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Refining the arithmetical hierarchy of classical

principles

Makoto Fujiwara*�and Taishi Kurahashi�§

Abstract

We refine the arithmetical hierarchy of various classical principles by
finely investigating the derivability relations between these principles over
Heyting arithmetic. We mainly investigate some restricted versions of the
law of excluded middle, de Morgan’s law, the double negation elimination,
the collection principle and the constant domain axiom.

1 Introduction

The interrelations between weak logical principles over intuitionistic arithmetic
have been studied extensively in these three decades (cf. [1, 6, 8, 10, 11, 14, 17]).
In particular, Akama et al. [1] systematically studied the structure of the law
of excluded middle LEM and the double negation elimination DNE restricted
to prenex formulas and some related principles over intuitionistic first-order
arithmetic HA. Interestingly, the derivability relation between them forms a
beautiful hierarchy as presented in Figure 1 (cf. [1, Figure 2]).
By the prenex normal form theorem, which is first presented in [1] and corrected
recently in [13], this arithmetical hierarchy covers LEM for arbitrary formulas.
In this sense, the infinite hierarchy in Figure 1 represents a gradual transition of
strength of semi-classical arithmetic from HA to the classical arithmetic PA =
HA+LEM. This hierarchy plays an important role in several aspects. First, it is
employed for the relativization of the relation between classical and intuitionistic
arithmetic into the context of semi-classical arithmetic. For example, PA is
Πk+2-conservative over HA+Σk-LEM for all natural numbers k (see [13, Section
6] and [2, 12]). In addition, for any theory T in-between HA and PA, the prenex
normal form theorem for the classes of formulas Uk′ (introduced in [1]) and
Πk′ holds in T for all k′ ≤ k, if and only if, T proves (Πk ∨Πk)-DNE (see [13,
Section 7]). Then the refinement of the hierarchy is also important for analyzing
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Figure 1: An arithmetical hierarchy of classical principles

the results on the relation between classical and intuitionistic arithmetic in
more detail. Secondly, the hierarchy is employed as a framework for a sort of
constructive reverse mathematics over HA (cf. [3, 4, 19]). For example, Ramsey’s
theorem for pairs and recursive assignments of 2 colors is located in the place
of (Π3 ∨Π3)-DNE (see [3]). Despite the fact that mathematical statements are
usually not in prenex normal form, many of them are shown to be equivalent to
some restricted logical principle in the arithmetical hierarchy (seemingly because
the prenex normal form theorem is partly available in semi-classical arithmetic
containing such logical principles). Then the refinement of the hierarchy makes
it possible to classify the logical strength of mathematical statements in finer
classes. After [1], in connection with the development of constructive reverse
mathematics [15] over intuitionistic second-order arithmetic, further fine-grained
analysis has been done for the principles with k = 1 in the hierarchy ([8, 11,
17]). More recently, some connection between those principles and some other
principles has been also found ([6, 10]). Then it should be expected to recast the
hierarchy in [1] based on these recent developments. The history of the research
of this line until [11] is summarized in [11, Section 2.1].

Motivated from them, we study the interrelations between various principles
from the previous research and the related principles comprehensively in the
context of HA. In particular, we investigate principles more finely and more
systematically than ever before. Such a fine-grained analysis reveals a more de-
tailed hierarchical structure which the logical principles have. In addition to the
principles dealt with in [1], we deal with de Morgan’s law DML, the (contrapos-
itive) collection principle COLLcp and the constant domain axiom CD system-
atically. Among many other things, we show that (Πk ∨ Πk)-DNE, Σk-DML
with respect to duals (which is Σk-LLPO in [1]), Σk-DML + Σk−1-DNE,
Πk-COLLcp and (Πk,Πk)-CD are pairwise equivalent over HA for all natural
numbers k greater than 0 (see Corollary 7.6).

The structure of the paper is as follows. In Section 3, we extract and inves-
tigate the principles concerning duals φ⊥ (which are prenex formulas classically
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equivalent to ¬φ) of prenex formulas φ. In Section 4, we investigate variants
of LEM. Section 5 is devoted to investigate several variations of DML. In
particular, LEM for negated formulas is shown to be a variation of DML. In
Section 6, we investigate variants of DNE. In particular, DML is shown to
be a variation of DNE. Finally, we investigate CD in Section 7. The results
established in this paper are summarized in Section 8, to which we refer the
reader who merely wants to consult the results.

2 Preliminaries

In this paper, we work within the framework of first-order intuitionistic arith-
metic with the logical connectives ∧,∨,→, ∃, ∀ and ⊥, where ¬φ is the abbre-
viation of φ → ⊥. We may assume that the language of first-order arithmetic
contains function symbols corresponding to all primitive recursive functions.
Heyting arithmetic HA is an intuitionistic theory in the language of first-order
arithmetic consisting of basic axioms for arithmetic, induction axiom scheme
and axioms corresponding to defining equations of primitive recursive func-
tions (see [16, Section 3.2]). Recall that φ → ¬¬φ, (φ → ψ) → (¬ψ → ¬φ),
¬¬(φ → ψ) ↔ (¬¬φ → ¬¬ψ), ¬¬¬φ → ¬φ and ∀x¬φ ↔ ¬∃xφ etc. are
intuitionistically derivable. For more information about the logical implications
over intuitionistic logic, we refer the reader to [20, Section 6.2].

Throughout this paper, we assume that k always denotes a natural number
k ≥ 0. We define the family {Σk,Πk : k ≥ 0} of sets of formulas inductively as
follows:

� Let Σ0 = Π0 be the set of all quantifier-free formulas;

� Σk+1 := {∃x1 · · · ∃xnφ | φ ∈ Πk, n ≥ 1 and x1, . . . , xn are variables};

� Πk+1 := {∀x1 · · · ∀xnφ | φ ∈ Σk, n ≥ 1 and x1, . . . , xn are variables}.

For convenience, we assume that Σm and Πm denote the empty set for any
negative integer m. We say that a formula is in prenex normal form if it is in
Σk or Πk for some k. Let FV(φ) denote the set of all free variables in φ. It is
known that every formula φ in Σk+1 (resp. Πk+1) is HA-equivalent to a formula
ψ in Σk+1 (resp. Πk+1) such that FV(φ) = FV(ψ) and ψ is of the form ∃xψ′

(resp. ∀xψ′) where ψ′ is Πk (resp. Σk).
Let Γ and Θ be sets of formulas. We define Γ ∨ Θ, Γn and Γdn to be the

sets {φ ∨ ψ | φ ∈ Γ and ψ ∈ Θ}, {¬φ | φ ∈ Γ} and {¬¬φ | φ ∈ Γ} of formulas,
respectively. We adopt a convention that we write Γ ⊆ Θ if for any formula
φ ∈ Γ, there exists a formula ψ ∈ Θ such that FV(φ) = FV(ψ) and HA proves
φ ↔ ψ. Then it is shown that Σk ⊆ Σk+1 ∩ Πk+1 and Πk ⊆ Σk+1 ∩ Πk+1

(cf. [13]).
We introduce several principles which give semi-classical arithmetic as fol-

lows:

Definition 2.1. Let Γ be any set of formulas.
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Γ-LEM φ ∨ ¬φ (φ ∈ Γ)
∆k-LEM (φ↔ ψ) → φ ∨ ¬φ (φ ∈ Σk and ψ ∈ Πk)
Γ-DNE ¬¬φ→ φ (φ ∈ Γ)

For each theory T and principle P , let T + P denote the theory obtained
from T by adding universal closures of all instances of P as axioms. Since HA
proves φ ∨ ¬φ → (¬¬φ → φ) for any formula φ, the following fact trivially
holds.

Fact 2.2. For any set Γ of formulas, HA+ Γ-LEM ⊢ Γ-DNE.

Nontrivial implications between the principles defined in Definition 2.1 are
investigated by Akama et al. [1]. The following fact is visualized in Figure 1 in
Section 1.

Fact 2.3 (Akama et al. [1]).

1. Σk-LEM and Πk-LEM+Σk-DNE are equivalent over HA;

2. HA+Πk-LEM ⊢ (Πk ∨Πk)-DNE;

3. HA+ (Πk ∨Πk)-DNE ⊢ ∆k-LEM;

4. HA+Σk-DNE ⊢ ∆k-LEM;

5. HA+∆k+1-LEM ⊢ Σk-LEM;

6. Σk-DNE and Πk+1-DNE are equivalent over HA.

In the present paper, we also deal with other important principles based on
such as the double negation shift, de Morgan’s law and the constant domain
axiom.

Definition 2.4. Let Γ and Θ be any sets of formulas.

Γ-DNS ∀x¬¬φ(x) → ¬¬∀xφ(x) (φ(x) ∈ Γ)
Γ-DML ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ (φ,ψ ∈ Γ)
(Γ,Θ)-CD ∀x(φ ∨ ψ(x)) → φ ∨ ∀xψ(x) (φ ∈ Γ, ψ(x) ∈ Θ and x /∈ FV(φ))

The principle Σk-DML is introduced in [3]. The principles defined in Defini-
tion 2.4 have mainly been investigated for k = 1 in the literature. For example,
Σ1-DML and Π1-DML correspond to the principle LLPO and disjunctive
Markov’s principle, respectively (see [14]). Also the principle ∆1-LEM cor-
responds to the principle (IIIa) in [8] and to the principle ∆a-LEM in [11].
Notice that [8, 10, 14] are studied in the context of second-order arithmetic. We
have the following results from the proofs of the corresponding results in these
papers.

Fact 2.5 (Ishihara [14, Proposition 1]).

1. HA+Σ1-DNE ⊢ Π1-DML;
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2. HA+Σ1-DML ⊢ Π1-DML.

Fact 2.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 2]). HA+Π1-DML ⊢
∆1-LEM.

Fact 2.7 (Fujiwara and Kawai [10, Proposition 4.2]). (Π1,Π1)-CD and Σ1-DML
are equivalent over HA.

In the following sections, we investigate those principles more finely than
ever before. In the process of the investigation, we also generalize the facts
stated above.

Concerning Γ-DNS, we easily obtain the following proposition.

Proposition 2.8.

1. HA+Σk-DNE ⊢ Σk-DNS;

2. Σk-DNS and Πk+1-DNS are equivalent over HA.

Proof. 1. Let φ be any Σk formula. Then HA + Σk-DNE ⊢ ∀x¬¬φ → ∀xφ.
We obtain HA+Σk-DNE ⊢ ∀x¬¬φ→ ¬¬∀xφ.

2. We prove HA + Σk-DNS ⊢ Πk+1-DNS. Let ∀yφ(x, y) be any Πk+1

formula where φ(x, y) ∈ Σk. Then HA ⊢ ∀x¬¬∀yφ(x, y) → ∀x∀y ¬¬φ(x, y).
Let (z)0 and (z)1 be primitive recursive inverse functions of a fixed pairing
function which calculate the first and the second components of z as a pair,
respectively. Then HA ⊢ ∀x¬¬∀yφ(x, y) → ∀z ¬¬φ((z)0, (z)1). By applying
Σk-DNS, we obtain HA + Σk-DNS ⊢ ∀x¬¬∀yφ(x, y) → ¬¬∀zφ((z)0, (z)1).
We conclude HA+Σk-DNS ⊢ ∀x¬¬∀yφ(x, y) → ¬¬∀x∀yφ(x, y).

A detailed investigation of the principle Σ1-DNS including Proposition 2.8.1
for k = 1 is in [11].

3 The dual principles

In [13], the following result is proved.

Fact 3.1 (Fujiwara and Kurahashi [13, Lemma 4.7]).

1. For any Σk formula φ, there exists a Πk formula φ′ such that HA +
Σk−1-DNE ⊢ ¬φ↔ φ′;

2. For any Πk formula φ, there exists a Σk formula φ′ such that HA +
Σk-DNE ⊢ ¬φ↔ φ′.

In this section, we investigate the dual principles and the weak dual principles
(see Definitions 3.2 and 3.10) motivated from Fact 3.1.
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3.1 The dual principles

First, we recall the notion of duals of formulas in prenex normal form, which is
defined in [1] informally.

Definition 3.2 (cf. [1]). For any formula φ in prenex normal form, we define
the dual φ⊥ of φ inductively as follows:

1. φ⊥ :≡ ¬φ if φ is quantifier-free;

2. (∀xφ(x))⊥ :≡ ∃xφ⊥(x);

3. (∃xφ(x))⊥ :≡ ∀xφ⊥(x).

The following proposition is a basic property of duals.

Proposition 3.3. Let φ be any formula in prenex normal form.

1. If φ is Σk (resp. Πk), then φ
⊥ is Πk (resp. Σk);

2. HA ⊢ φ⊥⊥ ↔ φ;

3. HA ⊢ φ⊥ → ¬φ;

4. HA ⊢ ¬(φ ∧ φ⊥).

Proof. 1. Trivial.
2. It is known that if φ is Σ0, then HA ⊢ ¬¬φ↔ φ. Then clause 2 is proved

by induction on the number of quantifiers contained in φ.
3. Notice that HA proves the formulas ∃x¬φ→ ¬∀xφ and ∀x¬φ→ ¬∃xφ.

Then clause 3 is also proved by induction on the number of quantifiers in φ.
4. This is because HA ⊢ φ ∧ φ⊥ → φ ∧ ¬φ by clause 3.

From Propositions 3.3.(1) and (2), we have that the mapping (·)⊥ is a bijec-
tion between Σk (resp. Πk) and Πk (resp. Σk) modulo HA-provable equivalence.

