

PDF issue: 2024-08-16

地下空洞掘削の情報化施工における現場計測結果の 評価に関する研究

進士,正人

<mark>(Degree)</mark> 博士(学術)

(Date of Degree) 1985-03-31

(Date of Publication) 2014-03-04

(Resource Type) doctoral thesis

(Report Number) 甲0541

(URL) https://hdl.handle.net/20.500.14094/D1000541

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

地下空洞掘削の情報化施工における 現場計測結果の評価に関する研究

昭和60年3月

進士 正人

地下空洞掘削の情報化施工における現場計測結果の評価に関する研究

昭和60年3月

進士 正人

目 次

表目次	(iv)
図目次	(v)
写真目次	(1	vii)

1	章		序論		(1)
1	•	1	研	究の背景	(1)
	1	•	1.1	地下空洞掘削の現状	(1)
	1	•	1.2	! 新オーストリア式トンネル工法(NATM)の導入	(1)
	1	•	1.3	3 計測機器の発達	(2)
	1	•	1.4	コンピューターの発達	* (3)
	1	•	1.8	5 新しい施工管理法	(6)
1	•	2	本	研究の目的	(6)
1	•	3	本	論文の構成	• (7)
	1 1 1 1	1章 1. 1 1 1 1 1 1. 1.	1章 1、1 1、 1、 1、 1、 1、 1、2 1、3	1章 序論 1、1 研 1、1、1 1、1、2 1、1、3 1、1、4 1、1、5 1、2 本 1、3 本	 1章 序論 1.1 研究の背景 1.1.1 地下空洞掘削の現状 1.2 新オーストリア式トンネル工法(NATM)の導入 1.3 計測機器の発達 1.4 コンピューターの発達 1.5 新しい施工管理法 2 本研究の目的 3 本論文の構成 	1章 序論(1.1 研究の背景(1.1.1 地下空洞掘削の現状(1.1.2 新オーストリア式トンネル工法(NATM)の導入(1.1.3 計測機器の発達(1.1.4 コンピューターの発達(1.1.5 新しい施工管理法(1.2 本研究の目的(1.3 本論文の構成(1章 序論(11.1 研究の背景(11.1.1 地下空洞掘削の現状(11.1.2 新オーストリア式トンネル工法(NATM)の導入(11.1.3 計測機器の発達(21.1.4 コンピューターの発達(31.1.5 新しい施工管理法(61.2 本研究の目的(61.3 本論文の構成(7

参考文献

第2	章		情報化施工に関する従来の研究及び本研究の占める位置	(10)
2		1	概説	(10)
2	2.	2	従来の施工法と情報化施工との相違点	(10)
2		3	地盤工学における情報化施工に関する従来の研究	(12)
	2	•	3.1 盛土工事の場合	(13)
	2	•	3.2 土留め工事の場合	(16)
	2	•	3.3 斜面崩壊予知の場合	(17)
2	2.	4	地下空洞掘削における情報化施工	(17)
2	2.	5	情報化施工における計測結果の設計・施工への	(25)
			フィードバックに関する従来の研究			
2	2.	6	本研究の範囲及び従来の情報化施工の中で占める位置	(28)
参考	5文	、献				

第	3	章		マ1	イク	ロコンピューターによる地下空洞掘削時の安定性の評価	(40)
	3	•	1	根	既説		(40)
	3	•	2	麦	も礎	式の誘導	(40)
	3	•	3	本	日	究で用いた解析装置	(46)
	3	•	4	角	翟 析	手順	(47)
	3	•	5	解	翟 析	モデルと演算時間	(48)
	3	•	6	吵	欠き	付けコンクリート覆工の剛性が逆解析に与える影響	(50)
		3	•	6.	1	覆工と地山の剛性比が逆解析結果に与える影響	(51)
		3	•	6.	2	吹き付けコンクリート覆工の等価弾性係数	(56)
	3	•	7	実	ミ際	問題への適用例	(63)
		3	•	7.	1	適用例 – 1	(63)
		3	•	7.	2	適用例一2	(65)
	3	•	8	新	古論		(71)
参	考	文	献						
第	4	章		掘削	り過	程を考慮した逆解析法	(73)
	4	•	1	楞	既説		(73)
	4	•	2	基	と礎	式の誘導	(75)
	4	•	3	娄	牧値	シミュレーションによる逆解析法の検討	(79)
	4	•	4	実	ミ際	問題への適用例	(85)
	4	•	5	紅	吉論		(90)
参	考	文	献						
第	5	章		地下	空空	洞掘削時の現場計測結果に基づく最終変位の予測法	(92)
	5	•	1	櫻	既説		(92)
	5	•	2	ē	1 接:	逆解析法を用いた最終変位の予測	(92)
		5	•	2.	1	最終初期応力パラメーターの予測法	(93)
		5	•	$2 \cdot$	2	予知定数の検討	(97)
	5	•	3	隽	ミ際	問題への適用例	(100)
		5	•	з.	1	適用例一1	(100)

- 5.3.2 適用例-2 (108)
- 5.4 結論
 (110)

 参考文献
- 第6章 結論

(113)

謝辞

(116)

付録

.

表目次

表 2 - 1	盛土の不安定判定基準	(15)
表 2 - 2	日本におけるNATMの施工例	(18)
表 2 一 3	注意レベルと施工管理	(21)
表 2 - 4	計測項目とその点数評価レベル	(22)
表 2 - 5	掘削工法ごとの変位速度と最大変位量の関係	(24)
表 2 - 6	明神トンネルにおける内空変位管理基準値	(24)
表 2 - 7	最適化手法の比較	(28)
表 2 - 8	天端沈下の管理基準値	(32)
表 3 - 1	全演算時間における各ステップの占める割合	(48)
表 3 - 2	初期応力が等価弾性係数に与える影響	(59)
表 3 - 3	各測線付近のゆるみ領域の材料定数	(65)
表4-1	計測変位の取り扱いかたによる逆解析法の比較	(74)

図目次

図 2 - 1	地盤に係わる構造物を建設する際の従来の施	(11)
	工法と情報化施工との流れの比較			
図2-2	せん断変形と圧密変形の変形モードの相違	(13)
図 2 - 3	沈下と側方変位の計測位置	(13)
図 2 - 4	富永・橋本の方法	(13)
図 2 - 5	松尾・川村の方法	(13)
図 2 - 6	柴田・関口の方法	(14)
図 2 - 7	沈下量の経時的変化	(15)
図 2 - 8	情報化施工のデータ処理システム図	(16)
図 2 — 9	斜面移動量の経時的変化	(17)
図 2 - 1 0	(1) 変位速度と支保荷重との関係	(22)
図 2 - 1 0	(2) 日本における変位速度と支保荷重との関係	(22)
図 2 - 1 1	変位速度と最大変位量との関係	(23)
図 2 - 1 2	逆解析法の分類	(26)
図 2 - 1 3	限界ひずみの定義	(29)
図 2 - 1 4	各種材料における限界ひずみ	(30)
図 2 - 1 5	現場試験における岩盤の限界ひずみ	(31)
図 2 - 1 6	地山の限界ひずみの管理値	(32)
図 2 - 1 7	逆解析の定義	(32)
図 3 - 1	地山を一様と考えた場合の初期応力と弾性係数	(41)
図 3 - 2	計測点と測定変位の関係	(44)
図 3 - 3	本研究で用いた解析装置	(46)
図 3 - 4	本研究における解析手順	(47)
図 3 — 5	本研究で用いた解析モデル	(49)
図 3 - 6	覆工の剛性に関するシミュレーション	(50)
	で用いる解析モデル(測定点)			
図 3 - 7	凹凸の実測図	(52)
図 3 - 8	覆工の凹凸に関するシミュレーションで用いる解析モデル	(57)
図 3 - 9	設計覆工厚が等価弾性係数に与える影響	(58)
図 3 - 1 0) インバート施工が等価弾性係数に与える影響	(60)

জে ০ 1 1	(。) 四月時に笠体部株で数の間で(D-100)	1	C 1	1
			01	
			01	
			02	
			02	
図3-13	逆解析で得られた変位と実測値の比較	(63)
図 3 - 1 4	地中変位計の設置位置とゆるみ領域の表示	(65)
図3-15	逆解析で得られた変位と実測値の比較	(66)
⊠3−16	各測線毎の測定値と逆解析による計算値の比較	(67)
		,		
図4-1 1	に規模地下空洞施工における掘削過程モデル	(73)
$\boxtimes 4-2$ t	刃羽の位置と計測変位量の関係	(76)
図4-3 並	逆解析により求める下半部解放力	(77)
図4-4 3	/ミュレーションモデルと計測位置	(80)
図4-5 月	内空変位量の経時的変化(シミュレーション)	(81)
図4-6 月	内空変位量の経時的変化の実測例	(85)
図4-7 携	屈削過程を考慮した逆解析法による変位と計測値との比較	(56)
図5-1 量	長終変位予測法の概念図	(92)
図 5 - 2 は	ҕる時間 T における初期応力パラメータ速度と	(93)
有	7期応力パラメータの最終状態までの増加量			
図5-3 晶	最終初期応力パラメータの予測法	(94)
図 5 - 4 A	Aトンネル地中変位計測結果を用いたdσノdt	(97)
Z	_{こ σ r} - σ との関係			
図 5 — 5 A	Aトンネル内空変位計測結果を用いたdσ/dt	(98)
2	ェσァ-σとの関係			
図 5 - 6 (a)	Aトンネル地中変位計測結果を用いた	(99)
	最終初期応力パラメータの予測(σ 1)			
図 5 - 6 (b)	Aトンネル地中変位計測結果を用いた	(1	100)
	最終初期応力パラメータの予測(σ₂)			
図 5 - 6 (c)	主軸の傾きの経時変化	(1	100)
図 5 - 7 7	JJ 期応力パラメータ速度の求め方	(1	101)
□ 図5-8 ù	逆解析による変位と計測値との比較	()	108)
$\boxtimes 5 - 9(a)$		(1	109)
	最終初期応力パラメータの予測(σ1)			
図5-9(h)	Bトンネル地中変位計測結果を用いた	(1	110)
	最終初期応力パラメータの予測(σ 2)	•		
	•			

写真目次

写真3ー1 有限要素法による最大せん断ひずみ分布(R=10)	(53)
写真3-2 逆解析による最大せん断ひずみ分布(R=10)	(53)
写真3ー3 有限要素法による最大せん断ひずみ分布(R=50)	(54)
写真3-4 逆解析による最大せん断ひずみ分布(R=50)	(54)
写真3-5 有限要素法による最大せん断ひずみ分布(R=100)	(55)
写真3-6 逆解析による最大せん断ひずみ分布(R=100)	(55)
写真3-7 最大せん断ひずみ分布 (適用例-1)	(69)
写真3-8 塑性ゾーンの表示(適用例-1)	(69)
写真3-9 最大せん断ひずみ分布(適用例-2)	(70)
写真4-1(a) 有限要素法による最大せん断ひずみ分布(Phasel)	(82)
写真4-2(a) 有限要素法による最大せん断ひずみ分布(Phase2)	(83)
写真4-3(a) 有限要素法による最大せん断ひずみ分布(Phase3)	(84)
写真4-1(b) 逆解析法によって求められた	(82)
最大せん断ひずみ分布(Phasel)			
写真4-2(b) 逆解析法によって求められた	(83)
最大せん断ひずみ分布(Phase2)			
写真4-3(b) 逆解析法によって求められた	(84)
最大せん断ひずみ分布(Phase3)			
写真4-4 最大せん断ひずみ分布(Phase1)	(88)
写真4-5 最大せん断ひずみ分布(Phase2)	(88)
写真4-6 最大せん断ひずみ分布(Phase3)	(89)
写真5-1(a) 計測開始5日目におけるトンネル周辺の	(102)
最大せん断ひずみ分布			
写真5-1(b) 計測開始11日目におけるトンネル周辺の	(103)
最大せん断ひずみ分布			
写真5-1(c) 最終状態におけるトンネル周辺の最大せん断ひずみ分布	ī (104)
写真5-2(a) 計測開始5日目におけるトンネル周辺の	(102)
最大せん断ひずみ分布(予測)			
写真5-2(b) 計測開始11日目におけるトンネル周辺の	(103)

最大せん断ひずみ分布(予測)

- 写真5-3(a) 計測開始5日目におけるトンネル周辺の (105) 塑性ゾーンの分布
- 写真5-3(b) 計測開始11日目におけるトンネル周辺の (106) 塑性ゾーンの分布
- 写真5-3(c) 最終状態におけるトンネル周辺の塑性ゾーンの分布 (107)
- 写真5-4(a) 計測開始5日目におけるトンネル周辺の (105) 塑性ゾーンの分布(予測)
- 写真5-4(b) 計測開始11日目におけるトンネル周辺の (106) 塑性ゾーンの分布(予測)

第1章 序論

1.1 研究の背景

1.1.1 地下空洞掘削の現状

従来、鉄道・道路などにおけるトンネル施工は、技術的・経済的な理由に よりできるだけこれを避けられる傾向にあった。しかし、1960年代から新幹線・ 高速自動車専用道路などの高速多量輸送を目的とする交通網の整備が始まると、 その交通網の高速性からできるだけ直線的な路線を採用することとなり、必然的 にトンネル構築が避けられない状況となった。また、高度経済成長によって、地 価は急激に上昇し、建設用地の確保が大変難しくなった。その上、騒音・振動な どの付近住民に与える環境問題も大きな社会問題となり、高速交通網は進んでト ンネル施工を行なっているのが現状である。従って、現在では、非常に苛酷な地 質や施工条件の下においてもトンネルの建設が行なわれる場合が多い。

また、トンネル建設に加えて、地下発電所や地熱発電プラント、さらに石油、 天然ガス等の可燃エネルギーの備蓄及び高レベル放射性廃棄物処理などを目的と する土木構造物の建設は、時代の急務になりつつある。これらは、すべて地中構 造物であり、その規模は、トンネル構造物よりも数段大きく、ますます大規模に なってきているのが現状である。

1.1.2 新オーストリア式トンネル工法(NATM)の導入

このような状況のなかで、1975年に我が国に導入され、翌年5月より8月 の間に、上越新幹線中山トンネルにおいて試験施工された新オーストリア式トン ネル工法(The New Austrian Tunnelling Method 通称NATM)は、現場計測を 発破、ずり出しなどの施工過程のひとつとして位置づけた画期的な掘削工法であ った。すなわち、NATMは、従来「随道十訓」にも見られるような経験と勘に よってのみ施工されていたトンネル施工の分野において、断面縮小量(コンバー ジェンス)測定を中心とする施工管理(モニタリング)を施工に組み込み、建設 現場における計測により、構造物の安定性を確認しながら施工を行なうところに その特徴があり、我が国においても試験施工以後、急激に普及した。

施工面におけるNATMの特徴は、地山自身のもつ強度を主要な支保部材とし てロックボルト、吹き付けコンクリートおよび鋼製支保工をにより十分発揮させ、 地山のアーチ効果を最大限に利用するところにある。すなわち、地山は本来荷重 を支えることのできる材料であり、吹き付けコンクリート覆工は単に表面処理と いう役目を果たすに過ぎないのである。 NATMの提唱者ラブセビッツは、この工法について以下のように述べている

『NATMは、トンネル掘削後の空洞周辺岩盤に生ずる応力の再配分過程にお ける力を、注意深く、かつ慎重に抑制することによって岩盤自体を支保として 用いる方法であり、一般に2種類(吹き付けコンクリートと二次覆工)の支保 が考えられる。まず、トンネル掘削の進行に伴い、比較的弱いコンクリート(吹きつけコンクリート)の補助アーチを施工する(一次覆工)。トンネルのイ ンバートは、速やかに最終的に必要な強度のコンクリートを施工する。いくら かの時間が経過した後に、補助アーチの変形を測定し、覆工圧力が減少したか、 又は平行状態に達したことを確認したならば、支持アーチ(二次覆工)を施工 する。施工条件が良いとか、地山が良いとかで、補助アーチの変形が測定でき ないほど小さければ、鉄筋を用いないとか、あるいは、支持アーチを全く施工 しないこともできる。』

通常、覆工圧力や、地山内応力を現場計測によって直接求めることは非常に困難 である。よって、変位計測の結果から地山の安定性を確認しながら、支持アーチ の施工する時期を決定することが多い。

従来、このようなNATMの理論的背景については、経験に立脚したものであ るとの批判がなされていたが、岩盤力学、地盤工学の分野からも合理的な概念に 裏打ちされた工法であることが認識されてきた¹⁻²⁾。一方、地盤工学の分野にお いては、1948年、すでにTerzaghiらにより"Observational Procedure"が提唱され、 現場計測の重要性が明らかにされている¹⁻³⁾。しかし、その当時、理論と実際の 間には、大きな隔たりがあり、現場で実際に施工に当たっている技術者には、理 論を理解する人は少なかった。また、理論を理解できなくても、施工は行なわれ てきた。そして、支保工に対する定量的な評価は、設計段階においてのみ行なわ れることが多かった。このような状況において、掘削において、絶えず現場計測 を行ない、計測結果を設計・施工にまでフィードバックし、必要であれば迅速に 支保工の強化または軽減を行なうことを可能としたNATMの出現は画期的なも のであるといえる。

1.1.3 計測機器の発達

このようなNATMの発達とともに、数多くの現場計測機器が開発され、 使用されてきた。

現在、トンネルにおける現場計測は、1)日常の計測(A計測)、及び2)重点箇

所における計測(B計測)に大きく分類される¹⁻⁴⁾。A計測は掘削毎に行なわれ る現場計測であり、切羽観察、内空変位計測、天端沈下計測などがある。B計測 は、地質の変化点や、あらかじめ危険が予想される断面において実施される重点 計測であり、A計測よりもより詳しく地山の状態を調べる為に行なうものである。 代表的な計測としては、地中変位計測、ロックボルト軸力計測、吹き付けコンク リート内応力計測などがある。

近年、これらの計測機器の精度は、非常に向上し、例えば変位量の計測では 1/1000mmまで測定できる機器が開発されている。しかしながら、現状においては これら多数の計測機器によって得られた測定結果が、情報化施工の目的とする支 保工の適性規模に対する定量的な解答を与え、後続する施工に対し、迅速にフィ ードバックされ、さらに、当初の設計がどの程度妥当なものであったかを再評価 するまでに至っていないように思われる。

1.1.4 コンピューターの発達

このような計測機器の発達と平行して、電子計算機の高性能化、小型化、 低価格化には、目を見張るものがあった。

はじめて電子計算機が作られた時は一万八千個の真空菅が使われ、重さが30ト ンもあり、それを収容するのに大きな部屋が必要であったと言われている。(EN IAC,1946)それが、トランジスタの出現により飛躍的な発展をとげ、次いで集積 回路(IC)の開発によってコンピューターのハードウェアの面は急激に発達した。 現在では、わずか数mmのシリコン板の上に数10万個のトランジスタに匹敵する能 力を持った大規摸集積回路(LSI)が出現し、コンピューターの小型化、大容量化、 高速化が進んでいる。近い将来には超大規摸集積回路(VLSI)の発展に伴い、性 能の高性能化とともに、安価で使い易いコンピューターの出現が予想される。

これまでのコンピューターの利用法は、より容量を必要とする計算を、より高 速に行なうことだけに重点がおかれてきた。すなわち、コンピューターの高性能 化、高容量化が開発の中心であった。しかし、これからのコンピューターの利用 は、単に計算が高能率であるだけではなく、より技術者と密着した個人用コンピ ューターとの対話を通じて、情報の収集、分析、検索を行なうデータベース的な 使用法や、小型コンピューターのネットワークを個々の技術者が利用するいわゆ る分散型の使用法が中心的になりつつあるように思われる。

このようなコンピューターの利用の変遷を島田¹⁻⁵⁾は、3つの時代に大別した。 以下に、それぞれの時代を概観する。

1) 第一世代

1950年代のおわりから1960年の初期にかけては、コンピューターを単なる計算 だけに用いていた時代であり、それまでの人間が行なっていた仕事を単にコンピ ューターにおきかえた時代である。ここでは、コンピューター自体も単なる高速 演算機としてしか認められず、ソフトウェアよりもハードウェア自体が遅れてい たことと、土木技術者自身がそれを直接利用することもあまりなかったために、 土木工学の中では、有効に利用されるまでには至らなかった。

2) <u>第二世代</u>

1960年代の中ごろになると、それまでの算術演算からはるかに大きな可能性を 持った論理演算が可能なコンピュータが利用できるようになった。当時は、社会 的背景を見ても多くの分野で経済成長が著しくなり、業務領域の拡大や業務量の 増加に対応するために積極的にコンピューターの導入を計るようになって来た時 でもあった。この時代の特徴としては、プログラム技術が発達し、単なる高速演 算装置から大規模なプログラムシステムを作ることが可能になった事である。ま た、マンマシンコミュニケーション、インタラクティブの利用技術といった新し いコンピューターの利用概念が確立された時代でもあり、土木工学のあらゆる面 において、コンピューターの利用の基礎が築かれた時でもある。

3) 第三世代

この時代は、コンピューターの一般化の時代であった。すなわち、1970年代の 後半から1980年代にかけて、急激に進展した経済成長の見直しが行なわれると共 に、LSI技術の発達により、小型で安価な高性能LSIコンピューターが出現し、コ ンピューター自体を簡便で使い易いものにしようとする努力が行なわれた時代で ある。第三世代に入ると、第二世代においてその概念が作られたマンマシンコミ ュニケーションによるコンピューターの利用法、すなわち、コンピューターエイ デッドデザイン(CAD)、コンピューターエイデッドマニュファクトリー(C AM)及び大規摸データベースの構築などが、実用化にはいった。それと共に、 コンピューターの周辺装置についても数多くの装置が開発され、それまではハー ドウェアの面から制約のあった大規摸ソフトウェアの開発、計画や設計分野にお けるシミュレーションモデルが構築され、安全で精度のよい計画や設計・施工管 理が可能となってきた。

このような第三世代コンピューターの出現は、LSI技術の発展から可能となった ものである。このLSI技術の発展は、1971年、日本の電卓メーカーの依頼により i4004(インテル)という4ビット中央処理装置(CPU)の開発を促した。その 後、CPUのデータ処理能力は、4ビットから8ビット(代表的なCPUとしては、 インテルi8080(1973)、ザイログZ80(1975)、モトローラMC6809などがある)、1 6ビット(代表的なCPUとしては、インテルi8086(1978)、i8088,モトローラM C68000,ザイログZ8000(1978)がある)と進展し現在では、32ビットのデータ処 理能力をもつCPU(例えば、ナショナルセミコンダクターNS32032)が開発され ている。

それらのCPUのひとつであるMC6809を組み込んだコンピューターとして、19 75年、19歳のスティーブン・ジョブズと23歳のステファン・ウォズニャクの二人 は、スティーブン・ジョブズの両親の家の寝室と車庫を使って、自作のコンピュ ーターの制作・販売を始めた(Apple 1,1975)。そして、1977年Apple 11の発売を 開始した。この出来事は、LSI技術の進歩により、従来 I B M のような大企業の独 占市場であったコンピューターの分野に個人営業程度の会社(このような会社を、 ガレージメーカーと呼ぶ。)が参入できる余地があることを意味しており今後の マイクロコンピューターの普及に重大な影響をおよぼした。

日本では、1976年、日本電気製マイクロコンピューター組み立てキットTK-80の 発売がマイクロコンピューター時代の幕開けであった。そして、1979年PC-8001の 発売によって、今まで、一部マニアの趣味の領域であったマイクロコンピュータ ーは、急激に一般に普及した。現在では、16ビット処理を行なうCPUを用いて、 数値データブロセッサ、フロッピーディスクユニット、ハードディスクユニット、 高解像度カラーディスプレー及びXYプロッターなどを備えた、第二世代におい ては大型計算機程度の能力及び周辺機器を備えたマイクロコンピューターを個人 で購入できる時代になりつつある。¹⁻⁶⁾

また、マイクロコンビューターの進歩と共にソフトウェア、特にオペレーティ ングシステムいわゆるOSの進歩は、マイクロコンビューターの進展に重要な影 響を与えた。^{1-7,8,9)}すなわち、特定の機種を問わずに使用することのできるO Sの存在は、そのOSのもとではどの機種においても、一つのプログラムを実行 させることが可能となるため、従来、大型計算機用の計算言語であったFORT RAN、PASCALなどの高級言語がマイクロコンビューター用として開発さ れるきっかけとなった。それにより、機械語・BASICによってのみ計算可能 であったマイクロコンビューターに、多様の言語で書かれたプログラムの実行を 可能とした。その結果、土木工学の分野では、大型計算機でのみ利用可能であっ たFORTRANなどで書かれた構造計算プログラム等のソフトウェア資産のマ イクロコンビューターへの移植が可能となった。現在、代表的なマイクロコンビ ューターのOSとしては、CP/M-80(Z80)、UCSDp-System、FLEXと0S-9(MC6809)、 CP/M-86、MS-DOS、UNIXなどがもっとも一般的である。 1.1.5 新しい施工管理法

NATMの基本は、施工中のトンネルの力学的挙動を計測によって把握し、 その結果を設計・施工にフィードバックすることにある。現場計測としては数多 くの異なる方法が提案され、実施されているが、その中で変位の計測が最も容易 であり、一般的に計測値に対する信頼度も高い。従って、施工管理においては、 変位あるいは変位速度を測定し、それを管理基準値と比較することによってトン ネルの安定性を監視する方法が用いられる。そして、変位あるいは、変位速度が 管理基準値を超える恐れのある場合は、掘削工法あるいは、支保工法の再検討を 行なうことになる。その場合の管理基準値や、対策工はトンネルの施工に先立ち あらかじめ定めておかなければならない。しかし、一般的に、管理基準値は、多 くの要因によって影響を受けるため、その設定は容易ではない。従って、現場計 測は行なわれても、その結果が有効に設計・施工にフィードバックされていない 場合も多い。

このように、施工中に現場で実際の挙動を測定しながら、設計通りのものがで きているかを常に監視し、測定値が事前の予測した管理基準値を超える場合は速 やかに、設計や施工法を修正して施工を進めることが重要になる。特に、現場計 測と設計・施工へのフィードバックのステップをできるだけシステマティックに 早いビッチで進めていくことが、土木工事の安全性、経済性及び迅速性につなが るといえる。このような考え方に立脚した施工法を我が国では情報化施工と呼ん でいる。

情報化施工の特徴は、設計、施工、現場計測、設計・施工へのフィードバック という一連の作業を、コンピューターシステムによって処理、管理し、それらを 一体化したところにある。すなわち、現場計測で得られたデータを収集、処理し、 将来の予測並びにそれに基づく設計や施工法の修正及び変更を、コンピューター システムで迅速に行なうことができる点にある。従って、現場計測で得られた新 しい情報に基づく事前の設計、施工法の見直しにより、常に各施工時点で、現地 の条件により適合したものが見いだせることになる。そして、それらを設計・施 工にフィードバックすることにより施工を積極的にコントロールし、構造物を安 全に、かつ迅速に、しかも経済的に施工することができる。

1.2 本研究の目的

本研究は、NATMによる地下空洞の情報化施工、特にマイクロコンピュ ーターを核とした現場計測結果の設計・施工へのフィードバックシステムの開発 を目的としている。すなわち、現場計測結果から、計測地点における現状の評価、 及び将来の予測を、建設現場に設置できる程度のマイクロコンピューターで行な い、建設現場に従事している土木技術者自らの手で、支保構造物の安全性の評価 を行なうことのできるシステムの開発を目指した。なお、システムの開発には以 下のような条件を設けた。このような条件を設けた理由は、本研究で開発するシ ステムは、あくまでも、建設現場で実際に用いられることを想定しているため、 建設現場にできるだけ負担をかけないことを原則にしているからである。

- フィードバックに対する方法論:フィードバックに対する方法論は出来る だけ簡単である必要がある。しかし、フィードバックの結果から得られる 現状の評価及び将来の予測の精度は、高いものである必要がある。
- 2)明確な対策工の指示:フィードバックの結果、問題が生じた場合、明確に 対策工法の指示が行なえるフィードバック理論であること。
- 3)システムの高速性:フィードバック結果をできるだけ早く現場技術者に提供するため、現場計測データの入力から結果が得られるまでの時間を5分以内にすること。
- 4)システムの操作性:システムの操作性は誰にでも扱うことのできる簡便性 を備えたものにすること。
- 5)システムの低価格性:システムは、出来るだけ低価格な汎用のもので構成 し、特殊な装置を使用しないこと。
- 6)システムの可移動性:システムは、簡単に持ち運べるものにすること。

このような条件を満足するフィードバックシステムを開発するために、研究を 行なった。本研究の基礎理論の一部は、すでに提案されたものであるが、本研究 の目的は、基礎理論を統合、発展させ、ひとつのフィードバックシステムとして 機能させるところにある。また、建設現場への適用性を考慮し、フィードバック システムに使用するコンピューターは、出来るだけ低価格な汎用なものを用いる こととした。

1.3 本論文の構成

ここでは、第1章から第6章にいたる本論文の構成を簡単に説明する。

まず、本研究の背景及び目的について述べた第1章に続いて、第2章では、本 研究の基礎となる施工管理法、逆解析法、最終変位の予測法を対象として従来の 研究を取り上げて概説する。また、従来の研究成果を参照しながら本研究の特徴 と範囲について述べる。

第3章では、従来の逆解析法のひとつである桜井の直接逆解析法を手直しし、

解析装置にマイクロコンピューターを用いても、十分な精度及び速度が得られる ようにアルゴリズムを改良し、2、3の現場計測結果に適用する。

第4章では、従来の直接逆解析法を改良し、段階掘削に対する施工過程を考慮 した方法論を開発する。そして、現場計測結果を解析し、方法論の妥当性を検討 する。

第5章において、直接逆解析法を用いて最終変位状態を予測する方法論を提案 し、実際の現場計測結果に対する適用例を示す。

最後に第6章において、本研究で開発したフィードバックシステムの問題点を 挙げ、将来、克服しなければならない事項について述べる。

付録として、本研究によって開発された、地下空洞安定性の評価シムテムの操 作マニュアルを添付する。

参考文献

- 1- 1) Rabcewicz, L. v. :"The New Austrian Tunnelling Method", Water Power Nov. Dec. 1964, Jan. 1965.
- 1- 2) Rabcewicz, L. v. and Golser, J. :"Principles of Dimensioning the Supporting System for The New Austrian Tunnelling Method", Water Power, March, 1973.
- 1-3) Terzaghi, K. and Peck, R. B. : Soil Mechanics in Engineering Practice, John Wiley and Sons, pp. 326-328, 1948.
- 1-4) (社)日本トンネル技術協会 「NATMの計測指針に関する調査研究報告書」1983年3月
- 1-5)島田 静雄「ミニコンからマイコンまでの動向」土木学会誌、pp.9-12, 1982,5月号。
- 1-6) 榊 正憲、柳楽 直樹、横溝 和弘 『PC-9801ガイドブック』、アス キー、pp.23-44, 1983。
- 1-7) 米持 尚 「パソコン用Operating Systemへのアプローチ」マイコン、 pp.311-324、1983、10月号。
- 1-8) 菅木 真治 「MS-DOS読本」、アスキー、pp.42-51、1983。
- 1-9) Grant, C. W. and Butah, J. (訳) 小池 慎一 「UCSD p システム入門」、CQ出版社、pp.5-21、1983。
- 1-10) 桜井 春輔 「マイクロコンピューターによる計測結果の評価と設計・施工 へのフィードバックについて」(社)日本トンネル技術協会、第5回トン ネル技術シンポジウム-NATMと施工管理-、pp.3-12、1984。
- 1-11) 桜井 春輔 「トンネル工事における変位計測結果の評価法」土木学会論文 報告集、第 317号、pp.93-100、1982。
- 1-12) 久楽 勝行 「岩盤工学と測定技術」土木学会誌、pp.12-16,1983、11月号。
- 1-13)島津 久陽、堀内 幸雄 「施工管理・NATMとシールド」土木学会誌、 pp.29-31、11月号。
- 1-14) 松尾 稔 「現場計測の現状と将来」地質と調査、pp.2-7,1984、第 1号。
- 1-15)谷本 親伯 「NATM-1、森北出版」、pp.1-48、1984。
- 1-16) 都市NATMワーキンググループ 「都市トンネルにおけるNATMの適 用に関する研究について」、pp.2-9、1984、5月。

