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Abstract

The Weyl invariance of the two-dimensional o¢-model, which
describes the string propagation in a background, is a necessary
condition for consistent quantization of the string theory and it
restricts the background configurations. On the other hand, in
the string theory, the wvanishing one-point amplitude 1is the
condition for a classical solution of the background fields by
analogy with field theory. Thus it is natural to anticipate that
the Weyl invariance condition is equivalent to the wvanishing
one-point amplitude including the string loop correction. But at
the string 1loop level, this equivalence 1is not conf irmed
explicitly. Therefore, we calculate one-point amplitude and show
that its vanishing provides the same background field equation as
that obtained from +the Weyl 1invariance condition to string
one-loop order and O(x').

Next we consider the higher dimensional cosmology based on
this string-loop corrected background field equation and find a
cosmological evolution different from the ordinary Kaluza-Klein
cosmology due to the string vacuum energy, which is a string loop

correction to the equation.
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1. Introduction

String theories[l] are quantum theories of elementary
one-dimensional objects, rather than = points as in the
conventional quantum theory. These theories originated in an
attempt to describe hadron physics[2]. Strings consist of two
distinct topologies. called open and closed. Open strings have
free ends, whereas closed strings have the topology of a circle.

However, these theories contain massless vector and 2-tensor
states, which arise from open and closed strings. respectively.
In the zero slope limit (or in the low-energy 1limit) massless
vector particles behave precisely as Yang-Mills gauge fields and
massless symmetric 2-tensor state interacts appropriately to be
identified as a graviton. so that the string theories are
regarded as a unified theory including gravity[3].

There are two basic types of string theories: bosonic strings
and superstrings. Bosonic string theories are consistently
formulated in 26-dimensional space-time and superstring theories
in 10-dimensional space-time. Superstring theories are
classified into two types: type I and type II. Type I
superstring theory (SST I) consists of open and <closed strings
and have N=1 space-time supersymmetry. 1In the low energy limit
the S5T I is reduced to D=10, N=1 supergravity couprled to
super-Yang-Mills theory. Type Il superstring theories (SST 11)
consist of closed strings only and have N=2 space-time
supersymmetry. The type Ila theory has supercharges of opposite
chirality and its low-energy limit is the non-chiral D=10. N=2

supergravity. The type IIb theory has supercharges of the same



chirality and its low-energy 1limit 1is the chiral D=10, N=2
supergravity theory. The SST Ilb was shown to be gravitational
anomaly freef4], and it was thought that the SST I might have
gauge and gravitational anomalies.

In 1984, however, Green and Schwarz[5] showed that the SST 1
is gauge and gravitational anomaly free and one-loop finite If
the gauge group is S0(32) and that in the low-energy effective
field theory those anomalies vanish when the gauge group is EsxEs
besides S50(32). This statement suggests that a consistent EsxEs
superstring theory can be also formulated. A new type of
superstring theory was found by Gross et al(61]. Their theory,
called the heterotic string, has gauge group EgxEs or Spin(32)/Z:
and consists of only closed strings. Hence, at present, we know
that five superstring theories (S0(32)SST [, SST Ila, SST IIb and
EsxEs or Spin(32)/Z: heterotic strings) are anomaly-free and
finite at one loop (perhaps all order).

Note that, in the point particle theory, quantum gravity has
nonrenomalizable divergences. On the other hand. superstring
theories contain gravity and are finite. Thus they seem to be
consistent quantum theories including gravity.

Since the superstring theory is 10-dimensional (bosonic one
is 26-dimensional), to obtain the effective 4-dimensional theory,
extra 6 (or 22) spatial dimensions should be compactified®. To

solve this compactification problem, we must consider the string

# Recently, the four-dimensional string theory is also

constructed (71].



theory in a curved background. The string propagation in
background fields can be described by a two-dimensional nonlinear
og-modell8]. On the other hand, the condition for consistent
quantization of the string theory 1is the Weyl <(conformal)
invariance on the two-dimensional string world-sheet. Therefore,
the Weyl invariance of the quantum o¢-model 1is the consistency
condition of the string theory in background fields. Since the
Weyl anomaly of the og-model depends on the background fields, the
Weyl 1invariance of the o-model restricts the background
configurations and this condition seems to be equivalent to the
equations of motion for background fields obtained from the
string (tree-level) effective action(8]. Recently, it was
pointed out that the string loop effects contribute to the VWeyl
anomaly and that the background field equation is modified by the
string loops[9,101.

On the other hand, 1in +the string theory. the vanishing
one-point amplitude <<V>>=0 is the condition for a classical
vacuum solution (or, at the quantum level, an extremum of the
effective potential) by analogy with field theory. Thus it 1is
natural to anticipate that the Weyl 1invariance condition Iis
equivalent to <KV>>=0 including the string loop. At the string
tree level, this equivalence is plausiblel11], but at the string
loop level, this equivalence is not confirmed explicitly.

In this thesis. we calculate <KV>> using the Polyakov's path
integral [12-141 and show that <KV>>=0 is equivalent to the Veyl
invariance condition of the g-model to the string one-loop order.

Next. we discuss the higher dimensional cosmology based on the



string-loop corrected equation of motion. Since the string
vacuum enerdy appears as a one-loop correction to the equations
of motion for the background fields.. we can expect the
cosmological evolution different from an ordinary Kaluza-Klein
cosmology[15-17].

In this thesis we consider only the <closed bosonic string
theory.

This thesis is organized as follows. In sect. 2, we briefly
review Polyakov's path integral formulation of the closed bosonic
string. In Sect. 3. we consider the Weyl anomaly in the bosonic
nonlinear o-model with the metric and dilaton fields and obtain
the background field equations. In sect. 4, we 1investigate
effects of string 1loops on the Weyl anomalies and get the
string-loop corrected equation. In sect. 5, we calculate the
one-point amplitude using the Polyakov's path integral and show
that the vanishing of this amplitude provides the same equation
as the string-loop corrected one. In sect. 6, we discuss the
cosmological evolution by wusing the string-loop corrected
equation of motion. Finally sect. 7 gives conclusions and

discussions.



2. Polyakov String

In this section, we briefly review Polyakov's path integral
formulation of the closed bosonic stringli2-141.

The basic object in a string theory 1is a one-dimensional
curve, called a string, whose evolution sweeps out a
two-dimensional surface (or world-sheet) 1in space-time. The

classical Nambu-Goto action 1is the area spanned by such a

surface:

A = j d2z Jdet(hss). (2.1)

3x* 9%,
where hab=-§E; A Zb is the induced metric on the surface:

x4 9X

ds? = dx"dX, = 57.35s dz2dz®

This action is a non-linear function of the coordinates of the
string and this non-linearity leads tov difficulties in
quantization.

Polyakov's prescription for the quantum theory of the bosonic

string is to start instead from the classical action®[12]

Se = -%rf d2z Jg g2t 3.X*3.X . (2.2)
M M

# We set the string tension T=1/27¢' equal to wunity 1in this
section.



Here M is a two-dimensional compact surface. z&, a=1.,2, are the

world-sheet coordinates on M. ¥X*(z) is an embedding of M into
space~time or space-time coordinate: E={X:! M > space-time}. We
shall assume that space-time is flat and Euclidean (R49). 9ga.p, 1is

the world-sheet metric on M: m={g: metric on M}.

The variation of the action Sgs with respect to X*  and dayb

gives the classical equationé of motion

AY =-J—(;—33(J?gab3bx“) =0, (2.3)

Tav

3.X43.0X ), - %gabgcdgcx“adxf 0, (2.4)

where Tav is the energy-momentum tensor. From (2.4), da»r 1i5
conformally -equivalent to the metric ha.p induced by RY.,
Therefore (2.3) is reduced to the equation for a surface of

minimal area

Y¢C Jh has X = 0, (2.5)

and the action Se is Jjust the Nambu-Goto action A.
The action Se is invariant under:
(i) The group of reparametrizations or diffeomorphisms of the

world-sheet M: Diff (M)

z3 2> z'3(z),



3z'c 3z’ 9
dze 3Jzb

gabv(z) = gsq(Z').

{ii) The group of Weyl or conformal reséaling of the metric:

Conf (M)

z® > z2,

27:(2)ga

gab(Z) > e v (Z).

(iii) The group of Poincare translations X4 a“vx”+ X%.

