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INTRODUCTION

This paper studies general solutions at an irregular singular
point of Painlevé differential equations and nonlinear 2-systems
relating to them.

As is’ well known, Painlevé equations were discovered by
P. Painlevé and B. Gambier in order to define new transcendental
functiqns. Since then, the new transcendents, called Painlevé
transcendents, have been a subject of many investigations. However,
the research so far done seems to be far from completion.
Furthermore it has been known that Painlevé transcendents now
frequently appear in phyéics such as in quantum field theory and
gravitational field theory ([9],[19]).

The author is interested in studying the fixed singular points
of Painlevé equations, in partidular, in constructing analytic
expressions of general solutions near the fixed singular points,
for the movable singular points are knowp to be merely poles. There
are two types of fixed singular points: one is regular type and
the other irregular type. The general solutions of Painlevé
equations at their fixed singular points of regular type were
obtained by several authors ([15],[10],[18]). Concerning their
singular points of irregular type, K. Takano ([17]) first obtained
an analytic expression of a general solution for Painvevé (V) by
using the idea of M. Iwano ([5]). The analogous result was also
obtained by the present author for Painlevé (IV). Recently, S.
Shimomura . ([16]) proved that the formal general solution due to K.
Takano converges without the additional assumption introduced by

him.



In this paper we shall first establish a general theory for
constructing a general solutiop of a certain 2-system of nonlinear
differential equations with a fixed singular point of irregular
type, and then apply this theory to all Painlevé equations at each
irregular singular point. The general theory 1is described in
Chapter I and its application in Chapter II.

The author wishes to express his deep appreciation to Professor
Masahiro Iwano who showed much interest in this work and gave
fruitful suggestions to him. The author also wishes to express his
sincere gratitude to Profeséors Kyoichi Takano and Shun Shimomura
who gave kind advice and fruitful suggestions to him, and to
Professors Taro Ura and Sadakazu Aizawa who gave to him ceaseless

and sincere encouragement during this research.
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CHAPTER 1I.
A GENERAL SOLUTION OF 3-SYSTEM (E).

§ 1. Statement of Main Results in Chapter I.
As is shown in Chapter II, every Hamiltonian system associated

with each Painlevé equation can be reduced to a system of the form
+1 i~ :
(1.1) x®lay,/dx = {(-1)] Li(x) + asx®ly; + £5(x,y4,y,), §=1,2

at each fixed singular point of irregular type by a biholomorphic
transformation. Here ¢ 1is &a positive integer, x, Yi» yp are
complex variables, A(x) is a polynomial of x of which the degree
is less than ¢ , A(0)#0, and fj(x,yl,yz)'s are bounded holomorphic

functions of (x,yl,yz) for

(1.2) 0 < |x] < ry, larg x - c-iargx(O) - (1/2 + m)n/o] < 7 - €0

(1.3) lyl = maxClyy ], ly,1) < oq
with
(1.4) fj(x’yl’yz) = 0(')"2)9 j=1,2

m being an integer with Ogms2¢g-1, and the coefficients of their
Taylor expansions in Yy and y, at y1=y2=0 admit asymptotic
expansions in powers of x as x+0 in (1.2), the symbol O in
(1.4) denotes Landau's symbol. We note that (1.1) is a system having
a singularity of irregular type at x=0 which does not satisfy
Poincaré's condition. The purpose of this chapter is to obtain a
bounded general solution of (1.1) in a subdomain of (1.2) satisfying

the condition
(1.5) yq¥q = 0(x%),

for it is strongly expected that the solution of (1.1) with the

-1 -



property yj+0 (j=1,2) as x+0 satisfies this condition. We notice
that, for any preassigned value aO#O, system (1.1) can be reduced
to a system of the same form with A(O)=ao by a scale transformation
of x. Remark that the constants aj's - are invariant under this
transformation. Therefore, we can suppose that A(0)=¢g and argi(0)=0.
We denote the sector (1.2) by Sm(eo,ro).

By using Iwano's symbol 1(:) , system (1.1) can be written in

a vector form as
(1.1) x9*dy/dx = (A(x)1(1,-1) + x%1(a))y + £(x,y),

where y, a and f are 2 dimensional column vectors, and, for a
vector a , 1(a) denotes a diagonal matrix of which the j-th
diagonal component is the j-th component of a . The symbol 1(-)
is frequently used in this paper. We use the wusual notation, for
example, for a multiple index k=(k1,k2,'--) and a column vector

t
y="(y4s¥95°**), we put

(1 6) |k|=k1+k2+.-.’ y =y1 y2 see
ly| = max('y1|,|y2|,---),

and k 2 k' means kj 2 kj for every j.
By a similar method as in [17], we see that (1.1) can be

reduced to

(1.7) x*14z/dx = (A(x)2(1,-1) + x%1(a) + zlzzﬂ(a'(x))]z
+ (zlzz)zl(z)g(x,z)

by a holomorphic transformation of the form

(1.8) y =z + pk(x)zk.

|k{zz



Here, pk(x)'s and a'(x) are vector functions holomorphic and
bounded in _Sm(eo,r) admitting asymptotic expansions in powers of
x as x»0 in Sm(eo,r), the series of the right side of (1.8) is

absolutely and uniformly convergent for
(1.9) X € Sm(eo,r), |z] <o»p

and g has the same properties as f in (1.9), provided that r,
p > 0 are sufficiently small. The existence of such a holomorphic
transformation will be proved at the end of this chapter.

In order to construct a general solution of (1.7) satisfying
the condition analogous to (1.5), we introduce a new variable z2g

given by

(1.10) zg = x_ozlzz.

Then, by putting

(1.11) t(21'22’23)v h(t,w) = t(gl(X,Z),gz(xb,Z),gl(x,z)+g2(x,z))

B = “(ag,ap,01%a,-0), 8'(x) = "(af(x),a5(x),a] (x)+a}(x)),

we obtain the 3-system

(1.12) x®law/dx = (A(x)1(1,-1,0) + x93(B) + x%w;1(8" (x))}w
2

+ x2%,21(w)h(x,v).
Thus, for any solution t(zl(x),zz(x)) of (1.7), the vector function
t(zl(x),zz(x),z3(x)) with (1.10) becomes a solution of (1.12).
Conversely, it can be verified that if a solution W=

t(zl(x),zz(x),z3(x)) of the system (1.12), when Zyy Zyy 23



considered as dependent variables, satisfies the relation (1.10) at
some point X=Xq, then the z = t(zl(x),zz(x)) represents a
solution of the system (1.7). Thereforé, in order to have a general
éolution of (1.7), it is sufficient to obtain a 2-parameter family
of solutions of (1.12) satisfying (1.10) at some point x=x,. Here,
we remark that -by making a simple transformation, we can suppose
B'(x) in (1.12) 1is equal to a constant vector B' = lim B(x).
x+0, xeS

. Thus we have arrived at our starting point of this chapter: we would
like to construct a formal general solution of (1.12) and prove its
convergence.

In order to. avoid unnecessary complication, we consider a

3-system of more general form than (1.12). The system which we are

going to study is of the form

(E) ‘ x°+1dy/dx = {a(x)1(1,-1,0) + x%1(a) + x°y3ﬂ(a')]y
+ x* () e(x,y).

Here, we assume:

(1) o 1is a positive interger,

(ii) a(x) 1is a poiynomial of the form
o-1

(1.13) Ax) =0+ ] anxt,
i=1

(iii) y = t(yj), f = t(fj) are 3-vectors and a = t(uj), a' =
t(a;'.') are constant 3-vectors,

(iv) f(x,y) is a vector function holomorphic in a domain

Dm(eo,ro,po) in the (x,y)-space defined by

(1.14) ' X € sm(CO’rO)’ IY| < Po



with
(1.15) | £(x,y) = o(lyl?),
where Sm(co,ro) is a sector in the x-plane defined by
(1.2) 0 < |x| <ry, |arg x = (1/2 + m)n/o| < = - €g»
(v) the coefficients fk(x)'s of the Taylor expansion of £ ,
(1.16) (o) = £, (v,
[k[22

have asymptotic expansions in powers of x as x+0 in Sm(co,ro).

The first theorem we obtain is

Theorem 1 (formal transformation). Assume that kl(u1+a2)+k3a3
is not a negative integer for all nonnegative integers kl’ k3 such

that 2k1+k322. Then there exists a formal transformation

(1) y = 30 [ p (x)¥%)
k20

with po(x) = t(1,1,1) and pk(x) = 0 (|k|=1), which reduces system

(E) to the system
(B x*lav/ax = (A(x)1(1,-1,0) + x%4(a) + x°¥31(a’) }¥.

Here, every p,(x) is a holomorphic vector function in Sm=86(eo,r0)

having asymptotic expansions in powers of x as x+0 in Sm with
(1.17) Pk(X) = O(x(l-a(k))o-'-l)y |k| 2 2,

where §(k) = 8 k. 6k1k2 being Kronecker's delta.
172

We can obtain the general solution of (E') by quadratures. 1In



particular, in the case o3 = a3 = 0, we have

PR a.+a!C
(1.18) Yj(x) = Cje( 1)7a(x), 7577 3 5=1,2,
Y3(x) = C3,
and, in the case a3 # 0, we have
(-1)3n(x) % .
(1.19) Yj(x) = Cje X Qj(Y3(x)), j=1,2,

3 . 3
-Y3(x) = C3x /{1 - (a3/u3)C3x }s

where
X _o-1 ot i .
(1.20) M) = - [ X 0dx = 1+ I apt/Gemn),
(1 + (a2/asn)d/®3 (al # 0)
+ ! !
(1.21)  qy(n) = { o3 e "3
e(aj/a3)ﬂ (“é = 0),

j=1,2, and Cyy Gy, Gy are integral constants. Let Y(x) be the
general solution of (E'), then, by substituing Y = Y(x) in the
right side of (T), we obtain a formal general solution of (E). The

following theorem is the main theorem of this paper.