第2章 情報化施工に関する従来の研究及び本研究の占める位置

2.1 概説

トンネル、地下発電所など地盤のなかに建設される構造物の施工中の安定 性は、大きく地盤の物性値及び初期応力などに左右される。従って、安全に構造 物を建設するためには、それらの値を正確に把握することが最も重要である。し かし、地盤の不均質性のため、その物性値や、初期応力をすべて材料試験や現場 調査によって正確に求めることは、ほとんど不可能に近い。また、たとえ求めら れたとしても、それらの値をすべて用いた解析は大変複雑となるであろう。そこ で、設計は簡単な材料試験の結果に基づき行なうのであるが、施工中に現場計測 を行なうことによって、設計においてあらかじめ予想した挙動と現場計測によっ て得られた挙動を絶えず比較、検討しながら施工を進め、必要に応じて設計・施 工法を変更する方法が、1948年Terzaghi-Peckにより"Observational Procedure" として提案された²⁻¹⁾。

この方法では、施工中に、現場計測から得られた多くの情報は、迅速かつ確実 に処理する必要がある。そこで、コンピューターを用いて現場計測結果を処理す るシステムが開発され、"情報化施工"^{2-2,3)}と名付けられた。すなわち、情報 化施工は、"Observational Procedure"を一歩進め、現場計測によって得られた情 報に基づき、コンピューターをフルに活用し情報の分析、評価を行なう。それと 同時に、将来の予測を行ない、危険が予知される時には、現場計測結果を設計に フィードバックし、必要であれば、設計変更をも行ないながら絶えず最適な施工 を行なう工法であるといえる。²⁻⁴⁾

情報化施工がわが国で最初に実施されたのは、軟弱地盤掘削に鋼管矢板井筒工 法を採用した際、コンピューターを用いて、建設現場における計測データと設計 上のデータとの対比・検討・解析を通じて支保工の節約と安全性の検討を行なっ た肱黒ら²⁻²⁾によるものである。

本章では、まず、2.2において、情報化施工が従来の施工法と異なる点を明 確にする。次に、2.3では、地盤工学全般における情報化施工に関する従来の 研究を述べる。特に、2.4において、地下空洞掘削における情報化施工に関す る従来の研究について述べる。そして、2.5において情報化施工における設計 ・施工へのフィードバック理論に関する従来の研究について述べる。最後に、2. 6において、本研究の範囲を述べると共に、従来の研究の中で本研究がどのよう な位置を占めるかについて述べる。

2.2 従来の施工法と情報化施工との相違点

地盤に係わる構造物を建設する場合における、従来の一般的な調査、計画、 設計及び施工という一連の流れと、情報化施工における流れの比較を図2-1に示す ²⁻⁵⁾。図中、太実線は、両者共通の流れであり、細実線、および点線は、それぞ

図2ー1 地盤に係わる構造物を建設する際の従来の施 工法と情報化施工との流れの比較(松尾、1982)

れ情報化施工及び従来の設計、施工法独自の流れである。

図から明らかなように、計画、調査、設計までは、従来の施工法と情報化施工 とは、ほぼ同様な流れを示す。しかし、施工段階では、両者は、全く異なった流 れとなる。すなわち、従来の施工法は、現場計測を行なわないため、安全度の判 定は、施工に携わる技術者の経験、及び実績によって行なうしかない。また、思 わぬ支障が生じても、その状況を克服するための対策は、緊急的(応急的)処置 であり、設計段階とは全く無関係である。

それに反して、情報化施工では、設計終了段階において当初設計案を決定する と同時に、いくつかの状況を想定した設計変更案を準備する。そして、現場計測 を行ない、絶えず、破壊、変形予測を行ないながら、それらの情報に基づき、構 造物の安定性を評価する。その結果、設計において予測した挙動と計測による挙 動が異なる時は、現場計測によって、地盤の物性値の再評価、設計・解析法の再 選択、及び精度の検討を行ない、安全性、経済性、施工性及び重要性等の多角的 な面から、事前に準備していた設計変更案の中で最適な対策工を実行する。この ように、情報化施工では、現場計測が重要な役割を果たす。よって、現場計測か ら得られる情報は、信頼性が高く、かつ精度が高いものである必要がある。

現場計測において、主に計測されるものは、変位、応力、力、材料定数などで ある。これらの現場計測の結果を用いて、情報化施工における構造物の安定性の 評価を行なう際、従来の設計法が許容応力度設計法によって行なわれていること もあり、応力、力および材料定数などの情報が正確に現場計測によって得られる ならば大変都合がよい。しかし、特に地盤工学の分野では、変位計測の精度と比 較すれば、応力の計測の精度は、地盤の不均質性、不連続性などに影響されやす く信頼性が低い。例えば、これらの中で代表的な計測として土圧計測がある。松 沢は、どのような精度の高い土圧計を用いても数十パーセント程度の計測誤差が 生じることがよくあると述べている。また、土圧計測を難しくする原因として、 地盤の力学的性質の複雑さ、土圧計の設置位置、設置後の検定、応力集中、受圧 板の剛性などを上げ、これらの原因を取り除き、正確に土圧を計測するためには、 計測値の性格を理解して、土圧計の機種選択及び結果の解釈を行なう必要がある ことを明らかにした²⁻⁶⁾。

2.3 地盤工学における情報化施工に関する従来の研究

情報化施工が対象とする地盤は、非常に柔らかい粘土から、堅硬な岩盤まで非常に広範囲である。加えて、地中に構築される構造物も多種多様である。従って、構造物の種類及び地盤の性質にあった情報化施工が必要となる。

そこで、本節では、それぞれの構造物における情報化施工に関する従来の研究

を概説する。

2.3.1 盛土工事の場

合

盛土工事における盛立て には圧密変形と盛土崩壊に つながるせん断変形がある。 その両者の挙動の相違点は、 図2-2に模式的に示すように、 圧密変形では、圧密進行が進 むにつれ、盛土下地盤が沈下すると ともに周辺地盤は盛土下に引き込ま れるように変形する。これに対して、 せん断変形は、盛土下及び周辺地盤 の内部でせん断破壊が生じ、周辺地 盤が外側に押し出される現象であり、 盛土下の地盤は沈下した分だけ外側 に変形して、周辺地盤は盛土から遠 ざかる方向に変位しながら降起する 点にある。

一般的に、盛土の破壊における定 性的な兆候としては、盛土天端や法 部にクラックが発生する、盛土中央 部の沈下が急増する、盛土法尻部付 近が盛土外方に向かって急増する、 盛土活尻部付近が隆起する、盛土作 業の休止中にも間げき水圧が上昇す る、などがある²⁻⁷⁾。これらの中で、 どの程度破壊が接近しているかの目 安、換言すれば破壊までの余裕時間 や余裕盛土高さを推定することを目 的として、従来から多くの研究が進 められている。^{2-8,17)}ここで主に、 盛土圧、盛土の沈下及び盛土のり尻 の側方変位による予測方法を紹介す

る。

松尾・川村の方法²⁻⁹⁾: 地盤条件、土質条件、

盛土形態が異なる十数 図2-6 柴田・関口の方法(柴田、1980) 箇所の盛土工事から破

壊した盛土における破壊時のρとδ/ρの関係を事前に図2-5の曲線(破 壊基準線)として求めておき、施工中にδとδ/ρの軌跡がより危険な 破壊基準線に近づくと破壊に向かっていると判断する。

柴田・関口の方法²⁻¹⁰:段階盛立て後、一定時間間隔△tにおける、ある 段階の盛土圧△pによる盛土後の側方変位増分△δをそれまでの全盛土 圧pと△p/△δの関係でブロットすれば、図2-6のような右下がりの直 線部を有する関係が得られ、直線部の延長線と横軸との交点が最大許容 盛土圧となる。そこで、予想される盛土圧が地盤の強度を超えるおそれ があるときは、地盤改良などの方法を速やかに実行する。

その他、法尻の側方変位の単位時間当りの増加量(すなわち変位速度)によって 盛土の安定性を評価する方法²⁻¹¹⁾などもある。

次に、実際の軟弱地盤上の盛土工事において、破壊予測法を実際に適用して情報 報化施工を行なった事例について述べる。

まず、最初の例は、北海道縦貫自動車道の建設に伴い、石狩泥炭地と呼ばれる 軟弱地盤上に約27kmにわたって施工した盛土工事である²⁻¹⁶⁾。軟弱層の層厚は厚 い所で30mに達し、上部の泥炭層は含水比が80-100%にも及ぶ非常に含水比の高い 有機土である。このため、緩 速盛土施工を主体に、必要に 応じて押さえ盛土やサンドド レーン工法を併用する方法が 採用された。現場計測として は、道路延長の施工単位区間 ごとに観測線を設け、各観測 線には地表面変位計や変位杭、 間隙水圧計などを設置して、 情報化施工によって盛土の施 工速度を増減する方法がとら れた。

安全管理は、先に紹介した 盛土の安定性の評価方法を用

表 2 ー 1 盛 土 の 不 安 定 判 定 基 準 (栗 原 、 1982)

不安定の	安定恭単
α₂≥0.7 または α₂≥α₁÷0.5	s
<i>∆∂_H/∆t</i> ≥1.5cm/d	79 ¹¹ /71
$\begin{split} \delta_H/S \ge 0.6 \\ \pm \hbar; \\ \delta_H/S \ge 0.1 \\ \forall p_j/p_j \ge 0.8 \\ \forall -1 \le a_3 \le 1 \end{split}$	$ \begin{array}{c} $
$\Delta q_E / \Delta \delta_H \leq 15 t / m^3$	R Q1 QE
	不安定の $a_2 \ge 0.7$ または $a_2 \ge a_1 \div 0.5$ $\Delta \delta_H / \Delta t \ge 1.5 \text{ cm/d}$ $\delta_H / S \ge 0.6$ または $\delta_H / S \ge 0.1 \subset p_j / p_j \ge 0.95$ または $p_j / p_j \ge 0.8 \subset -1 \le a_3 \le 1$ $\Delta q_E / \Delta \delta_H \le 15t / m^3$

いて、表2-1に示す不安定の判定基準を基に毎日の観測データをチェックし、表の 判定基準のどれかに該当し、しかも現地の状況から盛土が破壊ないし不安定状態 に達するおそれのある場合は、その状況に応じておもいきった放置期間の確保あ るいは盛土荷重の軽減が計られるような対策を講ずるようにした。なお、表中、 Sは盛土中央部の沈下量、るHは盛土法尻部の最大変位、qEは盛土荷重を表わす。 このような安全管理のシステムは、集中管理センターと工事担当区及び請負人の 三者の密接な協力のもとで運用され、現地での軟弱地盤の盛土工事も順調に進ん で所定の盛土を築造することができた。

次に、太田川流域水道部 浄化センターの建設に伴う 軟弱の改良工事²⁻¹⁷⁾ では数の改良工事²⁻¹⁷⁾ では、構造物の基礎が、浮 き基ですることにな っレーンを施工した地盤に 層別は、サンド ド別、間様用された。そして、 現場計測で得られた観測デ ータを基に設計値と実測値 の適合性を検討するととも

にい圧す留測盛地復をそいて密る沈を土盤の決の解は度時下行のの時定結析所を期量な撤水期し、結びの足残予、や回ど。

図2-7に示すよ うな残留沈下

量がゼロとい 図2ー8 情報化施工のデータ処理システム図(肱黒、1971) ってもよいほ

どの値が得られ、構造物と地盤との不同沈下量を少なくするという当初の目的が 十分達成できた。

2.3.2 土留め工事の場合

富永らは、大型高炉基礎の建設のため軟弱地盤を26mまで、二重鋼管矢板で掘削 した際、地盤の崩壊や工事の支障となる土留め工、仮締め切り工の変状を監視す ることと共に、壁体や支保工、地盤などに計器を設置して、それらの経時的な挙 動を観測し、異常な動きがあればただちに工事を中断して対策を講ずるシステム を開発し、RCC(Real time Construction Control)システムと名付けた。この方 法は、情報化施工のひな型となるものであり、その施工例²⁻⁴⁴⁾を次に述べる。

高炉の建設場所は、千葉市の川崎製鉄所内で、掘削の対象となる地盤は表層の 砂層とその下部の厚さ30m程度の柔らかいシルト質粘土層である。このような軟弱 地盤での26mに及ぶ深い掘削に対処できる適切な設計方法並びに指針は、現在のと ころ確立されていない。そこで、設計と施工の不確実性や挙動の違いを補い、そ れに対処する手段として、図2-8に示すような現場計測に基づく情報化施工が検討 され実行に移された。すなわち、2200測点に及ぶ観測点からのすべての情報を集 中管理センターに集積し、それを大型コンピューターに入力して解析を行ない、 現場での現象を的確に把握すると共に、将来予測についても検討を加える。そし て、当初設計した値と施工時の観測値が異なる場合は、土質定数や解析モデルを 変更した修正計算を再度行ない、その結果に基づいて将来予測を立て、各計測時 点における最適な施工方法及び施工 順序を決める。これらの作業のほと んどを大型コンピューターが行なう ので、迅速にして、かつ客観的な判 断が下せるようになり、また、掘削 が進むと情報量も増大し、予測の精 度も向上するので、施工管理もしや すくなる。以上のような現場計測に よる入念な施工管理により、軟弱地 盤における二重鋼管矢板による26m

図 2 ー 9 斜 面 移 動 量 の 経 時 的 変 化 (藤 川 、 1980)

の掘削を無事終了させ、高炉用の井筒基礎を完成させることができた。

その後、同様のシステムが、連続R.C地中壁による地盤掘削などにおいても実施 され大きな成果を上げた。^{2-19,20)}

2.3.3 斜面崩壊予知の場合

変位計測によって構造物の安定性を評価するものとして斜面崩壊予知の問題が あげられる。切土法面及び斜面の安定性については、各方面で長年にわたって、 調査・研究がなされてきている2-21,22)。しかし、一般に広く利用できる有効な 評価手法を確立するまでにいたっていない。これは、切土法面及び自然斜面の安 定性に地盤の複雑な地層構成、地質、地下水などが微妙に影響するためである。 また、切土法面などは自然の風化作用によって時間とともにその安定性が低下し ているので、いっそう複雑になる。そこで、崩壊の危険のある切土法面及び自然 斜面に諸計器を設置して事故を未然に防止する方法が試みられており、実際の斜 面に適用して成功した事例も報告されている2-23,24)。図2-9は、一般国道33号の 愛媛県柳谷村中津の斜面崩壊の現場で観測された地表面の移動量と崩壊の関係を 示したものである²⁻²³⁾。移動量は降雨が誘因となって増大しており、移動量が累 積して斜面崩壊を起こす直前では移動量が急激に大きくなっている。この測定さ れた移動量から、ひずみ速度と崩壊時間の関係を求め、斜面崩壊の起る時間を予 測した結果、実際の崩壊時間とほぼ一致するものが得られた。そこで、崩壊予測 時間に基づき現地では実際の崩壊の起こる一時間前に通行止めの処置をとり、人 命などに係わる道路災害を未然に防止することができた。

2.4 地下空洞掘削における情報化施工

NATMの普及により、地下空洞掘削において現場計測をおこなうことは現在 かなり一般化している。表2-2に、日本におけるNATMの施工例と地質、断面、

表 2 - 2 日本における NATMの施工例 - その 1 - (足立、1981)

	トンネル名	トンネル延長 (NATM施工区間)	地質	断面	支保工	施工法	計谢項目	解析,フィードバック
I	中山 T (上越 新幹線)	14.800M	禄 色 凝 灰 岩 (膨 張 性)	新幹線	SR MU-27 @1M SC t=25cm RB I=3Mx20 @1M I=6Mx12	ショートベンチ カット	内空变位 地中变位 ロックギルト軸力分布 坑内弾性波探査	内空変位の収束状況 ゆるみ域の推定
2	鍋立山 T (北越北铼)	9,017M (3,380M)	泥岩、砂賀 凝灰岩 (膨張性)	在来線 (円形) 45.5M ²	SR MU-29 SC t=10-15cm RB I=3Mx240.8M I=4Mx4 I=5Mx12 RB I=3Mx240.8M I=5Mx4 I=7Mx12	ショートベンチ カット	内空変位 地中変位 ロックギルト軸力分布 天端沈下	切羽進行と地山変形と の間係. ゆるみ領域の推定 ↓ ロックギルトの増打ち対策
3	大崎 T (日豊本線)	570M (40M)	輝石安山岩 凝灰角れき 岩	在来線 単線	SC t=10cm RB l=2.5Mx13 @1.2M	ショートベンチ カット	内空変位 地中変位 天端沈下	内空変位の収束状況 ゆるみ域の推定
4	向山 T (金津森)	1.045M (970M)	流紋岩 ≰ルンフェルス (節理発達) (剝離化) (細片化)	在来線 単線	SR MU-29 @IM SC t=15cm RB 1=3Mx15 @IM	ショートベンチ カット	内空变位 地中变位 ロックギルト軸力分布 吹付けコンクリート応力 坑内弾性波探査	内空変位の収束状況 ゆるみ域の推定 ↓ ロックギルトの増打ち対策
5	大戸 T (金津祿)	2,838M (1,700M)	↓ 新 ンフェ A ス (卸理発達) (細片化) 大山れき 凝灰岩	在来線 単線	SR MU-29 @1M SC t=15cm RB I=3Mx15 @1M	ショートペンチ [.] カット	内空変位 地中変位 ロックギルト軸力分布 吹付けコンクリート応力 坑内弾性波探査	内空変位の収束状況 ゆるみ域の推定
6	第一白坂 T (羅ノ井線)	1,293M (1,293M)	泥岩、砂賀 泥岩 (小規模断 層が多い)	在来線 単線	SR H-125 @IM SC t=15cm RB 1=3Mx15 @IM	ショートベンチ カット	内空変位 地中変位 ロックダル1軸力分布 天端沈下	内空変位の収束状況 土被りとの関係 ゆるみ域の推定 ↓ ロックギルトの増打ち対策
7	高倉山 T (智頭線)	2,490M (1,417M)	粘板岩 珪質粘板岩	在来線 単線	SR H-125 @1M H-150 @1M SC t=10cm RB 1=3Mx12 @1M 1=4.5Mx10	ショートベンチ カット	内空变位 地中変位 ロックボルト軸力分布 吹付けコンクリート応力 坑内弾性波探査	内 空 変 位 の 収 東 状 況 切 羽 と の 距 離
8	第一、第二 平石 T (東北 新幹線)	255M (196M) 245M (135M)	花こう閃 緑岩(深層 部まで風化 マサ化、土 被り小)	新幹線	SR H-125 SC t=20cm RB I=5Mx100.8M I=4Mx14	ショートベンチ カット	内空変位 地中変位 ロックボルト軸力分布 吹付けコンクリート応力 坑内弾性波探査 支保工応力	内空変位の収束状況と 側圧の影響の検討 ロックギル⊧の効果の検討
9	新字 佐 見 T (伊 東 森)	3,000M (3,000M)	温泉余土 (脳張性) 変質安山岩	在来線 単線 (円形)	SR MU-27 @.8M SC t=20cm RB 1=5Mx10@.8M 1=4Mx14	ミニベンチ カット	内空变位 地中变位 ロックボルi軸力分布 吹付けコンクリーi応力 坑内弾性波探査 地山内応力	内空変位と上半,下半 切羽との関係、リング 効果,支保効果の検討 ↓ 地山の動き,ゆるみ域 の推定 ロックボルトの長さ ,本数の検討
10	下木取 T (田沢湖森)	55M (55M)	花こう岩 (節理2-5本 /M)	在来線 単線	SR H-150 @1.5M SC t=10-15cm RB l=2Mx9@1.5M	改築 天端1.5M切拡げ 側壁0.7M	内空变位 地中变位 0	内空変位の収束状況と 側圧の影響の検討 切羽の進行の影響

表 2 - 2 日本における NATMの施工例 - その 2 - (足立、1981)

	トンネル名	トンネル延長 (NATN施工区間)	地質	断面	支保工	施工法	計測項目	解析・フィードバック
11	宮名 T (羽越本線)	1.800M (1.200M)	粗粒玄武岩 けつ岩 (一部クラ ック発達)	在来線 複線	SR H-125 @1M SC t=15cm RB I=4Mx10 @1M	ショートベンチ カット	内空変位 天端沈下 吹付けコンクリート応力 地中変位 ロックギルト軸力分布	内空変位の収束状況 切羽との関係 ゆるみ域の推定
12	廢 沢 T (飯田 線)	1.380M (1.380M)	花こう片麻 岩,片麻 ŧル ンフェルス (小断層有)	在来線 単線 (30M ²)	SC t=15cm RB I=3Mx15	ショートベンチ カット 全断面		
13	第一、第二 名塩 T (福知山線)	1.520M (1.520M) 2.960M (2.960M)	角れき凝灰 岩(クラック多 く輝い) 諸晶質流紋 岩	在来線 複線 (60- 63M ²)	SC t=20cm RB I=3Mx18 @1.2M SC t=10cm RB I=2Mx10-16	全断面	内空変位 天端沈下 吹付けコンクリート応力 地中変位 ロックギルト軸力分布 支保工応力	内空変位の収束状況 ゆるみ域の推定 」 ロックボルトの増打ち対策 吹付けコンクリートの再吹付 け
14	聖が丘 T (宿毛祿)	5.120M (5.120M)	砂岩・けつ 岩の互属	在来課 単課	SC t=10cm RB i=2Mx8@1.5M	ショートベンチ カット	内空変位 吹付けコンクリート応力 地中変位 ロックギルト軸力分布 地山内応力	内空変位の収束状況 切羽との関係 ゆるみ域の推定 ↓ ロックギルトの増打ち対策
15	大貫 T (宽児島禄)	1.380M (1.380H)	砂賀土 (土 欲り小)	在来媒 単課	SR H-125 €IM SC t=20cm RB I=3Mx10 €IM	上半リング カット	内空変位 天端沈下 吹付けコンクリート応力 地中変位 ロックギルト軸力分布 支保工応力 地表面沈下	内空変位の収束状況 ゆるみ域の推定 側圧の影響を検討 。 ロックキールトの増打ち対策
16	第一中のニ の股 T (名羽線)	910M (850M)	ジルト岩 泥 岩	在来線 単線	SR H-125 SC t=10-12.5cm RB I=2Mx8-12 @1.2M	ショートベンチ	内空変位 吹付けコンクリート応力 地山内応力 地中変位 ロックギルト軸力分布	内空変位の収束状況 上半、下半,切羽 との関係 塑性域の推測
17	骑止 T 国道 289号	2.000M (1.848M)	禄色凝灰岩 類	幅員 6M	SR MU-29 @1.2M SC t=20cm RB 1=3Nx6 1=4Mx17 1=6Mx12 @1.2M	上部半断面先進	内空変位 吹付けコンクリート応力 天端沈下 地中変位 ロックギルト軸力分布	内空変位の収束状況 及びインパー トとの関係 ゆるみ域の推測 ロックギルトの長さ本数の ↓ 検討 ロックギルトの増打ち対策
18	みちのく T (みちのく 有料道路)	3,178M (55M)	緑色流紋岩	幅員6M (87M ²)	SR MU-29 SC t=20cm RB l=4Mx24 @0.9M	底設導坑先進	内空変位 天端沈下 地中変位 ロックギルト軸力分布	ゆるみ域の推定及び ロッフギルトの挙動検討
19	稲里 T 国道 274号	1.441M (900M)	片岩, 流紋 岩, けつ岩 泥岩, 砂岩 (節理面発 達, 劣化)	幅員6M	SR H-250 @0.7M SC t:=10cm T2=25-30cm	円 形 側 壁 導 坑 先 進 、 リ ン グ カ ッ ト 工 法	内空変位 吹付けコンクリート応力 地中変位 ロックギルト軸力分布 支保工応力 地山応力	内空変位の収束状況と 在来工法との比較 ゆるみ域の推測 ロックキ*ルトの執力検討 ↓ ロックキ*ルトの増打ち対策
20	藤白 T (海南 - 和歌 山 道 路)	1.423M (1.423M)	黑色片岩 禄色片岩 蛇纹岩	幅 八 711	SC t=10cm RB i=3M×15 @1.2M	ショートベンチ カット	内空変位 吹付けコンクリート応力 地中変位 ロックギルト軸力分布 天境沈下 地山応力	内空変位の収束状況 上半,下半,切羽 との関係 最終変位量の予測 ↓ トンキルの変状対策

設計法、支保工、施工法、計測項目、解析・フィードバックに関する比較図を示 す²⁻²⁵⁾。表から明らかなように、トンネルは土のような比較的連続体的地盤内に 掘削されるものから、断層、層理、節理といった不連続面を有する岩盤内に掘削 されるものまでいろいろな施工例がみられる。すなわち、軟岩や土のような地盤 では、変形が地中構造物の安定、不安定を決定するが、不連続性を考慮する必要 があるような岩盤中に構造物を施工する場合、不連続面の挙動並びに地下水の湧 出量が構造物の安定、不安定を決定する場合が多い。また、トンネルは、細長い 構造物であり、施工中にさまざまな地盤に遭遇する。従って、構造物の安定性の 評価が絶えず変化する。これらに対して、計測項目は、ほとんど共通であり、以 下のような計測が主に行なわれる。

- (a) コンバージェンス(内空変位計測)
- (b) 地中変位計測
- (c) 吹き付けコンクリート内応力計測
- (d) ロックボルト軸力計測
- (e) 天端沈下計測

これらの計測項目の中で解析や設計・施工へのフィードバックに用いられている 計測は、ほとんどコンバージェンスだけである。すなわち、地下空洞掘削におい ては、盛土工事に見られるような現場計測結果を用いて明確な安定・不安定の判 定を下す方法論及び基準値がいまだに確立されていないこと、及び情報化施工に おいて応力や力学的定数、さらに透水係数などが必要であるにもかかわらず、現 場計測からそれらの値を得ることが難しいため、仕方なく変位計測結果から安定 性の評価を行なっているのが現状である。

特に、岩盤の不連続性や不連続面を流れる地下水に関する研究は、最近高レベ ル放射性廃棄物の核物質拡散や熱伝幡が問題となったこともあり、数多くの研究 がなされつつある^{2-26,29)}。岩盤の不連続性は、その取り扱いに関する考え方に 二通りある。ひとつは、不連続面を、そのまま考慮する方法である。代表的な方 法として、Goodmanらが提案したジョイント要素²⁻³⁰⁾、Cundallモデル²⁻³¹⁾、川 井モデル²⁻³²⁾など多くのジョイント要素及び各種のモデルが提案されている。も うひとつは、岩盤の不連続性を連続体の構成関係式に取り込む考え方である。Zi enkiewiczは多層の問題を異方性の構成関係式を用いて連続体として解析した²⁻³ ³⁾。最近は、より積極的に不連続性を考慮するために種々の試みがなされている。 例えば、小田のクラックテンソル²⁻³⁴⁾あるいは京谷の損傷テンソル²⁻³⁵⁾などが それである。このような岩盤の不連続性を考慮することは、特に硬岩内のトンネ ル掘削を例に挙げれば半径が5M程度のトンネルにおいて最終計測変位が1mm以下程度の岩盤の安定性の評価には大変重要なものである。

次に、従来トンネル施工において行なわれてきた情報化施工に関するいくつか の研究について述べる。

Flanklinは、表2-3に示すように内空変位速度、吹き付けコンクリート覆工のク ラック観察及び地下水の湧出状況から、注意レベルを設定し、注意レベル毎に工 事請負人がとるべき処置について提案した²⁻³⁶⁾。Pacherは、経験によって、変位 速度と支保にかかる荷重と関係を図化した²⁻³⁷⁾。図2-10(1)にその図を示す。図 から明らかなように、支保に作用する荷重は、変位速度が(a)0.1mm/day以下では 軽微、(b)0.1-1mm/dayでは普通、(c)1-3mm/dayでは大きい、(d)3mm/dayでは非常 に大きいとしていることがわかる。また、谷本は、日本で施工されたトンネルに おいてPacherと同様の処理を行なった²⁻³⁸⁾。図2-10(2)に、その結果を示す。そ の結果、日本のトンネルにおいては、3mm/day以上の変位速度が生じるケースが数 多く存在し、Pacherの結果とは、かなり異なる結果となった。そこで、図(b)に示 すようにスケールを変更して整理した。その結果、日本のトンネルでは、必要以

注意レベル	管理基準	処置
1	内空変位の速度が切羽で 5mm/日より大きくなる。 あるいは、吹き付けコン クリートに部分的なクラ ック生ずる。地下水が浸 透する。	技術責任者に報告する。
2	内空変位の速度が切羽で 10mm/日、後方で5mm/日 より大きくなる。吹き付 けコンクリートにかなり のクラックが生じる。地 下水の浸透が見られる。	技術責任者に報告すると 同時に、支保工、ロック ボルト、吹き付けコンク リートを追加施工する。
З	内空変位速度が加速され る。クラックや地下水の 浸透がレベル2をさらに 超える。	技術責任者に報告すると 同時に、掘削を停止し、 暫定的に鋼製支保工と長 尺のロックボルトを施工 する。調査を行なう。

表 2 一 3 注意レベルと施工管理(Franklin, 1976)

図 2 - 1 0 (1) 変位速度と支保荷重との関係 (Pacher, 1982)

上に変形を許しすぎていることを指摘 した。Arlbergトンネルにおいて Judtmannは、切羽通過後2日目までに 生じた変位量をもちいて支保工の軽重 を調節した²⁻³⁹⁾。Calvalhoらは、現 場変位計測を行なうことによって一次 覆工と二次覆工の間に緊急に支保工を 建て込み、二次覆工までの変位増加を 完全に抑えることに成功した²⁻⁴⁸⁾。

本間らは、膨張性泥岩中に掘削され

図 2 ー 1 0(2) 日本における変位速度 と支保荷重との関係(谷本、1982)

たトンネルにおいて、地山の地質状況の定量的把握として独自に地山の評価基準

地	山計測フ	項目入点数	1	2	3	4	5	6	7	8
មាន	月の目り	立,崩壊性	鏡が自立	自立(一部 崩れ)	一部に鏡止め 実施	全部に鏡止め 実施				
節理・	間 開 CB	水平方向 鉛直方向 轴方向	100≦ 100≦ 100≦	50≦ <100 50≦ <100 50≦ <100	$20 \le < 50$ $20 \le < 50$ $20 \le < 50$	5≦ < 20 5≦ < 20 5≦ < 20	0≦ < 5 0≦ < 5 0≦ < 5			
粗影	割.	目状態	密着している	わずかに変貨	一部非常に 変質,開口	非常に変質。 間口	割れ目の間に 粘土存在			
itte i	生禄 遗(の評価	塊状	わずかに断層 間曲あり	かなりの断層 指曲あり	ひどく断層 摺曲あり	もまれ破砕さ れている			
	岩	H	風化作用を受 けず堅硬	辞まって堅い	堅い	全体に軟質	部分的に軟弱 化	岩相を残すが ぜい弱破壊	軟弱化著し い	風化帯岩相 認めず
	湧	ж	全くない。乾 いている	全体的にぬれ ている	部分的に割れ 目からにじみ でる	全体的に割れ 目からにじみ でる	部分的に割れ 目から吹き出 る	全体的に割れ 目から吹き出 る	特に多い	
	風	ſŁ	未風化一堅親 かつ新鮮	目に沿ってや や風化,変質	全体的に風化 変質し軟弱	目から風化進 む	岩石も風化し 軟弱化	岩石風化,粘 土化著しい	園結度著しく 低下砂状粘土	

表2-4 計測項目とその点数評価レベル(本間、1983)

を定め、各切羽毎に地山評価を行ない、その結果を点数化した²⁻⁴¹⁾。そして、その点数と最終変形が強い相関関係にあることを数量化理論を用いて明らかにした。 表2-4に、地山の評価項目におけるそれぞれの評価点を示す。

その結果、地山評価が良好でも、支保が地山の特性に十分対応できない場合には、トンネルの変状を誘発する可能性があることを明らかにした。また、地山評

価に加えて、地山の最終 変形は、上半切羽から1 D離れた初期段階での変 形学動と比例関係にある こと、さらに、地山評価 の判定以上に初期の変形 が大き問題があることなど も計測結果から明らかに している。

吉川・朝倉は、国鉄及 び鉄道建設公団により NATMで施工された50トン ネル、821計測地点の計測 データを統計的に処理し 表 2 ー 5 掘削工法ごとの変位速度と最大 変位量の関係(朝倉、1984)

工法・断面へ	m	相関係数		
全断面・複線	2.82	0.79		
全断面・単線	2.04	0.93		
ショートベンチ・複線	7.24	0.89		
ショートベンチ・単線	5.01	0.64		

