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The lift coefficient CL of a bubble in a shear flow is known to change its sign depending on the bub-
ble shape, i.e. CL of spherical bubbles are positive for any bubble Reynolds numbers while those of
ellipsoidal bubbles can be negative due to the deformation-induced negative lift. The critical bubble
diameter, dC , for the lift reversal was discussed in this study by making use of available CL corre-
lations for clean bubbles in linear shear flows. As a result, the following conclusions were obtained:
(1) the CL correlations well describe the complex characteristics of dC and the lift reversal criterion
in terms of ReC is well reproduced with the correlations, (2) in the surface tension and inertial
force dominant regime, the critical Eötvös and Weber numbers can be used to develop a simple crite-
rion of lift reversal, i.e. they are almost constant, and the capillary number for dC can be expressed
in terms of the Morton number only, M ; these dimensionless groups in the viscous force dominant
regime however show more complex dependence on M , and (3) the critical Ohnesorge number, OhC ,
monotonically increases with increasing M even in the viscous force dominant regime. Therefore a
tentative dC correlation based on OhC was developed.

KEY WORDS: lift force, lift reversal, negative lift, shape deformation

1. INTRODUCTION

Knowledge on the lift force acting on a bubble moving in liquid is of great importance to predict
distributions of the gas volume fraction (void fraction) in bubbly flows. There have therefore
been many studies on the lift force by means of theoretical analyses, experiments and numerical
simulations (Adoua et al., 2009; Aoyama et al., 2017; Auton, 1987; Auton et al., 1988; Bothe
et al., 2006; Dijkhuizen et al., 2010; Ervin and Tryggvason, 1997; Hessenkemper et al., 2020;
Lee and Lee, 2020; Legendre and Magnaudet, 1997, 1998; Li et al., 2016; Tomiyama, 1998;
Tomiyama et al., 2002b; Žun, 1980; Ziegenhein et al., 2018). The lift coefficient, CL, of a de-
formed bubble in a linear shear flow is known to be either positive or negative, and the critical
bubble diameter, dC , for the change in the sign, i.e. the lift reversal, has often been discussed so
far because of its practical importance in engineering, e.g. the transition from a wall-peak to a
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FIG. 1: Critical bubble diameter, dC (Aoyama et al., 2017; Hessenkemper et al., 2021; Lucas and
Tomiyama, 2011).

core-peak void fraction profile in a bubbly pipe flow can be described by the change of the sign
of CL and the lift has a potential to make the flow structure of a bubbly flow in a bubble column
unstable if the sign is negative (Lucas et al., 2005; Lucas and Tomiyama, 2011).

Figure 1 shows critical bubble diameters reported in literature. The circle and square symbols
are data of low Morton number systems (Hessenkemper et al., 2021; Lucas and Tomiyama,
2011). Hessenkemper’s data were for single air bubbles in linear shear flows of purified water,
whereas dC of Lucas’ data were determined from void fraction distributions of steam-water
bubbly pipe flows; the void fraction profile of each bubble size class was measured and dC was
determined as the diameter at which a transition from a wall-peak to a core-peak profile took
place. The data of Aoyama et al. (2017) were obtained for air bubbles in linear shear flows of
glycerol water solutions. Interestingly, in spite of the wide range of the Morton number M , dC
does not change so much and ranges from about 3 to 5 mm. Here M is defined by

M =
µ4
L∆ρg

ρ2
Lσ

3 (1)

where µL is the liquid viscosity, ∆ρ the density difference between the two phases, g the acceler-
ation of gravity, and σ the surface tension. The dependence of dC on M is however complicated.

