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ABSTRACT

We study spectroscopies of the heavy quarkonia, c;, bb and
tt in the framework of the nonrelativistic potential model.
Relativistic corrections are takem into account up to the order
of (p/m)?. Spin dependent interactions which cause the fine and
hyperfine splittings are investigated in detail., It is pointed
out that the naive linear plus Coulomb model cannot explain both
the fine and hyperfine splittings consistently, due to the strong
spin—spin force coming from the Coulomb potential. We propose a
flavor independent potential which has a Lorentz vector term
determined by perturbative quantum chromodynamics (QCD) at short
distances and connected to the Coulomb potential at large
distances. It is emphasized that this short range attenuation of
the vector Coulomb potential has a remarkable effect on the
hyperfine structure of the cc and bb systems. The hyperfine
splitting between 3S;, and *S;, in the charmonium are well
recovered by this modification and resulting spectra of the cc
and bb excellently agree with experiment. It is also found that
the short range attenuation plays an important role in the tt
level structure. We study the decay properties of the heavy
quarkonia wusing calculated wave functions. ‘We discuss the scale
parameter- A obtained from the potential with perturbative QCD as

compared with that obtained from the Y decays.
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1. INTRODUCTION

Heavy quarkonia c;, bb and tt are very nice objects to
investigate hadronic structure. Experimentally they show strong
narrow resonances so that we can get precise data on mass
spectra, It is expected that their flavor mixings are negligible
and their theoretical treatment is easy. As a future problem
investigation of the topponium tt is the most fascinating topics
of particle physics. The top quark is a partmer of the b quark
doublet which we have not yet found. Many experiments have been
done and prepared for the purpose of detecting it. First
candidate was obtained from data analysis of pE colliding beam

(D)

experiment at CERN and resulting mass of the top quark is
about 35 GeV. In this energy region some e e experiments are
planned to detect the first signal of the topponium tz, for
example, by TRISTAN at KEKSZ) Anyway it is important to examine
characteristic properties of the topponium spectra as precise as
possible, which would help us in both experimental observation
and theoretical analysis.

Nonrelativistic potential model is the most popular and
powerful tool to study spectra of bound states. Detailed
observations of heavy quarkonium spectroscopy in the cc and bb
systems have led us to obtain a unified view of the potential
between a heavy quark and its antiquarkf3 - 5) Almost all the
potentials which have been proposed so far as to describe these
systems agree in the intermediate range 0.5 GeV_li’r <5 Gean,
where these ground states have average radii. The spectroscopy
of the heavy quarkonia is in a situation similar to that which we
met in the atomic physics almost half a century ago. We have

quantum chromodynamics (QCD) in the quarkonium physics instead of

the quantum electrodynamics (QED) in the atomic physics. There



exists, however, an essential differece between QCD and QED.
WVhile QED is well governed by the perturbative nature, QCD has
nonperturbative phenomena in addition to the perturbative one.
The heavy quarkonium system is an ideal place to study and test
QCD because the potential is under the influence of both
perturbative and nonperturbative phenomena.

The purpose of this paper is to determine the oQ potential
most accurately by studying the cc and bb spectroscopy and to
apply it to the topponium tt. The success of potential models
established so far is enough to predict the spectra of the center
of gravity (c.o.g.), where c.o.g. is defined as a degenerate
level when the spin dependent interactions are switched off.
Here our interest is how to understand fine and hyperfine
structures in the heavy quarkonium spectroscopyf6 - 8
Relativistic corrections are taken into account as much as
possible in order to investigate the fine and hyperfine
splittings in the heavy quarkonia.

In studying fine and hyperfine structures, the Lorentz
transformation properties of the potential become a serious
problem. There are much difference in the spin dependence of
hamiltonian whether the static potentials are transformed as a
scalar or the fourth component of a vector. It is well known
that any pure vector potential cannot explain the splittings of
the charmonium 3P statessg) From investigation of the Dirac
hamiltonian it is also suggested that the confining potential
should be a scalar 1in order to avoid the Klein paradoxflo’ll)
Among several potentials, we think it reasonable to take
potentials of the confinement plus Coulomb type proposed by
Cornell group(s) as a prototype. Consequently we assume that the

confining potehtial has a scalar coupling to a quark and the

Coulomb potential has a vector one.



The perturbative QCD corrections, which we have not yet
included the above assumptions, must be taken into account.
Actually our prototype can not reproduce experimental data, as is
shown in Section 3, The relativistic effects to cause fine and
hyperfine splittings are almost determined the behavior of the
potential at short distances where the perturbative QCD plays an
important role. Buchmiiller and Tye(lz) employed a hybrid model
which incorporates the perturbative QCD at short distances and a
linear confinement at large distances. They assumed that the
perturbative term is connected to the confining part according to
the idea of Richardson(ls) and that the scale parameter A in the
potential 1is determined by smooth conmnection of the perturbative
QCD form at short distances with the linear confining potential.
However their range connected potentials is very small, r < 0.05

GeV_1 and this potential does not approach the perturbative QCD

form yet in the asymptotic free region r i 0.3 GeV_l.

We take another way to incorporate the perturbative QCD and
the QQ potential, We assume that the perturbative form in the
asymptotic free region is continuously connected to a vector
Coulomb one in long range. The confining potential is assumed as
a scalar and vanishes at the perturbative region ( r SIO.S GeV_1
) so that the whole potential fits well to the perturbative QCD
at short distances. A parameter is given by comparing the fine
and hyperfine structures of cc and bb systems with experiment.
Thus we will establish an overall fitting of cc and bb spectra.

This paper 1is organized as follows. In Section 2, the
hamiltonian with a scalar plus vector potential is constructed
and the general properties of the spin dependent forces are
discussed, which cause the fine and hyperfine splittings. It is

also indicated that the spin independent corrections up to the

order (p/m)2 are important as well as the spin dependent



corrections. Section 3 is devoted to show that the naive linear
plus Coulomb model cannot give a consistent description of the
fine and hyperfine splittings of the charmonium. It is suggested
that the difficulties are mainly coming from the short range
behavior of the vector potential. We propose in Section 4 a
model with a modified vector potential according to the idea
mentioned above. In Section 5 we apply this model to the spectra
of heavy quarkonia. Parameters are determined so as to fit the
observed levels of y and T families and the spectrum of the tt is
predicted by using this potential, The scale parameter A is
determined as 0.36 GeV from the best fitting to the data, In
Section 6 decays of heavy quarkonia are investigated. The
annihilation widths of T decays are found to be much improved
compared with the naive linear plus Coulomb model. Decays of tt
are also predicted and discussed. Section 7 is devoted to

summary and discussions.



