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Abstract: Common-path off-axis single-pixel holographic imaging (COSHI) is proposed to
obtain complex amplitude information using an in-line interferometer and a single-pixel (point-
like) detector. COSHI is more robust to disturbances such as vibration than the conventional
single-pixel digital holography technique because of its common-path configuration. In addition,
the number of measurements can be reduced due to COSHI’s reconstruction process based on
the Fourier fringe analysis. In COSHI, an off-axis digital hologram can be obtained using the
structured patterns composed of Hadamard basis patterns and stationary tilted phase distribution.
Interestingly, COSHI’s space bandwidth is larger than of the conventional off-axis digital
holography because COSHI does not reconstruct the self-correlation term of an object. The
proposed method is theoretically confirmed and numerical and experimental results show its
feasibility.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Single-pixel imaging (SPI) is an attractive technique since it detects two-dimensional (2D) images
without a 2D image sensor [1–4]. Over the past few decades, SPI has been applied to various
applications such as optical encryption [5], three-dimensional (3D) imaging [6], microscopy [7],
remote sensing [8], terahertz imaging [9], tomography [10], broadcast imaging [11], spectral
imaging [12], and polarization imaging [13]. In addition, phase imaging is also achieved in
SPI. The phase imaging techniques in SPI can be classified as either noninterferometric or
interferometric methods. In the noninterferometric methods, the transport of intensity equation
(TIE) [14,15] has been applied to computational ghost imaging (CGI) [16]. However, TIE-
based CGI can only reconstruct the weak phase object following Teague’s assumption. A
differential phase contrast (DPC) method has been applied to CGI, which was proposed as a
noninterferometric SPI [17]. The measurable phase difference in DPC-based CGI, similar to
TIE-based CGI, is restricted by the constraint imposing weak object approximation. Single-pixel
ptychography, which is a noninterferometric SPI, can mitigate the phase difference problem [18].
However, an iterative phase retrieval process is required in the ptychographic approach, which
imposes a high computational cost. K. Komuro et al. have proposed deep ghost phase imaging
(DGPI) for improving the image quality of TIE-based CGI using a deep neural network [19].
Although DGPI mitigates the problem of TIE-based CGI, a large amount of measurements is
required to obtain the data sets for the neural network.

On the other hand, various interferometric SPI techniques have been proposed. Clemente,
et al. proposed digital ghost holography (DGH) [20] that can detect phase information with
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a Mach-Zehnder interferometer. Ghost Mach-Zehnder interferometry has also been proposed
[21]. Moreover, a Michelson interferometer can be used in single-pixel digital holography
(SPDH) [22]; accordingly, the patterns do not have to illuminate an object directly. SPDH
has been applied in various applications, such as multi-color [23] and biological imaging [24].
SPDH can achieve a high sampling rate using a digital micromirror device [25]. However, the
requirement of a two-beam interferometer makes the optical setup bulky and complicated. In
addition, DGH and SPDH require three or four times the number of measurements compared
with conventional SPI because they are based on the phase-shifting technique [26]. Various
common-path configurations have been proposed [27–31] to overcome the optical setup issue.
Particularly, single-point holography (SPH) [27,28] can reconstruct complex information using
a common-path setup and a single-pixel (point like) detector. In SPH, complex amplitude
information can be obtained by extracting a zeroth order diffracted light in a Fourier plane. The
use of the zeroth order diffracted light is also proposed in optical scanning holography [32–34],
GI [35], Hadamard SPI [36], and single-pixel wavefront sensor [37]. However, there is still a
problem with the number of measurements due to the phase-shifting.

In this study, common-path off-axis single-pixel holographic imaging (COSHI) is proposed
to obtain complex amplitude information with an in-line interferometer and a single-pixel
(point-like) detector. Similar to SPH, COSHI is more robust to disturbances such as vibration
than conventional DGH and SPDH. In addition, the number of measurements can be reduced
compared with other common-path techniques such as SPH owing to the reconstruction process
based on the Fourier fringe analysis (FFA) [38] rather than the phase-shifting method. In COSHI,
off-axis digital holograms can be obtained using the structured patterns composed of Hadamard
basis patterns and a stationary tilted phase distribution. These structured patterns are easily
generated using a phase-type spatial light modulator (SLM) and its polarization dependence. The
off-axis digital holograms are obtained through the reconstruction process which is the same as
the conventional SPI. Interestingly, COSHI’s space bandwidth is larger than the conventional
off-axis digital holography because COSHI does not reconstruct the self-correlation term of an
object.

