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Abstract 

The Weyl invariance of the two-dimensional a-model. which 

describes the string propagation in a background. is a necessary 

condition for consistent quantization of the string theory and it 

restricts the background configurations. On the other hand, in 

the string theory. the vanishing one-point amplitude is the 

condition for a classical solution of the background fields by 

analogy with field theory. Thus it is natural to anticipate that 

the Weyl invariance condition is equivalent to the vanishing 

one-point amplitude including the string loop correction. But at 

the string loop level, this equivalence is not confirmed 

explicitly. Therefore. we calculate one-point amplitude and show 

that its vanishing provides the same background field equation as 

that obtained from the Weyl invariance condition to string 

one-loop order and O(~·). 

Next we consider the higher dimensional cosmology based on 

this string-loop corrected background field equation and find a 

cosmological evolution different from the ordinary Kaluza-Klein 

cosmology due to the string vacuum energy. which is a string loop 

correction to the equation. 
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1. Introduction 

String theories[lJ are quantum theories of elementary 

one-dimensional objects. rather than points as in the 

conventional quantum theory. These theories originated in an 

attempt to describe hadron physics[2J. Strings consist of two 

distinct topologies. called open and closed. Open strings have 

free ends. whereas closed strings have the topology of a circle. 

However. these theories contain massless vector and 2-tensor 

states. which arise from open and closed strings, respectively. 

In the zero slope limit (or in the low-energy limit) massless 

vector particles behave precisely as Yang-Mills gauge fields and 

massless symmetric 2-tensor state interacts appropriately to be 

identified as a graviton. so that the string theories are 

regarded as a unified theory including gravity[3J. 

There are two basic types of string theories: bosonic strings 

and superstrings. Bosonic string theories are consistently 

formulated in 26-dimensional space-time and superstring theories 

in 10-dimensional space-time. Superstring theories are 

classified into two types: type I and type II. Type I 

superstring theory (SST I) consists of open and closed strings 

and have N=l space-time supersymmetry. In the low energy limit 

the SST I is reduced to 0=10. N=l supergravity coupled to 

super-Yang-Mills theory. Type II superstring theories (SST II) 

consist of closed strings only and have N=2 space-time 

supersymmetry. The type IIa theory has supercharges of opposite 

chirality and its low-energy limit is the non-chiral 0=10. N=2 

supergravity. The type lIb theory has supercharges of the same 
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chirality and its low-energy limit is the chiral D=lO. N=2 

supergravity theory. The SST lIb was shown to be gravitational 

anomaly free[4], and it was thought that the SST I might have 

gauge and gravitational anomalies. 

In 1984. however. Green and Schwarz[S] showed that the SST 

is gauge and gravitational anomaly free and one-loop finite if 

the gauge group is SO(32) and that in the low-energy effective 

field theory those anomalies vanish when the gauge group is EexEs 

besides SO(32). This statement suggests that a consistent EaxEs 

superstring theory can be also formulated. A new type of 

superstring theory was found by Gross et al[6]. Their theory. 

called the heterotic string, has gauge group EexEe or Spin(32)/Z2 

and consists of only closed strings. Hence. at present. we know 

that five superstring theories (SO(32)SST I. SST IIa. SST lIb and 

EexEe or Spin(32)/Z2 heterotic strings) are anomaly-free and 

finite at one loop (perhaps all order). 

Note that. in the point particle theory. quantum gravity has 

nonrenomalizable divergences. On the other hand. superstring 

theories contain gravity and are finite. Thus they seem to be 

consistent quantum theories including gravity. 

Since the superstring theory is la-dimensional (bosonic one 

is 26-dimensional). to obtain the effective 4-dimensional theory. 

extra 6 (or 22) spatial dimensions should be compactified u • To 

solve this compactification problem. we must consider the string 

# Recently, the four-dimensional 

constructed [7]. 
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theory in a curved background. The string propagation in 

background fields can be described by a two-dimensional nonlinear 

a-model[8J. On the other hand. the condition for consistent 

quantization of the string theory is the Weyl (conformal) 

invariance on the two-dimensional string world-sheet. Therefore. 

the Weyl invariance of the quantum a-model is the consistency 

condition of the string theory in background fields. Since the 

Weyl anomaly of the a-model depends on the background fields. the 

Weyl invariance of the a-model restricts the background 

configurations and this condition seems to be equivalent to the 

equations of motion for background fields obtained from the 

string (tree-level) effective action[8J. Recently. it was 

pointed out that the string loop effects contribute to the Weyl 

anomaly and that the background field equation is modified by the 

string loops[9.10J. 

On the other hand. in the string theory. the vanishing 

one-point amplitude «V»=O is the condition for a classical 

vacuum solution (or, at the quantum level, an extremum of the 

effective potential) by analogy with field theory. Thus it is 

natural to anticipate that the Weyl invariance condition is 

equivalent to «V»=O including the string loop. At the string 

tree level. this equivalence is plausible[IIJ. but at the string 

loop level. this equivalence is not confirmed explicitly. 

In this thesis. we calculate «V» using the Polyakov's path 

integral [12-14J and show that «V»=O is equivalent to the Weyl 

invariance condition of the a-model to the string one-loop order. 

Next. we discuss the higher dimensional cosmology based on the 
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string-loop corrected equation of motion. Since the string 

vacuum energy appears as a one-loop correction to 

of motion for the background fields. we can 

cosmological evolution different from an ordinary 

cosmology[15-17J. 

the equations 

expect the 

Kaluza-Klein 

In this thesis we consider only the closed bosonic string 

theory. 

This thesis is organized as follows. In sect. 2, we briefly 

review Polyakov's path integral formulation of the closed bosonic 

string. In sect. 3. we consider the Weyl anomaly in the bosonic 

nonlinear a-model with the metric and dilaton fields and obtain 

the background field equations. In sect. 4, we investigate 

effects of string loops on the Weyl anomalies and get the 

string-loop corrected equation. In sect. 5. we calculate the 

one-point amplitude using the Polyakov's path integral and show 

that the vanishing of this amplitude provides the same equation 

as the string-loop corrected one. In sect. 6, we discuss the 

the string-loop corrected 

7 gives conclusions and 

cosmological evolution by using 

equation of motion. Finally sect. 

discussions. 
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2. Polyakov String 

In this section, we briefly review Polyakov's path integral 

formulation of the closed bosonic string[12-14J. 

The basic object in a string theory is a one-dimensional 

curve, called a string, whose evolution sweeps out a 

two-dimensional surface (or world-sheet) in space-time. The 

classical Nambu-Goto action is the area spanned by such a 

surface: 

A = J d 2 z JdetCheb). ( 2 . 1 ) 

d XJL d XJL 
where he b= dZ a dZ b is the induced metric on the surface: 

d XJL d X 
= _ _ 11.._ 

dZ 8 dZ b dzadz b . 

This action is a non-linear function of the coordinates of the 

string and this non-linearity leads to difficulties in 

quantization. 

Polyakov's prescription for the quantum theory of the bosonic 

string is to start instead from the classical action U [12J 

( 2 . 2 ) 

# We set the string tension T=1/2~~' equal to unity in this 
section. 
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Here M is a two-dimensional compact surface. za. a=1,2, are the 

world-sheet coordinates on M. XJL(z) is an embedding of Minto 

space-time or space-time coordinate: E={X~ M ~ space-time}. We 

shall assume that space-time is flat and Euclidean (Rd). gab is 

the world-sheet metric on M: m={g: metric on M}. 

The variation of the action 50 with respect to XJL and gab 

gives the classical equations of motion 

6XlJ. = -J~ da( )ggab dbXJL) = 0, ( 2 . 3 ) 

Tab ( 2 • 4 ) 

where Tab is the energy-momentum tensor. From (2.4), gab is 

conformally equivalent to the metric hab induced by 

Therefore (2.3) is reduced to the equation for a surface of 

minimal area 

( 2 . 5 ) 

and the action 50 is just the Nambu-Goto action A. 

