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0. INTRODUGCTION.

0.1. Background

This paper examines construction of the theory of various
éffective fuzzy sets.

The notion of fuzzy sets was introduced to represent inexact
or vague concepts. .Similarly, the theory of probability was
constructed to analyze uncertain phenomena. In this sense, fuzzy
theory is related to the theory of probability. However, there

~is a great difference between them. Probability theory can be
thought of as being concerned with quantity and fuzzy theory with
quality. On one hand, probability theory is a branch of analy-
sis. On the other hand, fuzzy set theory can be interpreted as
a branch of axioﬁatic set theory. Scott and Solovay have used a
somewhat similar construction "Boolean-valued sets", to obtain a
proof of Cohen's famous result, that the Continuum Hypothesis is
independent of the rest of formalized Zermelo-Fraenkel Set Theory
(see [38] ete).

Now, before giving the aim and standpoint for this
investigation, the definition of fuzzy sets will be introduced.

Let X be a non-empty set (a usual set of objects) whose
generic elements are denoted by x. Membership of A; a classical
subset of X, is often viewed as a characteristic function from X

to (0,1} such that
1 if and only if x €A
A(x) =

0 if and only if x¢€A.
{0,171} is called a truth value set. If the truth value set is
allowed to be the real unit interval [0,1], A is called a fuzzy

set (Zadeh [44]). 1In this paper, (0,1} is denoted by 2 and [0,1]



by I. This fuzzy set is called au I-fuzzy set.
Let L be a partially ordered set with order relation <.

More general fuzzy sets can be define using the set L.

Definition (Goguen [10]). An L-fuzzy subset of X is a
function from X to L. X is called the carrier (or universe), and

L is called the truth value set.

In order to be able to extend the concept of set operators
('union' and 'intersection'), a lattice should be adopted for the
truth value set. Goguen adopted a clx;monoid, but many
mathematicians adopt a completely distributive lattice with
(order reversing) involution as the truth value set, with
'union' and 'intersection' on the same level.

Zadeh and many engineers have proposed various set-like
operations for application to engineering problems such as
pattern recognition, optimization, decision making, fuzzy
algorithms and systems theory. However, most of their works used
I-fuzzy sets. The unit interval I has frequently been used in
various areas of mathematics, but it is not the best fér the
truth value set of fuzzy theory. I is a subset of R (the family
of real numbers). R represents the intuitive concept of
"continuity". The methods of construction used by Cantor and
Dedekind are wellvknown. After 2all, R is constructed by
classifying, by some equivalence relation, objects with
uncountable cardinality. It is not necessary for engineers to use -
concepts such as truth value.sets. On the contrary, very complex
truth value 'sets are difficult for engineers and non-

mathematicians to use. For practicality, fuzzy sets should be



constructed that are both suitable for various applications and
mathematically (algebraically and topologically) easy to deal
with. The problems is if it is possible to construct such a

fuzzy theory and how it can be done.



0.2. Summary

The notation used in this thesis, is described in sections 3
and 4 of chapter O. Section 3 outlines each chapter from the
point of view of operators. Section 4 introduces the basic
concept of fuzzy topological spaces.

Chapter 1 characterizes the class of operators which are
pointwise, commutative, associative, compatible and averaging.
This class of operators coincides with the class of mode-type
operators. GConsequently, the existential problem of averaging
operators with good property can be solved.

In chapter 2, the concepts of II-fuzzy sets, II-fuzzy
topological spaces and II-fuzzy linear topologies on vector
spaces are introduced. In addition, some of the basic properties
of II-fuzzy topological vector spaces are investigated using the
notion of i-neighborhoods. Consequently, some problems in fuzzy
topological space can be solved.

Section 1 of the last chapter, describes the discovery of
subsets (denoted by IQ¢p>) lying between I and II with the
following properties:

(1) IID>IQ¢,>>I as sublattice;

(2) there are suitable easy equivalence relations R4 and Ry

such that II/R1 is lattice isomorphic to IQ<m> and
IQ¢p>/Ry is lattice isomorphic to I;

(3) IQ<m>X form an Abelian group under a simple operation.

Section 2 of the last chapter introduces the concept of

'particle' in fuzzy sets to replace fuzzy points.



0.3. Operators of fuzzy sets

Fuzzy sets were made to extend the concept of sets, so it is
important to consider set operators. The classical union and

intersection of ordinary subsets of X can be extended by the

following formulae, for A, B € LX
(AVB)(x) = max[A(x), B(x)] for all x e X
(AAB)(x) = min[A(x), B(x)] for all x € X.

Also, the inclusion can be extended by

A B if and only if A = AAB.
N.B. The symbols V, A and £ will be used here instead of U,
n and C, to distinguish between fuzzy set operators and
ordinary set operators.
However, when L = I, many other operators can be defined on the
basis of operators on I, for union and intersection.
Firstly, there are the following probabilistic-like operators:

(A +B)(x) A(x)+B(x)-A(x)-B(x) for every x € X

(A*B)(x) A(x)+B(x) for every x e X.
Secondly, there are the following operators which R.Giles [9]

called bold union and intersection:

(LeB)(x) min[1, A(x)+B(x)] for every x € X

(A®B)(x) max[0, A(x)+B(x)-1] for every x € X.

Other operators defined by

(AVB)(x) =|A(x) B(x)=0
B(x) A(x)=0

1 otherwise
=[A(x) B(x)=1

(A B)(x)
' B(x) A(x)=1

0 otherwise.



These operators satisfy the next inequality
AAB<A®B S A*BSAABCAVB S A+B S A®B ¢ AVB
To generalize the operators, some operators with parameter p were
proposed. Yager proposed the following operators:'for p > 0O,
(AV B) (x) = min(1, &/a(x)P+B(X)P]
(AAB)(x) = 1 - min[1, &/(1-a(x))P+(1-B(x))P].

Weber proposed the following: p £ -1,
W
(AV B) (x) )
(4A\B) (x)

min[1, A(x)+B(x)+p-A(x)+B(x)]

max[0, (1+p)(A(x)+B(x)-1)-p-A(x)-B(x)].
Yager and Weber used these operators as measures of fuzziness.
The aforementioned intersection operators satisfy the conditions
of triangular norms. A triangular norm T is a 2-place function
from I X I to I such that

(1) T(0,0) = 0; T(a,1) = a;

(2) T(2,b) £ T(c,d) whenever a { ¢, b £ d;

(3) T(a,b)

(4) T(T{a,b),c) = T(a,T(b,c)).

T(b,a);

A corresponding concept can be used for the aforementioned union
operators. Thus, various algebraic investigations into union and
intersection operators are discussed. (See [24], [3], [32], [35],
[36] and [37].) 1In Chapter 1, averaging operators with good

algebraic properties are considered.

The complement of an ordinary subset of X can be expanded as
follows:
A (x) =1 - A(x)
There are, of course, other definitions of complement. For

example, A;(x) = 1§1+_Péi?;;) -1 < P < o0,




Which operators and complements should by selected and used? The
answer to this question is different for different cases. It is
important to examine properties of operators and to define new

operators with good properties.

The infinite union and intersection of X was usually defined

by for A, € X (jed,

J
(\/A-)(x) = sup A.(x)
jeg jed
(A A (x) = inf A.(x).
jeJ 9 jed J

However, this definition causes some problems (see, example 1 in
the next section) when the concept of topology is introduced. R.
Lowen and many others researched I-fuzzy sets. In Chapter 2, the
use of the two arrows set II instead of the unit interval I as
the truth value set is proposed to avoid these problems, from the
point of view of gzeneral topology and topological vector spaces.
The two arrows set II is a completely distributive lattice with

involution.

Chapter 3 deals with symmetric difference operators for
fuzzy sets. In the framework of fuzzy set theory there may be
different ways to define a symﬁetric difference.

Firstly, the fuzzy set A © B of element that belong more to
A than to B or conversely is defined as

(A©B)(x) = |A(x) - B(x)| for all x € X.
but this © is not associative.

Secondly, the fuzzy set A A B of the elements that approxi—'
mately belong to A and not to B or conversely to B and not to A
is defined as

(AAB)(x) = (A (x)AB(x)) V(A(x)A B (x)) for all x € X.



It can be shown that this A is associative. However, <this
operator is not satisfactory.
Throughout Chapter 2 and Chapter 3, it is asserted that good

operators require good truth value sets.



0.4. Basic concepts and notation of fuzzy topological spaces

Let X be a non-empty set and (L; \/, /\,/) be a completely
distributive lattice with involution , i.e. x” = x, and if x < ¥y
then x7 > y'(x,y €L). A constant fuzzy set is denoted by hy, for
he L. The supremum of L is denoted by 1 and the infimum of L is

denoted by O.

Definition 0.4.1. (Changl2] and Goguen[12]) An L-fuzzy
topology is a family Ol of L-fuzzy sets of X which satisfies the
following conditions:

(1) oy, 1y € 0L,

(2) If A, B € Ol, then AABEe ([,

(3) If A;€ (L for each j€J, then \/Aje OL.
jed

An L-fuzzy topological space is denoted by (X, JL,L). Every
rember of (J[ is called an open fuzzy set. A fuzzy set is closed
if and only if its involution is open. An ordinary topological
space 1is a 2-fuzzy topologicel space, it will be . denoted by
(X, OL,2).

Note.1. The above fuzzy topology (JL is a subset of LX, i.e. an

element of 2LX. Properly speaking, a fuzzy topology should be an

element of LLX.