2. Principle

Figure 1 shows the schematic of COSHI. Structured phase patterns are used for illumination
in COSHI. The structured patterns are composed of Hadamard basis patterns and a stationary
tilted phase distribution. Because the Hadamard basis patterns are composed of 1 and −1, the
Hadamard basis patterns are generated with the phase patterns composed of 0 and π. Therefore,
the distributions of the sum between the Hadamard basis patterns and a tilted phase distribution
are generated as pure phase distributions. The structured patterns are sequentially displayed on a
phase-type SLM such as liquid crystal on silicon (LCoS) SLM. A diagonally polarized plane
wave enters the SLM and the horizontal or vertical component is modulated by the SLM. In this
explanation, it is supposed that the SLM modulates the horizontal polarized component. Thus,
the vertical component transmits the SLM. These orthogonal components are projected to an
object plane with a 4-f setup. In the 4-f setup, a polarizer is inserted in front of the object to align
these polarized components. This polarization-based illumination technique is frequently used in
SPI [39–41]. Through the process, the structured patterns and the plane wave are simultaneously
illuminated to the object. The complex amplitude distribution at the object plane is described as
follows:

f (x, y) = O(x, y)
{︁
Apmj(x, y)l(x, y) + As

}︁
, (1)

where O(x, y), Ap, As, mj(x, y), and l(x, y) are the complex amplitude distribution of the object,
polarization components of vertical and horizontal components, Hadamard patterns with
j = 1, 2, . . . , N, and a stationary tilted phase distribution, respectively. The polarization
dependence of the object is omitted in this description for simplicity. If the objects are anisotropic,
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the polarization dependence can be considered using the Jones matrix. The diffracted light
from the object is Fourier transformed by a lens and is detected using a single-pixel (point-like)
detector. The detector is easily constructed using a pinhole and extracts a DC component. The
detected intensity is described as follows:

Ij =

|︁|︁|︁|︁|︁∬ f (x, y)exp {−i2π(µx + νy)} dxdy
|︁|︁|︁|︁
µ=ν=0

|︁|︁|︁|︁|︁2
=

|︁|︁|︁|︁∬ f (x, y)dxdy
|︁|︁|︁|︁2

=

|︁|︁|︁|︁∬ O(x, y)
{︁
Apmj(x, y)l(x, y) + As

}︁
dxdy

|︁|︁|︁|︁2 ,

(2)

where µ and ν are spatial frequency along x and y axes. Note that if the pinhole size is mismatched
or the pinhole position is displaced, the relation of Eq. (2) is not satisfied. The effects of the
pinhole size and the position are evaluated in discussion. Equation (2) can be expanded as

Ij =

|︁|︁|︁|︁∬ ApO(x, y)mj(x, y)l(x, y)dxdy +
∬

AsO(x, y)dxdy
|︁|︁|︁|︁2 . (3)

In Eq. (3), the second term on the right hand side can be regarded as a constant R because the
term is independent of mj(x, y). Therefore, Eq. (3) can be rewritten as follows:

Ij =

|︁|︁|︁|︁∬ ApO(x, y)mj(x, y)l(x, y)dxdy + R
|︁|︁|︁|︁2

=

|︁|︁|︁|︁∬ ApO(x, y)mj(x, y)l(x, y)dxdy
|︁|︁|︁|︁2 + |R|2 + R∗

∬
ApO(x, y)mj(x, y)l(x, y)dxdy

+ R
{︃∬

ApO(x, y)mj(x, y)l(x, y)dxdy
}︃∗

,

(4)

where ∗ indicates the complex conjugate. Since the Hadamard basis patterns are real functions
composed of 1 and −1, mj(x, y) = m∗

j (x, y). The third and fourth terms on the right hand side of
Eq. (4) are combined into one term and Eq. (4) is rewritten as follows:

Ij =

|︁|︁|︁|︁∬ ApO(x, y)mj(x, y)l(x, y)dxdy
|︁|︁|︁|︁2 + |R|2

+

∬
mj(x, y)

[︁
R∗ApO(x, y)l(x, y) +

{︁
R∗ApO(x, y)l(x, y)

}︁∗]︁ dxdy

=ISj + IRj + IACj,

(5)

where

ISj =

|︁|︁|︁|︁∬ ApO(x, y)mj(x, y)l(x, y)dxdy
|︁|︁|︁|︁2

IRj = |R|2 =
|︁|︁|︁|︁∬ AsO(x, y)dxdy

|︁|︁|︁|︁2
IACj =

∬
mj(x, y)

[︁
R∗ApO(x, y)l(x, y) +

{︁
R∗ApO(x, y)l(x, y)

}︁∗]︁ dxdy.

