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Abstract. Strong reflection principles with the reflection cardinal ≤ ℵ1

or < 2ℵ0 imply that the size of the continuum is either ℵ1 or ℵ2 or very
large. Thus, the stipulation, that a strong reflection principle should hold,
seems to support the trichotomy on the possible size of the continuum.
In this article, we examine the situation with the reflection principles
and related notions of generic large cardinals.
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1 Gödel’s Program and large cardinals

The Continuum Problem has been considered to be one of the central problems
in set theory. Georg Cantor tried till the end of his mathematical carrier to prove
his “theorem” which claims, formulated in present terminology, the continuum,
the cardinality 2ℵ0 of the set of all real numbers, is the first uncountable cardinal
ℵ1. This statement is now called the Continuum Hypothesis (CH). By Gödel [27],
[28] [29], and Cohen [4], [5], [6], it is proven hat CH is independent from the axiom
system ZFC of Zermelo-Fraenkel set theory with the Axiom of Choice.5

Although the majority of the non-set theorists apparently believes that the
results by Gödel and Cohen were the final solutions of the Continuum Problem,
Gödel maintained in [30] that the conclusive solution to the problem is yet to
be obtained in that a “right” extension of ZFC will be found which will decide

3 An extended version of the manuscript of the paper with some more details and
proofs is downloadable as:
https://fuchino.ddo.jp/papers/refl principles gen large cardinals continuum problem-x.pdf

4 The authors would like to thank Hiroshi Sakai and the anonymous referee for many
valuable comments.

5 Due to the Incompleteness Theorems, if we would like to formulate this statement
precisely, we have to put it under the assumption that ZFC is consistent (which we
not only assume but do believe).
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the size of the continuum. Today the research program of searching for possible
legitimate extensions of ZFC to settle the Continuum Problem is called Gödel’s
Program. Now that, besides CH, a multitude of mathematically significant state-
ments is known to be independent from ZFC, the program should aim to decide
not only the size of the continuum but also many of these independent math-
ematical statements. For modern views on Gödel’s Program, the reader may
consult e.g. Bagaria [2], Steel [39].

Gödel suggested in [30] that the large cardinal axioms are good candidates of
axioms to be added to the axiom system ZFC. Unfortunately large cardinals do
not decide the size of the continuum which Gödel also admits in the postscript to
[30] added in 1966. Nevertheless, it is known today that some notable structural
aspects of the continuum like the Projective Determinacy are decided under the
existence of certain large large cardinals.

In this paper, we discuss about a new notion of generic large cardinals in-
troduced in Fuchino, Ottenbreit and Sakai [20] and called there Laver-generic
large cardinals (see Section 6 below). Reasonable instances of (the existential
statement of a) Laver-generic large cardinal decide the size of the continuum to
be either ℵ1 or ℵ2 or fairly large. We show that these three possible scenarios of
Laver-generic large cardinal are in accordance with respective strong reflection
properties with reflection cardinal <ℵ2 or < 2ℵ0 .

In connection with the view-point of set-theoretical multiverse (see Fuchino
[16]), our trichotomy theorems, or some further developments of them, have
certain possibility to become the final answer to the Continuum Problem. As is
well-known, Hugh Woodin is creating a theory which should support CH from
the point of view of what should hold in a canonical model of the set theory.
It should be emphasized that our trichotomy is not directly in contradiction
with the possible outcome of his research program. In any case, it should be
mathematical results in the future which should decide the matter definitively
(if ever?).

2 Reflection Principles

The following type of mathematical reflection properties are considered in many
different mathematical contexts.

(2.1) If a structure A in the class C has the property P, then there is a
structure B in relation Q to A such that B has the cardinality < κ and
B also has the property P.

We shall call “< κ” in (2.1) above the reflection cardinal of the reflection prop-
erty. If κ is a successor cardinal µ+ we shall also say that the reflection cardinal
is ≤ µ.

An example of an instance of (2.1) is, when C = “compact Hausdorff topo-
logical spaces”, P = “non-metrizable”, Q = “subspace” and κ = ℵ2, that is,
with the reflection cardinal ≤ ℵ1. In this case, we obtain the statement:
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(2.2) For any compact Hausdorff topological space, if X is non-metrizable,
then there is a subspace Y of X of cardinality < ℵ2 such that Y is also
non-metrizable.

This assertion is known to be a theorem in ZFC (see Dow [11]).
If we extend the class C in (2.2) to C = “locally compact Hausdorff space”,

the statement thus obtained

(2.3) For any locally compact Hausdorff topological space, if X is non-metriz-
able, then there is a subspace Y of X of cardinality < ℵ2 such that Y
is also non-metrizable

is no more a theorem in ZFC: we can construct a counterexample to (2.3), using a
non-reflecting stationary subset S of Eκ

ω = {α < κ : cf (α) = ω} for some regular
κ > ω1 (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [18]). Note that □λ

for any uncountable λ implies that there is such S for κ = λ+. In particular,
(2.3) implies the total failure of the square principles and thus we need very large
large cardinals to obtain the consistency of this reflection principle. Actually, a
known consistency proof of this principle requires the existence of a strongly
compact cardinal6.

(2.3) is equivalent to the stationarity reflection principle called Fodor-type
Reflection Principle (FRP) introduced in [18].7 This principle can be formulated
as follows (see [24]).

For a regular uncountable cardinal λ and E ⊆ Eλ
ω = {γ ∈ λ : cf (γ) = ω}, a

mapping g : E → [λ]ℵ0 is said to be a ladder system on E if, for all α ∈ E, g(α)
is a cofinal subset of α and otp(g(α)) = ω.

(FRP) : For any regular λ > ℵ1, stationary E ⊆ Eλ
ω, and a ladder system

g : E → λℵ0 on E, there is an α∗ ∈ Eλ
ω1

such that

{x ∈ [α∗]ℵ0 : sup(x) ∈ E, g(sup(x)) ⊆ x}
is stationary in [α∗]ℵ0 .

Besides (2.3), there are many mathematical reflection principles in the liter-
ature which have been previously studied rather separately but which are now
all shown to be equivalent to FRP and hence also equivalent to each other (see
[14], [15], [22], [24]). The equivalence of (2.3) to FRP is established in [24] via
a further characterization of FRP by non existence of a ladder system with a
strong property of disjointness from which a counterexample to (2.3) (and other
reflection properties proved to be equivalent to FRP) can be constructed. Here
we want to mention only one other reflection statement also equivalent to FRP:

For a graph G = 〈G, E〉, where E ⊆ G2 is the adjacency relation of the graph,
is said to be of countable coloring number if there is a well-ordering ⊏ on G such
that, for each g ∈ G, {h ∈ G : h E g and h ⊏ g} is finite.

6 The existence of a strongly compact cardinal is enough to force Rado’s Conjecture
discussed below and Rado’s Conjecture implies the reflection statement (2.3).

7 Here, we are not only talking about equiconsistency but really about equivalence
over ZFC.
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The following assertion is also equivalent to FRP ([18], Fuchino, Sakai Soukup
and Usuba [24]):

(2.4) For any graph G, if G is not of countable coloring number, then there
is a subgraph H of cardinality < ℵ2 such that H is neither of countable
coloring number.

In particular, it follows that the assertions (2.3) and (2.4) are equivalent to each
other over ZFC.

(Strong) Downward Löwenheim Skolem Theorems of extended logics can be
seen also as instances of the scheme (2.1). The following is a theorem in ZFC:

SDLS(L(Q), <ℵ2) : For any uncountable first-order structure A in a countable
signature, there is an elementary submodel B of A with respect to the
logic L(Q) of cardinality8 < ℵ2 where the quantifier Q in a formula
“Qxφ” is to be interpreted as “there are uncountably many x such that
φ”.

Adopting the notation of Fuchino, Ottenbreit and Sakai [19], let Lℵ0
stat be

the logic with monadic (weak) second order variable where the second order
variables are to be interpreted as they are running over countable subsets of the
structure in consideration. The logic has the built-in predicate ε where atomic
formulas of the form xεX is allowed for first and second order variables x and
X respectively. The logic also has the unique second order quantifier stat which
is interpreted by

(2.5) for a structure A = 〈A, ...〉, A |= statX φ[X, ...] holds if and only if
{U ∈ [A]ℵ0 : A |= φ[U, ...]} is stationary in [A]ℵ0 .