Remark 3.4. It is possible to extend the notion of duals in Definition 3.2 (from
[1]) to arbitrary formulas by the operation (·)d defined inductively as

1. φd :≡ ¬φ if φ is prime;

2. (φ ∧ ψ)d :≡ φd ∨ ψd;

3. (φ ∨ ψ)d :≡ φd ∧ ψd;

4. (φ→ ψ)d :≡ φ ∧ ψd;

5. (∀xφ(x))d :≡ ∃xφd(x);

6. (∃xφ(x))d :≡ ∀xφd(x).
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In fact, φd is HA-equivalent to ¬φ for quantifier-free φ, and hence, φd is HA-
equivalent to φ⊥ for prenex φ. On the one hand, clauses 3 and 4 in Proposition

3.3 hold for the operation (·)d. On the other hand, for clause 2, φ →
(
φd

)d
is not provable in HA for some (non-prenex) φ whereas the converse is always
provable in HA.

In contrast to Proposition 3.3.(3), the formula ¬φ → φ⊥ cannot be proved
in HA even for some prenex φ. For example, ¬Con(HA) → Con(HA)⊥ is not
provable in HA, where Con(HA) is a conventional Π1 consistency statement of
HA (cf. [18, Section 4]). Thus, we introduce the following principle.

Definition 3.5 (The dual principles). Let Γ be any set of formulas in prenex
normal form.

Γ-DUAL ¬φ→ φ⊥ (φ ∈ Γ)

The principle Σ1-DUAL is provable in HA.

Proposition 3.6. HA ⊢ Σ1-DUAL.

Proof. Let φ ≡ ∃xψ be any Σ1 formula where ψ is Σ0. Then φ
⊥ is ∀x¬ψ, and

hence ¬φ is equivalent to φ⊥ over HA.

Proposition 3.7. The following are equivalent over HA:

1. Σk+1-DUAL.

2. Πk-DUAL.

3. Σk-DNE.

Proof. It is trivial that HA + Σk+1-DUAL proves Πk-DUAL because Πk ⊆
Σk+1.

We prove HA + Πk-DUAL ⊢ Σk-DNE. Let φ be any Σk formula. By
Proposition 3.3.(3), we have HA ⊢ φ⊥ → ¬φ. Then HA ⊢ ¬¬φ → ¬φ⊥. Since
φ⊥ is Πk by Proposition 3.3.(1), HA + Πk-DUAL proves ¬φ⊥ → φ⊥⊥. By
Proposition 3.3.(2), we conclude HA+Πk-DUAL ⊢ ¬¬φ→ φ.

Finally, we prove HA + Σk-DNE ⊢ Σk+1-DUAL by induction on k. The
case k = 0 follows from Proposition 3.6. Suppose that the statement holds for
all k′ < k + 1, and we prove HA+Σk+1-DNE ⊢ Σk+2-DUAL.

Let ∃x∀yψ be any Σk+2 formula where ψ is Σk. Since HA+Σk-DNE proves
¬¬ψ → ψ, we have HA+Σk-DNE ⊢ ¬∃x∀yψ → ¬∃x∀y ¬¬ψ. Then,

HA+Σk-DNE ⊢ ¬∃x∀yψ → ∀x¬¬∃y ¬ψ.

By induction hypothesis, HA+Σk−1-DNE ⊢ ¬ψ → ψ⊥. Then,

HA+Σk-DNE ⊢ ¬∃x∀yψ → ∀x¬¬∃yψ⊥.

Since ∃yψ⊥ ≡ (∀yψ)⊥ is Σk+1,

HA+Σk+1-DNE ⊢ ¬∃x∀yψ → ∀x(∀yψ)⊥.

We conclude HA+Σk+1-DNE ⊢ ¬∃x∀yψ → (∃x∀yψ)⊥.
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From Propositions 3.3.(3) and 3.7, we obtain Fact 3.1.
We may introduce the following ∆k-variations of the dual principle.

Definition 3.8 (∆k dual principles).

∆k-DUALΣ (φ↔ ψ) → (¬φ→ φ⊥) (φ ∈ Σk and ψ ∈ Πk)

∆k-DUALΠ (φ↔ ψ) → (¬ψ → ψ⊥) (φ ∈ Σk and ψ ∈ Πk)

However, each of them is trivially equivalent to the corresponding original
dual principle.

Proposition 3.9.

1. ∆k-DUALΣ is equivalent to Σk-DUAL over HA;

2. ∆k-DUALΠ is equivalent to Πk-DUAL over HA.

Proof. 1. HA+Σk-DUAL obviously proves ∆k-DUALΣ. On the other hand,
let φ be any Σk formula. Then HA ⊢ ¬φ→ (φ↔ ⊥). Hence HA+∆k-DUALΣ

proves ¬φ→ (¬φ→ φ⊥). We conclude HA+∆k-DUALΣ ⊢ ¬φ→ φ⊥.
2 is proved in a similar way.

Thus it follows from Proposition 3.7 that ∆k-DUALΣ and ∆k-DUALΠ are
HA-equivalent to Σk−1-DNE and Σk-DNE, respectively. In fact, ∆1-DUALΠ

corresponds to the principle (VIb) in [8], and it is proved to be HA-equivalent
to Σ1-DNE (see [8, Proposition 1]).

3.2 The weak dual principles

In this subsection, we investigate weak variations of the dual principle, which
we call the weak dual principles.

Definition 3.10 (The weak dual principles). Let Γ be any set of formulas in
prenes normal form.

Γ-WDUAL ¬φ⊥ → ¬¬φ (φ ∈ Γ)

Of course Γ-DUAL implies Γ-WDUAL over HA. It is known that Σ1-DNE
is not provable in HA (cf. [1]), and so is Π1-DUAL by Proposition 3.7. On the
other hand, the following proposition shows that Π1-WDUAL is HA-provable.

Proposition 3.11.

1. HA ⊢ Σ1-WDUAL;

2. HA ⊢ Π1-WDUAL.

Proof. 1. This follows from Proposition 3.6.
2. Let ∀xφ be any Π1 formula where φ is Σ0. Since ¬(∀xφ)⊥ ≡ ¬∃x¬φ, we

have

HA ⊢ ¬(∀xφ)⊥ → ∀x¬¬φ,
→ ∀xφ, (because φ ∈ Σ0)

→ ¬¬∀xφ.
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Unlike the situation of the dual principles, we show that Σk+1-WDUAL
and Πk+1-WDUAL are equivalent over HA.

Proposition 3.12. The following are equivalent over HA:

1. Σk+1-WDUAL.

2. Πk+1-WDUAL.

3. Σk-DNS.

Proof. First, we prove HA + Σk+1-WDUAL ⊢ Σk-DNS. Let φ be any Σk

formula. Since ∃xφ⊥ is Σk+1,

HA+Σk+1-WDUAL ⊢ ¬(∃xφ⊥)⊥ → ¬¬∃xφ⊥.

By Propositions 3.3.(2) and 3.3.(3), HA+Σk+1-WDUAL ⊢ ¬∀xφ→ ¬¬∃x¬φ,
and thus HA+Σk+1-WDUAL proves ¬∃x¬φ→ ¬¬∀xφ. Then, we obtain

HA+Σk+1-WDUAL ⊢ ∀x¬¬φ→ ¬¬∀xφ.

Secondly, we prove HA + Πk+1-WDUAL ⊢ Σk-DNS. Let φ be any Σk

formula. By Proposition 3.3.(3), (∀xφ)⊥ ≡ ∃xφ⊥ implies ∃x¬φ in HA. Thus
HA ⊢ ¬∃x¬φ→ ¬(∀xφ)⊥. Since ∀xφ is Πk+1, we obtain

HA+Πk+1-WDUAL ⊢ ∀x¬¬φ→ ¬¬∀xφ.

Finally, we show that HA + Σk-DNS proves both Σk+1-WDUAL and
Πk+1-WDUAL by induction on k. The case k = 0 follows from Proposition
3.11. Suppose that the statement holds for k, and we prove

(i) HA+Σk+1-DNS ⊢ Σk+2-WDUAL; and

(ii) HA+Σk+1-DNS ⊢ Πk+2-WDUAL.

(i): Let ∃xφ be any Σk+2 formula where φ is Πk+1. By induction hypothesis,

HA+Σk-DNS ⊢ ¬φ⊥ → ¬¬φ.

Then, HA + Σk-DNS proves the formula ¬φ → ¬¬φ⊥, and hence it proves
∀x¬φ→ ∀x¬¬φ⊥. Since φ⊥ is Σk+1, by applying Σk+1-DNS, we obtain

HA+Σk+1-DNS ⊢ ∀x¬φ→ ¬¬∀xφ⊥.

Then HA+Σk+1-DNS ⊢ ¬∀xφ⊥ → ¬∀x¬φ. Therefore we conclude

HA+Σk+1-DNS ⊢ ¬(∃xφ)⊥ → ¬¬∃xφ.

(ii): Let ∀xφ be any Πk+2 formula where φ is Σk+1. Since ¬(∀xφ)⊥ ≡
¬∃xφ⊥ implies ∀x¬φ⊥ in HA, by induction hypothesis, we obtain

HA+Σk-DNS ⊢ ¬(∀xφ)⊥ → ∀x¬¬φ.

Since φ is Σk+1, we conclude

HA+Σk+1-DNS ⊢ ¬(∀xφ)⊥ → ¬¬∀xφ.
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As in the case of the dual principles, we can introduce the ∆k-variations of
the weak dual principle, namely, ∆k-WDUALΣ and ∆k-WDUALΠ. Notice
that any instance of Γ-WDUAL is HA-equivalent to a formula of the form ¬φ→
¬¬φ⊥. Then, as in the proof of Proposition 3.9, it is shown that ∆k-WDUALΣ

and ∆k-WDUALΠ are equivalent to Σk-WDUAL and Πk-WDUAL over HA,
respectively. So they are also equivalent to Σk−1-DNS by Proposition 3.12.

4 The law of excluded middle

In this section, we investigate variations of the law of excluded middle. This
section consists of two subsections. First, we investigate the law of excluded
middle with respect to duals. Secondly, we investigate the law of excluded
middle for negated formulas.

4.1 The law of excluded middle with respect to duals

From the observations in Section 3, φ⊥ is stronger than ¬φ. Hence by replacing
¬φ in Γ-LEM with φ⊥, we can expect to get a stronger principle. As an example
of an application of the investigations in Section 3, in this subsection, we study
this kind of variation of the law of excluded middle.

Definition 4.1 (The law of excluded middle with respect to duals). Let Γ be
any set of formulas in prenex normal form.

Γ-LEM⊥ φ ∨ φ⊥ (φ ∈ Γ)

∆k-LEM⊥,Σ (φ↔ ψ) → φ ∨ φ⊥ (φ ∈ Σk and ψ ∈ Πk)

∆k-LEM⊥,Π (φ↔ ψ) → ψ ∨ ψ⊥ (φ ∈ Σk and ψ ∈ Πk)

The principle ∆1-LEM⊥,Π corresponds to the principle (IIIb) in [8] and to
the principle ∆b-LEM in [11]. The following fact is already known.

Fact 4.2 (Fujiwara, Ishihara and Nemoto [8, Proposition 1]). The following are
equivalent over HA:

1. ∆1-LEM⊥,Π.

2. Σ1-DNE.

The following proposition shows interrelations between the laws of excluded
middle and their counterparts with respect to duals.

Proposition 4.3. Let Γ be any set of formulas in prenex normal form.

1. Γ-LEM⊥ is equivalent to Γ-LEM+ Γ-DUAL over HA;

2. HA+∆k-LEM⊥,Σ ⊢ ∆k-LEM;

3. HA+∆k-LEM⊥,Π ⊢ ∆k-LEM;

4. HA+∆k-LEM+Σk-DUAL ⊢ ∆k-LEM⊥,Σ;
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5. HA+∆k-LEM+Πk-DUAL ⊢ ∆k-LEM⊥,Π.

Proof. 1. By Proposition 3.3.(3), HA + Γ-LEM⊥ ⊢ Γ-LEM. Also HA +
Γ-LEM⊥ ⊢ Γ-DUAL is evident because HA proves φ ∨ φ⊥ → (¬φ → φ⊥).
On the other hand, HA+ Γ-LEM+ Γ-DUAL ⊢ Γ-LEM⊥ is easily obtained.

Clauses 2, 3, 4 and 5 are proved similarly.

From Proposition 4.3, we obtain the exact strengths of the principles defined
in Definition 4.1.

Proposition 4.4.

1. Σk-LEM⊥ is equivalent to Σk-LEM over HA;

2. Πk-LEM⊥ is equivalent to Σk-LEM over HA;

3. ∆k-LEM⊥,Σ is equivalent to ∆k-LEM over HA;

4. ∆k-LEM⊥,Π is equivalent to Σk-DNE over HA.

Proof. 1. By Proposition 4.3.(1), Σk-LEM⊥ is equivalent to Σk-LEM+Σk-DUAL.
Since HA+Σk-LEM proves Σk-DUAL by Fact 2.3 and Proposition 3.7, Σk-LEM⊥

is equivalent to Σk-LEM.
2. Since HA + Πk-LEM⊥ proves φ⊥ ∨ φ⊥⊥ for each Σk sentence φ, HA +

Πk-LEM⊥ ⊢ Σk-LEM⊥ follows from Proposition 3.3.(2). In a similar way, we
have HA+ Σk-LEM⊥ ⊢ Πk-LEM⊥. Hence by clause 1, Πk-LEM⊥ equivalent
to Σk-LEM over HA.

3. Since HA + ∆k-LEM ⊢ Σk−1-DNE, this is immediately obtained from
Propositions 3.7, 4.3.(2) and 4.3.(4).

4. Since HA + Σk-DNE proves ∆k-LEM and Πk-DUAL by Fact 2.3 and
Proposition 3.7, we obtain HA+Σk-DNE ⊢ ∆k-LEM⊥,Π by Proposition 4.3.(5).