2. HAMILTONIAN OF THE HEAVY QUARKONIUM

Relativistic corrections to the nonrelativistic hamiltonian
are derived from the Bethe—-Salpeter (BS) equation by the
Foldy-Wouthuysen (FW) transform:(14) The instantaneous
approximation of the BS equation is taken and the resulting
equation is expanded by (p/m)2. Here the expansion is carried
out up to the order of (p/m)2 explicitly. Next order corrections
of the order (p/m)* to energy levels are expected a few MeV for
the cc and bb systems., For the tt system they become even
smaller, In the present case instantaneous interaction in the BS
equation is a combination of a Lorentz scalar S(r) and a vector
V(r). The vector potential has a transverse component as well as
a longitudinal one. We «call hereafter the relativistic
corrections of the order (p/m)? Breit-Fermi (BF) interaction
according to the similarity to the original Breit-Fermi
interaction appeared in QED.

Thus the hamiltonian of the quark—antiquark system (0Q) is

given as follows(14'15):

H=H, + Tp4 + Hpp, ' (2—41)
with
H, = 2mg + -B=— + §(x) + V(r), (2-2)
Q
T, =" 75%{’ (2-3)
and



_ s, v _
Hpp = Hppt Hppo (2-4)

where 3 is the relative momentum between the quark and the
antiquark and m, is the quark mass., The BF interaction consists
S v . ..
t » .
of wo parts HBF and HBF The HBF is originated to the vector
potential V(r) and is given by

= vsI + vSS + vLS + VT, (2-5)

5

VSI = -%;(%AV + VP2 - f(Uv)), (spin—independent term) (2-6)

Q
_ ——1-:— —Q.—f . _ . _
VSS = 6m6(6163)AV' (spin-spin term) (2-7)
= 3.3 + 3.7V { n—orbi _
VLS = 4ma(c,ﬁ c,) err’ (spin—-orbit term) (2-8)

and

VT = - 15235125 ==y, (tensor term) (2-9)

2
Lo (62 - 188
Q
Here ;i denotes the Pauli spin operator of the i—th quark, L is
the relative orbital angular momentum and P = (V + V)/2i is
defined as the average momentum of the initial and final relative

ones, The tensor operator S1 is defined by

2
S;, = 3(o;0) (6;0) ~ (5;3,), (2-10)
where n = T/IT|, a unit vector pointed to the direction of the

relative coordinate, The H:F comes from the scalar potential and

-6 -



is written by

s _

Hpp = Sgp + 8¢ (2-11)
with

s = - -l (spz - £(U )), (spin—independent term) (2-12)

ST m2 S
Q
and
=13 .T, 1d8 in—orbi -
Siq = 4m6(61+ o,)-L caz” (spin—orbit term) (2-13)

Retardation effects are approximately taken into account
according to a prescription of Gromes',(14) which reproduce the
original BF potential in case of the vector Coulomb potential.
His method is available in case of other Lorentz type of various
potentials. They are given in the last terms of eqs. (2—-6) and

(2-12), where

140 nd dzu 14U
= 2___ - 2 —_— - === -
£(U) P rdr + (P-n) (drz rdr). v(2 14)
with the solutions of
V20 = 1¥.7v(r) (2-15)
A 2 ’
and
v2U, = 1¥.7s(r) (2-16)
S 2 ’

It should be noted that some objections to the Gromes’ treatment
for the retardation effects of the scalar potential are raised by

some authors(16'17), who pointed out that his treatment does not

- 17 -



satisfy a criterion which in the limit that one of two quarks has
an infinite mass the above procedure of the BS equation is
consistent with the FW transform of the Dirac equation in an
external source. However what the correct approximation of the
scalar retardation effects must be is still an open problem.
Here the Gromes’ treatment is assumed for the scalar retardation

effects,

The Schrddinger equation for H,, eq.(2-2),
H¥(T) = E¥(T), (2-17)

is solved by the variational method and the other terms Tp4 and
HBF are taken into account by the first order perturbation., Wave

function W(T) in the spherical coordinate can be separated as
Y(r) = R(r)YLM(Q), (2-18)

where R(r) = w{(r)/r and YLM(ﬁ) is the spherical harmonics. We
take a trial function of w(r) which depends on a number of
parameters and vary these parameters to minimize tﬁe eigenvalue
E. Spin singlet and triplet states are degenerate in the
unperturbed H, and are splitted by the spin—spin term éq.(2—7)
(hyperfine splitting). Different J (total angular momentum)
levels of the spin triplet state are also degenerate in H, and
splitted by the spin-orbit terms, eqs.(2-8) and (2-13), and by
the tensor term, eqf(2—9) in HBF' Mixings of different L states
such as 3S, and 3D, take place due to the tensor term, eq.(2-9),
which are neglected here because they are not important so far as
the energy levels of heavy quarkonia are concerned. The Tp4 of

eq.(2~3) and the spin independent terms, V__ of eq.(2-6) and S

SI ST
of eq.(2-12), which give shifts of c.o.g.'s, are significant in



the quarkonium spectra as shown in Section 5. The explicit forms
of the differential and spin—dependent operators appeared in this
section are given in Appendix A in order to help the discussions.

The relation between the BF interaction and the higher order
corrections in the perturbative QCD was discussed by Schnitzerfs)
He showed that the former coincides with the latter except for

some singular terms of 1n(Q?/m2) dependence. A rough estimation

is made for these singular terms in Section 7.



3. DIFFICULTIES IN "LINEAR PLUS COULOMB” POTENTIAL

It is well known that the experimental value ~ 0.5 of the

ratio for the charmonium 1P states,
R = [M(’Pz)—M(’Pl)]/[M(’Pl)—M(’Po)], (3-1)

cannot be reproduced with the spin—orbit and the tensor terms
coming from the pure vector potential.(IO) To see this let us
consider the vector 1linear plus Coulomb potential, From the
Coulomb potential, the spin—orbit term of eq.(2-8) gives R = 2
due to the coefficient o.L (See Table 5) and the tensor term
reduces this down to R = 0.8. Adding the effect of vector linear
potential the spin—orbit strength becomes 1larger and also
enlarges the ratio but the tensor force cannot contribute so
enough to reduce the ratio as the Coulomb potential does, then
the resulting ratio is at most R ~ 1.0. This result is in
contradiction with experiment, The BF interaction coming from
the scalar confining potential remedies this difficulty; it
reduces the strength of the spin—orbit terms but does not
contribute to the temsor force at all,.