Note that Lℵ0
stat extends L(Q) above, since Qxφ can be expressed by

statX∃x (x 6ε X ∧ φ).
In Lℵ0

stat we have two natural generalizations of the notion of elementary
substructure. For (first order) structures A = 〈A, ...〉 and B = 〈B, ...〉 with
B ⊆ A, let

(2.6) B ≺Lℵ0
stat

A if and only if, for all Lℵ0
stat-formula φ = φ(x0, ..., X0, ...) in

the signature of A, b0, ... ∈ B, and U0, ... ∈ [B]ℵ0 , we have
B |= φ[b0, ..., U0, ...] ⇔ A |= φ[b0, ..., U0, ...].

(2.7) B ≺−
Lℵ0

stat

A if and only if, for all Lℵ0
stat-formula φ = φ(x0, ...) in the

signature of A without any free second order variables, and b0, ... ∈ B,
we have B |= φ[b0, ...] ⇔ A |= φ[b0, ...].

By the remark after (2.5), the following principles are generalizations of
SDLS(L(Q), <ℵ2):

SDLS(Lℵ0
stat, <ℵ2) : For any uncountable first-order structure A in a countable
signature, there is a submodel B of A of cardinality < ℵ2 such that
B ≺Lℵ0

stat
A.

8 The cardinality of a structure is defined to be the cardinality of the underlying set.
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SDLS−(Lℵ0
stat, <ℵ2) : For any uncountable first-order structure A in a countable
signature, there is a submodel B of A of cardinality < ℵ2 such that
B ≺−

Lℵ0
stat

A.

M. Magidor noticed that SDLS−(Lℵ0
stat, <ℵ2) implies (2.4) (see Magidor [37]).

By the equivalence of (2.4) to FRP, we obtain

Theorem 1 SDLS−(Lℵ0
stat, <ℵ2) implies FRP. ut

Actually, it is also easy to see that the stationarity reflection principle RP
(which is a strengthening of RP in Jech [31]) follows from SDLS−(Lℵ0

stat, <ℵ2).
FRP follows from our RP ([18]) which is defined as follows:

RP : For every regular λ ≥ ℵ2, stationary S ⊆ [λ]ℵ0 , and X ∈ [λ]ℵ1 , there is
Y ∈ [λ]ℵ1 such that cf (Y ) = ω1, X ⊆ Y and S ∩ [Y ]ℵ0 is stationary in
[Y ]ℵ0 .

Jech’s RP is just as our RP as defined above but without demanding the property
“cf (Y ) = ω1” for the reflection point Y .

Theorem 2 SDLS−(Lℵ0
stat, <ℵ2) implies RP.

Sketch of the proof. Let λ, S, X be as in the definition of RP. Let µ > λℵ0

be regular and A = 〈H(µ), λ, S,X,∈〉 where λ, S and X are thought to be
interpretations of unary predicate symbols. Let B = 〈B, ...〉 be such that B is
of cardinality ℵ1 and B ≺−

Lℵ0
stat

A. Then Y = λ ∩ B is as desired. For example,

cf (Y ) = ω1 follows from the fact that B |= ψ by elementarity where ψ is the
Lℵ0
stat-sentence: statX ∃y(y ∈ λ ∧ ∀z ((z ε X ∧ z ∈ λ) → z ∈ y)) where λ and

∈ are constant and binary relation symbols corresponding to λ and ∈ in the
structure A. ut (Theorem 2)

By a theorem of Todorčević, RP in the sense of Jech implies 2ℵ0 ≤ ℵ2 (see
Theorem 37.18 in [31]). Thus

Corollary 3 SDLS−(Lℵ0
stat, <ℵ2) implies 2ℵ0 ≤ ℵ2. ut

In contrast to Corollary 3, FRP does not put almost any restriction on the
cardinality of the continuum since FRP is preserved by ccc forcing (see [18]).

A proof similar to that of Theorem 2 shows that SDLS−(Lℵ0
stat, <ℵ2) implies

the Diagonal Reflection Principle down to an internally club reflection point
of cardinality <ℵ2 of S. Cox [8]. Conversely, we can also easily prove that the
Diagonal Reflection Principle down to an internally club reflection point of cardi-
nality <ℵ2 implies SDLS−(Lℵ0

stat, <ℵ2). The internally clubness of the reflection
point is used to guarantee that the internal interpretation of the stationary logic
coincides with the external correct interpretation of the logic in the small sub-
structure to make it an elementary substructure (in the sense of ≺−

Lℵ0
stat

) of the

original structure. Thus we obtain (1) of the following theorem.
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Theorem 4 (Theorem 1.1, (3) and (4) in [19])

( 1 ) SDLS−(Lℵ0
stat, <ℵ2) is equivalent to the Diagonal Reflection Principle down

to an internally club reflection point of cardinality <ℵ2.

( 2 ) SDLS(Lℵ0
stat, <ℵ2) is equivalent to SDLS−(Lℵ0

stat, <ℵ2) plus CH. ut

S.Cox proved in [8] that the Diagonal Reflection Principle down to an in-
ternally club reflection point of cardinality ℵ1 follows from MA+ω1(σ-closed).
Thus,

Corollary 5 ( 1 ) MA+ω1(σ-closed) implies SDLS−(Lℵ0
stat, <ℵ2).

( 2 ) MA+ω1(σ-closed) + CH implies SDLS(Lℵ0
stat, <ℵ2) . ut

The reflection cardinal <ℵ2 (or equivalently ≤ℵ1) in the reflection princi-
ples above can be considered to be significant and even natural since, with this
reflection cardinal, the reflection principles can be seen as statements claiming
that the cardinality ℵ1 is archetypical among uncountable cardinals, and hence
that ℵ1 already captures various phenomenon in uncountability in the sense that
a certain type of properties of an uncountable structure can be reflected down
to a substructure of the cardinality ℵ1. From that point of view, it is interest-
ing that one of the strongest reflection principles, namely the Strong Downward
Löwenheim-Skolem Theorem for stationary logic with this reflection cardinal
implies CH.

In a similar way, we can also argue that the reflection with the reflection
cardinal < 2ℵ0 or ≤ 2ℵ0 should be regarded as significant and even natural since
we can interpret the reflection with these reflection cardinals as a pronouncement
of the richness of the continuum.

Let SDLS(Lℵ0
stat, < 2ℵ0) and SDLS−(Lℵ0

stat, < 2ℵ0) be the principles obtained
from SDLS(Lℵ0

stat, <ℵ2) and SDLS−(Lℵ0
stat, <ℵ2) by replacing “<ℵ2” with “< 2ℵ0”.

Theorem 6 (Proposition 2.1, Corollary 2.3, Corollary 2.4 in [20])

( 1 ) SDLS−(Lℵ0
stat, < 2ℵ0) implies 2ℵ0 = ℵ2. In particular, if 2ℵ0 > ℵ2, then

SDLS−(Lℵ0
stat, < 2ℵ0) does not hold.

( 2 ) SDLS(Lℵ0
stat, < 2ℵ0) is inconsistent. ut

Note that SDLS−(Lℵ0
stat, < 2ℵ0) follows from MA+ω1(σ-closed) + ¬CH which

is e.g. a consequence of PFA+ω1 .

Note that Lemma 9 implies that GRPω,ω1(< 2ℵ0) is also inconsistent.

In contrast to the reflection down to < 2ℵ0 whose strong version implies that
the continuum is ℵ2 (see Theorem 6, (2) above), the reflection down to ≤ 2ℵ0

does not exert any such restriction on the size of the continuum as we will see
this in the next section.