The action 50 is invariant under: 

(i) The group of reparametrizations or diffeomorphisms of the 

world-sheet M: Diff(M) 

za ~ z'a(z), 

- 6 -



(ii) The group of Weyl or conformal rescaling of the metric: 

Conf(M) 

za ~ za, 

~ 

(iii) The group of Poincare translations X~~ a~ Xv+ X~. 
v 

As a result of the local Weyl invariance, the trace of Tab is 

identically equal to zero whether or not the equation of motion 

hold, and the classical equation can determine the metric only up 

to a conformal factor. 

In the quantum theory of Polyakov string, we integrate 

functionally over space-time coordinates X~ and over metric gab. 

In general renormalization is needed and the action should be 

chosen to be a most general renormalizable one with couplings of 

non-negative dimension, and consistent with (i) and (iii): 

where 1 
4;( f Md2z Jg R = x (M)=2-2h is the Euler number of M. 

h is the number of handles on the surface. which is called the 

genus of the surface. In general, for any value of ~2 the Weyl 
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invariance cannot be maintained due to the Weyl anomalies. 

The Polyakov partition function is defined by 

Z = I: 
topologies 

J[dg][dX] e-S[X,g] . 
mxE 

( 2 . 7 ) 

However, in quatization of the string theory, the classical 

invariances must be maintained and then this integral over counts 

physically equivalent configurations related by the group of 

diffeomorphism and by the group of Weyl rescaling. Thus we must 

identify equivalent configurations and count each one just once. 

In other words, we should integrate not over mxE but over the 

quotient space mxE/Diff(MlxConf(M). When all anomalies vanish. 

the precise definition for the Polyakov partition function can be 

given by 

Z = I: 
top 0 log i e s 

J[d ][dX] 1 e-S[X.g], 
g Volg(Diff)Volg(COnf) mxE 

(2.8) 

where Volg(Diff) and Volg(Conf) are the volume of Diff(M) and 

Conf(Ml through gab, respectively. 

To get the measure [dX], we first define the metric (or the 

norm) for deformations 6X~: 

(2.9) 
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The measure is defined by requiring 

__ 1 11 6X.lL 1\2 
f[d6X] e 2 =1 (2.10) 

Similarly, to obtain the measure [dg] on Tg(m), the tangent space 

to m at the point g, we define the metric 

(2.11) 

- (6g,6g)g 

where u is an arbitrary positive real number and Gabcd is the 

projector onto the space of symmetric traceless tensors: 

(2.12) 

This suggests that one performs an orthogonal decomposition on 

6 g: 

(2.13) 

where 6hab is the symmetric traceless part and 6L is the trace 

part. Inserting (2.13) into (2.11), the metric is reduced to 

I\Sgl\2 = fMd2Z jgGabcd(Shab)(Shcd) + 16 u IMd2Z jgc.6L)2. (2.14) 
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Thus the measure [dg] is given by 

[dg]=[dh][d~] (2.15) 

Since the metrics (2.9) and (2.11) are invariant under 

diffeomorphism, but not invariant under Weyl rescaling of g. the 

measures [dX] and [dg] are also not invariant under the Weyl 

transformation. This is the origin of the Weyl anomalies. 

A 

Let g be an admissible metric on M, then for a conformal 

factor 0 the metric 

A 20 
g = g e (2.16) 

is an admissible metric on M. If dM=O. we can choose g to be a 

constant curvature metric. (See appendix A.) Thus we analyze the 

effect of gauge transformations on a surface determined by the 

gauge fixing condition (2.16). Under a diffeomorphism with 

infinitesimal generator 6V a connected to the identity Diffe(M), 

the change in the metric is given by the Lie derivative: 

6gabl A 20 = Va (6Vb) + Vb(6V a ), 
g=ge 

(2.17) 

A 20 
where va denotes the covariant derivative with respect to g=ge 

The change in the metric by changing the conformal factor 0: 
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Under orthogonal decomposition (2.13), we obtain 

where 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

and the operator Pl maps vectors into symmetric traceless 

2-tensors. The change of the variables from h and ~ to V and 0 is 

[dh] [d~] = I d (h, ~ ) I [ d V] [do] 
d(V,O) • 

The above Jacobian is written as 

I d(h'~)1 = 
d(V,O) 

Pl 0 
* 1 

= det Pl 
t 1 /2 = [det P1PtJ, 

(2.22 ) 

(2.23) 

where the operator pt is the adjoint of Pl, i.e.,it maps 

symmetric traceless tensors into vectors. 

A vector 6V satisfying Pl(6V)=0 is called a conformal Killing 

vector (CKV). From (2.20) and (2.21), a diffeomorphism generated 
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by CKV is equivalent to a change in the conformal factor. Since 

each deformation of the metric is only counted once. such 

diffeomorphism must be omitted. Thus infinitesimal generator SVa 

limits to 8Va~. which is orthogonal to CKV. and the correct 

Faddeev-Popov determinant is det'ptPl. where the prime denotes 

the omission of the zero eigenvalues. 

There are deformations of the metric which are not given by 

(2.19). Such deformation is called Teichmuller one of the 

metric. We have the orthogonal decomposition of Tg (m)[13.14J 

(2.24) 

where T 9 CD i r r 0 ~ l = {I mage PI} and 

Tg(Teichl={ker pt} (see fig.l and 2). ker pt is the kernel of pt. 

Let S be a gauge slice within m transversal to the orbits of 

Diff0(M)xConf(M). where {t r } is a set of coordinates and {X Crl } a 

set of tangent vectors for the slice S. The deformation of the 

metric on the slice S is given by 

(2.25) 

and we let Ag be the orthogonal projection on Tg(Teich). Then 

the deformation of the metric is decomposed into (see fig.3) 

(2.26) 
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Inserting (2.26) into (2.14). we get 

II S gab II 2 = II soli 2 + II PIS V.L II 2 + < /\ 9 X ( r ) , /\ 9 X ( 5 ) ) S t r S t 5 

9 9 9 

= II soil 2 + II PIS V.L II 2 
9 9 (2.27 ) 

+<A gX(r).1/J(r'»<1/J(r'),1/J(S'»-I<l/J(S'),A gx(S»st r St s • 

where l/J (r) is a basis for ker Thus the measure [dg] is 

expressed by 

[dg] 

det<x.l/J)g , (2.28) 

where det<Ax,1/J)g=det<x,l/J)g since At=/\g and /\gl t = 1. 
kerPl 

We can rewrite the volume of Diff0(M) as 

(2.29) 

(2.30) 

where ¢ i is a basis for ker PI and dct i is an appropriate 

parameter and 

DiffCM) 
Diff0(M) = Mapping Class Group of M (2.31) 
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The functional integral over X is reduced to 

det'l':. )-d/2 9 , (2.32) 

where I':.g is the laplacian on M with metric g, and we remove the 

zero modes corresponding to translations X ~ X + X0 (this leads 

to an overall factor of the volume of space-time. which we drop). 

Thus the Polyakov partition function is 

f [dO'] 
Z = E topologies Volg(Conf) 

x 
det<x,tp)g ( 
[det<tp ,tp)g] 1 /2 

271.' det 'I':. 9 ) -d/2 
! d 2zJg 

= E top 0 log i e s 
1 J [dO' ] [d e t ' P t P 1 ) 1 12 

I MCGI Volg(Conf) [dt] det<tp,tp)gdet<¢,¢)g 

x ( ! d 2zJg det 'I':. 9 )-d/2 det<x,tp)g 
IT dCi i 

(2.33) 

where I MCGI means the number of elements in the mapping class 

group of M. 