Theorem 2. Assume that (a) a3=aé=0, Re(u1+a2)>0, or (b)
a3#0, Rea;20, Re(a1+u2)>0 holds. Then, for every € with ¢ >
€0» there exist sufficiently small r and p > O such that the
power series ) pk(x)Yk in (T) converges absolutely and uniformly in

k20

Dm = Dm(c,r,p) and represents there a holomorphic bounded vector

function.
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Remark 1. Each assumption (a)bor (b) implies the assumption
in Theorem 1.

Remark 2. ' Combining Theorems 1 and 2 and observing the
behavior of the general solution of (E'), we obtain a bounded

general solution of (E) under assumption (a) or (b).

Now we consider the 2-system (1.7). By applying the above
theorems to the system, we have

Theorem 3. Assume that (a') aytay-0 =0, ai+aé=0 or (")
ayta,-0#0, Re(a1+a2-o)20 holds. Then, for every ¢ with ¢ >
€g» there exists a general solution z = ¥(x,Y(x)) of (1.7) with

the properties that:

(1) ¥(x,Y) is a holomorphic vector function of (x,Y) in D_(e,r,p),

and has there a uniformly convergent expansion in powers of Y of

the form
(1.22) ¥(x,Y) = 8(¥,¥,)( I q (x0¥%),
1*°2 K k
20
r and p being small positive numbers. Here, qo(x) = t(1,1),

and every qk(x) is a holomorphic vector function in Sm=Sm(e,r)

having asymptotic expansions in powers of x as x+0 in Sm with

(1.23) q (x) = o(x{1-8CKNo*ly 1y g,

(ii) Y(x) = t(Yl(x),Yz(x),Yé(x)) is the vector function given by
(1.18) or (1.19) according as (a') or (b') holds with

(1.24) C, = C,C

3 172°



In order to obtain this theorem, we have only to prove that
(1.24) is equivalent to - (1.10) at some point X=X() which is
verified as follows. For every solution w=w(x) of (1.12) and

every solution Y=Y(x) of its simplified system, it holds that
d/dx log{zl(x)zz(x)/(x°z3(x))} = d/dx log{Yl(x)Yz(x)/(x°Y3(x))} = 0,
Hence we have

zl(x)zz(x)/(x°z3(x)) = K-Yl(x)Yz(x)/(x°Y3(x)) = K'CICZ/C3

with some constant K. By taking the limit along the curve F(xo)
defined in § 4 or § 7 and by using (1.23) we obtain K = 1.

We shall prove Theorems 1 and 2 only for m=0 and denote S0 and
D0 simply by S and D, respectively.

In § 2, we prove Theorem 1. In order to show Theorem 2, we
derive the so-called truncated systems of differential equations and
prove a fundamental existence lemma (hereafter called Fundamental
Lemma) for such systems. In § 3, we first state Fundamental Lemma
and next show how to prove Theorem 2 by using this lemma. In §§ 4,
5 and 6, we prove Fundamental Lemma in detail in the case where
assumption (a) is satisfied, because the case corresponds to
Painlevé equations. The proof of Fundamental Lemma under assumption
(b) is simply shown in § 7.

In order to show Fﬁndamental Lemma by our method, we have to
determine a path F(xo) of integration and the so-called stable
domain ® associated with (E'). We determine r(xo) and £ by
the pull back of a curve and a stable domain in the case ¢=1, and

then we have to consider the inverse mapping x = =(w) of the



mapping

(o] :
w=1/M(x) = x%/{t + | a;x"/(a-1)},
i=1
where the branch of = is determined by the relation that arg x +
n/(2¢) as w+0, argw = w/2. It is convenient to represent x = =(w)

as
(1.25) x = wl/0g(u179)

where g(p) 1is holomophic at u=0 with g(0)=1.

§ 2. Proof of Theorem 1.

In this section, we shall prove Theorem 1. We denote by
A(eo,ro) the set of all functions or vector functions of x which
are holomorphic and bounded in a sector S(eo,ro), and having
asymptotic expansions in powers of x as x tends to the origin in
S(eo,ro).

2.1. We use the following lemmas which are special versions of a
more general theorem due to M. Hukuhara ([1]). We notice that

S(eo,ro) contains a singular direction of the equation in Lemma 1.
Lemma 1. Consider a linear differential equation of the form

o .
x°+1dp/dx = (] aixl)p + b(x)
i=0



where ¢ 1is a positive integer and ai's are complex constants.

1f a, is a non-zero real number and b ¢ A(eo,ro), then the

equation has a unique solution p ¢ A(eo,ro).
Lemma 2. Consider a linear differential equation of the form
x dp/dx = agp + b(x),

where: a, 1is a complex constant. If b e A(so,ro) and if there
exists a formal power series solution of x , then there exists a
unique solution p e A(eo,ro) of which the asymptotic expansion

coincides with the formal power series solution.

2.2. °  Recall that (1.16) is the Taylor expansion of f in powers
of y . Then in order that formal transformation (T) reduces (E) to

(E'), it is necessary and sufficient that the equation

(2.0 1 [x*ldp, /dx + {(k; = k)a(x) + keax®}p, J¥*

=- 7 (k- e3)-a'x°pk_e3Yk

%) 3(a")( <)

P13y a Py

3k' kzzo k "

+ X0+1]( Z pkak ) f Ym( z PknYk )m
k'20" fm k"20

22 ™

holds as formal power series of the Y. Here we denote by k+ra the

inner product

(2.2) kea = ] kjao,

- 10 -



and by pj, the third component of p,, and put ez = (0,0,1), 0 =
(0,0,0). We see that constant terms on both sides of (2.1) are
equal to zero. Next we can verify that if pk(x) =0 (|k[=1) the
coefficients of Yk (|k|=1) on both sides of (2.1) .are equal to
zero. By equating the coefficients of vk (|k|22) on both sides of
(2.1), we have

(2.3)k x°+1dpk/dx + {(k1 - kz)x(x) + k'axo}pk = x°Rk +.x°+1Ré ,
where each component of Rk is a polynomial of components of pk.'s
with O0s|k'|s]k|-1 of which each monomial has a component of some
P+ with |k'|22 as its factor, and each component of R& is a
polynomial of components of pyi's and f,.'s with 0s|k'[s|k|-2.

We shall show that (2.3)k's can be solvable successively. For
every k with |k|=2, we see R, =0 and then the right hand side
of (2.3), is of order 0(x**1). If k, # k,, then, by Lemma 1, we
can determine uniquely Py € A=A(c0,ro) with Py = O(x°+1). If k1
= k2, then (2.3)k.becomes

X dpk/dx + [(k1 + kz)a1 + k3a3}pk = b(x)

where b € A, b= 0(x). From the assumption of Theorem 1, it
follows that the equation has a unique formal solution of the form
) Py .x* with Py i € C3. Therefore, by Lemma 2, we can obtain a
151 ki y i
unique solution p, € A with p, = o(x).
Suppose that for every k' with |k'|sN (N22), we have
determined p,« € A  satisfying (1.17). Then, for every k with

k|=N+1, the right side of (2.3), 1is of order O(x°+1). Therefore,
k

- 11 -



by the same argument as for |k|=2, we see that we can
uniquely determine the solution Py € A of (2.3)k with (1.17).

Thus, we have proved Theorem 1.

§ 3. Fundamental Lemma for truncated differential systems.
3.1. Systems of truncated differential equations.

For every integer N 2 2, set
(3.1) Py (x,Y) = p(RYX.
[k[sN
Then, in order that
y = ]](Y)(PN(X,Y) + ’P(X,Y))
transforms system (E) into system (E'), it is necessary and

sufficient that ¢ satisfies the system of partial differential

equations

k
(3.2)y x dg/dx = - x dP/dx + Y.( | pa Y + 9)(Py + o)
N N 3 25|k | sN 3k 3 N

+ x1(Py + @) E(x,1(Y)(Py + 9)),

where the formal operator x d/dx denotes the partial differential

operator

2 .
x 3/3x + x°9 ) {(-1)J-lx(x) + a,x? + a!x°Y3)3/8Y.]
j=1 J J ]

+ (a3 + aéY3)a/aY3.

- 12 -



We denote by fN(x,Y,w) the right side of (3.2)N, namely,

(3.3) : fN(x,Y,w) = - x aPN/ax

2 .
x7% T {(-1)37IN(x) + a.x% + o!x%¥,] 0P /0¥,
j=1 J 37 3TN

t
(u3 + u3)aPN/3Y3 + Y3(

1

k
I P Y+ ) (Py + ¢)
25| k|sN 3k 370N

x1(Py + @) E(x, 1Y) (Py + ¢)).

+

It is easy to see that ¢ is a solution of (3.2)y if and only if ¢

= ¢(x,Y(x)) is a solution of
(3.4)N x de¢/dx = fN(x,Y(x),w)

where Y(x) is a general solution of the reduced system (E').
Notice that on the left side of (3.4)N, the operator d/dx 1is the
usual ordinary differential operator.

From the fact that (3.2)N has a formal power series solution ¢
- I p (Y with p, = 0(x(1-8(k))o*ly (|1 12N+1) and Erom

[k|2N+1 _
the definition of fN’ we obtain

Proposition 1. fN(x,Y,¢) is holomorphic and bounded for
(3.5) x € S(eq,rn), Y| < R lo| < Ay
and satisfies in this domain the equalities
(3.6) |£4(x,¥,0)| s cylx||¥|N*

(3.7) IfN(x’Y)¢) - fN(X’Y)W)l s M(lxl + |Y|)|@ = Wls

- 13 -



for some constants CN’ M >0, M being independent of N,

provided that rﬁ, pNs By 0 are sufficiently small,

From (3.6) and (3.7), it follows that
(3.8) |£4(x,Y,9)| s C |x||Y|N+1 + M(|x| + [Y])]o]
' NS T ® N : ¢

for (x,Y,p) in (3.5).