Interestingly, the detected intensity can be divided into three terms, and IACj is equivalent to the
interference term. Therefore, the complex amplitude distribution of the object can be obtained as
the detected intensity.
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Fig. 1. Schematic diagram of COSHI. SLM, Spatial Light Modulator; FT, Fourier transform;
PH, Pinhole.

In COSHI, the reconstruction process is almost the same as that in the conventional SPI.
The reconstructed distribution is calculated from the sum of mj(x, y) weighted with Ij, which is
described as follows:

H(x, y) =
1
N

N∑︂
j=1

mj(x, y)Ij

=
1
N

N∑︂
j=1

mj(x, y)(ISj + IRj + IACj)

=
1
N

N∑︂
j=1

mj(x, y)(ISj + IRj) + R∗ApO(x, y)l(x, y) +
{︁
R∗ApO(x, y)l(x, y)

}︁∗ ,

(6)

where N is the number of the Hadamard basis patterns. The third and fourth terms on the right
hand side of Eq. (6) can be reconstructed because these terms are a linear superposition of the
Hadamard basis patterns mj(x, y) weighted with IACj. Equation (6) indicates that the reconstructed
distribution of COSHI figures an off-axis hologram. In Eq. (6), the first term on the right hand
side can be neglected by subtracting the post calculated distribution. Since IACj is the component
for the interference term, the mean value of IACj is almost 0. Therefore, 1

N
∑︁N

j=1(ISj + IRj) ≈ Ī,
where Ī is the ensemble average of Ij(j = 1, 2, . . . , N). To remove the first term on the right hand
side in Eq. (6), the approximation of

1
N

N∑︂
j=1

mj(x, y)(ISj + IRj) ≈
Ī
N

N∑︂
j=1

mj(x, y) (7)

is used. By subtracting Ī
N
∑︁N

j=1 mj(x, y) from Eq. (6), the interference term is obtained and is
described as follows:

H′(x, y) =H(x, y) −
Ī
N

N∑︂
j=1

mj(x, y)

≈R∗ApO(x, y)l(x, y) +
{︁
R∗ApO(x, y)l(x, y)

}︁∗ .

(8)

Note that since Eq. (8) has the approximation, the approximation effect is evaluated in the
discussion. This subtraction process is similar to the one in the correlation function in CGI [2,16].
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Note that COSHI has a larger space bandwidth than the conventional off-axis digital holographic
technique because the right-hand side of Eq. (8) does not contain the self-correlation term of the
object. The complex amplitude distribution of the object can be obtained through the FFA. The
process of the FFA is shown in Fig. 2. Firstly, the reconstructed interference distribution H′(x, y)
is Fourier transformed. Secondly, the desired spectrum is extracted using a filter function and
is shifted to the center position. Finally, the extracted spectrum is inverse Fourier transformed
and the complex amplitude distribution of the object can be obtained. Note that when the object
is placed at the defocus position, i.e., shifted away from the front focal plane of the Fourier
transform lens, the complex amplitude distribution of the defocused object is obtained. Therefore,
by using the back propagation algorithm to the complex amplitude distribution, we can obtain
the distribution at the object plane.

Fourier transform

Extracted

Inverse Fourier 
transform

O(x, y)

H’(x, y)

P
h

a
s
e

 [
ra

d
]

0

2�

Fig. 2. The process of the FFA.

3. Proof-of-principle experiment

A proof-of-principle experiment was demonstrated to confirm the feasibility of the proposed
method. The optical setup and the parameters are shown in Fig. 3. The light source is a green
fiber laser (MPB Communications, Inc., VFL-P-500). The collimated beam through a spatial
filter illuminates an SLM (Hamamatsu Photonics K.K. X13138-01). The center region of the
SLM with 128× 128 is used for the illumination patterns. Since the number of structured patterns
are 128 × 128, the number of measurements is 128 × 128 = 16384. The structured illumination
patterns are projected to an object with a 4-f optical setup composed by lens 2 and 3. The
transmitted beam is Fourier transformed by lens 4 and is detected by a single-pixel detector
composed of a pinhole (Thorlabs, Inc., P40D) and a photodiode (Hamamatsu K.K. C10439-03).
The measured currents were quantized by a 16-bit analog-to-digital converter (Hamamatsu
K.K. C10475). The sampling speed is limited, since the sampling rate of the analog-to-digital
converter is 20 Hz. In this experiment, the sampling rate is set to 5 Hz to reduce the effect of
SLM fluctuations. The diameter of the pinhole is 40µm, which is determined by the numerical
aperture of lens 4 ( λ

2N.A. = 82.1µm). In the FFA, a rect function is used as a filter function. The
filter size is set to 1.3 mm ×1.3 mm. The spatial frequency of the linear phase along x and y
directions is 1203 [1/m].

