability. Aybers’ data seem to lie on the same

curve with Duineveld’s data even for We > 3.3 and they are well expressed by the following

correlation developed for a wide range of M (dash-dotted line) (Legendre et al., 2012):180

χ =
1

1− 9
64

We
1+0.2M0.1We

(25)

In Aybers and Tapucu (1969), bubbles larger than 1.34 mm showed path oscillations, whereas

they initially rose along rectilinear paths up to certain elevations. It should be noted that
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Figure 4: Bubble aspect ratio plotted against We.

the shape data were evaluated within the rectilinear path range. This explains why their

data follow the same curve as in the µ regime even for We > 3.

The CL data are plotted against Oh in Fig. 5 and compared with Lee’s model, Eq.185

(16). The model qualitatively represents the decay of CL due to the negative lift. However

the deviation tends to be large especially in the negative CL region, and the negative lift

component in the positive CL region is overestimated, e.g. the CL data at Oh = 0.00218 is

close to 0.5 under moderate deformation (χ = 1.1) while the model gives a smaller value,

CL = 0.138, due to a strong negative lift. As for the condition for the lift reversal, the190

bubble diameter corresponding to CL = 0 in Lee’s data is about 6 mm (Oh = 0.0013) and

Lee’s model predicts d = 6.7 mm (Oh = 0.00124). The critical diameter, d = 4.5 mm for

Oh = 0.0017, in the clean system of Hessenkemper et al. (2021) is smaller compared with

Lee’s data.

Figure 6 shows the CL data plotted against Re. The CL data of Aoyama et al. (2017)195

for the µ regime are also plotted for reference. The range of M in Aoyama et al. (2017) is

−6.6 ≤ logM ≤ −3.2. Aoyama’s data cover from low Re to intermediate Re, i.e. 0.1 <
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Figure 5: Lift coefficient, CL, plotted against Ohnesorge number. The solid line is Eq. (16) and the aspect

ratio in Eq. (16) is evaluated using χ = 1 + 0.21Eo0.58.

Re < 120, in which the bubble shape changes from spherical to ellipsoidal as Re increases.

The Re in the air-water system are much higher than Aoyama’s data. The air-water data

show that the increase in Re decreases CL and CL becomes negative at Re larger than a200

certain critical value as in the µ regime. Although the critical Re in the air-water systems

show some differences, it lies within 1000 < Re < 1600. It seems that the upperbound of

CL of ellipsoidal bubbles can be well expressed by the Legendre-Magnaudet correlation, Eq.

(9) for spherical bubbles, which approaches CS∞
L = 1/2 at Re ∼ 1000. In fact, for fixed

non-deformable ellipsoidal bubbles, Adoua et al. (2009) found a larger upperbound of CL,205

i.e. C∞
L = 0.5 + 0.612(χ − 1), and, for example, CL ≈ 1.0 at Re = 1000 and χ = 2.0 in

their numerical simulation. In contrast to Adoua’s numerical simulations, bubbles in the

experiments are not exact ellipsoid, free to move, and possible to incline from the streamwise

direction, which may decrease CL and consequently restrict the maximum possible CL.

In both air-water data, CL monotonously decreases with increasing Re and χ as in the210

µ regime. As shown in the dotted line in the figure, the empirical correlation, Eq. (5), can
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Figure 6: Lift coefficient, CL, plotted against Reynolds number. The χ and Re are evaluated by using the

χ correlation, Eq. (20), with Lee’s coefficients and the drag correlation, Eq. (19), respectively, to draw the

correlation curve for Lee’s data (dotted line).

be used to express the data of the contaminated system in Lee and Lee (2020) by tuning

the coefficients in the correlation for the data, i.e. CL = CS
L − 5 × 103(χ − 1)2.53/Re,

where the power 2.53 is the same as that for logM = −6.6 in Eq. (7), while the coefficient

5 × 103 is much larger than that of the original correlation. This trend is consistent with215

the fact that the interfacial vorticity is increased at an interface partially immobilized due

to contamination. On the other hand, a much larger value is required for the power of

χ− 1 to fit the functional form to the data of clean bubbles of Hessenkemper et al. (2021).

