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Abstract: In modern nanophotonics, multipolar interference plays an indispensable role to
realize novel optical devices represented by metasurfaces with unprecedented functionalities.
Not only to engineer sub-wavelength structures that constitute such devices but also to realize and
interpret unnatural phenomena in nanophotonics, a program that efficiently carries out multipole
expansion is highly demanded. MENP is a MATLAB program for computation of multipole
contributions to light scattering from current density distributions induced in nanophotonic
resonators. The main purpose of MENP is to carry out post-processing of a rigid multipole
expansion for full-field simulations that in principle provide the information of all near- and
far-field interactions (e.g., as a total scattering cross section). MENP decomposes total scattering
cross sections into partial ones due to electric and magnetic dipolar and quadrupolar terms
based on recently developed exact multipole expansion formulas. We validate the program by
comparing results for ideal and realistic nanospheres with those obtained with the Mie theory.
We also demonstrate the potential of MENP for analysis of anapole states by calculating the
multipole expansion under the long-wavelength approximation, which enables us to introduce
toroidal dipole moments.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The emergence of all-dielectric nanophotonics as an alternative to plasmonics has opened up a
door toward the engineering of scattering behaviors by sub-wavelength nanophotonic resonators
with an unprecedented degree of freedom. [1–5] The operation of all-dielectric nanophotonics
relies on Mie resonances accompanied by light confinement within sub-wavelength nanostructures
made of high-refractive-index materials. One of the important features of the Mie resonance in
stark contrast to plasmonics is the possession of electric and magnetic dipole and higher-order
multipole resonances. [6–9] It has been proposed and demonstrated that engineering of these
modes can remarkably improve the performance of optical components including metasurfaces
with the help of the low-loss nature of all-dielectric Mie resonators. [10] The development of
all-dielectric nanophotonics could impact a wide range of fields, including optical elements [11],
detectors [12,13], light-sources [14,15], sensing [16], nanophotonic inks [17], and so on.

It has been demonstrated that multipolar interference between a series of resonant modes
leads to fascinating phenomena. [10] For example, Huygens sources, individual scatterers
which radiate light only into forward direction, can be realized with non-magnetic structures
by the far-field interference between electric and magnetic dipole scatterings. [18–22] Such
zero-backward-scattering occurs at the condition where the electric (p) and magnetic (m) dipole
moments have the same scattering amplitudes with in-phase (so-called the first Kerker condition:
p − m/c = 0, where c is the speed of light.). [21] The concept of the Kerker-type directionality
has been extended into almost zero-forward scattering (the anti-Kerker condition: p + m/c = 0)
and transverse scattering. [23] Another intriguing phenomenon is an anapole state which
exhibits no radiating field; the phenomenon is interpreted as a result of destructive interference
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between electric and toroidal dipole moments. [24] Note that several different interpretations
are possible for the anapole state. [25–28] The radiationless state is of importance in realizing
invisible photodetectors with minimum cross-talk between the other elements and to confine
electromagnetic energy inside subwavelength resonators. [28–33]

Because most of the fascinating phenomena in nanophotonics, including the above mentioned
Kerker condition and non-radiating anapole state, stem from multipolar interferences of scattered
fields between multiple optical resonances, an analysis based on multipole expansion is essential
for understanding and engineering optical properties of nanophotonic resonators. [34–36]
Although analytical electromagnetic calculation such as the Mie theory [37] naturally includes the
multipole analysis, no analytical expressions of optical responses are available for most structures
except for some simple ones such as a sphere. For the computation of electromagnetic responses
of complex structures, full-field simulation techniques based on finite-difference time-domain
(FDTD) method, finite-element method (FEM), boundary element method (BEM), discrete-dipole
approximation (DDA), and so on are thus utilized. In commercially available simulation software,
it is straightforward to obtain electric and magnetic field distributions and some typical quantities
such as total scattering and absorption cross sections. However, decomposition of the total
scattering into multipole contributions can be problematic because such analysis is not often
provided in public, requiring us more or less effort for coding of complex expressions. To this
end, a program that efficiently computes multipole expansion from the electric field distributions
is highly demanded.