A slightly different type of reflection principle with reflection cardinal < 2ℵ0

implies that the continuum is very large. We will see this in Section 5.
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3 Game Reflection Principles and generically large
cardinals

There is a further strengthening of SDLS−(Lℵ0
stat, <ℵ2) which is called (Strong)

Game Reflection Principle9 (GRP) introduced in B. König [34]. The following is
a generalization of the principle:

For a regular uncountable cardinal µ, a set A, and A ⊆ µ>A, G µ>A(A) is the

following game of length µ for players I and II. A match in G µ>A(A) looks like:

I a0 a1 a2 · · · aξ · · ·
II b0 b1 b2 · · · bξ · · · (ξ < µ)

where aξ, bξ ∈ A for ξ < µ.
II wins this match if

(3.1) 〈aξ, bξ : ξ < η〉 ∈ A and 〈aξ, bξ : ξ < η〉⌢〈aη〉 6∈ A for some η < µ; or
〈aξ, bξ : ξ < µ〉 ∈ [A]

where 〈aξ, bξ : ξ < η〉 denotes the sequence f ∈ 2·ηA such that f(2 · ξ) = aξ and
f(2 · ξ + 1) = bξ for all ξ < η and [A] = {f ∈ µA : f ↾ α ∈ A} for all α < µ.

For regular cardinals µ, κ with µ < κ C ⊆ [A]<κ is said to be µ-club if C
is cofinal in [A]<κ with respect to ⊆ and closed with respect to the union of
increasing ⊆-chain of length ν for any regular µ ≤ ν < κ.

GRP<µ(<κ): For any set A of regular cardinality ≥ κ and µ-club C ⊆ [A]<κ,

if the player II has no winning strategy in G µ>A(A) for some A ⊆
µ>A, there is B ∈ C such that the player II has no winning strategy in
G µ>B(A ∩ µ>B).

B. König’s Game Reflection Principle (GRP) is GRP<ω1(< ℵ2).
Sometimes, the following variation of the games and the principles is useful:

For a limit ordinal δ, a set A, and A ⊆ δ≥A, G δ≥A(A) is the following game of

length δ for players I and II. A match in G δ≥A(A) looks like:

I a0 a1 a2 · · · aξ · · ·
II b0 b1 b2 · · · bξ · · · (ξ < δ)

where aξ, bξ ∈ A for ξ < δ.
II wins this match if

(3.2) 〈aξ, bξ : ξ < η〉 ∈ A and 〈aξ, bξ : ξ < η〉⌢〈aη〉 6∈ A for some η < δ; or
〈aξ, bξ : ξ < η〉 ∈ A for all η ≤ δ.

9 In [34], B. König originally called the principle introduced here the Strong Game
Reflection Principle and the local version of the principle the Game Reflection Prin-
ciple.
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where 〈aξ, bξ : ξ < η〉 is defined as above.
For a limit ordinal δ, and uncountable regular cardinals µ, κ with δ ≤ µ < κ,

GRPδ,µ(<κ): For any set A of regular cardinality ≥ κ and µ-club C ⊆ [A]<κ,

if the player II has no winning strategy in G δ≥A(A) for some A ⊆
δ≥A, there is B ∈ C such that the player II has no winning strategy in

G δ≥B(A ∩ δ≥B).

The next Lemma follows immediately from the definitions:

Lemma 7 Suppose that δ and δ′ are limit ordinals and µ, µ′, κ, κ′ are regular
cardinals such that δ ≤ δ′ < µ ≤ µ′ < κ. Then we have

(3.3) GRP<µ′
(< κ) ⇒ GRP<µ(< κ) ⇒ GRPδ′,µ(< κ) ⇒ GRPδ,µ(< κ) ut

GRP is indeed a strengthening of SDLS(Lℵ0
stat, <ℵ2). The following Theo-

rem 8, Lemma 9 and Corollary 10 are slight generalizations of results in B.
König [34].

Theorem 8 (Theorem 4.7 in [19]) Suppose that κ is a regular uncountable car-
dinal such that

(3.4) µℵ0 < κ for all µ < κ, and

(3.5) GRPω,ω1(< κ) holds.

Then SDLS(Lℵ0
stat, < κ) holds.

10 ut

Lemma 9 (Lemma 4.2 in [19]) For a regular cardinal κ, GRPω,ω1(< κ) implies
2ℵ0 < κ. ut

Remember that GRP is the principle GRP<ω1(<ℵ2). For a regular cardinal
κ > ℵ1 we shall write GRP(<κ) for GRP<ω1(<κ). Thus GRP is GRP(<ℵ2).

Corollary 10 ( 1 ) GRP implies SDLS(Lℵ0
stat, <ℵ2).

( 2 ) GRP(< (2ℵ0)+) implies SDLS(Lℵ0
stat,≤ 2ℵ0).

Proof. (1) : By Lemma 9, GRP implies CH. Thus, under GRP, (3.4) holds for
κ = ℵ2. By Lemma 7, GRP implies GRPω,ω1(< ℵ2). By Theorem 8, it follows
that SDLS(Lℵ0

stat, <ℵ2).
(2) : Note that, for µ < (2ℵ0)+, µℵ0 ≤ 2ℵ0 < (2ℵ0)+ holds. By Lemma 7,

GRP(< (2ℵ0)+) implies GRPω,ω1(< (2ℵ0)+). Thus, by Theorem 8, it follows that
SDLS(Lℵ0

stat, < (2ℵ0)+), or SDLS(Lℵ0
stat,≤ 2ℵ0) in the other notation, holds.

ut (Corollary 10)

GRP also implies another prominent reflection principle which is called Rado’s
Conjecture.

10 Actually we can prove a slight strengthening of SDLS(Lℵ0
stat, < κ) (see [19]).
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We call a partial ordering T = 〈T,≤T 〉 a tree if the initial segment below
any element is a well-ordering. A tree T = 〈T,≤T 〉 is said to be special if it can
be partitioned into countably many antichains (i.e. pairwise incomparable sets).
Note that every special tree has height ≤ ω1.

For a regular cardinal κ > ℵ1, we define Rado’s Conjecture with reflection
cardinal <κ as

RC(<κ) : For any tree T , if T is not special then there is B ∈ [T ]<κ such that
B (as the tree 〈B,≤T ∩B2〉) is not special.

The original Rado’s Conjecture (RC) is RC(<ℵ2).

Theorem 11 (B. König [34], see also Theorem 4.3 in [19]) For a regular cardinal
κ > ℵ1, GRP

<ω1(<κ) implies RC(<κ). ut

FRP is also a consequence of GRP. This is simply because FRP follows from
RC (see [25]).

Game Reflection Principles are characterizations of certain instances of the
existence of generically supercompact cardinals.

Let P be a class of posets. A cardinal κ is said to be a generically supercompact
cardinal by P, if, for any regular λ, there is a poset P ∈ P such that, for any
(V,P)-generic filter G, there are classes M , j ⊆ V[G] such that M is an inner

model of V[G], j : V
≼→M , crit(j) = κ, j(κ) > λ and j ′′λ ∈M .

Theorem 12 ([19]) For a regular uncountable κ, the following are equivalent:

( a ) 2<κ = κ and GRP<κ(<κ+) holds.

( b ) κ+ is generically supercompact by <κ-closed posets. ut

Corollary 13 (B. König [34]) The following are equivalent:

( a ) GRP holds.

( b ) ℵ2 is generically supercompact by σ-closed posets.

Proof. Assume that GRP holds (remember that GRP denotes GRP<ω1(<ℵ2)).
Then, by Corollary 10, (1) , 2<ℵ1 = 2ℵ0 = ℵ1. Thus, by Theorem 12, “(a) ⇒
(b)” for κ = ℵ1, it follows that ℵ2 = (ℵ1)

+ is generically supercompact by
σ-closed forcing. The implication “(b) ⇒ (a)” follows from “(b) ⇒ (a)” of
Theorem 12 for κ = ℵ1. ut (Corollary 13)

4 Simultaneous reflection down to < 2ℵ0 and ≤ 2ℵ0

As we discussed in Section 2, the reflection down to < 2ℵ0 as well as the reflection
down to ≤ 2ℵ0 can be regarded as significant being principles which claim certain
richness of the continuum.