Next, let us consider the ”Linearvplus Coulomb” model with

the scalar confining potential,
S(r) = =5 + b, (3-2)
a

and the vector Coulomb potential,

4 ©
V(r) =~ 3 T (3-3)
I

It is well known that this model can explain the gross structures

- 10 -



(3)

of the charmonium and bottomonium spectra. Unfortunately it
will be pointed out below that this model can reproduce either
the S state hyperfine splitting or the P state fine splitting in
the charmonium spectra but cannot both at the same time.

First, consider a potential which reproduces the 3S, and 1S,
states of the charmonium where parameters a, b, a., m, and m, are
determined so as to fit the levels JA/, n, V' né, T and T'.
Figure la shows the resulting cc and bb spectra. It is seen that
the magnitude of the 1P's fine splitting becomes too small
compared with experiment, Next, consider another potential which
reproduces the 1P states of the charmonium, where parameters a,
b, a and m_  are determined so as to fit the levels of X state,
the c.o.g.'s of J/JY and . and that of ' and né. The resulting
spectra are given in Fiure 1b and shows the hyperfine splittings
I - n, and ¢' - né become too large and almost twice as much as
the experimental values. These lead us to conclusion that the
linear plus Coulomb potential model cannot explain both the
hyperfine splitting (S, - 1S,;) and the fine splitting (3P, - 3P,
- 3P,) consistently. Thus the naive linear plus Coulomb model
must be modified to reproduce the fine and hyperfine structures
of the quarkonium spectra. When one adopts modification, there
are two wa&s to remedy the difficulties. One is that the
difficuties are mainly in the fine splitting and it shoulﬂ be
corrected by appropriate modification, and another is that the
hyperfine splitting should be changed to improve the potential.
The former approach has been taken by many authors and led us
many ideas such as an introduction of the color anomalous
magnetic moment of a quarkfls'lg) This modification affects only
the splittings of 1P states and not change the c.o.g!s of them.

Ve must, however, raise up their <c¢.o.g!s by appropriate

modification. (See Figure la.) Therefore we adopt here the latter



approach and suggest that the too large hyperfine splitting makes

us difficult to explain the quarkonium spectra.

- 12 -
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-Fig. la. Spectra in the 1linear plus Coulomb model which

reproduce the hyperfine splitting. Parameters are a = 1.632

GeV_l, b = -0.5466 GeV, a, = 0.3548, m = 1.632 GeV and m, =
5.015 GeV, The dotted 1lines are exprimental data taken from

reference (20).

_13_



3
S
t S, _
T co.g. Pgs
T, *q& =
150 3P2 "'X?
35 | 255 3P1 ..... )<C T
0
; i 3PO s XC |
@
O
L 1P i
n
N
ég R i
351
- ceerereeanses _]/q) -
c.o.g. Yrs
30 . Ne N
L 150 A
1S 1)

Fig. 1b. Spectra in the 1linear plus Coulomb model which

ieproduces the fine splitting of the 1P states for the chamonium.

1, b = —-0.5752 GeV, a, = 0.4706 and

m, = 1.183 GeV. The dotted lines are experimental data taken

Parameters are a = 2.175 GeV

from reference (20). The dashed lines show the c.o.g. of 3§, and
1S
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4. MODIFICATION OF THE COULOMB POTENTIAL
BY PERTURBATIVE QUANTUM CHROMODYNAMICS

As ment ioned in the previous section, the hyperfine
structure should be changed by an appropriate modification. This
means that the vector potential should be corrected because the
spin—-spin term, eq.(2-7) is coming from the vector potential. We
use the perturbative QCD in order to modifiy the short range part
of the one gluon exchange potential. The modification of the
potential at short distances may have a significant effect upon
the fine and hyperfine structures since the spin dependent terms
of the BF interaction have a relativistic origin and are
sensitive to the short range behavior of the potential.
Especially the hyperfine splitting is found to show more
sensitivity from the short-range modification of the vector
potential than the fine splitting does, as seen below. When the
vector potential is written as
4 as(r)

3

V(r) = - 3 32—, (4-1)

o

where as(r) is given by the two loop approximation as(12'13'21)

. 2. S -2
a (r) = 332N, (In x

)—1
93-10N

£ -2,-1

[1+(27E+ 3(33_2Nf)}(1n x )

6(153-19N,) 5 -1

f -2 - -
- —Ysg:iﬁgyg—ln(ln x )(ln x 7) 7). (4-2)

Here x = r/\ﬂg, Nf is a number of flavors and YE is the Euler

constant. The formula, eq.(4-2) is, however, to be used in the

_15_



small r region, say, r £’0.3 GeV_l, which is estimated from the
asymptotic free deep inelastic scattering. There are two ways to
extend the potential, eq.(4-1) to large r region. One is from

the idea of Richardson(ls) and it is developed by Buchmiiller and

Tyele) Their potential has a single form and is chosen such that
it coincides to the form eq.(4-1) at short distances and
continuously connected to a linear confining potential, If one
considers that the whole potential has a vector coupling to quark
it is hopeless to reproduce the 3P states of the charmonium, as
mentioned in Section 3. Another difficulty in the wvector
confinement is that it cannot confimne quarks according to the
Klein paradox in the Dirac equationflo'll) We think it
undesirable that the region of their potential comnnected to the
form of eq.(4-1) is r < 0.05 GeV_l, since this region is too
small to have any physical effects to the quarkonium spectra.
There is an alternative way which we adopt here. It is
found that the potential in the intermediate region where the
charmonium and bottomonium have their orbits (r > 1 GeV~1) is
well desribed by the 1linear plus Coulomb model. Therefore
another way to extend the QCD potential, eq.(4-1) is to connect

to the Coulomb form,

a®

V(r) = - f;- 2 (> 16V hH (4-3)
T

where a: is a constant as the Coulombic coupling. We suppose that
the scalar confining potential is given by eq.(3-2) again. For
connecting eq.(4-1) to the above eq.(4-3) we introduce the vector

potential as
]
4 %

V(r) = - 3 -1 - exp{-(-l’;—c)"}], (4-4)

_16_



with parameters ag, Rc and o, which are determined from the
behavior of the QCD form, eq.(4-1) at short distances. It is
noted that the potential form eq.(4-4) is easily treated in
calculating HBF’ while the complicated form eq.(4-1) is too
difficult. In eq.(4-4) r = Rc is a turning point where V(r)
changes from the QCD behavior of eq.(4-1) into the pure Coulomb
form. In Figure 2 we illustrate the effects of eq.(4-4) to the
fine and hyperfine splittings with appropriate parameters. It is
found that the hyperfine splitting is very sensitive to the
magnitude of the turning point Rc' which indicates the strength
of modification but the fine splitting is not so sensitive as the
hyperfine one. Thus we can expect desired results to remedy the
difficulties we met in Section 3.

