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Abstract 

A model of melt percolation named the mU1tiphase grain con­

trol percolation ( the MGCP ) is proposed to estimate the bulk 

properties in a mu1tiphase grain mixture where the distribution 

of melt phase at the grain boundary is controlled by the surroun­

ding grain species or their combinations, such as in a partially 

molten rock. According to the connection of melt phase at the 

corner and edge element of grain boundary, the MGCP can be di­

vided into three models, i.e. the corner percolation, the edge 

percolation and the corner-edge ( CE ) percolation. The CE 

percolation is a fundamental model of actual melt network in 

which the corner and edge element with melt phase chain each 

other. In order to estimate connectivity of melt phase in a 

binary grain system, however, the corner and edge percolation, 

which are applicable for the connection of the corner and edge 

elements with melt phase, respectively, are found to be able to 

substitute for the CE percolation. Connectivity of melt phase 

changes as a function of modal composition of grains in a multi­

phase grain system. Assuming the combination of grains around 

the corner and edge element with melt phase in a binary grain 

system, we obtain critical grain fraction where connectivity of 

melt phase changes drastically. It is found that the critical 

grain fraction estimated from the MGCP does not coincide with 

that does from the ordinary percolation in which the distribution 

of melt phase is assumed to be random. In addition to connecti-

vity of melt phase, it is also needed to introduce the grain-



controlled melt distribution for estimating the bulk properties, 

such as electrical conductivity, in a partially molten rock. As 

a geophysical application of the MGCP, we make the connectivity 

diagram ( modal composition diagram of connectivity of melt phase 

) of a partially molten peridotite by using stability criteria of 

melt phase obtained from partial melting experiment. From this 

diagram, we predict that melt network is fully connecting if 

volume fraction of olivine exceeds 0.64 ( 64% ) for a natural 

peridotite composed of olivine, orthopyroxene and clinopyroxene 

and 0.38 ( 38% ) for a synthetic peridotite composed of olivine 

and orthopyroxene, respectively. 
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Introduction 

Per col a t ion 0 f mel t ph a s e in a par ti a 11 y mol ten roc k i s on e 

of the most important physical process in the earth's upper 

mantle, especially beneath the volcanic areas. It controls not 

only magma migration rate [ McKenzie, 1984 ; Scott and Stevenson, 

1984 ] but also bulk properties of partially molten layer, such 

as electrical conductivity [ e.g. Shankland and Waff, 1977 ], 

seismic wave velocities [ e.g. O'Connel and Budiansky, 1977 ] and 

their attenuation [ e.g. Mavko, 1980]. It is well known that, 

even if only small amount of melt phase exists, macroscopic 

response of melt and solid mixture is much different from that of 

single ( solid) phase when network of melt phase connects exten­

sively [ Ziman, 1979]. Therefore, in order to make precise 

interpretation of geophysical observations about partially mol­

ten layer, we must relate connectivity of melt phase to physical 

condition and modal composition in it. 

Generally, connec ti vi ty of melt phase in a partially mol ten 

rock depends on both the volumetric fraction and the distribution 

of melt phase. Under the textural equilibrium, the distribution 

of melt phase at the grain boundary is controlled by melt-solid 

and solid-solid interfacial energies [ Bulau et a1., 1979; Waff 

and Bulau, 1979]. For a monomineralic rock that consists of the 

same shape and size of grains, connectivity can be obtained from 

the volume fraction of melt phase and the interfacial energies 

between melts and solids because melt phase is uniformly distri-
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buted at every grain boundary [ Beere, 1975 ; Park and Yoon, 

1985; von Bargen and Waff, 1986 ]. In the case of a poly-

mineralic rock, however, it is insufficient to specify the volume 

fraction of melt phase and the interfacial energies among melt 

and solid phases for obtaining connectivity of melt phase. Con-

nectivity of melt phase also depends on the distribution of 

various kind of grains because, at a grain boundary, combination 

of the interfacial energies which controls the distribution of 

melt phase changes according to the combination of grains around 

it. 