One of the strong form of reflection principles with reflection cardinal < 2ℵ0

implies that the continuum is equal to ℵ2 (Theorem 6, (2)) while there is a
limitation on the possible types of reflection (Theorem 6, (3)).
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In contrast, as we see below, the reflection down to ≤ 2ℵ0 can be established
in one of its strongest forms without almost any restriction on the size of the con-
tinuum: (a) of Theorem 12 can be easily realized starting from a supercompact
cardinal.

The following is well-known.

Lemma 14 (Lemma 4.10 in [19]) If κ is a supercompact and µ < κ is an un-
countable regular cardinal then for P = Col(µ, κ) and (V,P)-generic filter G, we
have V[G] |=“κ = µ+ and κ is generically supercompact by <µ-closed posets”.

ut

Suppose now that κ1 is a supercompact cardinal and 2ℵ0 is a regular cardinal.
Let Q = Col(2ℵ0 , κ1) and let H be a (V,Q)-generic filter. By < 2ℵ0 -closedness
of Q, we have (2ℵ0)V = (2ℵ0)V[H] and V[H] |= κ1 = (2ℵ0)+. By Lemma 14,
V[H] |=“ (2ℵ0)+ is a generically supercompact cardinal by < 2ℵ0-closed posets”.

By Theorem 12, it follows that V[H] |=“GRP< 2ℵ0
(< (2ℵ0)+)”.

By Corollary 10, (2) , Lemma 7 and Theorem 11, we have, in particular,

(4.1) V[H] |=“ SDLS(Lℵ0
stat,≤ 2ℵ0) ∧ RC(≤ 2ℵ0)”.

Note that the continuum can be forced to be practically anything of uncount-
able cofinality below κ1 prior to the generic extension by Q.

The following Proposition 15 should also belong to the folklore (for similar
statements, see Theorem 4.1 in König and Yoshinobu [35] or Theorem 4.3 in
Larson [36]).

Recall that, for a regular cardinal µ, a poset P is <µ-directed closed if any
downward directed subset of P of cardinality <µ has a lower bound (in P).

Proposition 15 Suppose that MA+ω1(σ-closed) (or PFA+ω1 , or MM+ω1 , resp.)
holds. If P is <ℵ2-directed closed, then we have

(4.2) ‖–P “MA+ω1(σ-closed) (or PFA+ω1 , or MM+ω1 , resp.) ”.

Proof. We prove the case of MA+ω1(σ-closed). Other cases can be proved by
the same argument.

Suppose that P is a <ℵ2-directed closed poset and let Q
∼
, 〈D∼α : α < ω1〉,

〈S∼β : β < ω1〉 be P-names such that

(4.3) ‖–P “Q
∼

is a σ-closed poset,

D∼α (α < ω1) is a dense subset of Q
∼

for all α < ω1, and

S∼β (β < ω1) is a Q-name of a stationary subset of ω1

for all β < ω1 ”

Let P∗ = P ∗ Q
∼
. For α < ω1, let

(4.4) D∗
α = {〈p, q

∼
〉 ∈ P∗ : p ‖–P “ q

∼
ε D∼α ”}.

For β < ω1, let
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(4.5) S∼
∗
β = {〈〈p, q

∼
〉, α̌〉 : 〈p, q

∼
〉 ∈ P∗, p ‖–P “ q

∼
‖–Q

∼
“ α̌ ε S∼β ” ”}.

By the definition of P∗, 〈D∗
α : α < ω1〉, and 〈S∼

∗
β : β < ω1〉, the following is easy

to show:

Claim. P∗ is a σ-closed poset, D∗
α is a dense subset of P∗ for all α < ω1, and S∼

∗
β

is a P∗-name with ‖–P∗ “S∼
∗
β is a stationary subset of ω1 ” for all β < ω1. ut

Let D∗ = {D∗
α : α < ω1}. By MA+ω1(σ-closed), there is a D∗-generic filter

G∗ on P∗ such that S∼
∗
β [G

∗] is a stationary subset of ω1 for all β < ω1.
Let θ be a sufficiently large regular cardinal and let M ≺ H(θ) be of cardi-

nality ℵ1 such that ω1 ⊆ M and M contains everything relevant (in particular,
G∗, D∗

α, S∼
∗
β ∈M for α, β < ω1).

Let G0 = G∗∩M and let G be the filter on P∗ generated by G0. By the choice
of M , we have S∼

∗
β [G

∗] = S∼
∗
β [G0] = S∼

∗
β [G].

Let G = {p ∈ P : 〈p, q
∼
〉 ∈ G for some q

∼
}. Since |G | ≤ |M | < ℵ2 and G is

downward directed, there is a lower bound p0 ∈ P of G.

Let

(4.6) H∼ = {〈q
∼
,1P〉 : 〈p, q

∼
〉 ∈ G for some p ∈ P}.

Then H∼ is a P-name and we have

(4.7) p0 ‖–P “H∼ is a {D∼α : α < ω1}•-generic filter on Q
∼

such that

S∼β [H∼ ] is a stationary subset of ω1 for all β < ω1 ”.

Since the argument above can be also performed in P ↾ r instead of in P for
any r ∈ P. It follows that

(4.8) ‖–P “ there is a {D∼α : α < ω1}•-generic filter H on Q
∼

such that

S∼β [H] is a stationary subset of ω1 for all β < ω1 ”.
ut (Proposition 15)

Theorem 16 Suppose that κ and κ1 with κ < κ1 are two supercompact cardi-
nals. Then there is a generic extension V[G ∗ H] such that

V[G ∗ H] |= MM+ω1 + GRP< 2ℵ0
(≤ 2ℵ0).

Note that, by Corollary 5, (1) , we have

V[G ∗ H] |= SDLS−(Lℵ0
stat, < 2ℵ0) + GRP< 2ℵ0

(≤ 2ℵ0).

Proof of Theorem 16. Let V[G] be a standard model of MM obtained by a
reverse countable iteration of length κ along with a fixed Laver-function κ → Vκ.
It is easy to see that V[G] also satisfies MM+ω1 . Note that we have V[G] |=
κ = ℵ2 = 2ℵ0 . In V[G], κ1 is still supercompact. Thus, working in V[G], let
Q = Col(2ℵ0 , κ1). Let H be a (V[G],Q)-generic filter. By Proposition 15, we
have V[G ∗ H] |= MM+ω1 . By Lemma 14 and Theorem 12, we have V[G ∗ H] =

(V[G])[H] |= GRP< 2ℵ0
(≤ 2ℵ0). ut (Theorem 16)
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5 Reflection principles under large continuum

The continuum can be “very large” as a cardinal number. For example, this is
the case in the model V[G] obtained by starting from a supercompact κ and
then adding κ many Cohen reals. In this model, we have 2ℵ0 = κ and there is a
countably saturated normal fine filter over Pκ(λ) for all regular λ ≥ κ. The last
property of V[G] implies that κ there is still fairly large (e.g. κ-weakly Mahlo
and more, see e.g. Proposition 16.8 in Kanamori [32]).

If the ground model satisfies FRP then V[G] also satisfies FRP since FRP is
preserved by ccc extensions (see [18]). On the other hand, as we already have
seen, SDLS−(Lℵ0

stat, <ℵ2) or even SDLS−(Lℵ0
stat, < 2ℵ0) is incompatible with large

continuum. In particular, these reflection principles do not hold in our model
V[G].

A weakening of SDLS−(Lℵ0
stat, < 2ℵ0) is compatible with large continuum. Let

us begin with the diagonal reflection principle which characterizes the version
of the strong downward Löwenheim-Skolem theorem with reflection points of
cardinality < large continuum. The following is a weakening of Cox’s Diagonal
Reflection Principle down to an internally club reflection point.

For regular cardinals κ, λ with κ ≤ λ, let

(∗)int+<κ,λ: For any countable expansion Ã of 〈H(λ),∈〉 and sequence 〈Sa : a ∈
H(λ)〉 such that Sa is a stationary subset of [H(λ)]ℵ0 for all a ∈ H(λ),
there are stationarily many M ∈ [H(λ)]<κ such that

( 1 ) Ã ↾M ≺ Ã; and

( 2 ) Sa ∩M is stationary in [M ]ℵ0 for all a ∈M .