3.2, In this part, we first state the fundamental existence lemma

for (3.2)N.

Fundamental Lemma. Assume that (a) or (b) holds. Then, for

every Nz2, there exists a solution ¢ = ¢N(x,Y) of (3.2)N

holomorphic and bounded in D(c,rN,pN) satisfying there

(3.9) og(x,¥) = o(|x] [¥|"*y,

provided that ry, Py O are sufficiently small. Further the

solution of (3.2)N with (3.9) is unique.

Since (3.2)N is equivalent to (3.4)N, we see that ¢ is a
bounded holomorphic solution of (3.2)N in D = D(e,rN,pN) with
(3.19) if and only if ¢ 1is a solution of the following integral

equation
(3.10),, 9(xg1¥g) = Ir(xo)x'lfN(x,Y(x),¢(x,Y(x)))dx

for an arbitrary point (xo,YO) € D. Here Y(x) is the solution of
(E') satisfying Y(xo) = Y, and r(xo) is a suitable curve joining

x=0 and X=Xqe

- 14 -



3.3. We shall show hew to prove Theorem 2 by making use of

Fundamental Lemma. Assume that Fundamental Lemma is valid. For

every N 2 2, put
N
P (X’Y) = PN(X’Y) + ¢N(X’Y)!

‘where ¢N(x,Y) is the unique solution of (3.2)N with (3.9). Then

the transformation
N
y = ﬂ(Y)¢ (X,Y)

changes (E) to (E'). We can suppose that ry and py are monotone
decreasing in N. We shall show that ¢N is independent of N.

For any N' and N with N' 2 N 2 2,
(PN' - PN) + (PN'

is a bounded solution of (3.2)N holomorphic and of order
0(|x||Y|N+1) in D(e,ryi,pye). Then by the uniqueness assertion in
Fundamental Lemma, we have

(Pyr = Py) + ogr = oy
in D(e,ryr,py+) which implies ¢N' = ¢N. Therefore, if we denote
by ¢ this function independent of N and if we put r= r, and op
Pys then ® is holomorphic and bounded in D(e,r,p) and

satisfies in this domain

; k N+1
o(x,Y) - lk}ﬂpk(x)v = o(|x|[¥|"™)

for every N 2 2, which proves Theorem 2.

- 15 -



§ 4. Sectorial domain J and path -F(xo) of integration.

§§ 4, 5 and 6 will be devoted to the proof of Fundamental Lemma
in the case where assumption (a) holds. For this purpose, we.have
to define a path r(xo) of integration from x=0 to X=X and
replace a doﬁain D by a slightly modified domain & which is
called a stable domain forv(E'). In this.section, we shall define a
sectorial domain , and a curve r(xo).

We first take and fix a constant ¢' > 0 so that

(4.1) g < e'/o < ¢
where ¢ > 0 is a constant given in Theorem 2.

4,1, Determination of constants « and Q. From the assumption

Re(a1 + az) > 0, it follows Rea; > 0 or Rea, > 0 . We put

¥ = ' I =
(4.2) o Re(uj + ajC3), j 1, 2.
4.1.1. The case Rea2 > 0. If we take p° > 0 sufficiently

small, then we have

(4.3) Rea, - p°lay| > 0

(4.4) Rea, - p°|ai| > - Reay + p°|ai|.
Note that

(4.5) ag 2 Reaj - p°|u3|, j=1, 2,

for |C3| <p°.

- 16 -



First we determine a constant x > 0 so that
(4.6) ' Rea, - p°lagl > o/u > - Rea, + p°|ai|
holds. Put

j-1
vi = (-1)37%¢ + u(Rea; - p°lal])
(4.7) J J J
":. = - j-l + }:(
vj (-1)7 "0 na;

i=1, 2,

then by (4.5) and (4.6),
(4.8) v: 2 vi> 0, j=1,2,

for |C5] < p°.

We next define 0 < Q < n/2 by

(4.9) tang
= {0 + (3x + 4) max (|aj| + p°lal]) + max (vj)}/ min (v.). .
i=1,2 M L 1,2
Note that

(4.10) tan@ > 1.

4.1.2., The case Req1 > 0. We take p° > 0 so small that

(4.3)' Rea; - p°|ui| >0

(4.4)" Rea; - p°laj]| > - Reay + p°|ay|
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hold. We determine % > 0 so that-
(4.6)"' Rea, --p°|ui| > o/w > - Rea, + p°|aé|.
I1f we put

.= (-1)g + w(Rea; - p°|a!
(5.7)" vj (-1)o g( ea; - p |uJ|),

vg = (-1)Jo + ua?,

j=1, 2,

then we have (4.8). The constant 0 < Q < mn/2 is determined by
(4.9).

In the following discussion, small constants written as p' and

p& will always be assumed to satisfy

(4-11) p's Dﬁ S p°.

4.2, Sectorial domain . . In order to determine a stable domain
d, we need to define a sectorial domain o which is a modification
of a sector S. A domain J4 = J(e',r') in the x-plane is defined

by
(4.12) . x = 2(w), 0 < |u| ¢ r'y(argw), |argw - /2| < 7 - €'

where

cosQ/sine’, |8 - n/2] < n/2 - Q

(4.13) y(8) ={
|cos$|/sine’, /2 - 2% |8 -n/2l. s -¢'.

Note that the opening angle of .{ at the origin is 2(w - ¢')/o.
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We divide » into three parts:

9, =An{xeC| |Rew|tann s Imw, Imw > 0 }
(4.14) JZ =3 ~{xeC| (Rew)tan® > Imw, Rew > 0 }

45 =4 ~n{xeC| (Rew)tan® > Imw, Rew < 0 }.
4,3, Path r(xo) of integration. We shall define a curve r(xo)
from x=0 to x=x0. which generally consists of two parts P'(xo)

and r"(xo). In case xg & Jl’ r(xo) reduces to r'(xo).

4.3.1. The case Rea, > 0. If Xg € 41’ the variable point .x =
x(1) on F(xo) = r'(xo) is defined by

(4.15)  x(1) = =(w(1)), 1/w(z) = v+ A - iBe"", 1 20,
where A and B are real numbers satisfying
(4.16) A - iB = Mxp) (1= /).

If X € ,32 (or ,J3), r(xo) consists of two parts F'(xo) and
F"(xo). The variable point x = x(8) on r"(xo) is defined by

(4.17) x(3) = 2(w(8)), w(s) = (coss/cossy)|uglet®
for 8, s 9 sQ (or mn- Qs &5 so) with wy = 1/I\(x0), 8y =
argu. Then the point x(f) (or x(m - Q)) belongs to Jl' P'(xo)

is defined to be a curve defined as (4.15) joining x=0 and x=x(Q)

(or x(m - Q)).

- 19 -



4.3.2, The case Rea, > 0. If Xy € Jz (or J3), F"(xo) is
defined by the same way as in the case Rea2 > 0. Therefore, we have
only to define F(xo) = F'(xo) in the case x5 € ;. In this case

the variable point x = x(1) on T'(xy) is given by
(4.15)' x(1) = =(w(1)), 1/w(t) = - 1 + A - iBe*", + 20,

where A and B are real numbers satisfying (4.16).

4.4, We shall show some propositions concerning o and r(xo).
Proposition 2. For every X € Jl, we have

(4.18) ' |A/B| s 1/tan@ < 1

(4.19) B 2 (tan@-sine')/r' > tan@ > 1

(4.20) #B 2 tanQ > 1

provided that £' >0 is small.

Proof. Xq € 31 implies
Imwy > O, Iargmo - n/2| s w/2 - @, |w0|2 < (r'cosﬂ/sinc')z.
Since wy = (A + iB)/(A2 + BZ), we have
B>O0, |tan(argwo)| = |A/B| 2 tan@
|w0|2 = 1/(A2 + Bz) < (r'cosQ/sinc')z.

Hence

2 2

|A/B| s 1/tang, [sine'/(r'cosn)}2 < A + B ¢ Bz/sinzn,
which yield (4.18) and (4.19). Inequality (4.20) follows from

(4.19), provided that r' > 0 is small.
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Proposition 3. If r' >0 is sufficiently small, then we

have
(1) Xg € Jl imylies F(xo) c Jl
(i1) x5 ¢ 5 implies T(xy) ¢ f.

Proof. Assertion (i) is verified by showing that |w(t)| is
monotone decreasing in 1 and that the inequality
|argw(t) -~ 2/2) s 7/2 - @, t20

holds in a similar way as in [5). Assertion (ii) is easy to see if

(i) is established.

The following proposition can be proved by an analogous method as in

[17].

Proposition 4. There exists a positive constant L such that

(4.21) J ds s L|xo|
T(xo)
for every X € d, provided that r' > 0 is small. Here ds is

the line element along the curve F(xo).

§ 5. Stable domain & .

In this section, we shall define a domain &£ and show that it
is a stable domain for system (E') in the case (a).
5.1. Definition of & . The domain £ = B(e',r',p') in the

(x,Y)-space is defined by
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x € f(e',r")
(5.1) |Yj| < p'cj(w(x),Y3)ej(x,Y3), j=1, 2,
|Y3| <p' |

wvhere

Re(a.+aln)
1/U>| SN , |8 - n/2] s n/2 - @

Re(a.+aln)
{(|cos$|/c059)1/°|5(w1/0)l} IS I ,

| &(w

cj(w,n) =

/2 - Qs |8 -n/2] sn-¢'

with 8 = argw and
ej(x,n) = exp|{- (arg x)Im(aj + a3n)}, j=1, 2.

Recall inequality (4.1). Then we‘can verify that, for any r,
p > 0, there exist r', p' > 0 such that ‘E{e',r',p') c D(eo,r,p)
and that, for any r', p' > 0, there exist r, p > O such that
D(e,r,p) € £(e',x',p'). This fact is a kind of equivalence of D
and <. Moreover, we note that there exists a positive constant R

such that

(5.3) sup |¥; 3 Rr'l/U s Y| Rp'

’ up l s
XE»J(E y T (X,Y)G.E(E: )r"p')

for all sufficiently small r' and p' > O.