This can be clearly seen in Fig. 7, where the vertical and horizontal axes are (CS
L − CL)Re

and χ − 1, respectively, and therefore, the slope of the data represents h(M) in Eq. (5).220

Hessenkemper’s data show steep increase and the trend is different from the data for the µ

regime. This is due to very small change in χ even with a considerable change in Re by a

factor of about 2.
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4.2. CL Scaling in the Surface Tension-Inertial Force Dominant Regime

In this section, we will make an attempt to find an explicit relation between the vorticity225

produced at the bubble surface and both the drag and lift forces as we conducted for the

µ regime in our previous study (Hayashi et al., 2020) to obtain appropriate scaling of CL

in the σ-i regime. The clean bubble data of Hessenkemper et al. (2021) are used for this

purpose.

Let us consider how ω∗
max appears in CD of the σ-i regime. Tomiyama et al. (2002a)230

derived the following terminal velocity model for ellipsoidal bubbles in stagnant liquid:

VT = F (E)

√

8σ

ρLd
E4/3 +

∆ρgd

2ρL

E2/3

1−E2
(26)

where E = 1/χ, VT is the terminal velocity of a bubble, and

F (E) =
sin−1

√
1−E2 −E

√
1− E2

1− E2
(27)
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The drag coefficient for this velocity model is given by

CD =
4

3

2Eo(1− E2)

16E4/3(1−E2) + EoE2/3
F (E)−2 (28)

Rewriting this by replacing E with χ and using ω∗∞
max in the infinite Re limit, Eq. (4), yield

CD(χ,Eo) = fe(χ)ω
∗∞
max

[

8

3

Eo

Eo+ 16(χ2 − 1)/χ8/3

]

(29)

where235

fe(χ) =
(χ2 − 1)3/2

2χ3[χ2 sec−1 χ− (χ2 − 1)1/2]
(30)

The factor in the square brackets of Eq. (29) is equivalent to CD = 8Eo/3(Eo + 4) when

χ = 1.18. The χ in Eq. (29) can be evaluated by making use of Eqs. (24) and (19). As shown

in Fig. 2 (the dotted line), this model agrees well with Hessenkemper’s data at small Eo

but overestimates CD in the large Eo range since it is for perfect spheroidal bubbles without

wobbling motion. The following simple modification however gives good evaluations of CD240

for the whole Eo range of the data as shown in Fig. 2 by the dashed line:

CD(χ,Eo) = ge(Eo)ω∗∞
max

[

8

3

Eo

Eo+ 16(χ2 − 1)/χ8/3

]

(31)

where

ge(Eo) =
0.177

(1 + 0.33Eo)0.65
(32)

We have thus obtained the expression of CD in the σ-i regime connected with the vorticity.

Although the above modification is made for the present system of logM = −10.58, there

might be a possibility that the modification is applicable to lower Morton number systems as245

follows. As seen in the shape correlation, Eq. (25), χ can be written as a function of We and

M . Hence fe(χ) = fe(We,M). The fe(We,M) can also be written as fe(Eo,M) by using the

force balance between the drag and the buoyancy CD = 4/3Fr2, the relation We = Fr2Eo

by definition and Eq. (19), where Fr = VR/
√

∆ρgd/ρL is the Froude number. Hence

the function, ge(Eo), of Eo only should be regarded as a modification of fe(Eo,M) for the250

specific Morton number. However the factor for the Morton number effect, K(M) = 0.2M0.1,

in Eq. (25) at logM = −10.58 is only 0.017 and K(M) decreases with decreasing M . Hence
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Figure 8: Product of the factor Gege (= (CS
L−CL)/[ω

∗∞
max

(8Eo)/3(Eo+16(χ2−1)/χ8/3)]) for the connection

between CD and the negative lift.

the Morton number effect on χ is very weak for logM ≤ −10.58 and ge(Eo) is expected to

be applicable within this M range.

We assume that the negative lift is also connected with the vorticity via the drag as in255

the µ regime:

CL = CS
L(Re, Sr)−Ge(χ,Eo)CD(χ,Eo) (33)

where Ge is a function of χ and Eo. Substituting Eq. (31) into this equation yields

CL = CS
L(Re, Sr)−Ge(χ,Eo)ge(Eo)ω∗∞

max(χ)

[

8

3

Eo

Eo+ 16(χ2 − 1)/χ8/3

]

(34)

Figure 8 shows Ge evaluated from the data. Although some scatter appears at small Eo,

the Ge data show a constant value for the product Ge(χ,Eo)ge(Eo). Hence

CL = CS
L(Re, Sr)− γeω

∗∞
max(χ)

[

8

3

Eo

Eo+ 16(χ2 − 1)/χ8/3

]

(35)

where γe = 0.048.260

A comparison between the data and Eq. (35) (solid lines) on the CL-Eo plane is shown

in Fig. 9(a), where Eqs. (19) and (24) were used to calculate Re and χ, respectively. Good

agreement is obtained between Eq. (35) and Hessenkemper’s data. The evaluations of Eq.