As a result of the local Weyl invariance, the +trace of Tabp 1i5S
identically equal to zero whether or not the equation of motion
hold, and the classical equation can determine the metric only up
to a conformal factor.

In the quantum theory of Polyakov string, we integrate

functionally over space-time coordinates X* and over metric Jab.
In general renormalization is needed and the action should be
chosen to be a most general renormalizable one with couplings of

non-negative dimension, and consistent with (i) and (iii):

snx,g1=ij d2z Jg gob 3.X%3uX + —"—jdez J3 R + uejdzz 753, (2.6)
. 2 Jn & 4n Jwm "
where —i;— J”dez Jg R = yx(M)=2-2h is the Euler number of M.

h is the number of handles on the surface, which 1is <called the

genus of the surface. In general, for any value of 2% the Weyl



invariance cannot be maintained due to the Weyl anomalies.

The Polyakov partition function is defined by

7= T [dg1rdx] e °[X»9]

topologies
s mx E

(2.7)

However, in quatization of the string theory, the classical
invariances must be maintained and then this integral overcounts
physically equivalent configurations related by the group of
diffeomorphiSm and by the group of Weyl rescaling. Thus we must
identify equivalent configurations and count each one Jjust once.

In other words, we should integrate not over m<E but over the
quotient space mxE/Diff(M)xConf(M). When all anomalies wvanish,
the precise definition for the Polyakov partition function can be

given by

1 e"S[Xﬁg]
Volg(DiffliVolg(Conf) ’

Z = ) [dg]1[dX]

topoiogies
mx E

(2.8)

where Vol (Diff) and Volg(Conf) are the wvolume of Diff(M) and
Conf (M) through ga.», respectively.

To get the measure [dX], we first define the metric (or the

norm) for deformations GXu:

hsx*l2 = [d2z Jg sX*sX . (2.9)
M A



The measure is defined by requiring

1 y
5 lex™l2

J[dﬁX] e =1 . (2.10)

Similarly, to obtain the measure [dgl on T¢g(m), the tangent space

to m at the point g, we define the metric

Ilﬁglli: f”dzzf?( Gabed 4+ ygabdbged )8g,p89cd (2.11)

i

{8g,89>¢ ,

where u is an arbitrary positive real number and G2°¢d is the

projector onto the space of symmetric traceless tensors:
Gabed = —é——-(ganbd*.gadgbc_gabgcd). (2.12)

This suggests that ohe performs an orthogonal decomposition on

§g:
§gab = 8hav + 29, (87), (2.13)

where 6hsp is the symmetric traceless part and 8z 1is the trace

part. Inserting (2.13) into (2.11), the metric is reduced to

lsgllz = Indez Jg Gevcd(§hap)(8hea) + 16 U Ind2z Jg(szre., (2.14)



Thus the measure [dgl is given by

fdgl=[dhlldz] . (2.15)

Since the metrics (2.9) and (2.11) are invariant under
diffeomorphism, but not invariant under Weyl rescaling of g. the
measures [dX] and [dgl are also not invariant under the Weyl

transformation. This is the origin of the Weyl anomalies.

Let g be an admissible metric on M, then for a conformal

factor ¢ the metric

g = 8 € (2.16)

is an admissible metric on M. If 3M=0, we can choose 8 to be a
constant curvature metric. (See appendix A.) Thus we analyze the
effect of gauge transformations on a surface determined by the
gauge fixing condition (2.16). Under a diffeomorphism with
infinitesimal generator 8V. connected to the identity Diffa(M),

the change in the metric is given by the Lie derivative:

89ab A5y = Va(8Ve) + Vu(8Va), (2.17)
g=ge

where v, denotes the covariant derivative with respect to g=ge20.

The change in the metric by changing the conformal factor o¢:



59sb = 2(80)90s = 2(80)90 5620 (2.18)
Under orthogonal decomposition (2.13), we obtain
§gav = 8hav + 29abp(8T) (2.19)
where
§hav = 2Gab°99c(8Ve) = (P186V)ay, (2.20)

28T = 280 + gabU,(8Vy) (2.21)

and the operator Pi1 maps vectors into symmetric traceless
2-tensors. The change of the variables from h and =z to V and ¢ is

[dh1ldz] ! d(h.t)

XCR O)I [dV1ldo]. (2.22)

The above Jacobian is written as

172
ggg ;; - | P: 0 | = det Py = rdet PiP:1, (2.23)

where the operator PT is the adjoint of Pi, 1i.e.,it maps

symmetric traceless tensors into vectors.
A vector 8V satisfying P;(8V)=0 is called a conformal Killing

vector (CKV). From (2.20) and (2.21), a diffeomorphism generated



by CKV is equivalent to a change in the conformal factor. Since
each deformation of the metric is only counted once. such
diffeomorphism must be omitted. Thus infinitesimal generator &V,
limits to 8V.*, which is orthogonal to CKV, and the correct

Faddeev-Popov determinant is det'PtP1, where the prime denotes

the omission of the zero eigenvalues.
There are deformations of the metric which are not given by
(2.19). Such deformation is called Teichmuller one of the

metric. We have the orthogonal decomposition of To(m)([13,14]

Tg(m) = Tg(Conf) & Tg(DiffB-L) ® Tg(Teich), (2.24)

where Tg¢Conf) = {280Gab}, Tgtbiffrery = {Image P11} and

Tgt¢Teich)={ker PT} (see fig.l and 2). ker P? is the kernel of Pt.

Let S be a gauge slice within m transversal to the orbits of
Diffe(M)xConf(M), where {tr} is a set of coordinates and {x ("} a
set of tangent vectors for the slice S. The deformation of the

metric on the slice S is given by

§gab = x{Mapbftr (2.25)

and we let Ay be the orthogonal projection on TgtTeiehl), Then

the deformation of the metric is decomposed into (see fig.3)

8gab = 2609ab + (P186V)ap + (Agy(r))apdtr. (2.286)



Inserting (2.26) into (2.14), we get

6ganvll2 = 602 + P16V*]2 & <Agx¢r) ,Agxts)dftrots
9 g ] :
= 2 L1t 2
Haong + [[PysV Hg (2.27)
+<Agx(r)’w(r')><w(r'),z'/,(s')>—1<¢(s'),{\gx(s)>6tr5ts .
where ¢ (7 is a basis for ker PT. Thus the measure [dgl is

expressed by

- L] + 1/2 1 det(A% 9w>g
{dg] [dolldet'PiP:1 [dv+1] [det(w,w>g]1’2[dt]
- L ] 1- 172 det()d 91/)>9
(dolldV+1Tidtlldet'PiP11] [det<y,p5,1172 , (2.28)
where detdAx,y>g=detly,¥>5 since A§=Ag and Ag 4 = 1.
kerPi
We can rewrite the volume of Diffa(M) as
Volg(Diffe) = Volg(Diffe*) Volg(CKV), (2.29)
Volg(CKV) = [det<s,dd>g1t 7 2Ida', (2.30)

where ¢ is a basis for ker P1 and do is an appropriate

parameter and

Diff(M) _ .
Diffo(My - Mapping Class Group of M . (2.31)



The functional integral over X is reduced to

-Se[X,91 _ 2r . -d/2
= (TQFEZET_ det'dg) , (2.32)

j[dX] e
E

where 44 is the laplacian on M with metric 9, and we remove the
zero modes corresponding to translations X > X + X¢ (this leads
to an overall factor of the volume of space-time, which we drop).

Thus the Polyakov partition function is

+

= _[del [dv+] ' L

Z top%logies fVOlg(Conf) VOlg(Diff)[dt][det PiP:1]
det<x, ¥ q o 4
[det<¢,¢>g]1/a( TdizTy det'dg)

L l Ldc ] [dt][ det'PiP, 1/2
topotogies |MCG| JVolg(Conf) detdly ,p >qdetds, s>
(2.33)

_er Lo-d/2  detlx.y>

where |MCG| means the number of elements in the mapping class

group of M.