た^{2-42,43}。統計処理の結果、計測開始初期の段階に現われる最大日変位量を最 大変位速度(δvmax)、その地点において計測期間中、最大を示す変位量を最大 変位量(δmax)とした時、両者が単純な比例関係にあることに着目して、計測実 績による回帰分析を行なった。掘削断面別、掘削工程別の分析結果を図2-11に示 す。両者の関係を次式で表わした時の係数及び相関係数は表2-5に示す通りである。 これにより、早い段階での最終変位の予測が可能となる。

 $\delta \max = m \delta \max$

(2.1)

表2ー	6 砂	月神ト	ンネ	ルに	おけ	る	内空	変 位	管理	基	準 値	(毛利、	1984)
-----	-----	-----	----	----	----	---	----	-----	----	---	-----	---	-----	-------

パターン名	岩盤の破壊 ひずみ(%)	測定開始後の 破壊ひずみ(%)	トンネル 半径(mm)	破壊ひずみ時の 内空変位量(mm)	上半水平測線の 管理基準値(mm)
В	0.3	0.21	5600	12	24
с	0.5	0.35	5650	20	40
D 1	1.0	0.7	5700	40	80
D 2	2.0	1.4	5800	80	160
E	3.0	2.1	5800	120	240

毛利は、四国横断自動車道明神トンネルにおいて、表2-6に示すような内空変位 量の許容値を決定した。次に、計測開始4日目までの計測データが最終変位と強 い相関があることから、過去の計測結果に基づき計測開始4日目までの変位量か ら最終変位量を推定する予測式をたて、許容値と比較することにより施工管理を 行なった。²⁻⁴⁴⁾

藤森及び小関らは、大貫トンネルにおいて、地表沈下計測を行なったところ、 トンネル縦断方向の地表沈下曲線が、地山を梁と考えた時の変位形とよく似てい る点に着目し、地表沈下量から地山に生じているせん断力分布を逆解析する方法 を開発した。そして、地山に生じているせん断力分布を地山の許容せん断力と比 較することにより、ロックボルトの増し打ち、インバートの閉合などの施工法の 変更による施工管理を堀之内トンネルにおいて行なった^{2-45,46)}。

近藤は、変位の増加が指数関数的な挙動をすることに着目して、最終変位を予 測する方法"二倍時変位法"を提案した²⁻⁴⁷⁾。この方法では、次式で表わされる ような式を変形量増加式として仮定する。

 $y = b(1 - e^{-at})$ (2.2)

- ここで、y:変位量
 - a:変形速度に関する定数
 - b:最終変位量
 - t: 測定開始後の時間

(2.2)式で、bを予測することにより最終変位量が、また、aを予測すること により収束する日数の予測を行なうことができる。

任意の時間t;における実測値をu;とし、tk=2t;における実測値をukとする。若 干の計算により、収束日数を表わすa及び最終変位量bは、次式のように求めるこ とができる。

$$a = (1/t_i) \ln[u_i/(u_k-u_i)]$$
(2.3)
$$b = u_i^2/(2u_i - u_k)$$
(2.4)

さらに、土屋らは、(2.2)式の性質を調べ、(2.2)式の重ね合わせによ り、最終変位量がより正確に推定できることを明らかにした²⁻⁴⁸⁾。

2.5 情報化施工における計測結果の設計・施工へのフィードバックに関する 従来の研究
地盤内の応力分布、覆工や矢板に作用する土圧及び地山の力学定数などを 現場変位計測から得ることができれば、より正確な、情報化施工が可能となるこ とは当然である。しかし、2.2でも述べたように、土圧及び地山の力学定数な どを精度良く、現場計測から求めることは不可能に近い。そこで、計測変位をイ ンプットデータとして、地山内の応力(ひずみ)分布や地山の力学定数を絶えず 推定し、不確実性の多い設計パラメーターを修正するとともに、将来の構造物の 挙動予測を行なう方法が考えられる。

この方法は、一般の構造解析が荷重および材料の力学定数を与え、定められた 境界条件の下で、応力、ひずみ及び変位を求めるのに対し、計測変位から荷重や 材料定数を求めるものであり、通常の構造解析の逆の解析を行なうことから、こ れは、"逆解析"と呼ばれている。逆解析は、図2-12に示すように大きく二つの 方法に分類される。

その一つは、確定論的立場に立って、得られた観測結果に合致するよう設計パ ラメータを確定論的に逆解析し、それを以後の設計・施工に適用する方法である。 この方法は、測定精度及び逆解析に使用される設計法や解析法の精度が高い場合 には有効なフィードバック法である。この逆解析は、定式化の違いにより"逆定 式化法(Inverse Formulation Method)"と"直接定式化法(Direct Formulati on Method)"に分類される。

他の一つは、確率論的立場から設計パラメータを再評価する方法である。これ は、設計法や解析法の精度の確率論的検討を前提に、主に発生外力や地盤状態を より現実に近い状態に推定しなおし、以後の設計パラメータとしてこれらを利用 する方法である。このフィードバック法には、将来挙動の予知のための観測結果 をベイズ統計学を中心とする確率、統計論的立場で取り扱う方法^{2-49,51)}や、カ

ルマンフィルターを利用 する方法²⁻⁵²⁾、ファジ 一集合論を用いる方 法²⁻⁵³⁾などがある。

この節では、情報化施 エにもっともよく用いら れる確定論的手法の"逆 定式化法"と"直接定式 化法"について概説する。

1) 逆定式化法

この方法は、計測変

図2-12 逆解析法の分類

位を既知量とし、通常の構造解析の逆の定式化を行なって、初期応力、荷重、材 料定数などの値を得る方法である。よって、未知量の取り方によって種々の定式 化が可能となる。

この方法は、Kavanaghらが、有限要素法の定式化により最小二乗法を用いて、 構造工学問題における弾性定数を求めたのが最初である^{2-54,55},。同じような材 料定数を求める方法として、桜井らは解析解を用いて、粘弾性地山のトンネル周 辺の初期応力及び粘弾性定数を求める方法を提案した²⁻⁵⁶,。Giodaらは、非均質 地山の材料定数を、逆定式化法によって求めた²⁻⁵⁷,。同様の問題を荒井らは、共 役傾斜法を用いて定式化を行なった²⁻⁵⁸, 桜井らは、地盤を最も簡単な力学モデ ルである等方等質の弾性体と仮定し、逆定式化法によって、変位測定の結果から、 初期応力及び地盤の弾性定数を逆算する方法を提案し、計算機によるシミュレー ションによって、その方法が数学的に安定した方法であることを明らかした²⁻⁵⁹ , 蓮井らは、桜井らの提案した方法を用いて、実際の地下発電所掘削において計 測された変位を逆解析することによって、掘削途中において最終状態を予測し、 予測結果と実際の挙動が良く一致したという報告を行なった²⁻⁶⁰。

Kovariらは、鋼製支保工に作用する土圧を求めるために、専用の測定器(Curv ometer、Deformeter)を開発し、支保工を梁と考え、通常の構造力学の逆の定式 化を行なって、土圧を求める方法を提案した²⁻⁶¹⁾。桜井は、コンクリートセグメ ントについてもKovariの方法が適用できることを明らかにした²⁻⁶²⁾。そして、更 に、進士らは、その方法を吹き付けコンクリート覆工に適用した。^{2-63,64)}。Gi odaら²⁻⁶⁵⁾及び伊藤ら²⁻⁶⁶⁾は、有限要素法の逆の定式化によって、現場変位計測 結果から、覆工に作用する土圧を推定する方法を提案した。

2) 直接定式化法(Direct Formulation Method)

直接定式化法は、次に示す誤差関数を最小にするように、初期応力や材料定数 を求めるものである。

$$\varepsilon = \{\sum_{i=1}^{n} (u_i - u_i)^2\}^{1/2} \qquad (2-5)$$

ここで、u;及びu;*は、変位を表わし、それぞれ、計算値及び測定値である。nは、 測定値の数である。なお、測定値はひずみ、あるいは応力でもよいわけであるが、 地盤工学においては、一般に変位の測定が最も容易であるため、(2-5)式は、 変位によってあらわされることが多い。 (2-5)式に示した誤差関数を最小にする方法は、Himmelblauによって直接 探索法(Direct Search Method)を用いて示された²⁻⁶⁷⁾。この直接探索法は、逆解 析のための特別な定式化を必要とせず、さらに、非線形問題にも適用できる利点 を有している。

ldingらは、この方法によって、非線形弾性体の材料定数の解析を行なった ²⁻⁶⁸⁾。また、Cividiniらは、地盤内に、軟弱な層がある場合、その材料定数のみ ならず、その位置をも求めることができることを示した²⁻⁶⁹⁾。さらに、Giodaは、 水室法によって測定される地山変位から、Mohr-Coulomb型の弾塑性地山の粘着力、 内部摩擦角及び、初期応力を求める方法を提案した²⁻⁷⁰⁾。

直接探索法は、いくつか未知量を仮定し、それらの解析値における誤差関数を 簡単な方法で比較することによって、次の探索への指示を行なう方法であり、数 理計画法におけるSimplex法、Rosenbrock法、Hooke-Jeeves法及び変数変化法など がある。また、もうひとつの最適化手法として"勾配法"がある。この方法は、 極小値を求める情報として関数値だけではなく、関数の勾配や二次微分などを用 いる方法であり、最大勾配法、最適勾配法、Newton-Raphson法及び共役勾配法(F.R.法、D.F.P.法Powell法)などがある。表2-7に、直接探索法及び勾配法の特徴 について示す。なお、表に示すように、本研究で用いる逆解析のように誤差関数 の関数形が明らかでないものには、勾配法を用いることはむずかしい。

2.6 本研究の範囲及び従来の情報化施工の中で占める位置

地下空洞の情報化施工を行なう場合、その対象は、連続体的挙動を示す土 から不連続体としての挙動が卓越する岩盤まで非常に広範囲である。不連続岩盤 においては、岩盤のプロックとしての動きが、空洞の安定性の評価において非常 に重要となる。しかし、本研究で対象とする地盤は、不連続面の影響が顕著でな

	直接探索法	勾配法
長 所	1.計算誤差に影響されない 2.初期収束が早い	1.最適値近傍での収束良 2.変数が増えても収束性良
短所	1.最適値近傍の収束が悪い 2.変数が増えると収束が悪い	1.局所停留点に影響され易い 2.関数の微分が容易にできるも のでなければ能率が悪い

表2-7 最適化手法の比較

く比較的連続体として挙動するものに限定する。従って、本研究で開発する空洞 の安定性評価法の適用範囲は、土や軟岩である。また、地下水の影響も空洞の安 定性には非常に重要なファクターであるが、本研究では取り扱わない。

地盤の安定性を評価するためには管理基準値が必要である。管理基準値として は、地盤の許容応力及び許容ひずみが考えられる。しかし、許容応力を事前の調 査や現場試験から求めることは困難である。また、現場計測によって地盤に生じ る応力を測定することも大変難しい。そこで、本研究は、地下空洞の情報化施工 を行なうための基準値として地盤の限界ひずみを用い、ひずみを評価することに よって空洞の力学的挙動の予測及び対策工の決定を行なうこととする。この限界 ひずみに関して、桜井は現場試験の結果及び室内試験の結果から圧縮強度と地山 の破壊ひずみに明らかな相関があることを明らかにしている^{2-70,71)}。

地山材料の破壊基準が、ひずみによって与えられるならば、応力解析を必要と せず、ただちに、トンネルの安定性を評価することができる。この方法は、本研 究にとって基本的な考え方であるため、以下簡単に限界ひずみについて述べる。

土や岩石の一軸圧縮試験によって得られる応力-ひずみ曲線は一般に双曲線に よって次のように表わされる。

 $\sigma = \varepsilon / (b + a \varepsilon)$

(2.6)

ここで、b = 1 /E:、E:は、初期弾性係数である。

いま、一軸圧縮強度をσ。とし、 次のように表わされるものとす る。

$$\sigma_{\rm c} = R_{\rm f} / a$$

$$(2.7)$$

ここで、Rrは、破壊強度を表わす パラメータである。一軸圧縮強度 σ。と初期弾性係数Eiから、次の 限界ひずみεωを定義する。

 $\varepsilon_{\theta} = \sigma_{\circ} \neq E$ (2.8)

図 2 一 1 3 限界ひずみの定義(桜井、1981)

最後に、岩盤の限界ひずみについて考察する。現位置における岩盤の力学的性質は、一般に、ジャッキ試験及び原位置せん断試験によって調査される。すなわち、ジャッキ試験によって弾性係数Esが、また、せん断試験により粘着力Csおよび内部摩擦角φsが求められる。この場合、岩盤の一軸圧縮強度は、次式によって 推定することができる。

$$\sigma_{cs} = 2C_s \cos\phi_s / (1 - \sin\phi_s) \qquad (2.10)$$

従って、一軸状態における岩盤の限界ひずみε₀。は、次のように求められる。

 $\varepsilon_{os} = \sigma_{cs} / E_s \qquad (2.11)$

この限界ひずみε。sを、各地の建設現場における岩盤試験の結果を利用して求めると、図2-15のようになる²⁻⁷²⁾。

図2-14及び図2-15から明らかなように、岩盤の限界ひずみと岩石の限界ひずみ はほぼ一致する。従って、岩盤の限界ひずみは、岩石試験によって求めることが 可能である。

図2-14 各種材料における限界ひずみ(桜井、1981)

この限界ひずみ ε ₀は、破壊時のひずみ ε ₁とは一般に異なるものであるが、応力 - ひずみ曲線が破壊点まで、ほぼ直線に近いとき(Rr << 1)、近似的に ε fと等 しくなる(図2-13参照)。

限界ひずみ ε aを種々の土および岩石について求め、一軸圧縮強度との関係で示 すと図2-14のようになる。この図から明らかなように、限界ひずみ ε aは、一軸圧 縮強度の増加とともに減少する傾向にある。そして、岩石に対しては0.1%から1. 0%、土(主に粘性土)に対しては1.0%から5.0%の範囲にあることがわかる。また、 一軸圧縮強度0.05Mpaの粘土から200Mpaの花崗岩まで、連続的に限界ひずみが変化 していることは興味深い。

一方、破壊ひずみとれは、限界ひずみとこと次の関係にある。

$$\varepsilon_{f} = (\sigma_{c} / E_{i}) / (1 - R_{f})$$

= $\varepsilon_{\theta} / (1 - R_{f})$ (2.9)

種々の土および岩石に対してRrは、0.05から0.8の範囲にあり、一軸圧縮強度が 大きくなればRrは小さくなる傾向にあることが確かめられている。

図2-15 現場試験における岩盤の限界ひずみ(桜井、1981)

桜井は、室内試験から地山の限界ひず みが求まることに着目し、トンネルの施 工管理において、室内一軸圧縮試験に基 づき地山の限界ひずみ管理値(図2-16) を示した。また、天端沈下に対する管理 基準値(表2-8)を決定した。

また、桜井は、現場変位計測結果から、 有限要素解析に用いられる変位とひずみ を関係づけるマトリックスを用いて、ト ンネル周辺に生ずるひずみを簡単に求め る方法を提案し、その結果を地山の限界 ひずみと比較することによりトンネルの

安全性が評価でき ることを明らかに した。そして、こ の方法論を、直接 ひずみ評価法

(Direct Strain Evaluation

Technique D.S.E.T.)

図2-16 地山の限界ひずみ の管理値(桜井、1982)

表 2 一 8 天端沈下の管理基準値(桜井、1982)

(トンネル半径:5M)

注意レベル\ー軸圧縮強 (Mpa)	100≦	5≦ <100	0.5≦ <5
I.	0.3 - 0.5	0.5 - 1.0	1.0 - 3.0
11	1.0 - 1.5	1.5 - 4.0	4.0 - 9.0
111	3.0 - 4.0	4.0 - 11.0	11.0 - 27.

と名付けた^{2-71,72})。吉川らは、実際に、中山トンネルにおいて、D.S.E.T.を適用し、この方法が地山の安定性評価に優れた方法であることを明らかにした²⁻⁷³)。西林らは、D.S.E.T.を、三次元に拡張しマイクロコンピューターのカラーグラ フィックスを用いて、地下発電所のような三次元的な掘削においても計測結果か ら簡単に三次元的なひずみ分布を求めることができることを示した。²⁻⁷⁴⁾。

D.S.E.T.は、計算が簡単であるため、手軽に計測変位から地下空洞周辺のひず み分布を求めることが可能である。しかし、多くの測定値が必要なこと、ひずみ

図2-17 逆解析の定義

分布が得られる範囲が限定されていること、並びに現場計測によって得られる変 位量が一方向のみである場合その他の方向の変位量を推定する必要があることな ど多くの問題がある。

そこで、桜井らは、変位計測結果から逆解析によって、いったん、地山の初期 応力及び材料定数を求め、その後、これらの値をインプットデータとして有限要 素解析などにより周辺地山の変位・ひずみ分布を求める(図2-16参照)方法を提 案した。また逆解析によって弾塑性境界をも求め得ることが可能であることを示 した²⁻⁷⁵⁾。このようにして得られたひずみ分布を地盤材料の限界ひずみと比較す ることにより空洞の安定性の評価を行なう方法論が考えられた。しかし、桜井ら の提案した逆解析法は、そのままではマイクロコンピューターを利用することが できないので、本研究では、建設現場で迅速に情報化施工を行なえるように定式 化を工夫する。それに加えて、本研究では地下空洞における情報化施工を行なう ため掘削過程を考慮できるように逆解析法を改良する。さらに、現状の評価だけ ではなく、逆解析法と変位予測法を組み合わせることにより、将来予測をも逆解 析に組み込み、より信頼性と応答性に優れた情報化施工を目指す。 参考文献

- 2-1) Terzaghi, K. and Peck, R. B.: Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., Introduction, 1948.
- 2-2) 肱黒 和彦、富永 真生、長野 昌雄、新村 和規 「鋼管矢板井筒基礎
 支工の情報化施工について」、土と基礎、Vol.19,No.3,pp.3-12,1971.
- 2-3) 富永 真生 「情報化施工」、土と基礎、Vol.29,No.1,pp.13-14,1981.
- 2-4) 黒田 勝彦 「情報化施工の考え方と幾つかの話題」、カラム、No.94, pp.27-32,1984.
- 2-5) 松尾 稔、川村 国夫 「情報化設計・施工シムテムの基本的考え方と分析」、土と基礎、Vol.30,No.7,pp.11-16,1982.
- 2-6) 松沢 宏 「土圧計の作動特性と検定について」、土と基礎、Vol.30, No.7,pp.71-76,1982.
- 2-7) 日本道路協会 「道路土工軟弱地盤工指針」、1977.
- 2-8) 富永 真生、橋本 正治 「側方変位の現場計測による盛土の施工管理に ついて」、土と基礎、Vol.22,No.1,pp.48-51,1974.
- 2-9) 松尾 稔、川村 国夫 「盛土の情報化施工とその評価に関する研究」、
 土木学会論文報告集、第241号、pp.81-91,1975.
- 2-10) 柴田 徹、関口 秀夫 「盛土基礎地盤の弾・粘塑性挙動解析と破壊予測」 土木学会論文報告集、第301号、pp.93-104,1980.
- 2-11) 栗原 則夫 「軟弱地盤における道路盛土の情報化施工」、土と基礎 Vol.30,No.7,pp.55-62,1982.
- 2-12) 針田 幸治 「土と基礎の沈下と変形の実測と予測」、土質工学会編ライ、 ブラリー18,第1編第2章,1979.
- 2-13) 吉田 洋 「地盤の変形計測とその情報化施工への適用」、土と基礎、 Vol.25,No.3,pp.39-45,1977.
- 2–14) Asaoka, A. :Observational Procedure of settlement prediction., Soils and Foundations, Vol.18,No.4,pp.87–101,1978.
- 2-15) 口石 巧、坂田 直文、森脇 武夫 「盛土に伴う軟弱地盤の挙動と粘弾 性解析」、第26回土質工学シンポジウム、pp.9-14,1981.
- 2-16) 室町 忠彦、渡辺 進 「野場軟弱地盤における変状計測」、鉄道技術研 究資料、Vol.20,No.11,pp.16-18,1963.
- 2-17) 網干 寿夫、石井 敬一、井上 年行 「太田川流域下水道西部浄化セン ター地盤改良事業に伴う情報化施工」、土と基礎、Vol.30,No.7,pp.37-44 ,1982.
- 2-18) 富永 真生、越後 勇吉、橋本 正治、木村 保 『RCCシステムの開

発について(第1報)、(第2報)、(第3報)」、第11、12、13回土質 工学研究発表会講演集、pp.1013-1016,1976. pp.1131-1124.1977. pp.1181-1184,1978.

- 2-19)水野 昭夫、小野 紘一、松浦 良和、若林 善之 「現場計測による大 規模土留め工事の安全管理」、土質工学会関西支部 =現場計測工法シンポ ジウム=、pp.177-184,1981.
- 2-20)北村 正夫、幾田 悠康、丸岡 正夫、青木 雅路 「弁天抽水所築造工 事おける計測管理」、土質工学会関西支部 =現場計測工法シンポジウム=、 pp.177-184,1981.
- 2-21) 斉藤 迪孝 「斜面崩壊発生時期の予知に関する研究」、鉄道技術研究所
 報告、No.626,pp.1-53,1968.
- 2-22) 松尾 稔、上野 誠 「破壊確率を用いた自然斜面の崩壊予知に関する研 究」土木学会論文報告集、No.281,pp.65-74,1979.
- 2-23)藤川 寛之、佐野 正道、原 昭博 「柳谷斜面崩壊について」、第34回
 建設省技術研究会報告、pp.144-150,1980.
- 2-24)中山 俊夫、石村 賢二、尾沢 紀明、桜井 他石 「東京都の山岳道路の斜面崩壊事例について」、第14回日本道路会議特定課題論文集、
 pp.80-80,1981.
- 2-25) 足立 紀尚、谷本 親伯、池田 靖忠 「トンネルにおける現場計測工法 の現状と問題点」、土質工学会関西支部=現場計測工法シンボジウム=、 pp.53-63,1981.
- 2-26) Samaniego, J. G. and Priest. S. D. :The Prediction of Water Flows through Discontinuity Networks into Underground Excavations, Proc. of ISRM for Design and Performance, Cambridge, pp.157-164, 1984.
- 2-27) Eisenburger, D., Kopietz, J., Liedtke, L. and Meister, D. : F.E. Calculations of In-situ Heating expriments related to the Permanent Disposal of High Level Waste, Proc. Int. Sympo. on Field Measurement in Geomechanics, Zurich, Section 6, pp.97-106, 1983.
- 2-28) 伊藤 洋、佐藤 邦明、清水 昭男 「地下空洞周辺の地下水流れ及び伝熱の3次元特性に関する研究」、第17回岩盤力学に関するシンボジウム、 pp.181-185, 1985.
- 2-29) 大西 有三、塩田 卓央、西垣 誠、小林 晃 「不連続岩盤における浸 透流と核種移行の有限要素解析」、第17回岩盤力学に関するシンポジウム、 pp.191-195, 1985.
- 2-30) Goodman, R. E., Taylor, R. L. and Brekke, T. L. : A Model for the

Mechanics of Jointed Rock, A.S.C.E. SM3, pp.637-659, 1968.

- 2-31) Cundall, P. A. :A Computer Model for Simulating Progressive Large Scale Movements in Blocky Systems, Proc. Sympo, Int. Soc, Rock Mech., 11-8, 1971.
- 2-32) 川井 忠彦 「物理モデルによる連続体力学問題の解析」、東大生研セミ ナーテキスト、1970.
- 2-33)小田 匡寛 「不連続面の幾何学性に関する相似則について」、土木学会 年次講演会第3部、pp.59-60, 1983.
- 2-34) 京谷 孝史、川本 八次 大橋 敏行、草深 守八、樫出 正人 「岩盤 内地下空洞の力学的挙動に与える節理分布の影響に関する考察」、第6回 岩の力学国内シンポジウム講演論文集、pp.269-274, 1984.
- 2-35) Ziekiewicz、0. C.著、吉織ら訳「基礎工学におけるマトリックス有限要素
 法」、培風館、pp.56-58, 1975.
- 2-36) Franklin, J.A. : An Observation Approach to the Selection and Control of Rock Tunnnel Linings., Proc. of Engineering Foundation Conf. on Shotcrete for Ground Support, Maryland, pp.556-596, 1976.
- 2-37) Pacher, F. :Erfahrungen mit Gebirgsdruckmessungen bei ostrreichischen Verkehrstunnelbauten., Proc. of Int. Symp. fur Untertagebau, Luzern, S.pp.381-391,1972.
- 2-38) 谷本 親伯 「NATMにおける情報化施工」土と基礎、Vol.30,No.7, pp.63-70,1982.
- 2-39) Judtman, G. :Die Vortriebssicherrung des Arlberg Strassentunnels., Rock Mechanics, Suppl. July, 1978.
- 2-40) Carvalho, O.S. and Kovari, K. :Displacement Measurement as a Mean for Safe and Economical Tunnel Design., Proc. of Int. Sympo. for Field Measurements in Rock Mechanics, Zurich, pp.709-721,1977.
- 2-41)本間 直樹、竹田 直樹、平野 逸雄、亀村 勝美 「膨張性泥岩中に掘 削されたトンネルの地山挙動について」、第18回土質工学研究発表会、郡 山、pp.1371-1374,1983.
- 2-42) 吉川 恵也、朝倉 俊弘、日吉 直、遠藤 真一 「NATM計測実績の統計
 分析」第15回岩盤力学に関するシンポジウム、pp.220-224、1983。
- 2-43)朝倉 俊弘、川上 善輝、馬場 実雄、小野田 滋 「トンネル切羽付近 における変位計測」、第6回岩の力学国内シンポジウム、pp.181-186,1984。
- 2-44) 毛利 真敏 「四国横断自動車道明神トンネル」、第5回トンネル技術シン ポジウム=NATMの計測と施工管理=,pp.64-83,1984.

- 2-45)藤盛 房司 「成田新幹線堀之内トンネル」、第5回トンネル技術シンポジ ウム=NATMの計測と施工管理=,pp.25-43,1984.
- 2-46)小関 周弘、寺戸 幸雄、木村 宏 「未固結地山におけるNATMの現 場計測=成田新幹線堀之内トンネル=」、トンネルと地下、Vol.13,No.7, pp.35-41,1982.
- 2-47) 近藤 達敏 「NATM工法によるトンネル掘削における変位予測」、応 用地質調査事務所年報No.1,pp.229-236,1979.
- 2-48) 土屋 浩、近藤 達敏 「トンネル切羽の進行が壁面変位量に与える影響 を考慮した変位予測の手法」、日本応用地質学会昭和59年度研究発表会、 pp.80-83,1984.
- 2-49) Cividini, A., Maier, G. and Nappo, A. :Parameter Estimation of Static Geotechnical Model using Baye's Approach., Int. J. Rock. Mech. and Mining Sci., Vol.20,pp.215-226,1983.
- 2-50) Asaoka, A. and Matsuo, M. :Byesian Approach to Inverse Problem in Consolidation and its Application to Settlement Prodiction., Proc.
 3rd Int. Cof. on Numerical Method in Geomechanics, Aachen, 1979.
- 2-51) Collins, J.D., Hart, G.C., Hasselmann, T.K. and Kennedy, B. : Statictical Identification of Structures., AIAA J., Vol.12, pp.185 -190,1974.
- 2-52) Kalman, R.E. : A New Approach to Linear Filtering and Prediction Problems., Trans. ASME, J. of Basic Engineering, Vol.82, pp.35-45, 1960.
- 2-53) Munro, J. : Uncertainty and Fuzziness in Engineering Decision
 -making., Proc. 1st Canadinan Seminar on System Theory for Civil
 Engineering, Calgary.
- 2-54) Kavanagh, K. and Clough, R.W. :Finite Element Application in the Characterization of Elastic Solids., Int. J. Soils Structures, Vol.7,pp.11-23,1971.
- 2-55) Kavanagh, K. :Experiment versus Analysis :Computaional Techniques for the Description of Static Materical Responce., Int. J. Numerical Methods Eng., Vol.5, pp.503-515,1973.
- 2-56) Sakurai, S. and Abe, S. : A Design Approach to Dimensioning Underground Opendings., Proc. 3rd Int. Conf. Numerical Methods in Geomechanics, Aachen, Vol.2,pp.649-661,1979.
- 2-57) Gioda, G. : Indirect Identification of the Average Elastic

Characteristics of Rock Masses., Proc. Int. Conf. on Structural Foundations on Rock, Sydney, 1980.

- 2-58) Arai, K., Ohta, H. and Yasui, T. :Simple Optimazation Techniques for Evaluating Deformation Moduli from Field Observation., Soils and Foundations, Vol.23, pp.107-113,1983.
- 2-59) 桜井 春輔、武内 邦文 「トンネル掘削時における変位計測結果の逆解 析法」、土木学会論文報告集、第337号、pp.137-145,1983.
- 2-60) 蓮井 昭則、山下 亮、世一 英俊 「逆解析を用いた地下空洞側壁部の 挙動推定について」、第17回岩盤力学に関するシンポジウム、pp.306-310 1985.
- 2-61) Kovari, K., Amstad, Ch. and Fritz, P. : Integrated Measuring Technique for Rock Pressure Determination., Proc. Int. Sympo. on Field Measurement in Rock Mechanics, Zurich, 1977.
- 2-62) 桜井 春輔 「トンネルのコンクリートゼグメントに作用する土圧の推定 法に関する研究」、第13回岩盤力学に関するシンポジウム、pp.111-115, 1981.
- 2-63) 進士 正人、桜井 春輔 「吹き付けコンクリートに作用する土圧の推定 法」、第14回岩盤力学に関するシンポジウム、pp.151-155,1982.
- 2-64) 進士 正人、桜井 春輔 「吹付けコンクリートの応力一ひずみ関係に関す る実験的考察」、土木学会関西支部年次学術講演会、Ⅲ-12、1982.
- 2-65) Gioda, G. and Jurina, L. : Numerical Identification of Soil Structure Interaction Pressures., Int. J. Numerical Methods in Geomechanics, Vol.5,pp.36-56,1981.
- 2-66) Hisatake, M. and Ito, T. :Back Analysis Method to Tunnel Linings., Proc. Int. Sympo. on Field Measurement inc Geomechanics, Zurich, Section 5,pp.1-10,1983.
- 2-67) Himmelblau, D. M., , :Applied, Non, Linear, Programming., N.Y., McGrow-Hill
- 2-68) Iding, R. H., Pister, K. S. and Taylor, R. L. :Identification of Nonlinear Elastic Solids by a Finite Element Method., Computer Methods in Applied Mechanics and Engineering, Vol.4, pp.121-142, 1974.
- 2-69) Cidivini, A., Jurina, L. and Gioda, G. : Some Aspect of 'Charactarization' Probles in Geomechanics., Int. J. Rock Mech. and Min. Sci. in Geomechanics Abstruct, Vol.18, pp.487-503,1981.