The critical diameters are re-plotted in terms of the critical bubble Reynolds number, ReC ,
and M in Fig. 2, where the bubble Reynolds number is defined by

Re =
ρLVRd

µL
(2)

where d is the sphere-volume-equivalent bubble diameter, and VR the bubble velocity relative to

Multiphase Science and Technology
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FIG. 2: Critical bubble Reynolds number, ReC . Eq. (18) is used to evaluate ReC from the dC data of
Lucas and Tomiyama (2011).

a liquid velocity. The dotted line represents the critical bubble Reynolds number, ReO, for the
onset of path oscillation of bubbles in a stagnant liquid (Tsuge and Hibino, 1977):

ReO = 9.0M−0.173 (3)

Aoyama et al. (2017) pointed out that ReC shows a dependence similar to ReO and utilized ReO
to correlate their ReC data as follows: (Aoyama et al., 2016b)

ReC =
ReO

(1 + 14M 0.29)
0.89 (4)

This equation was developed so as to approach ReO at low M . However actual ReC are much
larger than ReO in the low viscosity systems. All the data can be roughly fitted by the following
equation as shown by the solid line:

ReC = 2.01M−0.264 (5)

Though this equation gives reasonable evaluations of ReC , we have not sufficiently understood
a physical ground of this curve and the complex behavior of dC .

In this study we investigate the characteristics of dC and ReC by making use of lift coeffi-
cient correlations for clean bubbles recently proposed in Hayashi et al. (2021, 2020) to further
understand the lift reversal criteria.

Volume x, Issue x, 2021
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2. LIFT CORRELATIONS

Correlations utilized to investigate dC are summarized in the following. The shear-induced lift
force acting on a bubble is expressed by (Žun, 1980)

FL = −CL

(
ρLπd

3

6

)
VR ×∇× VL (6)

where VR is the bubble relative velocity, and VL the liquid velocity. We proposed the following
empirical correlation to express CL with lift reversal in the viscous force dominant regime (the
µ regime) (Hayashi et al., 2020):

CL = CS
L − g(M)(χ− 1)h(M)

Re
(7)

where χ (= dH/dV ) is the aspect ratio of a bubble, dH and dV are the major and minor axes of
the ellipsoidal bubble and the functions, g and h, are

g(M) = a exp(−bM c); h(M) = p exp(−qMr) (8)

The constants are given by a = 500, b = 6.0, c = 0.0735, p = 3.46, q = 5.4 and r = 0.191,
which were determined by making use of Aoyama’s lift data for −6.6 ≤ logM ≤ −3.2. The
CS

L is the lift coefficient of a spherical bubble proposed by Legendre and Magnaudet (1998):

CS
L = ([CSL

L ]2 + [CSH
L ]2)1/2 (9)

where the lift coefficients of a low Reynolds number bubble, CSL
L , and a high Reynolds number

bubble, CSH
L , are given by

CSL
L =

6
π2

2.255
√
SrRe [1 + 0.2Re/Sr]

3/2 (10)

CSH
L =

1
2

(
1 + 16/Re

1 + 29/Re

)
(11)

Here the dimensionless shear rate, Sr, is defined by

Sr =
Ωd

VR
(12)

where Ω is the vorticity of a linear shear flow. Equation (7) assumes that the upperbound of the
lift coefficient is CS

L (the first term). The second term expresses the negative lift component con-
structed based on the following physical arguments: the negative lift is induced by the vorticity,
ω, produced at the bubble surface (Adoua et al., 2009), which increases with increasing χ, the
drag is proportional to the vorticity (Legendre, 2007), and the viscous contribution appears in
the lift of a spherical bubble in the form of Re−1 (Legendre and Magnaudet, 1998).

A CL correlation for the surface tension-inertial force dominant regime (the σ-i regime) was
also proposed by accounting for the relation between the drag and the lift (Hayashi et al., 2021):

CL = CS
L − γeω

∗∞
max(χ)

[
8
3

Eo

Eo+ 16(χ2 − 1)/χ8/3

]
(13)

Multiphase Science and Technology
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where γe = 0.048 and ω∗∞
max is the dimensionless maximum vorticity in the infinite Reynolds

number limit (Magnaudet and Mougin, 2007)

ω∗∞
max(χ) =

2χ5/3(χ2 − 1)3/2

χ2 sec−1 χ− (χ2 − 1)1/2 (14)