We now analyze the behavior of

voT
det'PiPy 172 27 , -d/2
det<y ,¥ >odetis,9>¢ ( Tqezig det’ds) (2.34)

- 14 -



under Weyl transformation. (Since +the term detl{x,»> 1is Weyl
invariant, we will omit this term.) Using the heat kernel of the

determinant:

8

dt -tH

In det'H = - IE—;—- Tr'e : (2.35)

where ¢ is an ultraviolet cutoff, we can evaluate the wvariation

of (2.34) under infinitesimal Weyl rescaling. The results
arel12,13]
Jr
det'P1Py 1/2 2% , -d/2 ]
81ln [(det<w,w>gdet<¢,¢>g’ (Tqzzig det’ds)
(2.36)
- 1 - 2 - —1— - 2
si— (26 d)jd zJ9 R 60 - —2—l d/2)Id z Jg 80
The partition function becomes
. 1 Lol g det'PIP, 1/2
topologies ‘MCG! Vols (Conf) det<¢,¢’>§det<¢,¢>§
(2.37)
o I?{gz@ det‘Aﬁ)—d/2 d;g;)?o‘/’)@ e"Sconf ,
where
Scont = %2;d [ Jd2z Ji Ro + szz J3 523 ,03b01
(2.38)

__1_ - 2J 2 T~ 20
+[ 47“_:(1 d/2)+z21|d2z J§ e

- 15 -



This shows that in d=26 (critical dimension) the theory can be
made Weyl invariant by choosing x2 appropriately.

Then the partition function is reduced to

) 1 1 det<x ¥ >8 RSP
2% o1t es [MCG] I[dt] Vola (CKV) [det<w,p>a1i-2ldet’PiPul
(2.39)
x (J'gﬁgz'si_ det’A@)_IS .
where Vold (CKV)=[det<s,9>81172NIda i, The quotient space

m/Diffe(M)xConf(M) is known as Teichmuller space T and T/MCG is
the moduli space. Hence, if the integrand is invariant under the
transformation of the mapping class group (or the modular group),

we obtain the final expression:

= l det(st?>§ 'A B 1,2
Z SereiZaies IE?EQ.; Uo13 (CKV) [det<y,pralr-2tdet PiPl

(2.40)

21

( 13
X rd2zJ/g

det'ag)”

The n-point scattering amplitude is defined by[12-14]

<V(k1)....V(ka)>

VKi)....V(kn) -S[X,9q]
Volg(Diff)Vole(Conf) )

= X [dgl(dX]

topologies
P 9! mx E

(2.41)



Here V(k) 1is the vertex operator for an on-shell physical
particle state with momentum K. It must obey the f{following
covariance properties [181:

(i) Space-time translation invariance.

This requires that V(k) must be the form

V(K) = jdez 1K X(Z) 505 1y (2.42)

with U a function of the derivative of X*(z).

(ii) Space-time Lorentz invariance.

This requires that +the sprace-time indices z,v,... of the
derivatives 3X*/3z23zb... in U must be contracted with a real
polarization tensor eszv...(k), which transforms according to a

real representation of the little group of ku.

(iii) World-sheet reparametrization invariance.
The derivatives of XY(z) in U(z,k) must be covariant ones

X*.e:b.... The a, b indices in these covariant derivative must
be contracted with g2® and a factor Jg is required for the volume
element.

(iv) Weyl invariance

The vertex operators must be invariant under Weyl rescaling
after inclusion of all Weyl anomalies.

We choose conformal coordinates on the world-sheet so0 that

the metric is gab=6206abg and take a complex basis (z,2).

Condition (iii) requires that U behave under z > z'(z) as a

- 17 -



tensor of type (1,1), where z'is an analytic function of z. not

z. In general a tensor t of type (p,q) transform according to

t(z,2) » t'(z'.2') = (S&H)"P 42579 7.7y . (2.43)
dz dz
Then V(k) 1is invariant under =z 2> z°'. BX”/BZ is a tensor of
type (1,0) and gzz=-ér—e20 is a tensor of type (1.1). Thus
2
> ¥y = o~ (N-D)20 axto L Dexy, ., (D3X)
U(z,z,k) = e eﬂ”v”l”i“(k)(32 ) (DZZ) (ng)
o
Ay 2ua
8z

where N, the total number of z derivatives, is equal to the total

number of 2z derivatives, because the a,b,... indices are
contracted ’with gabv, Condition (iv) requires that \% be
independent of o. V(K) has ¢ dependence in (2.44) and also one
arising from Weyl anomalies in the path integral over X(z).
Possible sources of conformal anomalies are

(a) Contractions of X in exp(ik-X).

(b) Contractions of X in the covariant derivatives with X in
exp(ik-XJ.

(c) Contractions of X in the covariant derivatives with each other.

The ¢ dependence of (a) is given by



exp(ik-X) = exp(—kuk“c/4x):exp(ik'X): s (2.45)

where : : indicates +that the contractions of X within the
function inside ¢ : are to be dropped in the path integral. The
cancellation of ¢ dependence of (2.44) and (2.45) gives the

mass-shell condition
m2 = -kuk“=87z(N—1) , N=0,1,2,...., (2.46)

The o¢ dependence of (b) is eliminated by the transverse

conditions
‘e = 0. (2.47)

and the ¢ dependence of (c) is absent if exv... satisfies the

traceless conditions

ald 0.

(2.48)
AV oo

In this way we obtain vertex operators for physical particles as

follows:

m2=-8r  V(K) = I dzz Jg elKX(Z)  (yertex of tachyon) (2.49a)



mi= 0 V(K) = f d2z Jg gab 3.x%9,x etk X(2) e, (K) ,  (2.49b)

(vertex of massless particle)

and so on. With all anomalies canceled, the amplitude can also
reduce to finite dimensional integrals over moduli space by
factoring out the volume of the diffeomorphism and the conformal
groups.

We here consider the n-point tachyon amplitude. In this
case, the X ‘integration can be performed by completing the

square, so that

<V(ki1)...V(Ka)>

tipogogies ggggli Volg(Conf) Vol§(CKV)I[det<y,p>311-2

27 ' n A -d/2 -Scont
X (jq;gg%— det'as) e (2.50)

%;2.k4 i,
t G(Z!sZJ) )

x (27)948(K1+...+Kn)

where G(zi,z;) is a Green's function for the laplacian &g. For
zi*Z;, G(zi,z;) is independent of the conformal factor

G (Z;,Zj)=G§(Zi.Zj) , Zi*Z . (2.51)

e20§

- 20 -



On the other hand, for zi=z;, G(z:i,z;}) depends on the
factor
o= N S . R
G 20A(z.,zj)—Gg(z.,z,H . 20(z:¢) Zi=Z;
e" 3
However

fd2z Jg exp(-1/2 Ki2Gg(Zi,Z:))

is independent of ¢ for k2=8r, and in d=26 the amplitude

an integral over moduli space:

<VIki1)...V(kn)>

1 det(x;lﬁ')@ [det'§1§1]1/2

toFoaies) FAE) L UOTE(CRV) Tdet<p.pda1i 2

X ('Ig%zjg— det’A@)_13
n — _——%—ZKI'L kjll.
X (~E1Idzz J§g ) e e Gg(Ziij)

x(27)288(Kk1+...+Kn)

- 21 -

conformal

(2.52)

(2.53)

becomes

(2.54)



3; Weyl Anomaly in the Bosonic o-Model and String Equations of

Motion

The string propagation in a non-trivial background of
massless condensates (graviton, dilaton, etc.) can be described
by the two-dimensional nonlinear o-modell81. Thus we believe the
Weyl invariance of this o-model 1is a necessary condition for
consistent quantization of the string theory on a background and
that this condition is equivalent to the equations of motion for
the massless background fields in the string effective
actionl(8,19,201. The Weyl invariance implies the vanishing of
the trace of the energy-momentum tensor or the absence of the
Weyl anomaly for the two-dimensional o-model. 1In this section we
consider the Weyl anomaly in the bosonic o-model in a background
metric and with dilaton couplings.

The bare action of the renormalized bosonic o-model in curved

d=2+¢ dimensional space is[8,19,201]

1

Se= 4ra’

dizl Jg g253.X%36X"Ge (X) + 2'Jg R 0e(X)1 .(3.1)
Ay

Here Gozv(X) and ©$e(X) are metric and the dilaton field,

respectively. R =——%T-R‘d’, where R‘¢’> is the scalar curvature of

gab. Subscript "e" indicates bare quantities. The dilaton term

explicitly breaks the classical Weyl invariance but is required

by renormalization. Therefore this term is introduced at O(x').
We will wuse dimensional regularization and choose the

renormalized couplings to be dimensionless. The bare couplings
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have the mass dimension €=d-2. In the minimal subtraction scheme,

the renormalized metric and dilaton are defined by

[¢s]
_ & 1 6
Gaﬂv = 2 ( Gﬂv +n§1-g] T"uv(G) ), (3.2)
€ ® 1 d
e = Z1d + Z2 = 2" ( O +nZ_1 én T2(G,$)) , (3.3)

0 2 6,060 + ko (G ,

where 2 is the renormalization scale. Z: is the renormalization
operator for a scalar coupling and Z: is a function depending on
G, which is the additive renormalization for ¢ since a divergence
proportional to R®4? arises from the first term of +the action.