- 2-70) Gioda, G. and Maier, G. :Direct Search Solution of Inverse Problem in Elasto-Plasticity :Identidication of Cohesion, Friction Angle and In-situ Stress by Pressure Tunnel Tests., Int. J. Numerical Methos in Engineering, Vol.15, pp.1823-1848,1980.
- 2-71) 桜井 春輔 「トンネル工事における変位計測結果の評価法」、土木学会 論文報告集、第317号、pp.93-100,1982.
- 2-72) 桜井 春輔、武内 邦文、森 修一 「トンネル工事における現場計測と その利用について」、土質工学会関西支部=現場計測工法シンポジウム=、 pp.203-208,1981.
- 2-73) 吉村 恒、北川 修三、近藤 達敏、土屋 浩 「トンネル掘削における 変位計測結果の利用」、土質工学会関西支部=現場計測工法シンポジウム =、pp.209-214,1981.
- 2-74) 西林 良伸、進士 正人、桜井 春輔 「地下空洞の施工管理に関する一 提案」、土木学会関西支部学術講演会、Ⅲ-15,1980.
- 2-75) 桜井 春輔、清水 則一、松室 圭介 「現場計測結果に基づくトンネル 周辺の弾塑性領域の推定」、第6回岩の力学国内シンポジウム、 pp.263-268,1984。

第3章 マイクロコンピューターによる地下空洞掘削時の安定性の評価

3.1 概説

地下空洞掘削の情報化施工において、現場計測結果を迅速に処理することによって安定性の評価、将来予測及び対策工の決定を行なうためには、コンピュータ ーの利用は不可欠である。その上、使用するコンピューターは、現場で設置可能 な程度のいわゆるマイクロコンピューターであれば都合がよい。

本研究では、情報化施工における設計・施工へのフィードバック理論として桜 井らが提案した直接逆解析法³⁻¹⁾を用いることとする。しかし、有限要素法に基 づくこの定式化は、剛性マトリックスの逆行列演算を含むため、そのままでは、 マイクロコンピューターへの適用は困難である。そこで、剛性マトリックスの逆 行列が柔性マトリックスとなることに着目し、マイクロコンピューターによって 演算可能なアルゴリズムを開発し、十分に実際の現場に適用できることを確かめ る。そして、さらに逆解析の結果(ひずみ分布)をカラーグラフィックディスプ レーに表示することにより、それを地盤の限界ひずみ³⁻²⁾と比較することによっ て計測後直ちに地下空洞の安定性を評価できるプログラムの開発を行なう^{3-3,4)}。

本章では、以下そのアルゴリズムと、使用したマイクロコンピューターについ て述べ、適用する際、問題となる吹き付けコンクリート覆工の取り扱いについて 数値シミュレーションによって考察を行なう。そして、実際の適用例を示し、そ れぞれについて考察を加える。

3.2 基礎式の誘導・

地下空洞の掘削問題を有限要素法で解析する場合は、まず、掘削面に作用する 掘削相当外力を求める必要がある。この外力は、掘削前に作用している初期応力 を用いて、次式のように与えられる。

 $\{P\} = \int_{V} [B]^{T} \{\sigma_{\theta}\} dV \qquad (3.1)$

ここで、 { P } :掘削面上の節点に作用する掘削相等外力(節点力)
 [B] :節点変位-ひずみ関係マトリックス
 { σ₀ } :地山の初期応力

積分は掘削要素に対する体積積分を表わす。

本節で述べる基礎式の誘導は、桜井らがすでに提案したもの³⁻¹⁾と本質的には
 同じものであるが、マイクロコンビューター用に変更を行なった。

いま、二次元平面問題を考えるとトンネル掘削前の地山の初期応力は、次のように表わせる。

 $\{ \sigma_{0} \} = \{ \sigma_{\times 0}, \sigma_{y0}, \tau_{\times y0} \}$ (3.2)

ただし、引張応力を正とする。なお、この初期応力は、図3-1に示すようにトンネ ル掘削部において平均的なものと考える。

式(3.2)を考慮すると式(3.1)は、次のように書き表わすことができる。

 $\{P\} = \sigma_{\times 0} \{P_1\} + \sigma_{y0} \{P_2\} + \tau_{\times y0} \{P_3\}$ (3.3)

ここで、 {P_i} (i=1,3)は、初期応力成分 σ_{x0} , σ_{y0} , τ_{xy0} をそれぞれ単位としたときの外力ベクトルの成分であり、たとえば {P₁} は式、(3.1)式において初期応力を { σ_{0} } = { 1,0,0 } 「として、(3.1)から求めることができる。 {P₂}、 {P₃} も同様にして求められる。

図3-1 地山を一様と考えた場合の初期応力と弾性係数

全解析領域の節点における釣り合い式は、一般に、次の剛性方程式によって表 わされる。

 $\{P\} = [K] \{u\}$ (3.4)

ここで、 {P}, {u} は、それぞれ節点に作用する外力及び、節点変位、 [K] は、 解析領域全体にわたる剛性マトリックスである。いま、地山を等方等質の弾性体 と仮定し、その弾性係数、ボアソン比を、それぞれEr、 υrとする。またトンネル は、覆工されるものとし、その覆工材料の弾性係数、ポアソン比を、それぞれEr 、 υrとする。この場合、 (3,3) 式を (3,4) 式に代入すれば次式を得る。

 $\sigma_{x0}/E_r \{P_1\} + \sigma_{y0}/E_r \{P_2\} + \tau_{xy0}/E_r \{P_3\} = [K^*] \{u\} (3.5)$

ここで、 {P_i} (i=1,3)は、 {Pi} を解析領域全体に拡張した荷重ベクトル成分で あり、掘削面上の節点以外はすべてゼロである。 [K・] は、E_r=1及びE₁=1に対す る地山及び覆工の剛性マトリックス [K_r], [K₁] を用いて以下の式で表わされる。

 $[K^*] = [K_r] + R[K_1] \cdot R = E_1/E_r$ (3.6)

ここでRは、"覆工と地山の剛性比"と呼ぶ。

(3.5)式において、節点変位 { u } を測定される既知の変位 { u₁ } 、測 定されていない未知の変位 { u₂ } 及び解析領域の境界上の変位 { u₃ } に分け て、次式のように分割した。

 $\sigma_{x0} \begin{cases} P_{11} \\ P_{12} \\ P_{13} \end{cases} + \sigma_{y0} \begin{cases} P_{21} \\ P_{22} \\ P_{23} \end{cases} + \tau_{xy0} \begin{cases} P_{31} \\ P_{32} \\ P_{33} \end{cases} = E_{r} \begin{bmatrix} K_{11} \cdot K_{21} \cdot K_{31} \cdot \\ K_{12} \cdot K_{22} \cdot K_{32} \cdot \\ K_{13} \cdot K_{23} \cdot K_{33} \cdot \end{bmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix}$ (3.7)

ー般に、境界上の変位は生じないため、(3.7)式において、 { u3 } = 0と して、 { u2 } を消去すれば、次式を得る。

 $\sigma_{\times 0} \{P_a\} + \sigma_{y0} \{P_b\} + \tau_{\times y0} \{P_c\} = E_r [K_n^*] \{u_1\} (3.8)$

ここで、

 $\{P_a\} = \{P_{11}\} - [K_{12}] [K_{22}]^{-1} \{P_{12}\}$ $\{P_b\} = \{P_{21}\} - [K_{12}] [K_{22}]^{-1} \{P_{22}\}$ $\{P_o\} = \{P_{31}\} - [K_{12}] [K_{22}]^{-1} \{P_{32}\}$ $[K_n] = [K_{11}] - [K_{22}]^{-1} [K_{21}]$

(3.8)式から次式が得られる。

$$\{u_1\} = [A] \{C\}$$
 (3.9)

ここで、

 $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \{A_1\}, \{A_2\}, \{A_3\} \end{bmatrix}$ $\{A_1\} = \begin{bmatrix} K_n^* \end{bmatrix}^{-1} \{P_a\}$ $\{A_2\} = \begin{bmatrix} K_n^* \end{bmatrix}^{-1} \{P_b\}$ $\{A_3\} = \begin{bmatrix} K_n^* \end{bmatrix}^{-1} \{P_c\}$ $\{ C \} = \{ \sigma_{\times 0}/E_r, \sigma_{\times 0}/E_r, \tau_{\times \times 0}/E_r \}^{T}$

{C}を、桜井、武内 は、"初期応力パラメーター"と名づけた³⁻²⁾。 (3.9)式において、[A]は、地山のボアソン比及び測定点の位置によって 定まるマトリックスである。よって、測定変位が与えられるとこの方程式を解く ことにより地山の初期応力及び弾性定数を求めることができる。

しかし、この方程式を解くためには、(3.8)式の {P_a}、 {P_b}及び {P_o} の計算において、マトリックス [K₂₂]の逆行列を求める必要がある。逆行列を 求めるために、バンド法などの省メモリの技法を用いることは、アルゴリズムを 非常に複雑にする。また、剛性マトリックスをすべてメモリ上に置く必要がある が、現在のマイクロコンピューターでは、その容量は限られている。 (C.P.U.が i8086の場合、通常1セグメント64キロバイトであり、2次元マトリックスでは、 120x120になる)逆行列の計算時間は、一般に、連立方程式の解を求める場合と比 較すれば非常に長くなる。

よって、本研究では、計算時間の短縮を測り、マイクロコピューターによって演 算可能なように以下に示すような工夫を行なった³⁻³⁾。

まず、(3.5)式において、 $\sigma_{x0}/E_r=1$ そして $\sigma_{y0}/E_r=\tau_{xy}O/E_r=0と仮定$ すれば、次式を得る。

 $\{P_1\} = [K^*] \{u\}$ (3.10)

(3.10)式を解くことにより $\sigma_{x0}/E_r = 1$ のみに対する全節点変位 {ux} を求 めることができる。(3.10)式を解くには、通常バンドマトリックス法など のような通常の連立方程式を高速に解く技法を利用することができる。ただし、 剛性比R及び地山と覆工のポアソン比は仮定する。同様に、 $\sigma_{Y0}/E_r = 1$ のみ及び $\tau_{xy0}/E_r = 1$ のみに対する変位をそれぞれ {uy}, {uxy} とすれば、(3.5)式 右辺の節点変位 {u} は、重ね合せの原理により次式のように表わされる。

 $[A^{*}] \{C\} = \{u\}$ (3.11)

 $ZZ\overline{C}$, [A[•]] = [{u_x}, {u_y}, {u_{xy}}]

(3.11)式の節点変位 {u} には、測定変位(既知) {u₁} と測定されてい ない変位(未知) {u₂} からなる。従って(3.11)式は、次のように書ける。

 $\begin{bmatrix} A \\ A' \end{bmatrix} \begin{cases} C \\ \end{bmatrix} = \begin{cases} u_1 \\ u_2 \end{cases}$ (3.12)

よって次式を得る。

 $[A] \{C\} = \{u_1\}$ (3.13)

ここで、[A] は、地山と覆工材料のボアソン比、及び、剛性比R(=E₁/E_r)を与え ることによって一意的に定められる。このようにして求められるマトリックス [A] は、先に桜井、武内によって剛性マトリックスの逆行列として求められた (3・9)式³⁻²⁾とまったく同じ値を与えるが、ここで示した方法によれば、逆 行列を求める必要がないため、演算時間は従来の方法より約1/20に短縮される(大型計算機による比較)。

なお、(3.13)式の測定変 位 {u₁} は絶対変位である。しか し、一般に変位の測定値は2点間 の相対変位である。よって、 {u₁} を相対変位 {Δu₁} に変換してお くと都合がよい。例えば、図3-2 に示すような計測点において測定 軸線に沿った測定点(1)、(2)の相 対変位Δu₁₂および、測定点(1)、

図3ー2 計測点と測定変位の関係

(3)の相対変位△u13が求まったと仮定すれば、それらは、各測定点のX,Y方向の絶対変位<u>ui</u>,<u>vi</u>(i=1,3)と次のような関係にある³⁻²⁾。

 $\left\{ \begin{array}{c} \Delta u_{12} \\ \Delta u_{13} \end{array} \right\} = \left[\begin{array}{c} -\cos\alpha & -\sin\alpha & \cos\alpha & \sin\alpha & 0 & 0 \\ -\cos\alpha & -\sin\alpha & 0 & 0 & \cos\alpha & \sin\alpha \end{array} \right] \left\{ \begin{array}{c} u_1 \\ v_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{array} \right\}$ (3. 14)

よって、すべての相対変位 {Δu₁} は、絶対変位 {u₁} によって次のように表わ される。

 $\{ \Delta u_1 \} = [T] \{ u_1 \}$ (3.15)

ここで、[T]は、変換マトリックスであり、(3.14)式を考慮して容易に求めることができる。従って、(3.13)式及び(3.15)式から次式を得る。

 $[A''] \{C\} = \{\Delta u_1\}$ (3.16)

ここで、 [A''] = [T] [A]

(3.16)式は、未知量3個(初期応力パラメーター)を含む方程式である。 一般に、測定変位数は、未知量の数より多く取り得るので、未知量 {C} は適当な 最適化手法によって決定することができる。いま、最小二乗法を用いるなら、(3.16)式から次式を得る。

 $\{C\} = [F] \{ \Delta u_1 \}$ (3.17)

ここで、[F] = [[A''] ^T [A'']] ⁻¹ [A''] ^T

(3.17)式によって、相対変位の測定値 {Δu₁} から一意的に初期応力パラ メーター {C} を求めることができる。

このようにして、初期応力パラメーターが求められると式(3.11)から直

ちに全節点変位が決定される。そして、さらに、節点変位とひずみの関係式

 $\{\epsilon\} = [B] \{u\}$ (3.18)

を用いることより、地下空洞周辺のひずみ分布を求めることができる。

なお、ここで、示した定式化は、先に桜井、武内によって示されたもの³⁻²)に 比較して、次のような特徴がある。

a)アルゴリズムが簡単であり、コンパクトなプログラムになる。

- b)大行列の逆行列計算がないため、精度の良い解を求めることができ、また 演算時間も短縮できる。
- c) バンドマトリックス法、または、スカイライン法等の省メモリに関する手 法が利用できる。

これらは、現場に設置されるマイクロコンピューターによって、変位測定結果 を評価する際、この定式化がきわめて有効であることを示している。

3.3 本研究で用いた解析装置

本研究で使用したマイクロコンピューターは、NEC PC-9801であり、図3-3に周 辺機器(ハードウェア)を示す。図中320キロバイトのRAMディスクは、本体の 約700キロバイトのメモリーの一部を改造し、メモリーをフロッピーディスクのよ

のである。これにより、 ディスク上の全体剛性マ トリックスをアクセスす るために必要な入出力時 間をきわめて短縮するこ とができる。

うに使えるようにしたも

なお、この解析プログ ラムDBAP/M(Direct Back Analysis Program for Micro-Computers)は、 i8086用汎用DOS(Disk Operationg System)とし て開発されたCP/M-86(

Digital Research)及びMS-DOS (Micro Soft)上で計算を実行するものであり、 これらのDOSが動くマイクロコンピューター上では、どの機種でも実行が可能であ る。また、プログラムはFortranによって書かれておりSSS FORTRAN IV(Super Soft)及びMS-FORTRAN(Micro Soft)によってコンパイルすることができる。

3.4 解析手順

図3-4は、ここで提案する方法による解析手順のフローチャートである。このフ ローは、4個のステップに大別できる。

- [1] 地下空洞が素堀りの場合は、(3.6)式の剛性比Rがゼロとなり、インプットデータから全体剛性マトリックスを唯一的に作成することができる。ただし、地山及び覆工材料のボアソン比は仮定する。次に、(3.5)式の初期応力パラメータの一つだけを1とし(他の二つはゼロ)変位を求め、(3.11)式のマトリックス[A^{*}]を作成する。
- [2] [A[•]]から、測定位置に関連する節点だけのマトリックス [A] を作成

図3ー4 本研究における解析手順

する。次に、測定データが相対変位であれば、(3.15)式の処理を行 なう。そして、(3.17)式のマトリックス [F] を作成する。

- [3] [F] に変位測定データを掛け合わせることにより、初期応力パラメー ター {C} を求める。そして、ステップ [1] ですでに求められているマト リックス [A] に {C} を掛け合わせ全節点変位を求める((3.11)式 参照)。
- [4] ステップ[3]の全節点変位から、(3.18)式によって地山のひず み分布が求められる。また、初期応力の鉛直成分σyaが土被り圧に等しい と仮定すれば、初期応力成分及び地山の弾性係数が求められる。

以上は、地下空洞を素堀りで掘削する場合である。次に、覆工を有する場合に ついて述べる。まず、地山と覆工材料のポアソン比を与えると同時に、地山と覆 工材料の剛性比Rを決定する。最初に仮定する剛性比は、適当でよい。これを、 R₁とする。ここで、覆工材料の弾性係数E₁は既知であるから、仮定したR₁に対 して逆解析された地山の弾性係数E₁を用いて新しい剛性比Rが計算できる。これ をR₂とする。いま、このR₂が最初に仮定したR₁と比較して差がある場合は、上 に述べた計算を次の関係式が満足するまで繰り返す。

 $(R_{i+1} - R_i) / R_i < \varepsilon$ (3.19)

ここで、εは許容誤差を表わす。なお、工学的に十分な精度を得るためには、4 ー5回の繰り返し計算を行なえばよい³⁻²⁾。

3.5 解析モデルと演算時間

ここで、実際のトンネルに適用した例に対して演算時間の検討を行なう。検 討に用いた解析モデル(要素数:69、節点数:218)を図3-5に示す。図に示す有 限要素分割は筆者が現場において用いている一般的なものであり、施工管理のた めの逆解析においては、この程度のモデルで十分であると考えられる。また、解 析領域は大きいほど

好ましいが、トンネ 表3ー1 全演算時間における各ステップの占める割合

ル径の約20倍程度取 るならば解析誤差は 約3%以下となり、施 工管理のためには十 分な精度が確保でき

	step 1	step 2	step 3	step4	total
process time (minutes)	109	2	1.5	4.5	117
percentage	93.2	1.7	1.3	38	100

る。

表3-1は、この場合の逆解析に要した全演算処理時間を、前節に述べたそれぞれ の解析ステップに対する各演算時間及びその全体に占める割合として示したもの である。表を見て明らかなように、演算時間の大半はステップ[1]のマトリッ クス[A^{*}]の作成に費やされている。これは、通常の有限要素解析がこのステッ プにおいて行なわれているためである。しかし、覆工が無視できる場合には、ス テップ[1]は、測定結果とは無関係であるから、ここでのマトリックス[A^{*}] は、測定点の位置が決定していれば、測定開始以前に作成することができる。従 って、計算センター等における大型計算機を利用することも可能である。同様に、 ステップ[2]も測定位置がすでに決定していればあらかじめ計算を実行するこ とができる。よって、施工中の変位測定結果の評価は、ステップ[3]からとな る。また、設置した変位計の不良等による測定データの取捨選択は、ステップ[2]から逆解析を実行すればよい。この場合、表によって明らかなように、変更 による演算時間の増加はわずかである。

一方、覆工を有する場合は、剛性比Rの変化により、ステップ[1]のマトリ ックス[A[•]]を、繰り返し計算を行なうごとに作り直す必要がある。従って、こ の場合、マイクロコンピューターによる逆解析は、若干時間を要することになる。

3.6 吹き付けコンクリート覆工の剛性が逆解析に与える影響

ここで提案する地下空洞の安定性の評価法の特色は、マイクロコンピュー ターを用いて測定結果を現場で直ちに評価するところにある。この特色を生かす ためには、マイクロコンピューターの演算時間が重要なポイントとなる。しかし、 3.4で述べたように、吹き付けコンクリート覆工(以下、本節では吹き付けコ ンクリート覆工を単に、覆工と呼ぶ)を有する場合は、繰り返し計算において、 マトリックス[A]を、繰り返しの都度作り直す必要がある。この演算は、現在のマ イクロコンピューターの能力では、少々負担が大きすぎる。従って、現場におけ る適用面から言えば、覆工を無視し、素堀りの状態で解析できれば都合がよい。 ここでは、3.6.1において、覆工の剛性が逆解析の結果に与える影響を数値 シミュレーションによって調べ、どのような地山の場合に覆工を無視し得るかを 明らかにする。

また、覆工は、鋼製支保工と違い、地山に密着するため、地山の凹凸が覆工の 形状を変化させる。ところが、トンネルを設計する際の解析において、覆工の非 弾性挙動は、解析に考慮しても、トンネルの力学的挙動に与える覆工の凹凸の影 響は、通常無視され、凹凸のないなめらかな断面として解析される場合が多い。

図3ー6 覆工の剛性に関するシミュレーション で用いる解析モデル(測定点)

従って、3.6.2において、数値シミュレーションによって、半円形トンネル における、トンネル解析結果に与える覆工の凹凸の影響を明らかにする。そして、 逆解析において覆工の影響が無視できない時、凹凸の影響を吹きつけコンクリー トの等価弾性係数として評価することを提案する^{3-5,6)}。

3.6.1 覆工と地山の剛性比が逆解析の結果に与える影響

図3-6に、シミュレーションに用いたトンネルの解析モデル(平面ひずみ状態)を示す。ここで、トンネルは、馬蹄形で、全断面掘削、アーチ部半径5.5m、 覆工厚は、トンネル全周にわたり一様に20cmとする。なお、使用する要素は、地 山、覆工共に2次元8節点アイソパラメトリック要素である。地山の初期応力、弾 性係数及びボアソン比は、次のように与える。

地山の初期応力: σ_{×0} = -1.47Mpa σ_{y0} = -0.98Mpa τ_{×y0}= 0.0 地山の弾性係数: E_r = 0.098Gpa, ν_r = 0.3

なお、覆工材料の弾性係数によって、3ケースのシミュレーションを行なう。

覆工材料の弾性係数:

シミュレーションでは、まず、これらをインブットデータとして、通常の有限 要素法により、節点変位及びひずみ分布を求める。節点変位から、図3-6中、白丸 実線に示すような地中変位計の最も覆工面から離れた測定点と各測定点間の相対 変位を計算する。有限要素解析から得られたこれらの相対変位を"測定値"とする。 次に、この測定値を用いて逆解析を行なう。ただし、逆解析においては、覆工を 無視して初期応力パラメーターを計算し、ひずみ分布を求めることにする。最後 に、このひずみを、有限要素解析によりあらかじめ求められている "真の" ひず み分布と比較する。

シミュレーションの結果を写真3-1から6に示す。写真3-1及び2は、ケース(a)、 すなわち覆工と地山の剛性比がR=10の時の有限要素解析と、逆解析によって得ら れる最大せん断ひずみの分布図である。写真から明らかなように、この二つのひ ずみ分布は、よく一致している。なお、この時の逆解析による初期応力パラメー ターは、次のようである。

> $\sigma_{\times 0}/E_r = -0.983 \times 10^{-2},$ $\sigma_{\times 0}/E_r = -0.619 \times 10^{-2},$ $\tau_{\times \times 0}/E_r = 0.139 \times 10^{-6}$

ただし、この場合の真の初期応力パラメーターは、以下である。

 $\sigma_{x0}/E_{r} = -1.5x10^{-5},$ $\sigma_{y0}/E_{r} = -1.0x10^{-2},$ $\tau_{xy0}/E_{r} = 0$

従って、この場合、逆解析によって得られるX軸、Y軸方向の初期応力パラメータ -<σ_{x0}/E_r、σ_{y0}/E_r>は、真の値と比較して全体的に小さくなっている。これ は、逆解析において覆工が無視されたため、それだけ地山が見掛け上硬く評価さ れたことを意味する。

写真3-3,4及び3-5,6は、ケース(b)及び(c)、すなわち覆工と地山の剛性比がR= 100及びR=50の時の有限要素解析と、逆解析によって得られる最大せん断ひずみの 分布図を示す。これらの写真から明らかなように、剛性比が50以上になると、覆 工を無視して逆解析した結果、得られるひずみ分布は、真のひずみ分布とかなり

図3-7 凹凸の実測図

写真3―1 有限要素法による最大せん断ひずみ分布(R=10)

写真3ー2 逆解析による最大せん断ひずみ分布(R=10)

写真3一3 有限要素法による最大せん断ひずみ分布(R=50)

写真3-4 逆解析による最大せん断ひずみ分布(R=50)

写真3-5 有限要素法による最大せん断ひずみ分布(R=100)

写真3ー6 逆解析による最大せん断ひずみ分布(R=100)

異なるようになることがわかる。

従って、ここでのシミュレーションの結果から、次のように結論できる。覆工 と地山の剛性比がR=10より小さい場合には、覆工を無視して逆解析を行なっても よいといえる。

3.6.2 吹き付けコンクリート覆工の等価弾性係数

図3-7は、Aトンネルにおける凹凸の実測例である。測定は、天端から、左 右に約50cm間隔でおこない、トンネル中心から、覆工と地山の接触面(地山面と 呼ぶ)及び覆工の内側(覆工面と呼ぶ)までの距離を測定した。図から明らかな ように、実際の覆工には、かなりの凹凸が生じていることがわかる。測定の結果 は次のようであった。

地山面:	(平均)=	462.58cm
	(標準偏差)=	13.92cm
覆工面:	(平均) =	443.73cm
	(標準偏差)=	11.70cm

本文では、吹きつけコンクリート覆工に生じている凹凸を数量的に評価する指標 として凹凸度及び凹凸長を定義する。ここで、凹凸度とは、地山面の凹凸の変動 係数であり、次の式で定義する。

(凹凸度) = { $\Sigma(D_i - D)/(n-1)$ } /D

n

ここで、nは地山面の測定点数、D;は各測定点におけるトンネル中心から覆工面ま での距離、DはD;の算術平均である。また、凹凸長とは、D;をフーリエ変換した際 の200cm以上の卓越波長を設計半径で除したものとする。

次に、シミュレーションモデルを、図3-8に示す。トンネル形状は、半円形断面 とし、全断面掘削、さらに掘削直後に吹きつけコンクリート覆工を施工するもの とする。設計半径及び設計覆工厚は、それぞれ500cmおよび15cmとする。また、実 際のトンネルを模して、トンネル中心から地山面までの距離を標準正規乱数を用 いてばらつかせ、それにより覆工に凹凸をつけた。また、覆工面の凹凸は実測例 を考慮し次式のように仮定した。

(覆工内側半径) = (設計内側半径) + 0.6x (標準正規乱数)

このようにして作成した、凹凸形状の一例を図3-8に示す。シミュレーションでは、 覆工の弾性係数は、9800Mpaと固定し、岩盤の弾性係数を98Mpa,490Mpa,980Mpa と変動させた3ケースにつき行なった。そして、初期応力状態を、静水圧状態、 二軸状態及び初期せん断応力が作用した状態の3通りのケースを想定した。また、 設計覆工厚及びインバートの影響についても考慮した。

シミュレーションは、以下の手順に従って行なう。まず、なめらかな覆工要素 に上式で示すように標準正規乱数を用いて凹凸をつける。次に、従来の有限要素 法によって、凹凸のある有限要素モデルに生じる節点変位を求める。そして、求 められた節点変位を"測定値"として、直接逆解析法により覆工の弾性係数を求 めた。ただし、逆解析を行なう時の解析モデルは、凹凸のない、なめらかな覆工 モデルとしている。このようにして求められる覆工の弾性係数は、実際に凹凸が ある吹きつけコンクリート覆工を見掛け上、なめらかな覆工と仮定した時に、も

図3-8 覆工の凹凸に関するシミュレーションで用いる解析モデル

っとも実際の変位挙動をよく表現する変位が得られる弾性係数である。この覆工 の弾性係数を等価弾性係数と呼ぶ。もちろん、有限要素解析する際に用いた凹凸 のあるメッシュモデルを、直接逆解析法を行なう際に適用すれば、逆解析結果と して得られる覆工の等価弾性係数は、有限要素法に用いて変位を求めたインプッ トデータそのものとなることは言うまでもない。

覆工の凹凸が等価弾性係数に与える要因として、覆工の凹凸度、凹凸長はもち ろん、地山の応力状態、覆工厚、地山と覆工の剛性比、及びインバートの有無な どが考えられる。そこで、(1)初期応力状態、(2)設計覆工厚、(3)インバートの有 無についてのシミュレーション結果を示し、それぞれの要因が、等価弾性係数に 与える影響について述べる。そして、凹凸度、凹凸長が等価弾性係数に与える影響について述べる。

(1)初期応力状態が等価弾性係数に与える影響

表3-2は、4ケースの覆工凹凸パターンにおける初期応力状態の等価弾性係 数に与える影響を求めたものである。初期応力は、前にも述べたように、

- a)静水圧状態の場合
- b) 鉛直方向と水平方 向との初期応力の 比が2:1の場合
- c)ケースb)におい てせん断応力が作 用している場合

の3種類について等価弾 性係数を求めた。この表 から明らかなように、応 力状態が変化しても等価 弾性係数は、ほとんど変 化しない。すなわち、等 価弾性係数は、ほとんど 初期応力状態に影響され ないことがわかる。

図3-9 設計覆工厚が等価弾性係数に与える影響

表 3 一 2 初期応力が等価弾性係数に与える影響

ш. г. њ	nn JL E	初期	肌応力(**	
		σ×®	σy®	τ _{xy} 8	◆Ⅲ弾住休奴 (Mpa)
		98.0	98.0	0.0	5282
0.0227	0.589	49.0	98.0	0.0	5253
		49.0	98.0	19.6	5302

加几座	凹凸長	初其	月応力(举 (平)赵 朴 15 兆	
СЦВ		σ×®	σy®	τ _{xy} θ	₩ 単性 (Mpa)
		98.0	98.0	0.0	3087
0.0368	3.20	49.0	98.0	0.0	3038
		49.0	98.0	19.6	3058

Case-2

Case-1

	凹凸長	初期	明応力(And for the life for set.	
		σ×®	σy®	τ _{xy} θ	₩ ● Ⅲ 弾 任 係 数 (Mpa)
	0.752	98.0	98.0	0.0	4956
0.0375		49.0	98.0	0.0	4929
		49.0	98.0	19.6	4978

Case-3

	凹凸度	凹凸長	初其	肌応力(安压港社场数	
			σ×®	σy ^θ	τ _{×y} θ	≪ ш э≇ 1± нж өх (Мра)
L.	0.0318 1.	1.60	98.0	98.0	0.0	4861
			49.0	98.0	0.0	4890
			49.0	98.0	19.6	4822

Case-4

(2)設計覆工厚が等価弾性係数に与える影響

図3-9は、設計覆工厚と設計トンネル半径との比が0.06,0.03,0.01の時の、 凹凸度と等価弾性係数の関係を示したものである。図中実線は、同じ凹凸パター ンであることを示す。図から明らかなように、設計覆工厚と設計トンネル半径と の比が0.06と0.03では、等価弾性係数の比はほとんど変化しない。しかし、0.01 の時は、異なる等価弾性係数比を示すことがわかる。この結果より、設計覆工厚 と設計トンネル半径との比が0.01すなわち、このシミュレーションでは、設計覆 工厚が5cm以下の時に、覆工の剛性が、吹きつけコンクリート自体の剛性より非常 に低下することが明らかとなった。

(3)インバート施工が等価弾性係数に与える影響

本研究では、インバートが施工されていない場合についてシミュレーション を行なっている。しかし、インバートを考慮して解析を行なう場合、覆工の構造 が変化するため等価弾性係数も変化することが予想される。そこで、本節では、

インバート施工が等価弾性 係数に与える影響について 調べる。シミュレーション では、インバート厚は、設 計覆工厚と同一に15cmとし た。図3-10にインバート施 工の有無に関する凹凸度と 等価弾性係数との関係を示 す。図中、実線で結んであ るグループは、同一凹凸パ ターンを与えたケースであ る。図をみても明らかなよ うにインバート施工の有無 による等価弾性係数の差は ほとんど認められず、イン バート施工の影響は確かめ ることができなかった。

(1)から(3)の結果より、 初期応力状態、設計覆工厚、 及びインバート施工の等価

図 3 ー 1 0 インパート 施工が等 値弾性係数 に与える影響

弾性係数に与える影響は、 設計覆工厚が極端に薄い場 合を除けば、わずかである ことがわかった。そこで、 インプットデータである覆 エと地山の剛性比Rが、そ れぞれ100及び20における 凹凸度に対する等価弾性係 数(E1)と覆工の弾性係数 (E1)との比を凹凸長ごとに 分類したものを図3-11に示 す。なお、図中凹凸長が0.8 以上のケースは、〇印、0.4 以上0.8未満及び、0.4未満 のケースは、それぞれ△、□ 印で示している。これらの図 から、地山と覆工の弾性係数 との差が大きいほど、等価弾 性係数は低下することがわか る。また、凹凸長が大きい、 すなわち凹凸の周期が短いも のほど等価弾性係数が低下す ることがわかる。この結果よ り地山と覆工の弾性係数の比 及び凹凸度と凹凸長の3つの データから、吹きつけコンク リート覆工の等価弾性係数が 決定できること明らかとなっ た。

図3-12に、逆解析によって 覆工の剛性を考慮する必要の ある場合について、覆工と地 山の剛性比Rが100及び20に 対して、凹凸のある覆工をな めらかな覆工と仮定したとき

図3-12(a) 凹凸度と等価弾性係数の関係(R=100)

図3ー12(b) 凹凸度と等価弾性係数の関係(R=20)

equivalent	you	ngʻs	m	od	ulous	
lining	you	ngʻs	m	od	ulous	_
	0.9≦	Εľ	EI			2
	0.8≤	EI'Z	ΕI	<	0.9	
	0.7≤	EI'Z	EL	<	0.8	c
	0.6≤	El'/	EI	<	0.7	C
	0.5≦	EľZ	EI	<	0,6	
	0.4≦	EIV	EL	<	0.5	V
		EIZ	EI	<	0.4	•