Equation (13) was validated for Hessenkemper’s air-water data, whose M is 2.63 × 10−11

(logM = −10.58).
In the µ regime, the drag coefficient, CD, can be evaluated by using the following empirical

correlation (Chen et al., 2019):

CD =
16
Re

(
1 + 0.25χ1.9Re0.32) (15)

The following shape correlation gives good evaluations of χ for a wide range of M , i.e. −11 ≤
M ≤ 0.63 (Aoyama et al., 2016a):

χ = (1 + 0.016Eo1.12Re)0.388 (16)

where Eo is the Eötvös number defined by

Eo =
∆ρgd2

σ
(17)

In the σ-i regime, Tomiyama et al. (1998) proposed the following correlation based on a
wave analogy (Mendelson, 1967):

CD =
8
3

Eo

Eo+ 4
(18)

The shapes of bubbles rising through purified water in the σ-i regime can be evaluated by using
the following empirical correlation (Hayashi et al., 2021):

χ = 1 + 0.62We0.376 (19)

where We is the Weber number defined by

We =
ρLV

2
Rd

σ
(20)

It should be noted that, strictly speaking, this shape correlation obtained by fitting to the air-
water data of M = 2.63× 10−11 is applicable only to bubbles of the specific M . The use of this
correlation for two-phase systems less viscous than the air-water system, however, may be jus-
tified as follows: Legendre et al. (2012) collected bubble shape data and conducted experiments
to supplement the database. Based on the experimental data of χ they extended Moore’s shape
correlation by taking into account the viscous effect, i.e.

χ =

[
1 − 9

64
We

1 +K(M)We

]−1

(21)

where the factor, K(M), accounts for the effects of fluid property:

K(M) = 0.2M 0.1 (22)

Volume x, Issue x, 2021
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Its value is small in the air-water system (M ≈ 10−11) and is also negligible in saturated steam-
water system (M ≈ 10−13) as can be seen in Fig. 3. Therefore at M smaller than 10−11, the
correlation can be simplified to the original Moore correlation for small deformation:

χ = 1 +
9

64
We (23)

which is given in terms of We only. The empirical correlation, Eq. (19), for the σ-i regime
obtained for the air-water system is thus expected to be applicable to lower Morton number
systems.

Figure 4 shows CL curves drawn by using the lift, drag and shape correlations described
above. The lift curves agree well with the experimental data (Aoyama et al., 2017; Hessenkemper
et al., 2021). It can be seen that the critical bubble Reynolds number increases with decreasing
M . The lift reversal takes place in the µ regime and the σ-i regime, respectively, in Aoyama’s
data and Hessenkemper’s data. Detailed discussion on ReC will be given in Sec. 3.3.
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FIG. 3: Factor K(M) in Legendre’s shape correlation.
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FIG. 4: Lift data (Aoyama et al., 2017; Hessenkemper et al., 2021) and lift curve drawn using empirical
correlations. The lines are drawn with Sr = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.4 for logM = −3.2, −3.9, −4.8,
−5.5, −6.6 and −10.58, respectively.
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FIG. 5: Critical diameters in steam-water systems evaluated using CL correlation.

3. CRITICAL BUBBLE DIAMETER

3.1 dC in saturated steam-water systems

Figure 5 shows dC calculated using the CL correlation, Eq. (13), in comparison with the dC
data of the saturated steam-water systems (the pressure P ranging from 10 to 65 atm; void
fraction less than 1%) (Lucas and Tomiyama, 2011), where the fitting equation χ(We), Eq.
(19), for Hessenlemper’s data of purified water was used for bubble shape. The correlation gives
a reasonable trend of dC , i.e. dC are several millimeters and decrease with increasing the system
pressure. However the dC curve lies slightly below the data, implying that the χ correlation
gives larger deformation. The dash-dotted line is drawn using the CL correlation with the shape
correlation proposed by Wellek et al. (1966):

