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Refining the arithmetical hierarchy of classical
principles

Makoto Fujiwara*fand Taishi Kurahashi®s

Abstract

We refine the arithmetical hierarchy of various classical principles by
finely investigating the derivability relations between these principles over
Heyting arithmetic. We mainly investigate some restricted versions of the
law of excluded middle, de Morgan’s law, the double negation elimination,
the collection principle and the constant domain axiom.

1 Introduction

The interrelations between weak logical principles over intuitionistic arithmetic
have been studied extensively in these three decades (cf. [1, 6, 8, 10, 11, 14, 17]).
In particular, Akama et al. [1] systematically studied the structure of the law
of excluded middle LEM and the double negation elimination DNE restricted
to prenex formulas and some related principles over intuitionistic first-order
arithmetic HA. Interestingly, the derivability relation between them forms a
beautiful hierarchy as presented in Figure 1 (cf. [1, Figure 2]).

By the prenex normal form theorem, which is first presented in [1] and corrected
recently in [13], this arithmetical hierarchy covers LEM for arbitrary formulas.
In this sense, the infinite hierarchy in Figure 1 represents a gradual transition of
strength of semi-classical arithmetic from HA to the classical arithmetic PA =
HA+LEM. This hierarchy plays an important role in several aspects. First, it is
employed for the relativization of the relation between classical and intuitionistic
arithmetic into the context of semi-classical arithmetic. For example, PA is
I1j 4 9-conservative over HA+X;-LEM for all natural numbers k (see [13, Section
6] and [2, 12]). In addition, for any theory T in-between HA and PA, the prenex
normal form theorem for the classes of formulas Uy (introduced in [1]) and
I holds in T for all ¥’ < k, if and only if, T proves (Il V II;)-DNE (see [13,
Section 7]). Then the refinement of the hierarchy is also important for analyzing
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Figure 1: An arithmetical hierarchy of classical principles

the results on the relation between classical and intuitionistic arithmetic in
more detail. Secondly, the hierarchy is employed as a framework for a sort of
constructive reverse mathematics over HA (cf. [3, 4, 19]). For example, Ramsey’s
theorem for pairs and recursive assignments of 2 colors is located in the place
of (II3 VII3)-DNE (see [3]). Despite the fact that mathematical statements are
usually not in prenex normal form, many of them are shown to be equivalent to
some restricted logical principle in the arithmetical hierarchy (seemingly because
the prenex normal form theorem is partly available in semi-classical arithmetic
containing such logical principles). Then the refinement of the hierarchy makes
it possible to classify the logical strength of mathematical statements in finer
classes. After [1], in connection with the development of constructive reverse
mathematics [15] over intuitionistic second-order arithmetic, further fine-grained
analysis has been done for the principles with & = 1 in the hierarchy ([8, 11,
17]). More recently, some connection between those principles and some other
principles has been also found ([6, 10]). Then it should be expected to recast the
hierarchy in [1] based on these recent developments. The history of the research
of this line until [11] is summarized in [11, Section 2.1].

Motivated from them, we study the interrelations between various principles
from the previous research and the related principles comprehensively in the
context of HA. In particular, we investigate principles more finely and more
systematically than ever before. Such a fine-grained analysis reveals a more de-
tailed hierarchical structure which the logical principles have. In addition to the
principles dealt with in [1], we deal with de Morgan’s law DML, the (contrapos-
itive) collection principle COLL®P and the constant domain axiom CD system-
atically. Among many other things, we show that (II; Vv II)-DNE, ¥;-DML
with respect to duals (which is X;-LLPO in [1]), ¥;-DML + X;_;-DNE;,
II;-COLL®P and (I, II;)-CD are pairwise equivalent over HA for all natural
numbers k greater than 0 (see Corollary 7.6).

The structure of the paper is as follows. In Section 3, we extract and inves-
tigate the principles concerning duals p* (which are prenex formulas classically



equivalent to —p) of prenex formulas ¢. In Section 4, we investigate variants
of LEM. Section 5 is devoted to investigate several variations of DML. In
particular, LEM for negated formulas is shown to be a variation of DML. In
Section 6, we investigate variants of DNE. In particular, DML is shown to
be a variation of DNE. Finally, we investigate CD in Section 7. The results
established in this paper are summarized in Section 8, to which we refer the
reader who merely wants to consult the results.

2 Preliminaries

In this paper, we work within the framework of first-order intuitionistic arith-
metic with the logical connectives A,V,—,3,V and 1, where - is the abbre-
viation of ¢ — 1. We may assume that the language of first-order arithmetic
contains function symbols corresponding to all primitive recursive functions.
Heyting arithmetic HA is an intuitionistic theory in the language of first-order
arithmetic consisting of basic axioms for arithmetic, induction axiom scheme
and axioms corresponding to defining equations of primitive recursive func-
tions (see [16, Section 3.2]). Recall that ¢ — ==, (¢ = ¥) = (- = —p),
—=(p = Y) & (mop = o)), o — - and Voo < o Jzp ete. are
intuitionistically derivable. For more information about the logical implications
over intuitionistic logic, we refer the reader to [20, Section 6.2].

Throughout this paper, we assume that k always denotes a natural number
k > 0. We define the family {3, ) : k > 0} of sets of formulas inductively as
follows:

e Let X9 = Il be the set of all quantifier-free formulas;
e Ypv1:={3x1-- Jxnp | p €y, n>1and x1,...,z, are variables};
o Iy :={Vo1- -Vo,o| ¢ € Bk, n>1and x1,...,x, are variables}.

For convenience, we assume that Y, and II,, denote the empty set for any
negative integer m. We say that a formula is in prenexr normal form if it is in
Y or I, for some k. Let FV(y) denote the set of all free variables in ¢. It is
known that every formula ¢ in X117 (resp. Ilx41) is HA-equivalent to a formula
¢ in Bpyq (resp. Ii41) such that FV(y) = FV(¢) and ¢ is of the form Jxe)’
(resp. Vx1)') where ¢’ is ITj, (resp. Xg).

Let T' and © be sets of formulas. We define I' V ©, IT'™ and T'I" to be the
sets {p VY |peTl and ¢ € O}, {-¢ | ¢ €'} and {——¢ | ¢ € I'} of formulas,
respectively. We adopt a convention that we write I' C © if for any formula
¢ €I, there exists a formula 9 € © such that FV(¢) = FV(¢) and HA proves
@ > 1. Then it is shown that Xy C X1 N x4 and Iy C gy N Igyq
(cf. [13]).

We introduce several principles which give semi-classical arithmetic as fol-
lows:

Definition 2.1. Let I' be any set of formulas.



I-LEM oV = (pel)
Ap-LEM (p ) = oV p (p € Zf and ¥ € II},)
I-DNE = @ (pel)

For each theory T and principle P, let T'+ P denote the theory obtained
from T by adding universal closures of all instances of P as axioms. Since HA

proves ¢ V = — (——p — ) for any formula ¢, the following fact trivially
holds.

Fact 2.2. For any set I' of formulas, HA +T'-LEM + I'-DNE.

Nontrivial implications between the principles defined in Definition 2.1 are
investigated by Akama et al. [1]. The following fact is visualized in Figure 1 in
Section 1.

Fact 2.3 (Akama et al. [1]).
1. Y,-LEM and II,-LEM + X, -DNE are equivalent over HA;
2. HA +1I;-LEM + (11, Vv II;)-DNE;
3. HA + (II; VII)-DNE + A, -LEM;
4. HA+ X;-DNE - Ax-LEM;
5 HA+ Apy1-LEM F X -LEM;;
6. X;-DNE and Ilx41-DNE are equivalent over HA.

In the present paper, we also deal with other important principles based on
such as the double negation shift, de Morgan’s law and the constant domain
axiom.

Definition 2.4. Let I' and © be any sets of formulas.

-DNS Vo ——p(x) = - Vap(z) (p(z) €T)
I'-DML (e AY) = -V ) (p,vel)
(I,0)-CD  Vz(p V(x)) — ¢V Va(zx) (p e, ¢Y(x) € O and = ¢ FV(p))

The principle ¥;-DML is introduced in [3]. The principles defined in Defini-
tion 2.4 have mainly been investigated for £ = 1 in the literature. For example,
>1-DML and II;-DML correspond to the principle LLPO and disjunctive
Markov’s principle, respectively (see [14]). Also the principle A;-LEM cor-
responds to the principle (IIla) in [8] and to the principle A,-LEM in [11].
Notice that [8, 10, 14] are studied in the context of second-order arithmetic. We
have the following results from the proofs of the corresponding results in these
papers.

Fact 2.5 (Ishihara [14, Proposition 1]).
1. HA+ %,-DNE + II;-DML;



2. HA+%;-DML - II; -DML.

Fact 2.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 2]). HA+1I;-DML +
A,-LEM.

Fact 2.7 (Fujiwara and Kawai [10, Proposition 4.2]). (II1,II;)-CD and 3;-DML
are equivalent over HA.

In the following sections, we investigate those principles more finely than
ever before. In the process of the investigation, we also generalize the facts
stated above.

Concerning I'-DINS, we easily obtain the following proposition.

Proposition 2.8.
1. HA+ X;-DNE F ¥ -DNS;
2. ¥-DNS and 41 -DNS are equivalent over HA.

Proof. 1. Let ¢ be any X formula. Then HA 4+ X;-DNE F Vo ——¢p — Vzo.
We obtain HA + ¥;-DNE F Vz ——¢ — == V.

2. We prove HA + 3;-DNS + II;;-DNS. Let Vyo(x,y) be any I 4
formula where p(x,y) € Y. Then HA + Vo —Vyp(z,y) — VaVy oz, y).
Let (z)p and (z); be primitive recursive inverse functions of a fixed pairing
function which calculate the first and the second components of z as a pair,
respectively. Then HA F Va ——Vyp(z,y) — Vz—-0((2)o, (2)1). By applying
Yi-DNS, we obtain HA 4+ X;-DNS + Vo = Vyp(x,y) — = Vzp((2)o, (2)1)-
We conclude HA + 3;-DNS + Vo == Vyp(z,y) — -~ VaVyp(z,y). O

A detailed investigation of the principle ¥1-DNS including Proposition 2.8.1
for k=1 is in [11].

3 The dual principles
In [13], the following result is proved.
Fact 3.1 (Fujiwara and Kurahashi [13, Lemma 4.7]).

1. For any Xy, formula o, there exists a Il formula ¢’ such that HA +
Yr_1-DNE F —p < ¢';

2. For any Il formula o, there exists a X formula ¢’ such that HA +
Yp-DNE F —p <> ¢'.

In this section, we investigate the dual principles and the weak dual principles
(see Definitions 3.2 and 3.10) motivated from Fact 3.1.



3.1 The dual principles

First, we recall the notion of duals of formulas in prenex normal form, which is
defined in [1] informally.

Definition 3.2 (cf. [1]). For any formula ¢ in prenex normal form, we define
the dual ot of ¢ inductively as follows:

1. ot := =y if ¢ is quantifier-free;

2. (Vap(a))* = 3op* ()

3. Fzp(x))t = Vopt(z).

The following proposition is a basic property of duals.
Proposition 3.3. Let ¢ be any formula in prenex normal form.

1. If ¢ is Xy (resp. IIy,), then = is Il (resp. ¥p);

2. HA - ot & o;

3. HA - ot — —p;

4. HAF =(p A pt).

Proof. 1. Trivial.