On the other hand, we prove HA + ∆k-LEM⊥,Π ⊢ Σk-DNE. Let φ be
any Σk formula. Since ¬¬φ → ¬φ⊥ is HA-provable by Proposition 3.3.(3), we
obtain HA ⊢ ¬¬φ→ (φ⊥ ↔ ⊥). Since φ⊥ ∈ Πk and ⊥ ∈ Σk,

HA+∆k-LEM⊥,Π ⊢ ¬¬φ→ φ⊥ ∨ φ⊥⊥.

Since HA+∆k-LEM⊥,Π ⊢ ¬¬φ→ ¬φ∨φ by Proposition 3.3, we conclude that
HA+∆k-LEM⊥,Π proves ¬¬φ→ φ.

Proposition 4.4.(4) is a generalization of Fact 4.2.

4.2 The law of excluded middle for negated formulas

In this subsection, we investigate the law of excluded middle for negated formu-
las, which are investigated in [6, 8] for k = 1.

Definition 4.5 (The law of excluded middle for negated formulas). Let Γ be
any set of formulas.

11



Γn-LEM ¬φ ∨ ¬¬φ (φ ∈ Γ, in other words, ¬φ ∈ Γn)
∆n

k-LEM (φ↔ ψ) → ¬φ ∨ ¬¬φ (φ ∈ Σk and ψ ∈ Πk)

Although the definition of Γn-LEM is included in Definition 2.1, we defined
it individually to pay attention to its properties. The principle ∆n

1-LEM corre-
sponds to the principle (IVa) in [8] and ∆a-WLEM in [6]. The following fact
is already obtained.

Fact 4.6 (Fujiwara, Ishihara and Nemoto [8, Proposition 3]). The following are
equivalent over HA:

1. ∆n
1-LEM.

2. ∆1-LEM.

Obviously, Γn-LEM is weaker than Γ-LEM, and we obtain the following
proposition. Proposition 4.7.(2) is a generalization of Fact 4.6.

Proposition 4.7. Let Γ be any set of formulas.

1. Γn-LEM+ Γ-DNE is equivalent to Γ-LEM over HA;

2. ∆n
k-LEM+Σk−1-DNE is equivalent to ∆k-LEM over HA;

3. HA+Σn
k-LEM ⊢ ∆n

k-LEM;

4. HA+Πn
k-LEM ⊢ ∆n

k-LEM.

Proof. 1. This follows from Fact 2.2.
2. This is a consequence of Facts 2.2 and 2.3.
3 and 4 are obvious.

From Fact 2.3, Σk-LEM and Πk-LEM are equivalent modulo Σk-DNE.
We prove an analogous result concerning Σn

k-LEM and Πn
k-LEM.

Proposition 4.8. The following are equivalent over HA+Σk−1-DNS:

1. Σn
k-LEM.

2. Πn
k-LEM.

Proof. First, we show HA+ Σk−1-DNS+ Σn
k-LEM ⊢ Πn

k-LEM. Let φ be any
Πk formula. Since φ⊥ is Σk, we have

HA+Σn
k-LEM ⊢ ¬φ⊥ ∨ ¬¬φ⊥.

Then, HA+Σn
k-LEM ⊢ ¬φ⊥ ∨ ¬φ by Proposition 3.3.(3). Since Πk-WDUAL

is equivalent to Σk−1-DNS over HA by Proposition 3.12, we obtain

HA+Σk−1-DNS+Σn
k-LEM ⊢ ¬¬φ ∨ ¬φ.

In a similar way, it is proved that HA + Σk−1-DNS + Πn
k-LEM proves

Σn
k-LEM because Σk-WDUAL is also equivalent to Σk−1-DNS over HA by

Proposition 3.12.

12



From Fact 2.3.(6), Propositions 2.8.(1), 4.7 and 4.8, we obtain the following
corollaries.

Corollary 4.9. The following are equivalent over HA:

1. Πk-LEM.

2. Σn
k-LEM+Σk−1-DNE.

3. Πn
k-LEM+Σk−1-DNE.

Corollary 4.10. The following are equivalent over HA:

1. Σk-LEM.

2. Σn
k-LEM+Σk-DNE.

3. Πn
k-LEM+Σk-DNE.

5 De Morgan’s law

In this section, we extensively investigate principles based on de Morgan’s law.

Definition 5.1 (De Morgan’s law). Let Γ and Θ be any sets of formulas.

(Γ,Θ)-DML ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ (φ ∈ Γ and ψ ∈ Θ)
∆k-DML (φ↔ φ′) ∧ (ψ ↔ ψ′)

→ (¬(φ ∧ ψ) → ¬φ ∨ ¬ψ) (φ,ψ ∈ Σk and φ′, ψ′ ∈ Πk)
(∆k,Θ)-DML (φ↔ φ′) → (¬(φ ∧ ψ) → ¬φ ∨ ¬ψ) (φ ∈ Σk, φ

′ ∈ Πk and ψ ∈ Θ)

Several variations of ∆1-DML are extensively investigated in [6]. As in
the case of the law of excluded middle, we also deal with the principles of the
forms (Γn,Θ)-DML, (∆n

k,Θ)-DML, and so on. Of course, (Γ,Θ)-DML and
(Θ,Γ)-DML are equivalent.

This section consists of four subsections. First, we investigate several basic
implications between the principles. Secondly, we study the interrelationship
between de Morgan’s law and the contrapositive version of the collection prin-
ciple. Thirdly, ∆k and ∆n

k variants of de Morgan’s law are explored. Finally,
we investigate de Morgan’s law with respect to duals.

5.1 Basic implications

In this subsection, we organize several versions of de Morgan’s law. Some argu-
ments in this subsection for k = 1 can be found in [6]. The following proposition
is trivially obtained.

Proposition 5.2. Let Γ ∈ {Σk,Πk} and Θ be any set of formulas.

1. HA+ (Γ,Θ)-DML ⊢ (∆k,Θ)-DML;

2. HA+ (Γn,Θ)-DML ⊢ (∆n
k,Θ)-DML.
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We show that Γn-LEM and ∆n
k-LEM are stronger than several versions of

de Morgan’s law.

Proposition 5.3. Let Γ and Θ be any sets of formulas.

1. HA+ Γn-LEM ⊢ (Γ,Θ)-DML;

2. HA+ Γn-LEM ⊢ (Γn,Θ)-DML;

3. HA+∆n
k-LEM ⊢ (∆k,Θ)-DML;

4. HA+∆n
k-LEM ⊢ (∆n

k,Θ)-DML.

Proof. 1. Let φ ∈ Γ and ψ ∈ Θ. Since HA ⊢ ¬(φ ∧ ψ) → ¬(¬¬φ ∧ ψ), we get

HA ⊢ (¬φ ∨ ¬¬φ) → (¬(φ ∧ ψ) → ¬φ ∨ ¬ψ).

It follows that HA+ Γn-LEM proves (Γ,Θ)-DML.
2, 3 and 4 are proved as for clause 1.

Corollary 5.4.

1. For any set Γ of formulas, HA+Γn-LEM proves Γ-DML and Γn-DML;

2. HA+∆n
k-LEM proves ∆k-DML and ∆n

k-DML.

Conversely, we show that the principles Γn-LEM and ∆n
k-LEM are equiva-

lent to some variations of de Morgan’s law.

Proposition 5.5. For any set Γ of formulas, the following are equivalent over
HA:

1. Γn-LEM.

2. (Γ,Γn)-DML.

Proof. By Proposition 5.3, HA+Γn-LEM ⊢ (Γ,Γn)-DML. On the other hand,
let φ be any Γ formula. Since HA ⊢ ¬(φ∧¬φ), we obtain HA+(Γ,Γn)-DML ⊢
¬φ ∨ ¬¬φ.

Proposition 5.6. For Γ ∈ {Σk,Πk}, the following are equivalent over HA:

1. ∆n
k-LEM.

2. (∆k,Γ
n)-DML.

3. (∆n
k,Γ)-DML.

4. (∆k,∆
n
k)-DML.

Proof. By Proposition 5.3, ∆n
k-LEM entails (∆k,Γ

n)-DML and (∆n
k,Γ)-DML.

By Proposition 5.2, each of (∆k,Γ
n)-DML and (∆n

k,Γ)-DML implies (∆k,∆
n
k)-DML.

On the other hand, we can show that HA+(∆k,∆
n
k)-DML proves ∆n

k-LEM as
in the proof of Proposition 5.5.
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Here we investigate several equivalences of some variations of de Morgan’s
law over the theory HA+Σk−1-DNS.

Proposition 5.7. Let Θ be any set of formulas.

1. (Σn
k,Θ)-DML is equivalent to (Πk,Θ)-DML over HA+Σk−1-DNS;

2. (Πn
k,Θ)-DML is equivalent to (Σk,Θ)-DML over HA+Σk−1-DNS.

Proof. Recall that each of Σk-WDUAL and Πk-WDUAL is HA-equivalent
to Σk−1-DNS (Proposition 3.12). Then for any φ ∈ Σk and ψ ∈ Πk, HA +
Σk−1-DNS proves ¬φ⊥ ↔ ¬¬φ and ¬ψ⊥ ↔ ¬¬ψ. Then clauses 1 and 2 follow
from this observation and the fact that HA proves ¬(ξ ∧ δ) ↔ ¬(¬¬ξ ∧ δ).

From Proposition 5.7, we obtain several equivalences over HA+Σk−1-DNS.

Corollary 5.8.

1. Σn
k-LEM, Πn

k-LEM, (Σk,Σ
n
k)-DML, (Πk,Π

n
k)-DML, (Σk,Πk)-DML and

(Σn
k,Π

n
k)-DML are equivalent over HA+Σk−1-DNS;

2. Σk-DML, (Σk,Π
n
k)-DML and Πn

k-DML are equivalent over HA+Σk−1-DNS;

3. Πk-DML, (Πk,Σ
n
k)-DML and Σn

k-DML are equivalent over HA+Σk−1-DNS;

4. For Γ ∈ {Σk,Πk,Σ
n
k,Π

n
k}, each of (∆k,Γ)-DML and (∆n

k,Γ)-DML is
equivalent to ∆n

k-LEM over HA+Σk−1-DNS.

Proof. 1. This is a consequence of Propositions 4.8, 5.5 and 5.7.
2 and 3 are immediate from Proposition 5.7.
4. The principles (∆k,Σk)-DML, (∆k,Πk)-DML, (∆n

k,Σ
n
k)-DML and

(∆n
k,Π

n
k)-DML are equivalent to (∆k,Π

n
k)-DML, (∆k,Σ

n
k)-DML, (∆n

k,Πk)-DML
and (∆n

k,Σk)-DML over HA+Σk−1-DNS, respectively. Then, by Proposition
5.6, each of them is equivalent to ∆n

k-LEM.

From Corollaries 4.9, 4.10, 5.8 and Proposition 5.5, we also obtain the fol-
lowing.

Corollary 5.9. Let P be one of (Σk,Σ
n
k)-DML, (Πk,Π

n
k)-DML, (Σk,Πk)-DML

and (Σn
k,Π

n
k)-DML.

1. P +Σk−1-DNE is equivalent to Πk-LEM over HA;

2. P +Σk-DNE is equivalent to Σk-LEM over HA.

The following corollary follows from Propositions 5.6, 4.7.(2) and Corollary
5.8.(4).

Corollary 5.10. Let Γ ∈ {Σk,Πk,Σ
n
k,Π

n
k}. Let P be one of the principles

(∆k,Γ)-DML, (∆n
k,Γ)-DML and (∆k,∆

n
k)-DML. Then P + Σk−1-DNE is

equivalent to ∆k-LEM over HA.
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We get the following corollary.

Corollary 5.11. Let Γ ∈ {Σk,Πk,Σ
n
k,Π

n
k}.

1. HA+ Γ-DML+Σk−1-DNS ⊢ ∆n
k-LEM;

2. HA+ Γ-DML+Σk−1-DNE ⊢ ∆k-LEM.

Proof. 1. Since Γ-DML implies (∆k,Γ)-DML by Proposition 5.2, the state-
ment immediately follows from Corollary 5.8.(4).

2. This follows from Corollary 5.10.

Corollary 5.11.(2) generalizes Fact 2.6. Also we generalize Fact 2.5.(1).

Proposition 5.12. HA+Σk-DNE ⊢ Πk-DML.

Proof. Since HA + Σk-DNE proves Σk−1-DNS, it is sufficient to show that
HA + Σk-DNE ⊢ Σn

k-DML by Corollary 5.8.(3). Let φ and ψ be any Σk

formulas. Since HA ⊢ ¬(¬φ ∧ ¬ψ) → ¬¬(φ ∨ ψ) and φ ∨ ψ is HA-equivalent to
some Σk formula, we obtain

HA+Σk-DNE ⊢ ¬(¬φ ∧ ¬ψ) → φ ∨ ψ.

Therefore
HA+Σk-DNE ⊢ ¬(¬φ ∧ ¬ψ) → ¬¬φ ∨ ¬¬ψ.

By combining Corollary 5.11.(2) and Proposition 5.12, we obtain a proof of
Fact 2.3.(4).

5.2 The collection principles and de Morgan’s law

In this subsection, we investigate the so-called collection principles. The follow-
ing proposition is stated in [5].

Proposition 5.13. For any formula φ(y, z),

HA ⊢ ∀y < x ∃z φ(y, z) → ∃w ∀y < x ∃z < wφ(y, z).

Proof. Let ψ(x) be the formula

∀y < x ∃z φ(y, z) → ∃w ∀y < x ∃z < wφ(y, z),

and this proposition is proved by applying the induction axiom for ψ(x).

We introduce the following contrapositive version of the collection principle.

Definition 5.14 (The contrapositive collection principles). Let Γ be any set of
formulas.