We take Rc = 0.5 GeV-—1 in the present investigation so that
the perturbative QCD form is reproduced in the asymptotic
region,(See below.) Determination of the potential is rather
insensitive to slight changes of Rc in the region 0.3 GeVm1 - 0.6
GeV_l. Because other parameters can be adjusted in order to
reproduce the same results. Once Rc is fixed and Az is given,

M
we can fit eq.(4-4) to eq.(4-1) in the region 0.1 GeV = { r € 0.3

GeV_1 and determine the parameters a; and o uniquely. The region
used in fitting is estimated from the asymptotic free region
established by the deep inelastic scatterings. In eq.(4-2), we
set Nf = 4 which is the effective number of flavors in the above
r region. Because the average momentum transfer <Q> ~ 1/<{r> in
the topponium state is less than 2mb as shown in Table 2 (See
Section 5) and the present potential is defined to be independent
of flavor. Figure 3 shows a potential given in Section 5 and one
sees how well our connection of eq.(4-1) in the region r < 0.3
GeV lwith the eq.(4.3) im r > 1 GeV ' works. The form of
eq.(4-4) gradually deviates from eq.{(4-1) in the region r ~ 0.1



GeV_l, which is not so serious since this region is too small and
does mnot give any physical effect to the heavy quarkonium

spectra,



3.5
=
D
e
3.0
2.
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©
=
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\ \ | l | l
0 0.1 0.2 0.3 0.4 0.5 0.6

Re  (Gev)

Fig. 2. Fine and Hyperfine splittings of cc 1S, 1P states as
functions of Rc' By way of illustration parameters are chosen

appropriately and we set 0 = 1 for simplicity.

_19_



a3 a1l 1 3 y b2yl 1 3 [ B N |

0.1 05 1.0 5.0
r - (Gevl)

Fig. 3. The Qé potential: the solid curve denote the whole
potential, the vector V(r) plus scalar S(r). The dashed curve is
the vector V(r) and the dash-dotted curve shows the perturbative
QCb potential eq. (4-1). The dash—-double—dotted curve

corresponds to that of reference (12).
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5. ENERGY LEVEL OF HEAVY QUARKONTA

5.1 Charmonium and Bottomonium

\We examine effects of smearing the pure Coulomb potential
around the origin according to perturbative QCD. As shown in
Figure 2, the most significant effects is on the hyperfine
splitting of the S states which are proportiomnal to the
probability at the origin in case of the pure Coulomb potential.
On the other hand, the fine splittings of P and higher orbital
angular momentum states are less affected by smearing since their
orbit are farther from the origin than the S orbit. Fortunately
the c.o.g!s of the charmonium cc and the bottomonium bb are
least affected by smearing at short distances. Conversely the
situation is quite different in the topponium tt where the orbit
becomes much smaller than that of the other heavy quarkonia and
the top quark moves inside the smearing range independent of
flavor. We will see in section 5.2 that even c.o.g!s of the tt
is strongly affected by perturbative QCD.

The best fit energy levels of cc and bb spectra are shown in
Figure 3 and Table 1. We adopt the 1least square method to
determine the potential parameters using the experimental values
of the levels with asterisk in Figure 4 and Table 1 as input data

and obtain

Ags = 0.36 GeV, a = 2.374 GeV ',
b = -0.030 GeV, m_= 1.553 GeV, (5-1)
m_ = 4.916 GeV,
and
R, =0.5 Gev L, a? = 0.732,

0.582. (5-2)

Here pargmeters ag and o of eq.(5-2) are obtained so as to fit

- 21 -



the perturbative QCD form of eq. (4-1) in the region
0.1 GeV ™ < r < 0.3 GeV ' with R_and Ar< = 0.36. The caleulated
levels excellently agree with experiment. Consequently, this
perturbative QCD tactics is successful. A little large ag plays
a {ole to enlarge P state fine splittings as well in case of
Figure 1b, while the smearing of the Coulomb potential aroud the
origin reduces the hyperfine splittings of S states. We often
refer to this potential as LCQCD which is abbriviation of the
linear plus Coulomb potential modified by perturbative QCD.

The scale ﬁ§. can be moved in the range
0.3 GeV ( Aﬁg { 0.4 GeV, to give a nice fit to the experimental
levels. On the contrary, in the range Aﬁg < 0.2 GeV or Aﬁ§ >
0.5 GeV it is difficult to find any parameter set to give a good
s = 0.2 GeV, a;
becomes too small to reproduce the experimental fine splitting in

fit to experiment. For example, if we choose

the charmonium 1P states. Aﬁ§ dependence of the tt states will
be discussed in Section 5-2,

The potential with parameters of eqgs.(5~1) and (5-2) is
compared with that of Buchmiiller and Tye (BT)(12) where its
normalization is adjusted by shifting the potential with an
appropriate constant. It is noted that there exists a
significant gap between LCQCD and BT. The potential LCQCD
differs from that of BT's by a constant in the outer region,

r > 0.5 GeV—l, while in the inner region, r ¢ 0.5 GeV-l, LCacCh
potential has a more gentle slope than that of BT's does. The
gap is explained as follows: First, the terms of eqs.(2-3), (2-6)
and (2-12), Tp4 and the spin independet interaction in the HBF
contribute to the shifts of c.o.g!s. LCQCD potential is defined
including these BF interactions and differs from that of BT's,
which was fitted to 3S states without the BF terms. Second point

making this gap is that LCQCD at short distances

- 22 -



(r <0.3 GeV—1 ) is well dominated by perturbative QCD. There,
the confining potential aimost vanishes compared with the vector
part as shown in Figure 3. This indicates that we can take b =0
in the confining potential since the linear term r/a? almost
vanishes around the origin. Aﬁg dependence of b is given in
Fighre 5, which shows that b is small enough in the region
0.34 GeV ¢ Aﬁg < 0.37 GeV. On the other hand, the BT potential
has a nonperturbative tail in the asymptotic free domain and does
not approach the perturbative form of eq.(4-1) until r becomes
very small, say, r ¢ 0.05 GeV_l. This nonperturbative effects in
the asymptotic free domain may bring forth a problem in the deep
inelestic scatterings.

The (p/m)? expansion seems to work well when one looks over
the ratio (Tp4>/<T> in Table 1. This expression may not be good
in the higher excited states where the average momentum becomes
large. The present calculations based on the linear confining
potential seems to give larger masses systematically in the
higher excited states such as 3S, 4S, 2P, 2D, etc. The c.o0.g's
of 23P in the bb states was recently observed as 10.249 GeV,
which is estimated as 10.284 GeV in the present model. LCQCD
predicts their largest fine splitting, M(3P,)-M(3P,) = 40 GeV.
We however, need not be nervous about the shift because the
effect of the continuum BB channel may not be negligible.