Note.2. Lowen's definition of fuzzy topology adopted condition
(1') below instead of condition (1) (see [31], [25], [26], [27],
(28], [29] and [30]),

(1) every constant fuzzy set hXG Olu

Most of the concepts of ordinary topology can be generalized

for fuzzy topology.



Let (X, JL,L) be an L-fuzzy topological space. The interior
and closure of a fuzzy set are defined in same ways, and denoted
by 'Int' and 'Cl' respectably, i.e. for A €& LX,

Int A=\/(8€1¥ | BeOl and B< A )
c1a=/\(Be1X | B €e0lL and B 4 ).

A subfamily B of UL is a base for OL if and only if each
member of (L can be expressed as the union of some member of Z?.
A subfamily Cf of Z? is a subbase for CE/ if and only if the
family of finite intersections of member of Cf forms a base for
OlL. & family Zﬁ of fuzzy sets 1s a cover of a fuzzy set B if and
only if B £ \/{AIAG 5}. It is an open cover if and only if each
member of 'Lﬂ/ is an open fuzzy set. A subcover of _% is a

subfamily of 8 which is also a cover.

Let f£:X——Y ©be a function from X to Y. Then, f induces a

function F~' : LI—>1% derined by

F(B)(x) = B(f(x)) (i.e. F~'(B) = BeF).
Y

Also, f induces another function F : LX“—9L defined by
F(A)( \/ A(x) x € f_1(y)} if f—1(y) is nct empty
(minimal element of L) otherwise.

Then, F_1(F(A)) = A. Thus, +this F is caliesd the fuzzy function

X to LY induced by the function f from X to Y, and F_1lS

from L
the inverse of F.
More generally, M.A.Erceg [5] defined fuzz relation and fuzz

function without using the inducing function. (For distinction,

we do not call it fuzzy function.)

10



Definition. 0.4.2. A fuzz relation between LX and LY

Y

is a map
R : LX—1L

such that
(1) R(0y) = 0y and

_ _ X
(2) R(;¥GAj) = \/R(a,) for a1l ase L

Jjed
are satisfied.
The inverse fuzz relation R—1 is defined to be a map
R™1: 1X—1t

where R'1(A) = /\[BELX|R(B,)§A/)-

Definition. 0.4.3. A fuzz function from LX to LY is a map
riX—1Y
such that

(2) PV A = \/F(ay) for a1l 4 e 1,
\ED) jes ! .
-1

3) ) = [Fa))

—~

are satisfied.

In view of ceondition (3), we have F—1(A) = \/[BIF(B)gA].

It is easy to prove that a fuzzy function F induced by the
function f from X to Y is a fuzz function and its inverse fuzz

function is the same asz the inverse of F.

Definition. O0.4.4. Let (X,OZ1,L) and (Y,(ﬂé,L) be L-fuzzy
topological spaces. A fuzzy function (or fuzz function) F from
(X, 611, L) to (¥, 00s» L) is fuzzy continuous if and only if

Pl () € 0Z1 for every U € 012.

Definitién.0.4.5. A fuzzy topological space is compact if

and only if each open cover of the space has a finite subcover.

11



In fuzzy topology, there have been many other definitions of
compactness. The reason is that the above compact does not have

good properties for I-fuzzy topology. (See example 1.)

In usual topological theory, there are some operations on
topological spaces, i.e. methods of constructing new topological
spaces from old ones. The most well-known and important six
methods are "subspace", "sum of spaces", "Cartesian product",
"inverse systems" and "function space'. There are various
extensions of above operations to fuzzy topology (see [42], [19],
[5] etc). Wongl42] defined the following fuzzy product topology.
5 0Ly,

define their product TW.(XJ, O%,L) to be the L-fuzzy topological
JtJ

If (X L) are L-fuzzy topological spaces for j&€J, we

space (X, (L, L), where X = TT-XJ is the ordinary set product and
jed

Ul is the topclogy on X generated by the subbase
-1
= [ P7 (A,
S 3 ( J) | A 3 Cﬂ j€T}
where Pj: LX""*LX induced fuszzy function by the usual projection
onto the i-th coordinate p.: x—>xj. This (JL is the weakest

J
topology such that each Pj is continuous.

Example 1 (in Goguen [12]). For k,m € N (the family of natural
numbers), let Pb o be a function from N to I such that
=9

Pk,m(n) = |0 no>n

Let (Xj’ Ozj, I) be an I-fuzzy topological space for j € N,
where Xj =N and O% = {0

1, and Pj,m (meN)}.

X* X
Then, (Xj’ Olj, I) is compact for every jé&€ N. However,
TT(x,, Ol., I) is not compact.
jeg d J

12



This example means that the Tychonoff theorem does not hold. To
avoid this problem, Lowen changed the definition of topology and
compact, Wang G.J. altered the definition of compact, Pu and Liu
used another concept of cover and Hutton changed the definition
of product. (Seel[27], [41], [34] and [19].) However, the
fundamental cause of this problem is the truth value set I (which
infinite union consist of supremum). The suggestion by Goguen

[12] that a better lattice should be used is probably correct.

The definition of neighborhood is also a problem for I-fuzzy
topological space theory.

Definition. 0.4.6 (in Warren [39]). A I-fuzzy set U 1in a
I-fuzzy topological space (X, (Jl, I) is a neighborhood of a point
x€X if and only if there exists O ¢l such that U 2 0 ard
U(x) = &(x) > O.

7 5 . P < .
éjX édenotes the family of all neighborhoods of x which are

detercined by the fuzzy topology Ol on X.
Theorem. O0.4.7 (in Warren [39]). Let (X, 0L, I) be a I-
fuzzy topological space. Then for each x € X, ij satisfies:

(1) 15 € Uy
(2) 1 U € 7/, tken U(x) > 0,

(h

m

(3) if U
(4) if U;e U, § € 7, then \/{Uj 13 €d) e,
(5) if U, Ve, then U AV €7/,

Uger U £V and U(x) = V(x), then V¢ Z{x,

(6) if U EZ{X, then there exists U EZLX such that V £ T,
V(x) = U(x) and if V(y) > O then V E'u&.

Compare this theorem with theorem 2.3.2. proposed here.

13



Finally, the definitions (or equivalence definitions) of
the separation axioms TO and T1 in Hutton [20] should be exa-

mined.

Definition. 0.4.8. (X, 0L, L) is Ty if every AelX can be

written in the form A= \/ /\B. where Bij is an open or

jerjer 137
closed set. Also, (X, 0L, L) is T1 if every per® can be writ-
ten in the form A = \/Bi’ where B; i1s a closed set.
iel

There were two problems in the theory of I-fuzzy topological
spaces. One problem is "how should fuzzy compactness be de-
fined?", and the other problem is "how should fuzzy points be

treated?". Both problems can be solved by using II-fuzzy sets.

14



1. Mope-Type OPerAaTORS ON Fuzzy SETS

This chapter introduce some new type operators on fuzzy sets
whose truth value set is I (i.e., [0, 1] interval). There are
many (aggregation) operators already in existenée and some of
these were selected and used for fuzzy decision-making, fuzzy
logic and so on.

One of the axioms on aggregation operators in [4] or [6] is
"continuity". Mathematically speaking, continuity is a very good
property, but it is a restrictive condition. In section 3, we
can define mode-type operators on fuzzy sets, which does not
require continuity. We show that mode-type operators are
precisely those operators which are pointwise, commutative,

associative, compatible and averaging.

1.1. Definitions and Question

Let X be an ordinary set, 1{ the family of all fuzzy subsets

of X.

Definition. 1.1.1. A binary operator 8:IXX IX—1X i5 said to be
commutative if A ® B3 =38 A for all A, B € 1%,

idempotent if A ® A = A for 21l A € IX,

associative if (A ® B) 6 C = A & (B & C) for all A, B, C € I1¥,
compatible if A ® B XC ® D for all A, B, C, D € IX
such that A 2 C and B 2 D,

averaging if A\ B2A® B2 AAB for all A, B e 1%,

It is obvious from the definition that every averaging

operator is idempotent.

15



Definition 1.1.2. An operator ® is said to be pointwise if there
exists an operator * :I X I——>1 such that

(A ® B)(x) = A(x) * B(x) for all A, B€IX,

It is clear that operators V and A are poihtwise. The

+ in [21] is not pointwise.

Definition 1.1.3. A binary operator *:IXI—I is said to be
commutative 1if a *b=>b%a for all a, b € I,
associative if (a * b) * ¢ =a * (b * ¢) for all a, b, ¢ ¢ I,
compatible if a*b2c*d for all a, b, c, d €1
such that a 2 ¢ and b2 4,

averaging if max(a,b) 2 a * b 2 min(a,b) for all a, b € I.

When an operator ® is pointwise, it is obvious from the
definition that ® is commutative, associative, compatible aznd
averaging if and only if the corresponding operaior ¥ is

comrutative, assoclative, compatiible and averaging respectively.

Axioms of aggregation operators similar to the definitions

given above were introduced in [4] and [6].

Median-type operators on IX are defined by

(4 & B)(x) = median [A(x), B(x), m] for some m, 0 { m £ 1.

The case when 0 < m < 1 was studied in [4, p.R22].
It is clear that operators \ and A are median-type operators.
And every median-type operator is pointwise, commutative,

associative, compatible and averaging.

16



Question. Does there exist pointwise, commutative, associ-
ative, ‘compatible and averaging operator other than the median-

type operators?