In addition to the well-known formulation of multipole expansion found in textbooks of
electrodynamics, [38] some expressions have been developed for easier implementation in
designing optical resonators. [27,34–36] The formulations can be classified into several methods
depending on the basis (Spherical or Cartesian) and the approaches (scattered fields or induced
currents), and those based on induced current density distributions in the Cartesian coordinate
system is often adopted in nanophotonics applications. Up to now, an exact expression recently
derived by Alaee and coauthors is, in our opinion, one of the most straightforward formulations.
[35] Besides, the expression derived under the long-wavelength approximation is also commonly
utilized with the introduction of so-called toroidal moments which are higher-order terms of
electric moments. [27,39]

Inspired by the work by Alaee, et al. and substantial demands in the field, here we develop
an open-source MATLAB code that computes multipole expansion for nanophotonics (MENP).
MENP provides an efficient computation using matrix processing in MATLAB to treat four-
dimensional (4D) matrices of electric field distributions. This work consists of the following
sections. After summarizing the theoretical expressions implemented in MENP, we explain
the overview of the program. We then validate our implementation by computing the exact
multipole expansion for a lossless nanosphere with a combination of FDTD and MENP, followed
by a comparison to analytically obtained results. The procedure is also carried out for a silicon
nanosphere with complex refractive indices. Finally, we apply MENP to a silicon nanodisk to show
the existence of the anapole state based on the multipole expansion under the long-wavelength
approximation. Although the MENP has the best compatibility with FDTD solutions (Lumerical
Inc.) because of the authors’ simulation environment, it is a versatile program and is not limited
to the combination with FDTD. MENP will significantly contribute to nanophotonics fields by
providing physical insights into multipolar interferences in various structures.

2. Theory

First, we describe the exact expression of multipole expansion reported in [35]. As a starting
point, let us define a problem: a resonator in free space is illuminated by a plane wave with an
electric field amplitude |Einc | = E0 at the frequency f. The basis is a Cartesian coordinate system,
and a position vector can be defined as r = (x, y, z). When incident light excites the resonator, the
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induced current density distributions J(r) can be obtained from the electric field distributions
E(r) by

J(r) = −iωε0(n2 − 1)E(r) (1)

, where ω is the angular frequency, ε0 is the permittivity of free space, and n is the refractive
indices of the resonator. Note that J(r) corresponds to displacement current distributions in the
case of dielectric Mie resonators. The multipole moments, that is, electric dipole (p), magnetic
dipole (m), electric quadrupole (Q̂e), magnetic quadrupole (Q̂m), can be derived as [35]:

pα = − 1
iω

[︂∫
Jαj0(kr)d3r + k2

2

∫
{3(r · J)rα − r2Jα} j2(kr)

(kr)2
d3r

]︂
mα =

3
2

∫
(r × J)α j1(kr)

kr d3r

Q̂e
αβ = − 3

iω

[︂∫
{3(rβJα + rαJβ) − 2(r · J)δαβ} j1(kr)

kr d3r

+2k2
∫
{5rαrβ(r · J) − r2(rαJβ + rβJα)

−r2(r · J)δαβ} j3(kr)
(kr)3

d3r
]︂

Q̂m
αβ = 15

∫
{rα(r × J)β + rβ(r × J)α}

j2(kr)
(kr)2

d3r,

(2)

where α, β = x, y, z and k is the wavenumber. Note that jn(ρ) denotes the spherical Bessel function
defined by jn(ρ) =

√︁
π/2ρ Jn+1/2(ρ), where Jn(ρ) is the Bessel function of first kind.

Using the above derived multipole moments, we can now calculate a total scattering cross
section by [38]

Ctotal
sca =

k4

6πε2
0 |E0 |

[︄∑︂ (︃
|p|2 +

|︁|︁|︁mc |︁|︁|︁2)︃ + 1
120

∑︂ (︄
|Q̂e |

2
+

|︁|︁|︁|︁kQ̂m

c

|︁|︁|︁|︁2)︄ + . . .]︄ . (3)