2. It is known that if ¢ is 3¢, then HA - ——¢ <+ . Then clause 2 is proved
by induction on the number of quantifiers contained in .

3. Notice that HA proves the formulas 3z ~¢ — = Vzy and Vax - — = 3xp.
Then clause 3 is also proved by induction on the number of quantifiers in .

4. This is because HA - o A o — ¢ A =y by clause 3. O

From Propositions 3.3.(1) and (2), we have that the mapping (-)* is a bijec-
tion between ¥, (resp. IIx) and IIj (resp. i) modulo HA-provable equivalence.

Remark 3.4. It is possible to extend the notion of duals in Definition 3.2 (from
[1]) to arbitrary formulas by the operation (-)¢ defined inductively as

1. % := —p if @ is prime;

2. (p A=t vy
3. (p V)=t Ay
4. (¢ =)= p A
5. (Vap(e))* = Fap(e);
6. (Bup(s))" = Vap(z).



In fact, ¢ is HA-equivalent to —¢ for quantifier-free o, and hence, ¢? is HA-
equivalent to ¢+ for prenex ¢. On the one hand, clauses 3 and 4 in Proposition

3.3 hold for the operation (-)?. On the other hand, for clause 2, p — (gpd)d
is not provable in HA for some (non-prenex) ¢ whereas the converse is always
provable in HA.

In contrast to Proposition 3.3.(3), the formula =y — ¢+ cannot be proved
in HA even for some prenex ¢. For example, =Con(HA) — Con(HA)* is not
provable in HA, where Con(HA) is a conventional II; consistency statement of
HA (cf. [18, Section 4]). Thus, we introduce the following principle.

Definition 3.5 (The dual principles). Let T' be any set of formulas in prenex
normal form.

I-DUAL —p — ot (pel)
The principle ¥1-DUAL is provable in HA.
Proposition 3.6. HAF X;-DUAL.

Proof. Let ¢ = 3x1) be any ¥, formula where 1 is ¥g. Then ¢ is Va —1), and
hence -y is equivalent to ¢ over HA. O

Proposition 3.7. The following are equivalent over HA:
1. ¥p+1-DUAL.
2. 11;-DUAL.
3. Yi-DNE.

Proof. Tt is trivial that HA 4+ X;41-DUAL proves [I;-DUAL because Iy C
Ykt1-

We prove HA + II;-DUAL + X;,-DNE. Let ¢ be any ¥ formula. By
Proposition 3.3.(3), we have HA - ¢+ — —p. Then HA F =—=¢ — —pt. Since
@+ is Iy by Proposition 3.3.(1), HA 4 II,-DUAL proves —p+ — ¢*+. By
Proposition 3.3.(2), we conclude HA + II,-DUAL F ——¢p — ¢.

Finally, we prove HA + ¥;-DNE F ¥ ,;-DUAL by induction on k. The
case k = 0 follows from Proposition 3.6. Suppose that the statement holds for
all k' < k+ 1, and we prove HA + X 1-DNE - ¥4, o-DUAL.

Let JzVyy be any Y49 formula where v is ¥. Since HA+X,-DNE proves
== — 1, we have HA 4+ ¥;-DNE F — JzVyy — = JxVy ——). Then,

HA + 2,-DNE F = 32y — Va ~— 3y —p.
By induction hypothesis, HA + ¥;_1-DNE F —¢) — ¢*. Then,
HA + X,-DNE + = 32yt — Yo == Ty,
Since Jyyp = (Yyip)* is D1,
HA + X4 1-DNE F = 32Vy — Va(Vyo)t.
We conclude HA + ¥4, 1-DNE F - 32Vyy — (3oVyp)*. O



From Propositions 3.3.(3) and 3.7, we obtain Fact 3.1.
We may introduce the following Ag-variations of the dual principle.

Definition 3.8 (Aj dual principles).
Ar-DUAL® (9 9) = (9= ¢h)  (p ey and ¢ €11y)
Apr-DUAL" (o ¢) = (- = ¢F)  (p € 5y and ¢ € TIy)

However, each of them is trivially equivalent to the corresponding original
dual principle.

Proposition 3.9.
1. A,-DUAL® is equivalent to ¥;,-DUAL over HA;

2. A,-DUALY s equivalent to 1I-DUAL over HA.

Proof. 1. HA + ¥,-DUAL obviously proves A,-DUAL®. On the other hand,
let ¢ be any ¥, formula. Then HA - —¢ — (¢ ¢ L). Hence HA+A,-DUAL*
proves —¢ — (—¢ — p+). We conclude HA + Aj-DUAL” - —p — @,

2 is proved in a similar way. O

Thus it follows from Proposition 3.7 that Ap-DUAL” and A,-DUAL"Y are
HA-equivalent to X;_1-DNE and ¥ -DINE, respectively. In fact, A-DUAL"
corresponds to the principle (VIb) in [8], and it is proved to be HA-equivalent
to X1-DNE (see [8, Proposition 1]).

3.2 The weak dual principles

In this subsection, we investigate weak variations of the dual principle, which
we call the weak dual principles.

Definition 3.10 (The weak dual principles). Let I' be any set of formulas in
prenes normal form.

-WDUAL —pt — == (pel)

Of course '-DUAL implies -WDUAL over HA. It is known that ¥;-DNE
is not provable in HA (cf. [1]), and so is II;-DUAL by Proposition 3.7. On the
other hand, the following proposition shows that II;-WDUAL is HA-provable.

Proposition 3.11.
1. HA+ X%,-WDUAL;
2. HAF1I;-WDUAL.

Proof. 1. This follows from Proposition 3.6.
2. Let Vxy be any II; formula where ¢ is Xg. Since —~(Vze
have

)t =3z, we
HA F =(Vzp)t = Vo -,
— Vzo, (because ¢ € %)
— == Vxp. O



Unlike the situation of the dual principles, we show that X, ;-WDUAL
and Il 1-WDUAL are equivalent over HA.

Proposition 3.12. The following are equivalent over HA:
1. Yp41-WDUAL.
2. llx41-WDUAL.
3. X-DNS.

Proof. First, we prove HA + ¥;11-WDUAL F ¥X;-DNS. Let ¢ be any Xj
formula. Since Jzpt is Ypi1,

HA + %5 1-WDUAL F —=(3zpt)t — =3zt

By Propositions 3.3.(2) and 3.3.(3), HA+3;,11-WDUAL - = Vap — == 3z g,
and thus HA 4+ X;11-WDUAL proves -3z ~¢p — ——Vzyp. Then, we obtain

HA + 3, +1-WDUAL F Vz == — == Vzop.

Secondly, we prove HA 4 II;;1-WDUAL F ¥;,-DNS. Let ¢ be any X
formula. By Proposition 3.3.(3), (Vop)+ = Jrpt implies 3z ~p in HA. Thus
HA F =32 ~¢ — ~(Vzp)*. Since Vay is Iy, 1, we obtain

HA + I3 1-WDUAL - Vz == — == Vap.

Finally, we show that HA + X;-DNS proves both ¥;;-WDUAL and
IIx+1-WDUAL by induction on k. The case k = 0 follows from Proposition
3.11. Suppose that the statement holds for k, and we prove

(i) HA+ Xk 1-DNS F 31 o-WDUAL; and
(ii) HA + X;4+1-DNS F I »>-WDUAL.
(i): Let Jxp be any Xy formula where ¢ is II;11. By induction hypothesis,
HA + £,-DNS F —p1 — ==p.

Then, HA + X;,-DINS proves the formula —¢ — ——p*, and hence it proves
Vo =@ — Vo ——pt. Since ot is i1, by applying X4 1-DNS, we obtain

HA + %5, 1-DNS | V2 ~¢ — ——Vapt.
Then HA 4 5, 1-DNS F = Vzpt — =Va ~¢. Therefore we conclude
HA + X 41-DNS F —(3z¢)t — —— 3z,
(ii): Let Vag be any Iz, o formula where ¢ is ¥y;. Since —(Vap)t
=3zt implies Vo =t in HA, by induction hypothesis, we obtain
HA + ,-DNS F =(Vap)™ — Va .

Since ¢ is Xg41, we conclude

HA + %;41-DNS F —~(Vzp)t — == V. O



As in the case of the dual principles, we can introduce the Ag-variations of
the weak dual principle, namely, A,-WDUAL” and A,-WDUAL. Notice
that any instance of [-WDUAL is HA-equivalent to a formula of the form —¢ —
——@*. Then, as in the proof of Proposition 3.9, it is shown that A-WDUAL*
and Ak—VVDUALH are equivalent to Xp-WDUAL and II,-WDUAL over HA,
respectively. So they are also equivalent to X _1-DNS by Proposition 3.12.

4 The law of excluded middle

In this section, we investigate variations of the law of excluded middle. This
section consists of two subsections. First, we investigate the law of excluded
middle with respect to duals. Secondly, we investigate the law of excluded
middle for negated formulas.

4.1 The law of excluded middle with respect to duals

From the observations in Section 3, ot is stronger than —p. Hence by replacing
- in I-LEM with ¢, we can expect to get a stronger principle. As an example
of an application of the investigations in Section 3, in this subsection, we study
this kind of variation of the law of excluded middle.

Definition 4.1 (The law of excluded middle with respect to duals). Let I' be
any set of formulas in prenex normal form.

I-LEM* @V pt (peT)
Ar-LEM™®> (oo 1) = oVt (¢ € Xy and ¢ € II})
Ap-LEM*T (o o) =Vt (¢ € Ty, and ¢ € IIy,)

The principle A;-LEM™ corresponds to the principle (IITb) in [8] and to
the principle Ap-LEM in [11]. The following fact is already known.

Fact 4.2 (Fujiwara, Ishihara and Nemoto [8, Proposition 1]). The following are
equivalent over HA:

1. Aj-LEM*.
2. ¥,-DNE.

The following proposition shows interrelations between the laws of excluded
middle and their counterparts with respect to duals.

Proposition 4.3. Let I' be any set of formulas in prenex normal form.
1. T-LEM" is equivalent to T-LEM + I'-DUAL over HA;
2. HA + A,-LEM*>% + A, -LEM;
3. HA + Ap-LEM*- ! - AL -LEM;
4. HA + A,-LEM + X,-DUAL + A,-LEM*-%;

10



5. HA + A,-LEM + I1,-DUAL F A,-LEM*- '

Proof. 1. By Proposition 3.3.(3), HA + [-LEM' + I'LEM. Also HA +

I-LEM™ F I-DUAL is evident because HA proves ¢ V ot — (mp — ¢b).

On the other hand, HA + I-LEM + I-DUAL I I-LEM" is easily obtained.
Clauses 2, 3, 4 and 5 are proved similarly. O

From Proposition 4.3, we obtain the exact strengths of the principles defined
in Definition 4.1.

Proposition 4.4.
1. ¥4-LEM? is equivalent to $,-LEM over HA;
2. Tx-LEM™" is equivalent to ¥3,-LEM over HA;
3. Ap-LEM™Y is equivalent to Ap-LEM over HA;
4. Ap-LEM™U i equivalent to ¥,-DNE over HA.

Proof. 1. By Proposition 4.3.(1), x-LEM™ is equivalent to X;-LEM+;-DUAL.
Since HA+X-LEM proves X;,-DUAL by Fact 2.3 and Proposition 3.7, Y- LEM™*
is equivalent to X;-LEM.