χ = 1 + 0.163Eo0.757 (24)

This equation is known to agree with χ of fully-contaminated bubbles (Tomiyama et al., 2002a).
The dC curve obtained with this shape correlation overestimates the data, and the data are within
the two curves. The dotted line represents dC calculated with Eq. (19), whereas the value of χ
is reduced by 14% to make the prediction closer to the data. This curve agrees with the data.
Colombet et al. (2015) reported that an effect of bubble swarm suppresses shape deformation.
This effect explains a few percents of reduction in χ at void fractions of about 1%. The reason-
able estimation of dC allows us to use the CL and χ correlations to evaluate dC at M lower than
that in the air-water system.

Figure 6 shows dC plotted against M . The dC is multivalued for M . Both µL and σ decrease
with increasing P in the saturated steam-water system. The former steeply decreases at small P ,

Multiphase Science and Technology
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whereas the decreasing rate becomes very small at about P = 20 atm. This is the cause of the
non-monotonous dependence of M on P , i.e. M deceases with increasing P up to about 20 atm,
and then it increases. During this change in M , dC monotonously decreases.
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FIG. 6: Critical diameters in steam-water systems plotted against M .

3.2 dC in air-water and air-glycerol water solution systems

Let us check the temperature dependence of dC in the air-water system at atmospheric pressure.
The broken line in Fig. 7 shows a dC curve obtained by varying the temperature, T , from 273 to
373 K. Equation (13) for the σ-i regime was used. The dC decreases from 4.9 mm at T = 273 K
to 4.4 mm at T = 373 K with increasing T . Even with the significant change in T , dC lies within
the narrow band of ±0.25 mm.

The data of air-glycerol water solutions were quoted from Aoyama et al. (2017). It should
be noted that the lift reversal takes place in the µ regime in their experimental range (see Fig. 4).
Therefore the lift curve was drawn by using Eq. (7) for the µ regime. With decreasing M , in other
words with deceasing the glycerol concentration from 83 to 62 wt%, dC somewhat increases and
then decreases. The predicted dC agrees well with the data. If we further decrease the glycerol
concentration from 62 wt% (logM = −6.6) down to 0% (logM = −11), i.e. clean water, the
dC curve should reach the broken line of the air-water system. To meet this condition, the dC
curve of the air-glycerol water solution must change its trend so as to increase with decreasing
M . This change would be caused by the transition from the µ regime to the σ-i regime.

Volume x, Issue x, 2021
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FIG. 7: Critical diameters in steam-water systems, air-water systems and air-glycerol water solution sys-
tems. The dash-dotted line is drawn using Eq. (34) to fill the gap between dC of the glycerol-water solutions
of 0 and 62 wt%.

3.3 Lift reversal criteria in terms of dimensionless groups

Figure 8 re-plots ReC already shown in Fig. 2, whereas the ReC curves here are drawn with
the CL correlations. Note that though the CL correlations for the µ regime and the σ-i regime
were validated for −6.6 ≤ logM ≤ −3.2 and logM = −10.58, respectively, they were also
used for the gap, −10.58 < logM < −6.6, to discuss the behavior of ReC . The ReC curve
obtained by using Eq. (7) for the µ regime agrees well with Eq. (4) and seems to approach ReO
with decreasing M . On the other hand, the curve drawn by Eq. (13) for the σ-i regime shows
good agreements with the data of the low viscosity systems. Hence by switching the ReC curve
depending on the regime the CL-correlation-based ReC criterion can cover the whole M range.
The transition may take place between logM = −8 and −7.