5.2, Stability. We shall prove a kind of stability property of &
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with respect to the solution of (E') and the curve r(xo). Under
assumption (a), the general solution of (E') is given by (1.18).

Then by putting

¥t

: Y

(5.4) uj(x) = Cje(_l)JA(x)A(x) %] o, j=1, 2,

.we have

(5.5 I¥ (0] - |uj(x)||§(w1/c)|ajexp{- (arg x)In(as+aicy)].
(j =1, 2)

The following proposition is the most essential one in proving the

stability of the solution Y(x) in the domain oB.

Proposition 5. If |C3| < p', then

(5.6) d loglu;|/de < - (3/40)\,’;, j=1, 2

on the curve F'(xo) with xoeéa, provided that r', p' > 0 are

small.

Proof. We prove the proposition only in the case Rea2 > 0.
Let s be the arc length along the curve T' = F'(xo) measured
from the origin to the variable point xer'. Then by the definition

of T', we have
dx/dt = - x°+1k(x)-1(1 - iuBe™T)

so that
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ds = - |x|°+1|A(x)|'1(1 + uszezuT)l/zdt.
Then, (5.6) is equivalent to

(5.7) d loglusl/ds > (3/4a)v?|l(x)||x|'°-1(1 + y2lple2nty-1/2
(j = 13 2)

From the definition of uj, it follows
d log uj/dx = uJ.-1 duj/dx = x“o—lx(x){(-l)j_1 + u?/(oA(x))],
which yields

d 10g|uj|/ds = d Re(log uj)/ds = Re(d log uj/ds)
= Re{(d log uj/dx)(dx/dr)(dr/ds)}
- |X(X)||x|-°-1(1 " u2B2e2uT)-1/2

Re[{(-1)3"1 + 2§/ (A (L - ixBe* )],
Hence, (5.7) is equivalent to

(5.8) 3e[{(-1)j'1 + u?/(oA(x))}(l - ixBe* V)] > (3/40)v§-
(j =1, 2)

Therefore, by (4.7), we see that the proposition is wvalid if and

only if

(5.9) Ij(r)

v?BzezuT - {(-1)jo + 3ua§}(1 + A)2 + 4a§(1 + A)

> 0, j=1, 2.
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Thus, in order to verify the proposition, it is sufficient to show
(5.10) Ij(O) = 0, Ij'(O) > 0, Ij"(r) >0, j=1, 2,
Remark that

(5.11) tan@ > {o + (3x + 4)|a§|}/v§, j=1, 2

tanQ > 1,
which are verified by (4.2), (4.8) and (4.9). We see

Ij'(r) = 2uB2v§e2"T - 2{(-1)jo + 3ua§}(1 + A) + Auj

Ij"(r) = AuszvﬁezuT - 2{(-1)jo + 3uu§}.

First, we have

1,(0) = Bz[v§ - [(-1)30 + 3ua§}(B/A)2 + 4a?A/BZ]
> Bz[vg - o+ 3u|0§|]/tan9 - 4|a?|/tan9] (by (4.18), (4.19))
> (Bzv’J'.’/tansz)[tann - {o+ (3u + a)lu’;ll/v;.’]
> 0 (by (5.11)).

Next, we can verify

1,'(0) = 2B[u3v§ - {(-1)do + 3ua§}A/B + 2a§/s]
> 2B[v§ - {o + 3u|a§|}/tan9 - 2|a§|tan9]
(by (4.18), (4.19), (4,20))
= (zsvﬁ/tann)[tann - {o+ (3n + z)|a§|}/vj]
> 4B|a§|/tan9 (by (5.11))
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Finally, we can obtain

I;"(1) 2 1,"(0) = 2(xB)?[2v] - ((-1)d0 + 3M’;}/("B>2]

>':z(uB)2{2v;.r - (o + 3u|a’j*|)/tansz} (by (4.20))
= {2(uB)2v§/tanQ]{2tan9 - (o + 3u|a§|)/v?}

> 2(wB) 2o + (3% + e)|a’;|}/tana (by (5.11))
> 0.

Thus, we have proved the proposition.

Proposition 6. (stability). Let Y(x) be the general

solution of (E') under assumption (a). Then, (xo,Y(xO)) €

&e'yr'yo') implies (x,¥(x)) € 8(e',r',p') for every x € I'(xg),

provided that r' and p' > 0 are sufficiently small.

Proof. Under assumption (a), the general solution of (E')

is given by (1.18). Since
Y3(x) = Y3(x0) = C3,

|Y(x0)| <p' implies |Y3(x)| < p' for every x € F(xo).
Suppose  x( € JZ (or 43) and (xo,Y(xo)) € 2(e',r',p'). Then

we have
IYj(xo)l < D'Cj(moyc3>ej(xoyc3), j=1,2
where wy = 1/A(x0). Remark that for every point x € r"(xo),
i%
w = (cosS/cosSo)|w0|e
vhere w, = 1/A(x0), 8, = arguy, w = 1/A(x), 8 = arguw.
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Hence we have
ReA(x) = ReA(xqy), |x/xy| = Icosa/cosso|1/°|E(w1/°)/§(u01/°)|.

Therefore, it follows

L
Re(u.+a.C3)

|Yj(X)| = chle('i)JREA(X)IxI 33 2 exp{- (arg x)Im(aj+a363)}

1
Re(a.+ajc3)

= |Yj(xo)||x/x0| J exp{- (arg x - arg xO)Im(aj+uic3)}
c.(w,C,) e.(x,C,)
= 1¥(xp) | Tho 2 geies
J j ¥0r~3/€5 %023

A

p'cj(w,C3)ej(x,C3)
j=1, 2

for x € F"(xo).
Next suppose x, € 31 and (xO,Y(xO)) € @(e',r',p'). Then, we

have
IYj(xo)l < D'Cj(wo,c3)ej(xoyc3)1 i=1, 2.

By (5.5), we see

Re(a.+a!C,)
YO T = 1¥Cxg) us (x) 7w, (xg) HE/O) e t/oy 37373
) ]
rexp{~ (arg x - arg x0)1m<°j+°303)]'
By wvirtue of Proposition 5, |uj(x(r))| is monotone decreasing in

1. Therefore, we have

IY(XO)| s {IYj(xo)I/(Cj(wosc3)ej(xoyc3))}cj(w’c3)ej(xyc3)
< O'Cj(wac3)ej(x’c3)9 j=1,2

for every x ¢ r'(xo). Thus we have proved Proposition 6.
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§ 6. Proof of Fundamental Lemma under assumption (a).

First we shall show the following proposition.

Proposition 7. There exists a positive constant JN such
that for every x, € dCe',r') and for the general solution (1.18)

of (E') with [C3| < p', the inequality

N+1

(6.1) 1Y) N dx s agdxg [ 1¥(xg) |

F(XO)
holds, provided that r' and p' > 0 are small.
Proof. Since Y3(x) = C3, we have by Proposition 4
N+1 N+1
j 1¥5(x) [M*2ds s Lixg|Y4(xg) M2
r(xg)
Recall that

(G-+a5c3)

Y. (x)] = Ju.(x)]|]e( 1/°)|Re J xp{- (arg x)Im(a.+a:C,)}
j greoHiste | exp 8 5te5slh

j=1, 2
G*
and notice that |£(w1/°)| Jexp{- (arg x)Im(uj+a3C3)] is bounded
from below and above by constants L1, L2 > 0, respectively. Hence
on the curve F'=r'(x0), we have
'|u.(x)|N+1ds
r

N+1 N+1 ‘ N+1 N+1
s 1M uy () Jr' ds s L, u(xg) VoL, |

N+1 N+1
Jr'le(x)l ds s L, [

N+1 N+1

s (LZ/Ll) L|xo||Yj(xo)| .
On the other hand, on the curve r"=r"(xo), we can verify

|Yj(x)| = IYj(xo)ch(w,c3)ej(X,C3)/(Cj(mO,C3)ej(XO,C3))
s |Yj(x0)|L3
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for some constant L3 > 0. Then we obtain
: + + + .
]r"|yj<x)|N tas < L8 Llxgl 1Y, (x) M, 5 = 1, 2,

Thus, we have proved the proposition.

Now, we are ready to prove Fundamental Lemma under assumption
(a) by using a fixed point theorem due to M. Hukuhara ([2]).

Recall that ¢' > 0 be a constant such that (4.1) holds. We
denote by §F the family of all vector functions ¢(x,Y) of which

the components are holomorphic and satisfy

(6.2) lp(x,¥)| s Kylx|]¥|V*

in & = z(g',r&,pﬁ), where Ky is a positive constant which will
be determined later and r&, pﬁ are sufficiently small positive
constants. We note that rﬁ and p& must be chosen so small that
(4.11) and all the propositions in §§ 4 and 5 hold.

It is easy to see that ¥ is not empty and is convex.
Moreover, it is closed and normal with respect to the topology of
uniform convergence on every compact subset of 2.

We next define a mapping J . For a vector function g¢e 3, we
define a vector function ¢ by

(6.3) @(XO,YO) = Jr( )x-lfN(x,Y(x),¢(x,Y(x)))dx, (xO,YO)e.S,
X
0

where Y(x) 1is the solution of (E') with Y(xo) = YO. In order
that (x,Y(x),¢(x,Y(x))) stays in the domain of definition of fys

it is sufficient that

N+2rﬁ1/°o'N+1 R 11/a °

(6.4) KR N S Ay, Rry s rg, Roy S oy

N

where A&, rﬁ, pﬁ are the constants in Proposition 1.
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We next estimate ¢(x0,Y0). By (6.3), (3.8), (5.3), (6.1), we

have

|6(xq,Yg) | s fr(xo)le'lIfN(x,Y(x),¢(x,Y(x)))|Idxl

g J (Cg 1YCO ™+ k(x| + 1Y) ¥ (x) 1) [ax]
I‘(xo)

s {Cy + KNMR(rﬁl/O + pﬁ)}]r(x )IY(X)|N+1|dx|
0

+
s [Cy + KgMR(eg 9+ o0y 1oy lxg ] ¥, [V

Hence, if r&, p& > 0 are small enough to satisfy
: 11/0 '

(6.5) MRJN(rN + pN) < 1/2

and if KN is determined by

(6.6) Ky = 2JxCy

then ¢ satisfies the order condition (6.2).