2. Since HA + II,-LEM™ proves o+ Vot for each ¥ sentence o, HA +
II,-LEM" + 2,-LEM- follows from Proposition 3.3.(2). In a similar way, we
have HA + £,-LEM™ + II,-LEM'. Hence by clause 1, I,-LEM™ equivalent
to X-LEM over HA.

3. Since HA + Ax-LEM F X, _1-DNE, this is immediately obtained from
Propositions 3.7, 4.3.(2) and 4.3.(4).

4. Since HA + ¥;,-DNE proves Ag-LEM and II;-DUAL by Fact 2.3 and
Proposition 3.7, we obtain HA+X,-DNE F A,-LEM™"" by Proposition 4.3.(5).

On the other hand, we prove HA + A-LEM> - ¥, -DNE. Let ¢ be
any ¥ formula. Since =—p — —p* is HA-provable by Proposition 3.3.(3), we
obtain HA - ——¢ — (¢t < L). Since ¢t € Il and L € %y,

HA 4+ Ap-LEMb>T E ——p — ot v bt

Since HA4+ Ap-LEM> - == — =V ¢ by Proposition 3.3, we conclude that
HA 4+ Ap-LEM™>! proves =—¢ — . O

Proposition 4.4.(4) is a generalization of Fact 4.2.

4.2 The law of excluded middle for negated formulas

In this subsection, we investigate the law of excluded middle for negated formu-
las, which are investigated in [6, 8] for k = 1.

Definition 4.5 (The law of excluded middle for negated formulas). Let I" be
any set of formulas.

11



I'"-LEM Vg (p €T, in other words, ¢ € I'™)
A}-LEM (p ) = —p V- (p € Ef and ¢ € II},)

Although the definition of I'"*-LEM is included in Definition 2.1, we defined
it individually to pay attention to its properties. The principle A}-LEM corre-
sponds to the principle (IVa) in [8] and A,~-WLEM in [6]. The following fact
is already obtained.

Fact 4.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 3]). The following are
equivalent over HA:

1. AV-LEM.
2. A;-LEM.

Obviously, I'""-LEM is weaker than I'-LEM, and we obtain the following
proposition. Proposition 4.7.(2) is a generalization of Fact 4.6.

Proposition 4.7. Let I' be any set of formulas.
1. I'™"-LEM + I'-DNE is equivalent to I'-LEM over HA;
2. A}-LEM + X _1-DNE is equivalent to Ap-LEM over HA;
3. HA+ X-LEM - AR-LEM;
4. HA+1I}-LEM F A}-LEM.

Proof. 1. This follows from Fact 2.2.
2. This is a consequence of Facts 2.2 and 2.3.
3 and 4 are obvious. O

From Fact 2.3, ¥x-LEM and 1I;-LEM are equivalent modulo X;-DNE.
We prove an analogous result concerning >;-LEM and II}-LEM.

Proposition 4.8. The following are equivalent over HA + ¥;,_1-DNS:
1. ¥3-LEM.
2. II;-LEM.

Proof. First, we show HA + ¥£;,_1-DNS + ¥-LEM F II}-LEM. Let ¢ be any
II;, formula. Since ot is ¥, we have

HA 4+ SI-LEM F -t vV ==t

Then, HA + X1-LEM F —p+ V = by Proposition 3.3.(3). Since II;-WDUAL
is equivalent to ¥;_1-DNS over HA by Proposition 3.12, we obtain

HA + ¥;_1-DNS + X3-LEM F ——p V .

In a similar way, it is proved that HA + X;_{-DNS + II}-LEM proves
Y3-LEM because X,-WDUAL is also equivalent to 3,_1-DINS over HA by
Proposition 3.12. O

12



From Fact 2.3.(6), Propositions 2.8.(1), 4.7 and 4.8, we obtain the following
corollaries.

Corollary 4.9. The following are equivalent over HA:
1. II;-LEM.
2. ¥3-LEM + X;_;-DNE.
3. II;-LEM + X;_,-DNE.

Corollary 4.10. The following are equivalent over HA:
1. ¥x-LEM.
2. ¥-LEM + X;,-DNE.
3. II;-LEM + X, -DNE.

5 De Morgan’s law

In this section, we extensively investigate principles based on de Morgan’s law.
Definition 5.1 (De Morgan’s law). Let I" and © be any sets of formulas.

(I©)-DML  —(pAvY) = —pV (peT and ¢ € O)
ACDML (¢ @) A (06 o)

— (ﬁ((p A 1/)) — pV ﬂ/’) ((p71/} S Ek and (p/ﬂp/ € Hk:)
(A, ©)-DML (¢ ¢ ¢') = (n(@AY) = oV ) (p € Xy, ¢ €1l and ¢ € O)

Several variations of A;-DML are extensively investigated in [6]. As in
the case of the law of excluded middle, we also deal with the principles of the
forms (I'™,©)-DML, (A}, ©)-DML, and so on. Of course, (I', ©)-DML and
(6,T)-DML are equivalent.

This section consists of four subsections. First, we investigate several basic
implications between the principles. Secondly, we study the interrelationship
between de Morgan’s law and the contrapositive version of the collection prin-
ciple. Thirdly, Ay and A} variants of de Morgan’s law are explored. Finally,
we investigate de Morgan’s law with respect to duals.

5.1 Basic implications

In this subsection, we organize several versions of de Morgan’s law. Some argu-
ments in this subsection for £ = 1 can be found in [6]. The following proposition
is trivially obtained.

Proposition 5.2. Let I’ € {Z;, 11} and © be any set of formulas.
1. HA+ (I',©)-DML I (A, ©)-DML;
2. HA+ (I'™,©)-DML - (A}, ©)-DML.

13



We show that I'"-LEM and Aj}-LEM are stronger than several versions of
de Morgan’s law.

Proposition 5.3. Let I' and © be any sets of formulas.
1. HA+T"-LEM I (I',©)-DML;
2. HA+ T*-LEM } (I'*,©)-DML;
3. HA+ A}-LEM | (A, ©)-DML;
4. HA + A2.LEM F (A}, ©)-DML.
Proof. 1. Let ¢ € T" and ¢ € ©. Since HAF (o A ¢) — =(=—p A1), we get
HAE (=pV =mp) = (2(0 AY) = ¢ V 1)),

It follows that HA +I'""-LEM proves (I', ©)-DML.
2, 3 and 4 are proved as for clause 1. O

Corollary 5.4.
1. For any set T' of formulas, HA +T™-LEM proves I'-DML and I'-DML;
2. HA 4+ A}-LEM proves Ap-DML and A}-DML.

Conversely, we show that the principles I'*-LEM and Aj-LEM are equiva-
lent to some variations of de Morgan’s law.

Proposition 5.5. For any set I' of formulas, the following are equivalent over
HA:

1. T"-LEM.
2. (I,I™)-DML.

Proof. By Proposition 5.3, HA4+T™-LEM + (I',T™)-DML. On the other hand,
let ¢ be any I" formula. Since HA - —(¢ A —¢), we obtain HA + (I',I'™)-DML I
—p V. O

Proposition 5.6. For I € {X, I}, the following are equivalent over HA:
1. A}-LEM.
2. (Ag,I™)-DML.
3. (A}, T)-DML.
4. (Ag, A})-DML.

Proof. By Proposition 5.3, Ajp-LEM entails (A, I'™)-DML and (A}, T')-DML.
By Proposition 5.2, each of (A, I'™)-DML and (A}, I')-DML implies (A, A})-DML.
On the other hand, we can show that HA 4 (A, A})-DML proves AR-LEM as
in the proof of Proposition 5.5. U
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Here we investigate several equivalences of some variations of de Morgan’s
law over the theory HA + 3, _1-DNS.

Proposition 5.7. Let © be any set of formulas.
1. (£7,0)-DML is equivalent to (II, ©)-DML over HA + X;_,-DNS;
2. (I}, ©)-DML is equivalent to (X, ©)-DML over HA 4+ ¥;_1-DNS.

Proof. Recall that each of Xy-WDUAL and II;-WDUAL is HA-equivalent
to Xx_1-DNS (Proposition 3.12). Then for any ¢ € X and ¢ € Iy, HA +
¥,_1-DNS proves —¢+ + ——¢ and =)+ <> =—1). Then clauses 1 and 2 follow
from this observation and the fact that HA proves =(§ A J) <» (==& A6). O

From Proposition 5.7, we obtain several equivalences over HA+3X;_;-DNS.
Corollary 5.8.

1. ¥3-LEM, II}-LEM, (X4, X})-DML, (II;, II}})-DML, (X4, I1;)-DML and
(X7, 11})-DML are equivalent over HA + X5, _;-DNS;

2. ¥-DML, (2, I1}})-DML and IT},-DML are equivalent over HA+X;,_;-DNS;
3. Ily-DML, (II, £%)-DML and £3-DML are equivalent over HA+X;,_1-DNS;

4. For T' € {Zy, Iy, X0, 110}, each of (Ag,T')-DML and (A}, I')-DML is
equivalent to Aj-LEM over HA + X3, _;-DNS.

Proof. 1. This is a consequence of Propositions 4.8, 5.5 and 5.7.

2 and 3 are immediate from Proposition 5.7.

4. The principles (Ag,Xx)-DML, (A, I)-DML, (A}, X7)-DML and
(A}, II})-DML are equivalent to (A, II})-DML, (Ag, £3)-DML, (A}, I1;)-DML
and (A}, Xg)-DML over HA + X, _1-DNS, respectively. Then, by Proposition
5.6, each of them is equivalent to A}-LEM. O

From Corollaries 4.9, 4.10, 5.8 and Proposition 5.5, we also obtain the fol-
lowing.

Corollary 5.9. Let P be one of (£, X})-DML, (I, II%)-DML, (X, 11;)-DML
and (X3, 117)-DML.

1. P+ Xy_1-DNE is equivalent to 1I,-LEM over HA;
2. P+ Y;-DNE is equivalent to X;-LEM over HA.

The following corollary follows from Propositions 5.6, 4.7.(2) and Corollary
5.8.(4).

Corollary 5.10. Let I' € {3, II;, X}, 113 }. Let P be one of the principles
(A, T)-DML, (A2, T)-DML and (Ag, A)-DML. Then P + 5;_,-DNE is
equivalent to Ax-LEM over HA.

15



We get the following corollary.

Corollary 5.11. LetT' € {Xy, I, 37, I} }.
1. HA+T'-DML + ¥;,_-DNS - A}-LEM;
2. HA+T-DML + ¥;_;-DNE F A, -LEM.

Proof. 1. Since I-DML implies (Ag,T)-DML by Proposition 5.2, the state-
ment immediately follows from Corollary 5.8.(4).
2. This follows from Corollary 5.10. O

Corollary 5.11.(2) generalizes Fact 2.6. Also we generalize Fact 2.5.(1).
Proposition 5.12. HA + X;-DNE F II,,-DML.

Proof. Since HA + X,-DNE proves Y;_1-DNS, it is sufficient to show that
HA + ¥,-DNE + 3X2-DML by Corollary 5.8.(3). Let ¢ and ¢ be any Xj
formulas. Since HA - —=(—¢ A =) = ——(p V ¢) and ¢ V ¢ is HA-equivalent to
some Y, formula, we obtain

Therefore
HA + X;-DNE - =(=p A =) = == V =), O

By combining Corollary 5.11.(2) and Proposition 5.12, we obtain a proof of
Fact 2.3.(4).

5.2 The collection principles and de Morgan’s law

In this subsection, we investigate the so-called collection principles. The follow-
ing proposition is stated in [5].