The renormalization group g-functions are given by

§®= -8¢ + B¢9 B®= _T@ + @ ’
Tz -G —=3—61, o = -k 14G  —3— k. (3.5)
v 3Guv ! rv 3Guv ' :
The energy-momentum tensor is defined by
2 835¢ (3.6)

oo™ Jg Tsger

Its trace, the Weyl anomaly, 1is found under 8§9ap=2093a0b,

§ (JgR)=Jg(eRg -2V 2g),

- 23 -



_ 1 2 v 1 S0
Jg T2, = YT Jg ga09,%%3 X" ¢ €Ga, ) + - Jg Ri-cbo)
+ == 3.(Jg g2dsda). (3.7)
Using 3a®a=3axu3u®a and the equation of motion
De23 . X% =%a' R De*do0 (3.8)
we obtain
YalJg g2b3pde) = J§7gabSaX“3bX"Daﬂ3v¢a t5— Jg R Dau®a3ﬂ®a
(3.9)
Hence
Jg Te, = 4;0. jg—gaanXugbXV(-sGaﬂU+2d'Dau3v@a)
(3.10)

-

* 4

Jg ﬁ(—8©a+d’DzR®83M®a).

Next we <consider the renormalization of the composite

operators(201. Let the action (3.1) be denoted by
Se = ¢ diz Aei-da: , (3.11)
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where the composite operators Ag’ represent

ALY = 4;u, Jg gav3 . X*9,X 60 (y-x), (3.12)
Ay = -%;— Jg R §0(y-x) . (3.13)

and ¢ai={Gauv,del. The dot denotes the scalar product:
f-h=rddyf(y)h(y). The renormalized operators (or the normal

products [211) [Ail are defined by

d . 1= 85e
sdiziail= 23 (3.14)
In general,
[Ai1=A0;Zi5 , Zii= 250805 + B2 Xali(s) ) . (3.15)
n

On the other hand, from (3.14) and (3.1) we find

8Se . ) 3¢a5 o
S0 Fi= rdezae; S2LF (3.16)

rdezfAi1Fi=

and its local expression:

ddel
a4

[AiJFi= Ag; Fi + 3.(Q2;Fi), (3.17)

where Fi(y) are arbitrary functions. The total derivative term can

- 25 -



be rewritten as

1
en

&

dale i Fi)=AgAi ;Fi, Al =p % Qaijle), (3.18)

since Asi form the full set of dimension 2 operators, and

Zi;= g¢q.+ Ay, Xaly = aln, Qn'j. (3.19)

Thus if we write the trace of the energy-momentum tensor as

JgT2, = Aeiyp i,

-Edpl + Al jdal

;p i

2841 = T1i(8) + Ai(4) + OCL/€)) , (3.20)

where 21=21;($)p1, 4ai=u® (4145 —Tai($)), we obtain
Aegivi = [A;1Z-1ipi,
Z-Vijpi = =-g¢i = Tyi(¢) + 21(p) + ( g§}|¢j + Q1i;63)+0(1/8),
JgTes = [A{IF = [A{1C =B/ + A7 + Q1i;6d ¥ . (3.21)

Here all the pole terms (~ 1/, n21) must be canceled in (3.21)
because T2, is a finite operator.

Therefore we get the Weyl anomaly
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A

o Jg Toa = Vg 9203.X48XY B0 ()1 +ieJg R 501,

G 2G .

BS, =B, +20'D3 % + DV, (3.23)
5% = 5% d’Dﬂ¢Qu® + D*o W, (3.24)

where the Wu-terms are due to the total derivative term in
(3.17) [201].
Note that the operator of +the +trace of the 2-dimensional

energy-momentum tensor is expressed by finite composite operators

multiplied by the Weyl anomaly coefficients B8, which are in

general different from the ordinary renormalization group

g-functions:

B =B, * 2d’DM3ch + Duwv), (3.25)

50 - g%, u'D“®3u¢ + DX W, (3.26)

The global scale anomaly is expressed by

°G

jddzJE‘Taa=4%E:Iddz{[JE'gabaax“abx” S (01T R 52013,

(3.27)

since the total derivative terms drop out by the integration over

z.
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Using the normal coordinate expansions (see ref. 22 and
aprendix B), we find the Weyl anomaly coefficients up to 1-loop

(i.e. O(x')):

G

BuV = u'Ruv+ 2a'Dﬂ3U¢ + O(e'2) , (3.28)
= = 1_ - L Y- oyt v o
BY = 6 (D-286)- > o 'D2d+ o°'D ®3ﬂ¢ + O(a ) . (3.29)

Here we include the contribution of the reparametrization ghost
in the constant terms in (3.28) [121].

The Weyl invariance conditions, Efv = 5% = 0 are equivalent

to the equation of motion from the (tree level) effective action

(D=26)
[ =c j vy JG e ¥ g (R + 4 3483,0 ) + 0('2) 3. (3.30)

Calculating the expectation value of T2, by expanding it near

a classical solution X, we obtain(201]

(Toa> = j2geriiy
=_Z%Ej< gaby X9 ,XY EGﬂéX)> +-%;—<§ EQ(X)>
=‘E%Y‘ gab3 X" 3,X" EGugi) +-ﬁ;— R 30>
+ non-local terms, (3.31)
gfv - Euv+ , (3.32)
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¢ _ =b_ 1 = y
B8 = B 4 Bqu +
=—lé——(D-26)-—‘ll—u’(R+4D2¢-4a'3”®3ﬂfb)'+ 0 2), (3.33)
where Z=e V= [dx1e~5°, <...>=-%TI[dX]e_S”... and we use
< ax*axYy = % v G R+
, -G _ b _ . -G _ =¢_
Note that the equations, BﬂU—O, 8*=0 is equivalent to BuV-O, g7=0

and thus to 61/6Guv=0, 8§1/860=0.
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4. String Loop Corrections to s-Functions

In the previous section, we have considered the Weyl
invariance conditions of two-dimensional o-model and found that
these conditions are equivalent to the equations of motion from
the string effective action at the string tree-level.

The next step is to investigate the effects of string 1loops
(i.e. higher genus Riemann surfaces) on the Weyl invariance.
Naively, the g-functions at string tree level cannot be modified
by string 1loops because they are related to ultraviolet
divergences or short-distance behavior of the two-dimensional
theory and are independent of the world-sheet topologies.
Recently, however, it was pointed out that the divergences in the
integration of moduli parameters of Riemann surfaces, which come
from boundaries of the parameter space where handles shrink to
zero size, are responsible for the Weyl symmetry breaking(8,101].
Hence string loop effects (i.e. small handles) can contribute to
the g-function. In this section we discuss string one-loop
corrections to s-functions for the closed bosonic string.

Consider the nonlinear o-model describing the closed bosonic
string in a metric and a dilaton background fields Guv(X) and

$(X). The action is

1

—_— 28 v [ D
o 4720 78 92r3uX*3uXU 6,00 + ¢ Jg R 90T . (4.1)

Since the two-dimensional o-model is wultraviolet divergent.

counterterms must be added to Se to be finite. The counterterm
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action is

5§S = _l_g_%_'c Jdaz[ J?gabgaxugbxvsguéx)f «'Jg R 60(X)1,(4.2)

where k¥ is the world-sheet cutoff and 8G and 8¢ are function of
the background fields, which define the renormalization group
g-functions. (See sect. 3 and appendix B.)