As can be seen, the total scattering cross section is a simple sum of partial scattering cross
sections from different multipoles (i.e., Cp

sca, Cm
sca, CQ̂e

sca, C
Q̂m

sca ).
Next, we show the expression under the long-wavelength approximation. It is known that the

approximated expression can be derived by making an approximation to the spherical Bessel
functions. [27,35,39]. The multipole moments are expressed as:

pα ≈ − 1
iω

[︂∫
Jαd3r + k2

10

∫
{(r · J)rα − 2r2Jα}d3r

]︂
mα ≈ 1

2

∫
(r × J)αd3r

Q̂e
αβ ≈ − 1

iω
[︁∫

{3(rβJα + rαJβ) − 2(r · J)δαβ}d3r

+ k2

14

∫
{4rαrβ(r · J) − 5r2(rαJβ + rβJα)

+2r2(r · J)δαβ}d3r]

Q̂m
αβ ≈

∫
{rα(r × J)β + rβ(r × J)α}d3r.

(4)

The total scattering cross sections can be obtained in the same expression as Eq. (3).
Finally, we introduce toroidal moments to the multipole family. Because the higher-order term

of the electric dipole moment can be regarded as the toroidal dipole moment (T), the expression
can be rewritten as

pα ≈ − 1
iω

∫
Jαd3r

Tα ≈ 1
10c

∫
{(r · J)rα − 2r2Jα}d3r.

(5)
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The corresponding total scattering cross section is:

Ctotal
sca =

k4

6πε2
0 |E0 |

[︂∑︁ (︂
|p + ikT |2 +

|︁|︁m
c

|︁|︁2)︂
+ 1

120
∑︁ (︃

|Q̂e |
2
+

|︁|︁|︁ kQ̂m

c

|︁|︁|︁2)︃ + . . .]︃ .
(6)

Note that here we introduced only toroidal dipole, and a higher-order toroidal moment is included
in the electric quadrupole moment. It is also possible to treat the higher-order terms of the
electric quadrupole moment as a so-called toroidal quadrupole moment. From Eq. (6), the
anapole condition can be derived as p + ikT = 0.

3. Benchmark

3.1. Overview

In Fig. 1, we show the overview describing the calculation flow of MENP (see Code 1 [40])
to obtain scattering spectra decomposed into multipoles. First, the electric field distributions
in a resonator or resonators are simulated in an arbitrary program (Fig. 1(a)). Typically, the
simulation is carried out for a plane wave excitation with an amplitude of 1 V/m in air (i.e., with
a background refractive index of 1). The electric fields around the resonator should be recorded
at each point in a discretized simulation mesh in three-dimension (3D; x, y, z) in the frequency
domain (f ), leading three (Ex, Ey, Ez) 4D matrices of the field distributions (E(x, y, z, f )). To
obtain induced current distributions within the resonator, it is convenient to extract refractive
index distributions at the same mesh (n(x, y, z, f )) because the data outside the resonator vanishes
when n = 1 (see Eq. (1)). To pass the data together with arrays of coordinates (x, y, z, f ) to MENP,
they are saved all-in-one MATLAB .mat file named as ENxyzf.mat. For convenience, we
provide a Lumerical script EField2MAT.lsf, which exports the needed data from a project
file (.fsp) of FDTD Solutions, in /lumerical_script directory.

Once the electric field distributions are obtained, MENP carries out the post-processing of
multipole expansion. It is worth noting that MENP is designed for not loop-based but vectorized
calculations of the 4D matrices, providing a better appearance of the code and faster computing
in MATLAB. As shown in Fig. 1(b), MENP is constituted of two MATLAB functions. One is
E2J.m, which converts the electric field distributions to current density distributions based on
Eq. (1). The other (one of the following functions) calculates multipole moments (either exact or
approximated ones) and partial and total scattering cross sections:

• exactME.m: Exact multipole expansion using Eq. (2).

• approxME.m: Multipole expansion under the long-wavelength approximation using
Eq. (4).

• toroidalME.m: Multipole expansion under the long-wavelength approximation with
toroidal dipole moment using Eq. (5).

They return scattering cross sections as a function of frequency.