Note that (1) implies that c ⊆M holds for all c ∈ [M ]ℵ0 ∩M .

In the notation above, “int” (internal) refers to the condition (2) in which
not Sa ∩ [M ]ℵ0 but Sa ∩M is declared to be stationary in [M ]ℵ0 ; “+” refers to
the condition that M ∈ [H(λ)]<κ with (1) and (2) not only exists but there are
stationarily many such M .

That (∗)int+<κ,λ is compatible with κ = 2ℵ0 and it is arbitrarily large is seen in
the following Theorem 17 together with Lemma 18 below:

Theorem 17 (Theorem 2.10 in [20])Suppose that κ is a generically supercom-
pact cardinal by proper posets. Then (∗)int+<κ,λ holds for all regular λ ≥ κ. ut

Similarly to Lemma 14, starting from a supercompact cardinal, it is easy to
force that the continuum is generically supercompact cardinal by ccc-posets. Let
us call a poset P appropriate for κ, if we have j ′′P ⩽◦ j(P) for all supercompact
embedding j for κ.

Lemma 18 If κ is a supercompact and µ < κ is an uncountable regular cardinal
then for any <µ-cc poset P appropriate for κ, adding ≥ κ many reals, we have
V[G] |=“κ ≤ 2ℵ0 and κ is generically supercompact by <µ-cc posets”. ut
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“(∗)int+<κ,λ holds for all regular λ ≥ κ” characterizes the strong downward
Löwenheim-Skolem theorem for internal interpretation of stationary logic defined
in the following.

For a structure A = 〈A, ...〉 of a countable signature, an Lℵ0
stat-formula φ =

φ(x0, ..., X0, ...)
11 and a0, ... ∈ A, U0, ... ∈ [A]ℵ0 ∩A, we define the internal inter-

pretation of φ(a0, ..., U0, ...) in A (notation: A |=int φ(a0, ..., U0, ...) for “φ(a0, ...,
U0, ...) holds internally in A”) by induction on the construction of φ as follows:

If φ is “xi ε Xj” then

(5.1) A |=int φ(a0, ..., U0, ...) ⇔ ai ∈ Uj

for a structure A = 〈A, ...〉, a0, ... ∈ A and U0, ... ∈ [A]ℵ0 ∩A.
For first-order connectives and quantifiers in Lℵ0

stat, the semantics “|=int” is
defined exactly as for the first order “|=”.

For an Lℵ0
stat formula φ with φ = φ(x0, ..., X0, ..., X), assuming that the

notion of A |=int φ(a0, ..., U0, ..., U) has been defined for all a0, ... ∈ A, U0, ...,
U ∈ [A]ℵ0 ∩A, we stipulate

(5.2) A |=int statX φ(a0, ..., U0, ..., X) ⇔
{U ∈ [A]ℵ0 ∩A : A |=int φ(a0, ..., U0, ..., U)} is stationary in [A]ℵ0

for a structure A = 〈A, ...〉 of a relevant signature, a0, ... ∈ A and U0, ... ∈
[A]ℵ0 ∩A.

For structures A, B of the same signature with B = 〈B, ...〉 and B ⊆ A, we
define

(5.3) B ≺int

Lℵ0
stat

A ⇔

B |=int φ(b0, ..., U0, ...) if and only if A |=int φ(b0, ..., U0, ...)
for all Lℵ0

stat-formulas φ in the signature of the structures with
φ = φ(x0, ..., X0, ...), b0, ... ∈ B and U0, ... ∈ [B]ℵ0 ∩B.

Finally, for a regular κ > ℵ1, the internal strong downward Löwenheim-
Skolem Theorem SDLSint+ (Lℵ0

stat, < κ) is defined by

SDLSint+ (Lℵ0
stat, < κ): For any structure A = 〈A, ...〉 of countable signature with

|A | ≥ κ, there are stationarily many M ∈ [A]<κ such that
A ↾M ≺int

Lℵ0
stat

A.

Similarly to the + in “(∗)int+<κ,λ”, ‘+’ in “SDLSint+ (Lℵ0
stat, < κ)” refers to the

existence of “stationarily many” reflection points M . This additional condi-
tion can be dropped if κ = ℵ2. This is because the quantifier Qxφ defined
by statX∃x (x 6ε X ∧ φ, A |=int Qxφ(x, ...)) still implies that “there are un-
countably many a ∈ A with φ(a, ...)”. Note that, if A |=int ¬statX (x ≡ x), for
a structure A = 〈A, ...〉, we can easily find even club many X ∈ [A]<κ for any
regular ℵ1 ≤ κ ≤ |A | such that A ↾ X ≺int

Lℵ0
stat

A.

11 As before, when we write φ = φ(x0, ..., X0, ...), we always assume that the list x0, ...
contains all the free first order variables of φ and X0, ... all the free weak second
order variables of φ.
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Proposition 19 (Proposition 3.1 in [20]) For a regular cardinal κ > ℵ1, the
following are equivalent:

( a ) (∗)int+<κ,λ holds for all regular λ ≥ κ.

( b ) SDLSint+ (Lℵ0
stat, < κ) holds. ut

Although SDLSint+ (Lℵ0
stat, < 2ℵ0) is compatible with large continuum, as a

weakening of SDLS−(Lℵ0
stat, < 2ℵ0), this principle does not imply the largeness

of the continuum. The strong Löwenheim-Skolem theorem for the following vari-
ation of stationary logic does.

For sets s and t we denote with Ps(t) the set [t]< | s | = {a ∈ P(t) : | a | <
| s |}. We say S ⊆ Ps(t) is stationary if it is stationary in the sense of Jech [31].

The logic LPKL
stat has a built-in unary predicate symbol K (·).12 For a structure

A = 〈A, KA, ...〉, the weak second-order variables X, Y ,... run over elements of
PKA(A).

We shall call a structure A with K in its signature as a unary predicate

symbol such that |KA | is a regular uncountable cardinal, a PKL-structure.
LPKL
stat has the unique second-order quantifier “stat” and the internal interpre-

tation |=int of formulas in this logic is defined similarly to Lℵ0
stat with the crucial

step in the inductive definition being

(5.4) A |=int statX φ(a0, ..., U0, ..., X) ⇔
{U ∈ PKA(A) ∩A : A |=int φ(a0, ..., U0, ..., U)} is stationary in

PKA(A)

for an LPKL
stat-formula φ = φ(x0, ..., X0, ..., X) (for which the relation |=int has

been defined), a PKL-structure A = 〈A, KA, ...〉 of a relevant signature, a0, ... ∈
A and U0, ... ∈ PKA(A) ∩A.

For PKL-structures A, B of the same signature with B = 〈B, KB, ...〉 and
B ⊆ A, we define:

(5.5) B ≺int
LPKL

stat
A ⇔

B |=int φ(b0, ..., U0, ...) if and only if A |=int φ(b0, ..., U0, ...)
for all LPKL

stat-formulas φ in the signature of the structures with
φ = φ(x0, ..., X0, ...), b0, ... ∈ B and U0, ... ∈ PKB(B) ∩B.

Finally, we define the internal strong downward Löwenheim-Skolem theorem
for this logic as follows:

Suppose that κ is a regular cardinal > ℵ1.

SDLSint+ (LPKL
stat, < κ): For any PKL-structure A = 〈A, KA, ...〉 of countable sig-

nature with |A | ≥ κ and |KA | = κ, there are stationarily many
M ∈ [A]<κ such that A ↾M is a PKL-structure and A ↾M ≺int

LPKL
stat

A.

12 PKL stands here for “pi-kappa-lambda” in the sense of “Pκ(λ)”.



The Continuum Problem 15

The following diagonal reflection characterizes SDLSint+ (LPKL
stat, < κ). For reg-

ular cardinals κ, λ with κ ≤ λ, let

(∗)int+PKL
<κ,λ : For any countable expansion A of the structure 〈H(λ), κ,∈〉 and

any family 〈Sa : a ∈ H(λ)〉 such that Sa is a stationary subset of
Pκ(H(λ)) for all a ∈ H(λ), there are stationarily many M ∈ Pκ(H(λ))
such that |κ ∩M | is regular, A ↾ M ≺ A and Sa ∩ Pκ∩M (M) ∩M is
stationary in Pκ∩M (M).