Proposition 5.13. For any formula ¢(y, z),
HAFVYy < z3z0(y,2z) = FJwVy < 23z < we(y, 2).
Proof. Let ¢ (x) be the formula
Yy < x3zp(y, z) = JwVy < 23z < we(y, ),
and this proposition is proved by applying the induction axiom for (). O
We introduce the following contrapositive version of the collection principle.

Definition 5.14 (The contrapositive collection principles). Let I" be any set of
formulas.

I-COLL? Vwdy < zVz <we(y,z) = Jy < xVzp(y, 2) (p(y,z) €T

Proposition 5.15. The following are equivalent over HA:

16



1. IIf41-COLL*P.
2. ¥-COLL®P.

Proof. By using a primitive recursive pairing function, it is easy to show that
for any ¥, formula ¢(y, 20, 21), HA + X;-COLL®P proves

Vw Iy < zVzo < wVz1 < wely, z0,21) = Jy < V2o V21 ¢(y, 20, 21)- (1)

From this observation, the equivalence of ¥;-COLL®P and Il ;-COLL®P im-
mediately follows. O

The following proposition extends [10, Corollary 4.5].
Proposition 5.16. HA + 3 ;-DML + X, -DNE F I, 1 -COLLCP.

Proof. We simultaneously prove the following two statements by induction on
k:

(i) HA + X441-DML + £;-DNE - 11 ;-COLL*®P;
(ii) For any IIjy; formula o(y), there exists a ;41 formula ¢ (z) such that

HA + X 11-DML + X;-DNE + Jy < 2 o(y) < ¥(x).

We suppose that our statements hold for all &’ < k, and we prove (i) and
(ii).
(i): Prior to proving our statement, we show that for any II; formula ¢(y, 2),
HA + X +1-DML + ¥, _1-DNE F = Vy < 2 3z ¢(y, 2) — Jy < 2Vz—p(y, 2),
(2)

which is a generalization of [10, Lemma 4.4].
Let ¢ (z) be the formula

Yy <z3ze(y,z) = Jy < zVz -y, 2),

and we show that Va1 (x) is derivable by applying the induction axiom for ¥ (x).
Since HA =y < 0, we have HA + Vy < 03z ¢(y, z). Thus we obviously obtain
HA + 4(0).

We prove induction step. We have

HAF =Vy <2 3z0(y,2) = -(Vy < 23z ¢(y, 2) A Jz p(z, 2)).

By Proposition 5.13, the formula Vy < z3z¢(y,z) is HA-equivalent to the
formula JwVy < 3z < we(y,z). I k = 0, the formula 32 < we(y, z) is
HA-provably equivalent to some Il formula p(y,w). If & > 0, by induction
hypothesis (ii) for & — 1, the formula 3z < w(y, z) is equivalent to some IIj,
formula p(y, w) in HA+ X;-DML + %, _;-DNE. Also JwVy < z p(y, w) is HA-
equivalent to a Ygy1 formula. Thus Vy < x 3z ¢(y, z) can be regarded as a Ygy1
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formula in HA4X;-DML + ¥, _1-DNE. Then HA+ X, 1-DML+ X _;-DNE
proves
=Vy <z3ze(y,z) = Vy <zIze(y,2)V-Ize(x, 2).

Hence it also proves
(@) N -Vy <zIzp(y,z) = Jy <zVz-p(y,z) VVzop(z,z).
It follows that the theory proves
Y(@) A=Vy <z 32 p(y,2) = Fy < aVz—p(y, 2).

This means HA4+ X, 1-DML+3;_1-DNE F ¢(z) — t(x+1). We have proved

(2).

We prove HA + ¥ 1-DML + ¥;,-DNE F II;;-COLL®P. It suffices to
prove Yx-COLL®P by Proposition 5.15. Let ¢(y,z) be any ¥j formula. By
Proposition 5.13 for the formula ¢~ (y, ), we have

HAF - JwVy < z3z <wet(y,2) = ~Vy < 2320 (y, 2).
In the light of Proposition 3.3.(3), we obtain
HAFVw3y < 2Vz < we(y,z) — ~3JwVy < 23z < wet(y, 2).
Therefore
HA FVw3dy < 2Vz < wop(y, z) = - Vy < x3z 0> (y, 2).

Since (p(y, z))* is I, from (2), we obtain that HA+ % 11-DML+Y;,_;-DNE
proves
Yw3dy < zVz <we(y, z) = Jy < 2Vz-pt(y, 2).

Since Xx-DNE proves I1,-DUAL, we conclude that HA+X, 1 1-DML+3>;,-DNE

proves
Vwdy < zVz <we(y,z) = Jy < xVzp(y, 2)

by Proposition 3.3.(2). This completes the proof of (i).

(ii): Let Vz¢(y, 2) be any Il 4; formula where o(y, 2) is 3x. Since ¢*(y, 2)
is IIg, by induction hypothesis (ii) for k£ — 1, there exists a Il formula v (y, w)
such that

HA + £,-DML + X, _-DNE F 3z < w o> (y, 2) < ¥(y, w).
This is also the case for k = 0. Then
HA 4 X-DML + %;,_-DNE F Vz < w —¢t(y, 2) < —)(y, w).

Since Yx-DNE implies [I;-DUAL, we obtain

HA 4 X4,-DML + %,-DNE F Vz < w ¢(y, 2) < ¢ (y, w).
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By (i), we have that HA 4+ 3;1-DML + X;-DNE proves
Jy < 2Vze(y,z) < VwIy < zVz < w ey, 2).
Therefore we obtain that HA + X, 1-DML + ¥;-DNE also proves
Jy < 2Vzp(y, 2) & Yw Iy < zt(y, w).
This completes the proof of (ii). O

Remark 5.17. By Proposition 5.15, IIj-COLL®P is equivalent to II;-COLL®P
over HA. We will show in Proposition 5.22 that HA +1I;-COLL®P - ¥;-DML.
Therefore HA ¥ T1-COLLSP because it is known that HA ¥ 3-DML (cf. [1)).
Thus the statement of Proposition 5.16 for K = —1 does not holds.

Corollary 5.18.

1. For any Iy, formula ¢(y), there exists a Iy, formula v(x) such that

HA 4+ X;-DML + X, _1-DNE |+ 3y < 2z ¢(y) < ¢¥(z);

2. For any Xy, formula ¢(y), there exists a Xy formula ¥(zx) such that

HA 4+ 3;_1-DML + X, _o-DNE F Vy < 2 ¢(y) < ¢(z).

Proof. 1. For k = 0, this is trivial. For & > 0, the statement is already proved
in the proof of Proposition 5.16.

2. Since the statement obviously holds for & = 0, we may assume k& > 0.
Let 3z¢(y, z) be any Xy formula where ¢(y, z) is IIy_;. By Proposition 5.13,
we have

HAFVYy < z3z0(y, 2) < FJwVy < z3z < we(y, 2).

By clause 1, there exists a II;_; formula ¢ (y,w) such that
HA + Xx_1-DML + X _o-DNE F 32 < w(y, 2) <> ¥(y, w).
Hence
HA + ¥x_1-DML + ¥, _o-DNE F Vy < 3z ¢(y, 2) <> JwVy < z(y, w).

Since Jw Vy < 2 9(y, w) is obviously equivalent to a ¥ formula, this completes
our proof of clause 2. O

Corollary 5.18 is very useful for exploring principles containing bounded
quantifiers. For instance, it can be applied to the study of the least number
principle.

Definition 5.19 (The least number principle). Let I be a set of formulas.

[-LN  Fzp(z) — Ja(e(z) AVy < z-0(y)) (pel)
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Theorem 5.20. Let T be either Xy, or 1. Then I'-LN and I'-LEM are equiv-
alent over HA.

Proof. First, we prove HA + I'-LN F I'-LEM. Let ¢ be any I' formula and let
() be a T formula HA-equivalent to ¢ V 0 < x, where = does not occur freely
in . Notice that 0 < z A Vy < & =)(y) implies —t)(0) which implies —¢. Hence
we have

HAF (oV 0 <2) AVy <z9Y(y) = ¢V g,

and thus
HA - Jz(¢(z) AVy < 2 (y)) — ¢ V —p.

Since HA F 3z (z), we have HA + T-LN F 3z(¢(x) AVy < £ —p(y)). Therefore
we obtain HA +T-LN | ¢ V —¢.

Secondly, we prove HA + I1;-LEM + II;,-LN. A proof for HA + X;-LEM +
Yx-LN is similar. Let ¢(x) be any II;, formula, and let ¢)(z) be the formula

Jr < zp(z) = Jx < 2z (p(x) AVy < z=p(y)).

We prove HA + II;-LEM F Vz)(z) by applying the induction axiom for (z).
Since HA F =3z < 0 ¢(z), we obtain HA I ¢(0).

We prove induction step. Notice HA+II;-LEM proves X;-DML+-Y;_1-DNE
by Corollary 4.9 and Proposition 5.3.(1). Thus by Corollary 5.18.(1), the for-
mula 3z < z p(z) is equivalent to some IIj formula in HA+1II;-LEM. Therefore

HA +II-LEM F 3z < zp(z) V -3z < z p(x). (3)

Since HA F 3z < zp(z) <> (Fz < zp(x) V p(z)), we obtain

HAF 3z < zp(z) ATz < zo(x) = p(2) AVa < z (),
and hence

HAF 3z < zp(z) A—-Jz < zo(x) = Tz < 2 (p(z) AVy < 2-p(y)).

On the other hand, we obviously obtain

HAE ¢(z) Adz < zp(x) = Fz < z (p(x) AVy < 2-9(y)).
Then by (3), we have

HA + II;-LEM F ¢ (2) A 3z < z p(z) — Fz < 2 (p(z) AVy < 2 —p(y)).

It follows HA +1II;-LEM I 9 (z) — (2 +1). We have completed our proof. [

By using Corollary 5.18 and Theorem 5.20, we are able to generalize Fact
2.5.(2). The proof is similar to that of the implication 2 = 1 of [8, Proposition
2].

Proposition 5.21. HA + X;,-DML + ¥;_;-DNE + II;,-DML.
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Proof. We may assume k > 0. Let Vap(x) and Vyi(y) be any II;, formulas where
o(z) and P(y) are Xp_1. We define the formulas (x) and n(y) as follows:

o £(z) =z <a(p(2) A p(2)) At (a);

o (y) :=Vz < y(e(z) A(2) Apr(y) Apl(y).

Since ¢(z) A 9(z) is HA-equivalent to a ¥;_; formula, by Corollary 5.18.(2),

Vz < x(p(z) ANp(z)) is equivalent to some Xf_; formula in HA + 3 _o-DML +

Yk—3-DNE. Thus the formula Jz£(x) is equivalent to a ¥j formula in the

theory. Similarly, Jyn(y) is also equivalent to some X, formula in the theory.
By the definitions of £(x) and n(y), we obtain

e HAFE(2) Any) Az <y — ¢t (z) Ap(x), and

o HAF £(z) An(y) Ay <z — ¥(y) At (y).

Thus by Proposition 3.3.(4) and HAF 2z <y Vy < z, we have that HA proves
—(3z&(x) A Jyn(y)). Then from the above observations, we obtain

HA 4+ X;-DML + X, _5-DNE F = 3z£(x) V = Jyn(y). (4)

Note that HA+X,-DML + X, _-DNE proves ¥, _1-DUAL, II;,_;-DUAL
and II;_;-LEM. Then HA + ¥;-DML + ¥, _1-DNE proves

3a—p(x) = Jrp™ (2), (by ¥x_1-DUAL)
— Elx[goL(m) AVz <z ﬁgoL(z)], (by IIx—1-LEM and Theorem 5.20)

— Jafpt(x) AVz < 2 o(2)].
(by II;_1-DUAL and Proposition 3.3.(2))

Hence, by the definition of the formula £(z), we have
HA + X4-DML + ¥;,_1-DNE F 3z —p(2) AVyp(y) — Jx€(x).