の、設計に用いる等価弾性係数の図を示す。この図を用いれば、適用するトンネ ルの凹凸度と凹凸長を計測することにより、トンネルの等価弾性係数を推定する ことができる。

3.7 実際問題への適用例

ここで、本章に示したトンネルなど地下空洞の安定性評価法の現場への適用例 を示す。

3.7.1 適用例-1

対象としたトンネルは、風化花崗岩中に建設された二車線道路トンネルである。 図3-13に示すように、地中変位及び内空変位の計測が行なわれた。測定断面の土 被りは、約28mである。逆解析では、現場計測結果から地山の弾性係数は、かなり 高いと予想されたので、吹付けコンクリート覆工を考慮しなかった。逆解析によ って得られた初期応力パラメーターは、

 $\sigma_{\times 0}/Er = -0.174 \times 10^{-2}$ $\sigma_{\times 0}/E_r = -0.909 \times 10^{-3}$ $\tau_{\times 0}/E_r = 0.261 \times 10^{-3}$

である。ただし、地山及び覆工材料のボアソン比は共に0.3とした。なお、用いた 測定変位は、掘削によって生じた変化値であるため、全変位に対する初期応力パ ラメーターを求める必要がある場合には、理論解等に基づき測定開始時のトンネ ル切羽の位置を考慮してそれを修正しなければならない。図3-13左図に、地中変 位の測定結果(〇印実線)と逆解析結果(△印実線)を示す。また、右図の棒グ ラフは、内空変位の測定結果と逆解析結果を比較したものである。これらの図か ら明らかなように、測定値と逆解析の結果では、内空変位計測結果は、比較的よ く一致するが、地中変位計測結果は、場所により若干の差が認められる。しかし、 ここで注意しなければならないことは、地山の安定は地中ひずみによって評価す るべきであり、従って逆解析においても地山のひずみを精度良く求める必要があ る。そこで、内空変位の測定結果を無視し、地中変位測定結果のみを用いて逆解 析を試みた。その場合の初期応力パラメーターは、

> $\sigma_{\times 0}/\text{Er}=-0.242\times10^{-2}$ $\sigma_{\times 0}/\text{Er}=-0.834\times10^{-3}$ $\tau_{\times \times 0}/\text{Er}=-0.176\times10^{-4}$

となる。図3-13中、口印実線に、地中変位測定結果のみの場合の測定値と逆解析 結果の比較を示す。参考までに、地中変位計測結果のみを用いた場合の、内空変 位計測点の変位量を斜線棒グラフに示す。この結果から明らかなように、測定値 と逆解析の結果は十分に一致することがわかる。しかし、内空変位は、実測値よ り全体的に大きくなる。なお、測定開始時の切羽位置を考慮して、得られた初期 応力パラメーターを修正し(ここでは、1.5倍する)、さらに、鉛直応力成分を、 土被り厚に等しいと仮定すると、地山の鉛直応力及び弾性定数は次のように求め られる。

> $\sigma_{y0} = \gamma H = -1.03 M pa$, $\sigma_{x0} = -2.99 M pa$ $\tau_{xy0} = -0.02 M pa$, $E_r = 1.23 G pa$

ここで得られた地山の弾性係数から剛性比Rは、覆工の弾性係数をEl=4.9Gpaとすると約4となり、逆解析において覆工を考慮しなかったことの妥当性は明らかであ

図3ー14 地中変位計の設置位置とゆるみ領域の表示

る。

写真3-7は、地中変位の計測結果のみを用いて逆解析を行なったときの地山に生 じる最大せん断ひずみの分布をカラーディスプレー上に示したものである。この 結果から明らかなように、地山に生じる最大せん断ひずみの最大値は、約0.4%で ある。しかし、このひずみは、測定開始以降に地山に生じたひずみであり、従っ て、掘削によって生じた全ひずみは、測定開始時のトンネル切羽の位置を考慮し てこれを修正する必要がある。すなわち、この場合、掘削によって地山に発生し た最大せん断ひずみの最大値は、約0.6%と考えられる。一方、この地山材料の限 界せん断ひずみが約0.8-1.5%と考えられる。また、写真3-8に逆解析によって推定 された塑性領域を示す³⁻⁷⁾。図から明らかなように、天端付近に若干の塑性領域 が現われるが、範囲は極めて小さい。よって、限界ひずみおよび塑性領域の2点 から、このトンネルの安定性は十分に確保されていることがわかる。

3.7.2 適用例-2

対象としたのは、片理性の強い結晶片岩地山に建設された2車線道路トンネル である³⁻⁸⁾。施工の安全性を確認するため、図3-14に示すような地中変位計が設 置された。測定断面の土被りは約230mであった。

図3-15に、白丸 実線として最終変 位の測定結果を示 す。この図から明 らかなように、地 中変位は、トンネ

表3-3 各測線付近のゆるみ領域の材料定数

measured line	E _i /E ₀	measured line	E _i /E ₀
EX-1	0.05	EX-3	0.108
EX-2	1.06	EX-4	0.101

ル壁面から約4m地点において急激に増加していることがわかる。この傾向は、特 にスプリングラインに設置された地中変位計(EX-1,EX-4)の結果に著しい。この ことから、トンネル壁面に近い地山にゆるみが生じたと考えられる。よって、図 に示すようにトンネル壁面から奥約4mの領域を一様にゆるみ領域と仮定し、その 領域の弾性係数(E_i)とゆるんでいない地山の弾性係数(E₀)の比を、0.01,0.05,0. 1,0.5,1.0とした5ケースの逆解析を行なった。ただし、覆工は無視し、地山のポ アソン比は、ν=0.3とした。

図3-16に、それぞれのケースに対する各測線毎の測定値(u;)と、逆解析による 計算値(<u>u</u>)の差の総和を示す。図において、差の総和が負であることは、計算値 がその測線において全体的に測定値より小さいことを意味している。すなわち、

図3-15 逆解析で得られた変位と実測値の比較

この場合の逆解析に用いた弾性係数は、過大評価となる。逆に、総和が正であれ ば、過小評価となる。よって、総和がゼロの時の比Ei/E0を求めれば、各測線付近 のゆるみ領域の材料定数を推定することができる。このようにして求められた各 測線付近におけるEi/Eoは、表3-3のようになる。

以上の考察によって、図3-14に示すようなゆるみ領域を考え、その弾性係数を

図3ー16 各測線毎の測定値と逆解析による計算値の比較

場所によってE1/Ea=0.1とE2/Ea=0.01のように変化させた。図3-15に、ゆるみ領域 を考慮して逆解析を行なったときの変位分布の計算値(●印実線)と測定値(○ 印実線)を比較して示す。この図から明らかなように、この両者は良く一致して いる。このことは、この場合のゆるみ領域の大きさ、及びその弾性係数の推定が 適切であったことを示している。また、このことから、ゆるみ領域の弾性係数の 低減は各測線ごとに独立に考えてよいことが分かる。この逆解析によって求めら れた初期応力パラメータは、

> $\sigma_{x0}/E_0 = -0.540 \times 10^{-3}$ $\sigma_{y0}/E_0 = -0.666 \times 10^{-3}$ $\tau_{xy0}/E_0 = -0.257 \times 10^{-3}$

であり、これを用いて最大せん断ひずみ分布を求めると写真3-8に示すようになる。 なお、この場合の初期応力パラメーター及びひずみ分布は測定開始以降の地山の 挙動に対応するものであり、掘削による全ひずみを求めるためには、測定開始時 におけるトンネル切羽の位置を考慮して、それを修正しなければならない。いま、 得られた初期応力パラメーターを測定時の切羽位置を考慮して1.5倍し、さらに、 初期応力の鉛直応力成分は土被り厚に等しいと仮定すると、ここでの初期応力及 び地山の弾性係数は次のようになる。

> $\sigma_{y0} = \gamma H = -5.5 Mpa$, $\sigma_{\times 0} = -4.5 Mpa$ $\tau_{\times y0} = 2.1 Mpa$ E₀ = 8.26Gpa, E₁ = 0.826Gpa , E₂ = 0.083Gpa

従って、この場合の剛性比は、E1に対してR=6(E2にたいしてはR=60となるがそ の範囲は小さいので無視する)となるため覆工を無視して逆解析を行なってもよ いことがわかる。なお参考までに、この解析断面におけるトンネルの岩盤区分は (皿)であり、孔内載荷試験による弾性係数は上限値1.85Gpa、下限値1Gpa、中間 値1.45Gpaであった³⁻⁸⁾。この地山は、片理が発達しているため、ここでの逆解析 で求められた弾性係数は、地山を等価な等方性と見た場合の値であることに注意 する必要がある。

本トンネルのゆるみ領域における最大せん断ひずみの最大値は、先行ひずみも 考慮して、約4.0%と考えられる。この値は、地山材料の一軸状態での限界ひずみ (γ a=0.5-1.2%)³⁻⁸⁾を超えている。しかし、大きなひずみが発生しているのはト ンネル断面の左下に限られており、さらにロックボルト、吹付けコンクリート覆

写真3-7 最大せん断ひずみ分布(適用例-1)

写真3-8 塑性ゾーンの表示(適用例-1)

写真3ー9 最大せん断ひずみ分布(適用例一2)

工によって、地山は三軸状態にあるため、トンネルの安定は確保されていると考 えられる。

3.8 結論

本章においては、地下空洞掘削時における地山の安定性の評価の一方法を示し た。この方法は、地山の変位の測定値から逆解析によってひずみ分布を求め、そ のひずみの値を地山の限界ひずみと比較することにより地下空洞の安定性を評価 しようとするものである。その場合、測定値を現場において直ちに解析すること が重要であり、そのために、ここではマイクロコンピューターの導入を試みた。 特に、安定性の評価を迅速に行なうためカラーグラフィックディスプレーを導入 して、地下空洞周辺のひずみ分布を一目で評価できるようにした。使用したコン ビューターは、NECPC-9801であり、この程度のマイクロコンピューターで十分に 現場での施工管理が可能なことが明らかとなった。

また、計算機シミュレーションの結果、覆工と地山の剛性比Rが10より小さい 場合は、覆工を無視して解析を行なってもよいことが明らかとなった。この条件 は、覆工材料が吹付けコンクリートの等価弾性係数を凹凸度、凹凸長を考慮して E=5Gpaとする場合には、地山の弾性係数が0.5Gpa以上すなわち、地山が第三紀の 軟岩より堅い場合に成り立つ条件である。覆工を無視すれば、繰り返し計算を必 要とせず、一回の計算によってひずみ分布を求めることできるので、地下空洞の 安定性の評価は一段と迅速に行なうことができる。 参考文献

- 3-1) 桜井 春輔「トンネル工事における変位計測結果の評価法」、土木学会論 文報告集、第317号、pp.93-100,1982.
- 3-2) 桜井 春輔、武内 邦文「トンネル掘削時における変位計測結果の逆解析 法」、土木学会論文報告集、第337号、pp.113-145, 1983.
- 3-3) 桜井 春輔、進士 正人 「マイクロコンピューターによる地下空洞掘削時 の安定性の評価」、土木学会論文報告集、昭和60年6月号掲載予定
- 3-4) Sakurai, S. and Shinji, M. : A Monitoring System for the excavation of underground openings based on Microcomputers, Proc. of ISRM for Design and Performance, Cambridge, pp.471-476, 1984.
- 3-5)進士 正人、桜井 春輔「トンネルにおける吹付けコンクリートの等価弾
 性係数」、第15回岩盤力学に関するシンボジウム講演論文集、pp.190-194
 ,1983.
- 3-6)山地 宏志、進士 正人、桜井 春輔「トンネルにおける吹付けコンクリートの等価弾性係数(その2)」、土木学会関西支部年次学術講演会、Ⅲ -24,1984.
- 3-7) 桜井 春輔、清水 則一、松室 圭介 「現場計測結果に基づくトンネル 周辺の弾塑性領域の推定」、第6回岩の力学国内シンポジウム、 pp.263-268,1984。
- 3-8)高速道路技術センター「NATM設計施工に関する調査研究報告書」、 1982.

第4章 掘削過程を考慮した逆解析法

4.1 概説

地下発電所、核廃棄物貯蔵庫、エネルギー備蓄基地などのために建設され る地下空洞は、トンネル構造物とは比較できないほどの規模となり、その施工中 における安定性の評価は、設計及び施工の両面において未知の点が多く、設計時 に予想した挙動と実際の施工によって生じる挙動は、一致しない場合が多い。そ こで、トンネル施工と同じく施工中に生じる地山挙動を現場計測によって観測し ながら、施工を行ない、絶えず、施工中の安定性を評価する情報化施工の必要性 が強く認識されている⁴⁻¹⁾。

しかし、従来のトンネルにおいて用いられてきた情報化施工は、トンネルとい うスケールにおいて、経験的に成り立つ方法が多く、大規摸地下空洞に適用する 場合には、疑問が多い。そこで、大規摸地下空洞の情報化施工を行なうためには、 情報化施工の基本となる現場計測結果の設計・施工へのフィードバックの方法の 確立及び、管理基準値の設定が望まれる。

本研究では、大規模地下空洞掘削においても管理基準値として、トンネルの場 合と同様、地山の"限界ひずみ"を考える⁴⁻²⁾。従って、現場計測の結果から地

結果から直接に地下空洞周辺のひずみ分布を求める方法(D.S.E.T.)を提案した 4-2,3)。

この方法は、簡単であるが、大規模地下空洞の情報化施工に適用する場合には、 次のような問題点が生じる。

段階的に掘削される地下空洞の掘削モデルを、模式的に図4-1に示す。この図か ら明らかなように、現場計測は、掘削が下に進むにつれ、順次開始されためその 開始時間は、下方にいくにつれて遅れてくる。従って、このような掘削過程を全 く考慮せず、現場計測から得られた計測変位を直接D.S.E.T.で解析すると、計測

	全変位による逆解析法	変位増分による逆解析法
解析対象	全断面	各掘削断面
求める未知 パラメータ	初期応力パラメータ	各掘削面に作用する解放 力
長所	・解の安定性が確かめ られている ・従来の直接逆解析法 の定式化が利用可能	・弾性計算であっても掘 削段階でのゆるみの評 が可能 ・入力値は、ずべて計測 値であり、計算による 誤差の蓄積がない
短所	・掘削によるゆるみが 考慮できない ・下盤になるほど計算 誤差が集積する	・未知パラメータ数を増 加させた時の解の安定 性が問題となる

表4ー1 計測変位の取り扱いかたによる逆解析法の比較

期間は上部の方が長く、計測できる変位量が大きいため、地下空洞の上部のひず み分布が大きくなる結果となる。この結果をそのまま地山の限界ひずみと比較す ると、地下空洞上部は、破壊されているが、下部は、まったく安全であるという ような誤った結果を得る。

そこで、現場変位計測結果をインプットデータとし、逆解析を行ない、それか ら逆に地山の初期応力及び力学定数を求め、その結果を用いて計測遅れ分を推定 する方法が考えられる。なお、武内は、掘削過程の逆解析を行なう場合、逆解析 解の数学的安定性の点から逆解析によって求める未知量は、6個以下にする必要が あることを明らかにした⁴⁻⁴⁾。従って、掘削過程を考慮した逆解析においても、 逆解析される未知量の数はできるだけ少なくする必要がある。

逆解析によってて計測遅れの推定する方法としては、次の2つの方法が考えら れる。ひとつは、計測が遅れることによって、計測できなかったデータを、計算 によって補い、絶えず全変位が計測できたとして、全断面一括掘削による逆解析 を行なう方法である。もう一つの方法は、各掘削段階によって、生じた変位(変 位増分)のみによって地下空洞の安定性を推定する方法である。表4-1にそれぞれ の方法の特徴について示す。

表から示すように、全変位を用いる方法は、解の安定性が確保されているが、 掘削断面内の初期応力分布が一定であるという仮定や、掘削によって生じる地山 のゆるみを評価できない点、及び入力値に逆解析結果を使う必要がある等の問題 点が多く、本研究では、変位増分を用いる逆解析法を採用することとする。

4.2 基礎式の誘導

本節では、掘削過程を簡単化して、上半先進掘削工法によって施工される トンネルを例に挙げて、掘削過程を逆解析に取り入れるための基礎式の誘導を行 なう⁴⁻⁵)。図4-2は、上半先進掘削工法における経過日数に対する変位出現の状況 と各切羽位置との関係を示したものである。図中、Phaselは、上半の切羽が計測 断面に到達した直後の状態を示している。一般には、内空変位計測、地中変位計 測、ロックボルト軸力計測等の現場計測は、この段階から開始される。よって、 切羽が計測断面に到達するまでの間に生じる変位量 δ₁は、数値解析や、坑外から の現場計測、先進水平傾斜計による現場計測などによって求める必要がある。次 に、図から明らかなように、上半切羽が計測断面から十分に離れており、かつ、 下半の影響を受けない計測時期をPhase2とし、その時までのPhase1からの変位増 分を δ₂とする。そして、下半切羽が、計測断面に到達し、下半部の計測が開始さ れる直前をPhase3とし、Phase2からの上半部の変位増分を δ₃とする。従って、下 半切羽が計測断面に到達するまでの間に生じる下半部の変位増分 δ₅は、計測する ことができない。最後に、下半切羽の進行による変位の増加がなくなり、計測変 位量が収束したときをPhase4とし、Phase3からの上半部及び下半部の変位増分を それぞれる₄及びる€とする。

Phaselの変位量 δ₁及びPhase2の変位量 δ₂は、地山の上半部を掘削したこと によって生じる変位である。掘削前の地山の応力は、一定であり、それは初期応 力であると考えることができる。そこで、直接逆解析法(DBAP)を用いるならば、 変位量 δ₁、変位量 δ₂から地山を等方等質な弾性体と仮定した場合の地山内の初 期応力パラメータ {σ_{×0}/E, σ_{y0}/E, τ_{×y0}/E} が求められる(地山のボアソン比 は仮定する)。そこで、鉛直応力が土被りに等しいと仮定すれば、初期応力パラメ ータから、地山の弾性係数及び初期応力が求められる。そして、これをインプッ トデータとして、通常の有限要素法解析を行なうことにより、地山内の全変位を 求めることができる。

全節点変位が求まれば、地山内のひずみ分布 { ε } は、次式によって求められる。

図4-2 切羽の位置と計測変位量の関係

 $\{ \epsilon \} = [B] \{ u \}$ (4.1)

ここで、[B]は、変位-ひずみ関係マトリックスである。

(4.1)式によって求められるのは、トンネルを掘削したことによって生じ るひずみ増分である。次に、地山内の応力分布 {σ} は、トンネルを掘削したこ とによって初期応力状態が次式のように変化する。

 $\{\sigma\} = \{\sigma_{\vartheta}\} + [D] \{\varepsilon\} \qquad (4.2)$

ここで、 [D] は、弾性体に対する応力ーひずみ関係マトリックスであり、 { σ_a } は、直接逆解析法によって求められる初期応力 { σ_a } = { $\sigma_{\times a}, \sigma_y$ a, $\tau_{\times ya}$ } である。

Phase3では、下半が計測断面に近づいてきたことにより変位る₃が生じる。この変 位る₃は、下半掘削部に生じる応力を解放することによって生じるものである。掘 削部の解放応力は(4.2)式によって求められる。しかし、この応力は、地山 を等方等質の弾性体と仮定した時に地山に生じているものであり、実際の地山の

下半掘削部に生じている応力状態 とは、異なることが予想される。 そこで、前節で提案した直接逆解 析法^{4-6.7)}に修正を加え、下半掘 削部に作用する応力の大きさを、 逆解析で求めるようにした。以下、 簡単にその逆解析の手順を述べる。

下半掘削部の掘削面に作用する 等価節点力 { F } は、次式によっ て求めることができる。

 $\{F\} = \int_{U} [B]^{T} \{\sigma\} / E dV$ (4.3)

(4.3)式によって示される下半 掘削部掘削面の解放力を図4-3に示 すように下半部の右壁部、中央部、 左壁部に分けて考えると次式を得る。

図4-3 逆解析により求める下半部解放力

-77-

 $\{F\} = \alpha_{R} \{F_{R}\} + \alpha_{c} \{F_{c}\} + \alpha_{L} \{F_{L}\}$ (4.4)

ここで、 α_R 、 α_c 、 α_L を掘削パラメータと呼ぶ。それぞれの掘削パラメータは、 各壁面における掘削力の大きさを示し、 $\alpha_R = \alpha_c = \alpha_L = 1$ の時、 { F } = { F_R } + { F_c } + { F_L } となることは当然である。

各節点における力の釣り合い方程式は、次式によって与えられる。

 $[K] \{u\} = \{F\}$ (4.5)

ここで、[K]は、解析モデル全体に対する剛性マトリックスである。(4.4) 式の{F}を解析領域全体に拡張し(4.5)式に代入すれば次式を得る。

 $[K] \{u\} = \alpha_R \{F_R\} + \alpha_C \{F_C\} + \alpha_L \{F_L\} (4.6)$

(4.6)式において、 $\alpha_R = 1$ 、 $\alpha_c = \alpha_L = 0$ とすれば、(4.6)式は、 次式のようになる。

 $[K] \{u\} = \{F_R\}$ (4.7)

(4.7)式を解いた時の変位量を { u_R } とすれば、 { u_R } は次式のようになる。

 $\{u_R\} = [K]^{-1} \{F_r\}$ (4.8)

同様にαc、αιをそれぞれ1(他の2つはゼロ)とした時のおのおのの掘削パラメー タの変位ベクトルを { uc } 、 { uι } とすれば、下半部掘削による各節点変位 は、掘削パラメータを用いて次式のように表わされる。

 $[A] \{\alpha\} = \{u\}$ (4.9)

 $ZZ\overline{C} [A] = [\{u_R\}, \{u_C\}, \{u_L\}] \\ \{\alpha\} = \{\alpha_R, \alpha_C, \alpha_L\}^{T}$

次に、(4.9)式右辺の各節点変位を、変位量が計測さられている節点変位

{ δ₃}(既知変位)と変位量がわからない節点変位 { u₂}(未知変位)に分離す れば次式を得る。

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \left\{ \begin{array}{c} \alpha \end{array} \right\} = \left\{ \begin{array}{c} \delta_3 \\ u_2 \end{array} \right\}$$

よって、

 $[A_1] \{ \alpha \} = \{ \delta_3 \}$ (4.10)

もし、計測点が掘削パラメータの数より多い時は、適当な最適化手法を用いれば よい。もし、最小二乗法を用いるならば、(4.10)式は、次式のように変形 される。

 $\{ \alpha_3 \} = [A_1]^T [A_1]^{-1} \{ \delta_3 \}$ (4.11)

上式を解くことにより、Phase3における各掘削パラメータ { α₃ } が求められる。 上半部及び下半部の最終変位増分δ₄及びδ₆は、Phase3と同じ下半部掘削の影響 によって生じたものである。よって、上で述べた方法を用いて、Phase4における 各掘削パラメータを推定することができる。地山材料のクリープ特性に起因する 時間依存性挙動により、掘削部に作用してした応力がすべて解放されても上半部 に変形が生じる場合がある。その場合には、(4.4)式の、掘削パラメータに、 上半部を掘削した際の解放力を新しく加えることにより掘削パラメータを容易に 行なうことができる。掘削パラメータが求まれば、それらを再び(4.9)式に 代入することによって、すべての節点の変位を推定することができる。トンネル 周辺のひずみ分布及び応力分布は、(4.1)及び(4.2)式によって求めら れるこの手順を繰り返すことにより、掘削過程を考慮した逆解析が可能となる。

このように求められたひずみ分布を地山材料の限界ひずみ⁴⁻¹⁾と比較すれば、 トンネルの安定性を評価することができる。なお、ここで述べた逆解析手法は、 マイクロコンピューターを用いて容易に計算することができるため、現場におい て迅速な情報化施工が可能となる。

4.3 数値シミュレーションによる逆解析法の検討

4.2で述べた掘削過程を考慮した逆解析法の妥当性を確かめるため、有限 要素法による数値シミュレーションを行なった。シミュレーションモデルと計測 位置を、図4-4に示す。シミュレーションモデルは、二次元平面ひずみ状態とし、 切羽進行による三次元効果を解析に取り入れるため、掘削面に作用する解放力が、 経時的に次式のように変化すると仮定した⁴⁻⁸。

$$F(t) = a(1 - e^{-bt})$$
 (4.12)

ここで、F(t)は、時間tにおいて、掘削面に作用する解放力である。また、a及びbは、定数である。ここで定数を仮定し、まずある時間tにおける解放力を計算し、次にそれが作用した時の変位を有限要素法により求め、それを"計測変位"とした。

掘削過程は、もっとも単純な2段階掘削とした。また、現場計測は、図4-4に示 すように内空変位計測だけが行なわれたとした。それぞれの測線における有限要

図4-4 シミュレーションモデルと計測位置

素法によって得られた計測変位の経時的変化を図4-5に示す。図に示すように、上 半部計測開始30日目に、下半切羽が通過し、同時に下半部の現場計測を開始する ものとした。下半部の切羽進行による影響は、26日目から現われるものとした。 そして、56日目に計測が終了すると仮定した。

シミュレーションでは、図4-5に示す計測日26、30、56日において掘削過程を考 慮した逆解析を行なった。ここで、26、30、56日をPhase A, Phase B, Phase Cと 呼ぶ。それぞれのPhaseは、4.2における、Phase1、Phase2、Phase3に対応する。 それぞれのPhaseにおいて図4-5から得られた内空変位計測結果をインプットデー タとして逆解析を行ない、地山のひずみ分布を求めた。そして、先に得られてい る有限要素法の結果(ひずみ分布)と比較した。写真4-1(a),(b)、写真4-2(a), (b)、写真4-3(a),(b)にその結果を示す。ここで、(a)は、有限要素法の結果であ り、(b)は、逆解析結果を示す。

写真から明らかなように、Phase Cにおいて、掘削を考慮した逆解析によって推 定したひずみ分布は、有限要素法によってすでに得られた"真のひずみ分布"よ りも若干大きめに推定する以外は、各Phaseとも逆解析の結果と有限要素法の結果

写真4-1(a) 有限要素法による最大せん断ひずみ分布 (Phase1)

写真4-1(b)逆解析法によって求められた最大せん断ひずみ分布 (Phase1)

写真4-2(a)有限要素法による最大せん断ひずみ分布 (Phase2)

写真4-2(b)逆解析法によって求められた最大せん断ひずみ分布(Phase2)

写真4-3(a)有限要素法による最大せん断ひずみ分布(Phase3)

写真4-3(b)逆解析法によって求められた最大せん断ひずみ分布(Phase3)

は、良く一致している。従って、ここで提案する掘削過程を考慮した逆解析法の 妥当性が明らかである。

4.4 実際問題への適用例

二車線道路トンネルが、片理性の強い蛇紋岩地山中に建設された。図4-6は、 ある計測断面における内空変位の経時変化図である。図から明らかなように、上 半部の内空変位において、計測開始後約35日後から下半切羽の接近による内空変 位の増加傾向が見られる。また、下半切羽は、計測開始後約40日目に通過した。

図で示す代表的な3点Phase A、Phase B、Phase Cに、本論文で示した逆解析を 適用した。Phase Aは、4.2で示したPhase2に対応し、上半掘削後、下半掘削の 影響をまだ受けない時期と考えられる。Phase Bは、先に述べたPhase3に対応し、 下半切羽の接近から通過までの状態である。最後に、Phase Cは、最終計測値まで

図4-6 内空変位量の経時的変化の実測例

-86-

の状態を示し、先のPhase4に対応する。それぞれの状態における変位量を図4.7中 斜線棒グラフで示す。また、上半部の時間依存性の挙動を考慮するため、Phase Bにおける上半部の解放力をも逆解析によって求めた。それぞれの状態における逆 解析結果は、次のようである。

Phase A
$$\sigma_{\times 0}$$
 / E = -0.577x10⁻²
 $\sigma_{\times 0}$ / E = -0.695x10⁻²
 $\tau_{\times \times 0}$ / E = 0.563x10⁻³

Phase Aにおいて、切羽が計測断面に到達するまでの先行変位量 δ 1を考慮(最終 計測変位の1/2を先行変位量とする)して、逆解析を行なうと、地山の弾性係数及 び初期応力は、次のように求められる。なお、この断面の土被りは、約22.5mであ った。

> $\sigma_{y0} = \gamma H = -6.17 Mpa (-63 kgf/cm^3)$ $\sigma_{x0} = -4.94 Mpa$ $\tau_{xy0} = 0.50 Mpa$ E = 592 Mpa

Phase Bにおいて、地山のクリープ変形等の時間依存性挙動によって、切羽進行と は関係なく上半部にも変形が生じる可能性がある。そこで、本節においては、前 節で述べた掘削パラメータに加えて上半部の解放力をも掘削パラメータとして逆 解析した。次式に逆解析結果を示す。

Phase	В	αR	=	0.154×10^{-2}
		αc	Ξ	-0.187×10^{-1}
		αι	=	0.306x10 ⁰
		αu	=	0.116x10 ⁰
Phase	C	αr	=	-0.543x10°
		αc	=	-0.223x10 ¹
		α ι	=	0.726x10 ⁰
		αu	=	0.489x10 ⁰

この結果から上半掘削後もPhase B及びPhase Cを合わせて、上半部における解放 力は、全解放力の約60%が掘削終了後も作用していることが明らかである。これは、

写真4ー4 最大せん断ひずみ分布(Phase1)

写真4ー5 最大せん断ひずみ分布(Phase2)

写真4-6 最大せん断ひずみ分布(Phase3)

地山材料のクリープ特性に起因する時間依存性の変位挙動と解釈することができ る。図4-7中黒塗り棒グラフに計算値を示す。なお参考までに、全変位による逆解 析法によって得られた結果を白線棒グラフに示す。図から明らかなように、ここ で提案した掘削を考慮した逆解析法は、かなりの精度で計測値と一致することが わかる。

写真4-4、4-5、4-6に、このようにして求められた地山のひずみ分布を示す。写 真4-5、4-6から明らかなように、この手法では、上半掘削の影響がスプリングラ イン上に残っている。また、この断面の最終変位状態を示す写真4-4では、最大せ ん断ひずみの最大値が1.2-1.5%のゾーンが上半掘削部全体に生じており、この地 山での限界ひずみが1.0-1.5%程度であることを考えると、地山の安定性は、ロッ クボルト、吹き付けコンクリート覆工などにより地山を3軸応力状態に保つこと によって、確保されているといえる。

4.5 結論

本章では、大規模地下空洞の情報化施工を目的に掘削過程を考慮した逆解析 法を提案した。この方法は、従来の直接逆解析法では考慮できなかった掘削過程 を、掘削面に生じる解放力を逆解析することにより解析に取り入れた所に特徴が ある。

この逆解析法の妥当性は、有限要素法による数値シミュレーションにより、有 限要素法の解析によるひずみ分布と逆解析により求められたひずみ分布を比較す ることにより確かめた。そして、この逆解析法を、実際の上半、下半の二つの掘 削面を持つトンネルに、適用した。その結果、ここで提案した逆解析法による解 析結果はかなりの精度で測定結果と一致することが明らかとなった。 参考文献

- 4-1) 久保田 昭 「わが国初の卵型大規模地下空間」、トンネルと地下、Vol. 12, No.6, pp.7-16, 1981.
- 4-2) 桜井 春輔 「トンネル工事における変位計測結果の評価法」、土木学会 論文報告集、第317号、pp.93-100, 1982.
- 4-3) 西林 良伸、進士 正人、桜井 春輔 「地下空洞の施工管理に関する一 提案」、土木学会関西支部年次学術講演会、111-15, 1980.
- 4-4)武内 邦文 「トンネル工事における変位計測結果の評価とその設計・施 エへのフィードバックに関する研究」、神戸大学大学院工学研究科修士論 文、pp.66-73, 1983.
- 4-5) 桜井 春輔、進士 正人 「地盤掘削問題に対する逆解析法」、土木学会
 論文報告集(投稿予定)
- 4-6) 桜井 春輔、進士 正人 「マイクロコンピューターによる変位計測結果 評価法」、土木学会論文報告集、昭和60年6月号掲載決定。
- 4-7) Sakurai, S. and Shinji, M. : A monitoring System for the excavation of Underground Openings based on Microcomputers, Proc. of ISRM for Design and Performance, Cambridge, pp.471-476, 1984.
- 4-8) 桜井 春輔、蓮井 昭則、清水 則一 「掘削手順を考慮したトンネルの 有限要素解析」、建設工学研究所報告第24号、1982.