We can also verify that ¢ is holomorphic in &£. Therefore,
if wvarious constants are suitably chosen as above, J becomes a
mépping from F into itself. Moreover, it can be seen by Lipschitz
inequality (3.7) that J is a continuous mapping. Then, the fixed
point theorem referred above shows that J admits a fixed point,
which proves the existence of ¢ satisfying the properties stated in
Fundamental Lemma where D(e,rN,pN) must be replaced by
&(e',rﬁ,p&). Since ¢ > ge', we can choose ry and py > 0 so
small that D(e,rN,pN) c c&(E',fﬁ,p&). Thus we have proved the
existence assertion.in Fundamental Lemma.

Now, it remains only to show the uniqueness. Let Q(l) and

w(Z) be two solutions satisfying the properties in Fundamental
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Lemma and put

Y = v(l) _“P(z).

Then y is holomorphic in a domain & = £(e",r",p") where ¢"/o 2

€, r' g r&, p" s pﬁ ,and of order O(|x]||Y Let H .be a

constant defined by
Ho=inf{ H'20 | |o(x,¥)| s B'[x|]¥|%*L, (x,¥)e D }.

Then, we have for every point (xO,YO)EJS

|¢(xorYo)|
-1 1
B PN L R
£ (x,Y(x), 082 (x,¥(x))) | |dx]
A YG DI 0¥0) = 9Pk, ¥ () x|
r(xg) ‘

(by (3.7))

< MR(I‘"l/O + p")[-{ J ( )lY(X)|N+1|dx|
r xo

1 N+1
s MRIG ("9 4 5" Hxg | (Y,

N+1
s (H/2) x| 1Y, V2.

Therefore, by the definition of H, we obtain H = 0, which implies
v = 0. Thus we have completed the proof of Fundamental Lemma under

assumption (a).
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§ 7. Proof of Fundamental Lemma under assumption (b).
From the assumption Re(a1 + az) >0, it follows that Rea; > 0

or Rea, > 0. We shall only show the case Rea, > 0.

7.1. Path r(xo) of integration. Take and fix a constant ¢

> 0 so that (4.1) holds. Put

(7.1) a? = Reay, =1, 2.

Take: u > 0 so that

% v
(7.2) a, > a/n > - ay-
If we put
¥t j=- b Y
(7.3) vj T vy T (-1)J 10 + oy, J = 1, 2,

then we have
(7.4) v, = v3 >0, j=1, 2.

We determine 0 < @ < 7/2 by

(7.5) tangQ
= {0+ (3x + 4) max (|a,|) + max (v,)}/ min (v,).
j=1,2 j=1,2 3 j=1,2 J
Note that
(7.6) tang > 1.

For these constants x and Q, we define J(e',xr') by (4.12)
and (4.13), Jl, 49y A3 by (4.14), and the path of integration in the
similar way as in § 4. Then we can verify that Propositions 2, 3

and 4 are valid for these new domains and path of integration.
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7.2. Stable domain. We define a domain 8 = £(e',r',p') by

x e 4(e',r')

(7.7)
Ile < p'cj(w(x))ej(x)le(Y3)|, j=1,2, 3,
Here
|€(m1/°)|Reaj, |8 - n/2] s n/2 - @
(7.8) cj(x) =

Rea.
[(|cose|/cosn)1/°|5(w1/°)|] =3

/2 -5 |%-u/2] sn-¢'
with 8 = argw,
ej(x) = exp{- (arg x)Imaj}
and Qj(n)'s (j=1,2) are the functions given by (1.21) and

(7.9) Q3(n) = 1 + (a3/ag)n.

Recalling (4.1), we see that, for any r, p > 0, there exist
r'y, p' > 0 such that &e',r',p') ¢ D(co,r,p) and that, for any
r', p' > 0, there exist r, p > 0 such that D(e,r,p) ¢
Lle'y,r',p'). We can also verify that there exists a constant R >
0 such that (5.3) is valid.

For the solution of (E') given by (1.19), if we put

(7.10) uy(x) = cje('1)3"(")/\(x)-mj/o i=1,2
" then we have
(7.11) [¥;(0] = |uj(x)||g(w1/°)|ujexp{- (arg x)Imay) |Q;(¥Y3(x)]|
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j=1,2

with w = 1/A(x) . For these uj's, we can verify that Proposition

5 1is valid and we can see that Proposition 6 holds for the domain

H.

7.3. Proof of Fundamental Lemma under assumption (b). In order to
show Proposition 7 in our case (b), it is necessary to verify the

following proposition.

Proposition 8. There exists a positive constant LA such

that,. for every solution Y(x) of (E'), (xO,Y(xo)) € B(e',xr',p")

implies
[¥5(x) | s L, [Yq(xy) |

for every x e F(xo). Here, r', p' > 0 are supposed to be
sufficiently small.

Proof. The proposition follows from
Rea3
|Y3(x)/Y3(xo)| = Ix/x0| exp{~ (arg x - arg x;)Ima,]
' 3 : @3
|1 - (a3/03)Cqax, |/7]1 - (a3/a3)C3xy ~|,
l/xg1 = lu/ug 12161 %) /£y /)1,
Rea3 2 0,
and that w(t) 4is monotone decreasing in t on F'(xo), and
|w/wgl = [cos8/cossy|, & = argw

on F"(xoj.
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By making use of this proposition, we can show Proposition 7 in
a similar way as in § 6. Then, by virtue of the propositions
established in the case (b), we can prove Fundamental Lemma by the

same method as in the case (a).

Appendix.

The existence of the holomorphic transformation (1.8) will be
proved by constructing the following three transformations.
The first transformation of the form
(8.1) ' -y e ] P (x,y))
i=1
is determined so that it changes system (1.1) to a system of the

form

(8.2) x°+1dy'/dx = (AM(x)0(1,-1) + x%9(¢a) + 3(£'(x,y")))y".

The second and third transformations of the form

2 .
(8.3) y' = 1(y")(H(1,1) + ‘ZlP'(l)(x,y'{))
l=
2 ;
(8.4) y" = 12 (H(,1) + 2z, TR (x,2)))
i= :

are determined so that the former reduces system (8.2) to a system

of the form
(8.5) x*1 qy"/dx = (A(x)D(1,-1) + x%1(a) + y1yo BCE" (x,y")) }y"

and the latter reduces (8.5) to a system of the form (1.7). Here
f', f" and g are vector functions with the same analyticity as f.

We shall prove the existence of (8.1) only, since the other
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transformations are obtained by a similar method. In order to
determine (8.1), we consider the following partial differential

equations

(1) (g, 1) (x,y;
P 'Y P 1Yy i
ot By OOV G 4 )y

(8.6) ax ay{ i i

= (01, -1) + x°2(@)R) & £, B8 4y1,6,,50+ D), 401, 2,

Gij being Kronecker's delta.

We first obtain a formal solution of (8.6) of the form
(8.7) P,y = 3 pﬁi)(x)yfk-
. k22 1

By substituting (8.7) in (8.6) and by equating the coefficients of
yik (k22), we have

(8.8)k
op oV o1 -1 (1)
x? o ranihs (A(x)B((-1)1" k-1, (-1)L" k+1)+x°ﬂ(kai-u1,kui-uz)}pkl
i
=c1(< )’
where each component of cﬁi) is a polynomial of components of pﬁi)'s

with 2shsk-1. It is easy to see that we can determine successively
the wunique solutions pﬁi)'s of (8.8)k's with pﬁi) € A(e,r) by
using Lemma 1.

We next prove the convergence of (8.7). Let Yi(x) be the

general solution of
x* gy /ax = (D) + a1y,

then it follows that the formal series P(i)=P(i)(x,Yi(x)) formally

satisfies

xo+1 dP

d,((l), = (AM(x)3(1,-1) + x%1(a))p(D)
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+ f(x,t(a,lYl(x),Gizyz(x))+P(i)).

1

Therefore, by virtue of a theorem due to Iwano [3], we see that
P(i)(x,y{) converges absolutely and uniformly for x € S(e,r), |yi|
< p, provided that r, p > 0 are sufficiently small.

Finally we show that, for the P(i)'s determined above,
transformation (8.1) reduces system (1.1) to a system of the form
(8.2). By differentiating the both sides of (8.1) and by using the

fact that P(i)'s are the solutions of (8.6), we have

(1) .p(2)
e

ap{1) 4p(2)

- (1% (g B0 000111 + <T@y + By,

where
2 3 2 0
t
F(x,yv) = f(x,y'+i£ P(l)) _izlf(x, (silyi’612yé)+P(l))’
We see that F(x,y') vanishes on yiyé=0 and hence F(x,y') =
O(yiyé). Therefore, since (aP(i)/ayi)(x,O) = 0, the system
transformed by (8.1) is of the form (8.2) with fi=0(yé), fé=0(yi).
Thus we have proved the existence of the first transformation.
Concerning transformations (8.3) and (8.4), we only state that

we can obtain them by solving the following equations

e Wx,yp e Wy

9
x0+1 + T
X 3y

(D) + ayx)y)
= 208" (x, Boy gy 6y (B, 1) + 0 (B)) gy, g,

and

o+l aP"(l)(x,zi) . aP"(l)(x,zi)
X X 3z

(D) + 0x9)zy
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= 2" (x, B8, 424485750 =a" () 5(1,1) = (ayra,)x®p" 1), 11, 2,
where

a'(x) = £(x,0) ~ (a; + a))x%-5(1,1).
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CHAPTER II.
GENERAL SOLUTIONS OF PAINLEVE EQUATIONS (I) ~ (V)

§ 1. Contents of Chapter II.