Figure 9 shows the critical Eo calculated using the CL correlations. The shaded region rep-
resents a transition region estimated based on the characteristics of ReC discussed above. In the
σ-i regime the lift reversal criterion can be simply expressed as EoC ≈ 3. This expression is
much simpler than that in terms of ReC shown in Fig. 8. In addition, dC can be immediately
calculated from EoC , provided that the fluid properties are given. The bubble terminal velocity,
VT , in infinite stagnant liquid for Eq. (18) is given by (Mendelson, 1967; Tomiyama et al., 1998)

VT =

√
∆ρgd

2ρL
+

2σ
ρLd

(25)

With this correlation, VT decreases with increasing d due to the capillary effect up to a certain
bubble diameter d0, whereas it increases with d for d > d0 as the inertia becomes dominant as
shown in Fig. 10. The d0 gives Eo = 4 and d0 ≈ 5.4 mm in the air-water system. The data of VR

in linear shear flows of contaminated water (Lee and Lee, 2020) are also plotted. The lift reversal
takes place at d = 6.1 mm in their case. The data points of CL = 0 lie around d0 although Lee’s

Multiphase Science and Technology
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FIG. 8: Critical bubble Reynolds number, ReC , calculated with CL correlations.

10−14 10−12 10−10 10−8 10−6 10−4 10−2

M

0

1

2

3

4

5

6

7

8

E
o C

Eq. (13): σ-i regime

Eq. (7): µ regime

Lucas and Tomiyama (2011)

Hessenkemper et al. (2021)

Aoyama et al. (2017)

FIG. 9: Critical Eötvös number, EoC . The shaded region represents a transition region estimated based on
the characteristics of ReC .
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FIG. 10: Relative and terminal velocities of air bubbles in water.

data are for contaminated bubbles. Thus, it can be speculated that the lift reversal in the σ-i
regime takes place around the bubble diameter for the transition of the dominant force between
the surface tension force and inertia though more experimental data are required to validate this
speculation.

In the µ regime, EoC shows a complex behavior as in the case with dC . The cause of this
complex trend in the µ regime has not been clarified yet. An ellipsoidal bubble in a high viscosity
liquid may be able to keep fore-aft symmetric shape, whereas at low liquid viscosities the bubble
shape tends to lose the fore-aft symmetry, i.e. the bubble front is to be flatten while the bubble
rear would be still convex. Since the lift is very sensitive to the bubble shape, the distortion in
bubble shape depending on M could be one of the reasons of the complex trend in EoC . Since
the drag coefficient in the σ-i regime is given by CD = 8Eo/3(Eo+4), the almost constant EoC
in the σ-i regime also means that the drag coefficient CDC for EoC is more or less constant.

Figure 11 shows the modified Eötvös number, EoHC , for dC , where EoH is defined by

EoH =
∆ρgd2

H

σ

(
= Eoχ2/3

)
(26)

Being similar to the case with EoC , EoHC is almost constant in the σ-i regime and the value
EoHC ≈ 4.8 is close to Hessenkemper’s data, i.e. 4.7. In the range of 10−5 < M < 10−4, the
critical values are also around 5 even in the µ regime. This could be why EoH has often been

Multiphase Science and Technology
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FIG. 11: Critical Eötvös number, EoHC , where EoH is the modified Eötvös number. Wellek’s χ corre-
lation and Aoyama’s correlation were used to evaluate EoHC = EoCχ2/3 for the Lucas-Tomiyama data
and for Aoyama’s data, respectively.

used to correlate dC in literature. However, the complex trend in the µ regime cannot be simply
expressed in terms of EoH only as already pointed out in Aoyama et al. (2017) and Hayashi
et al. (2020).

Since the bubble rise motion in the σ-i regime is governed by We rather than Re, We
is expected to be another promising dimensionless group in the lift reversal criterion. Figure
12 shows the critical We. It should be noted that We is related with Eo and CD as We =
4Eo/3CD. The fact that WeC in the σ-i regime behaves in the same manner as EoC is not
surprising; by applying the drag correlation, CD(Eo), We is expressed in terms of Eo:

We =
1
2
(Eo+ 4) (27)

The WeC in the µ regime is also approximately constant up to about M = 10−5, whereas further
increase in M decreases WeC .