1.2. Mode-type operators

Let L be a linearly ordered set, and let f be a function
from I to L satisfying the following two conditions:
for every closed interval [a, b] of I,
(1) there exists a ¢ € [a, b] such that
f(e) = m, m = sup(f(x)| x€[a, bl],
and (2) for the subset M = {c|cela, bl, £f(c) = m} of [a, Db],
sup{d|d € M} € M.

Definition 1.2.1. Let f:I—L be a function stated above. And
let a, b be arbitrary elements of I. We define a binary operation

*f on I by the following way:

if a < b,

a *. b= sup{c|c€la, b], f(c) = m}, where sup(f(x)|xela, bl},
if b < a,

a *f b = sup{c|celb, al, f£(c) = m}, where sup(f(x)|xelb, all.

That 1is, *f is the supremum of the subset in I on which f takes
its maximpum.
The operator *f would then induce an operator Qf on Ix defined by
= *
(A EfB)(x) A(x) P B(x).

We shall call the operator ®f "mode-type operator™ and the

function f '"mode function'.

17



Note that every continuous function from I to I is a mode

function.

Example 1. Let L = I. If f:I—-I 4is defined by

f(x) =0 if x is irrational or 0 or 1,
1/n if x = m/n s.t. mand n are irreducible.
Then, 0 *, 1 = %, 12 ‘. %— = % See figure 1.

We can define the corresponding ®f from this function f. This

example indicates that mode-function does not need continuity.

We can define similar operators by using the supremum of
the subset in I on which f takes its minimum, the infimum of the
subset in I on which f takes its minimum or the infimum of the
subset in I on ﬁhich f takes its maximum. All these operators

are essentially the same.

Proposition 1.2.1. Every mode-type operator ®f is pointwise,

commutative, associative, compatible and averaging.

Proof. From the definition, the ef is pointwise, commutative and
averaging. Because ®f is pointwise, it is sufficient that *f is
compatible and associative.

To prove compatibility, let a { b { ¢ £ d. It is clear that

(b *f ¢) 2 £(x) for any x € [b, c], and f(b *o c) £ £(b *o d)
since [b, ¢] C [b, d]. Then, we have b o d € (b, b*fc).

Hence b *f d2b *f c.

Since f£(b *, c) > f£(x) for any x € (b*sc, c] and £(b *;, ¢c) <
f(a *f c), we have a *f c € (b*fc, c]. Hence =a *f c &b *f c.

Therefore a *, ¢ { b *f c {b *.d.

£ by
Next, we shall show associativity. For any x € [a, b], f(a *f b)

18



2 £(x). Hence, f(a *, b) = £((a *; b) *, x). By definition,

8 *. b= (a *.b) *, x (1)
Let a { b { ¢. From (1), we have

(a *pc) *p b =a *poc (2)
Since a *, b 2 a, we have (a *p b) *¥p c 2 & *, c. By compati-
bility, a *. b a *, c. So (a *; b) ¥, c £ (a *; c) *p c.
From (1), (a *o b) *f c {a* c. Hence

(a *5 b) *ac=a *s ¢ (3)
Similarly,

a *s (b *p c) = (4)
From (2), (3) and (4),

I
®
¥*
H
o)

(a *f b) *o ¢ = (a *o c) *o b =2 *; (b *o c) = a *o .

This shows assoclativity.

Proposition 1.2.2. All median-type operators including \/ and A

are mode-type operators.

Proof. If f is a monotone increasing function from I to I, then
the corresponding 8, is V. If £ is a strictly monotone
decreasing function from I to I, then the corresponding ef is
A. For m in I, we define the function f from I to I by £(x)
= 1—(x—m)2. Then, (A o, B)(x) = median [A(x), B(x), m].

Remark. Not every mode-type operator is median-type as seen by

the following example.

Example 2. Let L = I, and suppose that f(x) = %sinZﬂx + %. Then,

1 1 1 .
¥ 4 = - L % =
0 £2°7 27 1 1. See figure 2.

We can define the corresponding 6f from this function f. This

mode-type operator is not median-type.
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1.3. Characterization of pointwise, commutative, associative,

compatible and averaging operators

In this section, we shall show that the converse of
Proposition 1.2.1 is also true. That 1is, all pointwise,
commutative, assoclative, compatible and averaging operators are
mode-type operators.

Let ® be an pointwise, commutative, associative, compatible
and averaging. operator on I. Since any operator ® is pointwise,
we see that there exists an operator * such that

(A & B)(x) = A(x) * B(x).

Lemma 1.3.1. For any x, ye€Il such that x * y = ¢, it holds

that x * ¢ = ¢..

Proof. Suppose that =x and y are two elements satisfying the
condition that x * y = ¢. From the properties of the operator #,
we can easily obtain x * ¢ =x * (x *y) = (x *x) *y=x *¥y=

Ce.

Lemma 1.3.2. If a, b, ¢ belong to I and a < b < c, it holds that

a*c=a*b or Db *c.

Proof. We put d = a * ¢ and suppose that d { b. From the
compatibility condition, we have d = a * ¢ 2 a * b. On the other
hand, by Lemma 1.3.1 and the compatibility condition, d = a * d
a * b, Therefored =a * b. Similarly, in case that d > b, from
Lemma 1.3.1 and the compatibility condition, we obtain 4 = b * c.

This completes the proof.
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Now, for every ¢ of I, we set

i{c) = inf{x|there exists z € I such that x * z = ¢)
and

s(c) = sup(x|there exists z € I such that x * z = c}.
Lemma 1.3.3. Let X and ¢ be two elements such that

i(e) < x £ c, then x * ¢ = c.

Proof. By the definition of i(c), we can find y and z of I such

that i(c) { y < xand y * z = c. Since y * ¢ = ¢ by Lemma 1.3.1,

we obtain that from the compatibility condition,
c=y*cgl{x*¥cgc*c=c.

This completes the proof.
We can prove the following Lemma analogously to Lemma 1.3.3.

Lemma 1.3.4. Let x and c be two elements such that

s(e) >x 2 ¢, then x ¥ ¢ = c.

Let {1;2,3] be the three points set. We introduce the
lexicographic order on the set Ix{1,2,3}, i.e.,
for every i, j € I such that i < j iff (i, x) < (j, x), and
for every i € I, (i, 1) < (i, 2) < (i, 3).
Then, we define the function f, which depends on the operator *,
from I to IX{1,2,3} such that
flec) =[(s(e)=-i(c), 1) for i{(c) * ¢ # ¢ and s(e) * ¢ # c,.
(s(e)=i(e), 3) for i(ec) * s(c) = c,

(s(e)=i(e), 2) otherwise.

Now, we can prove the following,
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Theorem 1.3.5. The family of all pointwise, commutative, asso-
ciative, compatible and averaging operators coincides with that

of all mode-type operators.

Proof. Since every mode-type operator satisfies the pointwise,
commutative, associative, compatible and averaging conditions, by
Proposition 1, it suffices to show that every pointwise,
commutative, associative, compatible and averaging operator * is
a mode-type operator corresponding to a function f from I to
Ix{1,2,3) defined above. To see this, we shall prove that f(x) <
f(a * b) for any closed subinterval [z, b] of I and for any
element x€[a, b] with x # a * b, because the operator introduced
by £ is identical with the operator *.

Put ¢ = a * b.
[I] Consider the first case that a # ¢ and b # c. Let x be
ény given element with a { x < ¢ < b.
Assume that s(x) > c. Then there is an element y such that ¢ < §
< s(x). From Lemma 1.3.1, 1.3.4 and the compatibility condition,
we get c =a * ¢ { x ¥ y = x. But this contradicts the fact that
a {x <c¢c <Db. Hence we have

s(x) £ e. (1)
If i(x) < i(e), there exists an element 2z with

i(x) <z <i(e) {agx<s(x){e<hb. (2)
Combining (2) with Lemma 1.3.3 and the compatibility condition,
we can easily verify that z ¥a {3z *x=x and 2 ¥b > x.
By Lemma 1.3.2 and (2) we see that z * b =z * a or 2 ¥ b = a * b,
Since z *a {z *x=x and z *Db > x, we have z * b =a * D
= c¢c. On the other hand, 2z * b # ¢ from the definition of i(ec).

Thus we have
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i(x) 2 i(e). (3)
Since b > ¢ and a * b = ¢, it is clear that ¢ < s(e¢). Combining
this inequality with (1) and (3), we conclude that s(x) - i(x)
£c-1i(e) < s(e) - i(c), which means f(x) < f(c) as desired.

When x is an element with a < ¢ < x { b, we can analogously

prove that f(x) < f(e).

[II] Next we consider the second case that a = c.

Assume that there exists an element p such that p < a and
p*¥b=a. Then, by the result of the first case, we observe
that, for every element x € [p, bl such that x # a, £(x) < f(a).
Hence f(x) < f(a) = £(c) for every x € (a, bl.

On the other hand, suppose that p * b # a for all p < a.
When i(a) < a, there exist two elements q and r such that
i(a) <qg<agrandq*r=a. Since q * a = a by Lemma 1.3.1,
using Lemma 1.3.2 and a * b =c¢ = a, we obtain q * b = a. But
this contradicts the assumption that p * b # a for all p < a.

Therefore we get

i(a) = a, (4)
and hence
i(a) * a = a. (5)

Let x be an element of (a, b] and suppose that i(x) < a. Then
we can take an element y such that i(x) < y < a. Thus we
obtain x =y *x { a *x <{a*Db=a, which contradicts the fact
that a < x. Hence we have

a < i(x). (6)
By Lemma 1.3.1 and the fact that a * b = ¢ = a, we can easily see
that a * x = a. When s(x) { b, we have s(x) ¢ s(a) because

a *b=aand sob g s(a).