The purpose of this chapter is to show that we can construct
general solutions of Painlevé differential equations at fixed
singular points of irregular type. For this purpose we first recall
an immediate consequence of a general theory established in Chapter
I.

We consider a 2-system of the form
(1.1) w2 dv/dw = (8(1,-1) + wi(a))v + | hy (w)vE
k|22 &

having an irregular singular point of Poincaré rank 1 at w=0, Here
v and hk(w)=t(ak(w),bk(w)) (|k|22) are 2-vectors, o 1is a
constant 2-vector t(al,az), hk(w) ¢ dle,r) (]k[22) and th(w)vk

converges absolutely and uniformly for
(1.2) w € 5(e,r), |v| = max(|vy],]v,]) < o,

and represents there a bounded holomorphic vector function. A(e,r)
denotes the set of all 2-vector functions of which the components

are the elements of the A(e,r) defined in § 2 in Chapter I.
For system (1.1), we define the constants ai and aé by

a) = lim (as, - a,na44 + a,4b,, + 28,,b,,/3)
, ) 1 w+0,weS (e, r 21 2011 11711 02-20
1.3

@y = w-»OlvivTS(e 812 *+ byabyg - 811bgg = 2855b547/3).
’ 'L

Then, from the transformation (1.8) and Theorem 3 in Chapter I, we

obtain the following theorem: Assume that

(A) ay +ay =1, ai + aé =0
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is satisfied, then for every e' with ¢' > ¢, there exists a

general solution v = y(w,V(w)) of (1.2) having the properties that

€D) ¥(w,V) is a bounded holomorphic function of w and V =
t$V14!24!3) in a domain in the (w,V)-space defined by

(1.4) wes(e,r'), |V] <o

and admits there a uniformly convergent expansion in powers of V

of the form

k 2 2 ' k
\l’(W,V) = ﬂ(vlyvz)(lk%zopk(w)v ) + ﬂ(vz ’Vl )(Ik}zopk(w)v )9

r and p' being small positive constants. Here;;po(w) = t(1,12
and p,(w), py(w) € 4(e',r') (]k|20).
(i1) v(w) = t(Vl(w),Vz(w),V3(w)) is the vector function defined by

'c,C
Vj(W) = CJ-exP((--1)5/W)wm-:'+c‘J 120 51,2,

V3(w) = C4Cy,

(1.5)

gl and C2 being arbitrary constants.

As was noticed by K. Okamoto [14], every Painlevé equation can

be expressed as a Hamiltonian system
(1.6) ' dyl/dt = aH/ayZ, dyz/dt = - aH/ayl,

where H is a polynomial of 'yy and y, of which the coefficients
are vrational functions of t. If we eliminate the variable Yy in
(1.6), then we have the corresponding Painlevé equation. Therefore,
in order to obtain general solutiohs of Painlevé equations near the
fixed singular points of irregular type, it is sufficient to show

that the Hamiltonian system (1.6) associated with each Painlevé
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equation can be reduced to a system (1.1) satisfying assumption (A).
We note that Painlevé equation (VI) has no irregular singular point
and that each of other Painlevé equations has only one irregular
singular point which is the point at infinity.

The transformation for each Painlevé equation is decomposed
into the product of four transformations. The first transformation
maps the point at infinity to the origin. The second transformation
is a singular one which normalizes the system (1.6) into a system of

the form
(1.7)  wdz/dw = a(w) + (1(1,-1) + A(w))z + ) £, (w)2*.
k|22

We make the third transformation in order to eliminate the a(w)
and the fourth one in order to change the system thus obtained to a
system of the form (1.1). Among these four transformations, the
singular transformation is most essential and it will be found out
by observing a formal transformation which changes system (1.6) into
system (1.1). In 3.2 we shall explain in detail how to obtain this
singular one for the system (1.6) associated with Painlevé equation
(1).

In § 2, we give two lemmas which are useful for constructing
the second and third transformations. The subsequent sections are
devoted to reducing the Hamiltonian system (1.6) associated with
each Painlevé equation to a system of the form (1.1) satisfying (A).
In each section we denote the system (1.6) by (EO) and the reduced
system of the form (1.1) by (EA)’ It is shown in 5.2, 5.3 or 7.2
that the singular point of Painlevé equation (III) or (V) reduces to
that of regular type for some special values of parameters. Since

the reduction devised by several authors ([16],[10],[18]) can be

- 41 -



applied in these exceptional cases, we do not make further

investigations of the cases.

§ 2. Lemmas.

In this section we state two known lemmas which will be used to

obtain transformations (T3) and (T4) in each of the subsequent

sections.
Lemma 1. (Malmquist [11],[12],[13]). Let
(2.1) w2dz/dw = a(w) + (8(1,-1) + A(w))z + f(w,z)

be a 2-system of nonlinear differential equations, where we assume:
(1) z=t(zj), a=t(aj) and f=t(fj) are 2-vectors.

(ii) a(w) e 4(e,r) and a(w) = 0(w), O denoting Landau's symbol.
(iii) A = (aij) is a 2x2 matrix with components aij(w) € A(e,x)
and aij(w) = 0(w) (1si,j52)5

(iv) f(w,z) is a bounded holomorphic vector function in a domain
(2.2) w ¢ S(e,r), |z| < p,
and has there a Taylor expansion of the form
£( k
W,z) = fk(w)z ,
[k[22

with fk(w) e A(e,r) (]x|22). Then there exists a unique
holomorphic solution 2z = p(w) of (2.1) in S(e,r') which is
asymptoiically developable into the formal power series solution of
w, as w tends to 0 through S(e,r') for sufficiently small

positive r’.
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Lemma 2. (Hukuhara [1]). Consider a 2-system of nonlinear

differential equations

(2.2) widu/dw = (1(1,-1) + B(w))u + g(w,u).

Let B(w) = (bij(w)). be a 2x2 matrix with bij<w) ¢ A(e,r) and
by (W) = agw + 0(w?), by,(w) = ayw + 0(w?),
by ,(w), by (w) = 0(w),

a=t(uj) a constant 2-vector and let g have the same properties as

f has in Lemma 1. Then there exists a linear transformation
(2.3) u = P(w)v

which changes (2.2) to a system of the form

(2.4) wldv/dw = (1(1,-1) + w1(a))v + h(w,v).

Here P(w) is a bounded holomorphic matrix with components in
A(e,r')  such that lim P(w) =1 and h is a vector

w+0,weS(e,r')
function having the same properties as g in a domain

W e S(Cyr')y |V| < py

provided that r' and p are sufficiently small positive.

We remark that these lemmas hold in the sector S(e,r')
containing a singular direction of the equations (2.1) and (2.2).

In Lemma 2 we see that h 1is given by
(2.5) h(w,v) = P"1(w)g(w,P(w)v),
so that we have

(2.6) lim h(w,v) = lim  g(w,v).
w+0,weS(e,r'$ w+0,weS(e,r'5
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§ 3. Painlevé equation (I).
3.1. The first equation of Painlevé is given by
2
(P.1) d—% = 622 + t,
: dt

which is equivalent to the 2-system

dy . (0 0,1 0
(Ep) = (9 @oy+ (6y12) ,
where Yy = Aooyy being the first component of the 2-vector y.

By the change of variables

(1,) t = x71,
(Eo) is transformed into
3d 0 0,x 0
(Ey) > gk = - (1) - g)y - (e z)*
Xy,

We define a complex constant x and a transformation (T2) from

the variables (x,y) to (w,z) by
(3.1) w o= (-24)1/4

X = (lmw/5)4/5
(T,) ,
y =-ﬂ(x_1/2,ux'3/4)((” 612) + L_i:i z).
- Then (Tz) transforms (El) into

2
2 d /60 /2 , -w/10

() w22 (:2:/60> + (1(1,-1) + (7200 TW30) )z 4 £(u2),
where

(3.2) £Qw,z) = 3(zy + 2,)2/x25(1,-1).

It follows from Lemma 1 that there exists a bounded holomorphic
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solution 2z = p(w) of (EZ) admitting the asymptotic expansion as
(3.3) p(w) n E(nZw/60 + =oe, n2uw/60 + o)

in S=S(g¢,r'), r' > 0 being small. Then the transformation
(15) z = u+ p(w)

transforms (EZ) into a system of the form

(E,) vldu/dw = (2(1,-1) + B(w))u + g(w,u),

vhere B(w) and g(w,u) are given by

Cw/2 4+ 6(P1+P2)/u2, -w/10 + 6(p1+p2)/u2)

(3.)  B(w) = ( 2 2
-w/10 = 6(py+p,)/x", w/2 - 6(py+p,)/n

(3.5) g(w,u) = f(w,u).

Note that pl(w) + pz(w) = 0(w2) as is shown by (3.3).

By wusing Lemma 2 we can choose a holomorphic matrix P(w) €

#4(e,r) with lim P(w) = 1 so that the transformation
w+0,weS

<T4) u= P(wv

changes (E3) to a system of the form

(E4) wzdv/dw = (2(1,-1) + wi(1/2,1/2))v + h(w,v).
Here we see

(3.6) im h(w,v) = 3(v, + vy)?/x2 H(1,-1),
w+0,weS

by (3.5) and (2.6). Therefore by (1.3) and (3.6), we obtain o' =
(5/2,-5/2).
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Thus we have proved that (EO) can be reduced to a system (Ea)
satisfying assumption (A) where o = (1/2,1/2) and o' = (5/2,-5/2).

3.2. In this subsection, we explain how to obtain the singular
transformation (T2). For thig purpose, we shall show the procedure
of constructing a formal transformation which formally changes (El)
to a formal system of the form (1.1).