We now analyze the behavior of 

(2.34) 
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under \l1eyl transformation. (Since the term det<x,!fJ> is \l1eyl 

invariant, we will omit this term.) Using the heat kernel of the 

determinant: 

In det'H = _ Joo dt Tr'e- tH 
c t (2.35) 

where c is an ultraviolet cutoff, we can evaluate the variation 

of (2.34) under infinitesimal \l1eyl rescaling. The results 

are[12,13] 

det '(j g) -d/2 ) 

(2.36) 

= - _1_ (26-d)Jd2Z Jg R So - _1_ (l-d/2 )Jd 2Z Jg So 
2~ ~c' 

The partition function becomes 

z = ~ 
top 0 log i e s 

1 J [do] l det'ptPl ) 1/2 
IMCGI Volg(Conf) [dt] det<!fJ,!fJ>gdet<¢.¢>g 

27[' 
x ( ! d 2zJg 

where 
Sconf = 

- 15 -

det<x,!fJ>g e-SCOnf 
IT del i 

(2.37) 

(2.38) 



This shows that in d=26 (critical dimension) the theory can be 

made Weyl invariant by choosing £2 appropriately. 

Then the partition function is reduced to 

Z = L 
topologies 

1 J[dtJ 1 det<x,1/7)§ [det'pt p J1/2 I MCGI Vo19 (CKV) [det(1/7 ,1/7)§ J 1 /2 1 1 

(2.39) 

(2~ det'6§)-13 
X .r d 2ZJ § 

where The quotient space 

m/Diffe(M)xConf(M) is known as Teichm~ller space T and T/MCG is 

the moduli space. Hence, if the integrand is invariant under the 

transformation of the mapping class group (or the modular group), 

we obtain the final expression: 

Z = L 
top 0 log i e s J

[dtJ 1 det<x,1/7)§ [det'pt p J1/2 
modu Ii Vo19 (CKV) [det<1/7 ,1/7)§J 1 /2 1 1 

det'6§)-13 

The n-point scattering amplitude is defined by[12-14J 

<V(kl) .... V(knl) 

= L 
topologies J [d ] [ dX ] 

V ( k 1 1 • • • • V ( k n 1 - 5 [X • g] 
g Volg(DifflVolg(Confl e . 

mxE 

- 16 -
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Here V(k) is the vertex operator for an on-shell physical 

particle state with momentum k. It must obey the following 

covariance properties [18]: 

(i) Space-time translation invariance. 

This requires that V(k) must be the form 

(2.42) 

with U a function of the derivative of ~(Z). 

(ii) Space-time Lorentz invariance. 

This requires that the space-time indices ~,v, ... of the 

derivatives dX~/dZadZb ... in U must be contracted with a real 

polarization tensor e~v ... (k), which transforms according to a 

real representation of the little group of k~. 

(iii) World-sheet reparametrization invariance. 

The derivatives of X~(Z) in U(z,k) must be covariant ones 

X~;a;b .... The a, b indices in these covariant derivative must 

be contracted with gab and a factor Jg is required for the volume 

element. 

(iv) Weyl invariance 

The vertex operators must be invariant under Weyl rescaling 

after inclusion of all Weyl anomalies. 

We choose conformal coordinates on the world-sheet so that 

the metric is and take a complex basis (z,z). 

Condition (iii) requires that U behave under z 7 z'(z) as a 
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tensor of type (1,1), where z'is an analytic function of z, not 

-z. In general a tensor t of type (p,q) transform according to 

Uz,z) ~ t'(z',z') = ( dZ')-P( dZ')-q t(z,z) (2.43) 
dz dz 

Then V(k) is invariant under z ~ z'. 'dXJL/dz is a tensor of 

type (1,0) and gzz= -t-- e2a is a tensor of type (1,1). Thus 

U(z,z,k) 

(2.44) 

where N. the total number of z derivatives. is equal to the total 

-number of z derivatives, because the a.b •... indices are 

contracted with gab. Condition (iv) requires that v be 

independent of a. V(k) has a dependence in (2.44) and also one 

arising from Weyl anomalies in the path integral over X(Z). 

Possible sources of conformal anomalies are 

(a) Contractions of X in exp ( i k· X) . 

(b) Contractions of X in the covariant derivatives with X in 

exp ( i k· X) . 

(c) Contractions of X in the covariant derivatives with each other. 

The a dependence of (a) is given by 
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exp(ik·X) = exp ( - k k JL 
(J 147t ) : exp ( i k . X) : 

p. 
(2.45) 

where:: indicates that the contractions of X within the 

function inside : are to be dropped in the path integral. The 

cancellation of (J dependence of (2.44) and (2.45) gives the 

mass-shell condition 

N=O.1.2 ••..• (2.46 ) 

The (J dependence of (b) is eliminated by the transverse 

conditions 

~e = O. (2.47) 
)LV ••• 

and the (J dependence of (c) is absent if ep.v ••• satisfies the 

traceless conditions 

JLv 
7J e = O. 

jL v ••• 
(2.48) 

In this way we obtain vertex operators for physical particles as 

follows: 

V(k) = J d 2 z Jg eik·X(Z). (vertex of tachyon) (2.49a) 
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V(k) (2.49b) 

(vertex of massless particle) 

and so on. With all anomalies canceled, the amplitude can also 

reduce to finite dimensional integrals over moduli space by 

factoring out the volume of the diffeomorphism and the conformal 

groups. 

We here consider the n-point tachyon amplitude. In this 

case, the X integration can be performed by completing the 

square, so that 

<V(k1) ... V(kn) 

= E f[dt] 
topologies moduli 

[dcr] 1 det<x,l/J)§ [d t'p"tp ]1/2 
Volg(Conf) VOIg(CKV)[det<l/J,l/J)§]1/2 ell 

det'8g)-d/2 e-SCOnf (2.50) 

where G(Zi ,Zj) is a Green's function for the laplacian 8 9 , For 

Zi*Zj, G(Zi ,Zj) is independent of the conformal factor 

G 2cr ( Z i ,Z j ) = G" (Z i ,Z j) , 
e 9 9 

Zi*Zj (2.51 ) 
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On the other hand, for Zi=Zj, G(Zi ,Zj) depends on the conformal 

factor 

1 G 20' ( Z i ,Z j ) = G" (z i ,Z j ) + -4- 20' (Z i) , 
e 9 9 7C 

(2.52) 

However 

.r d 2 Z J g exp ( - 1 /2 k i 2 G 9 ( Z i ,Z i ) ) ( 2 . 53 ) 

is independent of 0' for k 2 =87C, and in d=26 the amplitude becomes 

an integral over moduli space: 

<V(kl) ... V(kn» 

= l: f[dtJ topologies moduli 
1 det<x ,1/l)9 [d t'p"'tp'" J I /2 

Vo19 (CKV) [det<lJ7 ,1/l)9 J I /2 e I I 

27C 
x ( .r d 2ZJ 9 

det'89)-13 (2.54) 

__ 1 l: 0 k· 
n J~g) e 2 ij Jjl. 

X ( IT .r d 2 Z G" (Z i ,Z j ) 
i = I 9 

X ( 27C ) 2 6 rS ( k I + ••• + k n ) 
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3. Weyl Anomaly in the Bosonic a-Model and String Equations of 

Motion 

The string propagation in a non-trivial background of 

massless condensates (graviton, dilaton, etc.) can be described 

by the two-dimensional nonlinear a-model[8]. Thus we believe the 

Weyl invariance of this a-model is a necessary condition for 

consistent quantization of the string theory on a background and 

that this condition is equivalent to the equations of motion for 

the massless background fields in the string effective 

action[8,19,20]. The Wey! invariance imp!ies the vanishing of 

the trace of the energy-momentum tensor or the absence of the 

Weyl anomaly for the two-dimensional a-model. In this section we 

consider the Wey! anomaly in the bosonic a-model in a background 

metric and with dilaton coup!ings. 

The bare action of the renormalized bosonic a-model in curved 

d=2+8 dimensional space is[8,19,20] 

metric and the di!aton field, 

respectively. R = d~1 R(d), where R(d) is the scalar curvature of 

gab. Subscript "e" indicates bare quantities. The dilaton term 

explicitly breaks the c!assical Wey! invariance but is required 

by renormalization. Therefore this term is introduced at O(~'). 