(35) are not so different from Lee’s data at large Eo. The following empirical correlation
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Figure 9: Lift coefficient data in comparison with the present scaling, Eq. (35), in which Eqs. (19) and (24)

are used to calculate Re and χ, respectively. (a) CL-Eo plane, (b) CL-We plane.

proposed by Tomiyama et al. (2002b) is also drawn in the figure:265

CL =







min[0.288 tanh(0.121Re), fT (EoH)] for EoH < 4

fT (EoH) for 4 ≤ EoH ≤ 10.7
(36)

fT (EoH) = 0.00105Eo3H − 0.0159Eo2H − 0.0204EoH + 0.474 (37)

The constants, a = 0.94 and b = 0.0875, in Eq. (20) obtained for Hessenkemper’s data

were used for the shape correlation to draw the lift curve. Though this correlation was

developed for bubbles in the µ regime, it reasonably agrees with Hessenkemper’s data and

the critical Eo for the lift reversal is also close to the data. This might be why Tomiyama’s270

correlation has given reasonable predictions of bubbly flows in low viscosity systems, e.g.

Lucas and Tomiyama (2011).
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The dotted line in the figure represents Eq. (35), for which χ was evaluated using a

function χ(We) fitted to Lee’s data (see Appendix B). Good agreement between Eq. (35)

and the data implies that the functional form of the present scaling is valid not only for275

the clean system but also for the contaminated system. The derivation of Eq. (35) for the

contaminated system is given in Appendix B. Experimental data of Li et al. (2016a) are also

plotted in the figure. Note that they are shown just for reference because there are some

uncertainty in the data: (1) distilled water used in their experiments were not clean due to

unexpected contamination by a capillary tube for bubble generation and/or seeding particles280

for velocimetry (Li et al., 2016b; Lee and Lee, 2020), and (2) information on the relevant

dimensionless groups, e.g. χ, were provided for some limited cases. Though the data largely

scatter and the dependence on Eo is not clear, CL at large Eo are on the CL curve of Eq.

(35) and the curves for Hessenkemper’s data and Lee’s data are close with each other at

that large Eo range. It can therefore be speculated that the influence of contamination on285

CL of deformed bubbles becomes weak as Eo increases, i.e. deformation increases.

Figure 9(b) shows the CL data plotted against We. Note that applying the force balance,

CD = 4/3Fr2, to the relation, We = Fr2Eo, yields We = 4Eo/3CD. Hence the data points

were just shifted horizontally by CD when converting the horizontal axis from Eo to We.

The present scaling works well for both datasets on the CL-We plane.290

4.3. Summary of Relations between CL and CD

The discussion on CD in the air-water systems revealed that the negative lift governed

by the vorticity produced at the bubble surface is tightly connected with the drag. The

connection between the drag and the lift acting on a clean bubble can be summarized as

follows.295

For spherical bubbles in the Stokes regime, Legendre and Magnaudet (1997) derived the

following relation between the lift and drag coefficients: CS
L = (3J(ε)/8π2ε)CD, where ε

is the dimensionless number defined by ε = (Sr/Re)1/2 and J(ε) the value of a three-

dimensional integral: J(∞) = 2.255 (McLaughlin, 1991). The drag coefficient is given by

the Hadamard-Rybczynski solution, i.e. CD = 16/Re = 16ω∗
max/Re, where ω∗

max = 1 for300
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Table 2: List of correlations for evaluating CL in air-water system. CS
L is given by the correlation of

Legendre and Magnaudet (1998). The functions and the coefficients are as follows: γe = 0.048, g(M) =

a exp(−bM c), h(M) = p exp(−qM r), a = 500, b = 6.0, c = 0.0735, p = 3.46, q = 5.4, r = 0.191.