Γ-COLLcp ∀w ∃y < x ∀z < wφ(y, z) → ∃y < x ∀z φ(y, z) (φ(y, z) ∈ Γ)

Proposition 5.15. The following are equivalent over HA:
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1. Πk+1-COLLcp.

2. Σk-COLLcp.

Proof. By using a primitive recursive pairing function, it is easy to show that
for any Σk formula φ(y, z0, z1), HA+Σk-COLLcp proves

∀w ∃y < x ∀z0 < w ∀z1 < wφ(y, z0, z1) → ∃y < x ∀z0 ∀z1 φ(y, z0, z1). (1)

From this observation, the equivalence of Σk-COLLcp and Πk+1-COLLcp im-
mediately follows.

The following proposition extends [10, Corollary 4.5].

Proposition 5.16. HA+Σk+1-DML+Σk-DNE ⊢ Πk+1-COLLcp.

Proof. We simultaneously prove the following two statements by induction on
k:

(i) HA+Σk+1-DML+Σk-DNE ⊢ Πk+1-COLLcp;

(ii) For any Πk+1 formula φ(y), there exists a Πk+1 formula ψ(x) such that

HA+Σk+1-DML+Σk-DNE ⊢ ∃y < xφ(y) ↔ ψ(x).

We suppose that our statements hold for all k′ < k, and we prove (i) and
(ii).

(i): Prior to proving our statement, we show that for any Πk formula φ(y, z),

HA+Σk+1-DML+Σk−1-DNE ⊢ ¬∀y < x ∃z φ(y, z) → ∃y < x ∀z ¬φ(y, z),
(2)

which is a generalization of [10, Lemma 4.4].
Let ψ(x) be the formula

¬∀y < x ∃z φ(y, z) → ∃y < x ∀z ¬φ(y, z),

and we show that ∀xψ(x) is derivable by applying the induction axiom for ψ(x).
Since HA ⊢ ¬y < 0, we have HA ⊢ ∀y < 0 ∃z φ(y, z). Thus we obviously obtain
HA ⊢ ψ(0).

We prove induction step. We have

HA ⊢ ¬∀y ≤ x ∃z φ(y, z) → ¬(∀y < x ∃z φ(y, z) ∧ ∃z φ(x, z)).

By Proposition 5.13, the formula ∀y < x ∃z φ(y, z) is HA-equivalent to the
formula ∃w ∀y < x ∃z < wφ(y, z). If k = 0, the formula ∃z < wφ(y, z) is
HA-provably equivalent to some Π0 formula ρ(y, w). If k > 0, by induction
hypothesis (ii) for k − 1, the formula ∃z < wφ(y, z) is equivalent to some Πk

formula ρ(y, w) in HA+Σk-DML+Σk−1-DNE. Also ∃w ∀y < xρ(y, w) is HA-
equivalent to a Σk+1 formula. Thus ∀y < x ∃z φ(y, z) can be regarded as a Σk+1
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formula in HA+Σk-DML+Σk−1-DNE. Then HA+Σk+1-DML+Σk−1-DNE
proves

¬∀y ≤ x ∃z φ(y, z) → ¬∀y < x ∃z φ(y, z) ∨ ¬∃z φ(x, z).

Hence it also proves

ψ(x) ∧ ¬∀y ≤ x ∃z φ(y, z) → ∃y < x ∀z ¬φ(y, z) ∨ ∀z ¬φ(x, z).

It follows that the theory proves

ψ(x) ∧ ¬∀y ≤ x ∃z φ(y, z) → ∃y ≤ x ∀z ¬φ(y, z).

This means HA+Σk+1-DML+Σk−1-DNE ⊢ ψ(x) → ψ(x+1). We have proved
(2).

We prove HA + Σk+1-DML + Σk-DNE ⊢ Πk+1-COLLcp. It suffices to
prove Σk-COLLcp by Proposition 5.15. Let φ(y, z) be any Σk formula. By
Proposition 5.13 for the formula φ⊥(y, z), we have

HA ⊢ ¬∃w ∀y < x ∃z < wφ⊥(y, z) → ¬∀y < x ∃z φ⊥(y, z).

In the light of Proposition 3.3.(3), we obtain

HA ⊢ ∀w ∃y < x ∀z < wφ(y, z) → ¬∃w ∀y < x ∃z < wφ⊥(y, z).

Therefore

HA ⊢ ∀w ∃y < x ∀z < wφ(y, z) → ¬∀y < x ∃z φ⊥(y, z).

Since (φ(y, z))⊥ is Πk, from (2), we obtain that HA+Σk+1-DML+Σk−1-DNE
proves

∀w ∃y < x ∀z < wφ(y, z) → ∃y < x ∀z ¬φ⊥(y, z).

Since Σk-DNE proves Πk-DUAL, we conclude that HA+Σk+1-DML+Σk-DNE
proves

∀w ∃y < x ∀z < wφ(y, z) → ∃y < x ∀z φ(y, z)

by Proposition 3.3.(2). This completes the proof of (i).
(ii): Let ∀zφ(y, z) be any Πk+1 formula where φ(y, z) is Σk. Since φ

⊥(y, z)
is Πk, by induction hypothesis (ii) for k − 1, there exists a Πk formula ψ(y, w)
such that

HA+Σk-DML+Σk−1-DNE ⊢ ∃z < wφ⊥(y, z) ↔ ψ(y, w).

This is also the case for k = 0. Then

HA+Σk-DML+Σk−1-DNE ⊢ ∀z < w¬φ⊥(y, z) ↔ ¬ψ(y, w).

Since Σk-DNE implies Πk-DUAL, we obtain

HA+Σk-DML+Σk-DNE ⊢ ∀z < wφ(y, z) ↔ ψ⊥(y, w).
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By (i), we have that HA+Σk+1-DML+Σk-DNE proves

∃y < x ∀z φ(y, z) ↔ ∀w ∃y < x ∀z < wφ(y, z).

Therefore we obtain that HA+Σk+1-DML+Σk-DNE also proves

∃y < x ∀z φ(y, z) ↔ ∀w ∃y < xψ⊥(y, w).

This completes the proof of (ii).

Remark 5.17. By Proposition 5.15, Π0-COLLcp is equivalent to Π1-COLLcp

over HA. We will show in Proposition 5.22 that HA+Π1-COLLcp ⊢ Σ1-DML.
Therefore HA ⊬ Π0-COLLcp because it is known that HA ⊬ Σ1-DML (cf. [1]).
Thus the statement of Proposition 5.16 for k = −1 does not holds.

Corollary 5.18.

1. For any Πk formula φ(y), there exists a Πk formula ψ(x) such that

HA+Σk-DML+Σk−1-DNE ⊢ ∃y < xφ(y) ↔ ψ(x);

2. For any Σk formula φ(y), there exists a Σk formula ψ(x) such that

HA+Σk−1-DML+Σk−2-DNE ⊢ ∀y < xφ(y) ↔ ψ(x).

Proof. 1. For k = 0, this is trivial. For k > 0, the statement is already proved
in the proof of Proposition 5.16.

2. Since the statement obviously holds for k = 0, we may assume k > 0.
Let ∃zφ(y, z) be any Σk formula where φ(y, z) is Πk−1. By Proposition 5.13,
we have

HA ⊢ ∀y < x ∃z φ(y, z) ↔ ∃w ∀y < x ∃z < wφ(y, z).

By clause 1, there exists a Πk−1 formula ψ(y, w) such that

HA+Σk−1-DML+Σk−2-DNE ⊢ ∃z < wφ(y, z) ↔ ψ(y, w).

Hence

HA+Σk−1-DML+Σk−2-DNE ⊢ ∀y < x ∃z φ(y, z) ↔ ∃w ∀y < xψ(y, w).

Since ∃w ∀y < xψ(y, w) is obviously equivalent to a Σk formula, this completes
our proof of clause 2.

Corollary 5.18 is very useful for exploring principles containing bounded
quantifiers. For instance, it can be applied to the study of the least number
principle.

Definition 5.19 (The least number principle). Let Γ be a set of formulas.

Γ-LN ∃xφ(x) → ∃x(φ(x) ∧ ∀y < x¬φ(y)) (φ ∈ Γ)
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Theorem 5.20. Let Γ be either Σk or Πk. Then Γ-LN and Γ-LEM are equiv-
alent over HA.

Proof. First, we prove HA+ Γ-LN ⊢ Γ-LEM. Let φ be any Γ formula and let
ψ(x) be a Γ formula HA-equivalent to φ∨ 0 < x, where x does not occur freely
in φ. Notice that 0 < x ∧ ∀y < x¬ψ(y) implies ¬ψ(0) which implies ¬φ. Hence
we have

HA ⊢ (φ ∨ 0 < x) ∧ ∀y < x¬ψ(y) → φ ∨ ¬φ,

and thus
HA ⊢ ∃x(ψ(x) ∧ ∀y < x¬ψ(y)) → φ ∨ ¬φ.

Since HA ⊢ ∃xψ(x), we have HA+Γ-LN ⊢ ∃x(ψ(x)∧∀y < x¬ψ(y)). Therefore
we obtain HA+ Γ-LN ⊢ φ ∨ ¬φ.

Secondly, we prove HA+Πk-LEM ⊢ Πk-LN. A proof for HA+Σk-LEM ⊢
Σk-LN is similar. Let φ(x) be any Πk formula, and let ψ(z) be the formula

∃x < z φ(x) → ∃x < z (φ(x) ∧ ∀y < x¬φ(y)).

We prove HA + Πk-LEM ⊢ ∀zψ(z) by applying the induction axiom for ψ(z).
Since HA ⊢ ¬∃x < 0φ(x), we obtain HA ⊢ ψ(0).

We prove induction step. Notice HA+Πk-LEM proves Σk-DML+Σk−1-DNE
by Corollary 4.9 and Proposition 5.3.(1). Thus by Corollary 5.18.(1), the for-
mula ∃x < z φ(x) is equivalent to some Πk formula in HA+Πk-LEM. Therefore

HA+Πk-LEM ⊢ ∃x < z φ(x) ∨ ¬∃x < z φ(x). (3)

Since HA ⊢ ∃x ≤ z φ(x) ↔ (∃x < z φ(x) ∨ φ(z)), we obtain

HA ⊢ ∃x ≤ z φ(x) ∧ ¬∃x < z φ(x) → φ(z) ∧ ∀x < z ¬φ(x),

and hence

HA ⊢ ∃x ≤ z φ(x) ∧ ¬∃x < z φ(x) → ∃x ≤ z (φ(x) ∧ ∀y < x¬φ(y)).

On the other hand, we obviously obtain

HA ⊢ ψ(z) ∧ ∃x < z φ(x) → ∃x ≤ z (φ(x) ∧ ∀y < x¬φ(y)).

Then by (3), we have

HA+Πk-LEM ⊢ ψ(z) ∧ ∃x ≤ z φ(x) → ∃x ≤ z (φ(x) ∧ ∀y < x¬φ(y)).

It follows HA+Πk-LEM ⊢ ψ(z) → ψ(z+1). We have completed our proof.

By using Corollary 5.18 and Theorem 5.20, we are able to generalize Fact
2.5.(2). The proof is similar to that of the implication 2 ⇒ 1 of [8, Proposition
2].

Proposition 5.21. HA+Σk-DML+Σk−1-DNE ⊢ Πk-DML.
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Proof. Wemay assume k > 0. Let ∀xφ(x) and ∀yψ(y) be any Πk formulas where
φ(x) and ψ(y) are Σk−1. We define the formulas ξ(x) and η(y) as follows:

� ξ(x) :≡ ∀z < x(φ(z) ∧ ψ(z)) ∧ φ⊥(x);

� η(y) :≡ ∀z < y(φ(z) ∧ ψ(z)) ∧ ψ⊥(y) ∧ φ(y).

Since φ(z) ∧ ψ(z) is HA-equivalent to a Σk−1 formula, by Corollary 5.18.(2),
∀z < x(φ(z)∧ψ(z)) is equivalent to some Σk−1 formula in HA+Σk−2-DML+
Σk−3-DNE. Thus the formula ∃xξ(x) is equivalent to a Σk formula in the
theory. Similarly, ∃yη(y) is also equivalent to some Σk formula in the theory.

By the definitions of ξ(x) and η(y), we obtain

� HA ⊢ ξ(x) ∧ η(y) ∧ x ≤ y → φ⊥(x) ∧ φ(x), and

� HA ⊢ ξ(x) ∧ η(y) ∧ y < x→ ψ(y) ∧ ψ⊥(y).

Thus by Proposition 3.3.(4) and HA ⊢ x ≤ y ∨ y < x, we have that HA proves
¬(∃xξ(x) ∧ ∃yη(y)). Then from the above observations, we obtain

HA+Σk-DML+Σk−3-DNE ⊢ ¬∃xξ(x) ∨ ¬∃yη(y). (4)

Note that HA+Σk-DML+Σk−1-DNE proves Σk−1-DUAL, Πk−1-DUAL
and Πk−1-LEM. Then HA+Σk-DML+Σk−1-DNE proves

∃x¬φ(x) → ∃xφ⊥(x), (by Σk−1-DUAL)

→ ∃x[φ⊥(x) ∧ ∀z < x¬φ⊥(z)], (by Πk−1-LEM and Theorem 5.20)

→ ∃x[φ⊥(x) ∧ ∀z < xφ(z)].
(by Πk−1-DUAL and Proposition 3.3.(2))

Hence, by the definition of the formula ξ(x), we have

HA+Σk-DML+Σk−1-DNE ⊢ ∃x¬φ(x) ∧ ∀yψ(y) → ∃xξ(x).

Since HA ⊢ ¬∃x¬φ(x) → ∀x¬¬φ(x) and HA+Σk−1-DNE implies Σk−1-DNS
by Proposition 2.8.(1), we obtain

HA+Σk-DML+Σk−1-DNE ⊢ ∀yψ(y) ∧ ¬∃xξ(x) → ¬¬∀xφ(x).