第5章 地下空洞掘削時の現場計測結果に基づく最終変位の予測法

5.1 概説

地下空洞掘削において、情報化施工を行なうためには、現場計測結果から、 空洞の現状の評価を行なうだけではなく、最終状態の予測をできるだけ早い段階 において迅速かつ精度良く行なう必要がある。

そこで、本章では、第3及び4章で述べた地下空洞周辺の安定性の評価に加え て、将来予測を行なう方法を提案する。すなわち、図5-1に示すように、この方法 では、現場計測結果からまず先に述べた逆解析法^{5-1,2)}により現時点での地山の 見掛け上の材料定数及び初期応力を求める。次に、指数関数などを利用し最終状 態を予測する方法を開発することにより、逆解析結果から最終の材料定数及び初 期応力を予測する。最後に、通常の解析を行ない、空洞周辺の変位、ひずみ分布 を求める。このように、空洞周辺の最終のひずみ分布が得られれば、地山の限界 ひずみと比較することにより、地下空洞の安定性の予測及び支保工の評価を行な うことができる。

このような最終変位状態の予測法に関して、本章ではまず、5.2において、 本節で提案する最終変位の予測法について述べ、続いて、5.3において、実際 の現場計測例に適用し、その予測法の妥当性を検討する。

5.2 直接逆解析法を用いた最終変位の予測

DBAP/Mによれば、変位計測結果から初期応力パラメータ(初期応力を弾性 係数で除した値、すなわち、<σ_{×0}/E、σ_{y0}/E、τ_{×y0}/E>)を経時的に求めるこ

は、測定が行なわれた時点の ものであり、ロックボルトや 吹き付けコンクリートの妥当 性を検討するには不十分であ る。すなわち、それらの妥当 性は最終のひずみ分布を検討 することによってはじめて可 能となる。そのためには、あ る時点に得られた初期応力パ ラメータから、常に、その最 終値を予測する必要がある。 ここではその方法を提案する。

図 5 ー 2 ある時間 T における初期応カパラメータ速度と 初期応カパラメータの最終状態までの増加量

5.2.1 最終初期応力パラメータの予測法^{5-3,4)}

図5-2に示すように、ある時間Tにおける初期応力パラメータ速度 & σと、ある時間Tから最終状態までの初期応力パラメータの増加量 σ_r-σの間には、次のような関係が成り立つと仮定する。

$$\sigma_r - \sigma = C \frac{1}{2} \sigma \qquad (5.2)$$

ここで、σ及びσrは、それぞれ時間Tにおける初期応力パラメータ及び最終状態 (T→∞)の初期応力パラメータを表わす。なお、ここでは簡単のため時間Tの初 期応力パラメータ<σx0/E、σy0/E、τxy0/E>及び最終状態での初期応力パラメ ータ<σrx0/E、σry0/E、τrxy0/E>をそれぞれ"初期応力パラメータ"、"最 終初期応力パラメータ"と呼び、単にσ及びσrと表記する。また、Cは地質状況、 支保状況、トンネル形状等によって定まる時間の次元をもつ定数であり、本研究 では、"予知定数"と呼ぶ。

計測開始直後では、(5.2)式においてσ=0であるためその時の最終初期応 カパラメータを予測する場合は次式によればよい。

$$\sigma_r = C \pm \sigma \qquad (5.3)$$

よって、予知定数Cが得られれば、(5.2)あるいは(5.3)式より最終 初期応力パラメータを予測することができる。しかし、予知定数Cを推定するこ とは難しい。そこで、予知定数を用いないで最終初期応力パラメータを求める方 法を提案する。

ある時間 t_1 , t_2 において初期応 カパラメータの値 σ_{t1} , σ_{t2} とそ の速度ま σ_{t1} , $\vdots \sigma_{t2}$ が得られた と仮定する。

これらを(5.2)式へ代入し、 変形すると次式が得られる。

> $\sigma_{r1} = C \left(\frac{1}{3} \sigma_{t1} \right) + \sigma_{t1}$ $\sigma_{r2} = C \left(\frac{1}{3} \sigma_{t2} \right) + \sigma_{t2}$ (5.4)

ここで、σ_{r1}、σ_{r2}は、時間t₁と t₂において予測した最終初期応力 パラメータである。

時間t1とt2において予測した最 図 5 - 3 最終初期応カパラメータの予測法 終初期応力パラメータから、真の

最終初期応力パラメータを求めるため、図5-3に示すようにある任意の時間T にお いて予想される最終初期応力パラメータσ⁻を求めると、上式のσ_{r1}、σ_{r2}を通 る直線として次式のように与えられる。

$$\sigma_r = \alpha T + \beta \qquad (5.5)$$

上式の係数α、βは、(5.4)式を用いて次式のようにマトリックス表示される。

$$\begin{bmatrix} t_1 & 1 \\ t_2 & 1 \end{bmatrix} \begin{cases} \alpha \\ \beta \end{bmatrix} = C \begin{cases} \frac{4}{5} \sigma_{t1} \\ \frac{4}{5} \sigma_{t2} \end{cases} + \begin{cases} \sigma_{t1} \\ \sigma_{t2} \end{cases}$$
(5.6)

(5.6)式を解くことにより、係数α、βは、次のように求められる。

$$\left\{ \begin{array}{c} \alpha \\ \beta \end{array} \right\} = \frac{1}{t_1 - t_2} \left[\begin{array}{c} C \\ B_1 \end{array} \right] + \left\{ \begin{array}{c} A_2 \\ B_2 \end{array} \right]$$
 (5.7)

ここで、 $A_1 = (\pounds \sigma_{t1}) - (\pounds \sigma_{t2})$

$$A_{2} = \sigma_{t1} - \sigma_{t2}$$

$$B_{1} = (\pounds \sigma_{t2}) t_{1} - (\pounds \sigma_{t1}) t_{2}$$

$$B_{2} = \sigma_{t2} t_{1} - \sigma_{t1} t_{2}$$
(5.8)

次に、予知定数を C_1 、 C_2 と2通りに仮定すれば、(5.7)式の係数 α 、 β は、 次式のようになる。

$$\begin{cases} \sigma_1 \\ \beta_1 \end{cases} = \frac{1}{t_1 - t_2} \begin{bmatrix} C_1 & \left\{ A_1 \\ B_1 \right\} + \left\{ A_2 \\ B_2 \right\} \end{bmatrix}$$

$$\begin{cases} \sigma_2 \\ \beta_2 \end{cases} = \frac{1}{t_1 - t_2} \begin{bmatrix} C_2 & \left\{ A_1 \\ B_1 \right\} + \left\{ A_2 \\ B_2 \right\} \end{bmatrix}$$

$$(5.9)$$

そこで、(5.9)式によって表わされる直線の交点を求めると、交点における 最終初期応力パラメータの値σ,は、次式のようになる。

 $\sigma_{r} = \alpha_{1} \beta_{1} (\beta_{2} - \beta_{1}) / (\sigma_{1} - \sigma_{2}) (5.10)$

(5.10)式に(5.9)式を代入すると次式を得る。

$$\sigma_{r} = 1/(t_{1} - t_{2}) [(A_{1} B_{2} - A_{2} B_{1}) / A_{1}]$$
(5.11)

(5.11)式に、(5.8)式を代入すると最終初期応力パラメータは、予知 定数とは、関係なく初期応力パラメータの値とその速度によって次式のように求 められる。

$$\sigma_{r} = \frac{(\pounds \sigma_{t1}) \sigma_{t2} - (\pounds \sigma_{t2}) \sigma_{t1}}{(\pounds \sigma_{t1}) - (\pounds \sigma_{t2})}$$
(5.12)

よって、任意の時間に実施された2回の計測の結果から初期応力パラメータとその速度が得られると、(5.12)式より、最終初期応力パラメータを求めることができる。

次に、 n 回の計測が行なわれ、それぞれ初期応力パラメータと、その速度が求められた場合について考える。この場合、(5.6)式は、次のように表わされ、

未知の係数の数より式の数が多くなる。

 $[A] \{ \alpha_{\theta} \} = C \{ \sigma \} + \{ \sigma \}$ (5.13) $\mathbb{ZZ} [A] = \begin{bmatrix} t_{1} & 1 \\ t_{2} & 1 \\ 1 & 1 \\ t_{n} & 1 \end{bmatrix}$ (5.13)

$$\left\{ \begin{array}{c} \underbrace{\pounds} \sigma \end{array}\right\} = \left\{ \begin{array}{c} \underbrace{\pounds} \sigma t_{1} \\ \underbrace{\pounds} \sigma t_{2} \\ I \\ \underbrace{\pounds} \sigma t_{n} \end{array}\right\}, \quad \left\{ \begin{array}{c} \sigma \end{array}\right\} = \left\{ \begin{array}{c} \sigma t_{1} \\ \sigma t_{2} \\ I \\ \\ \sigma t_{n} \end{array}\right\}$$
(5.14)

従って、この場合、なんらかの最適化手法を用いることにより未知の係数α、β を決めることになる。ここで、最小二乗法を用いるならば、n回の計測に対して 得られたそれぞれの最終初期応力パラメータの値と速度をもっともよく満足する 未知係数ベクトル {α₀} は、次式のようになる。

 $\{\alpha_{0}\} = C([A]^{T}[A])^{-1}[A]^{T}\{\sigma\} + ([A]^{T}[A])^{-1}[A]^{T}\{\sigma\}$ (5.15)

よって、(5.15)式を(5.10)式へ代入することにより、2回だけ計 測が行なわれた場合と同様に予知定数には関係なく最終初期応力パラメータ σ ,を 求めることができる。

次に、初期応力パラメータの経時変化図から数式を用いずに、簡単に最終初期 応力パラメータを求める方法について説明する。まず、初期応力パラメータの値 とその速度から、予知定数をいくつか(通常3個程度)仮定して仮の最終初期応 カパラメータを求める。次に、計測回数が2回だけならば、それぞれの予知定数 ごとに、仮の最終初期応力パラメータを通る直線を引く。すると、それらの直線 の交点が真の最終初期応力パラメータとなる。3回以上データが得られれば、そ れぞれの予知定数毎に、直線回帰分析を行ない、仮の最終初期応力パラメータを もっとも満足する直線を求める。この計算は、電卓によって簡単に行なうことが できる。このようにして求められたそれぞれの予知定数の回帰直線の交点が真の 最終初期応力パラメータとなる(図5-3参照)。 5.2.2 予知定数の検討

前節で述べたように、本研究において予知定数は基本的に必要ではない。しか し、計測回数が少ない時に最終初期応力パラメータを求めたい場合、予知定数を 仮定すれば、最終初期応力パラメータを求めることができる。また、図解法を行 なう時、予知定数が予測できれば都合がよい。そこで本節では、実際のトンネル の計測結果から、統計的に予知定数を求め、そのばらつきを調べる。

図5-4は、Aトンネル(2車線道路トンネル)のある計測断面における地中変位 計測の結果から初期応力パラメータの経時変化を求め、各測定時間に対する初期

図5-4 Aトンネル地中変位計測結果を用いたdσ/dt とσ+-σとの関係
応力パラメータの増加速度(まσ)と(σ_r-σ)の関係を両対数紙上に示したもので ある。なお、ここでは初期応力パラメータをその主値<σ₁、σ₂>で整理した。 図において、勾配を1として、回帰式を求め、予知定数を推定すると次のように なる。

そして、回帰式の95%信頼区間を考えれば、次のようになる。

上限:C = 7.842、 下限:C = 5.015 (5.16)

図から明らかなように、予知定数は、主初期応力パラメータの主値に関係なく、 ほぼ一定となる。

次に、Aトンネルの他の計測断面において実施された内空変位計測結果および、 天端沈下計測結果に対してDBAP/Mにより初期応力パラメータの経時的変化を求め、 計測開始後1日目の初期応力パラメータ速度(まσ)と、最終初期応力パラメータ

(σ_r)との関係で整理すると図5-5のようになる。この図から、予知定数は、両 対数紙上で勾配を1と 100_____

して次のように求めら れる。

> 平均:C = 6.18 (5.17)

そして、回帰式の95%信 頼区間を考えれば、次 のようになる。

> 上限:C = 8.05 下限:C = 4.74 (5.18)

なお、吉川らによれば、 複線断面ベンチ工法の場 合、切羽通過後数日間に

図5ー5 A トンネル内空変位計測結果を用いたdσ/dt と σ -- σ との関係 生じる一日当りの 最大変位速度uvmax と最大変位量umax との相関関係は、 次式のように与え られる^{5-5,6)}(図 2-11参照)。

平均: umax=7.24uvmax (5.19)

吉川らが定義した 最大変位速度と最 大変位量は、本章 における初期応力 パラメータ速度及 び最終初期応力パ ラメータに対応す るため、(5.1 9) 式は、ここで 述べる(5.3) 式とほぼ同じ意味 となる。よって、 予知定数の平均値 Cは、Aトンネル の結果及び、吉川 らの結果から、2 車線トンネルのベ ンチエ法の場合、 2から20程度に 分布し、平均値は、 ほぼ6から8であ ることがわかる。

最終初期応力パラメータの予測(σι)

5.3 実際問題

(5.2)式によって仮の最終初期

応力パラメータの 図 5 - 6 (b) 予測を行ない、そ

れらの予測値から真の最終初期 応力パラメータを求めた。なお、 予知定数は、前節の結果から C=2、C=6、C=20の3ケースに仮 定した。その結果を、図5-6(a)、 (b)、(c)に示す。図(a)、(b)に おいて□、□、■印の実線は、 予測定数を、5・2・2の結果 を参考にしてそれぞれC=2、 C=6及びC=20とした時における 最終初期応力パラメータの仮の 予測結果である。ここでは、予 測結果を安定させるため、前々

Aトンネル地中変位計測結果を用いた 最終初期応カパラメータの予測(σ 2)

予測結果である。ここでは、予 図5-6(c) 主軸の傾きの経時変化

回、前回および今回の初期応力パラメータσ_{i-2}、σ_{i-1}、σ_iを用いて、前回σ_i -1の最終初期応力パラメータを次式のように予測するものとした。

$$\sigma_{r} = 0.5C \left[(\sigma_{i-1} - \sigma_{i-2})/\Delta t_{1} + (\sigma_{i} - \sigma_{i-1})/\Delta t_{2} \right] + \sigma_{i-1} \qquad (5.20)$$

ここで、Δt1及びΔt2は、それ ぞれti-2からti-1及びti-1から tiまでの時間を示す。(図5-7 参照)

図5-6(a),(b)において、△印 は前節で述べた方法によって求 めた真の最終初期応力パラメー タであり、予知定数に関係なく 求めることができる。また、参 考までに、各測定時間における 初期応力パラメータを●印実線 で示した。なお、ここで、初期 応力パラメータは、その主値 <σ₁、σ₂>と、その最大値の

X軸からの傾き<ゆ>によって示してある。図(c)からゆは、経時的に変化しない ことが明らかとなったため、ここではこれを一定とした。図から明らかなように、 最大及び最小主応力共に、最終初期応力パラメータの予測値は、計測開始後約5 日目以降から、かなりの精度で予測が可能となることが明らかとなった。

写真5-1(a)、(b)、(c)は、計測開始後5日、11日及び最終日におけるトンネ ル周辺の最大せん断ひずみ分布図である。写真5-2(a)、(b)に計測開始後5日及び 11日におけるトンネル周辺の最大せん断ひずみ分布の予測結果を示す。これら の図から、掘削開始5日目には、トンネル周辺には0.45%以下のひずみ分布しか生 じていないが、最終状態では約0.75%のひずみが生じることが予測される。そして、 11日目には、最終状態では、0.65-0.75%のひずみが生じると修正している。1 1日目の予測と最終状態でのひずみ分布を比較すれば、ここで提案する方法が正 確に最終ひずみ分布を予測し得ていることがわかる。

写真5-3(a)、(b)、(c)に、計測開始後5日、11日及び最終日におけるトンネ ル周辺の塑性ゾーンの分布図を示す⁵⁻⁷⁾。写真5-4(a)、(b)に計測開始後5日及び 11日におけるトンネル周辺の予測の塑性ゾーンを示す。図から明らかなように、 5日、11日とも塑性ゾーンの予測はほとんど変わらない。従って、弾塑性境界 の予測も可能である。

図5-8は、上半切羽通過53日後における、地中変位計測(△印実線)とDBAP/Mに よる計算変位(〇印実線)との比較を示す。図から明らかなように、両者は、比 較的よく一致している。

写真5ー1(a) 計測開始5日目におけるトンネル周辺の 最大せん断ひずみ分布

写真5-2(a) 計測開始5日目におけるトンネル周辺の 最大せん断ひずみ分布(予測)

9

写真 5 - 1 (b) 計測開始 1 1 日目におけるトンネル周辺の 最大せん断ひずみ分布

•

写真5-2(b) 計測開始5日目におけるトンネル周辺の 最大せん断ひずみ分布(予測)

写真5-1(c) 最終状態におけるトンネル周辺の最大せん断ひずみ分布

写真5-3(a) 計測開始5日目におけるトンネル周辺の 塑性ゾーンの分布

写真5-4(a) 計測開始5日目におけるトンネル周辺の 塑性ゾーンの分布(予測)

写真5-3(b) 計測開始11日目におけるトンネル周辺の 塑性ゾーンの分布

写真 5 - 4 (b) 計測開始11日目におけるトンネル周辺の 塑性ゾーンの分布(予測)

写真5-3(c) 最終状態におけるトンネル周辺の塑性ゾーンの分布

図5-8 逆解析による変位と計測値との比較

5.3.2 適用例一2

Bトンネルにおいても同様に、計測日毎の現場変位計測結果からDBAP/Mによっ て、初期応力パラメータを求め、その値と増加の速度から最終初期応力パラメー タの予測を行なった。その結果を図5-9(a)、(b)に示す。図5-6と同様に、図(a)、 (b)において□、□印の実線は、予測定数をそれぞれC=2及びC=6とした時におけ る最終初期応力パラメータの仮の予測結果である。このケースも同様に、予測結 果を安定させるため、(5.20)式を用いて最終初期応力パラメータを予測し た。図中△印に、真の最終初期応力パラメータを示す。また、参考までに、各測 定時間における初期応力パラメータを●印実線で示した。なお、このケースにお いても、初期応力パラメータは、その主値<σ1、σ2>と、その最大値のX軸か らの傾き<φ>によって整理し、Aトンネルと同様にφが経時的に変化しないこ とが明らかとなったので初期応力パラメータの主値のみ示してある。

図から明らかなように、経時変化は、いったん、20日前後で収束する傾向を 見せるが、その後、増加を始める。このような場合、最終初期応力パラメータの 予測は、初期応力パラメータの経時的変化が上に凸の状態である20日までの時

ー 9 (a) Bトンネル地中変位計測結果を用いた 最終初期応力パラメータの予測(σ ι)

は、ほぼ正確に最終初期応力パラメータを予測できる。しかし、20日目以降、 初期応力パラメータ速度が急激に増加し、経時的変化が下に凸の状態になると、 予測値は現在得られている初期応力パラメータを下回る結果となる。この時は、 20日目のデータを初期値として、改めて最終状態の推定を行なう必要がある。

5.4 結論

本研究では、直接逆解析法に基づき任意の時間における2回以上の変位計測の

結果から、マイクロコンピューターを用いて最終初期応力パラメータを予測する 方法を提案した。そして、実際のトンネルを対象として、予知定数Cを求め、さ らに、適用例によって、最終初期応力パラメータが十分推定できることを示した。 このようにして、最終初期応力パラメータが求められれば、それを用いて地山 の最大ひずみ分布が予測でき、適正な支保工の評価が可能になる。 参考文献

- 5-1)Sakurai, S. and Shinji, M., A monitoring system for the excavation of underground openings based on microcomputors, Proceedings of ISRM for Design and Performance of Underground Excavaions, Cambridge, pp. 471-476, 1984.
- 5-2)進士 正人、桜井 春輔 「マイクロコンピューターによる変位計測結果の 評価法」、土木学会論文報告集、昭和60年6月号掲載予定。
- 5-3)進士 正人、桜井 春輔 「トンネル掘削時の現場計測結果に基づく最終変 位の予測法」第17回岩盤力学に関するシンポジウム講演論文集、pp.301-305 1985。
- 5-4) 桜井 春輔、進士 正人 「変位計測における最終変位の予測法」、土木学 会論文報告集、(投稿予定)。
- 5-5) 吉川 恵也、朝倉 俊弘、日吉 直、遠藤 真一 「NATM計測実績の統計分 析」第15回岩盤力学に関するシンポジウム講演論文集pp.220-224、1983。
- 5-6)朝倉 俊弘、川上 善輝、馬場 実雄 「トンネル切羽付近における変位計 測」第5回トンネル技術シンボジウム-NATMの計測と施工管理-日本トン ネル技術協会pp.64-83,1984。
- 5-7) 桜井 春輔、清水 則一、松室 圭介 「現場計測結果に基づくトンネル 周辺の弾塑性領域の推定」第6回岩の力学国内シンポジウム講演論文集 pp.263-268,1984。

第6章 結論

本研究は、地下空洞掘削中の変位計測結果に基づき空洞を経済的にかつ安 全に施工するための施工管理システムの開発を目的として行なった。地下空洞の 安定性の評価は、種々の現場計測に基づいてなされるが、本研究においては計測 変位を逆解析して得られるひずみを地山の限界ひずみと比較する方法を採用した。 この場合、最も重要なことは、現場計測の結果を、測定後直ちに解析し、評価し、 次の掘削に対する施工法及び支保工の決定に十分生かすことである。このような 現場計測結果の設計・施工へのフィードバックは、最近のマイクロコンピュータ ーの発達によってますますその可能性を増大している。本研究では、その場合の 一つの方法論を提案し、それが現場において十分通用できることを明らかにした。 さらに、User Friendly なマイクロコンピューター用の逆解析プログラム(DB AP/M)を開発した。また、逆解析結果を迅速にかつ容易に評価するため、地 下空洞周辺に生じるひずみ分布をカラーディスプレー上に表示するプログラム(DISP)及び逆解析法とグラフィックプログラムとの間のインターフェース用 ブログラム(CONV)の開発を行なった。これらのプログラムによって、地下 空洞周辺の危険箇所及び、その範囲を建設に携わる技術者自身の目で迅速に、評 価することができるようになった。

従来、このような情報化施工を行なうシステム(たとえば、RCCシステム) では、大型コンピューターが利用されてきた。そして、それらのシステムは、計 測点から集められたデータを高速に処理し、解析し、その結果を、X-Yプロッ ターなどに図化する方法が取られてきた。しかし、本研究で開発したようなマイ クロコンピューターを用いて、情報化施工を行なうシムテムは今後ますます重要 度を増してくるものと思われる。

ここで、改めて、本論文における研究の骨子を明らかにするため、各章ごとの 要旨、及び得られた成果を以下に概説する。

第1章では、本研究の目的を明確にし、マイクロコンピューターを用いて情報 化施工を行なうシステムの必要性を述べ、施工管理システムとして満足すべき条 件について明らかにした。第2章では、以後の章を補足するため、本研究の範囲 を明らかにし、従来の情報化施工を、設計・施工へのフィードバック理論の観点 から分類して概説した。そして、本研究がこれら従来の研究の中で、どのような 位置を占めているかについて述べた。

第3章では、桜井の提案した直接逆解析法をマイクロコンピューターによって 演算が可能なように再定式化し、演算精度及び演算時間の両面に対し非常によい 結果を得た。さらに、吹き付けコンクリート覆工のある場合、ここで用いる逆解 析法は繰り返し計算を必要とするため、どのような条件において、覆工を考慮し た計算を行なう必要があるのか、また、吹き付けコンクリート覆工を逆解析に取 り入れる際、どのように評価すればよいかについて検討を加え、明確な回答を得 た。更に、本研究により再定式化した直接逆解析法を実際の現場計測結果に適用 し、十分の成果を得た。

第4章では、大規摸地下空洞において情報化施工を行なうために必要な、掘削 過程を考慮した直接逆解析法を提案した。そして、数値シミュレーションによっ て、この方法の妥当性を確かめた。さらに、ベンチ掘削によって施工されたトン ネルの実測結果に、ここで提案した方法を適用し良い結果を得た。

第5章では、情報化施工の大きな柱である変位予測について一方法を提案した。 そして、その実際問題への適用を試みた。その結果、現場計測開始後、5日から 1週間目には、かなりの精度で、予測が可能であることを明らかにした。

なお、本研究によって開発したプログラムは、すでに2、3のトンネル建設現 場、および1つの地下空洞建設現場において、施工管理のために採用され、地下 空洞の情報化施工に役立っている。しかし、実際にプログラムを使用してみると 数多くの問題点が生じた。以下、建設に実際に携わる技術者との議論によって明 らかとなった、今後解決しなければならない研究課題について述べる。

(1)対策工の判定

現在の施工管理システムでは、将来の危険が予測できても、危険を回避 するための、対策工の指示を行なうことができない。この欠点を取り除くために は、ロックボルト、や、吹き付けコンクリート覆工等の作用効果を明らかし、そ れらの作用効果を定量的に評価する必要が生じてくる。本研究により、吹き付け コンクリート覆工の評価についてはある程度明らかとなったが、ロックボルトの 作用効果は、いまだ、定説がなく、理論よりも経験・実績が先行している状態で あり、将来克服すべき研究課題であろう。もし、ロックボルト及び吹き付けコン クリート覆工の作用効果が、明らかとなれば、数学モデルの設定も容易であり、 増し打ちロックボルトの本数、長さなどの指示、及び、打設場所の指示がある程 度可能になると思われる。

(2)施工管理値の設定

次に、問題点となるものは、管理基準値の問題である。ここで提案して いるシステムでは、限界ひずみを管理基準値としている。限界ひずみは、室内試 験によってある程度その値が推定できるが、コア採取困難な場合には問題がある。 また、室内試験用のコアが採取できるような地山では、支保工が変状するといっ た問題が起こることは、極めて稀であり、通常、掘削に支障をきたすような問題 が生じる泥岩、蛇紋岩、片岩、温泉余土、崖錐などの地山では、試験用のコアが 採取できない場合が多い。その時、限界ひずみをいくらと設定するかが大変重要 な問題となる。従って、そのような状態の時に、地山の限界ひずみを簡単に求め る試験法の開発が望まれる。さらに、地質的に、地山が硬岩と、軟岩の互層とな っているような場合、限界ひずみをどう評価すればよいかなども大きな問題点で ある。

このように、管理基準値の設定が明確でなければ、いくらカラーグラフィック によって、地下空洞周辺のひずみ分布を描いても、定量的な評価ができず、的確 な情報化施工を行なうことは、不可能となる。

(3)システムの操作性

最後に、システムの操作性の悪さが上げられる。現在、建設現場におい ては、経費削減のため、人員を減らす傾向にある。また、技術者が、コンピュー ターに対して全く無知である場合も考えられる。従って、コンピュターの操作は できるだけ簡単にする必要がある。例えば、もし間違ったキーを押してしまった ときのエラー処理をも組み込んだシステム、マウスの使用、あるいはプログラム に使用するフロッピーの枚数を減らすなどの改良を行なう必要がある。しかし、 通常、操作性と汎用性は、お互いに相反するものであるため、操作性を重視する と汎用性が犠牲となってしまう。よって、どの程度まで、汎用なシステムにする かが問題点である。

謝辞

本論文は、著者が神戸大学大学院自然科学研究科に在学中に行なった研究の成 果を取りまとめたものである。この間を含む永年にわたり、指導教授として終始 懇切な御指導と御鞭達を賜わった神戸大学工学部教授桜井春輔先生に体し、深甚 なる謝意を表します。同先生には、岩盤工学の基本から、研究方針、研究方法な どすべての面において、御教示と御指導を承り、厚く御礼申し上げます。

また、論文の取りまとめにあたって熱心な御指導並びに御助言をいただいた神 戸大学工学部教授、西村昭博士、谷本喜一博士、および神戸大学工学部助教授、 高田至郎博士に心からの謝意を表します。

著者の研究にたって、神戸大学工学部土木工学科構造力学・耐震工学研究室の 清水則一助手、福井大学工学部建設工学科福井卓雄講師、神戸大学総合情報処理 センター福島徹助手、神戸大学大学院自然科学研究科野添久視助手、宮本文穂助 手には、日頃から心暖まる激励と有益な御助言をいただき、心から御礼申し上げ ます。

本研究の実施にあたっては、神戸大学内外の数多くの方々から多大の御協力を いただいた。特に、近藤達敏、安井真三、塩田堂太郎、近久博志、土屋浩、岡部 幸彦、阿部求、庄野俊太郎、蓮井昭則、武内邦文、森修一、西林良伸、山地宏志 の各位のご支援によるところが大きく深謝の意を表します。

最後に、本論文を取りまとめるにあたり谷本篤則氏をはじめとする土木工学科 構造力学・耐震工学研究室の卒業生及び在学生各位に心から感謝いたします。 付録

DBAP/M version 2.2

Direct Back Analisis Program for Microcomputors copyright (c) 1983 Kobe University

取り扱い説明書

1. 動 作 環 境

- 2. ユーザーに提供されるソフトウェア
- プログラムの実行の方法 з.
- 4 .入力デ5 .出力例 入力データの説明及びプログラムの制限事項

神戸大学工学部 岩盤工学研究室 担当 進士 正人 1. 目的及び、動作環境

このプログラム DBAP/M(Direct Back Analysis Program for Micro Computers)は、地下空洞の安定性を、地下空洞掘削の際の現場変位計測デ ータをもちいて評価するプログラムです。そのために、空洞周辺の材料定数及び 初期応力逆解析し、さらに、通常の解析を行なうことにより空洞周辺のひずみ分 布を求め、地下空洞の安定性を地山の限界ひずみと比較することによって評価す るソフトウェアです。

このプログラムの実行には、以下の機器(ハードウェア)およびプログラム開発ユーティリティー(ソフトウェア)が必要となります。

シード	ウェア	
1.	PC-9801シリ-ズ本 体	
2.	高 解 像 度 カ ラ ー デ ィ ス プ レ ー (600×400ド ッ ト)	
з.	メ モ リ ー ボ ー ド 1 枚 (256Kbyte実 装)	
4.	プリンター	
5.	フロッピーディスクユニット	
ソフト	ウェア	
1.	MS - FORTRAN ($PZ = -$)	
2.	TURBO PASCAL (マイクロソフトウェアアソシ	/

- エイツ) 3. EGR98 (カノープス電子)
- 4. RAMディスクユーティリティー

また、更に以下の機器(ハードウェア)があることが望ましいと思われます。

メモリーボード1枚(256Kbyte実装)
 数値データプロセッサ(i8087)
 ハードディスクユニット
 XYープロッター
 インクジェットプリンター

2. ユーザーに供給されるソフトウェア ユーザーには、MS-DOS、及び、N-BASICでフォーマットされ た、8インチフロッピーディスク3枚が提供されます。それぞれのフロッピーデ ィスクの内容は、次のようになっています。 システムディスク(MS-DOSフォーマット) A> dir ドライブ A: のディスクにはボリュームラベルがありません ディレクトリは A:¥ COMMAND COM 17655 84-05-07 11:01 DEM01H EXE 100074 85-01-24 1:01 CONV3 COM 22377 85-01-26 22:40DBAPH EXE 100842 85-01-24 11:39 DBAPS EXE 109210 85-01-24 11:43 リスト <DIR> 85-01-24 11:45 DEM01S EXE 108970 85-01-24 11:49 7 個のファイルがあります 588800 バイトが使用可能です それぞれのファイルは以下のプログラムとなっています。 DBAPH.EXE <== DBAP/Mの実行ファイル(i8087有り) DBAPS.EXE <== DBAP/Mの実行ファイル(i8087無し) DEM01H.EXE <== 通常のデータ処理にDBAP/Mを用いる際に利用する実行ファイ ル(i8087有 り) DEMO1S.EXE <== 通常のデータ処理にDBAP/Mを用いる際に利用する実行ファイ ル(i8087無し) CONV3.COM <== グラフィックに用いるデータを作成する実行ファイル(i808 7無し) <== DBAP,CONV3,DEMO1のソースファイル</pre> DBAP<DIR> 次に、ディレクトリ[リスト]には以下のファイルがはいっています。 A>cd リスト A>dir ドライブ A: のディスクにはボリュームラベルがありません ディレクトリは A:¥リスト <DIR> 85-01-24 11:45

<DIR> 85-01-24 11:45 . . DBAP FOR 48105 85-01-24 11:30 DEM01 FUR 47900 85-01-24 0:53 41329 85-01-26 CONV3 PAS 21:19 5 個のファイルがあります 537776 バイトが使用可能です それぞれのファイルは以下のプログラムです。

DBAP.FOR <== DBAP/Mのソースファイル(MS-FORTRAN) DEM01.FOR <== 通常のデータ処理にDBAP/Mを用いる際に利用するソースファ イル (MS-FORTRAN) CONV3.PAS <== グラフィックに用いるデータを作成するソースファイル(TU RBO PASCAL)

データディスク(MS-DOSフォーマット)

B:dir

ドライブ B: のディスクにはボリュームラベルがありません ディレクトリは B:¥

DISP	DEM	248	84-03-15	21:46
FLEX	DEM	1562	84-06-25	15:21
MESH	DEM	3417	84-06-21	10:07
FILE	DAT	74	85-01-26	23:01
FLEX	W93	4268	84-06-13	0:49
MESH	W93	9341	84-06-21	14:03
DISP	₩93	140	84-06-29	16:28
	7 個の	ファイル	があります	
116531	12 バイ	トが使用	可能です	

それぞれのファイルは以下のプログラムとなっています。

DISP.DEM <== デモ用計測変位データファイル MESH.DEM <== デモ用メッシュファイル FLEX.DEM <== デモ用柔性マトリックスファイル FILE.DAT <== 通常のデータ処理を行なうときのインプットデータファイル MESH.W93 <== 実際のトンネルでのメッシュファイル DISP.W93 <== 実際のトンネルでの変位データファイル FLEX.W93 <== 実際のトンネルでの柔性マトリックスファイル

- 3 -

グラフィック用プログラム ディスク(N-BASICフォーマット)

F-TRAN.MS <== M S - D O S >> N - B A S I C ファイル変換ユーティリティー

MESH.DIS <== 8 節点メッシュ表示プログラム DISP.NEW <== ひずみデータ表示プログラム 3. プログラムの実行方法

D B A P / M を実行する方法を以下に述べます。

(1) D B A P / M システムディスクをフロッピーディスクユニットの1番に、 D B A P / M データディスクを2番に入れリセットスイッチ(本体前部左側のボ タン)を押す。

(2)A> の状態になりましたら、以下の様に入力してください。

1.数値データプロセッサがない場合 A><u>DBAPS</u> 2.数値データプロセッサがある場合 A><u>DBAPH</u> 数値データプロセッサがないときに DBAPH を実行すると次のようなエ ラーメッセージが表示され実行が中断されます。

A><u>DBAPH</u> Missing Arithmetic Processor

(3)プログラムを実行すると次のようなメッセージを表示します。

A><u>DBAPH</u>

Nodalpoint and Coordinate file-name ?