We wi!l use dimensiona! regularization and choose the 

renormalized couplings to be dimensionless. The bare couplings 
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have the mass dimension s=d-2. In the minimal subtraction scheme, 

the renormalized metric and dilaton are defined by 

co 
1 G 

G0 = ]Ls( G + ~ Tn (G) ( 3 . 2 ) 
]LV ]LV n = I S n ]LV 

qJ0 = ZlqJ + Z2 = ]LS( qJ CO 1 It 
+n~1 --enTn(G.qJ)) ( 3 . 3 ) 

T~ = ';n(G)qJ + K.n(G) • 

where]L is the renormalization scale. Zl is the renormalization 

operator for a scalar coupling and Z2 is a function depending on 

G. which is the additive renormalization for ~ since a divergence 

proportional to R(d) arises from the first term of the action. 

The renormalization group $-functions are given by 

"G -sG G G G d TG 
$]LV = + 

$ ]LV • $]LV = -Tl + G p 0' d Gp 0' ]LV ]LV l]LV 

iqJ = -sqJ + $~. $~= -6qJ + (i) • 

6= -G d d 
dGJLv';l. 

(i) = -K.l+G -- K. 1 • 
]Lv ]LV d G]LV 

The energy-momentum tensor is defined by 

Its trace. the Weyl anomaly. is found 

6 cJ gR ) =J g ( 8 RO' - 21'1 20' ) , 

under 
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( 3 . 4 ) 

(3.5) 

( 3 . 6 ) 

6 gab = 20' gab , 



we obtain 

da(]ggabdbqJll) = 

Hence 

1 
47[' 

_1_ r-=-
+ da(.Jggabdb~ll), 

27t 
( 3 . 7 ) 

( 3 . 8 ) 

( 3 . 9 ) 

(3.10) 

+ 1 
47t 

r: - jJ. 
.Jg R(-sqJll+<1 'Oil qJlld qJll). 

jJ. 

Next we consider the renormalization of the composite 

operators[20J. Let the action (3.1) be denoted by 

SIl =! ddz Alli·¢lli , (3.11) 
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where the composite operators A0 i represent 

A~ = 
1 
4;( .Tg R SD(y-X) 

The dot denotes the 

(3.12) 

(3.13) 

scalar product: 

f·h=!dDyf(y)h(y). The renormalized operators (or the normal 

products [21]) [Ai] are defined by 

(3.14) 

In general, 

(3.15) 

On the other hand, from (3.14) and (3.1) we find 

!ddz[A',]Fi= ~Fi= ~d2 A d¢0 j

F , S¢ i "z Il j ~ , • (3.16) 

and its local expression: 

(3.17) 

where Fi (y) are arbitrary functions. The total derivative term can 
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be rewritten as 

(3.18) 

since A0i form the full set of dimension 2 operators, and 

d¢0 i 
Z i j = d¢;T + 1\ i j, X n i j = dTn i 

d¢;T + Qn i j. (3.19) 

Thus if we write the trace of the energy-momentum tensor as 

J gT a a = A 0 i l/J i , 

= JLS(-S¢i - Tli(¢) + Xi(¢) + O(l/s» , (3.20) 

J gT a a = [A i ] § i = [A i ] { - t3 i + A i + Q 1 i j ¢ j } • (3.21 ) 

Here all the pole terms (~ l/sn, n~l) must be canceled in (3.21) 

because Taa is a finite operator. 

Therefore we get the Weyl anomaly 
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A 

A A 

= [Jggabdax,/LdbXV ~G (X») +Ui'Jg R ~~(X»), 
,/LV 

G AG 
~ = E + 2(t' D d ~ + D ( \tJ ) , 
,/LV,/LV ,/L V ,/L V 

A 

~~ = ;~+ (t'D,/L~d ~ + D,/L~ \tJ ,/L ,/L 

(3.23) 

(3.24) 

where the \tJ,/L-terms are due to the total derivative term in 

(3.17) [20). 

Note that the operator of the trace of the 2-dimensional 

energy-momentum tensor is expressed by finite composite operators 

multiplied by the \tJeyl anomaly coefficients ~,which are in 

general different from the ordinary renormal ization group 

~-functions: 

-G = I'l G " ~ I-' + 2(t' D " ~ + D ( \tJ )' ,/LV,/LV ,/L V ,/L V 
(3.25 ) 

(3.26) 

The global scale anomaly is expressed by 

(3.27) 

since the total derivative terms drop out by the integration over 

z. 
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Using the normal coordinate expansions (see ref. 22 and 

appendix B), we find the Weyl anomaly coefficients UP to I-loop 

(Le. O(Ci'»: 

§ G = Ci' R + 2Ci' D d 1l + 0 (Ci ' 2 ) 
j./.v j./.v j./. v ' 

(3.28) 

(3.29) 

Here we include the contribution of the reparametrization ghost 

in the constant terms in (3.29) [12]. 

The Weyl invariance conditions, §G = §1l = 0 are equivalent 
j./.v 

to the equation of motion from the (tree level) effective action 

(D=26) 

(3.30) 

Calculating the expectation value of Taa by expanding it near 

a classical solution X, we obtain[20] 

(Taa> 

",G 
13 j./.V = 

1 j./. OJ -G 1 1l = 4""N'( gabdaX dbX 13 (X» +--(R § (X» 
It'" j./.V 47t'. 

13 + 
j./.V 

. .. , 

+ non-local terms, 
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(3.31) 

(3.32) 



"'ifJ -ifJ 1 - jJ.,V t3 =t3 --4t3 G + •.• jJ.,V 

= _1_ ri 'GjJ.,v R 
4 

( 3.33) 

and we use 

+ ••• 

Note that the equations. ~G =0, ~ifJ=o is equivalent to ~G =0, ~ifJ=o jJ.,V jJ.,V 

and thus to 5I/5GjJ.,v=0. 5I/5ifJ=0. 
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4. String Loop Corrections to ~-Functions 

In the previous section, we have considered the Weyl 

invariance conditions of two-dimensional a-model and found that 

these conditions are equivalent to the equations of motion from 

the string effective action at the string tree-level. 

The next step is to investigate the effects of string loops 

(i.e. higher genus Riemann surfaces) on the Weyl invariance. 

Naively, the ~-functions at string tree level cannot be modified 

by string loops because they are related to ultraviolet 

divergences or short-distance behavior of the two-dimensional 

theory and are independent of the world-sheet topologies. 

Recently, however, it was pointed out that the divergences in the 

integration of moduli parameters of Riemann surfaces, which come 

from boundaries of the parameter space where handles shrink to 

zero size, are responsible for the Weyl symmetry breaking[9,10J. 

Hence string loop effects (i.e. small handles) can contribute to 

the ~-function. In this section we discuss string one-loop 

corrections to ~-functions for the closed bosonic string. 

Consider the nonlinear a-model describing the closed bosonic 

string in a metric and a dilaton background fields ~v(X) and 

~(X). The action is 

5 = ( 4 . 1 ) 

Since the two-dimensional a-model is ultraviolet divergent. 

coVnterterms must be added to 50 to be finite. The counterterm 
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action is 

6 5 = I ~7( I<. I d 2 Z [ Tci gab d a XJ1. d b XV 6 GJ1. J X ) . + rJ.'.Tg R 611l ( X ) ] • (4. 2 ) 

where I<. is the world-sheet cutoff and 6G and 611l are function of 

the background fields, which define the renormalization group 

B-functions. (5ee sect. 3 and appendix B.) 

On the other hand. string I-loop (torus T2) amplitude is 

divergent when a handle shrinks to zero. In this limit the string 

I-loop amplitude becomes the product of a string tree (52) 

amplitude, a zero momentum dilaton propagator and I-loop (T2) 

dilaton tadpole[9,10]. The zero momentum dilaton propagator, 

which is a source of divergence, is given by 

I I p2-1 
dx x 

a p2=O 
a70 

= I I dx 
a X = -In a la7 o.(4.3) 

a70 

From the viewpoint of the a-model on 52, this divergence is 

interpreted as the insertion of the vertex operator for the 

emission of a zero momentum dilaton: 

( 4 . 4 ) 

where a is the size of a handle, g is the string coupling 

constant and Jc is the dilaton tadpole amplitude. Thus we add a 

new counterterm 
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65 100p = In a 
2n: 

(4.5) 

to the a-model action in order to eliminate this divergence. 