µ regime σ-i regime

CD = 16
Re

(1 + 0.25χ1.9Re0.32) CD = 8
3

Eo
Eo+4

CL = CS
L − g(M)(χ−1)h(M)

Re
CL = CS

L − γeω
∗∞
max

[

8Eo
3(Eo+16(χ2−1)/χ8/3)

]

χ = [1 + 0.016Eo1.12Re]
0.388

χ = 1 + 0.62We0.376

spherical bubbles in the Stokes regime (Legendre, 2007). Legendre and Magnaudet (1998)

obtained the empirical correlation, CS
L = CS∞

L (1+16/Re)/(1+29/Re), for spherical bubbles

of high Reynolds numbers. This correlation can be approximated as CS
L = CS∞

L − 6.5/Re

at high Re. Hence the viscous contribution in the second term is obviously negative and

proportional to the drag coefficient, CD = 48/Re = 16ω∗
max/Re, where ω∗

max = 3 (Levich,305

1962; Legendre, 2007). Note that CS∞
L = 1/2 for spherical bubbles in an inviscid liquid does

not have any relation with CD (in other words no correction term in terms of CD appears

in CS∞
L ) since the drag vanishes in the potential flow.

For ellipsoidal bubbles in the µ regime, we (Hayashi et al., 2020) showed by using

Aoyama’s data that the negative lift is connected with ω as pointed out by Adoua et al.310

(2009) and the decay of the lift also follows the behavior of Re−1 as is the case with the drag.

The lift reversal can therefore be expressed in the form of CL = CS∞
L −Gr(χ,Re)CD(χ,Re),

and, by making use of the maximum vorticity, ω∗∞
max, (Magnaudet and Mougin, 2007) and

the deformation-inertia factor, φ(χ,Re) (= 0.25χ1.9Re0.32), in CD, we obtained CL = CS∞
L −

(16/Re)[γrω
∗∞
max(χ)φ(χ,Re)], where γr = 0.078. In the present study, we obtained a similar315

relation for the lift reversal in the σ-i regime, i.e. CL = CS∞
L − Ge(χ,Eo)CD(χ,Eo), and

the empirical equation was obtained as CL = CS∞
L − γeω

∗∞
max(8Eo/3(Eo+ 16(χ2 − 1)/χ8/3)),

where γe = 0.048.

The bubble Reynolds number, the aspect ratio, the drag coefficient and the lift coefficient

in the air-water system in the µ and σ-i regimes are calculated as shown in Fig. 10 and the320

correlations used in the calculation are given in Table 2, where the shape correlation for the
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µ regime

χ = (1 + 0.016Eo1.12Re)0.388 (38)

was proposed by Aoyama et al. (2016), whose applicable range is −11 ≤ logM ≤ 0.63, and

the drag correlation

CD =
16

Re
[1 + φ(χ,Re)] (39)

was proposed by Chen et al. (2019). The transition between the µ regime and the σ-i regime325

was determined as an intersection of the drag curves in these regimes and, at logM = −10.58,

the intersection appears at (Eo,Re) = (2.56, 460). It can be seen that the correlations can

give good evaluations of CD and CL in both regimes. The shape correlations have a gap in

χ at the regime transition. However the effect of the gap on CL is negligible from a practical

point of view. The following expression can be used instead of the transition, Eo = 2.56, to330

avoid the gap as shown by the dotted line in the figure:

χ = min [χr(We), χe(We)] (40)

where χr and χe are given by Eqs. (23) and (24), respectively. The transition for the χ

equation is at We ≈ 3.12.
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Figure 10: Bubble Reynolds number, aspect ratio, drag coefficient and lift coefficient in air-water system

calculated using empirical correlations tabulated in Table 2. The transition between the µ regime and the

σ-i regime appears at (Eo,Re) = (2.56, 460) for M = 2.6× 10−11.
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5. Conclusion

In this study we discussed scaling of the lift coefficient of a deformed bubble in the surface335

tension-inertial force dominant regime. For this purpose we made use of the lift databases

of Hessenkemper et al. (2021) and Lee and Lee (2020) for bubbles in air-water systems. We

first made a brief data analysis and confirmed that the former and latter data are for pure

and contaminated systems, respectively. We then made it clear that the lift reversal of clean

bubbles in the σ-i regime is connected to the drag via the vorticity produced at the bubble340

surface as in the viscous force dominant regime (Hayashi et al., 2020), and a simple scaling,

which gives good evaluations of CL, was presented. In addition, the proposed scaling was

confirmed to be applicable to CL of contaminated bubbles.

Acknowledgement

A. Tomiyama and K. Hayashi would like to express their thanks to financial supports by345

JSPS KAKENHI, Grant No. 18H03756 and 20K04267.

