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Introduction and Preliminaries

Recently, we made progress in researching on non-singular flows on a
closed 3-manifolds, especially, on a 3-sphere. A leading method is ob-
serving how closed orbits are linked.

We know that closed orbits on a 2-, 4-, or higher dimensional manifold
are essentially unlinked by the argument of general position. However
3-dimension is very attractive and is hard to research.

We know that any pair of an oriented closed 3-manifold and a link in it
induces non-singular flows on the 3-manifold whose closed orbits form the
given link. On the other hand, we do not still have the complete solution
of Seifert conjecture: A non-singular flows on a 3-sphere always has at
least one closed orbit.

Last summer M. Wada [64] showed a neccesary and sufficient condition of
links which consist of closed orbits of non-singular Morse-Smale .flows on
a 3-sphere. The class of such links consists of links obtained from Hopf-
links by finite operations — a split sum, connected sum and/or cabling —
(of course, further limited).

We shall consider a decomposition of a link into elemental links, which
are called "inseparable', '"prime" and "simple" corresponding to the above
operations.

R. Kirby and W. B. R. Lickorish [27] introduced the method of tangles
to prove the primeness of certain knots. R. Myers [35], [36] and T. Soma
[57] proved the simplicity of certain links by the same method.

In Section 1, we shall generalize the notion of tangles and obtain a



more applicable technics to prove the inseparability, primeness and sim-
plicity of links. For example, we shall easily show that some links have
the Brunnian property in Section 2.

We know in [41] that any 1link is concordant to a prime link with the
same Alexander invariant. In Section 3, we shall show that any n-component
link (n22) is concordant to a prime link with the same Alexander invariant
preserving the knot types of components and 'the symmetric wunion of this
concordance can be assumed to be ambient isotopic to the direct product of
the given link in the 3-sphere and an interval.

F. Hosokawa [2]1] defined V-polynomials of links and characterized them
as reciprocal polynomials of even degree. In Section 4, we shall charac-
terize V-polynomials of ribbon (slice) links in the weak sense as recip-
rocal polynomials of even degree.

In Section 5, we shall prove "For each integer n, there are distinct
prime knots with the same n-fold cyeclic branched covering space.”

In Section 6, we shall give an inequality between unknotting numbers
and another invariants of knots: 0 < m(k) < sd(k) < u(k). K. Murasugi’s
formula in [33]: 0 < %10(k)| < g*(k) < u(k) and the above will be shown
to be rough but best possible from examples. In 6.15, we shall negatively
answer to [17, Problem 18], i.e. Is g*(k) =g(k') for some k' concordant
to k?

In Appendices, we shall show some observation and questions.

Throughout the paper, we work in the smooth or p.l. category.



1. Tangles

1.1. In this paper, the word tangle is borrowed from [8 ] and is used
to mean a pair (B, ¢) where B is a 3-ball and ¢ is a set of arcs and
zero or more loops properly embedded in B, provided that the number of
components of ¢t is finite. Two tangles [Bl, tl] and (BZ’ tz) are said
to be equivalent if there is a homeomorphism of pairs from (Bl, tl) to

B,, t

2’ 2)'

1.2. We show examples of tangles in Fig. 1.1; (a) is named the unknot-

ted tangle, (b) is the trivial tangle, (c) is the clasp [27], (d) is the

K-T grabber [ 5], and (e) is the chain.

SOBE

(a) (b) c (d) (e) ()

Fig. 1.1

1.3. A tangle (B, t) is said to be prime (resp. simple) if it has
the following Properties Py, P and P;3 (resp. P;, P, and Py):

Py (Ingseparable): The arcs and loops of t cannot be separated by a
disc properly embedded in B.

Py (Locally Trivial): Any 2-sphere in B, which meets ¢ transversely
in two points, bounds in B the unknotted tangle.

P3 (Indivisible): Any disc properly embedded in B, which meets ¢
transversely in a single point, divides (B, ¢) into the unknotted tangle

and another,



P, (Atoroidal): The followings are satisfied;

a: Any annulus properly embedded in B, which does not meet ¢, is
compressible, isotopic to a component of Fri(¢), or parallel to 8B - 3%,
in B - t,

b: Any torus in B, which does not meet ¢, is compressible or isotop-

ic to a component of FrN(t) in B - t.

1.4. Remark. These definitions are slightly different from those of

(51, [27], [29], [35], [36], [41], and [57].

1.5. Proposition. Py dmplies P3;. If t consists of only two ares,

then P, and P imply Ps, and then P, and Pyb imply Pua.

Proof. Suppose that a tangle (B, t) does not satisfy P3; there is a
disc properly embedded in B, which meets ¢ transversely in a single
point and divides (B, ¢} into two tangles each of which is not the un-
knotted tangle. Let t¢' is a component of ¢ which meets this disc.
Then FriN(t') does not satisfy Psa. So Py, implies .P;.

If ¢t consists of two arcs, then any properly embedded disc, meeting ¢
in a single point, divides (B, ¢) into the unknotted tangle and another.
Because the given tangle has only two arcs, one of the tangles divided has
only one arc. From locally triviality, it is the unknotted tangle.

Any incompressible annulus & properly embedded in B, which does not
meet ¢, divides 9B into one annulus R* and two discs &, and 6. If
R*nt#@, then (81ud2)nt consists of two points. S uduR is a 2-
sphere, which meets ¢ transversely in two points. From locally trivial-

ity, it bounds the unknotted tangle. Hence R 1is isotopic to a component



of Fry(t), If R*nt=@, then RuR* is a torus in B, which does not
meet t. Since t has no loops, this torus is compressible from Pub.

Hence R 1is isotopic to R*. This completes the proof.
From the above, a simple tangle is a prime tangle.

1.6. Proposition. In Fig. 1.1, (a), (c) and (d) are simple, (b) does

not eatisfy Ps, (e) and (f) do not satisfy Pu.

Proof. (a), (b): The proof is obvious. (c), (d): It is easily checked
that they are locally trivial from the unknottedness of each arc. If they
are separable, then they are equivalent to the trivial tangle. Then *they

induces two-bridge knots with ears as in Fig. 1.2. But this is false.

ne

a Kinoshita -

Terasaka knot

@ G
1 j 2 a square knot l!ﬂ\t 1]
o< D

(c) with ears (d) with ears

Fig. 1.2

P, was checked by Soma [57]. (e): The loop of this tangle is linking each
arc, so this tangle is inseparable., It is easily checked that we have P,
but Py. (f): We show the primeness of a pair of each two arcs and the
ball. If it does not satisfy P, or P, then there is a ball meeting
one arc in a trefoil. But it induces a trivial knot with ears as in Fig.
1.3. Hence it is prime. Each two arcs are inseparable in the ball. So
this tangle (f) is indivisible. It is easily checked that F, 1s not sat-

isfied. The proof is complete.