このメッセージは、DBAF/Mで用いるメッシュおよび座標データ のファイル名を入力することを意味しています。ここでは、デモとし てすでに準備されている MESH.DEM と入力します。

引き続き以下のようなメッセージが次々と表示されます。

a. Field Measurement data file-name ?
b. Flexibility Matrix data file-name ?
c. Strain data file-name [no-initial] ?
d. Strain data file-name [initial] ?
e. Is this calculation Initially (Y/N) ?
f. Choice output device "LPT1:" or "CON:" ?
e. A ぞれのメッセージについて、補足します。
a. 現場変位計測データのファイル名(入力)を入力してください。
b. 柔性マトリックスのファイル名(入出力)を入力してください。
c. 初期ひずみを加えないひずみデータのファイル名(出力)を入力してください。

- d. 初期ひずみを加えたひずみデータのファイル名(出力)を入力して ください。
- e. 今回のメッシュ及び座標による計算が初めてならば'Y'、そうでな いなら'N'を入力してください。'N'を入力すると b.の柔性マトリ ックスは入力ファイルとなり、すでに存在している必要があります。
- f. 出力装置の選択です。それぞれ、"LPT1:"は、プリンター、"CON:" は、CRTを表わします。

ここでは、デモとして次の様に入力してください。

A><u>DBAPH</u>

Nodalpoint and Coordinate file-name ?<u>B:MESH.DEM</u> Field Measurement data file-name ?<u>B:DISP.DEM</u> Flexibility Matrix data file-name ?<u>B:FLEX.DEM</u> Strain data file-name [no-initial] ?<u>B:BACKMM.DEM</u> Strain data file-name [inital] ?<u>B:BACKCC.DEM</u> Is this calculation Initially (Y/N) ?N Choice output device "LPT1:" or "CON:"?<u>CON:</u>

すると、入力の再確認を求めますので、これでよければ "Y"、入力をやり直 すなら "N"をタイプしてください。

これで、DBAP/Mの計算が実行されます。DBAP/Mを実行する と、画面には以下のようなメッセージが表示されます。なお、STOPキーを 押しても何も変化が無くなったり、何時間経っても、次の表示が現われな い時(60要素程度の場合、RAMディスク使用で、約1時間30分程度かかり ます。)は、プログラムが暴走している場合があります。暴走の原因は、 一般にメッシュデータの誤りの場合が多いためメッシュデータを再度チェ ックして計算を再開してください。なお、暴走を止めるには、リセットス イッチをおしてください。

```
INPUT
TOKAS
1
2
3
8 <== 掘削要素を除く要素数まで
SSMXMM
1
2
40 <== 掘削節点を除く全自由度数まで
RESOLVE
```

RESOLVE RESOLVE

DBAP/Mの計算が終了すると画面に以下のメッセージが表示されます。

Stop Program terminated

A>

(4)ここで、ひずみ分布をグラフィック表示するためのファイル変換プログラム CONV3.COM を実行します。

A><u>CONV3</u>

CONV3.COM を実行すると画面がクリアされ画面上に次のメッセージが表示 されます。

*** グラフィックデータ作成プログラム ver3.0 *** メッシュファイル名を入力してください :

このメッセージには、DBAP/Mで用いた8節点のメッシュファイル名を入力してください。

メッシュファイル名を入力してください : <u>MESH.DEM</u>

ここで、入力したファイル名がディスクに存在しない時は、以下のメッセージを表示し再入力となります。

MESH.DEM が見つかりません

グラフィックでは、覆工要素は表示しないので、覆工要素を読みとばし ます。よって、以下のようなメッセージが表示されます。

メッシュデータ入力中、覆工要素が 0個見つかりました。 要素数は、正しいですか?(y/n):

読み飛ばす要素数が正しいなら "Y"、そうでないなら "N"を入力してください。

メッシュデータ入力中、覆工要素が 0個見つかりました。 要素数は、正しいですか? (y/n):<u>v</u> - 7 -

"N"を入力した場合以下のメッセージが表示されます。よって、正しい数 を入力してください。

正しい覆工の要素数を入力してください。 要素数 :

次に、グラフィック表示するひずみファイルを入力するため、以下のよう なメッセージが表示されます。

ひずみファイル名を入力してください。 :

ここでは、デモとして次のように入力します。

ひずみファイル名を入力してください。 : <u>B:BACKMM.DEM</u>

データを正しく読み取ると、グラフィックで用いるメッシュの作成が自動 的に行なわれ、終了すると以下のようなメッセージが表示されます。

- Pass -1
- Pass -2
- Pass -3
- Pass -4
- Pass -5

グラフィックデータの作成が終了しました。 360 個の三角形を作成しました。

計算結果をグラフィック表示しますか?(y/n):

グラフィックによって、結果を確かめたいならば、 "y"、そうでないなら "n"を入力してください。

計算結果をグラフィック表示しますか?(y/n):y

ただし、グラフィックによって、計算結果を表示するにはegr98(カ ノープス電子)が必要となります。

グラフィック表示が終了すると、計算結果をディスクに出力するために以 下のようなメッセージが表示されます。

計算結果をファイルに出力しますか? (y/n)

ファイル出力を行なう時は"y"、そうでないなら "n"を入力してください。

"y"入力すると続いて以下のようなメッセージが表示されます。

出力ファイル名 :

ここで、ファイル出力をする時のファイル名を入力してください。

計算結果をファイルに出力しますか? (y/n) :<u>y</u> 出力ファイル名 :<u>GRAFM, DEM</u>

(5)これで、DBAP/Mシステムディスクを取り出し、DBAP/Mグラフ ィックディスクを挿入し、再び、リセットスイッチを押して下さい。する と、MS-DOS>>N-BASICファイル変換プログラム"F-TRAN.MS"が 実行され、以下の様なメッセージが出ます。

MS-DOS disk set O.K (CR)

データディスクがドライブ2にセットされていることを確認してリターン キーを入力してください。リターンキーを入力すると、次の様なMSーD OSのファイル名が表示され、左上のファイル名だけリバース(反転)で 表示されます。

DISP.DEM MESH.DEM FLEX.DEM FILE.DAT MESH.W93 DISP.W93 FLEX.W93 GRAFM.DEM

次に、キーボード右下にある矢印キーを使ってグラフィックでひずみ分布 を表示したいファイル名の所へ、リバース表示を動かしてください。そし て、リターンキーを押すと以下のようなメッセージが出ます。次の様に入 カしてください。

INPUT FILE NAME IS ?GRAEM.DEM

WRITE FILE NAME (RETURN is DEFAULT) WRITE FILE NAME = GRAFM.DEM OK(y/n) ? Y

FILE Convert Complete

ΟK

"OK"は、ファイル変換が終了したことを示します。そこで、ひずみ分布を グラフィック表示するため次の様に入力してください。

load "DISP.NEW"

グラフィックプログラムが実行すると、以下のようなメッセージが表示さ

れます。

STRAIN DISTRIBUTION

INPUT FILE'S NAME IS ?

ここで、今変換したファイル名を入力します。

INPUT FILE'S NAME ID ?GRAFM.DEM

次に、以下のようなメッセージが表示されます。

Do you have any comment about this Figure [Y/N } ?

グラフィック画面に何かコメントを表示したいならば " Y "を、そうでないな らば、 " N "を入力してください。 " N "を入力すると、次のメッセージが表示 されます。

INPUT Comment 9 letters ?

9文字以内で、コメントを入力してください。次に、グラフィックする範囲、及び表示するひずみレベル(5段階)を入力します。グラフィックする範囲は、Y座標とX座標の比が1.5である必要があります。

X(Max), X(Min), Y(Max), Y(Min): where (WX/WY) = 1.5 ?
strain level[%]
strain 1 ?
strain 2 ?
strain 3 ?
strain 4 ?
strain 5 ?

(6)ひずみ分布が表示されます。

4. 入力データの説明およびプログラムの制限事項

3.のプログラムの実行方法からわかるように、DBAP/Mを実行するためには、以下の2個のファイルを用意する必要があります。

a. メッシュ及び座標データ

b. 現場変位計測データ

次ページに、a.及びb.で使用したそれぞれのファイルのフォーマットを示します。また、DBAP/Mには、次のような制限事項があります。

節	点				300節	点	ま	で
要	素			— —	80要	素	ま	で
バ	ン	ド	幅		120ま	r		
計	測	点	数		40点	ŧ	で	

また、DBAP/Mでは3角形要素(6節点要素)が使用できます。しかし、CONV3.COMによって、グラフィックデータを自動的に作成できません。また、8節点要素においても、角の節点を交差する直線が5本以下である必要があります。6本以上では、動作は、保証できません。

 教								 _ 12	
 躘							-		
20 B(
40							•		
101 · · · · · · · · · · · · · · · · · ·	135	TLE	、ひろくとし		MA PROGRAM NO. 1. I.				
	7-9-917	災 数 名 	内容()	₩ (Ţ	記 入例 DE	〈記 明〉			

, ,	 					 									13	-
PAGE	老															
\	顓															
~	- 2	 					-									
OATE	-	- - -								U	o					
Ι	70					-				4 : D-						
	-	4					-			i Li Ç						
	60	4				-				1211-21						
ET	-					-				ţ	, .v	+		,		
SHE	20			•		-		·					Ý			
МАТ	_					-			-	- []	-	10 Ci				
FORI	0ŧ						-			X			<u>↓</u>			
PUT	-					-	4									
IN	2	, 15 , 15	d	र जिंद		<u> </u>										
	-	ين ت	щ	世际語		4										
	30	15	RT	北沙阳市												
	-	ί5	VB N	小恒]]		- <u>-</u> -										
	101	5	d	古松」い		69	-									
		۲. ک	2 Ш	認知		20										
	-	۲. ۲	× ×	萨 全歌	ħ	 91J										
		16.6-	教		Ţ	; ↓ {	્રીય ઝો					·				
l		ir	21	2	=	- <u>1</u> -1	\sim									

				INPUT FO	RMAT SH	EET DATE	/ /	PAGE
		20	30		-	60] 70	要	¥.
データ・タイプ	F10.0	F10.0	F10,6	F10.0	FI0.0			
災 数 名	GAMMA	HEIGHT	10 D	FA i	EPS			
なる	単位体現並量	土(七)	オッマンンた.	当く、我们山の17年F	B(1) (1) (1)			
11. (1). 11.	kg/cm²	C34		degree.	°/°			
-							 	
に 人 [9]				-				
<101 96>		and the first of the first of the second	┈┯╸┲╌╋╌┠╶┨╌╊┈╋╌╋╌┨╌┨					
				-				
			,					
								- 13
								•1
								-

INPUT FORMAT SHEET	DATE / / PAGE												
	201 80 備 考												
\overline{r} - $9 \cdot 9 \cdot 7^{\circ}$ $\overline{A5}$ \overline{A} $$		1											
変数名 L K1 K2 K3 K4 K5 K6 K7 K8 Pa		1											
M 容 聽着5 節1 1 112-2 112-3 12-4 112-5 112-6 112-6 112-7 112-3 4 11-5 4 112-5 4 11-5 4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5													
<説 明>													
副性 11.5×-313、獨工、井町山の 副体日、アカリロ /													
	¥1												
素の balt 10 にないます。 「13 10 にないます。	g												
	Acs												
A A A A A A A A A A A A A A A A A A A													
	FD (法 9) - 12 (法 9)												
	CLUBERT IN IN												
20) 四角形要素	b) 三氏形 要素												
	5												
,	 								 	·	 	- 15	
-------	------	-------	-----	----------------	------------	----------	-------	----------	------	---	------	------	--
PAGE	考												
~	備												
G	80	-											
DATI	70												
	-												
	60												
3T	-							•					
SHEI	20			•				12 J J 3					
RMAT	-							は 0 表					
T FOI	40							511345					
INPU		14	iFY	- <u></u>				副定 て &					
		i4	ĬFX	国)ドイ: X本(1)				51,6					
	20	F10.5	77	「座村"	Cm		00.0	国定公					
				,			6	13. EL					
	101	F10.0	××	X座柵			pl.o.	5., 12					
		i5		医表金合				国際、イン					
		.917	数名	※	للاً ال	<u>-</u>	人例	- 					
		Ŧ'-9	浆	R	1		ېر	<≣Å Å					

- 15 -

	r	·		1	,	1	 ·				<u> </u>			16 -	
PAGE		촷							19	L to					
\		顓						1.53.1	17 Y S	5 4 4					
~		08						道意							
DATE		60						Juse 化良谷 計 のように	10 111 - 1-3から	国2 magie & 0+90.12 型化正体回路 11-12					
HEET		20 S			•				S o Z	-			×		
[AT S							-								
FORM		40													
INPUT		30	F10.0	ANGLE	X車となす的	zaubap	415 . O	NOF	ANGLE	Note Note Note Note Note Note Note Note	QOQ	(36) 011 F			
		20	FI0.0	URR	到底了	Cm	0.8		いに明正	hENJ 92.	DOT JISON .	(전)- 2000.			
			1	NõE	到定該结		2.2	s f	(0 10 IEI	日へもう	行話の	その逃 (方向や			
		10	i5	NõS	王正治后		5		D, NOF	505 NG いむすほ	过速加				
			Ð.	1	国际省马				ON PI	4. No5	3か治	70.0 J	د ۲		
			F-9.917	变数名	内谷	単 位	 記 入 例		2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	* ANGLE I.	▲ 型店于<	UE JD(

B:#MESH.DEM Page 1

DEMO	PROGR	RAM I	VO.1							
20	69	. 80	0	7	4	ш.,				
2.	. 5	9(0°.0		O.,	3	3	5.0	O C	01
1	1		27	3	17	26	18	2	1.C	
2	3	27	29	25	$1\mathrm{B}$	28	19	Ц.	1.0	
3	5	29	31	7	19	SO	20	6	1 . O	
4	7	31	33	9	20	32	21	8	10	
5	Ģ	33	35	11	21	34		1 C	1.0	
6	11	35	37	13	22	36	23	1	1 . O	
7	13	37	39	15	23	38	$\mathbb{Z}4$	14	1.0	
8	15	39	25	1	24	40	17	16	1.0	
9	25	49	51	27	41	50	42	26	1.O	
10	27	51	53	29	42	52	43	28	1.0	
11	29	53	55	31	43	54	44	30	1.0	
12	31	55	57	33	44	56	45	32	1.Ö	
13	33	57	59	35	45	58	46	34	1.O	
14	35	59	61	37	46	60	47	36	1.0	
15	37	61	63	39	47	62	48	38	1.0	
16	39	63	49	25	48	64	41	40	1.0	
17	53	67	57	55	66	69	56	54	1.0	
18	67	61	59	57	68	60	58	69	1.0	
19	49	63	61	67	64	62	68	65	1.0	
20	49	67	53	51	65	66	52	៉	1.0	
1	Ô.	O	90	0.0		O	1			
2	450.	Ö	90	00.0		Ö	1			
3	900.	Ö	90	0.00		1	1			
4	900.	Ö	<u>4</u> 1	50.0		1	ō			
5	900.	Ö		0.0		1	Ō			
6	900.	Ö	41	50.O		1	ō			
7	900.	ō		00.0		1	1			
8	450.	Ô		0.00		ō	1			
Ģ	Ű.	ō		00.0		Ô	1			
10	-450.	Ö	91	00.0		Ó	1			
11	-900.	Ō		00.0		1	1			
12	-900.	õ	-4.	50.O		1	ō			
13	-900.	Ō		0.0		1	Ô			
14	-900.	Ō	43	50.O		1	Ō			
15	-900.	Ō	Ģ	50.0		1	1			
16	-450	Ō	90	00.0		ō	1			
17	О.	Ō	6	50.0		Ö	ō			
18	591.	421	5	71.4	21	Ó	Ö			
19	630	Ó		0.0		Ó	Ó			
zo	650.	Ö	···· (50.O		ं	Ō			
21	о.	Ō		50.O		Ö	Ō			
22	-450.	Ö		50.0		Ő	Ö			
23	-650.	Ō		0.0		Ō	Ó			
24	-591	421	5	91.4	21	Õ	Ö			
25	- · - · . 0 .	0	4	00.0		Ö	ō			
2A	157	073		49. SI	51	Ö	ò			
27	282	843		32.8/	43	Ō	õ			
29	т. С.А.Ф	511		53.0	73	Ô	Ö			
29	400.	<u> </u>	·fa 'i	o.o		õ	Ō			
ЗÓ	400	ō		00.0		Ō	Ő			
	400.	Ö	4. (00.0		Ö	Ö			
20	200	Ö	d. (00.0		õ	Ö			
	() ()	ō		00.0		Õ	Ő			
·*** * * * * *		•					1.41			

34	-200.0	-400 " C	ं	O (
	-400.0	-400"Č	\bigcirc	Õ
36	-400.0	-200.0	Ċ	$\langle \rangle$
27	-400.0	O " C	$\langle \rangle$	Ó
38	-369.551	153.073	Ô	0
39	-282.843	282.843	(_)	Ō
40	-153.073	369.551	С	C
41	Ο.Ο	300.O	\bigcirc	Ó
42	212.132	212.132	$^{\circ}$	ਂ
43	300.0	· • • •	(Ö
44	300.0	-300.0	\odot	$^{\circ}$
45	O " O	-300.0	O	Õ
4 <i>6</i>	-300.0	-300.0	\circ	O
47	-300.0	Ο.Ο	\circ	0
48	-212.132	212 - 132	()	\odot
49	Ο.Ο	200.0	Ó	Ö
50	75.537	184.776	Ó	0
51	141.421	141.421	Õ	Ô
52	184.776	75.537	Õ	Ó
	200.0	O " ()	0	О
54	200.0	-100.O	\circ	Ō
55	200.0	-200.0	O	O
56	100.0	-200.0	Ô	਼
57	0 . O	-200.0	਼	O
58	-100.O	-200.0	\circ	$^{\circ}$
59	-200.0	-200.0	O	O
60	-200.0	-100.0	Ö	O
61	-200.0	0 . O	Ō	\circ
62	-184.776	75.537	\odot	$^{\circ}$
63	-141.421	141,421	\circ	\circ
64	-75.537	184.776	$^{\circ}$	O
65	Ο.Ο	100.0	਼	Ō
66	100.0	Ο.Ο	0	О
67	Ο.Ο	O.O	Ö	0
68	-100.0	Ŏ " O	O	Ô
69	0.0	-100.0	0	\circ

B:#DISP.DEM Page 1

1	51	27	0.8	45.°	
22	63	39	0.4	135.0 .	
3	62	52	-0.5	0.0	
4	62	49	-1.O	33.96	
5	52	49	0,4	146.04	
6	60	<u> </u>	-0.B	\bigcirc $_{\bullet}$ \bigcirc	
7	IOOO	49	-1.0	1010.0	

5.メッシュ図及びDBAP/Mの出力例

Figure of mesh about "MESH.DEM"

•

1984-6-13 *** * * * DBAP/M ver. 2.0 (for MS-DOS) *** *** *** Direct Back Analysis Program *** *** for Micro Computer 长长开 *** *** *** DEMO PROGRAM NO.1 *** ** *** ***********

*** I/O LIST ***

Input files

file-name fc Nodalpoint and Coordinate data file of model :B:MESH.DEM 13 Displacement data file of field measurement :B:DISP.DEM 14 Flexibility [displacement] Matrix file :B:FLEX.DEM 17

---- Output files

						file-name	fc
Strain	data f	ile w	ithout	Initial	strain	: B: BACHM. DEM	18
Strain	data	file	with	Initial	strain	:B:BACCC.DEM	19
Output	device	OF.	Output	listing	file	:LPT1:	06

*** End of I/O List ***

Total Number of Element : 20 Total Number of Point 69 2 Maximum Number of Band-width : 80 Total Number of Measurement : 7 Excavated Number of Element: : 4 Excavated Number of Point 2 5 Unit-weight of mass : .2500000E+01 g/cm*3 Depth of Tunnel : .9000000E+03 cm Poisson s Ratio : .3000000E+00 Internal Fric. Angle : .3500000E+02 degree Critical Strain : .1000000E-02 %

.

							***	INPUT	GEOMETR	Y ***
NO.	К1	К2	КЗ	K4	1≤5	⊠6	K7	К8	Para	band
1	1	25	27	3	17	26	8 t	2	1.00	54
2	3	27	29	5	18	28	19	4	1.00	54
3	5	29	31	7	19	30	20	6	1.00	54
4	7	31	33	9	20	32	21	8	1.00	54
5	9	33	35	11	21	34	22	10	1.00	54
6	11	35	37	13	22	36	23	12	1.00	54
7	13	37	39	15	23	38	24	14	j. 00	54
8	15	39	25	1	24	40	17	16	1.00	80
9	25	49	51	27	41	50	42	26	1.00	54
10	27	51	53	29	42	52	43	28	1.00	54
11	29	53	55	31	43	54	44	30	1.00	54
12	31	55	57	33	44	56	45	32	1.00	54
1 3	33	57	59	35	45	58	46	34	1.00	54
14	35	59	61	37	46	60	47	36	1.00	54
15	37	61	63	39	47	62	48	38	1.00	54
16	39	63	49	25	48	54	41	40	1.00	80
17	53	67	57	55	66	67	56	54	1.00	34
18	67	61	59	57	68	60	58	67	1.00	26
19	49	63	61	67	64	62	68	65	1.00	4 Ö
20	47	67	53	51	65	66	52	50	1.00	38

Displacement Input Data

No.	Nos	Noe	Disp	- Angle
1	51	27	.8000	45.000
2	63	39	.4000	135.000
3	62	52	6000	.000
4	62	49	-1.0000	33.960
5	52	49	4000	146.040
6	5 0	54	8000	.000
7	***	49	-1.0000	1010.000

•

K - Known U - Unknown F - Fixed yy uu vv No. 900.000 U F 51 900.000 U F 52 хx уу 141.421 uu vv 141.421 КК 184.776 75.537 К К .000 U U -100.000 к К -200.000 υυ -200.000 U U -200.000 U υ -200.000 Ц U -200.000 U U -100.000 ĸ К .000 U U 75.537 к ĸ 141.421 кк 184.776 υ υ 100.000 υυ .000 υu .000 υυ .000 υ U -100.000 U U

1	.000	900.000	υ	F	51	141.421	
2	450.000	900.000	U	F	52	184.776	
3	700.000	900.000	F	F	53	200.000	
4	900.000	450,000	F	U	54	200.000	-
5	900.000	.000	F	U	55	200.000	-
6	900.000	-450.000	F	U	56	100.000	-
7	900.000	-900.000	F	F	57	.000	-
8	450.000	-900.000	U	F	58	-100.000	
9	.000	-900.000	U	F	59	-200.000	-
10	-450.000	~900.000	U	F	60	-200.000	-
11	-900.000	-900.000	F	F	61	-200.000	
12	-900.000	-450.000	F	U	62	-184.775	
13	-900.000	.000	F	U	63	-141.421	
14	-900.000	450.000	F	U	64	-75.537	
15	-900.000	900.000	F	F	65	.000	
15	-450.000	900.000	U	F	56	100.000	
17	.000	650.000	U	U	67	.000	
18	591.421	591.421	U	U	68	-100.000	
19	650.000	.000	υ	U	69	.000	_
20	650.000	-650.000	U	U			
21	.000	-650.000	υ	U			
22	-450.000	-650.000	U	U			
23	-650.000	.000	U	U			
24	-591.421	591.421	U	U			
25	.000	400.000	U	U			
26	153.073	369.551	U	ы			
27	282.843	282.843	К	К			
28	369.511	153.073	U	U			
29	400.000	.000	U	U			
20	400.000	-200.000	U	ម			
31	400.000	-400.000	U	บ			
32	200.000	-400.000	U	Ы			
33	.000	-400.000	U	U			
34	-200.000	-400.000	U	U			
35	-400.000	-400.000	ម	U			
36	-400.000	-200.000	Ч	U			
37	-400.000	.000	U	U			
38	-369.551	153.073	Ц	U			
39	-282.843	282.843	К	ĸ			
40	-153.073	369.551	U	Ц			
41	.000	300.000	U	U			
42	212.132	212.132	U	U			
43	300.000	.000	U	IJ			
44	300.000	-300.000	U	U			
45	.000	-300.000	U	U			
46	-300.000	-300.000	υ	С			
47	-300.000	.000	U	U			
48	-212.132	212.132	U	П			

200.000 K K 184.776 U U

No.

хx

1.000

75.537

49 50 Coordinate & Displacement Condition

.

.

- 25 -

*** Result of BACK ANALYSIS *** Sigma_x / E = -.2155233E-02 Sigma_y / E = -.4291745E-02 Tau _xy / E = -.9074862E-03 Result of Material Properties *** *** -.1129907E+01 kg/cm*cm Sigma_x = -.2250000E+01 kg/cm*cm[assumed] Sigma_y = Tau _xy = EE = -.4757608E+00 kg/cm*cm .5242623E+03 kg/cm*cm -.9551064E+00 kg/cm*cm Sigma_1 = Sigma_2 = -.2424801E+01 kg/cm*cm angle = -20.17 degree [Sigma_1 from X-axis] *** Result of Real Youngs Modulus *** No. ΕE 1 .1044083E+04 2 .2042189E+04 .3682823E+04 3 4 .52027885+04 .55709845+04 5 6 .5580527E+04 7 .5580573E+04 8 .5580573E+04 9 **.5590573E+04** 10 .5580573E+04 Result of Initial Strain *** *** $E \times \times _0 =$ -.0221 % $Eyy_0 =$ - 2999 % $E \times y_0 =$ -.2359 % *** Critical Shear Strain at E-P boudary *** .0654 % Eps_c = *** Result of Displacement *** No. from to Output Input .54492 1 51 27 .80000 2 .29564 63 39 .40000 3 62 52 -.60000 -.77035

49 62 -1.00000 -.98561 52 49 -.32844 -.40000 60 54 -.80000 -.71112 *** 49 -1.00000 -1.12410

4

5

6

7

.