24



Assume that s(x) > b. TFor any element 2z such that a < x < b

lin

< z < s(x), by using Lemma 1.3.2, we can verify that

a *z=a*%*x or a * z =x ¥ gz,
If a * 2 =x *¥ 2z, thena * 2 =x * 2z =x by Lemma 1.3.4. From
Lemma 1.3.1, a * x = x. But a * x { a * b = a. This contradicts

a < Xx. Hence a * z =a * x = a, Therefore,

s(a) 2 s(x) (7)
We shall now show that f(x) < f(c¢). By (4), (6) and (7), we can
observe that
s(a) - i(a) 2 s(a) - a 2 s(x) - i(x).
In particular, when s(a) - i(a) = s(x) - i(x), it holds that
i(a) = a = i(x), and therefore we deduce that
a*agla*x=1i(x) *x < a*b=a. (8)
From (5) and (8), we obtain i(a) * & = a and i(x) * x = a # x.
When s(a) * a = a, i(a) * s(a) = a by Lemma 1.3.2. Then,
i(x) * s(x) = i(a) * s(a) = a # x. Hence,
£(a) = (s(a)-i(a), 3)
f(x) = (s(x)-i(x), 1) or (s(x)-i(x), 2).
When s(a) * a # a, put p = s(a) * a. From Lemma 1.3.1, a * p = p.
If a < p < s(a), then a * p = a by Lemma 1.3.4. This contradicts
that a # p. Hence p 2 s(a). So a { x { b < s(x) =s(a) £ p,
but p = s(a) * a £ s(a) * x = s(x) * x. Hence, s(x) * x # x.
Therefore,

f(a)

(s(a)-i(a), 2)
(s(x)-1(x), 1).
We obtain f(x) < f(ec).

£f(x)

[III] In case that b = ¢, we can similarly show that f(x) < f(e)

as in the second case. This completes the proof.
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From Proposition 1.2.1 and Theorem 1.3.5, we conclude that mode-
type operators are precisely those operators which are pointwise,
commutative, associative, compatible and averaging. However,
there are operators which do not satisfy some of these properties

as illustrated by the following example.

Example 3. Let *,, *2, *3, *4 and *5 be operators on I defined by

a *1 b=a
a *, b = %(a + b)
a*;b=(2 (ifySagborb<zg<aoraghb<y)
b (otherwise).
And
a*4b=(1 (if a=1o0rb=1)
a (if a = b)

(if 3a-[3a2] < 3b-[3b])
(if 3a-[3a] > 3b-[3b])

N
[+

wl—- o

(1+3a-[3a]) (otherwise).

4

For +the operators *1, *2, *3 and *4, we can define the
corresponding operators 8,, &,, $3 and 64 on IX by (A &, B)(x) =
A(x) *i B(x).(i=1,2,3,4). Then @1 is not commutative, $2 is not
associative; 63 and 94 are not compatible. Triangular norms in

section 0.3 are not averaging.
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2. I1-Fuzzy ToPOLOGICAL SPACES AND

[1-Fuzzy LINEAR SPACES

In this chapter we induce the concept of II-fuzzy sets , II-
fuzzy topological spaces and II-fuzzy linear topologies on vector
spaces. And, using the notion of i-neighborhoods, some of the
basic properties of II-fuzzy topological vector spaces are
investigated.

The concept of fuzzy sets, whose truth value set is the unit
interval I = [0,1], was introduced by Zadeh [44], and that of L-
fuzzy sets was introduced by Goguen [10]. Later, Chang [2]
introduced fuzzy topologies on a set of fuzzy sets. Since then,
much work has been done on fuzzy topological spaces. Then, the
notion of fuzzy.topological vector space on I-fuzzy set was given
by Katsaras [21], [22] and [23]. In this paper, we consider
special fuzzy sets whose truth value set is not I but II (two
arrows set). And we investigate the fuzzy topological vector
space on I1II-fuzzy set. As the II-fuzzy sets have the
representation sets, it is easy to imagine various topological
structures. Then, we explain II-fuzzy topological vector spaces

systematically.

2.1. Definition of II-fuzzy topological spaces

We consider a set of two I's, where I=[0,1], placed side by
side, and denote the interval on the right by It and the other

interval on the left by I~. Points in I* are denoted by x*, and
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points in I™ are denoted by x~. The two arrows set II is the
union of It and I7, that is,
II =1tyI- = (x*|xeI) Ulx~[x€I} = (x¥,x|xeI).
We introduce the following order relation on II. For all a€Il, we
define a~ < a¥. If a < b (a,bel), then a’ < b~. It is easy to see
that the set II is a linearly ordered set by this relation with
the 1least element 07 and the greatest element 1*. It is well
known +that any complete linearly ordered set 1is a completely
distributive lattice (see Birkhoff [1] etec). Thus, the set II is
a completely distributive lattice.
We define the operation ’ from II to II, by
(a¥) =(1-a)" and (a~) =(1-a)* where ate1%cII, a"eIc1I.

Since the operation has the involution property, the set II
is a completely distributive lattice with involution. Let X be a
non-empty set. The lattice operations \/, /\ and / in II
induce the corresponding lattice operations in 1% (the set of

all function from X into II) which we also denote by \Vc /\ and 7

respectively.
That is, (j\e/JAj)(x) = j\é/JAj(x),
Ny = N, =)
jeJ d jeJ d
and (A7) (x) = (a(x))".

In the sequel, we shall consider the II-fuzzy topologiéal
space (X, (00, II).

2.2. Representation Theorems

Let X be a set (i.e. a set of points). We denote the set
(AcXXI | (x,i)€ A implies (x,j)€ A for each j<i } by M(X).
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It is clear that M(X) C P(XXI) (the power set of XXI) and
M(X) is a complete lattice with (U (set union) and M (set
intersection). We define the involution / from P(XXI) to
P(XXI) by

A" = {(x,1)€ XXI |(x,1-1)¢ 4} for A€P(XXI).
The lattice (M(X); U, N ,”) is a completely distributive lattice

with involution.

Theorem 2.2.1. The function k :IIX—> P(XX1I) defined by
k(B)={(x,1)€XXI | B(x) » i+ } (BeII%)
has the following properties:
(0) ¥k is an isomorphism from (IIX; \/, /\,’) onto
Mx); U, M,
(1) k(VB )= Uk(B ) (B, e11h),
JEJJ jed J

(2) x(/A\B,)=MNx(B,) (B.c I11%),
jeT 4 jey d J

(3) x(B")=[k(B)] (Be 1I%).

X Such that A # B, then there exists

Proof. (0) Let A, BEII
x€X such that A(x) # B(x). When A(x) > B(x), there exists an
iEIhsuch that A(x) 2 it > B(x). Then (x,1i)€k(A) but
(x,i)€k(B). Hence, k is one-to-one. Suppose C EM(X), and let

DGIX such that D(x) = su§ i.
C

We define E€IIX by
E(x)=([D(x)]* (x,D(x))€C
{[D(x)r (x,D(x)) € C.
Then k(E) = C, therefore k is onto.

29



(1) Let A,BeIIX be such that A(x) £ B(x) for every x € X. For
each (x,i)€ k(A), we have it < k(A) < k(B), hence (x,i) €k(B).
This shows that k(A)C k(B). Therefore k 1is order preserving.

> B;. Since k 1s order "~ preserving,

Let B:e IIX, then \/ B 3

3 jeg 3

we have  k( VB ) >k(By). Hence ( VB;)> Ux(s Let
JéJ JGJ jed

(x,1) € k( \/Bj), then | \/B 1(x) > i*. Then, there exists iped
jEJ JCJ

such that BJ (x) > it. Thus (x,i)vfk(Bj }. Therefore we have
0 0

k(\/B ) uk(B ).
je

We can prove (2) similarly.

(3) k(B )={(x,i)eXXI| B (x) 2 i+)
=((x,1)eX X I| B(x) £ (1-1)~ < (1-1)%)
={(x,1)eXXI| (x,1-1)¢ k(B)}
=[k(B)]".

We shall call the set k(B) the representation of the II-

fuzzy subset B of X.

Since I is a distributive lattice, it is isomorphic to a ring
of sets (by Birkhoff-Stone representation theorem). However this
isomorphism is not sup-inf-preserving. Therefore we see that 11¥

has a better property than IX.

Let f be a function from X to Y. We will define the fun-

ction ¥ from XXI to Y¥YXI by F(x,i) = (f(x),i).
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Proposition 2.2.2. Let F be a fuzzy function from 11¥
to IIY generated by the function f. Then F = k_1o fok.

x— 1 >y
1% F 11t
K .Tk‘1
| |
M(X) 5~ M(T)
N M\
P(XIXI) P(Y XI)

Proposition 2.2.3. Let (X,(0{, II) be a II-fuzzy topological
space, and K(J() the set {ACXXI| A = k(B), Be(l}. Then
(XXI, K(OU), 2) is a topological space.

Proof. Since O'X, 1+X5 IIX, we have @ = k(o‘x)e K(() and
IXI = k(1_X)EK(OI). Let UJ.E—K(O"E). Then, for each j, there
exists a VJ.G Ol s.t. k(Vj) =7T,. We see that U1 (‘\U2 =

i
k(V)NE(V,) = k(V,AV,)ER(OL) and  UT, = Ur((V,) = k(V V.)