By the present potential, the hyperfine splitting of 1S
'states in the bb is predicted as 66 MeV, which is almost a half
of that in the naive 1linear plus Coulomb potential.(s) The
experiment to search the singlet partner of T , would be a
rigorous test for the hyperfine structure of the heavy
quarkonium. Contrary to the Coulomb potential, the present

vector potential causes hyperfine splittings not only to the S

states but also to all the states which have nonzero L, such as P
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states. It is found, however, that these splittings are very

small in the heavy quarkonia.



Table 1a
Energy levels and several expectation values of cc S, P, D states
with the present potential (LCQCD). Energy levels with asterisk
are used as input data in the parameter fitting. Parameters are
given in eqs.(5-1) and (5-2). The spin-dependent expectation

values are devided by the spin operator given in Table 5.

1S 28 3S 4S 58

E (GeV) 3.205 3.862 4.320 4.704 5.047

{r> (GeV—l) 1.803 3.711 5.255 6.602 7.697
((vi/c)z> 0.246 0.304 0.373 0.439 0.520
l¥(o) | (Gev?) 0.075 0.048 0.041 0.038 0.036
0

<T>  (GeV) 383 0.472  0.579  0.682  0.807
T, (6eV)  -0.053 -0.083 -0.119 -0.158 -0.210
(V> (GeV)  -0.573 -0.345 -0.267 -0.225 =—0.201
(Vg> (BeV)  -0.051 -0.107 -0.128 -0.140 —0.157
8> (GeV) 0.290  0.628  0.902  1.141  1.336
(8> (6eV)  -0.024 -0.011 -0.007 =-0.004 -0.001
Wed  (GeV) 0.034  0.020  0.016  0.014  0.013
L, (GeV) 3.112: 3.679: 4.084  4.416  4.691
L, (GeV) 2.975°  3.600° 4.019  4.359  4.640




Table 1la

(continued)

1P 2P 3p 4P
E (GeV) 3.669  4.156  4.556  4.908
ry (GeVl)  2.968  4.609  6.017 7.279
((vi/c):> 0.266 0.338  0.406 0.471
I¥(0) | (Gev?)
<T>  (GeV) 0.413 0.524  0.631 0.732
(T p> (GeV) -0.043 -0.083 -0.123 -0.166
VY (GeV) -0.346 -0.262 -0.218 -0.191
(Vgp>  (GeV) -0.073 -0.103 -0.119 -0.131
(8Y  (GeV) 0.497 0.788  1.038  1.262
(Sgp>  (GeV) -0.039 -0.027 -0.021 -0.017
(Vg (GeV) 1.9x10 2 1.6x10°° 1.5x10 > 1.4x10 >
V> (GeV) 0.047 0.038  0.033 0.031
(S;g>  (GeV) -0.014 -0.011 -0.009 -0.008
<V (GeV) 7.0x10 > 5.5x10 > 4.8x10 > 4.4x10 >
L, (GeV) 3.545: 3.970  4.316  4.617
L, (GeV) 3.496* 3.929  4.279  4.581
Ly, (6eV) 3.421 3.869  4.226 4.532
L, (GeV) 3.508  3.939  4.288  4.590
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Table la

(continued)
1D 2D 3D
E (GeV) 3.987  4.404  4.767
(x> (GeV' )  3.956 5.426 6.733
(v /e)?> 0.302  0.373 0.440
w0y l” (Gev?)
<T>  (GeV) 0.468  0.579  0.683
T 4> (GeV) -0.049 -0.090 -0.133
V> (GeV) -0.258 -0.213 -0.186
(Vgp>  (GeV) -0.056 -0.080 —0.096
<S>  (GeV) 0.672  0.933 1.165
(Sgp>  (GeV) -0.068 -0.054 —0.045
(Vgg>  (GeV) 0.5%10 > 0.5x10 > 0.4x10 >
V> (GeV) 0.016 0.014  0.013
(8, g> (GeV) —0.010_3 —0.009_3 -0.007_3
V> (GeV) 2.4x10 ° 2.1x10 ° 1.9x10
Ly, (GeV) 3.825  4.190  4.504
L (GeV) 3.815  4.179  4.492
L, (GeV) 3.790  4.155  4.468
L, (GeV) 3.814  4.179  4.492
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Table 1b

Energy 1levels and several expectation values of bb s, P, D

states. Notations are the same as Table la.

1S 28 3S 4s 5S
E (GeV) 9.485 10.093 10.461  10.752 11.012
> (GeV D) 0.994 2.257 3.331 4.263 4.802
<(vi/ciz> 0.082 0.081 0.092 0.104 0.133
l¥(o)| (Gev?) 0.499 0.250 0.193 0.167 0.161
<T>  (GeV) 0.404 0.399 0.451 0.513 0.655
T 4> (GeV) -0.020  -0.022  -0.027 -0.033 ~-0.047
V> (GeV) -0.898  -0.509  -0.384 -0.320 —0.297
(Vgp>  (GeV) -0.028  -0.046  ~0.049 -0.052 -0.063
<8y  (GeV) 0.146 0.370 0.561 0.726 0.822
8gp>  (GeV) ~3.9x107°0 -1.4x107° -5.2x10 > 7.6x10 % 5.5x107%
(Vgg>  (GeV) 0.017 7.6x107° 5.6x10 > 4.8x107° 4.3x10 >
L, (GeV) 9.449" 10.030° 10.389 10.673  10.907
L, (GeV) 9.383 10.000  10.367 10.653  10.890
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Table 10

(continued)

1ip 2p 3P 4P

E (GeV)
oy (GeV Yy

A=)

.950 10.346 10.650 10.911

1.767 2.899 3.878 4.1731
<(vi/c):> 0.075 0.085 0.098 0.111
lvo) | (Gev?)
<T>  (GeV) 0.371 0.420 0.480 0.547
T 4> (GeV) -0.012  -0.018  -0.025  —0.032
V> (GeV) -0.537 -0.390  -0.320  -0.278
(Vgp>  (GeV) ~0.032  -0.040  —-0.044  —0.047
<S>  (GeV) 0.284 0.484 0.658 0.809
(Sgp>  (GeV) —6.2%10 > -3.9x10 > -2.7x10 > -2.0x10 >
(Vgg>  (GeV) 9.3x10 % 6.8x107% s5.8x107% s5.3x107*
Vo> (GeV) 0.019_3 0.013_3 0.011_3 0.010_3
8, &> (GeV) -2.7x10 ° -1.7x10 ° -1.4x10 ~ -1.2x10
< V> (GeV) 2.7x10° 1.9x10° 1.4x107° 1.4x10°
Ly g (GeV) 9.917 10.295 10.589 10.839
L (GeV) 9.890  10.276 10.573 10.825
L, (GeV) 9.857 10.253 10.554  10.808
Ly (GeV) 9.897 10.282 10.577 10.829