Since HA F =3z —¢(x) — Vo ——p(z) and HA+ X;_1-DNE implies ¥;_1-DNS
by Proposition 2.8.(1), we obtain

HA + X4,-DML + X5, _1-DNE F Vyy(y) A = Fzé(x) — ~—Vap(x).
On the other hand,
HA E =(Yap(x) AVyd(y) AVyd(y) — —~Vop().

Therefore we obtain

HA+X,-DML+Y;_1-DNE F =~(Vzp(z) AVy(y))A— Fzé(z) — = Vyy(y). (5)
In a similar way, we obtain

HA+X,-DML+Y;_1-DNE F =(Vzp(z) AVy(y)) A Jyn(y) — = Vae(x). (6)
By combining (4), (5) and (6), we conclude

HA+X-DML+ Y 1-DNE F ~(Vzp(z) AVyd(y)) = —Vae(z) V- Vy(y). O
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Finally, we prove that the converse of Proposition 5.16 also holds. This is
closely related to [5, Theorem 4.5].

Proposition 5.22. HA + II,-COLL®P + ¥,-DML + ¥;_-LEM.

Proof. We prove by induction on k. For & = 0, our statement obviously holds.
Suppose that the statement holds for k, and we prove the case of k + 1. We
prove the following two statements:

(i) HA + Iz, ,-COLL®P |- X;-LEM;
(i) HA + II;41-COLL®P + %, ,-DML.

(i): Let Jzp be any X formula where ¢ is IIx_;. By induction hypothesis,
HA + IIx-COLL*P |- 3;-DML + X;_;-LEM. By Fact 2.3, HA + II,-COLL*°P
also proves II;_1-LEM and ¥;_;-DNE. It follows from Corollary 5.18.(1), we
have that 3z < z ¢ is equivalent to some II;_; formula in HA + II;-COLLC®P.
Then by applying II;_;-LEM, we obtain

HA +II;,-COLL? F Jz < zpV =3z < z .
Then
HA +II;,-COLL? - Jw < 2[(w=0—= 3z < zp) A(w=1— -3Fz < z¢)].
Since HA + II;,-COLLSP proves II;,_;-DUAL, we obtain
HA +TI,-COLL®P + 3w < 2[(w =0 = Jz < 20) A (w =1 — Vo < z¢b)].
Hence
HA + IT;-COLL®P |- V2 3w < 2Vz < z [(w = 0 — Jzp) A (w =1 — b))

Since (w = 0 — Jrp) A (w = 1 — @) is equivalent to some %) formula, by
Proposition 5.15,

HA + II;, 1-COLL®P + 3w < 2Vz [(w = 0 = Jzp) A (w = 1 — 1))
Then
HA + II;; ;-COLL®P I 3w < 2[(w = 0 — 3zp) A (w = 1 — Vapl)).

Thus we obtain HA + Il ;-COLL®P + Jz¢ V = 3xp by Proposition 3.3.(3).
This means HA + 134 ;-COLL®P | ¥;-LEM.

(ii): Let Jzp and Jyy be any Xiy1 formulas where ¢ and ¢ are II,. We
have HA F =(3zp A Jyyp) — —(3z < zp A Ty < z¢). From (i), we have that
HA + II;1-COLL®P proves ¥;-LEM. By Fact 2.3, Propositions 5.21 and 3.7,
the theory also proves ¥ ;-DML, ¥;-DNE, 1I,-DML and II;-DUAL. Then
by Corollary 5.18.(1), both 3z < z¢ and Jy < 2z are equivalent to some II
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formulas in HA 4 11 1-COLL®P. By applying [I;-DML, HA + 1 ;-COLL®P
proves

S(Fzp ATyy) - Tz < zpV-oTJy < 29,
S Jw<2[w=0—>"Tx<zp)A(w=1— -3y < z)],

S Jw<2[(w=0—=Vr<zeH)A(w=1-=Vy<zyh),
(by II;-DUAL)

—Jw<2Vr <z2Vy < z[(w=0—= ¢ )A(w=1- b))
Thus we have that HA + IIx41-COLL®P proves
—(Fzp A Jy) = VzIw < 2Vz < 2Vy < z[(w =0 = o) A (w=1— L))
Then, in the light of (1), HA + Iz 1-COLL®P proves
—(3zp A Jyp) — Jw < 2V Vy[(w =0 = 1) A (w =1 — 1)),

— Jw < 2[(w=0— Yrph) A (w=1— VYypt)],

= Jw<2[(w=0—=-TJzp) A(w=1—-3TyY)],
(by Proposition 3.3.(3))

— = 3Jxp V oIy,
Therefore HA + I, 4;-COLL®P |- ¥;1-DML. O
From Propositions 5.16, 5.22 and Fact 2.3, we get the following corollary.
Corollary 5.23. The following are equivalent over HA:
1. Ilj4;-COLL®P.
2. ¥p+1-DML + ¥, -LEM.
3. Xp+1-DML + X -DNE.

5.3 The principles A;-DML and A}-DML
In this subsection, we mainly investigate the principles Ax-DML and A}-DML.
Proposition 5.24.

1. HA+ Ap4+1-DML + ¥, _;-DNS - ¥3-LEM;

2. HA+ A}, -DML + ¥;_;-DNS + ¥}-LEM.

Proof. Let ¢ be any X, formula.

1. By Proposition 3.3.(4), HA = =(p A ¢1). Since both ¢ and ¢t are Ay,
HA + Agy1-DML - —¢ V =¢*. Then HA + Ay, 1-DML + 3;_;-DNS proves
—p V = by Proposition 3.12.

2. Since HA F —(=¢ A ==¢), HA + X, _1-DNS F —=(=¢ A ~p*). Then
HA + A}, -DML + 3;,_1-DNS F ——¢ V ——¢. We conclude that the theory
proves —p V 7. U
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From Corollaries 4.9, 4.10 and Proposition 5.24, we obtain the following.
Corollary 5.25. Let I' € {Agy1, A%}

1. HA+T-DML + ¥, _;-DNE - 1I,-LEM;

2. HA +T'-DML + ¥£;-DNE - £;,-LEM.

Furthermore, we prove the following proposition by adapting the proofs of
Proposition 5.21 and [6, Lemma 2.14].

Proposition 5.26. HA + A,-DML + ¥;,_;-DNE - A}’-DML.

Proof. We may assume k > 0. Let Jzp(z) and Jyy(y) be any X formulas
where ¢(z) and ¢(y) are I;_1, and let ¢’ and 9’ be any II; formulas. Let x
denote the formula (Jzp(z) < ¢') A Ty (y) < '). We define the formulas
&(x) and n(y) as follows:

o {(z) :=Vz <z(ph(2) ANYH(2)) A p(a);
o n(y) =Yz <y(et(z) Apt(2)) Ab(y) A et (y).

As in the proof of Proposition 5.21, the formulas Jz¢(x) and Jyn(y) are equiv-
alent to some Yj formulas in the theory HA + 3;_o-DML + ¥;_3-DNE which
is included in HA 43 _1-DNE by Fact 2.3, Corollary 4.10 and Proposition 5.3.
Also

HA F =3z () A Jyn(y)).- (7)

By Corollary 5.25.(1), HA + Ap-DML + X, _o-DNE proves II;_;-LEM.
Since Y,_1-DNE implies I1;_;-DUAL, by Theorem 5.20, we obtain

HA + Aj-DML + X, _1-DNE F Jzp(z) — Iz[p(z) AVz <z (2)]. (8)
In a similar way, we have
HA + Ap-DML + ¥, _-DNE F 3y < 29 (y) — Iy < z [0 (y) AVz <yt (2)].
Then by the definition of 7(y),
HA + Aj-DML + %5, _1-DNE F Vz < 2o (2) A 3z < z1p(2) — Jyn(y).
From this with (8), HA + Ay-DML + X;_;-DNE proves
Jzp(x) A= 3yn(y) — zfp(x) AVz <zt (2) AVz < z9t(2)).

It follows that the theory proves Jxp(x) A = 3Jyn(y) — Jz&(x). On the other
hand, HA proves Jxz&(z) — Jzp(z) A =3yn(y) from (7). Therefore HA +
Ap-DML + X _1-DNE proves

X = [F2é(z) > (&' AVynt(y))-

Also ¢’ AVynt(y) is HA-provably equivalent to some IT formula.
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In a similar way, we obtain that HA + Ax-DML + 3;_1-DNE proves
X = Byn(y) & (' AVzE(2)]

and 1’ A Voét(x) is HA-provably equivalent to some II;, formula.
Then by applying Ax-DML to (7),

HA + Ap-DML + X, _1-DNE F x — = 3z&(x) V = Jyn(y). 9)
From (8) and the definition of £(x),
HA + Ap-DML + ¥, _-DNE F 3z(z) A Vyy*(y) — J2é(x).
Then
HA + Ajp-DML + ¥, _1-DNE F = 3z£(2) A = 3y (y) — - Jzp(x).
Therefore we obtain
HA4+A;,-DML+X)_1-DNE F —(—= 3zp(z) A= Ty (y))A—- Fzé(z) = —— Ty(y).
In a similar way, we obtain 1o
HA+ A -DML+Y,_1-DNE F —(= 3zp(x) A=y (y))A- Fyn(y) — —— Elxap((x))
11

By combining (9), (10) and (11), we conclude that HA+A,-DML+¥%;_;-DNE
proves

X = [2(=32e(z) A=3yd(y)) = —=3ep(r) V == 3yd(y)). m

5.4 De Morgan’s law with respect to duals

In [1], principles based on de Morgan’s law with respect to duals are introduced.

Definition 5.27 (De Morgan’s law with respect to duals). Let I" and © be any
sets of formulas in prenex normal form.

I-DML* (@ Ath) = pt vt (o, €T)
(I, ©)-DML™* —(p A1p) = @ Vapt (peT and ¢ € ©)
A,-DML* (o @ )N (W o))

= (=(p AY) = pt vyt (p, € 3y and ¢, ¢’ € IIy)
(A, T)-DML">  (p e ¢') = (m(pAY) > ot vyl) (e, ¢ €l and ¢ €T)
(A, T)-DMLTT (03 ¢') = (2(p AY) = () E Vpt) (@€, ¢ €Tl and ¢ €T)

Our %;-DML™" is called %3-LLPO in [1]. As in the case of [-LEM™
(Proposition 4.3), we show that the principles defined in Definition 5.27 are
exactly de Morgan’s laws equipped with the dual principles.
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Proposition 5.28. LetT' and © be any sets of formulas in prenex normal form.

1. (T,0)-DML" is equivalent to (T', ©)-DML+T-DUAL+©-DUAL over
HA;

2. (Ag,©)-DML™:> is equivalent to (Ay, ©)-DML+Y;,-DUAL+0O-DUAL
over HA;

3. (Ag,©)-DML™:" is equivalent to (Ay, ©)-DML+II,-DUAL+0-DUAL
over HA.