For a»~. the ~-function of the a-model on T2 will coincide 

with those on 52. However. if a~~. the small handle affects the 

short-distance property of the theory. Hence we can choose a=~ 

and from the counterterms 65+65 1oop we obtain the string-loop 

A 

corrected ~-function ~ for the background metric: 

A 

eG = ~G - g2Jc ~ 
~v ~v ~v 

( 4 . 6 ) 

A 

The vanishing of the string-loop corrected ~-function. a=o. is 

believed to be equivalent to the string-loop corrected equation 

of motion, which is derived from the loop corrected effective 

action to O(~') (0=26) 

I = c J d D Y JG e - 2~ { ~. ( R + 4 d ~ ~ d jJ. ~ ) + 2 g 2 J c }. ( 4 . 7 ) 

This action is just the Einstein one with the dilaton field and 

the string one-loop cosmological constant in the lowest order of 

~'. In sect. 6. we will consider higher dimensional cosmology 

based on this action. 
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5. One-Point Amplitude and String-Loop Corrected Equation of 

Motion [23] 

In string theory. the vanishing of the one-point amplitude of 

a vertex operator V 

« V » = 0 ( 5 • 1 ) 

must be the condition for a classical vacuum solution or. at the 

quantum level, a minimum of the effective potential by analogy 

with field theory. On the other hand, world-sheet Weyl 

invariance or vanishing e-function ( e = 0 ) is needed if string 

theory is to make sense [8]. In order to have any sensible 

physical interpretation, e = 0 must coincide with the equations 

of motion. Really, it is well understood that, at tree level in 

string theory, Eq.(5.1) is a consequence of world-sheet Weyl 

invariance [11]. This implies a self-consistency between the 

background fields and the dynamics of the string. 

Recently, Fischler and Susskind [9] showed that the 

cosmological constant of closed bosonic string theory appears as 

a one-loop correction to the e-function for the background metric 

field. At present. many authors have successively investigated 

string loop corrections to the e-function [10], believing that 

A 

the vanishing of some corrected e-function e gives the equation 

of motion. In analogy with the tree level case, it is natural to 

anticipate that e = 0 is equivalent to « V» = o. But this 

statement has not been confirmed explicitly. 

In this section we examine directly « V » to one-loop order 
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(i.e. a torus correction) in the case of closed bosonic string 

theory supposing that the Weyl invariance holds in the theory 

and show that « V » = 0 provides the same string-loop corrected 

'" equation of motion as that obtained from B = O. 

By using the Polyakov's path integral (refs. 12-14 and 24, 

see also sect.2 and 3), one-point massless particle amplitude for 

the closed bosonic string (d=26) propagating in a background 

metric is given by 

« V(p) » = I: 
top 0 log i e 5 

with the action 

-x g 
Vol(CKV) 

s = 1 J d 2 zFggab 
27t~ , 

1 
2 

(5.2) 

( 5 . 3 ) 

Here G (X), g. x and V(p) are the background metric. the 
jJ.V 

coupling constant. the Euler number of the world-sheet and the 

vertex operator for massless particles. respectively. The 

integral over the zero mode gives a factor of (27t)26S(p) and the 

vertex operators are defined for on-shell physical states, so 

that one-point amplitude must be evaluated at zero momentum. We 

will write «V(p=O») = «V(O») from now on. 
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At the string tree level. the requirement of the Weyl 

invariance determines G0 (classical vacuum solution) for the 
J1,v 

background metric and it guarantees 

( 5 . 4 ) 

because of the existence of conformal Killing vector (CKV) on 52. 

However. at the string one-loop level. we generally see 

« V(O ( 5 . 5 ) 

This means that G0 is not the true vacuum solution. 
J1,v 

Therefore 

It should be necessarily modified to G0 + BGI so that. UP to 
J1,v J1,v 

the string one-loop level. 

Repeating this manipulation to higher order may lead to the 

string coupling perturbative expansion of the background 

solution. 

In the following discussion of «~Veal»~. we consider the flat 

space-time to be the classical solution n • Then. the metric G = 
J1,v 

# This is due to the reason that we consider «V(O»)T2 in the 
flat space-time. As concerns the following evaluation of 
«V(O»)5 2' we need not limit the classical solution to the 
flat one. 
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~ + hand h ~ 0(g2) to one-loop order. Furthermore we take 
#V #V #V 

flat coordinates, i.e. gab = 6a b, on the world-sheet, assuming 

that the Weyl anomaly cancels u • To evaluate the quantum 

corrections in the a model [22], we expand X#(z) in terms of the 

Riemann normal coordinate ~~(z) around a fixed point X0~(Z) 

and make ~~ a dimensionless field by the replacement ~~ 7 

Now we calculate « V(O) »S2to leading order in h and ~': 
~v 

+ J d 2 z <~V(Z,O»0 ) • (5.7) 

# In general, the world-sheet has the conformal flat coordinates 

and there should exist the dilaton term in the action. But. 

focusing our attention on the Fischler-Susskind procedure only 

for the background metric, we here neglect dilaton contributions 

for simplicity. 
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«"'»0 stands for 

[d~] e ( ... ) J 
-50 

V(p) is expanded as 

V(p) = 

= Jd 2 Z e (p) 
JJ.,V 

x ( 1 -.L 27l." fi 'p r P ~ (J ~ x _ ...): 
2 P (J x 

-.L 27l." fi • p r P ~ (J ~ x _ ...): 
2 P (J x 
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( 5 . 8 ) 



by the normal coordinate expansion. so we get 

= Jd 2Z e JJ.V 

and ~V(p) is the next-order term of the remaining part in 

Eq.(5.8). Here we make V(p) renormalized by taking normal 

ordering under the condition: 

( p2 + ir P p ) e (p) = 0 
aa P JJ.V 

pJL e (p) = 0 
JJ.V 

On the first term in Eq.(5.7). the contraction <~JJ. ~v > gives a 

logarithmic divergence. and the contractions <d~JJ.~~v> and <d~JJ.~v> 

do not contribute in the dimensional reguralization. By 

introducing a short-distance cutoff ~ on the world-sheet. the 

logarithmic divergence is expressed as 

= 

Hence the first term is reduced to 

1 
47t' 

C 1 g - 2 J d 2 zd 2 z· 27t' ct • e R (X 13 ) 
Vol(CKV) 3 x~ JJ.pva 
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1) log ~ 



- C 1 g - 2 J d 2 zd 2 z' 21(' ct ' ( _1_ ) 3 eJL V R ( X" ) -,.---,1~,.,-. = 3 41(' JL V I z - z ' I 4 

Vol(CKV) 
log /{, 

.(5.9) 

Owing to the conformal transformation 5L(2,C), the volume 

Vol(CKV) of the group generated by the conformal Killing vector 

is rewritten as 

Vol (CKV) = J 

Taking into account this form in Eq.(5.9), we get 

g- 2 21('ct ' ( _1_ ) 3 eJLv R 
3 41(' JLV 

(X,,) log K. 

J 
d2z 

I a-bl
2 I z-a1 2 1 z-bl 2 

(5.10) 

The denominator of Eq.(5.10) gives a logarithmic divergence when 

z approaches to a or b. 50 identifying this divergence with log /{, 

in the numerator, we finally obtain as the first term 

(5.11) 
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where c = ~'Cl / 3(4~)3. On the second term in Eq.(5.7), ~V, 

which is the composite operator of ~. is a correction term to Va 

coming from the curved space-time. Since it should be evaluated 

at zero momentum. <~V)a becomes zero and. therefore. the second 

term vanishes. 