: )
jeg 3 gex jeg d
€ K(01). :
Proposition 2.2.4. Let (X, OJL,II) be a II-fuzzy topological
space, and K7(0Ll) the set {AC X xI| A=k(B”)®, - Be(Ol), where
k(B”)® is the complement of k(B’). Then (XXI, K’(0I), 2)

is a topological space.
We can prove this in the same way.

We shall call the space (XXI, K((l), 2) the open represen-
tation space of (X, J{, II), and the space (XXxTI, K/(00), 2)

the closed representation space of (X, J(, II). We see that
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the closed representation space is the inversion of the open
representation space. In fact, the function from (XXI, K((U), 2)
to (XXI, K/(01), 2) defined by f((x,i)) = (x,1-i), 1is a homeo-

‘morphism.

Proposition 2.2.5. Let F ©be & fuzzy function from
(X, 021, II) to (%, OZZ’ II) induced by the function f from
X to Y. Then the following conditions are eguivalent:
(1) F is a fuzzy continuous function,
(2) £ is a continuous function from (X XI, K(OQ), 2)
to (IXI, K(01,)s 2),
(3) I 1is a continuous function from (XXI, K (OQ), 2)
to (IXI, K (0l), 2)-

2.3. Neighborhood éystem of a II-fuzzy topological space

Definition 2.3.1. Let(X,(l(,II) be a II-fuzzy topological
space and i€ I. A II-fuzzy set U in X is an i-neighborhood of x
in X if and only if there exists an open II-fuzzy set 0¢0l such

that U(y) 2 0(y) for every y€X and 0(x) > it,

The concept of i-neighborhoods of x in (X, Ol, II) is the
inverse image by k of the concept of neighborh&ods of (x,i) in
(X1, K(0U), 2).

Hence, this notion of i-neighborhoods is easier for us to
understand than the notion of neighborhoods in Warren [39] [40],
Lowen [30] or Ghanim [8].

Next resulis are clear too.
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Theorem. 2.3.2. Let (X,0(,II) be a II-fuzzy topological
space. If, for each x€X and i €1, ,Mi(x) denotes the family of
all i-neighborhoods of x, then the family {YZi(x)I x€X, 1 €1}
has the following properties:

(N1) U(x) 2

1* for each Te Z{i(x);

(N2) if Uy, U,€l(x), then T AT,€ Z{i(x);

(¥3) 1f U € Uy (x) and U < V, then V& U (x);

(N4) for each U¢ Z[i(x) there exists W € Z{i(x) such that

Us Z{j(y) for each y and j for which W(y) 2 j+.

Conversely, for any non empty set X, if +the family
(U;(x)| x€X,1€T) is a family satisfying (N1)-(N4), then there
exists a unique II-fuzzy topology Ol on X such that, for each
x€X and i€1, Z(i(x) coincides with the family of all i-

neighborhoods of x.

Proposition 2.3.3. Let F fe a fuzzy function from
(X,OQ,II) to (Y,Cﬂz,II) induced by £f:X—>Y. Then, F is fuzzy
continuous if and only if f_1(N) is an i-neighborhood of x for

every i-neighborhood N of f(x) and each xeX.

From the general topologic%I point of view, I-fuzazy
topological spaces do not have good properties. II-fuzzy
topological spaces are better. As we can think of the family of
I-fuzzy sets as the quotient sets of the family of IIquzzy sets,
we investigate II-fuzzy topological spaces instead of I-fuzzy
topological spaces. And if we must consider L-fuzzy topology, we
should construct a fuzzy set whose truth value set is a special

lattice with desirable properties like IT.
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2.4. Slice topology and Product theorem

It may seem that II-fuzzy topological spaces are very similar
to general topological spaces, for a II-fuzzy topological space
has a representation space. However, they are quite different
because the notion of involution in II-fuzzy sets, which would
correspond to the notion of the complement in usual sets, is
essentially different from it. It is clear that the notion of
involution is the key to fuzzy set theory. There exists another
difference between II-fuzzy topological spaces and general
topological spaces, because of the definition of product spaces.
In fact, this definition giveé rise to difficult problems.
Another product was defined in Hutton [19]. Butin II-fuzzy
topological spaces, we can easily check Tychonoff theorem under

Wong's definitions of product and compact.

Let (XXI, K((OLl), 2) be the open representation space of
(X, 0, II). For each i€I, we denote the set {(x,i)|xeX}CIXI
by X% and {Acxi| a=k(B) nXt, BeOl) by OF. It is clear that
(Xi,ﬁﬂ?, 2) is a topological space. The space (Xi,CX?, 2) will

be called an i-slice space.

Proposition 2.4.1. The following three conditions are
equivalent:
(1) (X, JU, II) is fuzzy compact,
(2) (¥xx1, K(0T), 2) is compact,
(3) (X1,0ﬂ, 2) is compact.

Proof. (1)==>(2). Let 2} ={Gj|jeJ] be an open cover of XXI.
Then X = k" (XXI) = k"' (U(G,[jed)) = \/ (x~1(G.)|jeT)}. Hence
jeJ jed J
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{k_1(Gj)|jEJ} is a fuzzy open cover of X. Since (X,0l, II) is

fuzzy compact, there exist finite X~ 1(G, ), * * ° ,k_1(Gj ) s.t.

jO n

X = k_1(G. )v--~vk‘1(c. ). Therefore we have
Jo In

XXI = k(X) = k(k‘1(Gj )V"‘Vk_1(Gj ))
0 . n

=k(k-1(cj )V - --\/k(k‘1(sj ))
0 n

This shows that 37 has finite subcover {Gj"”’Gj]'

(2)==>(1). Similar to (1)==>(2) but in the converse way.
(2)<==>(3). Trivial.

Corollary 2.4.2. Let (Xj’ Ol;y, II) be a fuzzy compact

j’
space for each jeéJ.- Then +the product space -rT(Xj, OYj, II)
jeI

is fuzzy compact.

Proof. (Xj’ UG, II) is fuzzy compact for each jeJ
{==> (X31, 0%1, 2) is compact for each jeJ

Cm=> ]'GTJ(XJ.1, o‘(j1, 2) is compact
j |

<==> T (X., 0l;» II) is fuzzy compact
jeJ‘ 3 J
This was already proved by J.A.Goguen[10], but our proof

using proposition 1 shown ebove is much easier.

Let F be a fuzzy function from IIX to II' induced by f:XI—Y.
We can define natural function fi:Xi——+Yi by
t(x,1) = (£(x),1).

Then, next proposition is clear.

35



Proposition 2.4.3. If F be a fuzzy continuocus function from
(X, OZ1,II) to (Y, Cﬂz,II), then f1 is a continuous function
(xt, o1,1,2) to (21, 07,%,2) for every ieI.

But the converse of this proposition is not true.

Example. Let R be the set of all real numbers. For each

r,s <R s.t. r<s, we define r® and Ts functions from R to II by
for x€R
r3(x) =0~ x<r
X=T\-
(-é_—r) r{xg<s
1t X > 8
Ts(x) =|0~ x> s
S=X\~
—S-—r) r{x<s
1* x<r.

And we define the II-fuzzy topologies 671 and (Ré generated by
the subbase ‘ .
{rr+1, I.-‘|r| r€R} and

y,

$o= [rr+2, 1."21'| r €R} respectively.

Suppose f:R—R be identity function. Then, the fuzzy function F
from (R, Olz,II) to (R, CQ1,II) is not continuous. But, for each
1€1, the function ' from (R, 07,5, 2) to (R, OL%, 2) is

continuous.

We can define the following cardinal functions, the
network weight, the Lindeldf number and the cellularity, for
every L-fuzzy space (X, (7, L).
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nw((X,0l,L)) = min{| (}IH For any U fuzzy open in X, there

exists Jy C % s.t.\/§=10.)
min{ 7 | For any % fuzzy open cover of X there

exist 5”1 subcover of % 3 A |{}| < 7}
min{ 7 | For every g} disjoint family of non-

L2((x, 01, L))

c((X, 07, L))

empty fuzzy open sets of X s.t. |g,7| $ 7l

These functions nw, ], and c¢ are generalized from those in the

general topology.

Theorem 2.4.4. Let (X,(0l, II) be a L-fuzzy topological space
and (Xi, 0'{,i, 2) 1its i-slice space. Then,
Lz, 01, 11)) = 40(x7, 00, 2))  end
e((X, 01, II)) = c((x°, 0, 2)).
Also, if nw((X, 00, II)) > [, then there exists an 161 s.t.

me( (X, 07, I1)) = me((X0, 0T, 2)).

Proof. Let (7 be a fuzzy open cover of X, a{j’ a subcover of
% . Then K(%L)(ﬂk(U)IUC—%]) is an open cover of XXI and K(&g-)
(=(k(U)|U€ & }) is a subcover of K(%). %1 (={k(U)/\X1|U6007»]) is
an open cover of X1, and £1(=[k(U) r\X1|Ue %}) is a subcover of
71. Conversely, if UL is an open cover of X1, there exists ? a
fuzzy open cover of X s.t. U= %1 Therefore ,@((X;UZ', I1)) =
,@((X1,0’L1, 2)). In a similar way we can prove that c¢((X, 07, II))
= o((x', 0T, 2)).
From the definition of nw, we can easily obtain that
nw((X, 01, II)) 2 nw((Xi, O'Ci, 2)) for every iel. For UiC Xi, let
g(@d) = ((x,5)](x,1) € % and j<i)e M(X)CcP(XXI), and GF be
the family {k—1(g(Ui))|Ui€ O'Li for any i€ I}. Then for every
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fuzzy open set U there is a subfamily &@ of gl s.t. \/Q? = 0. If,
for every i€I, nw((X,00, II)) > nw((Xi, 0&5 2)), we must have

nw((X, 00, II)) > |%7

. It is a contradiction.