On the other hand,

HA ⊢ ¬(∀xφ(x) ∧ ∀yψ(y)) ∧ ∀yψ(y) → ¬∀xφ(x).

Therefore we obtain

HA+Σk-DML+Σk−1-DNE ⊢ ¬(∀xφ(x)∧∀yψ(y))∧¬∃xξ(x) → ¬∀yψ(y). (5)

In a similar way, we obtain

HA+Σk-DML+Σk−1-DNE ⊢ ¬(∀xφ(x)∧∀yψ(y))∧¬∃yη(y) → ¬∀xφ(x). (6)

By combining (4), (5) and (6), we conclude

HA+Σk-DML+Σk−1-DNE ⊢ ¬(∀xφ(x)∧∀yψ(y)) → ¬∀xφ(x)∨¬∀yψ(y).
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Finally, we prove that the converse of Proposition 5.16 also holds. This is
closely related to [5, Theorem 4.5].

Proposition 5.22. HA+Πk-COLLcp ⊢ Σk-DML+Σk−1-LEM.

Proof. We prove by induction on k. For k = 0, our statement obviously holds.
Suppose that the statement holds for k, and we prove the case of k + 1. We
prove the following two statements:

(i) HA+Πk+1-COLLcp ⊢ Σk-LEM;

(ii) HA+Πk+1-COLLcp ⊢ Σk+1-DML.

(i): Let ∃xφ be any Σk formula where φ is Πk−1. By induction hypothesis,
HA+Πk-COLLcp ⊢ Σk-DML+Σk−1-LEM. By Fact 2.3, HA+Πk-COLLcp

also proves Πk−1-LEM and Σk−1-DNE. It follows from Corollary 5.18.(1), we
have that ∃x < z φ is equivalent to some Πk−1 formula in HA + Πk-COLLcp.
Then by applying Πk−1-LEM, we obtain

HA+Πk-COLLcp ⊢ ∃x < z φ ∨ ¬∃x < z φ.

Then

HA+Πk-COLLcp ⊢ ∃w < 2 [(w = 0 → ∃x < z φ) ∧ (w = 1 → ¬∃x < z φ)].

Since HA+Πk-COLLcp proves Πk−1-DUAL, we obtain

HA+Πk-COLLcp ⊢ ∃w < 2 [(w = 0 → ∃x < z φ) ∧ (w = 1 → ∀x < z φ⊥)].

Hence

HA+Πk-COLLcp ⊢ ∀z ∃w < 2 ∀x < z [(w = 0 → ∃xφ) ∧ (w = 1 → φ⊥)].

Since (w = 0 → ∃xφ) ∧ (w = 1 → φ⊥) is equivalent to some Σk formula, by
Proposition 5.15,

HA+Πk+1-COLLcp ⊢ ∃w < 2 ∀x [(w = 0 → ∃xφ) ∧ (w = 1 → φ⊥)].

Then

HA+Πk+1-COLLcp ⊢ ∃w < 2 [(w = 0 → ∃xφ) ∧ (w = 1 → ∀xφ⊥)].

Thus we obtain HA + Πk+1-COLLcp ⊢ ∃xφ ∨ ¬∃xφ by Proposition 3.3.(3).
This means HA+Πk+1-COLLcp ⊢ Σk-LEM.

(ii): Let ∃xφ and ∃yψ be any Σk+1 formulas where φ and ψ are Πk. We
have HA ⊢ ¬(∃xφ ∧ ∃yψ) → ¬(∃x < z φ ∧ ∃y < z ψ). From (i), we have that
HA+Πk+1-COLLcp proves Σk-LEM. By Fact 2.3, Propositions 5.21 and 3.7,
the theory also proves Σk-DML, Σk-DNE, Πk-DML and Πk-DUAL. Then
by Corollary 5.18.(1), both ∃x < z φ and ∃y < z ψ are equivalent to some Πk
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formulas in HA+Πk+1-COLLcp. By applying Πk-DML, HA+Πk+1-COLLcp

proves

¬(∃xφ ∧ ∃yψ) → ¬∃x < z φ ∨ ¬∃y < z ψ,

→ ∃w < 2 [(w = 0 → ¬∃x < z φ) ∧ (w = 1 → ¬∃y < z ψ)],

→ ∃w < 2 [(w = 0 → ∀x < z φ⊥) ∧ (w = 1 → ∀y < z ψ⊥)],
(by Πk-DUAL)

→ ∃w < 2 ∀x < z ∀y < z [(w = 0 → φ⊥) ∧ (w = 1 → ψ⊥)].

Thus we have that HA+Πk+1-COLLcp proves

¬(∃xφ ∧ ∃yψ) → ∀z ∃w < 2 ∀x < z ∀y < z [(w = 0 → φ⊥) ∧ (w = 1 → ψ⊥)].

Then, in the light of (1), HA+Πk+1-COLLcp proves

¬(∃xφ ∧ ∃yψ) → ∃w < 2 ∀x ∀y [(w = 0 → φ⊥) ∧ (w = 1 → ψ⊥)],

→ ∃w < 2 [(w = 0 → ∀xφ⊥) ∧ (w = 1 → ∀yψ⊥)],

→ ∃w < 2 [(w = 0 → ¬∃xφ) ∧ (w = 1 → ¬∃yψ)],
(by Proposition 3.3.(3))

→ ¬∃xφ ∨ ¬∃yψ.

Therefore HA+Πk+1-COLLcp ⊢ Σk+1-DML.

From Propositions 5.16, 5.22 and Fact 2.3, we get the following corollary.

Corollary 5.23. The following are equivalent over HA:

1. Πk+1-COLLcp.

2. Σk+1-DML+Σk-LEM.

3. Σk+1-DML+Σk-DNE.

5.3 The principles ∆k-DML and ∆n
k-DML

In this subsection, we mainly investigate the principles ∆k-DML and ∆n
k-DML.

Proposition 5.24.

1. HA+∆k+1-DML+Σk−1-DNS ⊢ Σn
k-LEM;

2. HA+∆n
k+1-DML+Σk−1-DNS ⊢ Σn

k-LEM.

Proof. Let φ be any Σk formula.
1. By Proposition 3.3.(4), HA ⊢ ¬(φ∧φ⊥). Since both φ and φ⊥ are ∆k+1,

HA +∆k+1-DML ⊢ ¬φ ∨ ¬φ⊥. Then HA +∆k+1-DML + Σk−1-DNS proves
¬φ ∨ ¬¬φ by Proposition 3.12.

2. Since HA ⊢ ¬(¬φ ∧ ¬¬φ), HA + Σk−1-DNS ⊢ ¬(¬φ ∧ ¬φ⊥). Then
HA+∆n

k+1-DML+ Σk−1-DNS ⊢ ¬¬φ ∨ ¬¬φ⊥. We conclude that the theory
proves ¬φ ∨ ¬¬φ.
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From Corollaries 4.9, 4.10 and Proposition 5.24, we obtain the following.

Corollary 5.25. Let Γ ∈ {∆k+1,∆
n
k+1}.

1. HA+ Γ-DML+Σk−1-DNE ⊢ Πk-LEM;

2. HA+ Γ-DML+Σk-DNE ⊢ Σk-LEM.

Furthermore, we prove the following proposition by adapting the proofs of
Proposition 5.21 and [6, Lemma 2.14].

Proposition 5.26. HA+∆k-DML+Σk−1-DNE ⊢ ∆n
k-DML.

Proof. We may assume k > 0. Let ∃xφ(x) and ∃yψ(y) be any Σk formulas
where φ(x) and ψ(y) are Πk−1, and let φ′ and ψ′ be any Πk formulas. Let χ
denote the formula (∃xφ(x) ↔ φ′) ∧ (∃yψ(y) ↔ ψ′). We define the formulas
ξ(x) and η(y) as follows:

� ξ(x) :≡ ∀z < x(φ⊥(z) ∧ ψ⊥(z)) ∧ φ(x);

� η(y) :≡ ∀z < y(φ⊥(z) ∧ ψ⊥(z)) ∧ ψ(y) ∧ φ⊥(y).

As in the proof of Proposition 5.21, the formulas ∃xξ(x) and ∃yη(y) are equiv-
alent to some Σk formulas in the theory HA+Σk−2-DML+Σk−3-DNE which
is included in HA+Σk−1-DNE by Fact 2.3, Corollary 4.10 and Proposition 5.3.
Also

HA ⊢ ¬(∃xξ(x) ∧ ∃yη(y)). (7)

By Corollary 5.25.(1), HA + ∆k-DML + Σk−2-DNE proves Πk−1-LEM.
Since Σk−1-DNE implies Πk−1-DUAL, by Theorem 5.20, we obtain

HA+∆k-DML+Σk−1-DNE ⊢ ∃xφ(x) → ∃x[φ(x) ∧ ∀z < xφ⊥(z)]. (8)

In a similar way, we have

HA+∆k-DML+Σk−1-DNE ⊢ ∃y < xψ(y) → ∃y < x [ψ(y) ∧ ∀z < y ψ⊥(z)].

Then by the definition of η(y),

HA+∆k-DML+Σk−1-DNE ⊢ ∀z < xφ⊥(z) ∧ ∃z < xψ(z) → ∃yη(y).

From this with (8), HA+∆k-DML+Σk−1-DNE proves

∃xφ(x) ∧ ¬∃yη(y) → ∃x[φ(x) ∧ ∀z < xφ⊥(z) ∧ ∀z < xψ⊥(z)].

It follows that the theory proves ∃xφ(x) ∧ ¬∃yη(y) → ∃xξ(x). On the other
hand, HA proves ∃xξ(x) → ∃xφ(x) ∧ ¬∃yη(y) from (7). Therefore HA +
∆k-DML+Σk−1-DNE proves

χ→ [∃xξ(x) ↔ (φ′ ∧ ∀yη⊥(y))].

Also φ′ ∧ ∀yη⊥(y) is HA-provably equivalent to some Πk formula.
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In a similar way, we obtain that HA+∆k-DML+Σk−1-DNE proves

χ→ [∃yη(y) ↔ (ψ′ ∧ ∀xξ⊥(x))]

and ψ′ ∧ ∀xξ⊥(x) is HA-provably equivalent to some Πk formula.
Then by applying ∆k-DML to (7),

HA+∆k-DML+Σk−1-DNE ⊢ χ→ ¬∃xξ(x) ∨ ¬∃yη(y). (9)

From (8) and the definition of ξ(x),

HA+∆k-DML+Σk−1-DNE ⊢ ∃xφ(x) ∧ ∀yψ⊥(y) → ∃xξ(x).

Then

HA+∆k-DML+Σk−1-DNE ⊢ ¬∃xξ(x) ∧ ¬∃yψ(y) → ¬∃xφ(x).

Therefore we obtain

HA+∆k-DML+Σk−1-DNE ⊢ ¬(¬∃xφ(x)∧¬∃yψ(y))∧¬∃xξ(x) → ¬¬∃yψ(y).
(10)

In a similar way, we obtain

HA+∆k-DML+Σk−1-DNE ⊢ ¬(¬∃xφ(x)∧¬∃yψ(y))∧¬∃yη(y) → ¬¬∃xφ(x).
(11)

By combining (9), (10) and (11), we conclude that HA+∆k-DML+Σk−1-DNE
proves

χ→ [¬(¬∃xφ(x) ∧ ¬∃yψ(y)) → ¬¬∃xφ(x) ∨ ¬¬∃yψ(y)].

5.4 De Morgan’s law with respect to duals

In [1], principles based on de Morgan’s law with respect to duals are introduced.

Definition 5.27 (De Morgan’s law with respect to duals). Let Γ and Θ be any
sets of formulas in prenex normal form.

Γ-DML⊥ ¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥ (φ,ψ ∈ Γ)

(Γ,Θ)-DML⊥ ¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥ (φ ∈ Γ and ψ ∈ Θ)

∆k-DML⊥ (φ↔ φ′) ∧ (ψ ↔ ψ′)
→ (¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥) (φ,ψ ∈ Σk and φ′, ψ′ ∈ Πk)

(∆k,Γ)-DML⊥,Σ (φ↔ φ′) → (¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥) (φ ∈ Σk, φ
′ ∈ Πk and ψ ∈ Γ)

(∆k,Γ)-DML⊥,Π (φ↔ φ′) → (¬(φ ∧ ψ) → (φ′)⊥ ∨ ψ⊥) (φ ∈ Σk, φ
′ ∈ Πk and ψ ∈ Γ)

Our Σk-DML⊥ is called Σk-LLPO in [1]. As in the case of Γ-LEM⊥

(Proposition 4.3), we show that the principles defined in Definition 5.27 are
exactly de Morgan’s laws equipped with the dual principles.
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Proposition 5.28. Let Γ and Θ be any sets of formulas in prenex normal form.

1. (Γ,Θ)-DML⊥ is equivalent to (Γ,Θ)-DML+Γ-DUAL+Θ-DUAL over
HA;

2. (∆k,Θ)-DML⊥,Σ is equivalent to (∆k,Θ)-DML+Σk-DUAL+Θ-DUAL
over HA;

3. (∆k,Θ)-DML⊥,Π is equivalent to (∆k,Θ)-DML+Πk-DUAL+Θ-DUAL
over HA.

Proof. 1. By Proposition 3.3.(3), HA + (Γ,Θ)-DML⊥ ⊢ (Γ,Θ)-DML. Let
φ ∈ Γ. Since HA ⊢ ¬φ→ ¬(φ ∧ ¬⊥), we have that HA+ (Γ,Θ)-DML⊥ proves
the formula ¬φ→ φ⊥∨(¬⊥)⊥. Thus HA+(Γ,Θ)-DML⊥ ⊢ ¬φ→ φ⊥, and this
means that Γ-DUAL is provable. Similarly, Θ-DUAL is also provable. On the
other hand, (Γ,Θ)-DML⊥ is easily proved in HA+(Γ,Θ)-DML+Γ-DUAL+
Θ-DUAL.