Proposition 20 (Proposition 4.1 in [20]) For a regular cardinal κ > ℵ1, the
following are equivalent:

( a ) (∗)int+PKL
<κ,λ holds for all regular λ ≥ κ.

( b ) SDLSint+ (LPKL
stat, < κ) holds. ut

For a regular cardinal κ and a cardinal λ ≥ κ, S ⊆ Pκ(λ) is said to be 2-
stationary if, for any stationary T ⊆ Pκ(λ), there is an a ∈ S such that |κ ∩ a |
is a regular uncountable cardinal and T ∩ Pκ∩a(a) is stationary in Pκ∩a(a). A
regular cardinal κ has the 2-stationarity property if Pκ(λ) is 2-stationary (as a
subset of itself) for all λ ≥ κ.

Since the property (a) in Proposition 20 is an extension of the 2-stationarity
of κ, we obtain:

Lemma 21 For a regular uncountable κ, SDLSint+ (LPKL
stat, < κ) implies that κ is

2-stationary. ut
This implies that a regular uncountable κ with SDLSint+ (LPKL

stat, < κ) must be
a fairly large cardinal:

Lemma 22 (Lemma 4.3 in [20]) Suppose that κ is a regular uncountable cardi-
nal. If κ is 2-stationary then κ is a weakly Mahlo cardinal. ut

Actually the proof of Lemma 22 (in [20]) shows that κ is weakly hyper Mahlo,
weakly hyper hyper Mahlo, etc.

Corollary 23 SDLSint+ (LPKL
stat, < 2ℵ0) implies that 2ℵ0 is weakly Mahlo, weakly

hyper Mahlo, weakly hyper hyper Mahlo, etc. ut
Using the characterization Proposition 20 of SDLSint+ (LPKL

stat, < κ), a proof sim-
ilar to that of Theorem 12 shows the following:

Theorem 24 Suppose that κ is a generically supercompact cardinal by <µ-cc
posets for some µ < κ. Then SDLSint+ (LPKL

stat, < κ) holds. ut
Since ccc posets are proper, we obtain the following by Theorem 17, Propo-

sition 19 and Theorem 24:

Corollary 25 Suppose that κ is a generically supercompact cardinal by ccc po-
sets. Then SDLSint+ (Lℵ0

stat, < κ) and SDLSint+ (LPKL
stat, < κ) hold. ut

By Lemma 18, it follows that

Corollary 26 If ZFC + “there is a supercompact cardinal” is consistent then
so is ZFC + SDLSint+ (Lℵ0

stat, < 2ℵ0) and SDLSint+ (LPKL
stat, < 2ℵ0). Note that the con-

tinuum is fairly large in the latter axiom system by Corollary 23. ut
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6 Laver-generic large cardinals

The reflection properties we presented so far in connection with the size of the
continuum can be summarized in three possible scenarios:

(A) GRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This implies CH (Lemma 9).

(B ) SDLS−(Lℵ0
stat, < 2ℵ0) . . . . . . . . . . This implies 2ℵ0 = ℵ2 (Theorem 6, (2)).

(C) SDLSint+ (LPKL
stat, < 2ℵ0) This implies that 2ℵ0 is fairly large (Corollary 23).

These three possible scenarios can be treated in a uniform way from the point
of view of the Laver-generic large cardinals defined below.

We shall call a class P of posets iterable if

(6.1) P is closed with respect to forcing equivalence. That is, if P ∈ P and
P′ is forcing equivalent to P then P′ ∈ P;

(6.2) For any P ∈ P and p ∈ P, P ↾ p ∈ P;

(6.3) If P ∈ P and ‖–P “Q
∼
ε P ” then P ∗ Q

∼
∈ P.

Note that most of natural classes of posets like σ-closed posets, ccc posets,
proper posets, stationary preserving posets etc. are iterable.

For a cardinal κ and an iterable class P of posets, we call κ a Laver-generically
supercompact for P if, for any λ ≥ κ and any P ∈ P, there is a poset Q ∈ P with
P ⩽◦ Q such that, for any (V,Q)-generic filter H, there are M , j ⊆ V[H] such that

(6.4) M is an inner model of V[H],

(6.5) j : V
≼→M ,

(6.6) crit(j) = κ, j(κ) > λ,

(6.7) P, H ∈M and

(6.8) j ′′λ ∈M .13

κ is Laver-generically superhuge (Laver-generically super almost-huge resp.)
for P if κ satisfies the definition of Laver-generic supercompactness for P with
(6.8) replaced by

(6.8)′ j ′′j(κ) ∈M (j ′′µ ∈M for all µ < j(κ) resp.).

κ is tightly Laver-generically supercompact (tightly Laver-generically super-
huge, tightly Laver-generically super almost-huge, resp.) if the definition of Laver-
generically supercompact (Laver-generically superhuge, Laver-generically super
almost-huge, resp.) holds with (6.6) replaced by

(6.6)′ crit(j) = κ, j(κ) = |Q | > λ.

13 This definition of Laver-generic supercompactness for P is different from the one
given in [20]. However, it is easy to show that the present definition is equivalent
to the one in [20] for an iterable P. Note that, strictly speaking, this equivalence is
used at the end of the proof of Theorem 34 below.
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All consistency proofs of the existence of Laver-generic large cardinals we
know actually show the existence of tightly Laver-generic large cardinals (see
the proof of Theorem 5.2 in [20]).

The consistency of the existence of a Laver-generic large cardinal can be
proved from the assumption of the existence of the corresponding genuine large
cardinals except the case of the Laver-generic large cardinals by proper posets.
This case will be further discussed in [21].

Theorem 27 ([20]) ( 1 ) Suppose that ZFC + “there exists a supercompact car-
dinal” is consistent. Then ZFC + “there exists a Laver-generically supercompact
cardinal for σ-closed posets” is consistent as well.

( 2 ) Suppose that ZFC + “there exists a superhuge cardinal” is consistent. Then
ZFC + “there exists a Laver-generically super almost-huge cardinal for proper
posets” is consistent as well.

( 3 ) Suppose that ZFC + “there exists a supercompact cardinal” is consistent.
Then ZFC + “there exists a Laver-generically supercompact cardinal κ for c.c.c.
posets” with κ = 2ℵ0 is consistent as well.

Sketch of the proof. Let us consider (2) . The other assertions are similarly
and easier to prove.

Starting from a model of ZFC with a superhuge cardinal κ, we can obtain
models of respective assertions by iterating in countable support with proper
posets κ times along a Laver function for super almost-hugeness which exists by
a result in Corazza [7].

In the resulting model, we obtain Laver-generically super almost-hugeness
in terms of proper poset Q in each respective inner model M [G] of V[G]. The
closedness of M in V in terms of super almost-hugeness implies that Q is also
proper in V[G] (this is the place where we need the super almost-hugeness: for
(1) and (3) we do not need this much closedness of M).

This shows that κ is Laver-generically super almost-huge of proper posets.
ut (Theorem 27)

In contrast to simple generic supercompactness, a Laver-generically super-
compact cardinal for a natural class P of posets is determined uniquely if it
exists:

Proposition 28 ([20]) ( 0 ) If κ is generically measurable for some poset P,
then κ is regular.

( 1 ) Suppose that κ is generically measurable by a ω1 preserving P. Then κ > ω1.

( 2 ) Suppose that κ is Laver-generically supercompact for a class P of posets
with Col(ω1, {ω2}) ∈ P. Then κ ≤ ω2. If all elements of P are ω1-preserving,
then we have κ = ω2.

( 3 ) Suppose that P is a class of posets containing a poset P such that any
(V,P)-generic filter G codes a new real. If κ is a Laver-generically supercompact
for P, then κ ≤ 2ℵ0 .
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( 4 ) Suppose that P is a class of posets such that elements of P do not add any
reals. If κ is Laver-generically supercompact by P, then we have 2ℵ0 < κ. ut

For a class P of posets and cardinals µ, κ,

MA+µ(P, < κ): For any P ∈ P, any family D of dense subsets of P with | D | <
κ and any family S of P-names such that | S | ≤ µ and ‖–P “S∼ is a
stationary subset of ω1 ” for all S∼ ∈ S, there is a D-generic filter G
over P such that S∼[G] is a stationary subset of ω1 for all S∼ ∈ S.