1.7. Remark. 1In the
above argument on (f),
"a trefoil" is not es- -
= a trivial knot
sential. Hence parallel

arcs on a non-trivial

knot in a ball is prime. Fig. 1.3

1

1.8. A link is said to be prime (resp. simple) 1f it has the following’
properties @1 and @2 (resp. @i, @2 and Q3):

@1 (Inseparable): There is no 2-sphere in 5% that separates the com-
ponents of L.

Q2 (Locally trivial): Any 2-sphere in S°, which meets I transversely
in two points, bounds in S§® the unknotted tangle.

Q3 (Atoroidal): Any torus in S°, which does not meet L, is compress-

ible or isotopic to a component of FrN(L) in S°-L.

1.9. Remark. This definition is slightly different from those in [29],
[35], [36], [41] and [57]. A trivial knot is prime, and a trivial 2 -com-
ponent link is not prime. A connected sum of two Hopf-links is not sim-

ple. A non-trivial torus link is simple.

1.10. Theorem. Let L be a link in S3. Suppose that S*> is a 2-sphere
in S meeting L transversely and separating §° into two 3-balls A
and B. (1) If (A, AnL) and (B, BnL) are both inseparable tangles,
then L 18 an inseparable link. (2) If (A,AnL) and (B,BnL) are both
prime tangles, then L 1is a prime link. (3) If (A,AnL) and (B,BnL)

are both simple tangles, then L 1is a simple link.



Proof. (1) The proof is contained in the following.

(2) Suppose that F is a 2-sphere in §° meeting L transversely in
two points; it is required to show that F bounds a ball meeting [ in
an unknotted arc. The definition of a prime tangle implies that this is
true if F 1is entirely contained in 4 or in B, so it is in order to
proceed by induction on the number of components of FnS2.

It may be assumed that F meets S2 transversely in simple closed
curves. Let Yy be such a curve innermost on F that bounds a disc &
in F; it may be assumed without loss of generality that F is in A4.
This Yy may be chosen so that &nL 1is empty or a single point. If
§nL is empty, from inseparability, § cannot separate the components of
AnL and so there is an isotopy, fixed on L, which reduces the number of
components of FnS%. On the other hand, if &§nF 1is a single point,
from indivisibility, 8 divides (4, AnL) into the unknotted tangle and
another. Then there is an isotopy that reduces the number of components
of FnS? and which keeps L set-wise fixed. Hence by induction, F
bounds a ball meeting L in an unknotted arc.

Finélly, if F is a 2-sphere in g% disjoint from L, then by similar
argument as above, F may be isotoped into 4 keeping L fixed. Thus F
bounds a ball disjoint from L. So L is a prime link.

(3) Suppose that R is a torus in S§% disjoint from L; it is required
to show that R is compressible or isotopic to a component of FrN(L). The
definition of a simple tangle implies that this is true if R 1is entirely
contained in A4 or in B. So it may be assumed that R meets S trans-
versely in simple closed curves, and furthermore such a curve is essential

on R from the similar argument as above.



Since essential simple closed curves on a torus are parallel, they divide
the torus into annuli. If one of the annuli is compressible in A-AnL or
B-BnL, then R is compressible in S®=-L. If one of the annuli is parallel
to S§%-5%nL, then there is an isotopy reducing the number of the annuli.
Hence it may be assumed that each one of the annuli is isotopic to a com-
ponent of' FrN(L)nd or FrN(L)nB from fh’e definition of a simple tangle.
Then it is easily checked that R is isotopic to a component' of FriN(L).

Therefore L is a simple link. The proof is complete.

1.11. Remark. A prime link may not be always divided into two prime
tangles (see Corollary 1.19). But a prime link can be divided into one
trivial tangle and one prime tangle (see Lemma 3.1). It is the similar on

a simple link.

1.12. Theorem. Let (C, v) bea tcingle and let D be a dise properly
embedded in C that separates (C, v) into two tangles (4, t) and (B, u)
and that the number of points of 34-Dnv, 3B-Dnv, Dnv <8 greater than
one respectively. And let (B, u) be an inseparable tangle.

(1) Suppose that, for any dise A properly embedded in A with AndD=@
and Ant=Q, A does not separate t in A. Then (C, v) <8 inseparable.

(2) Furthermore suppose that, for any disec A properly embedded in A
such that AndD=@ and that Ant is a single point, A does not divide
(4, t) into the unknotted tangle and another. If (B, u) 8 a prime
tangle and (A, t) is a locally trivial tangle, then (C, v) 18 a prime
tangle.

(3) Furthermore, if (4, t) <s an atoroidal tangle and (B, u) 1is a

simple tangle, then (C, v) <8 a simple tangle.



Proof. (1) The proof is essentially contained in the following.

(2) Suppose that F 1is a 2-sphere in ( meeting v transversely in
two points. Then, in the similar way as Proof of Theorem 1.10, F may be
isotoped into 4 or into B keeping v fixed. From locally triviality,
F bounds a ball meeting v in an unknotted arc.

Suppose that A 1is adisc properly embedded in C, which is disjoint
from v or meets v transversely in a single point, it is required to
show that A does not separate v in € or does not divide (€, v} into
the unknotted tangle and another.

First, we consider whether the number of components of AnD can be
reduced or not. It may be assumed that A meets D transversely in simple
closed curves and proper arcs. In the similar way as Proof of Theorem
1.10, simple closed curves are reducible. So it may be assumed that AnD
contains only proper arcs. Let Y be such a curve innermost on A i.e.
Y separates A into two discs, one of which, say §, satisfies SnD=Y.
This Y may be chosen so that dnv is empty. If 6 is in B, from in-
separability of (B, u), & cannot separate the components of u and so
there is an isotopy, fixed on v, which reduces the components of 4 n D.

It may be assumed that & in 4. If & does not separate ¢ in 4,
there is an isotopy, fixed on v, which reduces the components of AnD.
It may be assumed that & separates ¢ in 4.

Consider a collection of such discs Gi’s properly embedded im A that
GitWD has only one component for each < and Gir15j==¢ for each 7 # J
and 6i'1t:= ¢‘ for each Z. Since the number of components of ¢ 1is fi-

nite, there are at most finite number of these discs essentially.



Let Y; = GinD and let Yy is innermost on D.
If 61 does not separate ¢t in A4, it is not essential.