On the other hand., string 1-loop (torus T?2) amplitude Iis
divergent when a handle shrinks to zero. In this limit the string
1-loop amplitude becomes the product of a string tree (S5S2)
amplitude, a zero momentum dilaton propagator and 1-loop (T?)
dilaton tédpole[Q,lO]. The zero momentum dilaton propagator,

which is a source of divergence, is given by

1 dx

p2=0 =~ J. X = -1ln a .(4.3)

a>0
a>0

From the viewpoint of the o-model on S22, this divergence is
interpreted as the insertion of the vertex operator for the

emission of a zero momentum dilaton:

l1n a

o gabaaxuabxuvw g2d. , (4.4)

where a is the size of a handle, g9 is the string coupling
constant and J. is the dilaton tadpole amplitude. Thus we add a

new counterterm
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sstocr = MR [qezr Jg g203.x"9,X 7, 92Jc ] (4.5)

to the o-model action in order to eliminate this divergence.

For a>>, the s-function of the o-model on T2 will coincide
with those on S2. However, if avx, the small handle affects the
short-distance property of the theory. Hence we can choose a=«

and from the counterterms §S+5§Steor we obtain the string-loop

corrected g-function § for the background metric:

= <] -
Buv g2de Ty (4.6)

A

The vanishing of the string-loop corrected Bs-function, 8=0, 1is
believed to be equivalent to the string-loop corrected equation
of motion, which is derived from the 1loop corrected effective

action to O(a') (D=26)
[ = cj Py JG e P a (R + 4 393 ,0 ) + 292J¢ ). (4.7)

This action is just the Einstein one with the dilaton field and
the string one-l1oop cosmological constant in the lowest order of
'. In sect. 6, we will consider higher dimensional cosmology

based on this action.
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5. One-Point Amplitude and String-Loop Corrected Equation of
Motion [23]
In string theory, the vanishing of the one-point amplitude of

a vertex operator V
KV > =0 (5.1)

must be the condition for a classicél vacuum solution or, at the
quantum level, a minimum of the effective potential by analogy
with field theory. On the other hand, world-sheet Weyl
invariance or vanishing g-function ( 8 = 0 ) is needed if string
theory is to make sense [8]. In order to have any sensible
physical interpretation, 8 = 0 must coincide with the equations
of motion. Really, it is well understood that. at tree level in
string theory, Eq.(5.1) is a consequence of world-sheet VWeyl
invariance [11]. This implies a self-consistency between the
background fields and the dynamics of the string.

Recently, Fischler and Susskind 1[91] showed that the
cosmological constant of closed bosonic striné theory appears as
a one-loop correction to the g-function for the background metric
field. At present, many authors have successively investigated

string loop corrections to the g-function [101, believing that

the vanishing of some corrected p-function g gives the equation

of motion. 1In analogy with the tree level case, it is natural to

A

anticipate that B = 0 is equivalent to << V >> = 0. But this
statement has not been confirmed explicitly.

In this section we examine directly << V >> to one-loop order
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(i.e. a torus correction) in the case of closed bosonic string
theory supposing that the Weyl invariance holds 1in the theory

and show that << V >> = 0 provides the same string-loop corrected

equation of motion as that obtained from E = 0.

By using the Polyakov's path integral (refs. 12-14 and 24,
see also sect.2 and 3), one-point‘massless particle amplitude for
the closed bosonic string (d=26) propagating in a background

metric is given by

=X

v =B R j[dModuli](det'PTP1)1/2
« [raxa eS vipy ., (5.2)
with the action
5= TR I a2z Jg gov 5 3.X"3X°G,, (X) . (5.3)

Here GuU(X), g, x¥ and V(p) are the background metric, the

coupling constant, the Euler number of the world-sheet and the
vertex operator for massless particles, respectively. The
integral over the zero mode gives a factor of (2x)288(p) and the
vertex operators are defined for on-shell physical states, so
that one-point amplitude must be evaluated at zero momentum. We

will write <<KV(p=0)>> = {LKV(3)>> from now oOn.
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At the string tree 1level, the requirement of the eyl

invariance determines G”uu (classical vacuum solution) for the

background metric and it guarantees

<C VIO 5 Ga) >>g, = 0 \ (5.4)

because of the existence of conformal Killing vector (CKV) on S2.

However, at the string one-loop level, we generally see

<K V0 5 Ga) >>T2 = 0 . (5.5)

This means that Gaﬂv is not the true vacuum solution. Therefore
it should be necessarily modified to G”uv + AG1Mu so that, up to

the string one-loop level,

<K VI0) >> = << V(0 ;Ge+8G1)>> + <K V(0 5 Ge )>> =0 . (5.6)

S2 T?

Repeating this manipulation to higher order' may lead to the
string coupling perturbative expansion of the background
solution.

In the following discussion of <<V(0)>>, we consider the flat

space-time to be the classical solution®. Then, the metric Guv=

# This is due to the reason that we consider <<V(0)>>T2 in the
flat space-time. As concerns the following evaluation of
<<V(O)>>Se, we need not 1limit the classical solution to the
flat one.
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nuv + huv and huv ~ 0(g2) to one-loop order. Furthermore we take

flat coordinates, i.e. gabv = 8ab, On the world-sheet, assuming

that the Weyl anomaly cancels?®. To evaluate the quantum
corrections in the ¢ model [22]1, we expand X*(z) in terms of the

Riemann normal coordinate ¢#(z) around a fixed point Xa“(z)

y:2

and make ¢” a dimensionless field by the replacement g >

(2xa ' )tregh,

Now we calculate << V(0) >>g,to leading order in h ~and ':

-2
=z —9
52 Vol (CKV)

LV (0)>> (det'PTPI)ifej[ds] e (5e+Sint) (yusayy

_9-2 [ j 2>d27 " J2nu’
C1 Vol (CKV) d?2zd2z'<Ve(z,0) 3 Rapug(Xa)

« 36%3:VePeT (2 )0

+ f d2z <av(z,0)>e , (5.7)

# In general, the world-sheet has the conformal flat coordinates
and there should exist the dilaton term 1in the action. But,
focusing our attention on the Fischler-Susskind procedure only
for the background metric, we here neglect dilaton contributions

for simplicity.
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(det'PiP:1)1/2(det'n)-13,

where ¢

Se

jdez 6455V G  (Xe),
'A%,

2w’ L= . Vv.p.O
. = 2 - . o« o
Sint [d z ( R, (Xe) 36%36Y6757 4 ).
{(+++)>e stands for
J[ds] e S8 (.. )
(v )dp = <
J[d&] e~o0

V(p) is expanded as

S S
2r Q!

V(p) ‘X

i v _ip
I d2z eﬂv(p) 3.X"92X" e

ip-Xaei(Zﬁd')i’ep-ﬁ

. y v
Id2z euv(p) : JatT3et e

L ooetp r? s%:4

xC 1 - 2 p g

- )

J‘dZZ euv(p): gagﬂ'gagvelp°xa( 1 + 1(27{ut)1/2p.§

Looarprf 9t o Loy (5.8)

- ' . 2 -
20 (p-§) 5 ol an
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by the normal coordinate expansion, SO we get

Ve(p) = Idez e @ 9843velPrXe,

'A%

and AV(p) is the next-order term of the remaining part in

Eq.(5.8). Here we make V(p) renormalized by taking normal

ordering under the condition:
2 ir P =
( p2 + lrco pp ) e v(p) g ,
P euv(p) =0

On the first term in Eq.(5.7), the contraction Gt ey > gives a

logarithmic divergence, and the contractions <3€“§£V> and <35“ v
do not contribute in the dimensional reguralization. By
introducing a short-distance cutoff x on the world-sheet, the

logarithmic divergence is expressed as

yiA v ' - y/aY
7 (z)s (z )>z'9z = A 7 log «

Hence the first term is reduced to

Ci1 9~ 2 2O’
Vol(CKV) Id zd®?z" =3 e, R g (Xe)
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« <3t @tz It @Te @ @@y,

2ra ! 1

B Vol (CKV)

Owing to the conformal transformation SL{(2,C), the

Vol (CKV) of the group generated by the conformal Killing

is rewritten as

Vol (CKV) = j d2z:d2z.d2z3

[z1-z212]z2-z3] 2]z2-21] 2

d2z; I d2z.d?%z3
- 2
| a-b f [z:i-al2lz:-Db] 2 [Ze-z3]

Taking into account this form in Eq.(5.9), we get

-C1 g'ez%g (-%;—)3 etV RMU (Xe) 109 «

d2z
- 2
la-bl [z-al2]z-bl2

- -2 2od2 et LAX L y3 AV 1
Ci1 9 J dézd?z 3 ( ax )3 e Ruv(xe)—TE:ZTT7 log « 5.9

volume

vector

(5.10)

The denominator of Eq.(5.10) gives a logarithmic divergence when

Z approaches to a or b. So identifying this divergence with log «

in the numerator, we finally obtain as the first term

o AV
cC g e Ruv(Xa) ,
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where ¢ = ¢'cy1 / 3(4zx)%. On the second term 1in Eq.(5.7), AV,
which is the composite operator of ¢, is a correction term to Ve
coming from the curved space-time. Since it should be evaluated
at zero momentum, <4V>e becomes zero and, therefore, the second
term vanishes.