Appendix A. Turbulence effect on CD and CL

Kojima et al. (1975) carried out experiments on single bubbles suspended stationary by

a downward liquid flow. They showed that the drag coefficient in a liquid flow of I = 0.13

in the σ-i regime (2000 < Re < 5000) was almost the same as that in an undisturbed350

flow, where I is the turbulence intensity of a liquid flow. Merle et al. (2005) also showed

in their large-eddy simulations of a single spherical bubble in a turbulent pipe flow that

the presence of turbulence did not affect CD when I ≪ 1. The I in Lee’s experiment

were smaller than 0.1 and they confirmed that CD in the linear shear flow with the weak

turbulence were the same as those in stagnant water. Merle et al. (2005) also pointed out355

that Auton’s lift model gave an accurate evaluation of the transverse force of a spherical

bubble in weak turbulence (I = 0.064), even though the bubble size was comparable with

the Taylor microscale. According to Merle’s results, it can be speculated that the presence

of the weak turbulence in Lee’s experiment does not affect CL.
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The effects of weak turbulence have thus been confirmed small, and therefore, the present360

scaling of CL is expected to be applicable to deformed bubbles under weak turbulence. It

should however be noted that a strong turbulence may affect both CD and CL. Recently

Salibindla et al. (2020) experimentally investigated the drag and lift acting on single de-

formed bubbles in a strong liquid turbulence, i.e. the fluctuation velocity was 0.25 m/s,

which is comparable to the typical rise velocity of millimeter bubbles. The CD were con-365

firmed to decrease by turbulence at Re larger than 400 (in the σ-i regime). They also pointed

out that a strong turbulence enhances shape deformation, causing decrease in CL and the

critical bubble diameter for lift reversal. Under the strong turbulence, CL is governed by

the turbulence-based Weber number, Weǫ, controlling the turbulence-induced bubble defor-

mation and the lift reversal takes place between Weǫ = 0.71 and 1 (between d = 2.2 and370

2.7 mm in the air-water system).

Appendix B. Fitting to Lee’s data

Although Lee’s data must be for contaminated bubbles, it is worth examining the appli-

cability of the present scaling, Eq. (35), to them. Let us first express the CD data in terms

of χ and Eo. The following equation fits the data for the wide range of Eo in Lee’s data as375

shown in Fig. B.1:

ge(χ) = 0.65/χ2.7 (B.1)

The curve is drawn by using their shape correlation, χ = 1 + 0.21Eo0.58. By assuming the

functional form, Eq. (35), evaluating the product, Gege, for Lee’s data gives values shown in

Fig. B.2. They are approximately constant even for the wide range of Eo and close to that

for the clean system, i.e. γe = 0.048. Hence the functional form of Eq. (35) is common for380

the clean system of Hessenkemper et al. (2021) and the contaminated system of Lee and Lee

(2020) and the difference appears only in the shape correlation. This implies that shape is

a key factor for CD and CL in the σ-i regime. Being similar to Hessenkemper’s data, the

aspect ratio in Lee’s data can also be correlated in terms of We:

χ = 1 + 0.23We0.69 (B.2)
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A comparison between the present scaling with the data of the contaminated system is385

shown in Fig. 9, showing very good agreement. Here Eq. (B.2) was used for χ. The value

of γe can be slightly increased to obtain better evaluations around CL = 0 if needed.
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Figure B.1: CD data compared with CD(χ,Eo) (Tomiyama et al., 2002a).
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Figure B.2: Product of the factor Ge(χ,Eo)ge(χ) in contaminated case.
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liquid. Wärme- und Stoffübertragung 2, 171–177.

Chen, J., Hayashi, K., Hosokawa, S., Tomiyama, A., 2019. Drag correlations of ellipsoidal bubbles in clean

and fully-contaminated systems. Multiphase Science and Technology 31(3), 215–234.400

Clift, R., Grace, J., Weber, M., 1978. Bubbles, Drops, and Particles. Academic Press.

de Vries, A., Biesheuvel, A., van Wijngaarden, L., 2002. Notes on the path and wake of a gas bubble rising

in pure water. International Journal of Multiphase Flow 28(11), 1823–1835.

Duineveld, P. C., 1995. The rise velocity and shape of bubbles in pure water at high Reynolds number.

Journal of Fluid Mechanics 292, 325–332.405

Ervin, E., Tryggvason, G., 1997. The rise of bubbles in a vertical shear flow. Journal of Fluids Engineering

119, 443–448.

Fan, L.-S., Tsuchiya, K., 1990. Bubble Wake Dynamics in Liquids and Liquid–Solid Suspensions.