Nordal Displacement [Absolute]

No.	uu	vv	No.	uu	vv
1	.1796853E-01	.000000E+00	51	5263326E+ 00	1068819E+01
2	8942990E-01	.0000000E+00	52	5513029E+00	8478222E+00
3	.0000000E+00	.000000E+00	53	4898639E+00	6022395E+00
4	.0000000E+00	3556400E-01	54	2369915E+00	1288850E+00
5	.0000000E+00	.1551398E-01	55	25082595-01	.3529422E+00
6	.0000000E+00	1870854E-01	56	.2265817E+00	.9414106E+00
7	.0000000E+00	.0000000E+00	57	.4565058E+00	.1297613E+01
8	7594013E-01	.0000000E+00	58	.5019710E+00	.1221283E+01
9	9543484E-02	.0000000E+00	59	.4524476E+00	.7755890E+00
10	.10512285+00	.0000000E+00	50	.4741326E+00	.5399225E+00
11	.0000000E+00	.0000000E+00	61	.3999681E+00	.1811254E+00
12	.0000000E+00	7127858E-02	62	.2190518E+00	19186185+00
13	.0000000E+00	1163880E-01	63	.4346499E-01	5895635E+00
14	.0000000E+00	4011831E-02	54	1402947E+00	7094554E+00
15	.0000000E+00	.0000000E+00			
16	.7414602E-01	.000000E+00			
17	.3729887E-02	2354879E+00			
18	1278326E+00	1023777E+00			
19	6016270E-01	1826197E-01			
20	3776419E-01	2008327E-01			
21	.7758809E-02	.2845127E+00			
22	.1076471E+00	.3908143E-01			
23	.3526355E-01	14817495-01			
24	.4387095E-01	5847290E-02			
25	6350669E-01	57498205+00			
26	2497646E+00	6105161E+00			
27	3469161E+00	4776030E+00			
28	31080392+00	2886587E+00			
29	1646214E+00	1340004E+00			
30	2605254E-02	4696763E-02			
31	2501029E-01	.3390778E-01			
32	6692532E-01	.3044425E+00			
33	.1093783E+00	.7355316E+00			
34	.2937086E+00	.5573548E+00			
35	.2424854E+00	.2378937E+00			
36	.2341393E+00	.1825215E+00			
37	.1052647E+00	.4007623E-01			
38	.2912815E-01	5405356E-01			
39	.4774490E-01	1671824E+00			
40	.5764026E-01	35563175+00			
41	1295354E+00	8035727E+00			
42	4625357E+00	7033601E+00			
43	2507092E+00	2234432E+00			
44	.1281325E-01	.7783203E-01			
45	.1849471E+00	.9630526E+00			
45	.3435050E+00	.4211382E+00			
47	.1767353E+00	.91500 5 7E-01			
48	.4079520E-01	 2693796E+00			
10	- 7/17001ELOO	11541075101			

49 +.3413921E+00 -.1124103E+01 50 -.4690806E+00 -.1195816E+01

1 [2 [3 [4 [XG 332.04, 608.59, 93.46, 164.27,	YG 447.58] 778.77] 500.93] 793.07]	Exx .00 .02 07 03	Eyy .06 .03 .15 .09	Exy .16 .03 .06 .02	E1 .117 .043 .154 .088	Elem E2 053 .010 078 034	ent no. Sg .170 .033 .233 .123	1 Vs .064 .053 .075 .075
1 [2] 3 [4]	XG 500.91, 793.04, 447.56, 778.77,	YG 93.46] 164.27] 332.06] 608.59]	E×× .07 .04 .06 .04	Eyy 04 01 01 .01	Exy .03 .00 .14 .01	E1 .072 .037 .104 .043	Elem E2 041 012 053 .004	ent no. Sg .113 .048 .156 .037	2 Vs .032 .025 .051 .049
1 [2 [3 [4 [XG 505.66, 794.34, 505.66, 794.34,	YG -378.80] -626.47] -106.86] -167.86]	Exx .01 .01 .01 .01	Eyy .00 .00 03 .01	Exy .00 .01 03 .00	E1 .006 .011 .015 .009	Elen E2 002 001 034 .005	ent no. Sg .007 .012 .050 .003	3 Vs .004 .011 019 .015
1 [2 [3 [4 [XG 104.86, 167.86, 378.80, 625.47,	YG -505.66] -794.34] -505.66] -794.34]	Exx *06 02 .03 .02	Eyy 11 .07 01 .00	Exy 12 03 04 01	E1 . .130 .071 .037 .023	Elem E2 082 027 021 005	ent no. Sg .212 .098 .058 .027	4 Vs .048 .044 .014 .013
1 [2 [3 [4 [XG -398.80, -626.47, -106.86, -167.86,	YG -505.66] -794.34] -505.66] -794.34]	Exx .03 .03 08 04	Eyy .03 .03 .15 .10	Exy .13 .03 .11 .03	E1 .098 .043 .174 .097	Elem E2 036 .010 091 041	ent no. Sg .134 .032 .267 .138	5 Vs .042 .053 .085 .055
1 E 2 E 3 E 4 E	XG -505.66, -794.34, -505.66, -794.34,	YG -106.86] -167.86] -398.80] -626.47]	Exx .05 .03 .06 .04	Eyy 04 01 .00	Exy .01 .00 .03 .01	E1 .052 .029 .078 .045	E1 en E2 040 005 030 001	ent no. 5g .072 .033 .103 .046	6 Vs .012 .024 .048 .045
1 E 2 E 3 E 4 E	×G -447.58, -778.77, -500.93, -793.07,	YG 332.06] 608.59] 93.46] 164.27]	Exx .01 .01 .01 .01	Eyy 01 .00 02 .01	Exy 04 .01 02 .00	E1 .022 .015 .015 .008	Elem E2 020 .002 021 .005	ent no. Sg .042 .013 .036 .002	7 Vs .001 .017 006 .013
							Elem	ent no.	8

*** Strain Distribution [%] (No Initial Strain considered) ***

*** Strain Distribution [1] (No Initial Strain considered) ***

								- 1		-
		XG	YG	Fxx	Fvv	Euv	F1	E160 E2	sent no. Se	7 Ve
1	٢	137.28.	197.66]	03	.21	.47	.357	172	.529	. 185
2	Ε	206.31,	291.873	01	.12	.35	.240	130	.369	. 110
3	2	40.38,	238.631	16	.35	.20	.370	175	.544	.195
4	C	60.26,	352.361	14	.23	.09	.234	145	.379	. 089
		YO	20	-	-	-	-	Elen	nent no.1	.0
	r		YG 40 701	EXX	=yy	Exy	El	E2	Sg	Vs
-	ь г	200.02, 757 74	40.383	. ZO 10	20	 	. 271	280	.001	.030
4	r	107 45	170.201	-10	12	. UZ	.100	- 700	- 242 - 242	021
4	r	291.85.	204.311	. 11	- 02	.J. 79	199	- 109	- 311	.110
•	-	2/11/00,	2000013	• • • •		•	• • • / /	-107		.070
								Elen	ent no.1	1
		XG	YG	Exx	Еуу	Exy	E1	E2	Sg	Vs
1	£	242.26,	-191.07]	.02	25	44	.144	374	.518	230
2	2	357.73,	-282.14]	.00	02	01	005	023	.028	019
3	E	242.26,	-51.20]	.19	26	.o3	.192	260	.453	048
4	Ę	357.73,	-75.60]	.05	07	05	.057	073	.130	015
								Flea	ent no.:	ç
		XG	YG	Ехх	Evv	Exv	E1	E2	So So	Vs
1	٢	51.20,	-242.26]	15	33	09	.331	150	.481	.181
2	٢	75.60,	-357.73]	09	.20	17	.219	110	.329	.107
3	Ľ	191.07,	-242.26]	12	.01	49	.195	306	.501	112
4	Γ	282.14,	-357.731	.02	02	09	.051	052	.103	002
								Flem	ant no t	र
		XG	YG	Ехх	Êyy	Exy	E1	Elem E2	ent no.1 Sq	3 Ve
1	E	XG -191.07,	YG -242.263	Exx .02	Eyy .10	Exy .48	E1 .307	Elem E2 181	ent no.1 Sg .487	3 V⊆ .126
1 2	C C	XG -191.07, -282.14,	YG -242.26] -357.73]	Exx .02 .02	Eyy .10 .05	Exy .48 .26	E1 .307 .170	Elem E2 181 094	ent no.1 Sg .487 .264	3 V≘ .126 .075
123	C C C	XG -191.07, -282.14, -51.20,	YG -242.26] -357.73] -242.26]	Exx .02 .02 10	Eyy .10 .06 .37	Exy .48 .26 .31	E1 .307 .170 .415	Elem E2 181 094 144	ent no.1 Sg .487 .264 .539	3 Vs .126 .075 .272
1 2 3 4	C C C	XG -191.07, -282.14, -51.20, -75.60,	YG -242.26] -357.73] -242.26] -357.73]	Exx .02 .02 10 11	Eyy .10 .04 .37 .23	Exy .48 .26 .31 .15	E1 .307 .170 .415 .250	Elem E2 181 094 144 130	ent no.1 Sg .487 .264 .539 .380	3 Vs .126 .075 .272 .120
1 2 3 4	C C C	XG -191.07, -282.14, -51.20, -75.60,	YG -242.263 -357.733 -242.263 -357.733	Exx .02 10 11	Eyy .10 .06 .37 .23	Exy .48 .26 .31 .15	E1 .307 .170 .415 .250	Elem E2 181 094 144 130 Elem	ent no.1 Sg .487 .264 .539 .330	3 Vs .126 .075 .272 .120
1 2 3 4	C C C	XG -191.07, -282.14, -51.20, -75.60, XG	YG -242.26] -357.73] -242.26] -357.73] YG	Exx .02 10 11 Exx	Eyy .10 .04 .37 .23	Exy .48 .26 .31 .15 Exy	E1 .307 .170 .415 .250 E1	Elem E2 181 094 144 130 Elem E2	ent no.1 Sg .487 .264 .559 .330 ent no.1 Sq	3 Vs .126 .075 .272 .120 4 Vs
1234	C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20]	Exx .02 10 11 Exx .22	Eyy .10 .06 .37 .23 Eyy 25	Exy .48 .26 .31 .15 Exy .11	E1 .307 .170 .415 .250 E1 .231	Elem E2 181 094 144 130 E1em E2 254	ent no.1 Sg .264 .559 .330 ent no.1 Sg .485	3 Vs .126 .075 .272 .120 4 Vs 023
1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73,	YG -242.263 -357.733 -242.263 -357.733 YG -51.203 -75.603	Exx .02 10 11 Exx .22 .08	Eyy .10 .06 .37 .23 Eyy 25 10	Exy .48 .26 .31 .15 Exy .11 .02	E1 .307 .170 .415 .250 E1 .231 .082	Elem E2 181 094 144 130 Elem E2 254 097	ent no.1 5g .264 .559 .380 ent no.1 5g .485 .180	3 Vs .075 .272 .120 4 Vs 023 015
1234 123		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26,	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073	Exx .02 10 11 Exx .22 .08 .13	Eyy .10 .06 .37 .23 Eyy 25 10 +.14	Exy .48 .26 .31 .15 Exy .11 .02 .42	E1 .307 .170 .415 .250 E1 .231 .082 .249	Elem E2 181 094 144 130 Elem E2 254 097 253	ent no.1 5g .264 .539 .330 ent no.1 5g .485 .180 .502	3 Vs .075 .272 .120 4 Vs 023 015 005
1234 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73,	YG -242.26] -357.73] -242.26] -357.73] -357.73] YG -51.20] -75.60] -191.07] -282.14]	Exx .02 10 11 Exx .22 .08 .13 .10	Eyy .10 .04 .37 .23 Eyy 25 10 14 04	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137	Elem E2 181 094 144 130 Elem E2 254 097 253 077	ent no.1 Sg .487 .264 .559 .330 went nc.1 Sg .425 .120 .502 .214	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059
1234 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73,	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143	Exx .02 10 11 Exx .22 .08 .13 .10	Eyy .10 .06 .37 .23 Eyy 25 10 14 04	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em	ent no.1 5g .264 .559 .330 ent no.1 5g .485 .130 .502 .214	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059
1234 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, XG	YG -242.263 -357.731 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx	Eyy .10 .06 .37 .23 Eyy 25 10 14 04 Eyy	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em	ent no.1 5g .264 .539 .330 ent no.1 5g .485 .180 .502 .214 ent no.1	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs
1234 1234 1		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143 YG 139.283	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx 01	Eyy .10 .06 .37 .23 Eyy 25 10 14 04 Eyy 11	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321	ent no.1 Sg .264 .539 .330 ent no.1 Sg .485 .180 .502 .214 ent no.1 Sg .521	3 Vs .126 .075 .272 .120 4 Vs 023 015 059 5 Vs 122
1234 1234 12		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.263 -357.733 -242.263 -357.733 -357.733 -357.733 -75.603 -75.603 -191.073 -282.143 YG 139.283 206.313	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx 01 .02	Eyy .10 .06 .37 .23 Eyy 25 10 14 04 Eyy 11 04	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051	Elem E2 181 094 144 130 Elem E2 254 097 253 077 Elem E2 321 075	ent no.1 Sg .487 .264 .539 .330 ent no.1 Sg .485 .180 .502 .214 ent no.1 Sg .521 .126	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024
1254 1254 125		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.36, -357.73, -242.36, -357.73, -242.26, -357.73, -377.73,	YG -242.263 -357.733 -242.263 -357.733 -357.733 -357.733 -75.603 -75.603 -191.073 -282.143 YG 137.283 206.311 40.383	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx 01 .02 .17	Eyy .10 .04 .37 .23 Eyy 25 10 14 04 Eyy 11 04 28	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11 22	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199	Elem E2 181 094 144 130 Elem E2 254 097 253 077 Elem E2 321 075 308	ent no.1 Sg .487 .264 .559 .330 ent nc.1 Sg .485 .120 .502 .214 ment nc.1 Sg .521 .126 .507	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 109
1234 1234 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -252.36,	YG -242.26] -357.73] -242.26] -357.73] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 206.31] 40.38] 60.26]	Exx .02 .02 10 11 Exx .08 .13 .10 Exx .01 .02 .17 .05	Eyy .10 .04 .37 .23 Eyy 25 10 +.14 04 Eyy 11 04 Eyy 11 04 Eyy	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11 22 06	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199 .056	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 075 308 086	ent no.1 Sg .487 .264 .559 .380 ment no.1 Sg .425 .180 .502 .214 ment no.1 Sg .521 .126 .507 .142	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 109 030
1234 1284 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36, -352.36,	YG -242.263 -357.733 -242.263 -357.733 -357.733 -357.733 -75.603 -191.073 -282.143 YG 139.283 206.313 40.383 60.263	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx 01 .02 .17 .05	Eyy .10 .06 .37 .23 Eyy 25 10 14 04 Eyy 11 04 28 08	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11 22 06	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .137 E1 .199 .051 .199 .056	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 075 308 086	ent no.1 Sg .264 .559 .380 ent no.1 Sg .485 .180 .502 .214 ment no.1 Sg .521 .126 .507 .142 ment no.1	3 Vs .126 .075 .272 .120 4 Vs 023 023 015 059 5 Vs 122 024 109 030 4
1234 1234 1234		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -357.73, -357.73, -357.73, -357.73, -357.73, -357.73, -357.73, -357.73, -357.36, -357.73, -357.36,	YG -242.263 -357.733 -242.263 -357.733 -357.733 -357.733 -75.603 -75.603 -191.073 -282.143 YG 139.283 206.313 40.383 60.263	Exx .02 .02 10 11 Exx .22 .08 .13 .10 Exx 01 .02 .17 .05 Exx	Eyy .10 .04 .37 .23 Eyy 25 10 +.14 04 Eyy 11 04 28 08 Eyy	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11 22 06 Exy	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199 .054 E1	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 308 086 E1em E2	ent no.1 Sg .487 .264 .559 .330 ment no.1 Sg .425 .120 .502 .214 ment no.1 Sg .521 .126 .507 .142 ment no.1	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 109 030 6 Vs
1234 1234 1234 1		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -242.36, -357.73, -243.36, -357.73, -352.36, -355.36,	YG -242.26] -357.73] -242.26] -357.73] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 205.31] 40.38] 60.26] YG 238.63]	Exx .02 .02 10 11 Exx .08 .13 .10 Exx 01 .02 .17 .05 Exx 20	Eyy .10 .04 .37 .23 Eyy 25 10 +.14 04 Eyy 11 04 28 08 Eyy .31	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 22 06 Exy 14	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199 .056 E1 .314	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 075 308 086 E1em E2 211	ent no.1 Sg .487 .264 .559 .390 ment nc.1 Sg .425 .120 .502 .214 ment nc.1 Sg .521 .126 .507 .142 ment nc.1 Sg .525	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 024 024 020 6 Vs 030
1234 1284 1284 12		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.36, -291.87, -291.87, -291.87, -352.36, -352.36, -352.36,	YG -242.26] -357.73] -242.26] -357.73] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 205.31] 40.38] 60.26] YG 238.63] 352.36]	Exx .02 .02 10 11 Exx .08 .13 .10 Exx 01 .02 .17 .05 Exx 20 10	Eyy .10 .04 .37 .23 Eyy 25 10 +.14 04 Eyy 11 04 28 08 Eyy .31 .18	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 22 06 Exy 14 16	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199 .056 E1 .314 .203	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 075 308 086 E1em E2 211 116	ent no.1 Sg .487 .264 .559 .330 ment nc.1 Sg .425 .120 .502 .214 ment nc.1 Sg .521 .125 .507 .142 ment nc.1 Sg .525 .319	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 109 030 6 Vs .104 .088
1ND4 1ND4 1ND4 1ND		XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36, -352.36, -357.73, -352.36, -352.36, -352.36, -352.36, -352.36, -352.36, -352.26, -357.28, -352.36, -352.26, -357.28, -352.36, -352.26, -357.28, -352.36, -352.28,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 205.31] 40.38] 60.26] YG 238.63] 352.36] 197.66]	Exx .02 .02 10 11 Exx .08 .13 .10 Exx 01 .02 .17 .05 Exx 20 10 13	Eyy .10 .04 .37 .23 Eyy 25 10 +.14 04 Eyy 11 04 28 08 Eyy .31 .18 .10	Exy .48 .26 .31 .15 Exy .11 .02 .42 .17 Exy 51 11 22 06 Exy 14 49	E1 .307 .170 .415 .250 E1 .231 .082 .249 .137 E1 .199 .051 .199 .054 E1 .314 .203 .255	Elem E2 181 094 144 130 E1em E2 254 097 253 077 E1em E2 321 075 308 086 E1em E2 211 116 290	ent no.1 Sg .487 .264 .559 .330 ment nc.1 Sg .425 .120 .502 .214 ment nc.1 Sg .521 .125 .507 .142 ment nc.1 Sg .525 .319 .546	3 Vs .126 .075 .272 .120 4 Vs 023 015 005 .059 5 Vs 122 024 024 024 024 024 025 .059 5 Vs 025 .059 5 Vs 023 .059 5 Vs 023 .059 5 Vs 024 024 024 024 024 024 024 .109 030 5 .030 5 .030 5 .030 5 .030 5 .0300 .030 .0300 .030 .0300 .0300 .0300 .0300 .030

*** Strain Distribution [%] (Initial Strain considered) ***

	YG	Ve	Evy	Exer	Ever	E 1	Elei	ment no.	1
1 E	332.06.	447.581	02	24	08	015	243		VS 058
2 E	608.59,	778.773	.00	- 27	21	.033	301	.334	269
3 [93.46,	500.93]	10	15	17	032	214	.182	246
4 C	164.27,	793.071	06	21	22	001	267	. 267	268
							Ele	ment no.	2
	XG	YG	Exx	Eyy	Exy	E1	E2	Sa	- Vs
1 E	500.91,	93.463	.05	34	21	.075	365	. 441	290
2 E	793.06,	164.273	.01	31	23	.051	349	.400	297
3 [447.56,	332.06]	.04	31	10	.048	319	.367	271
4 E	778.77,	608.591	.02	29	22	.055	328	.383	273
							Eler	ment no.	3
	XG	YG	Exx	Еуу	Exy	E1	E2	Sg	Vs
1 C	505.66,	-398.80]	02	30	24	.025	344	.371	318
2 Ε	794.34,	-626.471	01	30	23	.028	339	.368	311
3 E	505.66,	-106.86]	01	33	27	.037	378	.414	341
4 C	794.34,	-167.86]	01	29	24	.030	337	.367	307
				3			Eler	ment no.	4
	XG	YG	Exx	Еуу	Ежу	E1	E2	Sg	Vs
1 E	106.86,	-505.66]	09	19	35	.046	320	.365	274
2 [167.85,	-794.343	05	23	27	.023	301	.324	278
ڪ ل	398.80,	-505.66]	.01	31	28	.058	364	.422	305
4 L	625.47,	-794.343	.00	30	25	.043	347	.390	- .304
	·		_	_	_		Elen	ment no.	5
	×6 700 00	YG	Exx	Eyy	Exy	E1	E2	Sg	Vs
1 1	-393.80,	-505.66]	.01	2/	10	.015	275	.290	260
2 L 7 F	-026.47,	-505 441	- 10	- 10	20	- 057 - 055	- 100	.040 197	239
4 r	-167.86	-794 341	- 04	- 20	- 21	000	- 759	-14/	207
	10/100,	77 4 80442	•	• 414	- <u>-</u> 1	000		رال شد ه	200
	YO	VE	_		-		Eler	ment no.	6
з Г	-505 44	-104 943	X 	= 74	EXY - 37	E1 047	E2 _ 777	>g 475	VS - 710
2 5	-794 34	-147 841	.03	- 30	- 24	.082	- 373	- 400 701	- 700
ΞĒ	-505.66.	-398,801	.04	31	- 15	.051	375	.071	276
4 E	-794.34,	-626.471	.02	30	22	.057	334	.391	277
							Flag	ent na	7
	XG	YG	Exx	Evv	Ésv	E1	E7	5a Sa	V=
1 E	-447.58.	332.063	01	-,31	27	.042	362	.404	321
2 C	-778.77,	608.571	01	30	23	.031	336	.367	305
3 E	-50.93,	93.463	01	32	26	.036	365	.401	328
4 C	-793.07,	164.27]	01	29	24	.029	338	.367	-:309
							Elen	ent no.	8
	XG	YG	Ехх	Еуу	Exy	E1	E2	Sg	Vs
1 E	-93.46,	500.931	08	20	32	.033	3i1	.344	278
2 [-164.27,	793.071	04	24	26	.022	299	.321	277
S E	-332.06,	447.581	01	30	30	.055	360	.415	305
4 [-608.59,	778.771	.00	30	24	.041	341	.382	300

							Elem	ent no.	9
	XG	YG	Exx	Eyy	Еху	E1	E2	Sg	Vs
1 [139.28.	197.661	05	~.09	. 24	.051	188	.240	137
2 1	204 31	791 871	- 03	- 19	11	- 011	- 201	190	- 010
7 1	. 200.01,	070 471	- 10		- 04	.011	- 170	• ± / ♥	
ပ ။ ၈၈၈	. 40.38,	200.001	10	.00	04	.033	- 1/7	کن که ه	-12/
41	. 60.26,	352.361	15	07	14	033	200	.168	200
							Eleme	ent no.1	0
	XG	YG	Exx	Eyy	Exy	Ē1	E2	Sg	Vs .
1 [238.62.	40.383	.20	50	.12	.207	500	.709	292
2 1	352 34	60 261	08	- 47	- 71	000	- 447	5.4.1	- 343
2.0	107 45	170 001	.07	- 70			- 704	• याजा म याजान	- 010
			.07		• ~ /	• 1 1 A			
4 L	271.80,	205.011	.08	02	.05	.085	518	.404	- .201
							Eleme	ent no.1	1
	XG	YG	Exx	Eyy	Exy	E1	E2	Sq	Vs
1 0	242.26.	-191.073	. 00	- 55	-, 68	.159	711	.871	E52
2 6	357 73	-282 143	- 02	- 32	- 74	025	- 345	391	- 340
	-207.70	-5: 001	• •		+	10/	- 574		
С П	242.20,		• • /		41	.104		./28	370
4 L	357.73,	-/5.601	.03	3/	29	.0/5	414	.490	33/
							Eleme	nt no.1	2
	XG	YG	Exx	Eyy	Exy	E1	E2	Sq	Vs
1 E	51.20.	-242.26]	17	.03	33	.120	261	.381	141
- 	75 60	-357 731	- 11	- 10	- 40	095	- 308	404	- 213
	101 07	-242 241	- 10	- 70	- 72	155	- 504	-770 770	- 430
0 L A F	171.07	~242.201	14	7	/2	• • • • •		./00	
4 L	202.14,	-307.731	.00	<i></i> 22		.066	72	.460	T.UZ4
							Eleme	ent no.13	3
	XG	YG	Ехх	Еуу	Еху	E1	Eleme E2	ent no.13 Sg	3 Vs
1 [XG -191.07,	YG -242.26]	Exx .00	Eyy 20	Exy .24	E1 -060	Eleme E2 256	ent no.13 Sg .316	3 Vs 196
1 [2 [XG -191.07, -282.14.	YG -242.26] -357.73]	Exx .00 .00	Eyy 20 24	Exy .24 .03	E1 _060 001	Eleme E2 256 245	ent no.13 Sg .316 .244	3 Vs 196 247
1 [2 [3 [XG -191.07, -282.14, -51.20	YG -242.26] -357.73] -242.26]	Exx .00 .00	Eyy 20 24	Exy .24 .03	E1 .060 001	Eleme E2 256 245 125	ent no.13 Sg .316 .244 .200	3 Vs 194 247 050
1 [2 [3 [4 [XG -191.07, -282.14, -51.20, -75.40	YG -242.26] -357.73] -242.26] -757.73]	Exx .00 .00 12 - 13	Eyy 20 24 .07	Exy .24 .03 .08	E1 _060 001 _075 _049	Eleme E2 256 245 125 - 153	ent no.13 Sg .316 .244 .200 104	3 Vs 194 247 050 - 202
1 [2 [3 [4 [XG -191.07, -282.14, -51.20, -75.60,	YG -242.26] -357.73] -242.26] -357.73]	Exx .00 .00 12 13	Eyy 20 24 .07 07	E×y .24 .03 .08 08	E1 .060 001 .075 049	Eleme E2 256 245 125 153	ent no.13 Sg .316 .244 .200 .104	3 Vs 196 247 050 202
1 [2 [3 [4 [XG -191.07, -282.14, -51.20, -75.60,	YG -242.26] -357.73] -242.26] -357.73]	Exx .00 12 13	Eyy 20 24 .07 07	Exy .24 .03 .08 08	E1 .060 001 .075 049	Eleme E2 256 245 125 153 Eleme	ent no.13 Sg .316 .244 .200 .104	3 Vs 196 247 050 202 4
1 [2 [3 [4 [XG -191.07, -282.14, -51.20, -75.60, XG	YG -242.26] -357.73] -242.26] -357.73] YG	Exx .00 12 13 Exx	Eyy 20 24 .07 07 Eyy	Exy .24 .03 .08 08 Exy	E1 060 001 075 049 E1	Eleme E2 256 245 125 153 Eleme E2	ent no.13 Sg .316 .244 .200 .104 ent no.14	3 Vs 196 247 050 202 4 Vs
1 C 2 C 3 C 4 C 1 C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20]	Exx .00 12 13 Exx .20	Eyy 20 24 .07 07 Eyy 55	Exy .24 .03 .08 08 Exy 12	E1 .060 001 .075 049 E1 .208	Eleme E2 256 245 125 153 Eleme E2 552	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760	3 Vs 196 247 050 202 4 Vs 345
1 C 2 C 3 C 4 C 1 C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73.	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60]	Exx .00 12 13 Exx .20 .06	Eyy 20 24 .07 07 Eyy 55 40	Exy .24 .03 .08 08 Exy 12 22	E1 .040 001 .075 049 E1 .208 .085	Eleme E2 256 245 125 153 Eleme E2 552 422	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .507	3 Vs 196 247 050 202 4 Vs 345 337
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26.	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073	Exx .00 12 13 Exx .20 .06 .11	Eyy 20 24 .07 07 Eyy 55 40	Exy .24 .03 .08 08 Exy 12 22 .19	E1 .060 001 .075 049 E1 .208 .085 .126	Eleme E2 256 245 125 153 Eleme E2 552 422 453	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .507 .579	3 Vs 196 247 050 202 4 Vs 345 337 327
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73.	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.141	Exx .00 .00 12 13 Exx .20 .06 .11	Eyy 20 24 .07 07 Eyy 55 40 44 34	Exy .24 .03 .08 08 Exy 12 22 .19 07	E1 .060 001 .075 049 E1 .208 .085 .126 .076	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .507 .579 .414	3 Vs 196 247 050 202 4 Vs 345 337 327 327
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14]	Exx .00 12 13 Exx .20 .06 .11 .07	Eyy 20 24 .07 07 Eyy 55 40 44 34	Exy .24 .03 .08 08 Exy 12 22 .19 07	E1 .060 001 .075 049 E1 .208 .085 .126 .076	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .507 .579 .414	3 Vs 196 247 050 202 4 Vs 345 337 327 263
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73,	YG -242.263 -357.731 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143	Exx .00 12 13 Exx .20 .06 .11 .07	Eyy 20 24 .07 07 Eyy 55 40 44 34	Exy .24 .03 .08 08 Exy 12 22 .19 07	E1 060 075 049 E1 208 085 126 076	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .507 .579 .414 ent no.13	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, XG	YG -242.263 -357.733 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143 YG	Exx .00 12 13 Exx .20 .06 .11 .07 Exx	Eyy 20 24 .07 07 Eyy 55 40 44 34	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .579 .414 ent no.13 Sg	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5 Vs
1 C 2 C 3 4 C 1 C 2 C 3 4 C 1 C 2 C 1 C 1 C 1 C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.263 -357.731 -242.263 -357.733 -357.733 YG -51.203 -75.603 -191.073 -282.143 YG 139.283	Exx .00 12 13 Exx .20 .06 .11 .07 Exx 03	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2 641	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .579 .414 ent no.13 Sg .837	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5 Vs 444
1 C 2 C 3 4 C 1 C 2 C 4 C 1 C 2 C 2 C 4 C 1 C 2 C 2 C 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 206.31]	Exx .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75 34	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2 641 416	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .579 .414 ent no.13 Sg .837 .486	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5 Vs 444 346
1 C C C C C C C C C C C C C C C C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 206.31] 40.38]	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 34 Eyy 34	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75 34 46	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070 .217	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338 Eleme E2 641 648	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .579 .414 ent no.13 Sg .837 .486 .365	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5 Vs 444 346 345 344 344 346 345
1 C C C C C C C C C C C C C C C C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -252.36,	YG -242.263 -357.731 -242.263 -357.731 -357.731 YG -51.203 -75.603 -191.073 -282.143 YG 139.283 206.313 40.381 60.263	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34 38	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75 34 30	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070 .217 .075	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2 641 416 648 428	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .579 .414 ent no. 13 Sg .837 .486 .365 .503	3 Vs 196 247 050 202 4 Vs 345 337 327 263 5 Vs 444 346 346 3421 352
1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 C 1 C 2	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -238.63, -352.36,	YG -242.263 -357.731 -242.263 -357.733 -357.733 YG -51.203 -75.603 -75.603 -191.073 -282.143 YG 139.283 206.313 40.383 60.263	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34 58 38	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75 34 30	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070 .217 .075	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2 641 416 648 428	ent no.13 Sg .316 .244 .200 .104 ent no.14 Sg .760 .579 .414 ent no.13 Sg .837 .486 .365 .503	3 196 247 050 202 4 Vs 345 327 263 5 Vs 345 327 345 327 345 327 345 327 327 344 344 344 344 344 352
1 C 2 C 3 C 1 C 2 C 3 C 1 C 2	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73, -242.26, -357.73,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 206.31] 40.38] 60.26]	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03 Exx	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 34 Eyy 38 Eyy	Exy .24 .03 .08 08 Exy 12 22 .19 07 Exy 75 34 30	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070 .217 .075 E1	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338 Eleme E2 641 648 648 428 Eleme	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .507 .579 .414 ent no. 13 Sg .837 .486 .365 .503 ent no. 14	3 Vs 196 247 050 202 4 Vs 345 327 263 5 Ys 345 327 327 327 327 327 327 327 327 327 327 327 327 327 327 327 352 6 0 0 0
1 C C C C C C C C C C C C C C C C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36, -352.36, -357.73,	YG -242.26] -357.73] -242.26] -357.73] YG -51.20] -75.60] -191.07] -282.14] YG 139.28] 206.31] 40.38] 60.26] YG	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03 Exx	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34 58 38 Eyy	Exy .24 .03 .08 08 Exy 12 .19 07 Exy 75 34 30 Exy 30	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .070 .217 .075 E1	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338 Eleme E2 641 416 648 428 Eleme E2 Eleme	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .579 .414 ent no. 13 Sg .837 .486 .365 .503 ent no. 14 Sg .503	3 Vs 196 247 050 202 4 Vs 345 327 263 5 Vs 345 327 344 342 352 6 Vs
1 C C C C C C C C C C C C C C C C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36,	YG -242.263 -357.731 -242.263 -357.731 -257.731 -75.603 -75.603 -191.073 -282.143 -191.073 -282.143 -191.073 -282.143 -282.143 -282.143 -282.143 -282.143 -282.143	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03 Exx 22	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34 Eyy 38 Eyy .01	Exy 24 03 08 08 Exy 12 22 .19 07 Exy 75 34 30 Exy 30 Exy 37	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .075 E1 .197 .075 E1 .197 .075	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338 Eleme E2 641 416 648 648 428 Eleme E1eme	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .579 .414 ent no. 13 Sg .837 .486 .365 .503 ent no. 16 Sg .700 .579 .439	3 196 247 050 202 4 Ys 345 327 263 5 Ys 444 344 344 344 344 344 352 6 75 75 9
1 C C C C C C C C C C C C C C C C C C C	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36, -4038, -40.26, -40	YG -242.263 -357.731 -242.263 -357.731 -257.731 -75.603 -75.603 -191.073 -282.143 -282.143 YG 139.283 206.313 40.383 60.263 YG 238.633 352.363	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03 Exx 22 12	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 58 38 Eyy .01 12	Exy .24 .03 .08 08 Exy 12 .19 07 Exy 75 34 30 Exy 37 37 37	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .075 E1 .197 .075 E1 .197 .075 E1	Eleme E2 256 245 125 153 Eleme E2 552 422 453 338 Eleme E2 641 416 648 648 648 648 648 528 313	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .579 .414 ent no. 13 Sg .837 .486 .365 .503 ent no. 16 Sg .439 .372	3 196 247 050 202 4 Vs 345 327 263 5 Vs 444 344 344 344 344 344 344 344 344 344 352 6 75 <
	XG -191.07, -282.14, -51.20, -75.60, XG -242.26, -357.73, -238.63, -352.36, -352.36, -352.36, -352.36, -352.36, -352.36, -352.36, -352.36, -352.36, -352.26, -357.26,	YG -242.263 -357.731 -242.263 -357.733 -357.733 -357.733 -75.603 -75.603 -191.073 -282.143 -191.073 -282.143 -197.283 206.313 40.383 60.263 YG 238.633 352.363 197.663	Exx .00 .00 12 13 Exx .20 .06 .11 .07 Exx 03 .00 .15 .03 Exx 22 12 12 12	Eyy 20 24 .07 07 Eyy 55 40 44 34 Eyy 41 34 Eyy 38 Eyy .01 12 20	Exy .24 .03 .08 08 Exy 12 .12 .22 .19 07 Exy 34 30 Exy 37 39 73	E1 .060 001 .075 049 E1 .208 .085 .126 .076 E1 .197 .075 E1 .197 .075 E1 .197 .075 E1 .197 .075	Eleme E2 256 245 125 153 Eleme E2 552 422 423 338 Eleme E2 641 416 648 428 Eleme E2 328 313 543	ent no. 13 Sg .316 .244 .200 .104 ent no. 14 Sg .760 .579 .414 ent no. 13 Sg .837 .486 .365 .503 ent no. 14 Sg .392 .731	3 196 247 050 202 4 Vs 345 327 327 345 327 345 345 327 345 327 352 5 Vs 344 352 5 Vs 352 6 Vs 218 354 354

*** Strain Distribution [%] (Initial Strain considered) ***