Proof. 1. By Proposition 3.3.(3), HA + (T',©)-DML™* + (I',©)-DML. Let
@ €T. Since HA F —¢ — —(¢ A L), we have that HA + (I', ©)-DML™" proves
the formula ¢ — o~V (=L)*. Thus HA+(T',0)-DML™ - = — ¢+, and this
means that I-DUAL is provable. Similarly, ©-DUAL is also provable. On the
other hand, (T', ©)-DML™ is easily proved in HA + (', ©)-DML + I-DUAL +
O-DUAL.

2 and 3 are proved in a similar way. O

Summarizing the results so far, we obtain the following corollary.
Corollary 5.29.

1. Zk—DMLl is equivalent to Xp-DML + ¥, _1-DNE over HA;

2. (Zk, 1'[;6)-DMLL is equivalent to Yp-LEM over HA;

3. (AME;@)—DMLL’Z is equivalent to Ap-LEM over HA;

4. Ap-DML* is equivalent to Ag-DML + ¥ _1-DNE over HA;

5

. Each of the principles II,-DML™, (A, £x)-DML>M | (A, II,)-DML-*
and (A, Hk)-DMLL’H s equivalent to Xp-DNE over HA.

Proof. 1. This is a consequence of Propositions 3.7 and 5.28.(1).

2. By Propositions 3.7 and 5.28.(1), (Zk,II;)-DML™* is HA-equivalent to
(2k, I)-DML+X-DNE. Then it is also HA-equivalent to X;-LEM by Corol-
lary 5.9.(2).

3. From Propositions 3.7 and 5.28.(2), (Ax, Xx)-DML>* is HA-equivalent
to (Ag,Xk)-DML + ¥;_1-DNE. Then it is HA-equivalent to Ax-LEM by
Corollary 5.10.

4 is proved as in the proof of Proposition 5.28.

5. By Propositions 3.7 and 5.28.(1), II,-DML" is HA-equivalent to II,-DML+
Yr-DNE. Since HA+ X;-DNE F II,-DML by Proposition 5.12, I,-DML" is
HA-equivalent to ¥x-DNE. Similarly, each of (Ag, X )-DML™", (A, II;)-DML**
and (Ak,Hk)—DMLl’H is HA-equivalent to X;-DNE because each of them
implies ¥Xp-DNE over HA by Proposition 5.28, and HA + X;-DNE proves
(Ag, 2x)-DML and (Ag, I )-DML by Fact 2.3.(4) and Proposition 5.3.(3). O

In [3, Theorem 14], it is proved that ¥,-DML? is equivalent to ¥,-DML +
Y;—1-LEM over HA. This result follows from Corollaries 5.23 and 5.29.(1).
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6 The double negation elimination

In this section, we explore variations of the double negation elimination. As
in the previous sections, we deal with the principles of forms (I'™ V ©)-DNE,
(Ag V ©)-DNE, and so on. As in the case of de Morgan’s law, (I' V ©)-DNE
is obviously equivalent to (0 VI')-DNE. Interestingly, de Morgan’s law can be
seen as a variation of the double negation elimination.

Proposition 6.1. For any setsT' and © of formulas, the following are equivalent
over HA:

1. (I',®)-DML.
2. (' v e")-DNE.
The analogous equivalences also hold for the versions of Ay and A}.

Proof. Let ¢ € I" and ¢ € O. Since HA + =(p AY) < —=(—¢ V 1)), HA proves

[Fle AY) = =V ] & [5o(mp V) = —p V -yl
The last statement is also proved in a similar way. O

We prove the following basic proposition concerning principles based on the
double negation elimination.

Proposition 6.2. Let T' € {3, I, A} and let © be any set of formulas.
1. HA + (I'V ©)-DNE - [ -DNE;

2. Suppose that for any ¢ € O, there exists ¥ € Xy, such that HA+X,-DNE +
@ <> 1. Then (Xg V ©)-DNE is equivalent to YXp-DNE over HA;

(X7 vV O)-DNE + X _1-DNE is equivalent to (Il V ©)-DNE over HA;
Y3 VI)-DNE is equivalent to (II; V I')-DNE over HA;

II} v ©)-DNE + X, -DNE is equivalent to (X V ©)-DNE over HA;
Y ©)-DNE is equivalent to (II} V ©)-DNE over HA + ¥;_;-DNS;
Y v T)-DNE is equivalent to (II2 V I')-DNE over HA;

1" v ©)-DNE s equivalent to (X1 V ©)-DNE over HA + ;1 -DNS;

© »® RS> & e

(
(
(
(
(
(II{» v I')-DNE is equivalent to (I V T')-DNE over HA;
(

10. (A{" v ©)-DNE + X;_1-DNE s equivalent to (A V ©)-DNE over HA;
11. (A" VT')-DNE is equivalent to (A VI')-DNE over HA.

Also these statements hold even if © € {AR, Adn}.
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Proof. 1. This is because 0 = 0 € © and for any ¢ € I', ¢ V0 = 0 is HA-provably
equivalent to ¢.

2. From clause 1, HA+ (2 V©)-DNE proves X;-DNE. On the other hand,
let ¢ and v be any Xy, formulas. Notice that ¢ V ¢ is HA-equivalent to Jz((x =
0 — ¢)A(z=1—1)). Then it is shown that ¢ V ¢ is provably equivalent to
some ¥, formula in HA (cf. [13, Lemma 4.4]). Therefore HA + X,-DNE proves
(S, V ©)-DNE.

3. By Propositions 3.3.(3) and 3.7, for any ¢ € Xy and ¢ € II;, HA +
Yk—1-DNE proves —p <+ ¢ and —p+ < 1. Thus the principles ($2VO)-DNE
and (Il V ©)-DNE are equivalent over HA + X;_;-DNE. Also by clause 1,
HA + (Il vV ©)-DNE proves ¥;_;-DNE.

Clause 4 follows from clauses 1 and 3 because I'-DNE entails ¥, _1-DNE.
Clause 5 is proved in a similar way as in the proof of clause 3. Clause 6 is a
refinement of Proposition 5.7.(1) in the light of Proposition 6.1, and is proved
in a similar way. Clause 7 follows from clause 6 and the fact that HA+T-DNE
proves Y,_1-DNS. Clause 8 is a refinement of Proposition 5.7.(2). Clause
9 follows from clause 8 because HA + I'-DNE proves II;-DNE. Clause 10 is
proved in a similar way as in the proof of clause 3. Clause 11 follows from clause
10. O

We have the following corollary which shows that ¥;-LEM and II,-LEM
are also variations of the double negation elimination. A part of Corollary 6.3.(4)
is stated in [1].

Corollary 6.3.

1. For T" € {Sy, Ay, I, AL S0 A} (33, v T)-DNE s equivalent to
Y.-DNE over HA;

2. ¥,-LEM, (3 V1I;)-DNE, (35 V X2)-DNE and (35 V II{")-DNE are
equivalent over HA;

3. 1lx-LEM, (11} VII)-DNE and (X" VII)-DNE are equivalent over HA;

4. Sp-DML*, (I VII;)-DNE, (II; v £2)-DNE and (II; V II{*)-DNE are

equivalent over HA;

5. Let I € {Sy, Iy, Ay, ST} and I € {Ag, AL, A}, Then Ay-LEM,
(A vV (I")*)-DNE and (T vV II;)-DNE are equivalent over HA;

6. (Ax V Ar)-DNE, (A V A®).DNE and A}-DML + 3;_;-DNE are
equivalent over HA.

Proof. 1. This follows from Proposition 6.2.(2).

2. By Corollary 5.9.(2), £,-LEM is equivalent to (X}, II})-DML+%,-DNE.
By Proposition 6.1, it is equivalent to (4" VII{")-DNE +%,-DNE. By Propo-
sitions 6.2.(5), 6.2.(7) and 6.2.(9), it is equivalent to (X V II;)-DNE. Also by
Propositions 6.2.(4) and 6.2.(9), each of (3), vV X2)-DNE and (X Vv II{*)-DNE
is equivalent to (Xj V Il )-DNE.
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3. By Corollary 5.9.(1), II;-LEM is equivalent to (X}, II})-DML+X;_,-DNE,
and it is equivalent to (3¢ v II{")-DNE + ¥;_;-DNE by Proposition 6.1. By
Propositions 6.2.(6) and 6.2.(9), it is equivalent to (II} V II)-DNE. By Propo-
sition 6.2.(7), (II} v II;)-DNE is equivalent to (34" v II;)-DNE.

4. By Corollary 5.29.(1), 2,-DML™ is equivalent to X;-DML+Y;,_1-DNE,
and this is equivalent to (X}, V X})-DNE + X;_;-DNE. Then by Propositions
6.2.(3), it is equivalent to (X} VII)-DNE. It is equivalent to (II VII;)-DNE by
Proposition 6.2.(4), and hence, also to (II; VII$*)-DNE by Proposition 6.2.(9).

5. By Corollary 5.10, Ap-LEM is equivalent to (A}, IV)-DML+Y;,_,-DNE.
And it is equivalent to (A" v (I')")-DNE + X;_;-DNE. This is equivalent to
(Ag v (I")*)-DNE by Proposition 6.2.(10). Also each of (A" v II;)-DNE and
(Ag V II;)-DNE is equivalent to (Ag V X})-DNE by Propositions 6.2.(4) and
6.2.(10).

By Corollary 5.10, Ag-LEM is equivalent to (Ag, X )-DML + ¥, _1-DNE;,
and it is equivalent to (A} V 3})-DNE + X;_;-DNE. By Proposition 6.2.(3),
it is equivalent to (A} V II;)-DNE.

6. This is immediate from Propositions 6.1, 6.2.(10) and 6.2.(11). O

Corollary 6.4. HA + Ax-LEM I (Ag V Ag)-DNE.

Proof. This is because HA + Ap-LEM F (A, V II;,)-DNE by Corollary 6.3.(5).
O

In Akama et al. [1], it is shown that HA+ Ag1-LEM proves X;-LEM. The
following proposition is a refinement of their result from Corollary 6.4.

Proposition 6.5. HA + (Ag41 V Agy1)-DNE F X, -LEM.

Proof. Let ¢ be any X formula. Since HA F —(=p A =—¢), HA + X, _1-DNS +
(=@ A =) by Proposition 3.12. Then HA 4 X;_1-DNS F =—(p V ¢*). Since
both ¢ and ot are Ay, 1 and HA + (A1 V Agy1)-DNE derives ¥j,_1-DNS,
HA + (A1 V Agi1)-DNE F ¢ V ¢, Hence the theory proves ¢ V —p by
Proposition 3.3.(3). O

Finally, we introduce the following principle based on Peirce’s law. We show
that Peirce’s law exactly corresponds to the double negation elimination.

Definition 6.6 (Peirce’s law). Let I' be any set of formulas.
I-PEIRCE ((p =) =)= (¢ € T and ¢ is any formula)

Proposition 6.7. For any set I' of formulas, T'-PEIRCE is equivalent to
I'-DNE over HA.

Proof. First, we prove HA + I'"PEIRCE I I''DNE. Let ¢ € I'. Since -—¢
is (¢ > L) - L, HAF ——p — ((¢ = L) — ¢). Thus HA + I-PEIRCE I
= Q.