The target phase distributions are shown in Figs. 4(a1)–4(a3). To evaluate whether any
distribution can be measured, we used three different phase distributions. These phase distributions
in Figs. 4(a1)–4(a3) are generated by the Zernike polynomials. The phase distributions are
displayed to the SLM with the structured patterns, which is assumed as the complex amplitude
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Fig. 3. The optical setup and the parameter for the experiment.

distributions at the object plane. The reconstructed phase distributions by COSHI are shown
in Figs. 4(b1)–4(b3). The measurement accuracy is evaluated by the root mean square error
(RMSE). The RMSEs of the results are shown below each figure in Fig. 4. The reconstructed
phase distributions have some errors and the spatial structure is slightly different. It is expected
that the degradation is caused by the aberration of the optical setup. Therefore, the aberration in
the optical setup is measured by removing the object phase and is shown in Fig. 4(c). The results
with the compensation by subtracting the aberration is shown in Figs. 4(d1)–4(d3). From the
results, the error can be reduced and the measurement accuracy can be improved.

Fig. 4. (a1)-(a3) target phase, (b1)-(b3) reconstructed phase with background phase, (c)
background phase, and (d1)-(d3) reconstructed phase without background phase.

A practical object was also measured using COSHI. A microdot lens was used as the target
object and the structure is shown in Fig. 5(a). The microdot lens is used in the field of quantitative
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phase imaging [16,17,42]. The microdot lens is composed of dots and gaps, with different
optical path lengths. The diameter of each dot is approximately 470µm. The reconstructed
phase distribution through a general Mach–Zehnder interferometer is shown in Fig. 5(b). The
reconstructed phase distribution using COSHI is shown in Fig. 5(c) where the background phase
shown in Fig. 4(c) is already removed. The discrepancy of the gradual background phases shown
in Fig. 5(b) and 5(c) is because the measured phase distribution from each method is in a different
region of the microdot lens. The results confirm that the phase difference of dots and gaps can be
obtained, the practical object was measured using COSHI.

Fig. 5. (a) Microdot lens and the phase distributions reconstructed by (b) the general
Mach–Zehnder interferometer and (c) COSHI.

4. Discussion

First, the approximation effect in Eqs. (7) and (8) is evaluated. The effect is described in Fig. 6
with some images. Figure 6(a) shows the images of Eq. (6). Because each term in Eqs. (6)
and (8) is the complex value, the absolute values are shown in Fig. 6. As shown in Fig. 6(a),
the top left images for H(x, y) and 1

N
∑︁N

j=1 mj(x, y)(ISj + IRj) have high values, which is because
the top left in the all Hadamard patterns is 1. Through the approximation in Eq. (7), H′(x, y)
is obtained as shown in Fig. 6(b). Since it is difficult to see the distribution of H(x, y) and
1
N
∑︁N

j=1 mj(x, y)(ISj + IRj), the logarithms of these terms are shown in Fig. 6(c). As shown in
Fig. 6(c), 1

N
∑︁N

j=1 mj(x, y)(ISj + IRj) has spatial distribution, which is caused by the approximation
error. Although the error is superimposed on the pure interference term as H′(x, y), H′(x, y) has
no spatial distribution of the autocorrelation term of the object |O(x, y)|2; therefore, the space
bandwidth of COSHI is larger than that of conventional off-axis digital holography.

Second, in COSHI, the position and size of the pinhole are important factors for the phase
measurement accuracy because Eq. (2) imposes on the detector to extract the DC component.
These effects are evaluated via numerical simulation. The effect of the position displacement
of a single-pixel detector is evaluated. The target complex amplitude distribution is shown in
Fig. 7(a). The reconstructed complex amplitude distributions when the shift size of the detector
are 0 and 4∆µ are shown in Fig. 7(b) and 7(c), respectively; where ∆µ indicates the size of the
diffraction limit. From the results in Fig. 7(c), the displacement effects induce the multiplication
of the linear phase distribution, which is easily predicted from Eq. (2).