2 and 3 are proved in a similar way.

Summarizing the results so far, we obtain the following corollary.

Corollary 5.29.

1. Σk-DML⊥ is equivalent to Σk-DML+Σk−1-DNE over HA;

2. (Σk,Πk)-DML⊥ is equivalent to Σk-LEM over HA;

3. (∆k,Σk)-DML⊥,Σ is equivalent to ∆k-LEM over HA;

4. ∆k-DML⊥ is equivalent to ∆k-DML+Σk−1-DNE over HA;

5. Each of the principles Πk-DML⊥, (∆k,Σk)-DML⊥,Π, (∆k,Πk)-DML⊥,Σ

and (∆k,Πk)-DML⊥,Π is equivalent to Σk-DNE over HA.

Proof. 1. This is a consequence of Propositions 3.7 and 5.28.(1).
2. By Propositions 3.7 and 5.28.(1), (Σk,Πk)-DML⊥ is HA-equivalent to

(Σk,Πk)-DML+Σk-DNE. Then it is also HA-equivalent to Σk-LEM by Corol-
lary 5.9.(2).

3. From Propositions 3.7 and 5.28.(2), (∆k,Σk)-DML⊥,Σ is HA-equivalent
to (∆k,Σk)-DML + Σk−1-DNE. Then it is HA-equivalent to ∆k-LEM by
Corollary 5.10.

4 is proved as in the proof of Proposition 5.28.
5. By Propositions 3.7 and 5.28.(1), Πk-DML⊥ is HA-equivalent to Πk-DML+

Σk-DNE. Since HA+Σk-DNE ⊢ Πk-DML by Proposition 5.12, Πk-DML⊥ is
HA-equivalent to Σk-DNE. Similarly, each of (∆k,Σk)-DML⊥,Π, (∆k,Πk)-DML⊥,Σ

and (∆k,Πk)-DML⊥,Π is HA-equivalent to Σk-DNE because each of them
implies Σk-DNE over HA by Proposition 5.28, and HA + Σk-DNE proves
(∆k,Σk)-DML and (∆k,Πk)-DML by Fact 2.3.(4) and Proposition 5.3.(3).

In [3, Theorem 14], it is proved that Σk-DML⊥ is equivalent to Σk-DML+
Σk−1-LEM over HA. This result follows from Corollaries 5.23 and 5.29.(1).
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6 The double negation elimination

In this section, we explore variations of the double negation elimination. As
in the previous sections, we deal with the principles of forms (Γn ∨ Θ)-DNE,
(∆k ∨ Θ)-DNE, and so on. As in the case of de Morgan’s law, (Γ ∨ Θ)-DNE
is obviously equivalent to (Θ ∨ Γ)-DNE. Interestingly, de Morgan’s law can be
seen as a variation of the double negation elimination.

Proposition 6.1. For any sets Γ and Θ of formulas, the following are equivalent
over HA:

1. (Γ,Θ)-DML.

2. (Γn ∨Θn)-DNE.

The analogous equivalences also hold for the versions of ∆k and ∆n
k.

Proof. Let φ ∈ Γ and ψ ∈ Θ. Since HA ⊢ ¬(φ∧ψ) ↔ ¬¬(¬φ∨¬ψ), HA proves

[¬(φ ∧ ψ) → ¬φ ∨ ¬ψ] ↔ [¬¬(¬φ ∨ ¬ψ) → ¬φ ∨ ¬ψ].

The last statement is also proved in a similar way.

We prove the following basic proposition concerning principles based on the
double negation elimination.

Proposition 6.2. Let Γ ∈ {Σk,Πk,∆k} and let Θ be any set of formulas.

1. HA+ (Γ ∨Θ)-DNE ⊢ Γ-DNE;

2. Suppose that for any φ ∈ Θ, there exists ψ ∈ Σk such that HA+Σk-DNE ⊢
φ↔ ψ. Then (Σk ∨Θ)-DNE is equivalent to Σk-DNE over HA;

3. (Σn
k ∨Θ)-DNE+Σk−1-DNE is equivalent to (Πk ∨Θ)-DNE over HA;

4. (Σn
k ∨ Γ)-DNE is equivalent to (Πk ∨ Γ)-DNE over HA;

5. (Πn
k ∨Θ)-DNE+Σk-DNE is equivalent to (Σk ∨Θ)-DNE over HA;

6. (Σdn
k ∨Θ)-DNE is equivalent to (Πn

k ∨Θ)-DNE over HA+Σk−1-DNS;

7. (Σdn
k ∨ Γ)-DNE is equivalent to (Πn

k ∨ Γ)-DNE over HA;

8. (Πdn
k ∨Θ)-DNE is equivalent to (Σn

k ∨Θ)-DNE over HA+Σk−1-DNS;

9. (Πdn
k ∨ Γ)-DNE is equivalent to (Πk ∨ Γ)-DNE over HA;

10. (∆dn
k ∨Θ)-DNE+Σk−1-DNE is equivalent to (∆k ∨Θ)-DNE over HA;

11. (∆dn
k ∨ Γ)-DNE is equivalent to (∆k ∨ Γ)-DNE over HA.

Also these statements hold even if Θ ∈ {∆n
k,∆

dn
k }.
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Proof. 1. This is because 0 = 0 ∈ Θ and for any φ ∈ Γ, φ∨0 = 0 is HA-provably
equivalent to φ.

2. From clause 1, HA+(Σk∨Θ)-DNE proves Σk-DNE. On the other hand,
let φ and ψ be any Σk formulas. Notice that φ∨ψ is HA-equivalent to ∃x((x =
0 → φ) ∧ (x = 1 → ψ)). Then it is shown that φ ∨ ψ is provably equivalent to
some Σk formula in HA (cf. [13, Lemma 4.4]). Therefore HA+Σk-DNE proves
(Σk ∨Θ)-DNE.

3. By Propositions 3.3.(3) and 3.7, for any φ ∈ Σk and ψ ∈ Πk, HA +
Σk−1-DNE proves ¬φ↔ φ⊥ and ¬ψ⊥ ↔ ψ. Thus the principles (Σn

k∨Θ)-DNE
and (Πk ∨ Θ)-DNE are equivalent over HA + Σk−1-DNE. Also by clause 1,
HA+ (Πk ∨Θ)-DNE proves Σk−1-DNE.

Clause 4 follows from clauses 1 and 3 because Γ-DNE entails Σk−1-DNE.
Clause 5 is proved in a similar way as in the proof of clause 3. Clause 6 is a
refinement of Proposition 5.7.(1) in the light of Proposition 6.1, and is proved
in a similar way. Clause 7 follows from clause 6 and the fact that HA+Γ-DNE
proves Σk−1-DNS. Clause 8 is a refinement of Proposition 5.7.(2). Clause
9 follows from clause 8 because HA + Γ-DNE proves Πk-DNE. Clause 10 is
proved in a similar way as in the proof of clause 3. Clause 11 follows from clause
10.

We have the following corollary which shows that Σk-LEM and Πk-LEM
are also variations of the double negation elimination. A part of Corollary 6.3.(4)
is stated in [1].

Corollary 6.3.

1. For Γ′ ∈ {Σk,∆k,Π
n
k,∆

n
k,Σ

dn
k ,∆dn

k }, (Σk ∨ Γ′)-DNE is equivalent to
Σk-DNE over HA;

2. Σk-LEM, (Σk ∨ Πk)-DNE, (Σk ∨ Σn
k)-DNE and (Σk ∨ Πdn

k )-DNE are
equivalent over HA;

3. Πk-LEM, (Πn
k∨Πk)-DNE and (Σdn

k ∨Πk)-DNE are equivalent over HA;

4. Σk-DML⊥, (Πk ∨Πk)-DNE, (Πk ∨Σn
k)-DNE and (Πk ∨Πdn

k )-DNE are
equivalent over HA;

5. Let Γ′ ∈ {Σk,Πk,∆k,Σ
n
k,Π

n
k} and Γ′′ ∈ {∆k,∆

n
k,∆

dn
k }. Then ∆k-LEM,

(∆k ∨ (Γ′)n)-DNE and (Γ′′ ∨Πk)-DNE are equivalent over HA;

6. (∆k ∨ ∆k)-DNE, (∆k ∨ ∆dn
k )-DNE and ∆n

k-DML + Σk−1-DNE are
equivalent over HA.

Proof. 1. This follows from Proposition 6.2.(2).
2. By Corollary 5.9.(2), Σk-LEM is equivalent to (Σn

k,Π
n
k)-DML+Σk-DNE.

By Proposition 6.1, it is equivalent to (Σdn
k ∨Πdn

k )-DNE+Σk-DNE. By Propo-
sitions 6.2.(5), 6.2.(7) and 6.2.(9), it is equivalent to (Σk ∨ Πk)-DNE. Also by
Propositions 6.2.(4) and 6.2.(9), each of (Σk ∨Σn

k)-DNE and (Σk ∨Πdn
k )-DNE

is equivalent to (Σk ∨Πk)-DNE.
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3. By Corollary 5.9.(1), Πk-LEM is equivalent to (Σn
k,Π

n
k)-DML+Σk−1-DNE,

and it is equivalent to (Σdn
k ∨Πdn

k )-DNE+Σk−1-DNE by Proposition 6.1. By
Propositions 6.2.(6) and 6.2.(9), it is equivalent to (Πn

k ∨Πk)-DNE. By Propo-
sition 6.2.(7), (Πn

k ∨Πk)-DNE is equivalent to (Σdn
k ∨Πk)-DNE.

4. By Corollary 5.29.(1), Σk-DML⊥ is equivalent to Σk-DML+Σk−1-DNE,
and this is equivalent to (Σn

k ∨Σn
k)-DNE+Σk−1-DNE. Then by Propositions

6.2.(3), it is equivalent to (Σn
k∨Πk)-DNE. It is equivalent to (Πk∨Πk)-DNE by

Proposition 6.2.(4), and hence, also to (Πk ∨Πdn
k )-DNE by Proposition 6.2.(9).

5. By Corollary 5.10, ∆k-LEM is equivalent to (∆n
k,Γ

′)-DML+Σk−1-DNE.
And it is equivalent to (∆dn

k ∨ (Γ′)n)-DNE+Σk−1-DNE. This is equivalent to
(∆k ∨ (Γ′)n)-DNE by Proposition 6.2.(10). Also each of (∆dn

k ∨Πk)-DNE and
(∆k ∨ Πk)-DNE is equivalent to (∆k ∨ Σn

k)-DNE by Propositions 6.2.(4) and
6.2.(10).

By Corollary 5.10, ∆k-LEM is equivalent to (∆k,Σk)-DML+Σk−1-DNE,
and it is equivalent to (∆n

k ∨ Σn
k)-DNE+ Σk−1-DNE. By Proposition 6.2.(3),

it is equivalent to (∆n
k ∨Πk)-DNE.

6. This is immediate from Propositions 6.1, 6.2.(10) and 6.2.(11).

Corollary 6.4. HA+∆k-LEM ⊢ (∆k ∨∆k)-DNE.

Proof. This is because HA+∆k-LEM ⊢ (∆k ∨Πk)-DNE by Corollary 6.3.(5).

In Akama et al. [1], it is shown that HA+∆k+1-LEM proves Σk-LEM. The
following proposition is a refinement of their result from Corollary 6.4.

Proposition 6.5. HA+ (∆k+1 ∨∆k+1)-DNE ⊢ Σk-LEM.

Proof. Let φ be any Σk formula. Since HA ⊢ ¬(¬φ∧¬¬φ), HA+Σk−1-DNS ⊢
¬(¬φ∧¬φ⊥) by Proposition 3.12. Then HA+Σk−1-DNS ⊢ ¬¬(φ∨φ⊥). Since
both φ and φ⊥ are ∆k+1 and HA + (∆k+1 ∨∆k+1)-DNE derives Σk−1-DNS,
HA + (∆k+1 ∨ ∆k+1)-DNE ⊢ φ ∨ φ⊥. Hence the theory proves φ ∨ ¬φ by
Proposition 3.3.(3).

Finally, we introduce the following principle based on Peirce’s law. We show
that Peirce’s law exactly corresponds to the double negation elimination.

Definition 6.6 (Peirce’s law). Let Γ be any set of formulas.

Γ-PEIRCE ((φ→ ψ) → φ) → φ (φ ∈ Γ and ψ is any formula)

Proposition 6.7. For any set Γ of formulas, Γ-PEIRCE is equivalent to
Γ-DNE over HA.

Proof. First, we prove HA + Γ-PEIRCE ⊢ Γ-DNE. Let φ ∈ Γ. Since ¬¬φ
is (φ → ⊥) → ⊥, HA ⊢ ¬¬φ → ((φ → ⊥) → φ). Thus HA + Γ-PEIRCE ⊢
¬¬φ→ φ.

Secondly, we prove HA + Γ-DNE ⊢ Γ-PEIRCE. Let φ be any Γ formula
and ψ be arbitrary formula. Since HA proves ¬φ → (φ → ψ), HA also proves
((φ → ψ) → φ) ∧ ¬φ → φ. Hence HA ⊢ ((φ → ψ) → φ) → ¬¬φ. We obtain
HA+ Γ-DNE ⊢ ((φ→ ψ) → φ) → φ.
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We get the table which summarizes principles equivalent to (Γ ∨ Θ)-DNE
over the theory HA + Σk−1-DNS. Notice that from Propositions 6.2.(6) and
6.2.(8), (Σdn

k ∨Θ)-DNE and (Πdn
k ∨Θ)-DNE are equivalent to (Πn

k ∨Θ)-DNE
and (Σn

k ∨ Θ)-DNE over HA + Σk−1-DNS, respectively. So Σdn
k and Πdn

k are
excluded from the table.