As we have seen. «V(0»)S2 turns out to be finite through 

dividing by Vol(CKV). This is a delightful result, considering 

that «V(0»)T2 will be finite except for the contribution of the 

tachyon mode. In fact we know that « V(O) »T2 in flat 

space-time [24] is 

«V( 0) »T2 = 1 
Vol(CKV) J [dModul i ] (det · P 1 P 1 ) 1 /2 ( ~ det · ~ ) - 1 3 J'd 2z 

(5.12) 

jJ.V 1 
7j ~. 

which does not depend on z, and J'd 2 z = ~2. Whence Eq.(5.12) 

becomes 

- J 

- - Jc e 
jJ.V 

jJ.V 
7j 
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(5.13) 



Thus, imposing the vanishing of one-point amplitude up to string 

one-loop order 

« V(O) » = c g - 2 eJL v R ( X 13) - J c eJL v 7) 
JLv JLv 

= 0 , (5.14) 

we get the loop corrected equation of motion 

(5.15) 

This result agrees with the condition of being conformal anomaly 

A 

free, i.e. E = 0 to one-loop order [9,10J. 

In considering string loop corrections, there exist various 

kinds of divergences, which arise from integrations over distinct 

'" boundary regions of moduli space and may contribute to E [10J. To 

... 
achieve the vanishing a function for massless fields, it is 

necessary to cancel divergences due to dilaton tadpole against 

a-model divergences. In the N-point amplitude, the former can be 

interpreted to arise from the graph of a dilaton emitted from 52 

and absorbed by the vacuum and the latter from that of a dilaton 

emitted from 52 and coupled by the massless background fields. 

That is, when N points all coalesce, 

x log /(, < < V d i I (0) > >T 2. 
,7)JLV 
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x log K. < < V d i 1 (0) > > S 2 ; 7J + h 
I/.LV /.Lv 

Both divergences are due to the massless dilaton propagator at 

zero momentum. Then «v» can be regarded as the coefficient of 

these logarithmically divergent terms. This strongly suggests 

A 

the equivalence between «V»=O and S=O. 
Throughout this section, we considered the flat space-time to 

be the classical solution. If the classical solution is a curved 

space-time, G =G0 +~Gl and ~Gl ~ O(g2) to one-loop order 
/.LV /.LV /.LV /.Lv 

and we will obtain the one-loop corrected equation of motion 

c R = g2 Jc' G 
/.LV /.LV 

where Jc' is the one-loop cosmological constant in the curved 

space-time. 
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6. Higher Dimensional Cosmology with String Vacuum Energy [25] 

String theories are consistently formulated in higher 

dimensional space-time. so that we are obliged to have the 

important problem of how to explain the large separation between 

the scale of our three- dimensional space and that of the extra 

one. as in ordinary Kaluza-Klein cosmology [15-17]. In order to 

approach this problem. many authors have investigated the (string 

tree level) effective Lagrangian obtained in the field theory 

limit of string theories. especially, the ten-dimensional 

supergravity derived from superstring theory [26]. Then, there 

arise the curvature squared (and higher-order) and the dilaton 

terms. These new terms lead to the different scenario from 

ordinary Kaluza-Klein cosmology. However, such a treatment does 

not seem to reflect soundly the characteristic of string theories 

because the contribution of the string vacuum energy to the 

energy-momentum tensor is not considered. In fact, the 

winding-up of closed strings around tori is closely connected 

with stability of the extra space and, in sect. 4 and 5, we have 

found that the string vacuum energy (the cosmological constant) 

of closed bosonic string theory appears as a one-loop correction 

to the equation of motion for the background metric field. Even 

in the superstring case, we can not ignore this effect if 

supersymmetry is broken for some reason [27]. 

In this section, we investigate the cosmological evolution in 

the closed bosonic string theory with the one-loop vacuum energy, 

for the winding effect is determined mainly by bosonic sectors. 

i.e. string coordinates of the string theory. Our analysis is 
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carried out based on Md X [TI]D where Md is d-dimensional 

maximally symmetric space-time, [TI]D is TIX ... XTI (D-times) 

and d+D=26, since compactifications on flat tori satisfy the 

consistency for the Weyl invariance in the string world-sheet. 

As we are interested in the era after the Planck time, we take 

here the Einstein equations to describe the evolution of the 

universe II 

Now we assume that (d+D)-dimensional metric is the 

generalized Robertson-Walker form 

gMN __ \-1 ( 6 . 1 ) 

M,N=O,l, ... ,d+D-l; m,n=1,2, ... ,d-1; i,j=1,2, ... ,D. 

Here gmn(X) is the metric of (d-1)-dimensional space Md-I, 

9 i j (y) (=6 i j) is the metr i c of [T I] D and R (t) (r i (t) ) is the 

# We here assume that the Planck length ~ J~, where ~' is the 

string slope ( the inverse of string tension). In sect. 4 and 

5, we obtain the string-loop corrected equation of motion and the 

string effective action at the lowest order of ~'. (See 

eqs. (4.6), (4.7) and (5.15).) Thus in the low-energy region the 

gravitational equations can be described by the Einstein ones and 

the string vacuum energy contributes to the energy-momentum 

tensor. The dilaton field is assumed to be constant. 
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time-dependent scale factor of Md-I (i-th TI of [TI]o). The 

energy-momentum tensor is taken as 

--I P 
pgmn (B. 2) 

Pigi j 

where p is the energy density and P (Pi) is the pressure in Md-I 

( i - th T I ) • 
1 Then, from the Einstein equation: RMN- 0 gMNR=B7t'GTMN, ... 

we have 

R 0 r· -T L L 
(d -1 ) ( - ) + L ( ....!.......J ) = Bit' G ( d + D- 2 - P ) R j = 1 r j 

(6.3a) 

d ~ ( ~ ) + ( d - 1) ( ~ ) 2 + ( ~ ] ~ ~ t ~) + ~ 2 = Bit' G ( d! ~ ~ 2 + p), (6. 3b) 

A... ( i:J ) + ( d _ 1 ) ( .R. ) ( i:J ) + ( i:J ) ~ ( i.J ) = Bit' G ( - T L L 
dt ri R ri ri j=l rj d+D-2 + pi),(6.3c) 

o 
where TLL=-p+(d-l)p + LPj is the trace of the energy-momentum 

j = 1 

tensor, G is the (d+D)-dimensional gravitational constant and k 

is the curvature constant of Md-l. p, P and Pi can be 

determined from the free energy F as follows: 

p 1 [ T2 _d_ (FIT) ] = , 
Qd-l~20 dT (6.4a) 

P = _I_ I R .1.E.. 
d-l Qd-IQO dR (6.4b) 

Pi = 1 dF 
Qd-1QO ri~' (6.4c) 
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where Qd-l (QD) is the volume of Md-l ([T1JD): 

(6.5) 

The free energy in the one-loop approximation is generally given 

by 

~F = _1_ Tr In H , 
2 

where ~ = liT and H is the hamiltonian of the bosonic string. 

The exact form of this free energy is very complicated, but at 

low temperature ( T < 1/~), F can be reduced to [16,17J 

F ~ (string vacuum energy at zero temperature) 

+(free energy of massless free gas in thermal equilibrium). 