8, separates (4, t) into two tangles (Al, tl) and (4,, t

1 2 -

If they are equivalent to the unknotted tangle, then (C, v) itself is
equivalent to (B, u), so is a prime tangle.

If only one of them, say (Al, tl), is equivalent to the unknotted tan-
gle, then (AluB, tl uu) 1is equivalent to (B, u) and so prime.

If they are not equivalent to the unknotted tangle, we assume that Yl
bounds an innermost disc, AlnD, on D. It is easily checked that (AluB,
tl vu) 1is a prime tangle.

In the last two case, we obtain a new disc D’ dividing (C, v) into
a prime tangle and another, which satisfies the condition of this Theorem
and the number of points of D'nv is less than that of Dnuv.

Hence, by induction, (C, v) is shown to be a prime tangle.

(3) Supposed that R is an incompressible annulus in C with "Rat=p.
Then, by the similar argument as the above, it may be assumed that RnD
consists of only essential loops on R, or of only parallel arcs joining
the distinct boundary of R. In the former case, the loops divide R into
small annuli. If one of the small annuli is compressible, then R is also
compressible. If one of the small annuli, Ri’ is parallel to 94 - 3t in
A-t, or to 9B - 3t in B-u, then there is an isotopy reducing the
number of the small annuli. (If BRi divides D into two discs and a disc
with two holes, then (94-D)nL or (3B-D)nL is empty. This contra-
dicts the assumption. Otherwise, aRi divides D 1into an annulus and a
disc with a hole, or only one component of 31?7: is on D. In the both

cases, a required isotopy can easily be finded.)



From the definition of an atoroidal tangle, it may be assumed that each
small annulus is isotopic to a component of Fr¥(v)nd or FrN(v)nB Then
it is easily checked that R is isotopic to a component of FrN(v).

In the later case, the arcs divides R into small discs 61;’5. 1f 67: is
parallel to D in C -v, then there is an isotopy reducing the number of
small discs. So it may be assumed that each small disc is not parallel to
D. From the definition of an inseparable tangle, all 67:’5 in B are

parallel. If the number of 57:’5 in B 1is greater than one, then R has

returns as shown in Fig. 1.4.

a return disc

There is an isotopy in A4A-¢

: N
carrying this return small D— N A=
disc away not to meet D (see B i v
Fig. 1.4). This contradicts v

the assumption. Hence the
number of di’s in B is one, and the number of 611’5 in A 1is one.
From the assumption: for any disc A properly embedded in 4 with An 23D
=@, and Ant=@, A does not separate £ in 4; v is in only one part
of ¢ separated by HA. Hence R is parallel to 3C-9v. It is obvious in
the case that R 1is entirely contained in 4 or B.
Finally, if T is an incompressible torus in C-v, then by the similar
argument as above, T is isotopic to a component of = FrN(v) in C-v.
Hence (C, v) 1is shown to be a simple tangle.

The proof is complete.

1.13. Corollary. On the condition in the beginning part of Theorem 1.
12, <if both tangles (4, t) and (B, u} are inseparable (resp. prime,

stmple), then (C, v) 1is also inseparable (resp. prime, simple).
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1.14. Theorem. Let (C, v) be a
eyele sum of n tangles (Bi’ ti)’s
n=3; =1, 2, *++, n) as shown in
Fig. 1.5, where the number of points
tilwac 18 greater than one and each
(Bi’ ti) i8 joined to the adjacent

tangles by a single aqre.

If (Bi’ ti)’s are all insepara-

ble (resp. prime, simple), then

¢, v)

(C, v) 1is also inseparable (resp.
Fig. 1.5
prime, simple).

The proof is very similar to the Proofs of Theorems 1.10 and 1.12, so

we omit it.

1.15. Let G be a connected graph on a 2-sphere. A graph G 1is prime
if it has the following properties:

0,: Each vertex of G has (non-zero) even degree.

02: G has no loop.

03: No circle on a 2-sphere meets just two edges transversely each in a

single point.

1.16. Theorem. Let L be a link obtained by substituting inseparable
(resp. prime, simple) tangles for vertices of a prime graph. Then L is an

inseparable (resp. prime, simple) Llink,

Proof. If the number |G| of the vertices of a given graph G is

two, then I 1is a prime link from Theorem 1.10. So it is in order to
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proceed by induction on the number |[G].

If a graph G has multiedges, then a neighbourhood of multiedges and
adjacent vertices satisfies the condition of Corollary 1.13 from the defi-
nition of a prime graph. So it is sufficient to show the theorem for G’
obtained by identifying the adjacent.vertices from G.

If a graph G has no multiedges, then G divides a 2-sphere into many
regions, the number of whose surrounding edges is three or more. Let Q
be a region that such number is minimum. Then a neighbourhood of § sat-
isfies the condition of Theorem 1.14 from the definition of a prime graph.
So it is sufficient to show the theorem for G* obtained by identifying
the vertices surrounding § from G.

These operations reduce a given graph to a required prime graph with

two vertices. The proof is complete.

1.17. Generating Prime Tangles. Let (B, t) be a prime tangle. And
let t* be the union of ¢ and a parallel arc (or parallel loop) to a
component of ¢ in B. Then (B, t*) 1is also a prime tangle, except

the case (B, t) 1is the unknotted tangle. (We omit a proof.)

1.18. Theorem. 4 tangle (B, t) <e prime if and only <if the double
branched covering space of B branched over (all components of) t 1is

both irreducible and boundary-irreducible.

The following proof is essentially due to Lickorish [29]. He proved

the theorem in the case t consists of two arcs.

Proof. Suppose that (B, t} is a prime tangle and let p: M > B be

the double branched covering spaces of B branched over ¢. Now, Z; acts
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on M with generator g as the group of covering translations; g is an
involution with proper 1l-submanifold as its fixed point-set. If M is
reducible, there exists a 2-sphere S in M, not bounding a ball, which
may be chosen so that either gS =S or gSnS =@ by the Z, sphere
theorem [24]. If gSnS=@, then pS is a sphere embedded in B -t£; then
pS bounds a ball in B-t which lifts to a ball in M with S as its
boundary, and this cannot exist. If gS=35, then gl|S is an involution
with two fixed points, so pS 1is a 2-sphere in B meeting t in two
points. By the locally triviality of (B, t), it follows that pS bounds
the unknotted tangle. The lift of this ﬁangle is a ball with S as its
boundary. This is a contradictioh and therefore M 1is irreducible. It
remains to check that M 1is boundary-irreducible. Suppose that M is
boundary-reducible, there is a disc D properly embedded in M, with 9D
essential on 9M, such that either gD=D or gDnD=@ (this uses the 1,
loop theorem [24]). If gD=D, then pD is a proper disc in B meeting
t in a single point; then pD divides (B, t) into the unknotted tangle
and another by the indivisibility of (B, t). Then 3d(pD) bounds a disc
in 9B meeting ¢ in a single point, and this disc 1ifts to a disc in
oM with 09D as its boundary. This contradicts that 9D is essential on
oM. 1f gDnD=@, then pD is an embedded disc disjoint from ¢. As pD
cannot separate ¢ in B by the inseparability of (B, t), 9(pD) bounds
a disc in 94 - 9t, and this lifts a d{sc in M with 38D as its boundary.
This is again a contradiction, so M 1is boundary-irreducible.