3.2. Usage

The practical usage of MENP can be understood by looking into demo files:
/demo_sphere/demo_exact.m (based on exact expressions; Eq. (2))
/demo_sphere/demo_approx.m (based on approximated expressions; Eq. (4))
/demo_disk/demo_toroidal.m (based on approximated expressions with toroidal

dipole; Eq. (5)).

https://github.com/Hinamoooon/MENP
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Fig. 1. Overview of the calculation flow with MENP. (a) Calculation of electric fields
(E(x, y, z, f )) within a nanophotonic resonator under the illumination of a plane wave (Einc)
with an amplitude E0. This step is typically done using full-field simulation techniques
such as FDTD, FEM, BEM, etc. (b) MENP reads the electric field distributions passed
from the simulator. Note that the data should be packaged into .mat file format together
with refractive index (n(x, y, z, f )) and one-dimensional arrays of axes (x, y, z, f ). After the
conversion of the electric field distributions into current density ones by E2J.m MENP
computes multipole moments (electric dipole: p, magnetic dipole: m, electric quadrupole:
Q̂e, magnetic quadrupole: Q̂m), followed by calculations of scattering cross sections.

The installation of the MENP can be done by simply adding a path of /MENP directory to the
MATLAB search path:
addpath(../MENP);

Next, one loads ENxyzf.mat in which E, n, x, y, z, f are saved. The loaded variables are then
passed to the main function, for example:
[Cp,Cm,CQe,CQm,Csum]=exactME(x,y,z,f,Ex,Ey,Ez,n_x,n_y,n_z);

The returned variables are partial scattering cross sections and the sum of them (i.e., total
scattering cross section up to quadrupoles).

3.3. Demonstration

We validate the MENP implementation by calculating the exact multipole expansion for a lossless
dielectric nanosphere and comparing the results to the Mie theory. The electric field distributions
were obtained by FDTD Solutions (Lumerical Inc.). The simulation setup is schematically
shown in Fig. 2(a). The resonator is a lossless nanosphere with a refractive index of 4. A
diameter was set to 180 nm to exhibit dipolar and quadrupolar Mie resonances in the visible
spectrum. To capture the electric field distributions, a 3D discrete Fourier transform (DFT)
monitor (230 nm×230 nm×230 nm) was utilized together with a 3D index monitor that has the
same dimension. As a light source, x-polarized plane wave was injected along the z-axis using a
total-field scattered-field (TFSF) source (280 nm×280 nm×280 nm). The simulation domain (1.2
µm×1.2 µm×1.2 µm) were defined by perfectly matched layers in all boundaries. In the domain,
Yee cells were automatically defined by a graded mesh, except for a region around the resonator
where a 4 nm square mesh was overridden. Additionally, a closed monitor consisting of six DFT
monitors were added in the scattered field region to measure total scattering cross sections in
simulation. After the simulation, multipole contributions were computed with MENP.

Scattering cross sections obtained with FDTD and MENP (exactME.m) are shown in Fig. 2(b)
with symbols. For comparison, analytically calculated spectra, the Mie theory, for the same
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Fig. 2. Benchmark of exactME.m for a lossless nanosphere with a refractive index n = 4
and a diameter D = 180 nm. (a) Schematic illustration of a simulation setup in the full-field
simulation. (b,c) Calculated scattering cross sections (b) from each multipole contribution
and (c) a total of them (plots with symbols). For comparison, those calculated with a rigid
analytical solution, the Mie theory, is shown with solid lines.

configuration are shown with solid lines. One can see quantitative agreement for all the spectra.
The nice agreement can be attributed to the exact expression of the multipole expansion beyond
the long-wavelength approximation; the approximated computation (approxME.m) results in
deviation, especially in the short wavelength range (see Fig. S1. in Supplement 1). Note that the
accuracy of the entire calculation is determined by that of input datasets. The small deviation in
Fig. 2(b), such as a slight blue-shift of the magnetic dipole resonance, is caused by the numerical
error not in MENP but in FDTD simulation. Figure 2(c) compares total scattering obtained by
three approaches. The plots with stars were calculated by summing up partial scattering cross
sections calculated by MENP. Circles were the data obtained directly in FDTD using a monitor
surrounding the TFSF source. The solid line is the spectrum obtained from the Mie theory into
which up to 10th order resonances are included. Likewise, the spectra show good agreement.