As we have seen, (CV(0)>>4, turns out to be finite through

dividing by Vol(CKV). This is a delightful result, considering

that <<V(0)>>T2 will be finite except for the contribution of the
tachyon mode. In fact we Kknow that << V(0) >>T2 in flat

space-time [24] is

= 1 i vpt 1,2 2K 'py-13
VDI Dd0e = ToT (RN j [dModulil(det'PiP1) 1/ 2(S5—det's)
2 ¥ qevY .
« e, [ @z ax* @I X @, (5.12)
. . 2 .V, . v 1

Here, after renormalization, <3¢ (z)3'¢ (z )>Z._>Z = 7
which does not depend on z, and rd2z = <o2. Whence Eq.(5.12)
becomes

, ,
- I 43t22(2xzz)‘12 etz | Trll(l—ezmm)l"8 e, 24

- Jo e, %Y ; (5.13)

v
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Thus, imposing the vanishing of one-point amplitude up to string

one-loop order

< V(0) >> = ¢ g-2 &Y R,{Xe) - Je eV 3 =0 , (5.14)

we get the loop corrected equation of motion

c Rﬂv= g2 Je My . (5.15)

This result agrees with the condition of being conformal anomaly

free, i.e. 8 = 0 to one-loop order [9,101.
In considering string loop corrections, there exist wvarious

kinds of divergences, which arise from integrations over distinct
boundary regions of moduli space and may contribute to g [101. To

achieve the vanishing § funption for massless fields, it 1is
necessary to cancel divergences due to dilaton tadpole against
o-model divergences. In the N-point amplitude, the former can be
interpreted to arise from the graph of a dilaton emitted from S?
and absorbed by the vacuum and the latter from that of a dilaton
emitted from S2 and coupled by the massless background fields.

That is, when N points all coalesce,

< ViesVn 2>0,. 2> KK VyieeeVy Ve (0) D>,
Te,nuu Se.%V

x log & << Vgi1(0) >>T2;77 )
sy,
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< VyeeeVUn 2> > L ViU Vair (0) >>

52:nuv+h S2359

'AY Y

x 109 & << Vgi1(0) >>S2:n +h
wv v

Both divergences are due to the massless dilaton propagator at
zero momentum. Then <<KV>> can be regarded as the coefficient of

these logarithmically divergent terms. This strongly suggests

the equivalence between <<V>>=0 and §=0.
Throughout this section, we considered the flat space-time to
be the classical solution. If the classical solution is a curved

-t i = ~ 2 -
space~time, Guv GBEU+AG1uv and AG‘uv 0(g?2) +to one-loop order

and we will obtain the one-loop corrected equation of motion

= 2 '
c Ruv g2 dJde Guv ,

where J.' is the one-loop cosmological constant in the curved

space-time.
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6. Higher Dimensional Cosmology with String Vacuum Energy [25]

String theories are consistently formulated in higher
dimensional space-time, so that we are obliged to have the
important problem of how to explain the large separation between
the scale of our three- dimensional space and that of the extra
one, as in ordinary Kaluza-Klein cosmology [15-17]. In order to
approach this problem, many authors have investigated the (string
tree level) effective Lagrangian obtained in the field theory
limit of string theories, especially, the ten-dimensional
supergravity derived from superstring theory [261. Then, there
arise the curvature squared (and higher-order) and the dilaton
terms. These new terms lead to the different scenario from
ordinary Kaluza-Klein cosmology. However, such a treatment does
not seem to reflect soundly the characteristic of string theories
because the contribution of the string wvacuum energy to the
energy-momentum tensor is not considered. In fact, the
winding-up of closed strings around tori is <closely connected
with stability of the extra space and, in sect. 4 and 5, we have
found that the string vacuum energy (the cosmological constant)
of closed bosonic string theory appears as a one-loop correction
to the equation of motion for the background metric field. Even
in the superstring case, we can not ignore this effect if
supersymmetry is broken for some reason [27].

In this section, we investigate the cosmological evolution in
the closed bosonic string theory with the one-loop vacuum energy,
for the winding effect is determined mainly by bosonic sectors,

i.e. string coordinates of the string theory. OQur analysis |is
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carried out based on Mg X [T!'1®? where Ms4 1is d-dimensional
maximally symmetric space-time , [T!10 is T!X...XT! (D-times)
and d+D=26, since compactifications on flat tori satisfy the
consistency for the Weyl invariance in the string world-sheet.
As we are interested in the era after the Planck time, we take
here the Einstein equations to describe the evolution of the
universe *®,

Now we assume that (d+D)-dimensional metric is the

generalized Robertson-Walker form

-1
gnn = R2(t)gna(X) _ ; (6.1)
ri2(tig;;y)

M,N=Oglyooo,d+D-l; m,n=1g2,...,d"1; i§j=192gooo,D’

Here gnn(X) is the metric of (d-1)-dimensional space Ma-1,

gijly) (=8;;) is the metric of [T!1® and R(t) (r:i(t)) 1is the

# We here assume that the Planck length ~ Jo’, where ¢’ is the

string slope ( the inverse of string tension ). In sect. 4 and
5, we obtain the string-loop corrected equation of motion and the
string effective action at the 1lowest order of o°. (See
eqs.(4.6), (4.7) and (5.15).) Thus in the low-energy region the
gravitational equations can be described by the Einstein ones and
the string wvacuum energy contributes to the energy-momentum

tensor. The dilaton field is assumed to be constant.
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time-dependent scale factor of Mg-1 (i-th T!' of [Tt19). The

energy-momentum tensor is taken as

Tun = P9nn , (6.2)
Pig:;

where p is the energy density and p (pi) is the pressure in Mq-q

(i-th T'). Then, from the Einstein equation: RHN"%‘QNNR=8ﬂGTMNs

we have
- ji. P o R ot
(d-1)¢( R )+j§$ rj)— 8xG( d+D-2 p) . {6.3a)
d R R 2., R 2 T k _ =Tt
dt { R J+ (d-1)¢( R ) +( R }§§ rj) + R2™ 8rG( 3+D-2 + p),(6.3b)
d , r; TR - ENRS TIPS SR DR o S Y ,
dt { ri)+ (d-1)¢( R 3 ( ra)+( r;3§§ rj)' 8x G( J+D-2 + pPil),(6.3C)

D
where Tt =-p+(d-1)p +-sz is the trace of the energy-momentum
J=

tensor, G is the (d+D)-dimensional gravitational constant and Kk
is the curvature constant of Mg-1. p, P and P; can be

determined from the free energy F as follows:

- | PO B
o= s —r-TdrE/m 1, (6.4a)
o 1 IF
P =" 3§71 Q.00 RIR (6.4b)
L ! OF
Pi 04-100 r; Tt (6.4¢C)
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where Qq4-1 (Qp) is the volume of Mg-: (L[T']1D):

ds2
ex Rd-1 s p =

Ra-1% T@/ i

o

1(27tri). (6.5)

The free energy in the one-loop approximation is generally given

by

where 8 = 1/T and H is the hamiltonian of the bosonic string.

The exact form of this free energy is very complicated, but at

low temperature ( T < 1/J¢’), F can be reduced to [16,171

F ~ (string vacuum energy at zero temperature)

+(free energy of massless free gas in thermal equilibrium).

We first give the vacuum energy of the closed bosonic string
theory at zero temperature. d-dimensional mass of the string on

M¢ X [T'1? is given by

’

2 ~,
%(mass) =N+ N -2 +L

mi?2
2 (

1 bi?