2.5. Relation between general topology and II-fuzzy topology

In relation to II-fuzzy topological spaces, we can con-
sider various concepts that we consider in relation to I-fuzzy
topological spaces. In most cases, they are easier to consider
than those in I-fuzzy topological space. In this section, we
consider the concept which corresponds to the functions 7 and w

in R.Lowen [25].

Let (X, 0T, II) be a II-fuzzy topological space, then we can
consider O (ieI) introduced in section 2.4 as topologies on X.
We define 7(0l) as the topology generated by }ZQCﬁi.

i
Let (X, OU, 2) be a general topological space, then for Ue (CZ,
ve define U[il€ IIX (ieI) by
U[i](x) =(i+ (x€7T)
{O- (x€U).
We define (W(0Tl) as the II-fuzzy topology generated by
(vlile11¥|ve 0L, 1e1).

We can easily check 7 (w(0Tr))= (L for every topological space
(X, OLy 2). For a II-fuzzy topological space (X, (7, II), we say
that (X, 01, II) is topologically generated when w (1(07))=0L.
For an order preserving function g from I to I, let G be the

function from II to II, defined by
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a(x) = (g(x))* and G6(x7) = (g(x))~.

We say that G is a sign and order preserving function.

Theorem 2.5.1. Let (X, O, II) be a II-fuzzy topological
space s.t. i+X € Jl for every i€I. The space (X, O/, II) is
topologically generated if and only if, for each sign and order

preserving function G:II—II and U€ (0, G-Ue (0.

Proof. Let (X, OU, II) be topologically generated. Since

0€¢(0l can be writtemn as U = L)(Ui[i]), we have GeU =
i€l

U (ut1g(1)1). From Ule gic¢(01) 2nd g(i) eI, we see that
iel

0ilg(1)1€ W(1(0L)). Thus we have GoU € w (1(01))=0T.

Conversely, let GeUe€e (Jl for each sign and order preserving G and
Ue (L. For every Ve 011, there exists a Ue O s.t. UL = V. Let G
be the sign and order preserving map s.t. G(i+) = j+. From
G-UEOl, we see that (FeU)Je OrJ. Hence (FoU)d = vle grd, ana
therefore we have V¢ (ﬁj. This indicates that CE; = ULj for
every i,j e I. Consequently the space (X, (O, II) is topologically

generated.

Since every continuous function from Ir to Ir in R.Lowen[25] is .
an order preserving function from I to I, this theorem correspond

to theorem 2.2.2. in R.Lowen[25].
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2.6. II-fuzzy linear topological spaces

In this section, we use II-fuzzy topologies which contain
all the constant fuzzy sets. (Lowen adopt only this type as fuzzy
topology set in [25].) One of the reasons for doing this is to
make sure that the topology of such a space is translation
invariant. This assumption is not necessary but sufficient. So,
we don't adopt Lowen's definition of fuzzy topology in section 1.

Let E Dbe a vector space over K, where K is the field of
either the real numbers R or the complex numbers C.

Let f : EXE-E (x,y)—x+y,

g ¢+ EXESE ‘ (k,x)—kx,
be the vector addition and the scalar multiplication in E.

If  is a II-fuzzy set in K and A, B are II-fuzzy sets in E,
then we denote F(A xB) (F is the fuzzy function induced by f) by
A+B and G(A xA) (G is the fuzzy function induced-by g) by oA.

Then we have,

(1) (A +B) + C=4A+ (B +C);
(2) ({£IM)(x) = A(x/t) (t #0);
(3) ({0}a)(x) =f{o0" (x #0)

\/&(y) (x=0)
yek

From now on, we denote {t}A by tA, A+{x) by A+x. And for brevity,
we use f (instead of F) for function induced by f. |
Let E and F be vector spaces over K. And let f be a linear
map from E to F, we have,
(4) £(sA + tB) = sf(A) + t£(B),
specially, t(A + B) = tA + tB;
(5) £71(tB) = t£71(B) (¢t # 0);
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(6) A+--++A<B Ag1lB.
A II-fuzzy set A in E over K is called balanced if tA < A for
each scalar t with |[t] < 1. A is balanced if and only if A(tx) 2
A(x) for each t with |t| < 1. Hence, A(0) 2 A(x).

A IT-fuzzy set A in E over K is call r-absorbing if ‘\/kA 2 rt.

k>0

Definition 2.6.1. A II-fuzzy linear topology on a vector
space E over K is a II-fuzzy topology (containing all the
constant fuzzy sets) such that the two mappings

+ : EXE—E (x,y)—xty

* : KXE—E (t,x)—>tx
are fuzzy continuous when K is equipped with minimum IT-fuzzy
topology which includes the usual topology and all the constant
fuzzy sets, and K XE, E XE have the corresponding product fuzzy
topologies. We denote the the family of all i-neighborhoods of
t ek by lfi(t).
A linear space with a II-fuzzy linear topology is called a II-

fuzzy linear space or a II-fuzzy topological vector space.

Let E be a II-fuzzy topological vector space. Then the maps

f 1 E—E f(x) tox (toeK, ty # 0)

g : E==E g(x) =x + X, (xer)
are topological homeomorphism.
Furthermore the sum of open fuzzy set and any fuzzy set is again

an open fuzzy set. (See Katsaras [22].)

Example 2.6.2. Let (R,(0(,2) be a usual topological spaces.

We define the II-fuzzy topological spaces (R,CQ#,II), where Cﬂ#
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is the II-fuzzy topology on X generated by the subbase
S = (17, |a€0ny U (17, ]1€T and A€OT s.t. A% 0],
where 1+A(x) =[1" xea i-A(x) ={i— XEA
and
0~ x¢A 0~ x¥A.
We denote (R, @%,II) by E, then the two mappings,
f : EXE—E (x,y)——x+y and « : RXE—E (ryx)—>rx
are fuzzy continuous.
But, the fuzzy topology O[# on E is not translation invariant.
Therefore, we use 1I-fuzzy topologies which contain all the

constant fuzzy sets.

Proposition 2.6.3. Let A be an i-neighborhood of Zg = X5 * ¥ps
i.e. Aézgjzo) and zy = xg *+ yg» in a II-fuzzy topological vector
space E. Then, there exist A1EZ%jxo) and Azezgﬁyo) such that
Ay + A, { A. In case x5 = y5 = 0, there exists B¢ Q&(O) such that
B+ B < A.

Proof. Since the map + : EXE—E, (x,y)—x+y is

continuous, the proof is obvious.

Proposition 2.6.4. In a II-fuzzy topological vector space E,
if Aé'ui(o), then there exists BE ﬂi(O) such that B is balanced
and B £ A.

Proof. Without loss of generality, we may assume that A is
open. The map g ¢ KXE—E, g(t,x) = tx is continuous. Since
g_1(A)(O,O) = A(0) 2 i+, there exist dé}E(O) andiDéLGﬁO) such
that X XD ¢ g'1(A). From the definition of fuzzy topology on K,
there exists § > O such that {teK| |t| £ §)}C {teK| X(t) i*y.

Now, let C = AADAL € I (0). If |t] < § then
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A(tx) = g T (&) (£,%x) 2 (k xD)(t,x) 2 (rXC)(t,x) = () AC(x) =
c(x).
Then we take B =§C.

Proposition 2.6.5. Let A be an i-neighborhood of 0 in a II-
fuzzy topological vector space E. Then, for every xOEE, there

exists tOEK such that tOA(xO) 2 it

Proof. Let f : K XE—E, f(t,x) = tx. Since f is
continuous and f(O,xo) = 0, f_1(A) is an i-neighborhood of
(O,xo). f_1(A)(O,xO) p i*. Hence there exist dE}E(O) and
B )/, (xy) such that o x B £ £~ (n).

From the definition of fuzzy topology on K, there exists § > O
such that g < o, where,

B (1) = (1% (Jt] < &)
0~ (1t] 2 8).

Clearly, AXB £ f"‘l(A).

If [t] <5, Altxy) = £7(8)(txy) 2 Q(+)A Alxy) 2 1¥. Therefore,

toh(xg) 2 17 for t, with 0 <[1/t4] < 6.

0

C. Omoto proved the following

Theorem 2.6.6. Let E be a II-fuzzy topological vector space"
bver K, and Z(i(o) be the family of all i-neighborhoods of O for
ie[0,1]. Then Z(i(o) has the following properties:
(1) every constant fuzzy set Jy with § 2 it belongs to
U, (0). And A(0) 3 i* for each A€ (0);

(2) 1f Ay, A,€7(0), then A AA,ET (0);

(3) for each A€l{;(0), there exists B€ZG‘O) which is
balanced with B £ A;

(4) for each Aff&i(O), there exists B€ &&(O) such that B + B
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$ Aj
(5) let AeII®, if there exists B& [/, (0) with B < A, then
A€ U, (0);
(6) let A€ Z/{i(O) and xy€E, then there exists a positive
number § such that A(txg) 2 i for all [t| < 6.
Conversely, if [Z(i(o)]iE[O,ﬂ is a family of families of II-
fuzzy sets in a vector space E over K satisfying (1)-(6), then

there exists a unique II-fuzzy linear topology O on E.