Conversely, suppose that p: M - B is the double branched covering
space of a 3-ball B branched over a tangle ¢, and that ¥ 1is irreduc-

ible and boundary-irreducible. If (B, t) does not satisfy. P, there is



13

a disc D separating t in B. Then a lift of D is also a proper disc in
M, and a 1ift of 3D is essential on 3M because . 3D separates 9B into
two discs meeting t in two or more even points. This contradicts to the
boundary-irreducibility of M. If (B, t) does not satisfy P, there is
a sphere S meeting ¢ in two points such that & does not bound the un-
knotted tangle. Then the lift of S is a sphere and does not bound a ball
by the solution to the Z, Smith conjecture. This contradicts to the ir-
reducibility of M. If (B, t) does not satisfy P; but P, there is a disc
D dividing (B, t) into two tangles, the number of whose arcs are more than
two. Then the 1lift of D 1is also a proper disc in M, and a 1ift of 09D
is essential on oM because 9D separates 9B into two discs meeting ¢
in three or more odd points. This contradicts to the boundary-irreducibi-

lity of M. So (B, t) 1is a prime tangle. The proof is complete.

1.19. Corollary. A 2-bridge link cannot have a decomposition into

prime tangles.

Proof. 1If a 2-bridge link has a decomposition into prime tangles, then
there is a decomposing sphere S. A sphere S meets t in four or more
points, and its 1ift in the double branched covering space M of the link
is a surface # with genus 2 1. A surface F separates M into two ir-
reducible and boundary-irreducible manifolds by Theorem 1.18. Hence F 1is
incompressible in M. So the fundamental group w;(¥) has w;(F) as a
subgroup. But M is a lens space and w;(M) 1is a cyclic group. This is

a contradiction. The proof is complete.
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1.20. A link I in S$'xB? is loeally trivial if any 2-sphere in
5! xB?, which meets [ transversely in two points, bounds in S!=xB? a
ball meeting L in an unknotted spanning arc. The wrapping number of L
is the minimum number of intersections of L with a meridian disc of
S'xB?., If L is a link in S'xB? and K is a knot in S°, the L
cable of K is a link in §® formed by mapping S!xB? into N(X), and

considering the image of L under this map (cf. [30]).

1.21. Theorem. (Cf. [30,Theorem 4.2]) ILet L be a link in S'xB* with
wrapping number > 1, and let K be any non-trivial knot in S°. The [

eable of K is prime if and only if L is locally trivial in S! xBZ.
The proof is parallel to the argument in [30], so we omit it.

1.22. Remark. On the above, if X 1is not prime, the L cable of K

has a decomposition into prime tangles from 1.7 and 1.12.

1.23. Remark. | The author does not know whether the followings are true
or not. "A torus link does not have a &ecomposition into prime tangles."
"A link, which have a decomposition into prime tangles, does not have a

two-generator group-presentation.”
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2. Prime Links and Brunnian Property

2.1. If a link is non-trivial, yet every proper sublink is trivial, we

say that it has the Brwnnian property or that it is a Brumnian link.

2.2. A Brunnian link is easily shown to be a prime link. Conversely,
if a link, whose proper sublinks are all trivial links, is inseparable, it
is a Brunnian link. 'In the following examples, it is easily checked that
every proper sublink is trivial. So, by showing it inseparable (prime),

we know them to be Brunnian links.

2.3. The Borromean rings, as in Fig. 2.1, is a well-known Brunnian
link. It has a decomposition into prime tangles; the chain (see 1.6), as

in Fig. 2.1. From Theorem 1.10, it is prime, and so is a Brunnian link.

ue

)

N
(./

2.4. In the above, each component is homotopically linked from the

remaining components. The followings are not so.

2.5. Consider the links ‘Ln and an as in Fig. 2.2 where the sub-
scripts n means the number of components. They have a decomposition in-
to prime tangles; the clésp or the K- T grabber (see 1.6), as in Fig. 2.2
respectively. From Theorems 1.10 and 1.12, they are prime 1links, and so

are Brunnian links.
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Fig. 2.2

2.6. Consider the link 3Ln as in Fig. 2.3, where the subscript n
means the number of components. 3L2 is equivalent to 1L2. Here we show

that 3Ln (n24) has a decomposition into prime tangles.

___j()_)_. —q ()_)_1
——¢" —<¢-/
N N
(1) (ii)

Fig. 2.4

_/\f

S

S

(i) with ears
Fig. 2.5

Consider the tangle (i) in Fig. 2.4, Suppose that an arc is separable
from the remainder, then the remainder itself is completely separable, and
so the tangle itself is completely separable. Hence it induces a link sep-
arated from the loop with ears as in Fig. 2.5. But this is false.

Since the tangle, which is obtained by excluding the loop from (i), is
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completely separable and the tangle (i) itself is inseparable, the tangle
(i) is locally trivial from the unknottedness of each arc.

Suppose that a disc, which meets an arc transversely in a single point,
divides the tangle (i) into two tangles which are not the unknotted tangle.
The tangle divided without the loop is completely separable from the above
argument, so the arcs in this tangle divided are separable if they do not
meet the disc. This contradicts the first claim.

Hence the tangle (i) is a prime tangle.

The tangle (ii) in Fig. 2.4 satisfies the condition of (4, ¢) in Theorem
1.12. So, the sum of (i) and (ii) is a prime tangle from Theorem 1.12.

Hence 3Ln (n24) has a decomposition into prime tangles.
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3. Primeness and Alexander Invariants of Concordant Links

3.1. Lemma. (Cf. [s5], [27], [29]) Let L be a link in S°. Then there
exists, embedded in S3, a 2-sphere meeting L transversely in four points
and separating S° into two 3-balls A and B such that

(7) (4, AnlL) 1is equivalent to the trivial tangle,

(¢2) (B, BnL) <8 a prime tangle.