Butterworth-Heinemann.

Hayashi, K., Legendre, D., Tomiyama, A., 2020. Lift coefficients of clean ellipsoidal bubbles in linear shear410

flows. International Journal of Multiphase Flow 129, 103350.

Hessenkemper, H., Ziegenhein, T., Lucas, D., 2020. Contamination effects on the lift force of ellipsoidal air

bubbles rising in saline water solutions. Chemical Engineering Journal.

Hessenkemper, H., Zieghenein, T., Rzehak, R., Lucas, D., Tomiyama, A., 2021. Lift force coefficient of

ellipsoidal single bubbles in water. International Journal of Multiphase Flow 138, 103587.415

Kariyasaki, A., 1987. Behavior of a gas bubble in a liquid velocity profile. Transactions of Japan Society of

Mechanical Engineers, Series B (in Japanese) 53, 744–749.

Kojima, E., Akehata, T., Shirai, T., 1975. Behavior of single air bubbles held stationary in downward flows.

Journal of Chemical Engineering of Japan 8(2), 108–113.

Lee, W., Lee, J.-Y., 2020. Experiment and modeling of lift force acting on single high Reynolds number420

bubbles rising in linear shear flow. Experimental Thermal and Fluids Science 115, 110085.

Legendre, D., 2007. On the relation between the drag and the vorticity produced on a clean bubble. Physics

of Fluids 19, 018102.

Legendre, D., Magnaudet, J., 1997. A note on the lift force on a spherical bubble or drop in a low-Reynolds-

26



number shear flow. Physics of Fluids 9, 3572–3574.425

Legendre, D., Magnaudet, J., 1998. The lift force on a spherical bubble in a viscous linear shear flow. Journal

of Fluid Mechanics 368, 81–126.

Legendre, D., Zenit, R., Velez-Cordero, J. R., 2012. On the deformation of gas bubbles in liquids. Physics

of Fluids 24(4), 043303.

Levich, V., 1962. Physicochemical Hydrodynamics. Prentice Hall.430

Li, Z., Song, X., Jiang, S., Ishii, M., 2016a. The lateral migration of relative large bubble in simple shear

flow in water. Experimental Thermal and Fluid Science 77, 144–158.

Li, Z., Zhao, Y., Song, X., Yu, H., Jiang, S., Ishii, M., 2016b. Experimental investigation of single small

bubble motion in linear shear flow in water. Nuclear Engineering and Design 305, 334–346.

Lucas, D., Tomiyama, A., 2011. On the role of the lateral lift force in poly-dispersed bubbly flows. Interna-435

tional Journal of Multiphase Flow 37, 1178–1190.

Lunde, K., Perkins, R., 1998. Shape oscillations of rising bubbles. Applied Scientific Research 58, 387–408.

Magnaudet, J., Mougin, G., 2007. Wake instability of a fixed spheroidal bubble. Journal of Fluid Mechanics

572, 311–337.

McLaughlin, J. B., 1991. Inertial migration of a small sphere in linear shear flows. Journal of Fluid Mechanics440

224, 261–274.

Merle, A., Legendre, D., Magnaudet, J., 2005. Forces on a high-Reynolds-number spherical bubble in a

turbulent flow. Journal of Fluid Mechanics 532, 53–62.

Saffman, P., 1992. Vortex Dynamics. Cambridge University Press.

Salibindla, Ashwanth, K. R., Mohammad Masuk, A. U., Tan, S., Ni, R., 2020. Lift and drag coefficients of445

deformable bubbles in intense turbulence determined from bubble rise velocity. Journal of Fluid Mechanics

894, A20.

Sugihara, K., Sanada, T., Shirota, M., Watanabe, M., 2007. Behavior of single rising bubbles in superpurified

water. Kagaku-Kogaku Ronbunshu (in Japanese) 33, 402–408.

Tomiyama, A., 1998. Struggle with computational bubble dynamics. Multiphase Science and Technology 10,450

369–405.

Tomiyama, A., Celata, G., Hosokawa, S., Yoshida, S., 2002a. Terminal velocity of single bubbles in surface

tension force dominant regime. International Journal of Multiphase Flow 28, 1497–1519.

Tomiyama, A., Kataoka, I., Zun, I., Sakaguchi, T., 1998. Drag coefficients of single bubbles under normal

and micro gravity conditions. JSME International Journal Ser. B: Fluids and Thermal Engineering 41(2),455

472–479.
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