We move on to a benchmark for a resonator made of realistic material. Here, we applied
exactME.m to a silicon nanosphere with a diameter of 200 nm. The complex refractive indices
were adopted from literature by E. Palik. [41] A simulation setup similar to that for Fig. 2 was
constructed, but the mesh overriding around the resonator was reduced to 8 nm. The simulated
plots (symbols) in Fig. 3 perfectly tracks the analytical spectra (solid lines) as well. One can now
see that the higher-order dipole resonances around the wavelength range from 400 to 500 nm are
adequately reproduced.

As the implementation has been validated, MENP can now be applied to arbitrary structures.
As a demonstration for a specific application in nanophotonics, we demonstrate a multipole
analysis on anapole states. The structure here consists of a silicon nanodisk with a diameter
and height of 310 and 50 nm, respectively, as shown in Fig. 4(a). As described above, the
analysis of the anapole state requires the introduction of a toroidal dipole moment. Accordingly,
toroidalME.m was applied to the electric field distributions computed in the same manner.

https://doi.org/10.6084/m9.figshare.14518464
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Fig. 3. Benchmark for scattering cross sections of a silicon nanosphere with a complex
refractive index [41] and diameter D = 200 nm. The multipole contributions computed with
FDTD and MEMP and those obtained with the Mie theory are plotted with colored symbols
and solid lines, respectively.

The computed partial scattering cross sections are plotted in Fig. 4(b) and are in accordance with
those in literature. [24] Different from the result based on exact expressions, the total scattering is
not just a summation of multipolar contributions and exceeded by the electric dipolar scattering.
This is because the electric and the toroidal dipoles have crosstalk as shown in Eq. (6), which
leads to the constructive interference of the radiation. In this way, the dip in total scattering
(black band in Fig. 4(b)) occurs when the contributions of electric and toroidal dipoles match
(i.e., anapole state). For the anapole condition, the phases of the moments are also important to
cancel out the radiation perfectly. The phase of multipole moments can be extracted as a complex
argument in computation. Figure 4(c) shows the phases of the electric dipole and toroidal dipole
(as −ikT). One can see that the lines cross each other around the anapole wavelength, and thus
the anapole condition (p = −ikT) is satisfied. A supplementary code toroidalME_phase.m
is also provided in the MENP package. Although we demonstrated the features of MENP for
dielectric Mie resonators, it can also be applied to plasmonic materials.

Fig. 4. Multipole analysis for a silicon nanodisk by toroidalME.m. (a) Schematic of a
simulation model composed of a silicon nanodisk with a diameter of 310 nm and a height of
50 nm. (b) Scattering cross sections of total and multipole contributions obtained by FDTD
and MENP. The anapole state, a minimum of the total scattering due to the suppression of
electric and toroidal dipolar scatterings, is shown by a dark line. (c) Plots of phases, that
is the arguments of complex electric (px, red line) and toroidal dipole (−ikTx, orange line)
moments. The anapole condition (p = −ikT) is satisfied at the wavelength designated by an
arrow.
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Finally, we would like to depict limitation and capability of MENP. First, the program is
designed for optical frequencies, implying that magnetic permeabilities of constituting materials
must be one (µ= 1). Second, MENP mainly focuses on individual structures, and thus it returns
scattering cross sections as an output. It also works for periodic structures for the calculation of
multipole moments; however, the returned values (scattering cross sections) are not physically
meaningful quantities. In periodic structures, we recommend extracting multipole moments or
linking the multipole moments to reflection/transmission coefficients. [42] Third, the accuracy
of the results is basically limited by the input datasets since MENP is a post-processing program.
By keeping these points in mind, we believe MENP would be a helpful tool for the community.

4. Summary and outlook

In summary, we have presented an open-source MATLAB program MENP designed for efficient
computation of multipole expansion in nanophotonics. The program is based on the recently
developed exact expression of a multipole expansion and provides the post-analysis for commonly
utilized simulation software such as FDTD and FEM. The validity and correctness of the
program are demonstrated by comparing the results with analytically obtained quantities. The
implementation of multipole expansion under the long-wavelength approximation is also presented
to explain the excitation of the anapole state with the help of toroidal dipole moment in a nanodisk.
Given the increasing interest in various multipolar interferences in nanophotonics, MENP
may have a significant impact on nanophotonics as well as plasmonics community by helping
researchers to interpret the physical meaning of scattering-based phenomena.
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