We first give the vacuum energy of the closed bosonic string 

theory at zero temperature. d-dimensional mass of the string on 

Md X [Tl]D is given by 

f1 ' 2 "2" (mass) 
f'v 1 D m· 2 = N + N -2 + -2 l: (--'- + 9. i 2b i 2) 

i = 1 b i 2 
( 6 . 6 ) 

bi=ri/~ mi ,9.i=O,±1,±2, ... 

mi and 9.i are the discrete momentum quantum number and the 
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'" winding number on i-th TI, respectively. Nand N are the number 

operators of right- and left-movers with the constraint 

N - ~ 
o 

= ~ mi9.i 
i = I 

Then the vacuum energy in the one-loop approximation is 

v s t 
fi ' 2 2 (mass) ) 

fi ' 
-Pd 2 + 

= + Tr J: dx [ x 2 

rJ. ' 2 -(mass)-1 
2 ]/ln x , 

( 6 . 7 ) 

(6.8) 

where the trace means the integral over d-dimensional momenta Pd 

and the sum over discrete momenta, winding numbers and oscillator 

modes. Taking the modular invariance of this vacuum energy into 

account and subtracting tachyon contributions, we get the vacuum 

energy as follows 

x ~ ~ e - 27[' i 7: I m i 9. i e -7[' 7: 2 ( m i 2 1 b i 2 + 9. i 2 b i 2 ) 
i = 1 n m i ,)(,. i =-00 

F: -1/2 :iO 7:1 :iO 112 , 7:2 )0 , 17:1 ~ 1 

00 

f(z)=TI(l-zn) • 
n = I 
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Details are given in refs.[28.29]. We note that Vst is invariant 

under bi -+ bi-I. In the limit in which all of bi 's -+ co the 

vacuum energy becomes 

-7C Q d - I D J 2 - ( d + D + 2 ) ~ 2 47C?; 2 
V s t - > (27C ct ' ) d ~ 2 ( 27C ) D ~ 2 i ~ ~ 27C b i) Fd ?; (27C?; 2 ) e 

?7C i ?; - 2 ( d + D - 2 ) 
x[lf(e-)1 -1] 

8 Q d - I 
'" 2. 1 x 1 0 - ( 27C ct ' ) d ~ 2 ( 27C ) D ~ 2 

D 
IT (27C b i) > 0 • 

i = 1 
(S.10) 

In this limit. the vacuum energy becomes eq. (S. 10) with 

bi- I instead of bi. Since Vst is invariant under bi -+ bi- 1 

and both V s t (b i -7 co) and V s t (b i -7 0) are pos i t i ve. V s t has 

a minimum at the position all of bi 's are equal to 1. In the 

case of general torus compactification. the vacuum energy can be 

obtained only by replacing ~ b i 2 
+ Q.i 2 bi 2 with 

mi * m· ~gi j ~ + (Q. ibi )gi j (Q.jbj) in eq. (S.9). Here gi j is a torus 

* metric and gi j is the dual metric. Then the vacuum energy remains 

invariant under 

bi -7 bi-I) and its minimum value comes to depend on gi j. 

At zero temperature. expressing Vst=Qd-l~st. the R.H.S. 

of eqs.(S.3a.b.c) are reduced to 

d+D-2 
'" r _ (D- 2) V s t + D r i d V s t ) l dri 

• (S.3a.b)' 
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8n'G _1_ ( d V s t - (d - 2) r i 'd V~ t 
rlo 'dri (6.3c)' d+D-2 

Eq.(6.3c)' seems to allow ri to stop expanding when it becomes 

negative. For the L.H.S. of eq. (6.3c) becomes ri/ri when ri=O and 

the condition of a maximum is ri=O and ri<O. If we consider that 

ri should become constant (=ri (0» and 4-dimensional cosmological 

constant should become zero at the final stage of the universe, 

both eqs.(6.3a,b)' and (6.3c)' must be equal to zero at ri=ri (0). 

Namely 

'" I r i =r i (0) = 
'd V s t 0 (6.11a) 'dri 

'" Vst I r i =r i (0) 
= 0 (6.11b) 

As eq.(6.11a) is realized only at ri= ~, it is necessary that 

eq.(6.11b) is also given at ri= ~. Therefore we wish to choose 

such a metric gi j as will allow the minimum value to be (nearly) 

zero. But at present, we don't yet know the values of Vst with 

respect to various tori, so we here regard Vst(bi) 

( r ) 
the vacuum energy Vst(bi) for such a metric gi j. 

( r ) 
Vs dl)=O II 

v s t ( 1 ) as 

Then we get 

# As a different possibility, we may consider that the string 
model has other parameters, such as vacuum expectation values of 
some scalar fields, which adjust themselves to minimize the 
vacuum energy to zero. 
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We examine the stability of the extra space numerically by 

the practical calculation of the vacuum energy. The integration 

in eq.(6.9) with different bi'S is very hard, so we here take all 

of bi'S to be equal and set d+D=26. In the R.H.S. of eq.(6.3c) 

we define the potential v(b) by 

+ Pi) = _ 87[' G b d v ( b ) 
db (6.12) 

The b-dependence of v is shown in fig.4 for D=4 case. In other 

cases, the similar dependence can be found. b0 is a "critical 

radius", so that if b < b0, b -+ 1 and if b > b0, b -+ co. The 

numerical values of b0 are presented in table 1 for D=1,2,4,8 and 

16. It is evident that b0 becomes smaller as D increases. From 

the above investigation, we find that there exists the solution 

that the vacuum energy prevents the extra space from expanding to 

infinity and contracting to a point, that is, the stable 

solution. 

Next we consider the cosmological evolution at low 

temperature ( T < 1/~ ). The free energy is given by 

, r ) 
F = Vst - Cd1d-l~hTd+D for R"'r, (6.13) 

t (d+D) d+D where CI= 576 7["d+D)/2 r( 2 ), and 576 is the number of 

massless mode degrees of freedom in the 26-dimensional closed 

bosonic string theory. Then the R.H.S. of eq.(6.3c) becomes 
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SxG ( + Pi) = Sx G ( 
-TLL (0) 

d+D-2 
+ Pi(0) + Pi(th) ),(6.14) 

( r ) 
where Pi (0) and Pi (th) are derived from Vst and -C1Qd-I~"IoTd+D 

in eq. (6.13), respectively, and TL L (t h) vanishes in = 

T L L ( 0 ) +T L L ( t h ). The thermal part Pi (t h) is 

Pi ( t h) = CIT d + 0 >0 . (6.15) 

The energy-momentum conservation, that results from the Einstein 

eqs.(6.3), is equivalent to the entropy conservation. The 

entropy 5 is determined from the free energy as 

5 = (6.16) 

so the entropy conservation is reduced to 

5 rv Rd-1rDTd+D-1 = constant. (6.17) 

In the region of R rv r, this becomes 

x - rT = constant. (6.1S) 

Therefore, due to eqs. (6.12), (6.14) and (6.1S). there is a 

"critical value" Xc for X because if X > Xc. the extra space goes 
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on expanding and has no chance of being stable. The values of Xc 

are given in table 2. By choosing X < Xc in the initial stage. 

it is possible that I' goes to R oscillating around the minimum 

of v(b) with thermal effects and R expands. In later time 

( R » r, I' ~ R ), the free energy becomes 

(6.19) 

( r ) 

where C2 is a positive constant and Vst ~ O. In this case we can 

ignore the effects of the extra space and Md becomes the 

d-dimensional Friedmann universe. 

In this section, we have found that the winding-up of closed 

strings around tori has a chance to prevent the extra space from 

expanding and to realize the d-dimensional Friedmann universe 

with the compactified extra space ( ri ~ R in later time. 

From the fact that the value of X at the initial stage is related 

to the entropy, we may also find that the entropy should not 

be large in order to reach the d-dimensional Friedmann universe. 

These results suggest that in the low energy world string 

cosmology corresponds effectively to the ordinary Kaluza-Klein 

cosmology. But we note that in Kaluza-Klein cosmology curvature 

terms cause the split of 3-dimensional space and extra space, 

while in our string case, the winding-effect of strings around 

tori guarantees the separation, even though the curvature of 

torus is zero. 
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7. Conclusions and Discussions 

In quantization of the string theory, the classical 

symmetries (two-dimensional reparametrization and Weyl 

invariances) must be maintained. In general. however, the Weyl 

invariance is broken in quantization. In the flat space-time. 

the bosonic string theory can be made Weyl invariant. if 

space-time dimensions are 26 (critical dimension). In the curved 

space-time, the Weyl invariance of the two-dimensional a-model. 

which describe the string propagation in a background, restricts 

the background configurations. On the other hand, the vanishing 

one-point amplitude «V»=O is the condition for a classical 

vacuum solution by analogy with field theory. Thus it is 

expected that the Weyl invariance condition is equivalent to 

«V»=O including the string loop correction. But at the string 

loop level, this equivalence is not verified explicitly. In this 

thesis, we have calculated «V» and shown that «V»=O provides 

the same equation as that obtained from the Weyl invariance 

condition to string one-loop order and O(~·). 