Proof. We know the existence and uniqueness of prime decomposition of
inseparable links by Y. Hashizume [18]. Hence there is a locally trivial
decomposition of a link without uniqueness. First, we show the above for
locally trivial links. Let denote by n(L) the.number of components of a
link L.

In the case #n(L) =1, a locally trivial knot is a prime knot. If it is
a trivial knot, we take a 2-sphere as in Fig. 3.1. 1If it is not a trivial
knot, there is two arcs whose meridians are not homotopic in the exterior
of the knot. We take a 2-sphere that bounds.the trivial tangle whose arcs
are just the above arcs. From the locally triviality of the knot, the ex-
terior (B', t') of the trivial tangle is a locally trivial tangle. We
illustrate it as in Fig. 3.2. It may be deformed into Fig. 3.3. Since

they satisfy the condition in Theorem 1.12, (B, t) in Fig. 3.3 is prime.

3, t)

|

- ’ ‘ﬁ.-

»'

Fig. 3.1 Fig. 3.3
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In the case n(L) =2, a locally trivial 2-component 1link which is not
prime is only a trivial 2-component Link. If L is a trivial 2-compo-
nent link, we take a 2-sphere as in Fig. 3.4. If L is not so, it is a
prime link. If [ has a knotted component, we take a 3-ball 4 in &§°?
such that (4, AnL) 1is equivalent to the trivial tangle and that A4
contains a subarc of each component of L. Let B be the exterior of
A. We will show that (B, BnL) 1is a prime tangle. Locally triviality
is immediate as L 1is locally trivial. BnIL contains a knotted arc from
the assumption. This fact and locally triviality imply inseparability.
From Proposition 1.5, (B, BnlL) 1is a prime tangle. If L has no knotted
components, we take a. 3-ball as .similar to the above. (B,BnL) is easily
checked to be a. locally trivial tangle. We illustrate it as in Fig. 3.5.
It may be deformed into Fig. 3.6. Since they satisfy the condition in

Theorem 1.12, (B*, t*) in Fig. 3.6 is a prime tangle.

|’\j STy
7

Fig. 3.4 Fig. 3.5 ) Fig. 3.6

In the case n(L) 23, a locally trivial link is a prime link. We take
a 3-ball as similar to the above. We will show that (B, BnL) is a prime
tangle. Locally triviality is immediate as L is locally trivial.
Suppose that a proper disc in B separates BnL in B. From locally
triviality, it separates arcs. But the part containing loops includes one
arcs and loops, so this part is not locally trivial. This is a contradic-

tion. Hence (B, BnL) is inseparable and so is prime.
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For each locally trivial factor of a given link, we can construct a
prime tangle as above, and a sum of these prime tangles with the trivial
tangle reproduces the given link in 53, . From Theorem 1.12, this sum is a

prime tangle, too. The proof is complete.

3.2. Lemma. ([41, Lemma 2]) Let L' =Luk be a link, where k i3 q
trivial knot. Suppose that Kk has Zink-zing number 0O with each component
of L and that k bounds a ribbon disc in S -L. We denote by L* a
link which is obtained from L by a surgery along k in S°. Then both

L and L* have the same Alexander invariants.

3.3. Lemma. The substitution the K-T grabber for the trivial tangle on
a regular projection of a link does not change the concordance class and

the Alexander invariant.

Proof. From a surgical description of the K-T grabber as in Fig. 3.7,
which is deformed to Fig. 3.8, we see this surgery curve bounds a ribbon
disc in the complement of the tangle in the 3-ball. From Lemma 3.2, this
substitution does not change the Alexander invariant. Ribbon move at B in

Fig. 3.7 shows that the K-T grabber is concordant to the trivial tangle.
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3.4. Lemma. The symmetric union of the above concordance with equator

the K- T grabber is ambient isotopic to (the trivial tangle) x I.

Proof. The K-T grabber and the band B in Fig. 3.7 can be regarded as
in Fig. 3.9. The above concordance is a ribbon concordance obtained by a
fission along the band 8. We obtain f' from B by 1nterchanging over-
and under- crossings of the band as in Fig. 3.10. The symmetric union of
concordance obtained by a fission along B and that along B' are ambient
isotopic (cf. [58, Proposition 2.15]). Fig. 3.10 is deformed to Fig. 3.11.
It is easily checked that the symmetric union is ambient isotopic to the

direct product. This completes the proof.

- - -
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Fig. 3.9 Fig. 3.10
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Fig. 3.11
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3.5. Theorem. dAny n-compoment 1link L 4s concordant to a prime link
L* with the same Alexander invariant and the symmetrie union of this con-
eordance can be assumed to be ambient igotopic to (S, L) x (an interval).
Furthermore, if n 4s greater than one, this concordance can be assumed

to preserve the knot types of components of a link L.

Proof. By Lemma 3.1, we have a tangle decomposition of a link in &%.
From Lemma 3.3, we substitute the K-T grabber for (4, 4AnL), and obtain a
new link, which is concordant to the given link and has the same Alexander
invariant. From Lemma 3.4, the symmetric union of this concordance is am-
bient isotopic to the direct product. From Theorem 1.10, this 1link is a
prime link. Since each arc of the K- T grabber is unknotted, the concord-

ance preserves the knot types of components if 7n22. The proof is ended.

3.6. In the case n = 1; "Any knot is concordant to a prime knot with

the same Alexander polynomial' was proved by S. A. Bleiler [5].

3.7. Corollary. Any set of surfaces embedded in a 4-space has the

erogs-section which is a prime link up to ambient isotopy.

3.8. Corollary. (with [69, Theorem 2.8]) Any ribbon 2-knot has a prime

equatorial knot.

Proof. T. Yanagawa [69] proved "Any ribbon n-knot (n22) has an equa-
tortal knot." . Since the above concordance preserves ribbon property, we

obtain a required one by applying the argument in this section.

3.9. Corolilary. For any knot K, there is a prime knot K' with the

same Alexander invariant such that K#K' ig doubly null-cobordant.
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Proof. It is well-known that K # X* is doubly null-cobordant where K*
means the reflection of K. Apply the argument in this section to X*, and

we obtain a required one.

3.10. Note. There is another construction to show Theorem 3.5 without
preserving the knot types of components as follows.

It is known that any link is represented as a closed braid. Its wrap-
ping number, denoted by #n, may be assumed to be greater than one.
Consider the (n, 0)-cable link of a Kinoshita-Terasaka knot. We obtain a
new link from the above closed braid and the above (n, 0)-cable link by
natural complete fusion as illustrated in Fig. 3.12. On the analogy of
Lemmas 3.3 and 3.4, we know this new link to be a required link by Theorem

1.21.