The capillary number, Ca, defined by

Ca =
µLVR

σ
(28)

is shown in Fig. 13. The CaC in the σ-i regime is very small due to the negligible effect of the
viscous force on the bubble motion and can be fitted as (the cross symbols in the figure)

CaC = 1.434M 0.2504 (29)

If we take exactly 1/4 for the power of M in this equation, we obtain the following relative
velocity for the lift reversal in the σ-i regime:

VR = 1.43
[
∆ρgσ

ρ2
L

]1/4

(30)
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FIG. 12: Critical Weber number, WeC .
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FIG. 13: Critical capillary number, CaC .

which is very similar to the minimum velocity given by Eq. (25) for d0:

VT =
√

2
[
∆ρgσ

ρ2
L

]1/4

(31)

Hence the speculation for the relation between the lift reversal and the transition of the dominant
force made for the air-water system can be extended for other Morton number systems. Being
similar to EoC , CaC exhibits a non-monotonic trend in the µ regime, i.e. CaC increases with
increasing M up to M ≈ 5 × 10−4 whereas decreases with further increase in M .
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FIG. 14: Critical Ohnesorge number, OhC .

Figure 14 shows the Ohnesorge number, Oh, defined by

Oh =
µL√
ρLσd

(32)

The OhC looks better to deal with the lift reversal criterion in the µ regime than CaC . The
Oh can be expressed in terms of Ca and Re, i.e. Oh =

√
Ca/Re or Oh =

√
We/Re2, and

therefore, three relevant forces, i.e. the inertial, the viscous and the surface tension forces are
taken into account in Oh. Therefore the three forces should be taken into account in the lift
reversal criterion to have a monotonous dependence on M in this regime. A fitting equation of
OhC in terms of M can be obtained as

OhC = 0.52M 0.22 (1 + 500M 1.1) (33)

This equation is shown in Fig. 14 by the cross symbols.
Though the knowledge on dC in the transition (10−8 < M < 10−7) is still lacking, the

following tentative correlation would be of use to evaluate dC for a wide range of M :

OhC =

 Ohµ
C for M ≥ 10−7

Ohσi
C for M ≤ 10−8

(logM + 8)
(
Ohµ

C −Ohσi
C

)
+Ohσi

C for 10−8 < M < 10−7
(34)

where Ohµ
C is given by Eq. (33) and Ohσi

C is the Ohnesorge number evaluated with dC for Eq.
(29). Solving Eq. (25) for dC with VR given by Eq. (29) yields

dC√
σ/∆ρg

= M−1/2
(
Ca2

C ±
√
Ca4

C − 4M
)

(35)

We take the negative sign in the parentheses since EoC < 4 in the above analysis. The OhC

in the transition regime is simply given as a linear interpolation of Ohµ
C and Ohσi

C . The dC of
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bubbles in glycerol-water solutions are evaluated with the correlation to fill the gap between
62wt% solution and clean water in Fig. 7, which confirms that the Oh-based correlation gives
acceptable behavior of dC depending on M . The correlation does not explicitly include VR, and
therefore, only the fluid properties are required for the evaluation of dC .

4. CONCLUSION

The critical bubble diameter for the lift reversal was discussed in this study by making use of
the available correlations of the lift coefficient, CL, for clean bubbles in linear shear flows. The
CL correlations well describe the complex characteristics of the critical bubble diameter, dC ,
for the lift reversal and the lift reversal criterion in terms of ReC is reproduced well with the
correlations. In the surface tension and inertial force dominant regime, i.e. the σ-i regime, the
critical Eötvös and Weber numbers, EoC and WeC , can be used to develop a simple criterion
of lift reversal, i.e. they are almost constant, and the critical capillary number, CaC , can be
expressed in terms of the Morton number, M , only. These dimensionless groups in the viscous
force dominant regime, i.e. the µ-regime, however show more complex dependences on M . On
the other hand, the critical Ohnesorge number, OhC , monotonically increases with increasing
M even in the viscous force dominant regime and can be fitted by a simple function in terms of
M . The tentative correlation based on Oh is of use to evaluate dC for a wide range of M .
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