Table 1b

(continued)
1D 2D 3D
E (GeV) 10.228  10.547  10.815
> (Gev ) 2.454 3.476 4.384
v, le)®> 0.078 0.091 0.104
l¥(0) 1" (6ev?)
<T>  (GeV) 0.386 0.447 0.509
(T, p> (GeV) -0.011  -0.018  —-0.025
V> (GeV) -0.395  -0.319  -0.274
(Vgp>  (GeV) -0.022  -0.030  -0.034
¢8>  (GeV) 0.405 0.587 0.748
(Sgp>  (GeV) ~0.010 -8.0x10 > —6.4x10 "
(Vgg>  (GeV) 2.3x10 % 2.0x10% 1.8x1074
W O (GeV) 5.8x10 > 4.8x10 > 4.3x10 °
8. ¢>  (GeV) ~1.7x1073 -1.3x107° -1.1x10 >
¢V (6eV) 8.6x10 % 7.0x10°* 6.2x107%
Ly, (GeV) 10.193 10.498  10.756
L, (GeV) 10.183 10.490  10.748
Ly (GeV) 10.167  10.476  10.737
L, (GeV) 10.184  10.491 10.750
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Fig. 4a. Calculated 1levels of cc. The dotted lines are the
experimental data taken from reference (20). The levels with

asterisk are used as input data in the parameter fitting.
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5.2 Topponium

Topponium spectroscopy is studied for several values of the
top quark mass m, in the expected range, 20 GeV £ m, £ 60 GeV
with the LCQCD potential. Summaries of the results are given in
Table 2 and in Figure 6. Even for the large top quark mass, the
average orbit <r> of the ground state is not so small,
{r> ~ 0.2 - 0.5 GeV—l, compared with the case of naive limnear
plus Coulomb potential. This indicates that a top quark can not
reach deep inside due to the QCD attenuation of the vector
potential. Therefore, the ground state is pushed up and the
level spacing becomes narrower, as shown in Figure 6a and 6b.
The region of the top quark mass which experiments are expected
is 30 GeV - 40 GeV, 1In this region the level spacing between 1S
and 2S states is estimated about 800 MeV in LCQCD while in LC
that becomes 1.3 GeV — 1.7 GeV. The hyperfine splittings of S
states in the tt also become very small. At mt = 30 GeV, for
instance, M(13S,) - M(11S,) = 27 MeV in the present potential,
while it is about 500 MeV in the mnaive linear plus Coulomb
potential (LC). For the P states, it is shown that spin—orbit
force due to the scalar confining potential becomes negligible.

We can expect the asymptotic form of the ratio eq.(3-1) as

212 - 11c - _a?

R~ 5 S5-o-25o-1—>7 = 0.93, (5-3)

for m > o and o = 0.582 in LCQCD, Figure 7 shows the numerical
results of the ratio R for the 1P and 2P states comparing LCQCD
with LC, It is almost constant as R~ 0.9 in case of LCQCD and
R~ 0.8 in case of LC. Thus studies of the level structure in
the topponium afford a sensitive test of the potential form at
short distances.

The scale Aﬁg in the perturbative QCD will also be
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determined from the tt spectra. As the scale is raised from
0.3 GeV to 0.4 GeV, the vector potential around the origin

becomes deep and binding energy of the tt system increases. The

1S binding energy in Aﬁg = 0.4 GeV is 1.552 GeV at mt = 30 GeV,

which is compared with 0.765 GeV in Aﬁg = 0.3 GeV. The level
spacing between 1S and 2S is also larger by 60 MeV in
— = 1 A——- = 2

Ajs = 0.4 GeV than that in Ape = 0.3 GeV. [|¥(0)[> has 5%

difference between them, Accordingly, the tt spectra will be

sensitive enough to determine Aﬁ§‘
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Table 2
Energy 1levels and several expectation values of tt states versus

top quark mass m_.

t
m, 20 30 40 50 60
118, 38.969 58.759 78.597 98.462 118.35
1S 1°s, 39.001 58.78  78.620 98.483 118.37
anlw(0)1®  77.618 164.18 280.20 424.69 596.93
ey 0.439 0.343 0.288 0.251 0.224
215, 39.676 59.517 79.398 99.301 119.22
28 238, 39.687 59.526 79.406 99.308 119.23
anlw(0)|®  30.041 60.665 100.98 150.71  209.63
(e 1.107 0.881 0.746 0.654 0.587
318, 40.021 59.870 79.761 99.675 119.60
3s 338, 40.028 59.876 79.766 99.679 119.61
anl¥(0)|”  19.582  37.722  60.934 89.074 122.03
(e 1.757 1.428 1.224 1.083 0.978
average 39.565 59.399 79.274 99.171 119.08
1P 3*P,-3P, 0.027 0.021 0.018 0.017 0.02
(r) 0.844 0.668 0.563 0.493 0.442
average 39.565 59.792 79.682  99.593 119.52
2P 3P,—*P, 0.015 0.011 0.010 0.009 0.01
(r) 1.508 1.220 1.043 0.921 0.830
1D average 39.863 59.713 79.602 99.513 119.44
2D average 40.132 59.983  79.877 99.793 119.72
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Fig. 6a. Top quark mass dependence of the c.o.g!s of S states in

the tt system in LCQCD,.
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the tt system in the linear plus Coulomb potential (LC).

Parameters are the same as those in Figure la.

It is found that

the ground state energy is well described with the Bohr's

semiclassical formula for the pure Coulomb potential.
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6. DECAYS OF HEAVY QUARKONIA

The smearing the vector potential by the perturbative QCD
strongly affects the wave function at the origin which is closely
related to the annihilation decay width of quarkonia. We use the
annihilation decay formula with the first order QCD corrections
given by Lepage et al.(21) There is a serious suspicion about
apply this formula to the charmonium since the relativistic
effect is mnot mnegligible. The decay formula factorized by
lw(0)l2 will be well applied to the bottomonium since the
relativistic effect is small ( (v/c)2~0.08, see Table 1 ). The

situation will be much better in the tt system. We determine

~ ~ +30
—_— 1 2 —_— =
AMS' independently of |¥(0)[2, as AMS 115__15 MeV from the
experimental value of the muonic ratio of decay,
TCT > pip)
= - BB = + -
BPM(T) Y =5 all) 3.16 + 0.4. (6-1)

We <can predict all the decay widths of heavy quarkonia by using
the wave function at the origin, which has been evaluated in the
previous section. The total anninilation widths of T, T', T
and T''' are calculated in the present potential (LCQCD) and are

compared with the linear plus Coulomb potential (LS)(S) and the

power law potential (PL)(S). The results are shown in Figure 8
and it is noted that LCQCD gives a good fit to the experiment of
the total decay width of 7T, while LC gives too large and PL does
rather small for it. It is hopeful +to have the total
annnihilation widths of the excited states in order to compare
the predictions with experiment.