Fig. 3.12

3.11. Note. Soma [57] proved that "Any link is concordant to a simple

link with the same Alexander invariant'. Here we show another construc-
tion. A link has a link diagram L (cf. 6.1). By regarding crossings as
vertices, we consider L as a graph on a 2-sphere. Up to ambient isotopy,
it can be assumed that L is a prime graph. By substituting vertices of
L for the K- T grabbers suitably, we have a required link. From Theorem
1.16, the link is a simple link. From Lemma 3.3, the 1link has the same

Alexander invariant.
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‘ 4. v-Polynomials of Ribbon Links in the Weak Sense

4,1. A 1link is a ribbon link in the weak sense iff it bounds an
immersed oriented surface of genus 0 whose singuralities are all ribbon-
types, or equivalently, iff it introduces a ribbon knot by only fusions.

The V-polymomial U(t) of a limk is A(t,, **+, t )/ (10" where
A(tl, (XX tn) is the Alexander polynomial of a given 1link and n is the

number of components.

4.2, Theorem. For any reciprocal polynomial of even degree f(t), there
exists an n-component. prime ribbon link in the weak sense whose V-poly-

nomial is equal to f(t) for an arbitrally integer n22.

Proof. Adding the following condition (*) to Hosokawa’s construction
in [21], we obtain a ribbon link in the weak sense.

™) a,ua,uctuay, is a trivial link.

4

Because we can obtain a ribbon
knot from the link by fusions
along Bzh+i's (1sisn-1).

We can construct a prime link
from the above link as in Section
3. Since ribbon concordance pre-

serves ribbon property in the

\ .
\ Y
W et e B,

: s s LR L,
weak sense, this link is a By so~--22%"

Cam

required one. This completes
Fig. 4.1

the proof.
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4.3, Corollary. V-polynomials of »ribbon links in the weak sense are
characterized as reciprocal polynomials .of even degree. ' Those of slice

links in the weak sense are also characterized as the same.

Proof. F. Hosokawa characterized V-polynomials of links as reciprocal
polynomials of even degree in [21]. A ribbon link in the weak sense is one
of slice links in the weak sense, and is one of links. From Theorem 4.2,

those V-polynomials are characterized as the above.
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5. Prime Knots with the Same Cyclic Branched Covering Spaces

5.1. Preliminaries. Let L=JuX be a 2-component link such that J
and X are trivial knots with Zk(J, K) = 1. Let denote by Zn(K) (resp.
Zn(J)) the n-fold cyclic branched covering space of K (resp. J), and let
denote by Jn (resp. Kn) the 1lift of J (resp. X) in Zn(K) (resp. Zn(J)).
Since X and J are trivial, Zn(K) and En(J) are homeomorphic to s3,
Jn and Kn are also knots in &S3.

The n-fold cyclic branched covering spaces of Jn and Kn are homeo-
morphic to the ZneZn - covering space of L, and so Jn and Kn have the
homeomorphic n-fold cyclic branched covering spaces.

If L=JuK is not interchangeable, i.e. there is no homeomorphism of

S® mapping J to K, then Jn and Kn may have distinct knot types.

5.2. Examples. ([39], [49]) Consider the link 93u., 935, or 9%, in the

" table of [47, Appendix C]. Let denote by L=JuX one of them. Jn and
Kn are known to have distinct knot types from the fact: their polynomials

are distinct (see, for example, Sakuma [51]).

5.3. Primeness of J and X in the case 9%3,. 934 1is illustrated
in Fig. 5.1. Let denote by 31: (resp. ]?i) an 1-tuple of a fundamental

region of the infinite cyclic covering space of K (resp. J). We consider

-~

them as tangles. 31, J ]}1’ and 123 is illustrated in Fig. 5.2.

3,
First we show that :73 is a prime tangle. 33 is considered as a sum

of the tangles (i) and (ii) in Fig. 5.3. .We denote the tangle (i) by

(B, tIUtZUtS) as in Fig. 5.3. The arc tl has knotted prime factors

3; and 6é in B. The arcs tz and t3 are unknotted in B.
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5.4. Lemma. Let (B, tlutz) be a tangle such that at least one of

tl and t2 is non-trivial in B. If (B, tlutz) with ears is a prime

knot and has no knotted factor of t, mor t,, .then this tangle is prime.

Here (B, t) with ears means a unoin of (B, t) and the trivial tangle.
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Proof. 1f (B, tl utz) does not satisfy locally triviality or insepara-
bility, then (B, tl utz) with ears must have at least one knotted factor
of tl or t2 from non-triviality of tl or tz. This contradicts the

assumption. Hence (B, tlutz) is a prime tangle.

5.5. Lemma. Let (3B, tlutz) be a tangle such that at least one of

tl and tz

have all knotted factors of t

ig non-trivial in B. If (B, tl ut with ears does not

2)
1 and t,s then this tangle is inseparable.

The proof is obvious, so we omit it.

5.6. Lemma. Let (B, t utzut u"-utn) be a tangle such that tl

1 3
18 a non-trivial are and ti’s (2s22sn) are unknotted arcs.

If (B, tl utz) 18 a prime tangle and if (B, tl Ut_l:) (3sisn) are in-
separable tangles and at least one of knotted factors of t 18 locally

trivial in (B, t Uti] respectively for each <, then this tangle 18 a

1
prime tangle.

Proof. Locally triviality and inseparability is immediate.

If a disc D meeting t in a single point divides (B, t=t¢ U--~utn)

1

into two tangles which are not the unknotted tangles, then D must meet

only with tl from inseparability of tl V) ti (2stsn) in B. We denote
by Bl and B2 two tangles divided, such that B2 contains tz. By the
assumption, there is tj (3<s7<sn) in Bl' Since (B, tl utz) is prime,
(Bl’ tl nBl) is the unknotted tangle. Then all knotted factors of tl

are not locally trivial in (B, tl Utj). This contradicts the assumption.

Hence (B, tluseeu tn) is a prime tangle.
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5.7. Proposition. The tangle in Fig. 5.4 is a prime

tangle.

Proof. A union of this tangle and the trivial tangle
is a trivial knot which has no knotted factor of the arcs.
Fig. 5.4
From 5.4, this tangle is a prime tangle.