The following strengthening of the Laver-genericity is needed to obtain “++”
versions of forcing axioms.

For a cardinal κ and an iterable class P of posets, we call κ a strongly Laver-
generically supercompact for P if, for any λ ≥ κ and any P ∈ P, there is a
P-name of a poset Q

∼
with ‖–P “Q

∼
ε P ” such that, for any (V,P ∗ Q

∼
)-generic

filter H, there are M , j ⊆ V[H] with

(6.9) M is an inner model of V[H],

(6.10) j : V
≼→M ,

(6.11) crit(j) = κ, j(κ) > λ,

(6.12) P, H ∈M and

(6.13) (λM)V[H] ⊆M .

The notions of strongly Laver-generically superhuge and strongly Laver-generically
super almost-huge are defined correspondingly. For example, κ is strongly Laver-
generically super almost-huge if the definition of strongly Laver-generically su-
percompact cardinal holds with (6.13) replaced with

(6.14) (µM)V[H] ⊆M holds for all µ < j(κ).

Note that, if P is the class of ccc posets, then the “strongly” version of
the Laver-generically large cardinal is equivalent to the original version of the
corresponding Laver-generic largeness. Note also that the construction in the
proof of Theorem 27 actually provides models of strongly Laver-genericity.

Theorem 29 (Theorem 5.7 in [20]) For a class P of proper posets, if κ > ℵ1 is
a strongly Laver-generically supercompact for P, then MA+µ(P, < κ) holds for
all µ < κ. ut

Lemma 30 Suppose that κ is generically supercompact by a class P of posets
such that all P ∈ P has the <µ-cc for some µ < κ. Then for any regular λ ≥ κ,
Pκ(λ) has a µ-saturated normal fine filter F over Pκ(λ).

Proof. For a regular λ ≥ κ, let P be such that there are (V,P)-generic G, and

M , j ⊆ V[G] such that j : V
≼→M , crit(j) = κ, j(κ) > λ and j ′′λ ∈M .

In V, let F = {A ⊆ Pκ(λ) : ‖–P “ j
′′λ ε j(Ǎ) ”}. By the <µ-cc of P, this F

is as desired. ut (Lemma 30)

Combining Proposition 28, Theorem 29 and Lemma 30, we obtain:
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Theorem 31 Suppose that κ is strongly Laver-generically supercompact cardi-
nal for an iterable class P of posets.

(A′) If all elements of P are ω1-preserving and do not add any reals, and
Col(ω1, {ω2}) ∈ P, then κ = ℵ2 and CH holds.

(B′) If all elements of P are ω1-preserving and P contains all proper posets then
PFA+ω1 holds and κ = 2ℵ0 = ℵ2.

(C′) If all elements of P are <µ-cc for some fixed µ < κ and P contains a poset
which adds a new real then κ is fairly large (in the sense of Lemma 30) and
κ ≤ 2ℵ0 .

Proof. (A′): By Proposition 28, (2) and (4) .

(B′): κ = ℵ2 by Proposition 28, (2) . PFA+ω1 holds by Theorem 29. PFA
implies 2ℵ0 = ℵ2.

(C′): κ ≤ 2ℵ0 by Proposition 28, (3) . κ is large by Lemma 30. ut (Theorem 31)

The three cases in Theorem 31 can be further modified to fit to the reflection
principles discussed in earlier sections.

Theorem 32 (A′′) Suppose that κ is Laver-generically supercompact for σ-closed
posets. Then 2ℵ0 = ℵ1, κ = ℵ2, MA+ω1(σ-closed) and GRP holds. It follows that
RC and SDLS(Lℵ0

stat, <ℵ2) hold.

(B′′) Suppose that elements of P are ω1-preserving and P contains all proper po-
sets. If κ is strongly Laver-generically supercompact for P, then 2ℵ0 = κ = ℵ2,
PFA+ω1 and hence also SDLS−(Lℵ0

stat, < 2ℵ0) holds.

(C′′) Suppose that κ is Laver-generically supercompact for ccc posets. Then κ ≤
2ℵ0 and Pκ(λ) for any regular λ ≥ κ carries an ℵ1-saturated normal ideal. In par-
ticular, κ is κ-weakly Mahlo. MA+µ(ccc,<κ) for all µ < κ, SDLSint(Lℵ0

stat, < κ)
and SDLSint+ (LPKL

stat, < κ) also hold.

Proof.(A′′): 2ℵ0 = ℵ1 and κ = ℵ2 follows from Theorem 31, (A).MA+ω1(σ-closed)
holds by Theorem 29. GRP holds by Corollary 13. RC and SDLS(Lℵ0

stat, <ℵ2) fol-
low from GRP by Theorem 11 and Corollary 10, (1) .

(B′′): This is just as (B) in Theorem 31. SDLS−(Lℵ0
stat, < 2ℵ0) holds by Corol-

lary 5, (1) .

(C′′): The first half of the assertion follows from Theorem 31, (C).
MA+µ(ccc,<κ) for all µ < κ holds by Theorem 29. SDLSint(Lℵ0

stat, < κ) and
SDLSint+ (LPKL

stat, < κ) hold by Corollary 25. ut (Theorem 32)

At the moment we do not know whether the assumption in (C) in Theorem 32
implies κ = 2ℵ0 . The following partial answer is obtained in [20]:

Theorem 33 (Theorem 5.3 in [20]) If κ is tightly Laver-generically superhuge
for ccc posets, then κ = 2ℵ0 . ut

The following Theorem 34 is a Laver-generic version of Theorem 16. The
proof of the theorem is a typical application of the master condition argument
(see e.g. Cummings [9]).
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Theorem 34 Suppose that κ is strongly Laver-generically almost super-huge
for an iterable P which provably contains all posets of the form Col(µ, λ) for all
regular µ, λ with κ ≤ µ < λ. For a regular λ0, let P0 = Col(κ, λ0) and let G0 be
a (V,P0)-generic filter.

Then we have

(6.15) V[G0] |=“κ is strongly Laver-generically super almost-huge for P”.

Proof. Suppose that V[G0] |=“P ∈ P” and let P∼ be a P0-name of P such that
‖–P0

“P∼ ε P ”. Let λ ≥ κ be regular. Without loss of generality, we may assume
that λ ≥ |P | ≥ λ0. P0 ∗ P∼ ∈ P by iterability of P. Since κ is strongly Laver-
generically super almost-huge for P, there are P0 ∗ P∼-name Q

∼
with ‖–P0∗P

∼
“Q
∼
ε

P ” and (V,P0 ∗P∼ ∗Q
∼
)-generic filter H such that G0 ⊆ H and such that there are

M , j ⊆ V[H] with (6.9), (6.10), (6.11), (6.14) and

(6.16) P0 ∗ P∼, H ∈M .

We have j ′′G0 ∈M . Let P1 = j(P0) by (6.14).
By elementarity, we have M |= “P1 = Col(j(κ), j(λ0))”. Note that we also

have V[H] |=“P1 = Col(j(κ), j(λ0))” by (6.14). Since M |=“ j ′′G0 has the fip”
by elementarity and M |=“ | j ′′G0 | ≤ |P | ≤ λ < j(κ)”, there is q∗ ∈ P1 in M
such that q∗ ≤P1

j(p) for all p ∈ G0. Let G1 be (V[H],P1)-generic filter with
q∗ ∈ G1. In V[H ∗ G1], let

(6.17) j̃ : V[G0]
≼→M [G1]; a∼[G0] 7→ j(a∼)[G1].