+ Ri2b;i2) ; (6.6)

» Mo

bizri/Je’ 3 mi,2i=0,%1,+2,.

mi and 2 are the discrete momentum quantum number and the
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winding number on i-th T!', respectively. N and N are the number

operators of right- and left-movers with the constraint
~ D
N-N= Lomil . (6.7)
Then the vacuum energy in the one-loop approximation is

7 V4 2
Vst = -%rTr In ¢ % P« + % (mass) )

’ 4 2
{ 1 ‘%rpd2+ ; (mass) -1
> Tr Iadx [ x 1/1ln x , (6.8)

where the trace means the integral over d-dimensional momenta P«
and the sum over discrete momenta, winding numbers and oscillator
modes. Taking the modular invariance of this vacuum energy into

account and subtracting tachyon contributions, we get the wvacuum

enerqgy as follows

o ~HQd-1 s cdr2) 72 4y 2rit y-2td4*d-2)
Ver = et de T (21T2) e [ £(e2™ 1Ty 11
D D s 9. - 2/h.240 . 2h. 2
o $ e 2niTtimi L e xT2(Mi2/bi2+2i2b;2)

. s (6.9)
l=1mi92¢i=_m

F: -1/2s 71 s 1/2 , 72 >0, |z] 2 1

where z = xe10 = e2%lt’ T = T1+iTz2 and

nr e 8

f(z)=N(1-zn)
n=1
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Details are given in refs.[28,29]1. We note that Vs: is invariant
under bi = b;-!. In the limit in which all of bi's - o , the

vacuum energy becomes

. -%Qd"l D . » -{d+D+2) -2 47('52
Vst —> mmrryisroeeyers 1(2rb[des (2nze) e
i -2(d+D-2)
(Ll £e2M1Ty) 11
-8 Qd-1 2 _
v 2.1x10 T (2rbi) >0 . (6.10)

(2r@ )47 2(27)0~2

In this 1limit, the wvacuum energy becomes eq.(6.10) with
bi-! instead of bi. Since Vst 1is invariant under bi = b;~!
and both Vsi:(bi » ©) and Vst(b:i » 0) are positive, Vst has
a minimum at the position all of bi's are equal to 1. 1In the

case of general torus compactification, the vacuum energy can be

.2
obtained only by replacing Efe + 2i2%bi2 with

—%f—gfj—%f + (2:bi)g;;(2;b;) in eq.(6.9). Here g:; is a  torus

. * . . .
metric and gi; is the dual metric. Then the vacuum energy remains

invariant under bigijb; > -%7 gTj‘%f (the generalization of
t 4

bi 2 bi~') and its minimum value comes to depend on g;;.

At zero temperature, expressing Vst=Q¢-1Vst, the R.H.S.

of eqs.(6.3a,b,c) are reduced to

8 G 1
d+D-2 Qb

[ - (D-2) Vet + D r;—%%%i ] . (6.3a,b)’
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Vet
ar

8z G
d+D-2

é [ d Ver - (d-2) r; (6.3¢c)°
D

Eq.(6.3c)’ seems to allow r; to stop expanding when it becomes
negative. For the L.H.S. of eq.(6.3c) becomes r;/r; when ri=0 and

the condition of a maximum is r:=0 and ri<0. If we consider that
ri should become constant (=r; (e») and 4-dimensional cosmological
constant should become zero at the final stage of the universe,

both eqs.(6.3a,b)” and (6.3c)’” must be equal to zero at ri=ric(as.

Namely
Vst | _
ari ri=rice; i (6.11a)
Vst Irs=r;<a) =0 . (6.11b)

As eq.(6.11a) is realized only at ri= Ja’, it is necessary that

eq.(6.11b) is also given at ri= Je’. Therefore we wish to choose
such a metric gi; as will allow the minimum value to be (nearly)

zero. But at present, we don't yet know the values of Vst with

respect to various tori, so we here regard Vsi:(bi) - Vst(1) as
(r)
the vacuum energy Vs:(bi) for such a metric gi;. Then we get
(r)
Vet (1)=0 #.

# As a different possibility, we may consider that the string
model has other parameters, such as vacuum expectation values of
some scalar fields, which adjust themselves to minimize the
vacuum energy to zero.
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We examine the stability of the extra space numerically by
the practical calculation of the vacuum energy. The integration
in eq.(6.9) with different bi's is very hard, so we here take all
of bi's to be equal and set d+D=26. In the R.H.S. of eq.(6.3c)

we define the potential v(b) by

~The Yy = - dv(b)
8r G( 3+D-2 + pi) = 87G b db (6.12)
The b-dependence of v is shown in fig.4 for D=4 case . In other

cases, the similar dependence can be found. be 1is a "“critical
radius", so that if b < be, b > 1 and if b > be, b = @, The

numerical values of be are presented in table 1 for D=1,2,4,8 and
16. It is evident that be becomes smaller as D increases. From
the above investigation, we find that there exists the solution
that the vacuum energy prevenfs the extra space from expanding to
infinity and contracting to a point, that 1is, the stable
solution. |

Next we consider the cosmological evolution at low

temperature ( T < 1/J2’ ). The free energy is given by

(r)
F = Vet - C12¢-1Q0T9*?  for Rer, (6.13)

where c:= 5767§£H:R12 T ( dEP ), and 576 1is the number of

massless mode degrees of freedom in the 26-dimensional closed

bosonic string theory. Then the R.H.S. of eq.(6.3c) becomes
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=Tty
887G ( m+pi)=8IG(

_TLL(B)

. (8) . Cth)
J+D-2 + Pi + Pi ), (6.14)

(r)
where p; ‘) and pi‘th’ are derived from Vst and =-ci1Qq¢-1QpTd+D
in eq.(6.13), respectively, and Tt ¢t"’ wyanishes in TLL =
TLo @ 4TL ¢th) - The thermal part p; (th) is
Pitth) = ¢ Td+*D >0 . (6.15)
The energy-momentum conservation, that results from the Einstein

eqs.(6.3), 1is equivalent to the entropy conservation. The

entropy S is determined from the free energy as
s=- 25 = cipaipererot (6.16)

so the entropy conservation is reduced to

S~ RI-1prDPTd¢+*D-1 = constant. (6.17)
In the region bf R ~ r, this becomes

X = rT = constant. (6.18)

Therefore, due to eqs. (6.12), (6.14) and (6.18), there 1is a

"critical value" X: for X because if X > X., the extra space goes
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on expanding and has no chance of being stable. The values of X

are given in table 2. By choosing X < X in the 1initial stage,.

it is possible that r goes to Ja’ oscillating around the minimum

of v(b) with thermal effects and R expands. In later time

(R>r, r~Ja’ ), the free energy becomes
(r)
F~ Vst = C2Qa-1TH9, (6.19)

where c2 is a positive constant and V;;)N 0. In this case we can
ignore the effects of the extra space and Mg becomes the
d-dimensional Friedmann universe.

In this section, we have found that the winding-up of closed
strings around tori has a chance to prevent the extra space from

expanding and to realize the d-dimensional Friedmann universe

with the compactified extra space ( r; ~ Ja’ ) in later time.
From the fact that the value of X at the initial stage is related
to the entropy, we may also find that the entropy should not
be large in order to reach the d-dimensional Friedmann universe.
These results suggest that in the low energy world string
cosmology corresponds effectively to the ordinary Kaluza-Klein
cosmology. But we note that in Kaluza-Klein cosmology curvature
terms cause the split of 3-dimensional space and extra space,
while in our string case, the winding-effect of strings around
tori guarantees the separation, even though the curvature of

torus is zero.
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7. Conclusions and Discussions

In quantization of the string theory, the classical
symmetries (two-dimensional reparametrization and Weyl
invariances) must be maintained. In general, however, the \Weyl
invariance is broken in quantization. In +the flat space-time,
the bosonic string theory can be made Weyl invariant, if
space-time dimensions are 26 (critical dimension). In the curved
space-time, the Weyl invariance of the two-dimensional o¢-model,
which describe the string propagation in a background., restricts
the background configurations. On the other hand, the wvanishing
one-point amplitude <<V>>=0 is the condition for a <classical
vacuum solution by analogy with field theory. Thus it 1is
expected that the Weyl invariance condition 1is equivalent to
KV>>=0 including the string loop correction. But at the string
loop level, this equivalence is not verified explicitly. In this
thesis, we have calculated <<V>> and shown that <<V>>=0 provides
the same equation as that obtained from the Weyl invariance
condition to string one-loop order and O(x ‘).~

Next we have considered the higher dimensional cosmology
based on the string-loop corrected effective action. This action
has the string vacuum energy term and the string wvacuum energy
contains the winding effects of closed strings around tori.
Therefore we expect that the extra space can not expand
infinitely due to this term. Really, we have found that the
string vacuum energy has a chance to prevent the extra compact
space from expanding.