5.8. Continued from 5.3. (B, tlutz) with ears as in Fig. 5.5 is a

prime knot from 1.10 and 5.7, and has no knotted factor of ¢ From 5.4,

1
this tangle is a prime tangle. (B, tIUtS) with ears as in Fig. 5.6 is a

knot which does not have a knotted factor 63 of tl. From 5.5, this tan-

gle is an inseparable tangle. From 5.6, the tangle (i) is a prime tangle.

CEe) - (o

11443 (21, 2+4)(3, 2-) in [ 8] with A(#)=t®-3t°+5t"-5¢%+5¢2-3¢+1

asunilile»

|

ne

Fig. 5.5

e

Fig. 5.6

~

J3: a sum of the tangles (i) and (ii) in Fig. 5.3 satisfies the condi-
tion in Theorem 1.12, and so is a prime tangle.
.}4: a sum of ;'1 and 33 satisfies the condition in Theorem 1.12,

and so is a prime tangle. In the same way, we can show
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that ;n (n23) is a prime tangle.

Since the knot Jn may be considered as 'a union of } and J. for

i1+j=n, Jn (n26) are prime knots from Theorem 1.10.

JZ’ JS’ J4, and J5 have a decomposition into prime tangles as in Fig.

5.7. Hence they are prime knots from Theorem 1.10.

)

w;
)
b
6>

S
Q
3

Fig. 5.7
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is a prime tangle. We denote 1'23 by (B, t =

is 4; and ti (£=2,3,4,5) are

Next we show that 123

tlutzutsut4u#5) as in Fig. 5.8. ¢t

unknotted arcs in B. (B, ¢t

1

1Uti) (¢=2,3,4, 5) with ears as in Fig. 5.9

have no knotted factor of ¢.. and are prime knots. From Lemma 5.4, these

—

tangles are prime tangles. From Lemma 5.6; (B, t) 1is a prime tangle.

M,
\

|
:
=

|
S

|
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4° 1 3

K,: a sum of K, and KX, satisfies the condition in Theorem 1.12, and

so is a prime tangle. In the same way, we can show that ﬁh (n23) is a

prime tangle.

Since the knot Kh may be considered as a union of Ei

i1+j=n, Kn (n26) are prime knots from Theorem 1.10.

R

Kz is a doubled knot of a trefoil knot
with 6-twists as illustrated in Fig. 5.10,
and so is a prime knot from Theorem 1.14.

The author does not know whether KS’ K4,

and Ks have a decomposition into prime

Fig. 5.10

tangles or not. So the proof of their primeness is complicated,

omit it here.

5.9. In the case 9%s: 9%s is illustrated in Fig. 5.11.

-

[—

i

iy

N
(3

Fig. 5.11

~

and X. for

J

and we

In a similar way as 9%5, Jh and ih (n23) are prime tangles.

Hence Jn and Kh (n26) have a decomposition into prime tangles.

Also J2’ J3'

K, 1is a doubled knot of a trefoil knot with

2

-6-twists.

5.10. In the case 9%,. 9%, is illustrated in Fig. 5.12.

J4, and Js have a decomposition into prime tangles.
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In a similar way as 9%, }n and iﬁ+2 (nz1) are prime tangles.

Hence Jh and Kﬁ+4 (n22) have a decomposition into prime tangles.

5.11. Theorem. For each integer n, there exists distinct prime knots

whose n-fold eyclic branched covering spaces are homeomorphic.

The argument in this section proves the above except »n = 3, 4, 5.
5.12. Remark. Sakuma showed the same result as Theorem 5.11 in [51].

5.13. Notes. (1) Theorem 5.11 is an answer to a question of Viro [63].
(2) In [1] it was announced that Gordon-Litherland had given a similar
construction.

(3) Livingston [31] announced that the r-fold branched cyclic covering
space of the (p, r)-cable of the (g, r)-torus knot and the (g, r)-cable of

the (p, r)-torus knot are homeomorphic. This also proves Theorem 5.11.

(4) These examples were exhibited in the Master Theses of Sakuma [49] and

the author [39], without proving the primeness of them.
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6. Unknotting Numbers

6.1. Let k be an oriented tame knot in a 3-sphere 5%, and let X be
a diagram i.e. the image under a regular projection of S into S2. On
all diagrams representing %k, the minimum number of exchanges of over- and
under- crossings required to deform % into a trivial knot is called the
wnknotting number of %k, denoted by u(k), and the minimum number of cro-

ssings is called the crossing number of k, denoted by er(k) [45].

6.2. The minimum genus of Seifert surface of k is called the 3-genus
of Kk, denoted by g(k) ([15], [54]). Fox defined the 4-genus of Kk,

denoted by g*(k) (h*(k) in [11]).

6.3. Proposition. ([11]) For any knot k, we have

(1. 1) 0 < g*(k) < g(k).

6.4. The signature of k, denoted by o(k), is known to be an invari-

ant of the knot type [62]. Murasugi showed the following in [33].
6.5. Proposition. ([33]) For any knot k, we have
(1. 2) 0 < Hol)] s g*(R) < u(k).

6.6. A surgical description of k is as follows [46].

Let k be a knot in 8%, there are disjoint solid tori Tl’ see, Tn
in S%-k and a homeomorphism h: Sa-(°Tlu°'°U°Tn) + 53 (oTlli"' U°Tn)
so that

(i) h(k) is unknotted in 53,

(ii) the Ti’s are unknotted and pairwise unlinked,
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(iii) Zk(Ti, k) = Zk[Ti, h(k)) = 0 for all <,
. _ ’ _ .
(iv) h[BTi) = BTi and Zk(ui , Ti) = 1, where M, is a curve on Ti
< g r _
meridinal to Ti and w'o= h(ui).
The minimum number of these solid tori is called the surgical descrip-

tion number of k, denoted by sd(k).

6.7. The minor index of k 1is the minimum size among all square Alex-
ander matrices of Kk, denoted by m(k), provided that m(k) = 0 iff an

Alexander matix of k is equivalent to |1| as presentation matrices.

6.8. Theorem. For any knot k, we have

(1. 3) 0 < m(k) < 8d(k) < u(k).

Proof. A surgical view of Alexander matrices shows the existence of an
Alexander matrix of k& with size s8d(k). We can see that an exchange of
an over- and under- crossing is realized by surgery arround the crossing.

The proof is complete.

6.9. Proposition. ([54]) For any knot k, we have
1. 4 0 < (the degree of Ak(t)) < 2g(k),

where Ak(t) 18 the Alexander polynomial of k.

6.10. Lemma. In Fig. 6.1, the parallel strings are subarcs of a knot
and the shaded area between them ig a part of a Seifert surface of this

knot respectively. Deformation (a) to (b) preserves o(k) and m(k).