HHHHHΓ
Θ

Σk Πn
k Πk Σn

k

Σk Σk-DNE Σk-DNE Σk-LEM Σk-LEM
Πn

k Πk-DML Πk-LEM Σn
k-LEM

Πk Σk-DML⊥ Σk-DML⊥

Σn
k Σk-DML

HHHHHΓ
Θ

∆k ∆n
k ∆dn

k

Σk Σk-DNE Σk-DNE Σk-DNE
Πn

k ∆k-LEM ∆n
k-LEM ∆n

k-LEM
Πk ∆k-LEM ∆k-LEM ∆k-LEM
Σn

k ∆k-LEM ∆n
k-LEM ∆n

k-LEM
∆k (∆k ∨∆k)-DNE ∆k-LEM (∆k ∨∆k)-DNE
∆n

k ∆k-DML ∆n
k-LEM

∆dn
k ∆n

k-DML

Table 1: Principles equivalent to (Γ ∨Θ)-DNE over HA+Σk−1-DNS

7 The constant domain axiom

In this section, we investigate the principles of the form (Γ,Θ)-CD in Definition
2.4, and classify them in the arithmetical hierarchy of classical principles. Note
that (Γ,Θ)-CD is not equivalent to (Θ,Γ)-CD in general.

In first-order intuitionistic Kripke semantics, the constant domain axiom
corresponds to Kripke frames with constant domains (cf. [18, p. 328]). First
of all, we show that in our framework of first-order intuitionistic arithmetic,
the constant domain axiom is equivalent to the law of excluded middle despite
its semantic origin. Let LEM and CD denote the principles Fml-LEM and
(Fml,Fml)-CD respectively, where Fml is the set of all formulas.

Proposition 7.1. CD is equivalent to LEM over HA.

Proof. First, we prove HA +CD ⊢ φ ∨ ¬φ for any formula φ by induction on
the construction of φ. If φ is an atomic formula, then the statement is obvious.

Assume that HA + CD proves ψ ∨ ¬ψ and ρ ∨ ¬ρ, and suppose φ is one
of the forms ψ ∧ ρ, ψ ∨ ρ and ψ → ρ. Notice that ¬ψ ∨ ¬ρ → ¬(ψ ∧ ρ),
¬ψ ∧ ¬ρ→ ¬(ψ ∨ ρ), ¬ψ ∨ ρ→ (ψ → ρ) and ψ ∧ ¬ρ→ ¬(ψ → ρ) are provable
in HA. Therefore φ ∨ ¬φ is also provable in HA+CD.
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Assume that HA + CD proves ψ(x) ∨ ¬ψ(x). Then ∀x(∃xψ(x) ∨ ¬ψ(x))
and ∀x(ψ(x) ∨ ∃x¬ψ(x)) are also provable. By applying CD, we obtain that
HA+CD proves ∃xψ(x) ∨ ¬∃xψ(x) and ∀xψ(x) ∨ ¬∀xψ(x). Therefore, if φ is
of one of the forms ∃xψ(x) and ∀xψ(x), then φ ∨ ¬φ is provable in HA+CD.

Secondly, we prove HA+LEM ⊢ CD. Let φ and ψ(x) be any formulas with
x /∈ FV(φ). We have HA ⊢ ∀x(φ ∨ ψ(x)) ∧ ¬φ → ∀xψ(x). Since HA + LEM
proves φ ∨ ¬φ, we conclude that HA + LEM also proves ∀x(φ ∨ ψ(x)) → φ ∨
∀xψ(x).

Proposition 7.2.

1. (Γ,Πk+1)-CD is equivalent to (Γ,Σk)-CD over HA;

2. (Γ,Σn
k+1)-CD is equivalent to (Γ,Πn

k)-CD over HA.

Proof. These statements are proved by using a primitive recursive pairing func-
tion.

As in the proof of Proposition 7.1, we can show that Γ-LEM and ∆k-LEM
are sufficiently strong for the constant domain axiom.

Proposition 7.3. Let Γ and Θ be any sets of formulas.

1. HA+ Γ-LEM ⊢ (Γ,Θ)-CD;

2. HA+∆k-LEM ⊢ (∆k,Θ)-CD.

From the prenex normal form theorem proved in [1, Theorem 2.7] and [13,
Theorem 5.7], LEM is equivalent to

∪
{Σk-LEM | k ≥ 0} over HA. Therefore,

the following proposition can be regarded as a stratification of Proposition 7.1.

Proposition 7.4. Let Θ be a set of formulas such that Σk−1 ⊆ Θ. Then the
following are equivalent over HA:

1. (Σk,Θ)-CD.

2. Σk-LEM.

Proof. First, we prove HA+(Σk,Σk−1)-CD ⊢ Σk-LEM by induction on k. For
k = 0, the statement is trivial. Suppose that the statement holds for k, and we
prove HA + (Σk+1,Σk)-CD ⊢ Σk+1-LEM. Let ∃xφ(x) be any Σk+1 formula
with φ(x) ∈ Πk. By induction hypothesis and Fact 2.3, HA + (Σk,Σk−1)-CD
proves Πk-LEM + Σk-DNE. Thus HA + (Σk,Σk−1)-CD ⊢ φ(x) ∨ ¬φ(x). We
get HA+ (Σk,Σk−1)-CD ⊢ ∀x(∃xφ(x) ∨ φ⊥(x)) by using Πk-DUAL. Then

HA+ (Σk+1,Σk)-CD ⊢ ∃xφ(x) ∨ ∀xφ⊥(x).

This implies HA+ (Σk+1,Σk)-CD ⊢ ∃xφ(x) ∨ ¬∃xφ(x).
On the other hand, HA+ Σk-LEM ⊢ (Σk,Θ)-CD follows from Proposition

7.3.(1).
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Fact 2.7 states that (Π1,Π1)-CD is HA-equivalent to Σ1-DML. By Corol-
lary 5.29.(1), Σ1-DML is HA-equivalent to Σ1-DML⊥. So the following propo-
sition is a generalization of Fact 2.7.

Proposition 7.5. The following are equivalent over HA:

1. (Πk,Πk)-CD.

2. Σk-DML⊥.

Proof. First, we prove HA + Σk-DML⊥ ⊢ (Πk,Πk)-CD. Let φ,ψ(x) ∈ Πk

with x /∈ FV(φ). Since HA ⊢ ∀x(φ ∨ ψ(x)) ∧ ¬φ → ∀xψ(x), HA proves ∀x(φ ∨
ψ(x)) → ¬(¬φ ∧ ¬∀xψ(x)). By Proposition 3.3.(3), HA ⊢ ∀x(φ ∨ ψ(x)) →
¬(φ⊥ ∧ (∀xψ(x))⊥). Then we obtain

HA+Σk-DML⊥ ⊢ ∀x(φ ∨ ψ(x)) → φ⊥⊥ ∨ (∀xψ(x))⊥⊥.

By Proposition 3.3.(2), we conclude

HA+Σk-DML⊥ ⊢ ∀x(φ ∨ ψ(x)) → φ ∨ ∀xψ(x).

Secondly, we prove HA+(Πk,Πk)-CD ⊢ Σk-DML⊥. We may assume k > 0.
Let ∃xφ(x) and ∃yψ(y) be any Σk formulas where φ(x) and ψ(y) are Πk−1. Since
ψ(y) implies ∃yψ(y), we obtain

HA ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) ∧ ψ(y) → ¬∃xφ(x). (12)

Since HA+(Πk,Πk)-CD entails (Σk−1,Πk)-CD, we obtain that HA+(Πk,Πk)-CD
proves Πk−1-LEM+Σk−1-DNE by Proposition 7.4 and Fact 2.3. Hence HA+
(Πk,Πk)-CD ⊢ ψ(y) ∨ ¬ψ(y). From this with (12), we have

HA+ (Πk,Πk)-CD ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) → ∀y(¬∃xφ(x) ∨ ¬ψ(y)).

By using Σk-DUAL, we get

HA+ (Πk,Πk)-CD ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) → ∀y((∃xφ(x))⊥ ∨ ψ⊥(y)).

Since (∃xφ(x))⊥ ∈ Πk and ψ⊥(y) ∈ Σk−1, we obtain

HA+ (Πk,Πk)-CD ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) → (∃xφ(x))⊥ ∨ ∀yψ⊥(y).

Therefore

HA+ (Πk,Πk)-CD ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) → (∃xφ(x))⊥ ∨ (∃yψ(y))⊥.

From Corollaries 5.29.(1) and 6.3.(4) and Propositions 5.16, 5.22 and 7.5,
we have the following result.

Corollary 7.6. For k ≥ 1, the following are equivalent over HA:

1. Σk-DML+Σk−1-DNE.
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2. Σk-DML⊥.

3. (Πk,Πk)-CD.

4. Πk-COLLcp.

5. (Πk ∨Πk)-DNE.

Corollary 7.7. For k ≥ 1, each of Σk-DML⊥, (Πk,Πk)-CD, Πk-COLLcp

and (Πk ∨Πk)-DNE implies Πk-DML over HA.

Proof. This is immediate from Proposition 5.21 and Corollary 7.6.

Proposition 7.8. Let Θ be a set of formulas such that Σk−1 ⊆ Θ. Then the
following are equivalent over HA:

1. (∆k,Θ)-CD.

2. ∆k-LEM.

Proof. Notice that (∆k,Σk−1)-CD implies (Σk−1,Σk−1)-CD. Then by Propo-
sition 7.4 and Fact 2.3, HA+(∆k,Σk−1)-CD proves Πk−1-LEM+Σk−1-DNE.
Therefore the statement HA + (∆k,Σk−1)-CD ⊢ ∆k-LEM is proved as in the
proof of Proposition 7.4. On the other hand, HA + ∆k-LEM ⊢ (∆k,Θ)-CD
follows from Proposition 7.3.(2).

Next, we investigate the principles (Γn,Θ)-CD and (∆n
k,Θ)-CD. In the light

of Proposition 7.3, they are derived from Γn-LEM and ∆n
k-LEM, respectively.

In addition, for Θ = Σn
k, we obtain the following proposition.

Proposition 7.9. Let Γ be any set of formulas.

1. HA+ (Γ,Σk)-DML ⊢ (Γn,Σn
k)-CD;

2. HA+ (∆k,Σk)-DML ⊢ (∆n
k,Σ

n
k)-CD.

Proof. 1. By Proposition 7.2.(2), it suffices to show that HA + (Γ,Σk)-DML
proves (Γn,Πn

k−1)-CD. Let φ ∈ Γ and ψ(x) ∈ Πk−1 with x /∈ FV(φ). Then we
have

HA ⊢ ∀x(¬φ ∨ ¬ψ(x)) → ∀x¬(φ ∧ ψ(x)),
→ ¬∃x(φ ∧ ψ(x)),
→ ¬(φ ∧ ∃xψ(x)).

Thus
HA+ (Γ,Σk)-DML ⊢ ∀x(¬φ ∨ ¬ψ(x)) → ¬φ ∨ ¬∃xψ(x).

We conclude

HA+ (Γ,Σk)-DML ⊢ ∀x(¬φ ∨ ¬ψ(x)) → ¬φ ∨ ∀x¬ψ(x).

2 is proved similarly.
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With the help of Σk−2-DNS, the converse implications also hold.

Proposition 7.10.

1. HA+ (Πn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ (Σk,Πk)-DML;

2. HA+ (Σn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ Σk-DML;

3. HA+ (∆n
k,Σ

n
k)-CD+Σk−2-DNS ⊢ (∆k,Σk)-DML.

Proof. 1. We prove by induction on k ≥ 0. The statement for k = 0 is trivial.
We assume that our statement holds for k, and we prove HA+(Πn

k+1,Σ
n
k+1)-CD+

Σk−1-DNS ⊢ (Σk+1,Πk+1)-DML. Let ∃xφ(x) ∈ Σk+1 and ψ ∈ Πk+1 where
φ(x) ∈ Πk. We have

HA ⊢ ¬(∃xφ(x) ∧ ψ) → ¬∃x(φ(x) ∧ ψ),
→ ∀x¬(φ(x) ∧ ψ),
→ ∀x¬(¬¬φ(x) ∧ ¬¬ψ).

Then
HA ⊢ ¬(∃xφ(x) ∧ ψ) ∧ ¬¬φ(x) → ¬ψ. (13)

By induction hypothesis, HA+(Πn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ (Σk,Πk)-DML.

By Corollary 5.8.(1), HA+ (Πn
k,Σ

n
k)-CD+ Σk−1-DNS proves Πn

k-LEM. Thus
we have that HA + (Πn

k,Σ
n
k)-CD + Σk−1-DNS proves ¬¬φ(x) ∨ ¬φ(x). From

this with (13), we obtain

HA+ (Πn
k,Σ

n
k)-CD+Σk−1-DNS ⊢ ¬(∃xφ(x) ∧ ψ) → ∀x(¬ψ ∨ ¬φ(x)).

By applying (Πn
k+1,Σ

n
k+1)-CD, we have

HA+ (Πn
k+1,Σ

n
k+1)-CD+Σk−1-DNS ⊢ ¬(∃xφ(x) ∧ ψ) → ¬ψ ∨ ∀x¬φ(x).

We conclude

HA+ (Πn
k+1,Σ

n
k+1)-CD+Σk−1-DNS ⊢ ¬(∃xφ(x) ∧ ψ) → ¬∃xφ(x) ∨ ¬ψ.