Let us consider the N-point amplitude at string one-loop
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level. There are two type of divergences. One arises when all
the N points are close together, the other does when all but one
points approach each other. These divergences are responsible
for the Weyl symmetry breaking. Hence we must cancel out these
divergences. The first type of divergences may be canceled by
the ¢ model divergences. This cancellation 1is interpreted as
<KV>>=0. The second type of divergences may be canceled by
modifying the +tree 1level vertex operators in a way which
corresponds to mass renormalization [301].

In the future, it Iis important to investigate the
cancellation of various divergences, which appear in <<KV>> at
higher loop order, in order to realize <<KV>>=0 and to show
generally that the condition of the Weyl invariance is the same
as one of <KV>>=0 up to higher loop order. If we consider the
Weyl invariance seriously, we need to add the dilaton term in the
action and to investigate <KV>>=0 in this case.

In this thesis, we have considered only the closed bosonic
string theory. It is interesting to study - the other string
theories, e.g. the open string theory and the superstring

theory.
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Appendix A. The Riemann Surfaces and the Uniformization Theorem
Let M be a two-dimensional orientable manifold, 9., a given

metric on M and {Uu} a set of coordinate patches of M. On each
patch we can choose conformal Euclidean coordinates:

20 (9

2 =
ds(d) e 6abd2?u)dZ?d) . (A.1)

In the complex coordinates (z=z!+iz2, z=z'-iz2), the metric 1is

written as

ds2. . = eZO(‘“dz az (A.2)
(¢) ~ (o) () ° *
Since across coordinate patches ds%u)=ds%3), the coordinate
transformation 1is given by 2z =f _(z )}, where f is a

(¢) " “(8)
holomorphic function. Hence M acquires a complex structure.
Conversely, if we are given a complex structure on M we can

consider the conformal class

« dz, .dz (A.3)

2
ds (@)9% (@)

(@)

on every coordinate patch. A one-dimensional complex manifold is
called a Riemann surface.
The uniformization theorem{31] for the Riemann surfaces

states that there are essentially three distinct simply connected
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Riemann surfaces up to holomorphic equivalence:
(a) the sphere C U {=o}
(b) the plane C

(c) the upper half plane H
These are the universal covering spaces M for the compact Riemann

surfaces M. That is, any M is the quotient of M/T where T is a
discrete subgroup of the group of isometries of M, without fixed
points.

For the sphere, the group of automorphisms is SL(2,C). Since
any of the transformations in this group has three fixed points,

[ are the trivial group {1}. Thus

M=MT =CU {0} . (A.4)

M is a unique Riemann surface of genus zero. For the plane, the
group of automorphisms is <{z>az+b}. Only translations act

without fixed points. Thus

M = M/T = M/lattice group Z+zZ = T (torus) . (A.5)

For the upper half plane H, the group of the automorphisms 1is

SL(2,R)/{£1}. T are the discrete subgroups of it, called Fuchsian
groups. M = M/T is the Riemann surface of genus 2 2,

R o
There are constant curvature metrics on M:
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dzdz

ds?= m—z)z for CU {o} ,

ds?= dzdz for C , : (A.6)
dzdz
2=
ds Im z12 for H ,

and the curvatures of these metrics are 1,0 and -1, respectively.
Since these metrics are invariant under each automorphism, there

exists a metric of constant curvature on M.
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Appendix B. The Background Field Expansion

To calculate the quantum corrections in the o-model, we
usually use the background field method[22]. In this method, the
action is expanded around an arbitrary classical solution of the

equation of motion X%(z) in powers of a quantum field x*(z). But

the splitting
*(z) = Xo*(2) + 7% (z) (B.1)

is not covariant, and w”(z), which 1is the difference of two

coordinates, is not a vector on the manifold (or the curved
space-time). So we express z”(z) as a local power series in a new
field ¢*(z) which is a contravariant vector on the manifold.

To define the field ¢*(z), consider the two points X* and

X*+x* on the manifold. We assume that these points are close

enough that there is a unique geodesic which connects them. This

geodesic may be parameterized by A* (1) which satisfies the usual

geodesic equation
et iViP= o (B.2)

where t is an arc length parameter and we choose it such that

y72

1”(0)=Xa“ and l”(1)=Xa”+x”. then, ¢ is defined by the tangent

vector to the geodesic at t=0, &“=Z“(0), with length equal to the
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geodesic distance between Xaﬂ and Xe“+%“. Since ¢*(z) is a
contravariant vector, an expansion of the action in terms of it
will be covariant.

The geodesic equation (B.2) can be itératively solved to give

ALty = Xol+ gtt -k A eVePre oL pE VP Oys L (B3
2 vp 3! vpd
JA n . . . .
= v v v
where TUDU._.Z gt ZTUD and o is a covariant derivative on

lower indices only and all quantities are evaluated at Xeﬂ, S0

that

Y S S RN LV, P.O

= & > TVPE ¢ 3 Tvpae §° ¢ . e e (B.4)
t* is called the Riemann normal coordinate and in this system,
the geodesics are expressed as straight lines, i.e. T%Upo )=0.

The expansions of the background fields in terms of ¢ are

given by
G (Xetx)= G (Xg)- LR (Xo)ePe0- (B.5)
LV av 3 “upvo tet :
¢(Xa+%)=©(Xa)+Du¢(Xa)§ﬂ+-érDﬂDUQ(Xa)Su§V+..., (B.6)
3o (X5 +7%)=3 Xk + Dae“+—}3—R“ £VePy,Xe%+. ... (B.7)
vpao
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J/2

Combining these expansions (B.5-7) and making ¢7 a dimensionless

field by the replacement ¢* » J2za' ¢*, we obtain the background

field expansion of the bosonic g-model action

E-%—JE"gabaa(xa“+zﬂ)ab(xa“+z”)GuU(xa+x)

+—0'Jg B d(Xe+r)1

A
2

- S[Xa]+J2 — jd zl Jg 9253.Xe*Dst" G, (Xo)
+{§u'J§'§ D ®(Xo)e*1

/A

Jdez 7%— g g2*D:¢*DutVG, (Xo)

'% J?gabaaxa”‘a s X0 Rupvo()(z)&“pia
B S D hegv
+ o Jg R D,D,®(Xe)e"e" T +.... (B.8)
The linear terms in ¢* vanish if the classical equation of motion

is used.

We now study the ultraviolet divergences of this o-model at
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the one-loop level. The one-loop divergent diagram is shown 1in
fig.5 and in the dimensional regqularization (d=2+¢) the one-loop

divergent term of the effective action is given by

-1
2%

- Idez [—;—fé”gabaax"'abx"Rw(X)-—l—ovfg_ﬁ D23 (X)1. (B.9)

(1) =
rm

4

To cancel the one-loop divergences, the counterterm must be added

to the classical action:

1
27

Se.v.= jdez[%J?gabaax“abx“(%RM)

Jo R (- Lpeg y 1. (B.10)

The bare couplings are then (if the renormalized couplings are

chosen to be dimensionless)

= A
Ge, , =2 (G oo R too0) (B.11a)

D2 +...) , (B.11b)

where 2 is the renormalization scale. The renormalization 4group

g-functions to one-loop order are given by

86 = g'R : g = - %pe g | (B.12a,b)
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Table Captions

Table
Table

1 Values of critical radius be for D=1,2,4,8 and 16 cases.

2 Values of X¢ ( critical X ) for D=1,2,4,8 and 16 cases.

Figure Captions

Fig.l The operator Pi maps vector fields into symmetric traceless

Fig.2
Fig.3

Fig.4

Fig.5

2-tensor ones.
Decomposition of Tg(m).

Decomposition of Tg(m) and the orthogonal projection of the

tangent vector x‘r’ onto Ker PT.

The potential v(b) as a function of the parameter

b=r/Jo’ for D=4 case. bas is a "critical radius".
The one-loop divergent diagram. The single 1line 1is the
field ¢ and the double 1line denotes a background field

operator.
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