First we notice that <E1) has a formal solution of the form

(3.7) y = 2(x"1/2 x1/2)

«(2-vector whose components are formal power series of xS/Z).

If we put

(T!) 5/2 -

5 x -1/2’x1/2)z,

Ty y = ¥(x

then (El) is changed to

(E3) .2 dz 1.¢(9)+ & -2¢) ( 0 2))

1221

It is easy to verify that (Eé) has a formal power series solution of
t of the form

(3.8) z = q(p) = S((-1/6)12,(-1/6)1/2/2) + o(y).

Here O(r) denotes a formal power series of  of which the lowest
power 1is equal or greater than 1. In the following, we also use
the obvious notation O(;j) or 0(|v|j). Then the formal change of

variables

(Té) z = s + q(g)

transforms (Eé) into

2 ds

(Eé) dg © T 3 ((24Q1(C) ) ¥ (1gs12))
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which has no constant term with respect to s.

Now we consider the shearing transformation
(1)) s = 11,572y,

which changes (Eé) to

1/2

(E') 3/2 du _ _ 1.(( - , 2 ) + ( 0 .

4 CE T T 5 g, (0),3cM22) " T \a2u, 2 )
Putting
(T5) /2 -,
ve have

' 2du _ _ 4,0 O y1 -1/2, 0 2yy, _ 24 (0
(B5) & 3¢ 3(((_24)1/2,0) o ,3/4)E +0(g")u - 55 (“12) '

Next we diagonalize the leading matrix of system (Eg). We see

that the transformation of the form
' - i, 1
(1) u ((rn: u) + 0(g))v,

» being a constant defined by (3.1), changes (Eé) to a system of

the form

(E) 62 9F = (3(4n/5,-4w/5) + €1(1/2,1/2))v + 0(|v|?).
Finally the scale transformation

(T;) £ = 4yw/5

changes (Eé) to a system of the desired form

wldv/dw = (1(1,~1) + wi(1/2,1/2))v + 0(|v|?).
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Now by composing the above transformations (Ts) (§j=2,44+,7) we

see that there exists a formal transformation of the form

x = (4ww/5)4/
(3.9) 2
y = ﬂ(x-1/2,ux-3/a){(? 612) + 0(w) + ((_1: i) + 0(w))v),

which transforms formally system (El) into a formal system of the
form (1.1). We remark that we obtain the singular transformation

(T2) by omitting the two terms written by O0(w) in (3.9).

§ 4. Painlevé equation (II).

The second equation of Painlevé is given by

2
(P.11) 9—% 3

= 2)7 + tA + qa,
dt

which is equivalent to the 2-system

2
dy [ - t/2 0,1 ( ¥y
(Ey) ar (a + 1/2) + (o:o)y + 2y1y2)'
where Y = A (cf. [14]).
The change of variables
Y |
(Tl) t X
reduces (Eo) to
2
3dy _ 1/2 0,-x x¥q
(Ey) x* Ik (-(a + 1/2)x) * \o, o)y + ( )'
—2xy1y2

We define a transformation (T2) from (x,y) to (w,z) by

x = (2u/3)2/3
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(Ty)
=162 (5 + (A

Then (TZ) transforms (Ei) into
2d /3 1/2,-1/6
B v g ()t A w(176, 15D * £Gns,

where
(4.1) f(w,z) = %-t(- 212 + 225z, + 3z22, 3212 + 224z, - z22).

It follows from Lemma 1 that there exists a bounded holomorphic

solution z = p(w) of (E,) having the asymptotic expansion as
(4.2) p(w) ~ B(- aw/3 + +on, -vaw/3 + ees)

in S=S(e,r'). Then the transformation

(T3) z = u + p(w)

transforms (EZ) into

(E3) wzdu/dw = (1(1,-1) + B(w))u + g(w,u),

where B(w) and g(w,u) are given by

w/2 - Py + Pyy - w/6 + Py * 3p2)

(4.3) B(w) = <
: -w/6 + 3py + Py, W/2+py - P,

(4.4) g(w,u) = £(w,u).

Note that pl(w) - pz(w) = 0(w2), which is a consequence of (4.2).
By Lemma 2 the linear term in (E3) is simplified by a

transformation of the form

(T,) u = P(w)v,
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namely, (Ta) transforms (E3) into
(E,) wldv/dw = (1(1,-1) + wi(1/2,1/2))v + h(w,v).
Here it follows from (4.4) and (2.6) that h(w,v) satisfies

(4.5) lim h(w,v) = lim f£(w,v).
w+0,weS w+0,weS
By using (4.5), we can verify that (E,) satisfies assumption

(A) where o = (1/2,1/2) and o' = (3,-3).

§ 5. Painlevé equation (IIL).

The third equation of Painlevé is given by

2
d 1d 1 2 3 8
(P.III) m ( ) - —t- HE + Tt(ux + B) + YA + .i. ’
which is equivalent to the 2-system
P 2n, ~(sgrel, o
(Eo) T \en (0 +0)) * -1)Y
' Ve V0 0 . (200+1)t

+ 4 4 "1 2 '
NY1Yo ~ t Y1Y2

where the following relations hold ([14]) among the constants «, B,

vy 6 and 891 B Mgy NGt

(5.1) @ == 4n_d_, B = bny(8y + 1), y = 4n 2, 6 = - 4ny’.
Put

(Ty) ¢ = x 1,

Then (Eo) is written as
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-2n (28,+1)x 0
, 2 dy _ 0 o=
(E{) x* 3% (nm(°m+90)> * ( o -(2so+1)x)y

2
+ ( 2nayy® - 4y Yz)
2 .
'A"wylyz + 4xy1y2

5.1. The case where o #0 and n_ ¥ 0. In this case, we define

a complex constant x and a transformation (TZ) from (x,y) to (w,z)

by

(5.2) w = (-non,)l/2
X = - 4yw

(T,)

/ 1,
y = n(i’nmx-1)((”1"w) + (0 ;2) z).

Then (TZ) transforms (El) into

(B)) w2 dE = a(w) + (1(1,-1) + AG))z + £(w,2),
where

a(w) = H((38, + 8_ + 2)ww/2n_, (3 - 85)w/2n),

28, + 1, (48, + 1)n >
- ot 8% 0
A(w) w ( 0 ’ - 28, ,

(5.3) f(w,z) = t(nw212/2 + 2uz1z2 + 9nou222/2 + anzlzz2 -

6u221222 -4u2nozz3, - “mz122/“ - u222 - anzlzz2 + 2n2223).

It follows from Lemma 1 that there exists a bounded holomorphic

solution z = p(w) of (Ez) admitting the asymptotic expansion as

(5.4) p(w) ~ B(- (395+8 +2)uw/2n N cery (8,-80)w/2n + -02)
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in S5=S(e¢,r'). The transformation

(T2) z =u+ p(w)

changes (Ez) to

(E5) wldu/dw = (1(1,-1) + B(w))u + g(w,u),
where B(w) is given by

(8, - 9)w/2 + 0(v?), 0(w)
B(w) = ( 2 >
0(w) y (1 - (8, - 85)/2)w + 0(w)

and g(w,u) satisfies
(5.5) lim g(w,u) = lim f£(w,u).
w+0,weS w+0,wes
By the same method as in §§ 3 and 4, the linear term in system

(E3) is simplified by a transformation of the form,
(TA) u = P(w)v,
namely, (T4) transforms (E3) into
(Eh) wzdv/dw = (1(1,-1) + C(w))v + h(w,v).
Here it holds that

Cw) = we2((s, - 85)/2, 1 - (3_ - 84)/2),
and

lim h(w,v) = lim £(w,v).
w+0,weS w+0,weS

We can verify that system (E4) satisfies assumption (A) where
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a = ((3“'90)/21 (1'(9‘”'90))/2) and o' = ('nmynw)'

5.2. The case where no # 0 and n, = 0. In this case, we define

a transformation (Ta) from (x,y) to (x,z) by

-1
(T,) y = 1(x"",x)z.

Then (Ta) transforms system (El) into a system of regular type

(E,) x dz/dx = (- 2np,0) + 1(2(85+1),-2(84+1))z

+ t(- 421222,421222).

5.3. The remaining cases. In these cases, we define a
transformation (Tb) from (x,y) to (x,z) by

(Ty) y = ﬂ(x,x'1)z.

Then (Tb) transforms system (El) into a sygtem of regular type,

(Bp)  x dz/dx = "(n,(9,49,), 0) + 3(299,-280)z

+ Z't(nmzl2 - 221222, - 2n,z4zy *+ 221222).

§ 6. Painlevé equation (IV).

The fourth equation of Painlevé is given by

2
(P.1IV) 9—% ( ) ¥ 3 333 + 42

dt

+ 2(t - Q) + =,

which is equivalent to the 2-system

2
2% -y + 4y .y
dy _ _ o) -2t,0 1 1Y2

(Eg) dt (9 *\o :2t)y + ( 2)’
- 2y1¥3 = 2y

where the relations
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(6.1) a= -8+ 20 +1, B=- 29

hold ([14]).

Put
-1
(Tl) t X T
Then (EO) is written by
3d 2% ve® = byyyy
(El) x H% = x|+ 1(2,-2)y + x- R
o = 2y4y, *+ 2y,

We define a transformation (T2) from (x,y) to (w,z) by
(T,) x = wl/z, y = I(x'l,x'l)z.
Then (T2) transformg (E1> into
(Ep) w2 §Z = “(ogw,8,w/2) + (1(1,-1) + w-1(1/2,1/2))z + £(w,2),
where f(w,z) 1is given by |
(6.2) f(w,z)_- t(212/2 - 22122, - z4zy + 222).