Proof. It is clear that [{;(0) has the property (1)-(6).
Conversely let { Z{i(o)}iz[o 1] be a family satisfying
~ ’
(1)-(6). For A€ Z{i(O), from (3) and (4), there exist sequence
(A)) such that A _€0{,(0), A  is balanced, A; = A and A qtAl g

¥, 4(0) 2 44(0).

{ A . Since A is balanced, An(O) 2 An+1(0) 2 i

M

- 00 o oo
Let B be >, A, where 2, A = \/
n=1 k

> - Ay. Then, BéZ(i(O).
n=1 n=1

1

We need to show that, if B(xo) 2 j+ then B—xOE Z(J.(O). Since

it 4 \/[Q|Q<j+], there exist A and noé N such that
= :F .+
(I§1An)(xo) 2 (ril An)(O) 2i. VNow,

B

1A%

A1+A2+ « v +An+An+1‘

Hence,
B(x) > (A1 FAy b e e 0 A4 An+1)(x)

x¥+z[(A1 + AZ + e ¢ o + An)(y)/\An+‘](z)]

v

(A1 + A2 + o e . % An)(xo) A An+1(x-x0)

v

S+
(i A An+1)(x—x0).
:t .+
8o, J AA 41 £ B-x5. TFrom §'A An+1€Z{j(O) and (5), B-x,€ Z{j(O)-
For each x € E, let 7,{i(x) = ( x+A | A€ Z{i(O)]. It is easy to see
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that the family [Zli(x)|iel, x€E)} has the properties (N1)-(N4) of
theorem 2.3.2. Therefore, there exists a unique fuzzy topology (U
on E, It is easy to see that Olis translation invariant.

It remains to prove that the mappings + and * are
continuous.

Continuity of sum:
Let the map f : EXE—E, f(x,y) = x+y. If D¢ &i(x0+y0)’
then there exists A€ &EKO) such that D = x4 + yqg + A. From (4),
there exists BEZG}O) such that B + B £ A. So, (xO+B)X(yO+B)
< f'1(xo+yO+A). Hence f is continuous.

Continuity of scalar multiplication:
We must show that, if AGZ{i(O) then tA,GZé(O) (t#0). Let A be
balanced. When |t|21, the result is clear. Let |t|<1. For n such
that 2% < |t|, there exists BE [{;(0) such that
? + B+ ¢+ B <A

—~
211

Hence B < 27CA. So tA = 2%t27PA > 2%¢B > B.

Therefore tA€ Z{i(O) .

Let the map g : KXE—E, g(tx) = tx. And let (to,xO)EK‘XE, A
= tpxyth, A€ &i(o). From (3) and (4), there exists a balanced
set B¢ &i(O) such that B+ B + B + B { A. Since B is balanced, B
< B+ B. Hence B+ B + B < A. From (6), there exists §€(0,1]

<
such that B(tx,) 2 1' for |t| ¢ §.

Let ¢ =[(1/t,)BAB (ty # 0)
{ B (ty = 0)

o (t) =[1" (It] < 6)

i~ (1] 2 6).

Then C 4is balanced, GEZ(i(O) and o(é]/;.L(O).
If D = (to+d)x(xo+0), then Dézgxto,xo). We need to show that
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d(t—to)/\C(x—xo) $ A(tx) = A(tx-toxo)
When |t-ty| 2 §, it is obvious from X(t-ty) = 0. Let [t-ty| < 6.
We have tx-tyx, = to(x—xo) + (t-to)xo + (t—to)(x-xo).
Then, B(tq(x-xy)) ={(B/t0)(x—x0) 2 C(x-xg) (tq #0)
B(0) 2 C(x-xp) (ty = 0).
Hence, B(ty(x-x%5)) 2 C(x-x5) 2 D(t,x).
Similarly, from ]t—t0| < 6,
B((t-tg)xg) 2 1% 2 (t-t4) 2 D(t,%).
Since B is balanced,

B((t-t4) (x-x))

[\

B(x-xo)

[\

C(x—xo)

v

D(t,x).

Hence, A(tx-tpxy) = A(tp(x-xg) + (t-t5)xgy + (t-ty) (x-x4))
B(tg(x-x0)) A B((t=ty)xg) AB((t-ty) (x-x4))

2 D(t,x).

v

Therefore is continuous.
g

Definition 2.6.7. A sequence of fuzzy sets U = (Un) is
called a fuzzy string (abbreviate string), if
(0) U,(0) € I" and U_(0) = U_,,(0) for all n € N,
(1) every U_ ¢ ‘U is balanced,
(2) every Un is weak absorbing, that means Un is Un(O)-
absorbing,

< T

(3) (U,) is sumnmative, that means U ., + U .4 < U

for all n € N.

Un is called the n-th knot.

If rU=(Un) and Q[‘=(Vn) are strings in E and t € K, we define
t U =" (tT),
YU+ = (T, + V),
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U Y = (U, nv).
lj*”yfis called the sum and QJ/‘%f the intersection of the
strings U/ and %”. Of course 7]-#@@ QJ/\2(~and tY (¢ # 0) are

again strings in E.

Corollary 2.6.8. Let éﬂ be a set of strings in a vector
space E, then finite intersections of the knots of the strings in

generate a unique fuzzy linear topology.
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3. 1Q¢yy-FUZZY SET AND PARTICLE.

3.1. IQ¢p>-fuzzy set

When we apply the fuzzy theory to various fields, we often
adopt the unit interval I (that is, [0,1]) as the truth value set
of the fuzzy sets (see [44], [33] and [3]). Why do we adopt the
set I as the truth value set? The reason may simply be that I is
a totally ordered continuum in which operations like algebraic
operations such as addition and multiplication are built-in. It
is natural to define "all" by 1 and "nothing" by O, and anything
in between by a number between O and 1. However, for construc-
ting a mathematical system where we can formulate our problems in
a better way, we may have to consider more suitable truth value
sets. For example, as is shown in [12], [19], [27] and [7], it is
not easy to introduce the concept of compactness using I-fuzzy
sets in general topology. On the other hand, the notion of L-
fuzzy sets defined in [10], where L is a general completely
distributive lattice with involution, is too abstract and general
for some applications. Our aim is to construct fuzzy sets that
are at the same time suitable for various applications and
mathematically easy to deal with.

Since the unit interval I plays an important role in fuzzy
sets, 1t i1s desirable that a truth value set L has the following
two properties:

(1) L includes I as a sublattice;

(2) +there is a suitable equivalence relation R such that

the quotient lattice L/R is lattice isomorphic to I.
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The two arrow set II introduced in chapter 2 is an example

of the set satisfying the above conditions.

Let XA be an ordinary set, and P(X) the ordinary power
set. For A, B€P(X), we denote the symmetric difference
(AnB®) U(A®NB) by AAB. Then, P(X) is an Abelian group
relative to A. That is ; A

(0) if A, B < P(X), then A A B £ P(X),
(1) (A AB)AC=4A(BAC),

(2) AA@P =0 A A=A (@ is the unity element),
(3) AAA =9 (A is the inverse element of itself),
(4) AAB=3BAA.

A natural question arises. Can we extend this operation to the
family of fuzzy sets ? In the family of I-fuzzy sets, 1if we
define A A B= (AAB')V (A"AB), then 1¥ does not form a group
relative to A. Even if we define (A = B)(x) = |A(x) - B(x)], IX
is not a group under 2. It is difficult to find a simple
operation which is an extension of the symmetric difference in
the family of I-fuzzy sets, by which the family becomes an
Abelian group. The above mentioned difficulties also occur in
II-fuzzy sets. Hence, it is natural to look for truth value set L
lying between I and II such that_LX forms an Abeli;n group under
a simple operation. Indeed we show that there exists a family of
truth value sets L with :

(1) IIDL>I as sublattice;

(2) there are sultable easy equivalence relations R1 and R2

such that II/R1 is lattice isomorphic to L and L/R2 is

lattice isomorphic to I;
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(3) LY form an Abelian group under a simple operation.

For a fixed natural number m, let Q(m) be the set
(k/u® € I| n € N, kK € X such that 0<k<m®}.- We denote
+ + + - - -
(x" € I'|x € Qpy) by Q¢py end (x” € I7|x € Qps) by Q¢ps- Then,
the set I-L)sz> by IQ<m>. The following results are immediate.

Proposition. 3.1.1. IQ<m> is a sublattice of II.
Proposition. 3.1.2. I is a sublattice of IQ<m>'

Proof. Regard I~ as I.

Proposition. 3.1.3. Let R1 be the equivalence relation in
II such that x ~ x  for every x € I-Q.. 5. Then, II/R1 is

isomorphic to IQ<m>.

Proposition. 3.1.4. Let R, be the equivalence relation in
IQ(m) such that x—rvx+ for every x€1Q<m>. Then, IQ<m>/R2 is

isomorphic to I.

We define the operation “ from Qs to IQ s by :

(x*) = (1-x)" € Q> for x+.c.sz>.
- - -
(=) = (1-x)¥ € Q¢ s for X €Qy,
(x7) = (1-x)7 € I7-Q 5 for x €IT-Q -

Since the operation 7 has the involution property; the set

IQ<m> is a completely distributive lattice with involution.