Decay widths of the tt ground state are shown in Figure 9

with Xﬁg = 0.115 GeV. The formulas wused in this section are

_40._



given in Appendix B. It is found that the total decay width

slowly decreases as m increases up tom,_ ~ 30 GeV. This is

t t
strongly in contrast to LC, which predicts a sharp increase of

the total decay width Ik. At m, = 30 GeV, for instance, LCQCD
gives f& = 45 keV, while LC gives I& ~ 400 keV. Since the weak
decay of type t —> b+W does not depend upon the wave function at
0" r(e—> b+W)/Ii becomes large
as m, increases. At m, = 30 GeV, Bw = 22 % in LCQCD, while Bw ~
2 -3 % in LC.

the origin, the branching ratio B

. The Drell ratio at the resonance peak is calculated by the

formula

= 28 _1__¢g¢ X0.4, (6-2)

when AW is the beam energy resolution and the factor 0.4 is just
an estimate of the radiative crrections. Figure 10 shows Rpeak
for AW = 60 MeV which gives Rpe = 4-5 for m = 15 to 40 GeV.

ak
Radiative transition widths of the cc¢c and bb are calculated
and tabulated in Table 3. It is rather difficult to fit the
cascade decay of the cc to experiment without considering the

relativistic corrections.(23’24)

For the M1 tramsition from 3§,
to 18,, a calculation is also carried out with the relativistic
correction and its results are presented, which agree fairly well
~with experiment. In the present paper farther detailed

discussion is not made.
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Fig. 8. Total annihilation widths of T, T', T'' and T''’' for the
present potential (LCQCD), for the limear plus Coulomb potential
(LC)(3) and for the power law potential (PL)SS) Experimental data
are taken from reference (22). It is noted that the data of the
excited states include the non—annihilation contribution, for
example, transition to lower bb states emitting photons or pioms,

The theoretical value must be compared with the one given by

subtracting it from the raw data.
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Fig. 9. Decay widths of the tt ground state: the solid curve

’denotes the accumurated total decay width, eq.(B-19). The dotted
curve is the width TI'(tt —-> 3g), eq. (B-2) and the
dash-double-dotted curve shows I(tt —> +v2g), eq.(B-3). The
partial decay width r(tt = y*, Z* -> ff) in eq.(B-7) is given by
the dashed curve. The dash-dotted curve is I'(t(t) -> b(b)W) in
eq.(B-5) due to the weak charged current. The sharp peak is due

to the threshold of the Z boson. We take m, = 89 GeV and FZ =3
GeV.
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Table 3
Radiative decay widths (in keV) of cc and bb states. Results in
parentheses are calculated with the relativistic correction terms

according to reference (22).

transition mode cc bb
1P(J=2) - 1S 535 40.2
(1=1) 391 33.5
(7=0) 178 26.3
28 - 1P(J=2) 33.5 1.6
(7=1) 49.2 1.9
(7=0) 59.3 1.2
38 -y 1P(J=2) = - 4.3x10 4
(7=1) —— 3.1x10"%
(3=0) ———— 1.3x10°4
E1
2P(J=2) -» 1S = ————- 9.0
(7=1) — 8.5
(1=0) ——— 8.1
2P(J=2) -> 28 = ———— 18.7
(7=1) — 15.5
(7=0) _— 12.6
38 -y 2P(J=2) = -———- 2.2
(IJ=1) - 2.2
(7=0) — 1.1
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Table 3

(continugd)

transition mode cc bb
135, -» 11§, 2.94 5.14x10 2
(1.19) (4.282107%)
M1 23S, -» 21§, 1.39 4.83x107°
(0.21) (3.66x10 )
33§, -» 318, = ———— 1.91x107°
————— (1.30x10°)
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7. SUMMARY AND DISCUSSIONS

Heavy quark bound systems have been studied on the
assumptions that [1] an asymptotic QCD form of the potential at
short distances is continuously connected to the Coulomb
potential and [2] a 1linear confining potential has a scalar
coupling to a quark. The fine and hyperfine interactions are
obtained from this potential by the FW transform. We think that
a unified version of potential model for heavy quarkonium is
established in this paper. The asymptotic QCD form of the
potential plays an important role to reproduce the hyperfine
splittings of the heavy quarkonia, and it has a large effect on
the wave function at the origin, which gives a exellent fit to
the T decays. It also has a direct influence on the topponium
spectroscopy and decays.

There remains, however, some questions to be discussed.
First, some objections to the Gromes'’ treatment(14) for the
scalar retardation effect are made.(16'17) Miller and Olsson(16)
suggest that the Gromes’ treatment can mnot coincide the FW
transform of the Dirac equation with the external field when one
of two quarks has an infinite mass. We are suspicious that the
equivalence between the BS equation and the Dirac equation in
above 1limit may not hold when the retardation effects are taken
into account. Barnes and Ghandour(17) raised objections not only
to the treatment of Gromes’ but also to that of Miller and
Olsson’s. They calculated the scattering amplitude for the
scalar potential in the framework of q, = 0, zero emergy transfer
system, We think, however, that the retardation effects can not
be appeared so as to work in the q, = 0 frame., Revealing this

puzzle is 1left to future studies. Even if there exist some

deviations from the present calculation, the conclusions of this
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paper are not changed since the retardation effects from the
scalar potential are several ten MeV in the charmonium and have
effects on only c.o0.g!s of the heavy quarkonium spectra.

Another gquestion is why the scale Agg in the potential is

MS
different from the A-— determined from the T decay. There are

MS
two kinds of terms which are not covered in the FW transform.
One is the finite terms which appear in the perturvation of
0( a;(u) ) in the quark—antiquark scatterings. Another is

singular terms proportional to 1n(Q2/m2). The spin-spin

interaction, for instance, is written as(7)
n =22 32;21 C,(R)[1 + Sfiéll—lZK], (7-1)
with
K =C+ (7/8)C,(G)1n(Q%/m?)
—(1/12)[11Cz(G)—4T(R)Nf]1n(Q2/u’), (7-2)
and

C = —(1/2)C,(R) + (11/18)C,(6) - (5/9)T(RIN,
+ (16/9)C, (R)(1-1n2), (7-3)

where mnotations are also followed in reference (7). The first
’and second terms in eq.(7-2) are not covered in the FW transform
but the third omne is.