Secondly, we prove HA + I'"-DNE I I'“"PEIRCE. Let ¢ be any I' formula
and 1 be arbitrary formula. Since HA proves —¢ — (¢ — ), HA also proves
((p = ¥) = @) A= — . Hence HA - ((¢ — ¥) — ¢) = . We obtain
HA + T-DNE F ((p — ¥) — @) — . O
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We get the table which summarizes principles equivalent to (I' V ©)-DNE
over the theory HA + ¥, _;-DINS. Notice that from Propositions 6.2.(6) and
6.2.(8), (X¢{" v ©)-DNE and (II{" v ©)-DNE are equivalent to (II} V ©)-DNE
and (X} V ©)-DNE over HA + % _1-DNS, respectively. So X¢" and II¢" are
excluded from the table.

r © Yk I 11, o
Sk Y»-DNE | ©,-DNE | ;- LEM | %;,-LEM
I} II;-DML | I,-LEM | %}-LEM
iy »,-DML'T | ©,-DML™*
»p Y,-DML
0 A AT Agn
Sk Y,-DNE Y.-DNE Y,-DNE
I A,-LEM A-LEM A-LEM
I, A-LEM A,-LEM A,-LEM
o A,-LEM A-LEM ALLEM
Ay (Ak V Ak)—DNE Ai-LEM (Ak vV Ak)-DNE
An A,-DML ALLEM
N AP’-DML

Table 1: Principles equivalent to (I' V ©)-DNE over HA 4+ X;_;-DNS

7 The constant domain axiom

In this section, we investigate the principles of the form (I', ©)-CD in Definition
2.4, and classify them in the arithmetical hierarchy of classical principles. Note
that (T", ©)-CD is not equivalent to (©,T')-CD in general.

In first-order intuitionistic Kripke semantics, the constant domain axiom
corresponds to Kripke frames with constant domains (cf. [18, p. 328]). First
of all, we show that in our framework of first-order intuitionistic arithmetic,
the constant domain axiom is equivalent to the law of excluded middle despite
its semantic origin. Let LEM and CD denote the principles Fml-LEM and
(Fml, Fml)-CD respectively, where Fml is the set of all formulas.

Proposition 7.1. CD is equivalent to LEM over HA.

Proof. First, we prove HA + CD I ¢ V = for any formula ¢ by induction on
the construction of ¢. If ¢ is an atomic formula, then the statement is obvious.

Assume that HA + CD proves 1 V =) and p V —p, and suppose ¢ is one
of the forms ¢ A p, ¥ V p and v — p. Notice that =¢p V -p — =(¢p A p),
Y A-p—= (Y Vp), YV p— (Y — p)and Y A—p — (1) — p) are provable
in HA. Therefore ¢ V —¢ is also provable in HA + CD.

30



Assume that HA + CD proves ¢(x) V =t)(z). Then Vz(Izy(x) V - (z))
and Vz(¢(x) V 3z —p(x)) are also provable. By applying CD, we obtain that
HA + CD proves dz¢(x) V - Jzyp(z) and Vay(z) V - Vap(x). Therefore, if ¢ is
of one of the forms Jxv)(z) and VYa)(z), then ¢ V —¢p is provable in HA + CD.

Secondly, we prove HA+ LEM + CD. Let ¢ and ¥(z) be any formulas with
z ¢ FV(p). We have HA F Va(p V ¢¥(z)) A =p — Vzip(z). Since HA + LEM
proves ¢ V =, we conclude that HA + LEM also proves Vz(p V ¢)(x)) — ¢ V
Va(z). O

Proposition 7.2.
1. (T,11)-CD is equivalent to (T, X;)-CD over HA;
2. (I',X3,,)-CD is equivalent to (I',11},)-CD over HA.

Proof. These statements are proved by using a primitive recursive pairing func-
tion. U

As in the proof of Proposition 7.1, we can show that I-LEM and A,-LEM
are sufficiently strong for the constant domain axiom.

Proposition 7.3. Let I' and © be any sets of formulas.
1. HA+T-LEM + (T',©)-CD;
2. HA+ Ap-LEM F (A, 0)-CD.

From the prenex normal form theorem proved in [1, Theorem 2.7] and [13,
Theorem 5.7], LEM is equivalent to (J{3;-LEM | k > 0} over HA. Therefore,
the following proposition can be regarded as a stratification of Proposition 7.1.

Proposition 7.4. Let © be a set of formulas such that Xx_1 C ©. Then the
following are equivalent over HA:

1. (3¢, ©)-CD.
2. %,-LEM.

Proof. First, we prove HA 4 (X, ¥i—1)-CD F ¥,-LEM by induction on k. For
k = 0, the statement is trivial. Suppose that the statement holds for k, and we
prove HA + (Zk11,25)-CD F X 1-LEM. Let 3xp(z) be any ¥i1q formula
with ¢(z) € II;. By induction hypothesis and Fact 2.3, HA + (24, X;—1)-CD
proves II;-LEM + ¥;,-DNE. Thus HA + (2;,35-1)-CD F ¢(z) V —p(z). We
get HA + (1, Xx_1)-CD F Va(3zp(z) V ¢ (2)) by using I1,-DUAL. Then

HA 4 (Sh41, 2k)-CD F Jzp(z) V Vap®(z).
This implies HA + (341, 2x)-CD F Jzp(z) V - Jzp(x).

On the other hand, HA + X;-LEM F (X4, ©)-CD follows from Proposition
7.3.(1). O
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Fact 2.7 states that (II;,1I;)-CD is HA-equivalent to 3;-DML. By Corol-
lary 5.29.(1), ¥;-DML is HA-equivalent to ¥1-DMLL. So the following propo-
sition is a generalization of Fact 2.7.

Proposition 7.5. The following are equivalent over HA:

1. (I, 10;)-CD.

2. ¥,-DML".
Proof. First, we prove HA + X,-DML* + (II, II;)-CD. Let ¢,¢(z) € II;
with « ¢ FV(¢). Since HA F Vz(o V ¢ (x)) A = — Vap(z), HA proves Va(p V
P(z)) = (- A ~Vzy(x)). By Proposition 3.3.(3), HA F Va(¢ V ¢(z)) —
(¢t A (Vzo(z))*). Then we obtain

HA + 2-DML™ - V(o V i (x)) — ot Vv (Vay(z) .
By Proposition 3.3.(2), we conclude
HA + Z-DML™ - V(o V i(x)) — ¢ V Va(z).

Secondly, we prove HA+ (11, II)-CD + Ye-DMLL. We may assume k > 0.
Let Jxp(z) and Jyi(y) be any X, formulas where ¢(z) and ¢ (y) are I _;. Since

¥(y) implies Jy)(y), we obtain
HA F =(3zp(z) Ay (y)) Av(y) — - Fzp(x). (12)

Since HA+(I1, 111, )-CD entails (X _1, I )-CD, we obtain that HA+ (T, II;)-CD
proves 1I;_1-LEM + ¥;_1-DNE by Proposition 7.4 and Fact 2.3. Hence HA +
(I, 11 )-CD F 9 (y) V =¢(y). From this with (12), we have

HA + (II, Iy )-CD F ~(Jzp(z) A Syh(y)) — Vy(= Ize(z) V —b(y)).
By using $x-DUAL, we get

HA + (I, IT)-CD + =(3zp(x) A yi(y)) = Vy(Cee() ™ V- (y).
Since (Jzp(x))* € I, and ¥ (y) € Sy, we obtain

HA + (I, IT;)-CD F =(3zp(x) A 3y (y)) = Cre(e)) ™ v Vygt(y).
Therefore

HA + (1T, IT)-CD + =(3zp(x) A yi(y)) = Grp(e) ™ v Byp(y)) " O

From Corollaries 5.29.(1) and 6.3.(4) and Propositions 5.16, 5.22 and 7.5,
we have the following result.

Corollary 7.6. For k > 1, the following are equivalent over HA:
1. X-DML + ¥;_;1-DNE.
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2. ¥-DML™.

3. (I, II;)-CD.

4. I,-COLL®P,

5. (I V II,)-DNE.

Corollary 7.7. For k > 1, each of ¥,-DML™*, (I, 11 )-CD, II;-COLL*P
and (I V I )-DNE implies II,-DML over HA.

Proof. This is immediate from Proposition 5.21 and Corollary 7.6. O

Proposition 7.8. Let © be a set of formulas such that Xx_1 C ©. Then the
following are equivalent over HA:

1. (Ay, ©)-CD.
2. Ap-LEM.

Proof. Notice that (Ag,X;_1)-CD implies (Xj_1,X,—1)-CD. Then by Propo-
sition 7.4 and Fact 2.3, HA+ (Ag, X _1)-CD proves II;_1-LEM + ¥, _;-DNE.
Therefore the statement HA 4+ (Ag, Xx—1)-CD + Ai-LEM is proved as in the
proof of Proposition 7.4. On the other hand, HA + Ax-LEM F (A, ©)-CD
follows from Proposition 7.3.(2). O

Next, we investigate the principles (I, ©)-CD and (A}, ©)-CD. In the light
of Proposition 7.3, they are derived from I'"-LEM and A}-LEM, respectively.
In addition, for © = ¥}}, we obtain the following proposition.

Proposition 7.9. Let I' be any set of formulas.
1. HA+ (T, X;)-DML I (', 3})-CD;
2. HA + (A, Z;)-DML + (A}, X7)-CD.

Proof. 1. By Proposition 7.2.(2), it suffices to show that HA + (T, X )-DML
proves (I, II}_,)-CD. Let ¢ € T and ¢(x) € IIy_1 with ¢ FV(¢). Then we
have

HA E Va (- V = (z)) = Ve =(o A (x)),
= = 3z(p A Y (),
(A Tay(2).

Thus
HA 4+ (T, X¢)-DML F Vz (= V —¢)(x)) = —¢ V = 3ap(z).

We conclude
HA + (T, 2¢)-DML F Vz(—¢ V ~¢)(z)) — o V Ve —1)(z).

2 is proved similarly. U
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With the help of ¥;_o-DNS, the converse implications also hold.
Proposition 7.10.

1. HA + (I}, 37)-CD + Xj,_2-DNS F (34, II)-DML;

2. HA + (£3,53)-CD + £;,_2-DNS + £;,-DML;

3. HA+ (A}, X})-CD + £;,_2-DNS + (A, X%)-DML.

Proof. 1. We prove by induction on k£ > 0. The statement for k = 0 is trivial.
We assume that our statement holds for k, and we prove HA-+(II},  , ¥}, )-CD+
Yt—1-DNS F (241, 0511)-DML. Let Jzp(z) € Xgy1 and ¢ € Iy where
p(z) € Iy. We have
HAF =(3zp(x) A y) = = Fz(p(x) AY),
— Vo =(e(z) A1),
— V= (=—p(x) A ).
Then
HA - =(3zp(x) A ) A ——p(z) = ). (13)

By induction hypothesis, HA+(II}, £} )-CD + X5 _»-DNS | (X4, 11 )-DML.
By Corollary 5.8.(1), HA + (II};, £})-CD + £, _,-DNS proves II}-LEM. Thus
we have that HA + (II}, £7)-CD + X, _1-DNS proves ——¢(z) V =p(z). From
this with (13), we obtain

HA + (I1, 23)-CD + X, _1-DNS F =(Fzp(z) A ) — Vo (= V —p(x)).
By applying (1T}, ¥}, ,)-CD, we have
HA + (IT}, 1, X5 41)-CD + X, _1-DNS F =~(3zp(x) A ) = —¢ V Vo —p(x).
We conclude
HA + (11}, 1, X3 1)-CD + X4 _1-DNS F =~(Jzp(x) A ) = —~Jzp(z) V .