The proof is obvious, hence we omit it (cf. [42]).
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Fig. 6.1

6.11. Example. For any positive integer n, there is a prime knot k

such that g*k) = 0 and u(k) = n.

By Lemma 6.10, the knot X as in Fig. 6.2 has the same minor index as

a connected sum of n copies of the -6-twisted knot i.e. m(k) = n. With

observation on the diagram, we have m(k) = n from (1. 3). On the other

hand, ribbon moves at 81, ., B[n+1 show that %k is slice.
e
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= 2m for some integer m

Fig. 6.2
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In a similar way we can see the fact: For any pair of positive integers

m < n, there is a prime knot k such that g*(k) =m and u(k) =

6.12. Example. For any integer n, there is a prime knot k such that

g*(k) = u(k) = sd(k) =

By Lemma 6.10, the knot k as in Fig. 6.3 has the same minor index and

the signature as a connected sum of »n copies of the right-hand trefoil

knot i.e. m(k) = %40(k)| = n. With observation on the diagram, we have
u(k) = g*(k) = sd(k) =n from (1. 2 and 3).
n-copies

= T

NS ’\S\—'\—"\t

Fig. 6.3

In Examples 6.11 and 12, the interior and the exterior of a dotted line
in the figures are prime tangles respectively. From Theorem 1.10, the

above knots are prime.

6.13. Example. For any positive integer n, there is a prime knot Kk

such that m(k) =1 and u(k) =

The (2, 2n+l)-torus knot k has %JU(R)I = u(k) =n [33]. A group of
the torus knot has a one-relator group-presentation. Fox’s free differen-

tial calculus [10] shows m(k) =
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6.14. Example. PFor any positive integer n, there is a prime knot k

such that u(k) =1 and g(k) = n.

The knot k& as in Fig. 6.4 has the Alexander polynomial with degree
2n. With observation on the diagram, we have g(k) =n from (1. 4).

We remark this knot is fibered.

0

s\ .R'.a\a)‘] n-crossings
(i:/<:lc><1 I o (n+1) -crossings

Fig. 6.4

In Examples 6.13 and 14, the above knots are 2-bridge, so are prime.

From above arguments, we know (1. 2 and 3) are rough but best possible.

6.15. Remark. If m(k) = 0, then oJ(k) = 0. So we cannot decide the

unknotting number of such a knot by (1. 2 and 3).

6.15. For any positive integer n, there is a prime knot Kk such that

n=g*k) < gk') for any k' concordant to k.

Kondo [28] and Sakai [48] showed "For any knot polynomial A(t), there
18 a knot k with u(k) =1 and Ak(t) = A(E)".
Hence, for any positive integer <, there is a knot ki with u(ki) =]

. tZt’I + t21-2 - t2$~3 *ee +]1, Since all roots of this

and b, (8) = &
7
polynomial are mutualy distinct roots of unity, we see U(ki) = 27 (mod 4)

from Milnor’s arguments in [32]. Hence Io(ki)l =2 if 4 is odd, from

u(ki) =1 and (1. 2). Let m be an odd integer greater than #n + 1.
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There is a connected sum of km and (n-1) copies of kl (or its mirror
image), denoted by k*, with |o(k*)| = 2n, from the additivity of the
signature. Since we easily see u(k*) s n, we have g*(k*) =n from (1.

2). On the other hand, we know Ak*(t) = Ak (t]-{Ak (t)}n_l. Since
m 1

the Alexander polynomials of concordant knots are unique up to f(t)f(t-l)-

factors [13] where f(£) is a Laurent polynomial with f(1) = %1, and

Ak (t) has no f(t)f(t_l)-factors, the degree of Ak*’(t) for any k*!
m

concordant to k* is not smaller than 2(m-1). From (1. 4), the genus of

k*' is not smaller than m-1, so is greater than »n. Futhermore we can

regard k* as a prime knot from Theorem 3.5.

Thus we have obtained a required knot.
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Appendix A. Fibered Ribbon Knots

There is a conjecture that a fibered ribbon 1-knot always introduces
a fibered ribbon 2-knot. This is partially answered by Yoshikawa [71],
but is still open. We know the fact: Certain ribbon 1-knots introduce
many distinct ribbon 2-knots, in [44]. We show here that some fibered

ribbon 1l-knots introduce distinct fibered ribbon 2-knots.

Theorem. There is a fibered ribbon 1-knot k which introduces

distinet fibered ribbon 2-knots associated with k.

Proof. Let k be a connected sum of 8,7 and its mirror image (see
Fig. A.1). The knot k has distinct ribbon presentations'as in Fig. A.
2. Let K1 and K2 be ribbon 2-knots associated with each ribbon
presentation. Then K1 is the spun knot of 834 and K2 is the spun
knot of the connected sum of a trefoil knot and its mirror image. Here
we know that 83, is a fibered 1-knot-and that the spun knot of a 1-knot
is a fibered 2-knot. So the condition are satisfied. It is sufficient
to show that Kl and K2 are distinct. The minor index of them are 1

and 2. The proof is complete.
Remark. It is the same in the case k = 10140 # r(10149), etc.

Question. Can the fibering structure of %k be extended to those of
K1 and K2 in the above case? In other words, Ki in the upper space

is a (2, 4)-ball pair. 1Is it a fibered (2, 4)-ball pair?

Question. For a prime knot k, does a similar situation occur?
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Appendix B.

Unknotting Numbers and Knot Diagrams

The unknotting number u(k) of a knot k is defined to be the minimum
number of exchanges of over- and under- crossings required to deform %k
into a trivial knot over all knot diagrams representing k.

If we limit "all knot diagrams'" to "all knot diagrams with the minimum
crossings', we cannot obtain the unknotting number. In fact, we consider
the knot in Fig. B.1 (it is named 514 by Conway [8])}. The knot diagram
of 514 with the minimum crossings is Fig. B.l1 (i) and is unique. (Its
uniqueness can be shown by Conway’s method [ 81].) In Fig. B.1 (i), at
least three exchanges of crossings are required to deform the knot into a
trivial knot. But at most two exchanges of crossings in Fig. B.1 (ii)
deform it into a trivial knot.

Here we raise the following problem:

Problem. Let X be a knot diagram of a knot k with the minimum
crossings. Can we deform X into X' with u(k') <u(k) by one exchange

of a crossing?

In the above, it is important that X is a diagram with the minimum
crossings. We consider the knot in Fig. B.2 (named 312). In Fig. B.2
(ii), we cannot deform it into a trivial knot by one exchange of a cross-

ing. But its unknotting number is one as shown in Fig. B.2 (i).
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