Remark Let f be the canonical injection from I to IQ<m>,
and g be the canonical projection from IQ<m> to IQ<m>/R2. Then,
£(a’) # [£(a)] for acl. But g(b’) = [g(b)) for beIQ. , and
g(f(a’)) = g(l£(a)]’) = [g(£(a))) for a¢I. 1Let h be the
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canonical injection from IQ<m> to II, and k be the canonical
projection from II to II/R1. Then, h(a”) # [h(a)]l  for a€IQ¢ps+
But k(b’) = I[k(b)]” for beIl and k(h(a”)) = k([h(a)l”) =
[k(h(a))]® for a€IQ¢ - Hence, the involution in IQ. s stated
above is natural.

Let ZmN be the set of infinite sequences a = (an), where

an'6(0,1,...m-1}, neN. The order in ZmN is defined

lexicographically. Thus for any two elemenis =2, b € ZmN, a>b

if there exists n such that a1=b1, a2=b2, ooy an=bn but

®n+1”Pn+1

z ¥

Theorem. 3.1.5. n

is lattice isomorphic to IQ<m>.
Proof. Define the function from ZmN to IQ<m> by,

£((ay)) =[(ap/m + ag/m® + ... + a /) e Q¢

N

S
m ’

for a=(an) Z with finitely many nonzero a

n

(ao/m + a1/m2 + .. + an/mn+...)—é I

L otherwise.

. . . N
Then, £ is a isomorphism from Zm to IQ<m>.

Therefore, IQ<m> inherit algebraic properties from ZmN.

Zm forms an Abelian group under usual addition % modulo m. This

. . N =
induce an operation % in Z, defined by (an) 3 (bn) = (an ¥ bn).

N, %) forms an Abelian group. Hence by

It is easily seen that (Zm
the isomorphism given in Theorem 1, IQ<m> forms an Abelian group
under the induced operation : (A & B)(x) = A(x) % B(x).

Hence we have,

Theorem 3.1.6. There exists an operation on the family of
IQ<2>—fuzzy sets, which is an extension of symmetric difference,

by which the family forms an Abelian group.
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3.2. Particle

The concept of fuzzy points was defined in [43]. However, it
causes some problems (see [13]). We introduce another new
approach to the concept of points. In our real world (in
physics), "point" is an imaginary concept to indicate a position.
It does not exist in material world. On the other hand, we found
out (or thought out ) "atoms"™ and "elementary particles" as
constituent elements of matter. We introduce the concept of
"particles™ in fuzzy spaces in the same manner. This is not the
extension of the concept of the usual "point" but the extension
of the concept of the usual "one-point-set" as a minimal set. The
concept of "one-point-set" in usual space has at least two
properties. One is M"any set can be represented as the union of
one-point-sets". The other is "every one-point-set cannot be
represented as the union of other one-point-sets". We construct

"particles" with these properties.

Let S be a non-empty subfamily of LX, R a subfamily of S.
We say that R (subset of S) is a particle family of S (in LX) if

the following two conditions are satisfied:

(P1) for any s€S, there exists a subfamily Ry of R s.t. s= \/RO
(that is R is a base of 8),

(P2) if reR, then r# \/SO for any subfamily S, of S-{r].

The condition (P1) means "any set can be represented as the
union of one-point-sets". The condition (P2) means "every one-

point-set cannot be represented as the union of other one-point-
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sets". We call an element of R a particle of S. When Ro=¢, we
have \/RO = OX’ and from the condition (P2) we see that Oxélh

We can define the co-particle as the dual concept of the
particle. We say that R is a co-particle family-of S (in LX)

if the following two conditions are satisfied:
(CP1) for any s€8, there exists a subfamily Ry of R s.t. s=,/\RO
(cP2) if reR, then r# /\S, for eny subfamily S, of S-(r).

We call an element of R a co-particle of S. If R is

particle of S, then {r”|reR} is a co-particle of {s”|seS].

Proposition 3.2.1. If there exists a particle family of S,

it is unique.

Proof. Let R and Q are particle families of S. Suppose there
exists A €Q s.t. Af R. Then from the property (P1) in R, the A is
written in the form A = \/RO where RO is subfamily of R. But
this contradicts the property (P2) of Q. So every element of Q is
in R. We can prove that every element of R is in Q in the same

way.
Proposition 3.2.2. If there exists a co-particle family of
S, it is unique.
The proof is similar to that of the proposition 3.2.1.

In the sequel, we write the particle family of S by sP, the

co-particle family of S by Sp.
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Example 1. Let L = 2. The particle family (2X)p is the
family of the all one-point-sets of X (i.e. {(x}|x €X}), and the

co-particle family (ZX)p is the family {X-{x}|x€X]).

Example 2. Let L=II. Let p, be a II-fuzzy set defined by

py(x) =[p" x=y

The particle family (IIX)p is [py|0 {pg1, y<X}, and the co-
particle family (IIX)p is {(py)’IO <p g1, yeX) Similarly,
the particle family (IQ.  %)P is (pylp € Qepys¥€ X}, and the co-

particle family (IQepy™)) is () [p€Qepys 7€ 1)

p

It is not always true that the particle family and the co-

particle family of LX exist.

Example 3. When L = I, the particle family and the co-

particle family of LX do not exist.

Example 4. When X =1L =1I, let Cy be a I-fuzzy set defined by

Cy(x) =(y x<y
)

v N

1 X
and D be the set [Cy|yEI}. Then DP is D-{1).

Next, we describe how to construct a particle. Let S be a
non-empty subfamily of X, We define s = (aes|Aa> /\(Bes|B<a))
and 8y = {aes|A<\/(BeS|BYA)).

Proposition 3.2.3. If there exists the particle family of
S, then P = s”,
Proof. Suppose A€ Sp, then can not be writien as a union of

subfamily of S-{A), by the condition (P2). Hence A> \/{Be€S|B<4a},
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and so A<ES#. Conversely, suppose that there exists an A.GS# s.t.
A¢sP., By the condition (P1), there exist a subset {Bj] of 8P

s.t. A = \/B.. Then B.AA < A and \/(B./\A) = (\/B-)/\A = A.
jer d J jET 9 jeJ !

That is, \/{(BjAA)ES|(BjAA) < A) = A. It is a contradiction.

Proposition 3.2.4. If there exists the co-particle family

of S, then Sp = Sy.

"

The proof is similar to that of the proposition 4.1.

Corollary 3.2.5. If there exists the particle family of LX,

then (LX)P = (LX)%, and if there exists the co-particle family of

X X
L¥, then (1%), = (LX)#.

For an L-fuzzy topological space (X, (O, L), 1let K, be

/
the set (A€ Ly | A = ;gng}Bij where By ;€ (U or (By;Y€ 0L), K*g

be the set {A€Ly | & = /\B. where B.¢ l or (B.)'€ OL}, K, be

1a=\ s

the set (A€L where Bij e OU}, and K*1 be the

X je1jeg 1
set (A€Ly | A = /N, where B, € 01).
Proposition 3.2.6. (X, OL,L) is T, if and only if LX = K.

(x, JL,L) is T1 if and omly if LX = K1. (The definitions of TO

and T, are given in section 0.4.)
Proof. It is obvious.
Proposition 3.2.7. (KO)# = (K*O)# and (K1)# = (K*1)#.
Proof. Suppose that there exists an A.e(Ko)# s.t. A ¢(K*o)#-
From AéKo, there exist Bij € O'LUOY_/ s.t. A = \/ /\B. Since

jerjes 137
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A > (BeKy|B<A}, there exists a JgCJ s.t. A = /\ B;.  Hence
jedo

A€X*yg. From A.¢(K*O)#, we have A £ \/[B K*5|B<A). By K*q5CKg,
A < \/(B Kg|B<A), which leads a contradiction. (Ko)¥ c (kxp)¥.
Conversely, suppose that there exists an A e(K*o)# s.t.
A€ (Xg)?. From A £(Kg)¥, A =\/(BeKy|B<A). We can write B =
\/Bi where Bj €K*3, and hence A £ \/{BeK*O|B<A}- It is a

isT

(K*g)7.

contradiction. Hence, (KO)# D(K*O)#. Therefore (KO)#

Similarly, we can prove (K1)# = (K*1)#-

Proposition  3.2.8. If (X,0(,L) is Ty, then (LX)# = (K*o)#.

1f (%, 07,1) is Tq, then (LX)F = (kx,)7.

proof. It follows from Proposition 3.2.6 and Proposition

3.2.7.

Theorem 3.2.9. Suppose (X, (0(,L) is an L-fuzzy topological
space, and there exists the particlé family of 1X. Then (x, g7,L)
is Ty if and only if (1X)p = (K*o)#. Also (X, OL,L) is T4 if and
only if (LX)P = (k*,)7.

Proof. By Corollary 3.2.4 and Proposition 3.2.8.

This theorem indicate particles of spaces which are T space
can be constructed by open and closed sets, particles of spaces

which are Tq space can be constructed by open and sets.

Let LX be the family of L-fuzzy sets of X, LY be the family
of L-fuzzy sets of Y. Suppose there exists the particle

families of LX and 1Y, (LX)P and (LY)P are ordered sets.
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Proposition 3.2.10. If f is a order preserving function
from (LX)p to (LY)p, then we can define a fuzz relation F from

X to LY vy

F(a)= \/£(4,)
jed J
for any A€LX, where A = \/Aj, Aye (L%)P,
jed
Proof. If \/A.i - Vs, A5, B, €(LX)P, there exists a j;
ieI j€J 9 J
such that Ai < Bj.’ since Ai is a particle for each 1i€1I,

i
Hence f(Ai) < F( \/B.). And so F( \/Ai) < F(\/'B.). Therefore
j€J i€l jeJ 9

r( V) =7 V).

i€l jeJ d
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