2. We may assume k > 0. Let dxp(z) and Jyy(y) be any X formulas with
e(x), ¢ (y) € Mg

HA = =(3zp(x) A Jyd(y)) — ~FeTy(e(z) Ad(y)),
= VaVy =(p(z) A (y))-

Since (X}, X})-CD entails (II} _,, X7 _,)-CD, by clause 1, we have that HA +
(37, 27)-CD + £,_3-DNS proves (¥;_1,IIz—1)-DML. Then by Corollary
5.8.(1), HA 4 (X}, %})-CD + Xj_»-DNS proves II}_,-LEM. By Proposition
5.3.(1), it also proves II;_1-DML. Thus

HA+ (25, X;)-CD + 25, 2-DNS = =(3zp(2) Ay (y)) = Yoy (e (2)V-9(y)).
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By applying (X}, X})-CD twice, we obtain

HA+ (53, X;)-CD + 51 »-DNS F =(3zp(x) A3yt (y)) = Vo —p(z) VVy ~(y).

We conclude

HA+ (3}, 35)-CD + 3k 5-DNS = =(Jzp(2) Ay (y)) = — Fep(x) V- Iy (y).
3 is proved as in the proof of clause 2. O

We obtain the following corollary.

Corollary 7.11. Let © be any set of formulas such that 1I}_, C ©.
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II7,©)-CD is equivalent to II,-LEM over HA 4+ ¥;_;-DNS;

(
(
. (X}, 27)-CD is equivalent to 3i-DML over HA 4+ X;_5-DNS;
(A2, X7)-CD is equivalent to (Ay, Xy)-DML over HA 4+ Xj_5-DNS;
(

2
3
4.
5. (A},0)-CD is equivalent to A}-LEM over HA + Xj,_,-DNS.

Proof. 1. This is immediate from Propositions 7.9.(1) and 7.10.(1).

2. From clause 1, Proposition 7.2 and Corollary 5.8.(1), we have that
HA + (II},II}_,)-CD + ¥;_1-DNS proves II}-LEM. On the other hand,
HA + II}-LEM proves (II}, ©)-CD by Proposition 7.3.(1).

3. This is a consequence of Propositions 7.9.(1) and 7.10.(2).

4. Tmmediate from Propositions 7.9.(2) and 7.10.(3).

5. As in the proof of clause 2, we obtain the statement from clause 4,
Propositions 7.2, 7.3.(2) and Corollary 5.8.(4), O

Problem 7.12.
o s there a set © of formulas such that HA+ (11, ©)-CD proves I1,-LEM ¢

o Is there a set © of formulas such that HA + (X},0)-CD + X;_,-DNS
proves XL} -LEM ¢

The following figure (Figure 2) summarizes the situation for implications
around the constant domain axioms for negated formulas. In [9, Example 10],
it is shown that HA +X;,-DML + ¥;,-DNE does not prove ¥}-LEM for k£ > 1.
Therefore, in Figure 2, ¥;-DML does not imply »}-LEM even in the theory
HA + Xx-DNE for £ > 1.
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S2-LEM [I-LEM

AM.LEM
5,-DML — (zkﬁk)-DML
(X1,0)-CD E,ik)-DML (I, ©)-CD
\(E',;,\\E‘,;)—CD (H’,;,\\E};)-CD/
~

O: A sufficiently large set of formulas
————— > . Implication in HA 4+ X5 _o-DINS
> : Implication in HA 4+ X5 _1-DINS

Figure 2: Implications around the constant domain axioms for negated formulas

8 Summary

As a summary, we illustrate the relationships between the principles we have
dealt with so far. However, the structure of such relationships is somewhat com-
plicated. As we have shown, some minor differences in some of the principles
are smoothed out in the theory HA + ¥X;_1-DNS. Therefore, by illustrating
the relationships between the principles in the theory HA 4 ¥;_1-DNS, one
can grasp the structure in perspective. In fact, in the presence of £1-DNS (in
second-order arithmetic), a lot of equivalences in classical reverse mathemat-
ics can be established even intuitionistically (cf. [11, Proposition 1.1] and [7,
Theorem 2.10]).

Figure 3 summarizes the derivability relation between several principles over
HA + ¥, _1-DNS with supplementary information about the situation over
Yr—1-DNE. In fact, except ¥-LEM — 1I,-DML, »;-DML — A}-LEM,
II;-DML — A}-LEM, Ap-DML — 3} _;-LEM and A}-DML — X} _,-LEM,
all the (non-dashed) implications presented in Figure 3 are provable even in
HA. However, one should note that the principle located at each vertex is
one adequately selected from the equivalence class of principles modulo HA +
Yr_1-DNS, and hence, the HA-provability depends on the choice of the repre-
sentatives for the vertices. For instance, we can replace X}-LEM with 11}-LEM
by Proposition 4.8. Then II}-LEM — II;-DML is provable in HA while
II;-LEM — ¥;,-DML is so in HA + X, _;-DNS.

As already mentioned so far, several underivability results are proved in the
literature (cf. [1, 6, 8, 9, 16, 17]). In particular, Fujiwara et al. [9] recently intro-
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¥,-LEM

N

I,-LEM « - ___
5,-DNE (I VII,)-DNE «- - £}-LEM
AprLEM «-__  I,-DML 5,-DML

~

[

(Ak V Ak)—DNE <~ AE—LEM

[

AMDML « - - - A,-DML

Spo1-LEM e--
;_,-LEM
Sr_1-DNE  (II;_; VII,_;)-DNE ¥ -LEM

——— : Implication in HA + ¥;_1-DNS
————— > : Implication in HA 4+ ¥, _1-DNE

Figure 3: A refined arithmetical hierarchy of classical principles

duced a fairy useful method to separate X;, variants of the logical principles. All
the underivability results in [1] obtained by using several kinds of functional in-
terpretations can be proven uniformly in the methodology (see [9, Example 10]).
Furthermore, as in [6, Section 4], one can also prove X;_1-LEM + A}-DML,
Yr—1-LEM+AZ-DML 4 Aj-DML and Xj_;-LEM+A,-DML /4 Ap-LEM
by this method. However, the separations of the principles which are equivalent
only in the presence of ¥;_1-DNE (or even Xj_1-DNS) are extremely delicate.
One needs further effort for such separations.

In Section 5, we investigated the principles which are closely related to the
induction principle such as the contrapositive collection principle and the least
number principle over HA, which contains the full induction scheme, in order
to examine the logical strength of them. Then we found that II;-COLL®P,
II;-LN and ¥;-LN are equivalent to X;-DML + ¥;_;-DNE, II;-LEM and
Y-LEM over HA, respectively (see Theorem 5.20 and Corollary 5.23). On the
other hand, it is interesting to analyze the relationship between these principles
and the induction principle over intuitionistic arithmetic only with restricted
induction scheme.
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Implications

\ Verifying theories \ cf.

Se-LEM — 1I,-LEM HA Fact 2.3.(1)
S:-LEM — %,-DNE HA Fact 2.3.(1)
I,-LEM — (II, VII,)-DNE | HA Fact 2.3.(2)

11,-LEM — >;-LEM

HA + X,_1-DNS

Propositions 4.7.(1) and 4.8

S2LEM — 1I,-LEM

HA +3;_1-DNE

Corollary 4.9

5-DNE — A,-LEM HA Fact 2.3.(4)

>r-DNE — II;,-DML HA Proposition 5.12

(I, VII;) DNE — A, LEM | HA Fact 2.3.(3)

(11 v II;)-DNE — II;,-DML HA Corollary 7.6 and Proposition 5.21
(IIx v IIx)-DNE — ¥;-DML HA Corollary 7.6

>,-DML — (11, v 1I,)-DNE

HA + %, ,-DNE

Corollary 7.6

Y3-LEM — II,-DML

HA 4+ £;,_1-DNS

Proposition 4.8 and Corollary 5.4.(1)

¥3-LEM — X,-DML

HA

Corollary 5.4.(1)

Ap-LEM — (Ak \Y Ak)—DNE

HA

Corollary 6.4

A-LEM — ALLEM

HA

Proposition 4.7.(2)

A"-LEM — A,-LEM

HA 4 X;_1-DNE

Proposition 4.7.(2)

II,-DML — A’-LEM

HA + %, ,-DNS

Corollary 5.11.(1)

Yi,-DML — Aj-LEM

HA 4+ X5, _1-DNS

Corollary 5.11.(1)

(Ak V Ak)—DNE — Yr_1-LEM

HA

Proposition 6.5

(A, V A,)-DNE — Al-DML

HA

Corollary 6.3.(

HA +%,_-DNE

AMLEM — AI-DMI,

HA

6)
Corollary 6.3.(6)
Corollary 5.4.(2)

AMLEM — A,-DML,

HA

Corollary 5.4.(2)

AMDML — %! | -LEM

HA + X, _o-DNS

Proposition 5.24.(2)

A,-DML — A™DML

HA + %, ,-DNE

Proposition 5.26

Ap-DML — ¥} _-LEM

HA 4 X5, _o-DNS

Proposition 5.24.(1)

>r LEM — %,_;-LEM

HA + %, ,-DNE

Corollary 4.10

Table 2: Implications in Figure 3
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We close this paper with a list of principles which we have investigated.

-LEM
[-LEM*
A,-LEM
A-LEMH=
Ap-LEM*H!
ALLEM
I-DNE
[-PEIRCE
I-DNS
-DML

(T, ©)-DML
A,-DML

AM-DML

(A, ©)-DML
[-DML*
(T',0)-DML*
A,-DML*

(A D)-DMLY (o & @) = ({0 A ) = ot Vyt)

(A, T)-DML (o 6 ¢) = (e AY) = (@) vV ot)
(T,0)-CD V(o Vi(z)) = ¢ VVr(x)

I"DUAL —p —

A-DUAL” (p & ¢) = (~p = o)

A-DUAL" (p &) = (¢ = ¢h)

I“-WDUAL ol o

I'-COLL®P Vwdy < zVz <we(y,z) = Jy <zVze(y, z)
I-LN Azp(x) — Jx(p(z) AVy < z-p(y))
Acknowledgement

V-
oVt
(pe9Y) =V
(p e ¥) = Vet
(p & ¥) =Vt
(p < ¥) = =V -y
P =@
((p—= 1) = p) = o
Vo ——p(z) = -~ Vap(z)
(e AY) = —p VY
(e AY) = —p V)
(@) AW oY)
= (2l A) = =p V1)
A =9
= (== A =1p) = == V =h)

(p < ¢')

(p @) = (e A) = =9V 1)
(e AY) = et vVt
(e Ah) = @t Vit
(@) AW Y)

= (~(p A ) = ot V)

(pel)

(pel)

((,0 € Xy and 1// € Hk)

(<p € X and w € Hk)

(QD c Ek and ’l/) S Hk)

((,0 (S Zk and 1ﬁ S Hk)
(pel)

(¢ € T and ¥ is any formula)
(p(z) €T)

(
(

¢, eT)
pel and ¢ € O©)

(@71/) S Zk? and <P/a¢/ S Hk)

(p,9 € ¥ and ¢, 9" € 1)
(p € X, ¢ €} and ¥ € O)
(p, €T)

(peT and ¥ € O)

(p,¥ € Xy and ¢', )" € IIy)
(p e Xk, ¢ €l and ¢ €T)

(p ey, ¢ €l and ¢ €T)
(pel, Y(x) € ©and = ¢ FV(p))
(pel)

(p € Ty and ¢ € I1)

(p € Ef and ¢ € IIy,)

(
(
(
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