It follows from Lemma 1 that there exists a bounded holomorphic

solution z = p(w) of (E2) admitting the asymptotic expansion as
(6.3) | p(w) ~ b(- Sogw + cee, B W/2 + eer)

in S=S(e,r'). Then the change of variables

(T3) z = u + p(w)

transforms (EZ) into

(E3) Wzdu/dw = (ﬂ(ly'l) + B(w))u + g(w,u),
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where B(w) 1is given by

‘ w/2 + p, - 2p - 2p
(6.4) B(w) = ( 1" %P 1 j
- 2P2 y W/2 TPy + 2P2

and g(w,u) satisfies
(6.5) g(w,u) = £(w,u).
Note that p,(w) - 2p,(w) = = (3 + 8 )w + O(w?).

By the same method as in §§ 3, 4 and 5, the linear term in

system (E3) is simplified by a transformation of the form,
(T4) u = P(w)v,
namely, (T3) transforms (E3) into
(E,) wldv/dw = (1(1,-1) + C(w))v + h(w,v).
Here C(w) is given by
C(w) = wet(1/2 - 8y = 8,91/2 + 84 + 8.0,
and, by using (2.6) and (6.5), we have
lim h(w,v) = 1lim f£(w,v).
w+0,weS w+0,weS

Then we can verify that system (Ea) satisfies assumption (A)

where o = (1/2 - 3 = % 1/2 + 8y + $.) and o' = (3,-3).

§ 7. Painlevé equation (V).

The fifth equation of Painlevé is given by
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2
(2.V) oA Sl G R ;%-(x - 1)%er + B

A +
+y % + 6 -L%—:‘%l ’

which is equivalent to the 2-system

1
t

d
() g =

-1
-1, ( ) . (n1+(290+91)t " 0 )y
((s ) -8.2)/4 0 ,-{ng+(280+8, )71

2 3
-1 ( (90+91)y1 + 2y1}2'2 - 4y1 gz + Zy% yg .
2(80+91)Y1Y2 -y, # 4Y1Y2 - 3y1 Y,

where the relations
(7.1)  w =822, 8= - 822, y = = ny (8 + 1), &= = 0,22

hold ([14]).
Put

(Tl) t = X-i.

Then (Eo) is written by

2

e
1

(El) X

% -n1-(290+31)x , 0
x'( 2 2 ) + ( Jy
((8g+8,)°-8.%}/4 0 » ny*(280+8,)

2 2 3
i x,(‘(“’o‘“"’1)3’1 * 21y - 4 y2 * 2y Yz)

2 2.2
2(80+9,)y4y, - ¥ * 4y1Y2 - 3y17yy

7.1. The case where n, # 0. In this case, we define a
AE XS 1

transformation (T2) from (x,y) to (w,z) by
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(TZ) X =-nw, y= I(l,x-l)z.
Then (T2) transforms (El) into
(E2) wl %% = a(w) + (1(1,-1) + A(w))z + f(w,z),

where

a(w) = E(sg, -ng{(sg+9 )% - 8 2}u?/a),

- 28, - 3 0
) 0~ *
AQw) = w ( 0, 2805+ 8 +1 )’

(7.2) £(w,z) = (so+sl>w-t(zl?,-zz1z2>
1 .t 2 3 2 2 .. 2 2
+ EI (2(2122 - 22,725 + 24 22), 2% + bzyz, 3z,%z, ).

By the same method as in the previous sections, we can verify that
there exists a bounded holomorphic solution 2z = p(w) of (EZ)

having the asymptotic expansion as

(7.3) p(w) ~ t(- Bgw + cer, - nl{(3w+91)2-8m}2w2 + o00)
in S$=S(e,r'). Then the transformation

(T4) z = u+ p(w)

changes (EZ) to

(E3) wzdu/dw = (1(1,-1) + B(w))u + g(w,u),

where B(w) js given by

2
(7.4) B(w) = (' (285 + 8w+ o(w7), 0(w) 2))

0(w3) , (1 + 28, + sl)w + O(w

and g(w,u) satisfies
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(7.5) lim g(w,u) = lim f(w,u).
w+0,weS w+0,weS

In a similar way as in the previous sections, the linear term

in system (E;) is simplified by a transformation of the form,
(T,) u = P(w)v,
namely, (T4) transforms (E3) into
(E,) wldv/dw = (3(1,-1) + C(w))v + h(w,v).
Here C(w) is given by

C(w) = weB(287 + 84,1 + 23 + 3,),
and from (2.6) and (7.5), it follows that

lim h(w,v) = lim £(w,v).

w+0,weS w+0,weS

Then we can verify that system (E4) satisfies assumption (A)

where a = (- 23, + 84y 1+ 294 + 91) and o' = (- 4/n1,4/n1)-

7.2, The case where n, = 0. In this case, system (El) is

rewritten as

9 285~ 8 0
(E.) dy . ( 0 . ( 0 1 )
1 " {(eo+91)2-ew2}/4> 0, 284ty ’

2 2 3

) ('(9o+91)y1 * 279y - AY1TYa  2y47Y)
2 2 2.2

2(a0%81)ygyy = ¥o© * 4ygyy© - 3y,

which has a regular singular point at x=0 (t=w).

- 58 -



[1]

[2]

£3]

[4]

[5]

(6]

7]

[8]

REFERENCES

M. Hukuhara, Sur les points singuliers des équation
différentielles 1linéaires, III, Mém. Fac. Sci., Kyushu Univ.,
2(1941),. pp. 125-137.

M. Hukuhara, T. Kimura and T. Matsuda, Equations
différentielles ordinaires du premier ordre dans le champ
complexe, Publications 7(1961), Japan Math. Soc., Tokyo.

M. Iwano, Intégration analytique d'un systéme d'équations
différentielles non linéaires dans le voisinage d'un point
singulier, I, Ann. Mat. Pura Appl. Serie 4, 44(1957), pp.
261-292,

M. Iwano, Intégration analytique d'un systéme d'équations
différentielles non linéaires dans le voisinage d'un point
singulier, II, ibid., 47(1959), pp. 91-150.

M. Iwano, On a general solution of a nonlinear 2~system of the
form xzdw/dx = Aw + xh{(x,w) with a constant diagonal matrix
A of signature (1,1), T&hoku Math. J.(2), 32(1980), pp.
453-486.

M. Iwano, On general solution of a first-order non-linear
differential equation of the form x(dy/dx) = y(x + £(x,y))
with negative rational A, Ann. Mat. Pura Appl. Serie 4,
126(1980), pp. 19-80.

M. Iwano, On a general solution of a nonlinear n-system of the
form xzdy/dx = (In(u) + xﬂn(u))y + xf(x,y) with a constant
diagonal matrix ﬂn(u) of signatyre (m,n-m), Ann. Mat. Pura
Appl. Serie 4, 130(1982), pp. 331-384.

M. Iwano, On an n-parameter family of solutions 6f a nonlinear

n-system with an irregular type singularity, to appear.

- 59 -



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Jimbo, T. Miwa, Y. Mori and M. Sato, Density matrix of an
impenetrable Bose gas and the fifth Painlevé transcendent,
Physica 1D(1980), pp. 80-158,

H. Kimura, The construction of abgeneral solution of a
Hamiltonian system with regular type singularity and its
application to Painlevé equations, Ann. Mat. Pura Appl. Serie
4, 134(1983), pp. 363-392.

J. Malmquist, Sur 1'étude analytique des solutions d'un systéme
d'équations defférentielles dans le voisinage d'un point
singulier d'indétermination, I, Acta Math. 73(1941), pp.
87-129.

J. Malmquist, Sur 1'étude analytique des solutions d'un systéme
d'équations defférentielles dans le voisinage d'un point

singulier d'indétermination, II, ibid., 74(1941), pp. 1-64.

J. Malmquist, Sur l'étude analytique des solutions d'un systéme
d'équations defférentielles dans le voisinage d'un point
singulier d'indétermination, III, ibid., 74(1941), pp. 109-128.

K. Okamoto, Polynomial Hamiltonians associated with Painlevé
equations, I, Proc. Japan Acad. 56, Ser. A(1980), pp.264-268.

S. Shimomura, Series expansions of Painlevé ttranscendents in
the neighbourhood of a fixed singular point, Funkcial. Ekvac.,
25(1982), pp. 185-197.

S. Shimomura, Analytic integration of some nonlinear ordinary
differetial equations and the fifth Painlevé équation in the
neighbourhood of an irregular singular point, Funkcial. Ekvac.,
26(1983), pp. 301-338.

K. Takano, A 2-parameter family of solutions of Painlevé

equation (V) near the point at infinity, Funkcial. Ekvac.,

- 60 -



[18]

[19]

[20]

[21]

26(1983), pp. 79-113.

K. Takano, A normal form of a Hamiltonian system at a fixed

singular point of the first kind, preprint.
T. T. Wu, B. McCoy, C. A. Tracy and E. Barouch, Spin-spin
correlation functions for the two-dimensional 1Ising model:
Exact theory in the scaling region, Phys. Rev. B 13(1976), pp.
316-374.

S. Yoshida, A general solution of a nonlinear 2-system‘without
Poincaré's condition at an irregular singular point, Funkcial.
Ekvac., 27(1984).

S. Yoshida, 2-Parameter family of solutions for Painlevé

equations (I) ~ (V) at an irregular singular point, ibid., to

appear.

- 61 -



	 0001
	 0002
	 0003
	 0004
	 0005
	 0006
	 0007
	 0008
	 0009
	 0010
	 0011
	 0012
	 0013
	 0014
	 0015
	 0016
	 0017
	 0018
	 0019
	 0020
	 0021
	 0022
	 0023
	 0024
	 0025
	 0026
	 0027
	 0028
	 0029
	 0030
	 0031
	 0032
	 0033
	 0034
	 0035
	 0036
	 0037
	 0038
	 0039
	 0040
	 0041
	 0042
	 0043
	 0044
	 0045
	 0046
	 0047
	 0048
	 0049
	 0050
	 0051
	 0052
	 0053
	 0054
	 0055
	 0056
	 0057
	 0058
	 0059
	 0060
	 0061
	 0062
	 0063
	 0064
	 0065