Next, the effect of the pinhole size is evaluated. The pinhole size is set to n × n pixels and n
changes from 2 to 20. The evaluation results are shown in Fig. 8. From the results, as the pinhole
size increases, the phase difference gradually reduces. This is because the relationship of Eq. (2)
is not satisfied. Therefore, the pinhole size must be precisely determined based on the numerical
aperture of a Fourier transform lens.

Next, the space bandwidth of the typical off-axis digital holography and COSHI was numerically
compared. The target object is shown in Fig. 9(a). The size of the target is the same condition as
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Fig. 6. Distributions of the absolute values of (a) Eq. (6), (b) Eq. (8), (c) the logarithms of
H(x, y) and 1

N
∑︁N

j=1 mj(x, y)(ISj + IRj), and (d) the expanded distributions of the top left of
images framed in red and blue in (a).
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Fig. 7. (a) Target complex amplitude distribution, (b) reconstructed distributions without
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Fig. 8. Reconstructed phase distributions with various pinhole size.
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the experiment. The tilted angle of the reference beam to the optical axis was set to 0.6◦. Because
the maximum angle of the reference beam satisfies the sampling condition of 1.2◦ = sin−1(λ/2∆x),
where ∆x = 12.5µm and λ =532 nm, this numerical simulation condition satisfies the sampling
condition. The holograms detected by off-axis digital holography and COSHI are shown in
Figs. 9(b-1) and 9(c-1), respectively. Note that the hologram detected by COSHI is a complex
amplitude distribution, the absolute value of the hologram is shown in Fig. 9(c-1). The Fourier
spectrum of Figs. 9(b-1) and 9(c-1) are shown in Figs. 9(b-2) and 9(c-2), respectively. Despite
the result of off-axis digital holography, COSHI does not reconstruct the self-correlation term
distributed in the center region in the Fourier spectrum, resulting in a larger space bandwidth
than that of off-axis digital holography. The reconstructed intensity distribution through the FFA
with the Fourier spectrum indicated by the highlight region in Figs. 9(b-2) and 9(c-2) are shown
in Fig. 9(b-3) and 9(c-3), respectively. In the result of off-axis digital holography, the desired
distribution cannot be obtained because the unnecessary components from the self-correlation
term are multiplied to the one. On the other hand, COSHI clearly obtains the object distribution,
making its space bandwidth larger than that of off-axis digital holography.

Fig. 9. Comparison results between off-axis digital holography and COSHI. (a) target
object, (b) results of off-axis digital holography, (b-1) hologram, (b-2) intensity distribution
of the Fourier spectrum of the hologram and (b-3) reconstructed intensity distribution. (c)
results of COSHI, (c-1) absolute value of the hologram, (c-2) intensity distribution of the
Fourier spectrum of the hologram and (c-3) reconstructed intensity distribution.

Notably, if the space bandwidth is limited to a quarter as shown in Fig. 10(a), the similar
complex amplitude distribution can be obtained using the four-step phase-shifting method with
the number of pixels of N/4. Therefore, under this condition, the number of measurements
for COSHI is the same as the four-step phase-shifting method. In COSHI, however, as shown
in Fig. 10(b), the space bandwidth along x or y axis is completely obtained by changing the
tilted direction of the stationary tilt phase distribution. This asymmetric band shape is unique
for COSHI, and the same space bandwidth cannot be achieved in the four-step phase-shifting
method because the number of pixels in the Hadamard pattern is limited to 2n × 2n, where n is
integer. In summary, although COSHI has a half space bandwidth along x or y axis, the nunber of
measurements can be reduced to a quarter compared with the case of the four-step phase shifting
method.
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Fig. 10. Comparison of the bandwidth: (a) a quarter of the bandwidth and (b) a half of one.

5. Conclusion

In this study, COSHI was proposed to reduce the measurement time for single-pixel holographic
techniques using a simple optical setup. Since the reconstruction process of COSHI is based
on the FFA, the number of measurements for the phase-shifting technique can be reduced. The
feasibility of the proposed method was experimentally verified. In addition, the effects of the
position and size of the detector were evaluated in the numerical simulation. Since COSHI
reconstructs the interference term, multiplexing techniques [43,44] which have been proposed in
off-axis digital holography could be applied to the proposed method in the future. Moreover,
space bandwidth could be expanded by applying Hilbert-Huang transform techniques [45,46].
Funding. Japan Society for the Promotion of Science (JP20J10441).
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