2. We may assume k > 0. Let ∃xφ(x) and ∃yψ(y) be any Σk formulas with
φ(x), ψ(y) ∈ Πk−1.

HA ⊢ ¬(∃xφ(x) ∧ ∃yψ(y)) → ¬∃x∃y(φ(x) ∧ ψ(y)),
→ ∀x∀y ¬(φ(x) ∧ ψ(y)).

Since (Σn
k,Σ

n
k)-CD entails (Πn

k−1,Σ
n
k−1)-CD, by clause 1, we have that HA +

(Σn
k,Σ

n
k)-CD + Σk−3-DNS proves (Σk−1,Πk−1)-DML. Then by Corollary

5.8.(1), HA + (Σn
k,Σ

n
k)-CD + Σk−2-DNS proves Πn

k−1-LEM. By Proposition
5.3.(1), it also proves Πk−1-DML. Thus

HA+(Σn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ ¬(∃xφ(x)∧∃yψ(y)) → ∀x∀y(¬φ(x)∨¬ψ(y)).
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By applying (Σn
k,Σ

n
k)-CD twice, we obtain

HA+(Σn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ ¬(∃xφ(x)∧∃yψ(y)) → ∀x¬φ(x)∨∀y ¬ψ(y).

We conclude

HA+(Σn
k,Σ

n
k)-CD+Σk−2-DNS ⊢ ¬(∃xφ(x)∧∃yψ(y)) → ¬∃xφ(x)∨¬∃yψ(y).

3 is proved as in the proof of clause 2.

We obtain the following corollary.

Corollary 7.11. Let Θ be any set of formulas such that Πn
k−1 ⊆ Θ.

1. (Πn
k,Σ

n
k)-CD is equivalent to (Σk,Πk)-DML over HA+Σk−2-DNS;

2. (Πn
k,Θ)-CD is equivalent to Πn

k-LEM over HA+Σk−1-DNS;

3. (Σn
k,Σ

n
k)-CD is equivalent to Σk-DML over HA+Σk−2-DNS;

4. (∆n
k,Σ

n
k)-CD is equivalent to (∆k,Σk)-DML over HA+Σk−2-DNS;

5. (∆n
k,Θ)-CD is equivalent to ∆n

k-LEM over HA+Σk−1-DNS.

Proof. 1. This is immediate from Propositions 7.9.(1) and 7.10.(1).
2. From clause 1, Proposition 7.2 and Corollary 5.8.(1), we have that

HA + (Πn
k,Π

n
k−1)-CD + Σk−1-DNS proves Πn

k-LEM. On the other hand,
HA+Πn

k-LEM proves (Πn
k,Θ)-CD by Proposition 7.3.(1).

3. This is a consequence of Propositions 7.9.(1) and 7.10.(2).
4. Immediate from Propositions 7.9.(2) and 7.10.(3).
5. As in the proof of clause 2, we obtain the statement from clause 4,

Propositions 7.2, 7.3.(2) and Corollary 5.8.(4),

Problem 7.12.

� Is there a set Θ of formulas such that HA+(Πk,Θ)-CD proves Πk-LEM?

� Is there a set Θ of formulas such that HA + (Σn
k,Θ)-CD + Σk−1-DNS

proves Σn
k-LEM?

The following figure (Figure 2) summarizes the situation for implications
around the constant domain axioms for negated formulas. In [9, Example 10],
it is shown that HA+Σk-DML+Σk-DNE does not prove Σn

k-LEM for k ≥ 1.
Therefore, in Figure 2, Σk-DML does not imply Σn

k-LEM even in the theory
HA+Σk-DNE for k ≥ 1.
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(∆n
k,Σ

n
k)-CD

(Σn
k,Σ

n
k)-CD (Πn

k,Σ
n
k)-CD

(∆k,Σk)-DML

Σk-DML (Σk,Πk)-DML

∆n
k-LEM

Σn
k-LEM Πn

k-LEM

(Σn
k,Θ)-CD (Πn

k,Θ)-CD

Θ: A sufficiently large set of formulas

: Implication in HA+Σk−2-DNS

: Implication in HA+Σk−1-DNS

Figure 2: Implications around the constant domain axioms for negated formulas

8 Summary

As a summary, we illustrate the relationships between the principles we have
dealt with so far. However, the structure of such relationships is somewhat com-
plicated. As we have shown, some minor differences in some of the principles
are smoothed out in the theory HA + Σk−1-DNS. Therefore, by illustrating
the relationships between the principles in the theory HA + Σk−1-DNS, one
can grasp the structure in perspective. In fact, in the presence of Σ1-DNS (in
second-order arithmetic), a lot of equivalences in classical reverse mathemat-
ics can be established even intuitionistically (cf. [11, Proposition 1.1] and [7,
Theorem 2.10]).

Figure 3 summarizes the derivability relation between several principles over
HA + Σk−1-DNS with supplementary information about the situation over
Σk−1-DNE. In fact, except Σn

k-LEM → Πk-DML, Σk-DML → ∆n
k-LEM,

Πk-DML → ∆n
k-LEM, ∆k-DML → Σn

k−1-LEM and ∆n
k-DML → Σn

k−1-LEM,
all the (non-dashed) implications presented in Figure 3 are provable even in
HA. However, one should note that the principle located at each vertex is
one adequately selected from the equivalence class of principles modulo HA +
Σk−1-DNS, and hence, the HA-provability depends on the choice of the repre-
sentatives for the vertices. For instance, we can replace Σn

k-LEM with Πn
k-LEM

by Proposition 4.8. Then Πn
k-LEM → Πk-DML is provable in HA while

Πn
k-LEM → Σk-DML is so in HA+Σk−1-DNS.
As already mentioned so far, several underivability results are proved in the

literature (cf. [1, 6, 8, 9, 16, 17]). In particular, Fujiwara et al. [9] recently intro-
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Σk−1-DNE (Πk−1 ∨Πk−1)-DNE Σn
k−1-LEM

Πk−1-LEM

Σk−1-LEM

∆n
k-DML ∆k-DML

(∆k ∨∆k)-DNE ∆n
k-LEM

∆k-LEM Πk-DML Σk-DML

Σk-DNE (Πk ∨Πk)-DNE Σn
k-LEM

Πk-LEM

Σk-LEM

: Implication in HA+Σk−1-DNS

: Implication in HA+Σk−1-DNE

Figure 3: A refined arithmetical hierarchy of classical principles

duced a fairy useful method to separate Σk variants of the logical principles. All
the underivability results in [1] obtained by using several kinds of functional in-
terpretations can be proven uniformly in the methodology (see [9, Example 10]).
Furthermore, as in [6, Section 4], one can also prove Σk−1-LEM ̸→ ∆n

k-DML,
Σk−1-LEM+∆n

k-DML ̸→ ∆k-DML and Σk−1-LEM+∆k-DML ̸→ ∆k-LEM
by this method. However, the separations of the principles which are equivalent
only in the presence of Σk−1-DNE (or even Σk−1-DNS) are extremely delicate.
One needs further effort for such separations.

In Section 5, we investigated the principles which are closely related to the
induction principle such as the contrapositive collection principle and the least
number principle over HA, which contains the full induction scheme, in order
to examine the logical strength of them. Then we found that Πk-COLLcp,
Πk-LN and Σk-LN are equivalent to Σk-DML + Σk−1-DNE, Πk-LEM and
Σk-LEM over HA, respectively (see Theorem 5.20 and Corollary 5.23). On the
other hand, it is interesting to analyze the relationship between these principles
and the induction principle over intuitionistic arithmetic only with restricted
induction scheme.
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Implications Verifying theories cf.

Σk-LEM → Πk-LEM HA Fact 2.3.(1)
Σk-LEM → Σk-DNE HA Fact 2.3.(1)
Πk-LEM → (Πk ∨Πk)-DNE HA Fact 2.3.(2)
Πk-LEM → Σn

k-LEM HA+Σk−1-DNS Propositions 4.7.(1) and 4.8
Σn

k-LEM → Πk-LEM HA+Σk−1-DNE Corollary 4.9
Σk-DNE → ∆k-LEM HA Fact 2.3.(4)
Σk-DNE → Πk-DML HA Proposition 5.12
(Πk ∨Πk)-DNE → ∆k-LEM HA Fact 2.3.(3)
(Πk ∨Πk)-DNE → Πk-DML HA Corollary 7.6 and Proposition 5.21
(Πk ∨Πk)-DNE → Σk-DML HA Corollary 7.6
Σk-DML → (Πk ∨Πk)-DNE HA+Σk−1-DNE Corollary 7.6
Σn

k-LEM → Πk-DML HA+Σk−1-DNS Proposition 4.8 and Corollary 5.4.(1)
Σn

k-LEM → Σk-DML HA Corollary 5.4.(1)
∆k-LEM → (∆k ∨∆k)-DNE HA Corollary 6.4
∆k-LEM → ∆n

k-LEM HA Proposition 4.7.(2)
∆n

k-LEM → ∆k-LEM HA+Σk−1-DNE Proposition 4.7.(2)
Πk-DML → ∆n

k-LEM HA+Σk−1-DNS Corollary 5.11.(1)
Σk-DML → ∆n

k-LEM HA+Σk−1-DNS Corollary 5.11.(1)
(∆k ∨∆k)-DNE → Σk−1-LEM HA Proposition 6.5
(∆k ∨∆k)-DNE → ∆n

k-DML HA Corollary 6.3.(6)
∆n

k-DML → (∆k ∨∆k)-DNE HA+Σk−1-DNE Corollary 6.3.(6)
∆n

k-LEM → ∆n
k-DML HA Corollary 5.4.(2)

∆n
k-LEM → ∆k-DML HA Corollary 5.4.(2)

∆n
k-DML → Σn

k−1-LEM HA+Σk−2-DNS Proposition 5.24.(2)
∆k-DML → ∆n

k-DML HA+Σk−1-DNE Proposition 5.26
∆k-DML → Σn

k−1-LEM HA+Σk−2-DNS Proposition 5.24.(1)
Σn

k−1-LEM → Σk−1-LEM HA+Σk−1-DNE Corollary 4.10

Table 2: Implications in Figure 3
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We close this paper with a list of principles which we have investigated.

Γ-LEM φ ∨ ¬φ (φ ∈ Γ)

Γ-LEM⊥ φ ∨ φ⊥ (φ ∈ Γ)
∆k-LEM (φ↔ ψ) → φ ∨ ¬φ (φ ∈ Σk and ψ ∈ Πk)

∆k-LEM⊥,Σ (φ↔ ψ) → φ ∨ φ⊥ (φ ∈ Σk and ψ ∈ Πk)

∆k-LEM⊥,Π (φ↔ ψ) → ψ ∨ ψ⊥ (φ ∈ Σk and ψ ∈ Πk)
∆n

k-LEM (φ↔ ψ) → ¬φ ∨ ¬¬φ (φ ∈ Σk and ψ ∈ Πk)
Γ-DNE ¬¬φ→ φ (φ ∈ Γ)
Γ-PEIRCE ((φ→ ψ) → φ) → φ (φ ∈ Γ and ψ is any formula)
Γ-DNS ∀x¬¬φ(x) → ¬¬∀xφ(x) (φ(x) ∈ Γ)
Γ-DML ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ (φ,ψ ∈ Γ)
(Γ,Θ)-DML ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ (φ ∈ Γ and ψ ∈ Θ)
∆k-DML (φ↔ φ′) ∧ (ψ ↔ ψ′)

→ (¬(φ ∧ ψ) → ¬φ ∨ ¬ψ) (φ,ψ ∈ Σk and φ′, ψ′ ∈ Πk)
∆n

k-DML (φ↔ φ′) ∧ (ψ ↔ ψ′)
→ (¬(¬φ ∧ ¬ψ) → ¬¬φ ∨ ¬¬ψ) (φ,ψ ∈ Σk and φ′, ψ′ ∈ Πk)

(∆k,Θ)-DML (φ↔ φ′) → (¬(φ ∧ ψ) → ¬φ ∨ ¬ψ) (φ ∈ Σk, φ
′ ∈ Πk and ψ ∈ Θ)

Γ-DML⊥ ¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥ (φ,ψ ∈ Γ)

(Γ,Θ)-DML⊥ ¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥ (φ ∈ Γ and ψ ∈ Θ)

∆k-DML⊥ (φ↔ φ′) ∧ (ψ ↔ ψ′)
→ (¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥) (φ,ψ ∈ Σk and φ′, ψ′ ∈ Πk)

(∆k,Γ)-DML⊥,Σ (φ↔ φ′) → (¬(φ ∧ ψ) → φ⊥ ∨ ψ⊥) (φ ∈ Σk, φ
′ ∈ Πk and ψ ∈ Γ)

(∆k,Γ)-DML⊥,Π (φ↔ φ′) → (¬(φ ∧ ψ) → (φ′)⊥ ∨ ψ⊥) (φ ∈ Σk, φ
′ ∈ Πk and ψ ∈ Γ)

(Γ,Θ)-CD ∀x(φ ∨ ψ(x)) → φ ∨ ∀xψ(x) (φ ∈ Γ, ψ(x) ∈ Θ and x /∈ FV(φ))
Γ-DUAL ¬φ→ φ⊥ (φ ∈ Γ)

∆k-DUALΣ (φ↔ ψ) → (¬φ→ φ⊥) (φ ∈ Σk and ψ ∈ Πk)

∆k-DUALΠ (φ↔ ψ) → (¬ψ → ψ⊥) (φ ∈ Σk and ψ ∈ Πk)
Γ-WDUAL ¬φ⊥ → ¬¬φ (φ ∈ Γ)
Γ-COLLcp ∀w ∃y < x ∀z < wφ(y, z) → ∃y < x ∀z φ(y, z) (φ(y, z) ∈ Γ)
Γ-LN ∃xφ(x) → ∃x(φ(x) ∧ ∀y < x¬φ(y)) (φ ∈ Γ)
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