One possibility to implegent the discrepancy between Aﬁg
and Aﬁ§ is that the finite terms ( C of eq.(7-3), for instance )
play a role to adjust the scale. Although we know of the finmite
terms calculated by Gupta et al.(25) the exclusive calculations

are open problem left to future studies. It is also noted that
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there are some suggestions that the scale A may depend upon a

certain process.(26) The singular term proportional to 1n(Q2/m2)

( 6,25,27)

doubles the complexity. A simple estimation shows that

its contributions to the spin dependent terms in H are not

BF
remarkable, as given in Table 4. Further theoretical studies are

needed to estimate its numerical contribution,
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Table 4a
Rough estiomation of the 1n(Q?/m2) term (L) and the annihilation

term (A) for the 1S hyperfime splittings.

18 Nf mQ(GeV) as(mQ) L (MeV) A (MeV)
cc 3 1.553 0.478 22.54 1.45
bb 4 4.916 0.288 2.61 0.35
tt 5 20.0 0.204 - 0.14 0.13
60.0 0.160 - 0.50 0.07
Table 4b

Rough estimation of the spin dependent 1n(Q%/m2?) terms for the 1P

states. The LS and tensor terms are calculated according to the
1n(Q2?/m2?) dependence in the vector coupling.(6'25)
1P mQ(GeV) AVLS(MeV) AVT (MeV) AVSS(MeV)
cc 1.553 1.25 - 0.96 -12.65
bb 4.916 - 1.45 - 0.58 - 3.15
tt 20.0 - 0.89 - 0.28 - 1.16
60.0 - 0.58 - 0.17 - 0.65




Appendix
A. Explicit Form of Operators Appeared in the BF Hamiltomnian

In Section 2 the BF hamiltonian is obtained for a scalar and
a vector potential. There appear several operators, which omne
may mnot be familiar with. In this appendix we specify their

explicit form used in the present calculation.

Spin dependent operators are evaluated in Table 5 for given
quantum numbers, L, S (total spin) and J, where only diagonal
matrix elements are mneeded and shown so far as the first order

perturbation.

Differential operators can be reduced those which act on w(r) in
eq.(2-18). When there is an operator OV where O is a
differential operator such as P2 and V is a function of r. We

define [ O ] as

<oV > =f(w*[ 0 Jw) (r)V(r)dr, (A-1)

where O does not operate V. In this notation differential

operators presented in Section 2 are written as

[p2 ] =-32 + LlIE1), (A-2)
-— — - —_ 2 2
[ p* ] = 82-92 -~ I:LI:;ll(az.Faz) + !.‘_.(_L;ll_, (A-3)
r r T r r T
1
[ P2 ] =- 33225 .5 +32 + 2(5 47 ) - 4LLAA2, - ()
4 'r r r r r ' r r r
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(32 - 25 .3 + 32 + -22)., (A-5)
r r r T b

[ W)z 1=~

NN

Here operators, 3; (5;) are d/dr which act on the initial (final)

w(r) and not on the potential part V.
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Table 5

Spin dependent operators in the H for states which have orbital

BF
angular momentum L.

28+1 - = oo
LJ ai-L (i=1,2) c,- 0, 812
2L

3 — ———— ———

L L 1 2043

1 —

LL 0 3 0

3 -

LL 1 1 2
2(L+1)

3 — - —m—_———f

L4 2L 1 T




B. Decay formulas of the Heavy Quarkonium

Annihilation decay formulas are calculated with first order QCD

(21)

correction by Lepage et al. Partial widths of annihilation

process, [(QQ -> pp), I(QQ - 3g) and I(QQ —> y2g) are written

as,

and

Here

reQ -» pp) = - .
" vl 6 O M)
= 16m zea—"’-ﬁ-‘}l--u ~ —15— T B (B-1)
- 160 l¥(0) | e (M?)
rQQ -» 3g) = ””gi-(ﬂ2-9)a;(Mz)——ﬁ;'——{l + C——ﬁ;——}, (B-2)
rQQ -» y2g) = 12§(nz_9)aezaz(Mz)f££921_z
‘ g 9 s M2
as(Mz)
x{1 + o). (B-3)

eQ denotes a fraction of quark charge and M is a energy

level of the Qa system, as(Qz) and C are defined by,

with

and

as(Qz) = a;[l - ag(102—38Nf/3)/{4n(11—2Nf/3)}
X lnln(Q"//\z)] ’

a; = 4n/{(11—2Nf/3)1n(Q2/A2)}.
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4.95 for below cz threshold,
3.80 for below bb threshold,
3.10 for below tt threshold.

Q
I

I

In the heavy guarkonia weak decays also become important as well
as those of annihilation, because weak decay width is
proportional to m$5., Partial widths of the weak process, reeq -»

Q
W —> all) and Fw(tt —> bb) are expressed as,

r(QQ -» W -> hadron) = 3x2xN_G (m./m )5, (B-4)
fpQ p

reQ -» W -> all) = 3x2xGu(mQ/mu)5 + I(QQ -> W —> hadron),

(B-5)

and
R (eE = 68) = (62/(3m) 30 [w(0) | ” /= (B-6)
Here Gu = I'(p —> evr) and mu is the muon mags. GF is the Fermi

coupling constant.

In the topponium, weak neutral current has a significant effects
on its decay width,. From the standard Weinberg—Salam model,

reect-> v, z° - } £T) is obtained as
£

M2
+ ((-m2) > *m22] (251026,

r(tt - y*,z*—> } £f£) = T } [e2
£ ppL, £
[2vtvf(ef/et)(M2-m%) + v:(1+v;) ——————————— 11, (B-7)

2 ; 2
et(2$1n26w)
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where f denotes a quark or a lepton. Here Ve is defined by

vy = —1+4sin"9w for 1 =e, p, T,

v = 1,
= - in? =

vq 1-8/3sin Gw for q=mu, ¢, t,
= - in2 =

vq 1+4/3sin ew for q d, s, b,

0.23 and the
3 GeV in the

M is the energy level of the tt. We use sinzew

il

mass and width of Z Dboson, mZ = 89 GeV and Ti
present calculation.

Consequently, the hadronic decay width and the total decay

had
width T of the tt ground state are given by,
rhad = I'(tt —> 3g) + I'(tt —> v2g)
- * %
+TE > 7,2 > ) q) (B-8)
q
+ r(tt => W -> hadron) + rw(tE ~> bb),
and
re = r(tt - 3g) + I'(tt —> y2g)
— * % N
+ I (tt >y ,Z —> / ff) (B-9)
f

+ T (tt = W -> all) + rw(tE -> bb).
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