Since P ∈ PV[G0] and λ were arbitrary, the elementary embedding j̃ above wit-
nesses the Laver-generic super almost-hugeness of κ for P in V[G0]. ut (Theorem 34)

Corollary 35 Suppose that P is an iterable class of posets which provably con-
tains all posets of the form Col(µ, λ) for all regular uncountable µ, λ with
κ ≤ µ < λ. If the theory ZFC + “there is a strongly Laver-generically super
almost-huge κ for P” + “there is a supercompact κ1 > κ” is consistent, then so
is the theory ZFC + “there is a strongly Laver-generically super almost-huge κ
for P” + “κ+ is generically supercompact by <κ-closed posets”. In particular,
GRP<κ(<κ+) follows from this theory.

Proof. Suppose that κ is strongly Laver-generically supercompact for P and κ1
is a supercompact cardinal. Let P0 = Col(κ, κ1) and let G0 be a (V,P0)-generic
filter. By Theorem 34, V[G0] |= “κ is strongly Laver-generically supercompact
for P”. V[G0] |= κ1 = κ+ and V[G0] |=“κ+ is generically supercompact by <κ-
closed posets” by Lemma 14. By Theorem 12, GRP<κ(<κ+) follows.ut (Corollary 35)

Theorem 34 and Corollary 35 have many variants with similar proofs. For
example:

Theorem 36 Suppose that κ is strongly Laver-generically supercompact for an
iterable P which provably contains all σ-closed posets. For a regular λ0, let P0 =
Col(κ, λ0) and let G0 be a (V,P0)-generic filter.

Then we have
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(6.18) V[G0] |=“κ is strongly Laver-generically supercompact for P”. ut

Corollary 37 Suppose that P is an iterable class of posets which provably con-
tains all σ-closed posets. If the theory ZFC + “there is a strongly Laver-generically
supercompact κ for P” + “there is a supercompact κ1 > κ” is consistent, then
so is the theory ZFC + “there is a strongly Laver-generically supercompact κ
for P” + “κ+ is generically supercompact by <κ-closed posets”. In particular,
GRP<κ(<κ+) follows from this theory. ut

Note that, by Proposition 28, (2) , we have κ ≤ ℵ2 in Theorem 36 and Corol-
lary 37 above.

In [21], we show that the combination of the principles SDLSint(Lℵ0
stat, < 2ℵ0)

and GRP< 2ℵ0
(≤ 2ℵ0) is also consistent under large continuum assuming the con-

sistency of two supercompact cardinals.

7 Some open problems and Takeuti’s account on Gödel’s
contribution to the continuum problem

Let us mention some open problems. Some of them will be addressed in [21].
The following problem is already mentioned in the previous section:

Problem 1. If κ is Laver-generically supercompact for ccc posets, does this imply
κ = 2ℵ0?

Forcing axioms have some characterizations which may be interpreted as
suggestions of the correctness of the axioms. See e.g. Bagaria [1], Fuchino [13].

Problem 2. Is there any nice characterizations of “+µ” versions of forcing ax-
ioms?

Any meaningful answer to this problem would enhance the relevance of the
trichotomy in Theorem 32.

The trichotomy (A), (B), (C) of reflection principles mentioned at the begin-
ning of Section 6 has an alternative trichotomy (A),(B∗),(C∗), where

(B∗) SDLS−(Lℵ0
stat, < 2ℵ0) and RC hold.

(C∗) SDLSint+ (LPKL
stat, < 2ℵ0) and RC(< 2ℵ0) hold.

Note that RC in (B∗) is equivalent to RC(< 2ℵ0) since SDLS−(Lℵ0
stat, < 2ℵ0)

implies 2ℵ0 = ℵ2.
(B∗)and(C∗)are not compatible with(B′′)and(C′′)respectively, since MA(κ)

— i.e. MA (for ccc posets) for ≤κ many dense sets — implies the negation of
RC(≤κ+) (see section 5 in Fuchino [17]).

(B∗) and (C∗) can be realized by starting from a supercompact cardinal and
then forcing with a Mitchell type mixed support iteration (for(B∗), this is men-
tioned in [43], for (C∗), see [21]). Actually, (C∗) can be realized much easier by
simply adding supercompact many Cohen reals, but we do need mixed support
iteration to obtain a model of
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(C†) SDLSint+ (LPKL
stat, < 2ℵ0), RC(< 2ℵ0) and GRP< 2ℵ0

(≤ 2ℵ0) hold.

Models obtained in this way seem to be much more artificial than the models
for(B′′)and(C′′)as in the proof of Theorem 27. Even so, we have the feeling that
we do not understand yet much about the models constructed by the mixed
support iteration and its variations. Thus

Problem 3. What is possible with variations of mixed support iteration?

The result of König in [34] cited here as Corollary 13 can be also regarded
as a characterization of ℵ2 being generically supercompact by σ-closed posets.
Thus we may further ask:

Problem 4. Is there any characterizations of Laver-generically large cardinals in
terms of some strong reflection principles?

The following essential problem might be much harder than the other prob-
lems:

Problem 5. Are Laver-generically large cardinals equiconsistent with correspond-
ing genuine large cardinals?

The consistency of the reflection of non-metrizability of a first countable topo-
logical spaces down to <ℵ2 is an open problem known as Hamburger’s problem.
The consistency of the reflection of the property of partial orderings that they
are not represented as countable union of chains down to <ℵ2 is also an open
problem known as Galvin’s conjecture. In case of Hamburger’s problem, it is
known that the reflection of non-metrizability of a first countable topological
spaces down to < 2ℵ0 is realized in the model obtained by adding supercompact
many Cohen reals (Dow, Tall and Weiss [12]). The reflection cardinal of uncount-
able chromatic number of graphs is known to be ≥ ℶω (Erdős and Hajnal, see
[23] for a detailed proof in ZFC). There are many open problems in connection
with reflection of these and some other mathematical properties. Some of them
seem to be extremely difficult. Let us mention here merely one problem which
may have some connection to Problem 3:

Problem 6. Is the reflection of non-metrizability of first countable topological
spaces down to < 2ℵ0 consistent with RC(< 2ℵ0)?

The first author of this article belongs to the generation of Japanese logicians
who were strongly inspired by the writings of late Professor Gaishi Takeuti who
published many expository articles and books in Japanese from 1960’s to the end
of 1990’s. Although set theory was not his main field, Professor Takeuti wrote
many expositions and told his views on the subject. Gödel’s program was one of
the issues he discussed repeatedly there.

Gödel, who usually refused to publish papers which he thought was not yet
perfect, tried once to publish a quite unfinished note in 1970 with the title
“Some considerations leading to the probable conclusion that the true power of
the continuum is ℵ2.” It is said that, being seriously ill, he did so under the
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fear that he would soon die. After this crisis, Gödel withdrew the note finding
out some inaccuracy in it but he continued the study on the problem. Oskar
Morgenstern noticed in his diary on 20. September, 1975 that Gödel told him in
a telephone call that he was finally convinced that (the newest version of) his
axiom implies that the continuum is “different from ℵ1” and that he will write
it up ([38]). Dawson [10] contains some accounts about this development.

Takeuti wrote about the details of what he understood from the 1970 note
on pp.99–124 in his book [40] published in 1972. According to Takeuti [42], he
was then invited by Gödel in 1975 or 1976 shortly before Gödel’s retirement
from IAS and discussed with him about the results on the Continuum Problem.
Takeuti [41] in 1978 must be closely related to this discussion.

Twenty years later, in May 1998, the first author of the present article ob-
tained a letter from Professor Takeuti with a copy of his handwritten manuscript
in Japanese, which contained a further development of the material in [41] among
other things. Unfortunately, the first author could not give any reasonable com-
ments to the manuscript at that time. The part of the manuscript on “Gödel’s
Continuum Hypothesis” was then published in the new edition of [42] as an
appendix in September 1998.

Modern treatment of Gödel’s axioms is to be found in Brendle, Larson and
Todorčević [3]. [41] is cited in [3] but neither [40] nor [42] is mentioned there.

Though the technical details of the present article are rather orthogonal to
the Gödel-Takeuti line of the support of 2ℵ0 = ℵ2, the first author considers the
results presented in this article as his belated reply to the letter in 1998 and
would like to dedicate this article to the memory of Professor Gaishi Takeuti.
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