Next we have considered the higher dimensional cosmology 

based on the string-loop corrected effective action. This action 

has the string vacuum energy term and the string vacuum energy 

contains the winding effects of closed strings around tori. 

Therefore we expect that the extra space can not expand 

infinitely due to this term. Really, we have found that the 

string vacuum energy has a chance to prevent the extra compact 

space from expanding. 

Let us consider the N-point amplitude at string one-loop 
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level. There are two type of divergences. One arises when all 

the N points are close together, the other does when all but one 

points approach each other. These divergences are responsible 

for the Weyl symmetry breaking. Hence we must cancel out these 

divergences. The first type of divergences may be canceled by 

the a model divergences. This cancellation is interpreted as 

«V»=O. The second type of divergences may be canceled by 

modifying the tree level vertex operators in a way which 

corresponds to mass renormalization [30]. 

In the future, it is important to investigate the 

cancellation of various divergences, which appear in «V» at 

higher loop order, in order to realize «V»=O and to show 

generally that the condition of the Weyl invariance is the same 

as one of «V»=O up to higher loop order. If we consider the 

Weyl invariance seriously, we need to add the dilaton term in the 

action and to investigate «V»=O in this case. 

In this thesis, we have considered only the closed bosonic 

string theory. It is interesting to study the other string 

theories, e.g. the open string theory and the superstring 

theory. 
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Appendix A. The Riemann Surfaces and the Uniformization Theorem 

Let M be a two-dimensional orientable manifold, gab a given 

metric on M and {U('i} a set of coordinate patches of M. On each 

patch we can choose conformal Euclidean coordinates: 

ds ~('i ) (A. 1 ) 

In the complex coordinates (z=zl+iz 2, z=zl-iz2), the metric is 

written as 

ds ~ Ci ) (A.2) 

Since across coordinate patches dS~('i)=ds~~), the coordinate 

is a 

holomorphic function. Hence M acquires a complex structure. 

Conversely, if we are given a complex structure on M we can 

consider the conformal class 

ds ~ Ci) cc dz (Ci ) dz (Ci ) ( A . 3 ) 

on every coordinate patch. A one-dimensional complex manifold is 

called a Riemann surface. 

The uniformization theorem[31J for the Riemann surfaces 

states that there are essentially three distinct simply connected 
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Riemann surfaces up to holomorphic equivalence: 

(a) the sphere C U {ro} 

(b) the plane C 

(c) the upper half plane H 

'" These are the universal covering spaces M for the compact Riemann 

surfaces M. That is. any M is the quotient of M/r where r is a 

discrete subgroup of the group of isometries of M. without fixed 

points. 

For the sphere, the group of automorphisms is SL(2,C). Since 

any of the transformations in this group has three fixed points. 

r are the trivial group {I}. Thus 

'" M = M/r = C U {ro} • (A. 4) 

M is a unique Riemann surface of genus zero. For the plane. the 

group of automorphisms is {z~az+b}. Only translations act 

without fixed points. Thus 

M = M/r = M/lattice group Z+~Z = T (torus) . (A. 5 ) 

For the upper half plane H. the group of the automorphisms is 

SL(2,R)/{±1}. r are the discrete subgroups of it, called Fuchsian 

'" groups. M = M/r is the Riemann surface of genus ~ 2. 

. '" There are constant curvature metrlcs on M: 
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dzdz 
ds 2

= (1+lzI2)2 

ds 2 = dzdz 

dzdz 
11m zl 2 

for C U {co} , 

for C , (A. 6) 

for H , 

and the curvatures of these metrics are 1,0 and -1, respectively. 

Since these metrics are invariant under each automorphism. there 

exists a metric of constant curvature on M. 
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Appendix B. The Background Field Expansion 

To calculate the quantum corrections in the a-model, we 

usually use the background field method[22J. In this method, the 

action is expanded around an arbitrary classical solution of the 

equation of motion X~(z) in powers of a quantum field n~(z). But 

the spl i tting 

(B. 1 ) 

is not covariant, and n~(z), which is the difference of two 

coordinates, is not a vector on the manifold (or the curved 

space-time). So we express n~(z) as a local power series in a new 

field ~~(z) which is a contravariant vector on the manifold. 

To define the field ~~(z), consider the two points X~ and 

X~+n~ on the manifold. We assume that these points are close 

enough that there is a unique geodesic which connects them. This 

geodesic may be parameterized by l~(t) which satisfies the usual 

geodesic equation 

(B.2) 

where t is an arc length parameter and we choose it such that 

~ .~ vector to the geodesic at t=O, ~ =l (0), with length equal to the 
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geodesic distance between X0~ and X0~+X~. Since ~~(z) is a 

contravariant vector, an expansion of the action in terms of it 

will be covariant. 

The geodesic equation (8.2) can be iteratively solved to give 

where r.LL 
VPO ••• 7;; 

~ = 'V ••• '\1 r a 7;; vp 
and v is a covariant derivative a 

lower indices only and all quantities are evaluated at 

that 

(8.4) 

on 

so 

~~ is called the Riemann normal coordinate and in this system, 

the geodesics are expressed as straight lines, i. e. r.LL =0 
(vPo ••• ) • 

The expansions of the background fields in terms of ~ are 

given by 

... , (8.5) 

(8.6) 

.LL.LL ~ .LL 1,..J1, v P a d a (X 0 +X ) =d a X 0 + D a ~ + -3 t( ~ ~ d a X 0 + •••• 
VPO 

(8.7) 
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Combining these expansions (8.5-7) and making ~~ a dimensionless 

field by the replacement ~~ 7 J2x~' ~~, we obtain the background 

field expansion of the bosonic a-model action 

+ 1- ~ · Jg R tIl (X a +X ) ] 

1 r=-- ~ v 
+-4 ~'.Jg ROD tIl(XaH ~ ] + •••• 

~ v 
(B. 8) 

The linear terms in ~~ vanish if the classical equation of motion 

is used. 

We now study the ultraviolet divergences of this a-model at 
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the one-loop level. The one-loop divergent diagram is shown in 

fig.5 and in the dimensional regularization (d=2+c) the one-loop 

divergent term of the effective action is given by 

To cancel the one-loop divergences, the counterterm must be added 

to the classical action: 

(B.lO) 

The bare couplings are then (if the renormalized couplings are 

chosen to be dimensionless) 

G0 = ji.c(G +_l-ct'R + ••• ), 
ji.v ji.v C ji.v 

(B.lla) 

qJ0 = ji.c(qJ -+ ~' 02qJ + ••• ) , (B.llb) 

where ji. is the renormalization scale. The renormalization group 

a-functions to one-loop order are given by 

R qJ ct ' 
J.J = - 202 qJ • (B.12a,b) 
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Table Captions 

Table Values of critical radius b0 for 0=1,2,4,8 and 16 cases. 

Table 2 Values of Xc ( critical X ) for 0=1,2,4,8 and 16 cases. 

Figure Captions 

Fig.l The operator PI maps vector fields into symmetric traceless 

2-tensor ones. 

Fig.2 Decomposition of Tg(m). 

Fig.3 Decomposition of Tg(m) and the orthogonal projection of the 

t tangent vector x(r) onto Ker PI. 

Fig.4 The potential v(b) as a function of the parameter 

b=r/W for D=4 case. b0 is a "critical radius". 

Fig.5 The one-loop divergent diagram. The single line is the 

field ~ and the double line denotes a background field 

operator. 
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0 bll 

1 14.5 
2 4.0 
4 2. 1 
8 1.5 

16 1.1 

Table 1 

0 Xc 

1 1. 46 
2 0.42 
4 0.22 
8 O. 16 

16 O. 13 

Table 2 
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