In a limited range of degree of partial melting, connectivity 

of melt phase is controlled by the distribution of corner and 

edge elements of grain boundaries occupied by melt phase [ 

Toramaru and Fujii, 1986]. For this case, taking advantage of 

percolation theory [ Shante and Kirkpatrick, 1971; Stauffer, 

1979, 1981], connectivity of melt phase may be obtained statis-

tically. However, the distribution of the element occupied by 

melt phase in a partially molten rock would not be a priori 

random as normally assumed in the ordinary percolation, but is 

likely to be correlated with each other through randomly distri-

buted species of solid phases. Theoretical and experimental 

approaches including interfacial energies indicate that the 

stable existence of melt phase on the grain boundary is control-

led by surrounding mineral species and/or their combinations. In 

other words, the distribution of the melt elements is determined 

by the distribution of the mineral grains through relative 

difference in the interfacial energies: Le. the melt elements 
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have some nearest neighbor dependence ( short-range ordering ). 

In this paper, we propose a model of melt percolation in a 

multiphase grain mixture where the existence of melt phase on the 

grain boundary is controlled by the randomly distributed grain 

species. Connectivity of melt phase is estimated by using this 

model which is named the multiphase grain control percolation ( 

hereafter abbreviated as the MGCP). In the model calculation by 

the MGCP, we try to get a critical grain fraction ( modal compo-

sition ) for the mixture of polymineralic grains where connec-

tivity of melt phase changes drastically by assuming various 

conditions for the existence of melt phase at grain boundaries. 

First of all, a simple model of the MGCP is introduced. We 

demonstrate the difference of connectivity between the MGCP and 

the ordinary percolation. As a geophysical application of the 

MGCP, we will present connectivity diagram ( modal composition 

diagram for connectivity of melt phase ) for a partially molten 

peridotite based on a result of three dimensional numerical 

simulation. 
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Hodel and definition 

We approximate all grains as simple convex polyhedrons ( on 

the two dimension, they are polygons) which are entirely the 

same size and shape and enable to fill the space: Le. we treat 

network of grain boundaries around hexagons, squares and tri­

angles in the two dimensional model and tetrakaidecahedrons and 

simple cubics in the three dimensional model. Although the 

diamond structure is a popular network geometry, it will not be 

discussed because polyhedral grains can not be defined in this 

network. It is also assumed that there are two well mixed ( i.e. 

randomly distributed) grains, grain A and B, with volumetric 

fraction of i. and (I-,S), respectively. 

Melt phase is only possible to stably exist on the edge and 

corner elements of grain boundary. Although face is one of the 

elements of the grain boundary, stable existence of melt phase is 

not possible there [ Waff and Bulau, 1979; Cooper and Kohlstedt, 

1982]. We call an edge and a corner element occupied by melt 

phase as an occupied edge and an occupied corner, respectively. 

This is analogous to an occupied bond and an occupied site in the 

ordinary percolation. In a partially molten rock, an edge or a 

corner element becomes an occupied element only when the configu­

ration of grain species around it is specified by some rule. 

This rule can be deduced from thermodynamical consideration in­

cluding physical properties of solids and melts, such as inter­

facial energies. However, our purpose is not to debate the 

deduction of the rule further in detail but to clarify the effect 
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of grain-controlled melt distribution onto the macroscopic respo-

nse of the partially molten rock. ( Deduction of the rule from 

the termodynamical consideration is described by Nakano and FUjii 

[ 1988 ]. ) For the rule to judge the configuration of grains 

around the occupied corner and edge, the following rule can be 

the simplest without loosing any important application 

If a corner or edge element is surrounded by at least M 

of grain A among the adjacent N grains, it is occupied. 

The rule for each M is regarded as condition M for the occupied 

corner or edge. The number M can vary from 0 to N. The number K 

varies with types of network of grain boundaries, e.g. N = 1 for 

the edge around the two dimensional grain and N = i for the 

corner of tetrakaidecahedron. Note that condition 1 is equi-

valent to that all corner or edge elements around grain A are 

occupied. Concentration of occupied elements, ~ ( numbers of 

occupied elements per numbers of total elements ); is related to 

volumetric fraction of grain A, which is given as following. 

[ 1 ] 

Three types of percolation through the cluster of occupied 

elements are introduced : 

The corner percolation When all edge elements are 

occupied, two occupied corner elements connect each other if 

they are nearest neighbor. 
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The edge percolation : When all corner elements are 

occupied, two occupied edge elements connect each other if 

they are nearest neighbor. 

The corner-edge ( CE ) percolation: When not all of edge 

and corner elements are occupied, two occupied edges at 

nearest neighbor position connect each other if a corner 

element between them is occupied, and vice versa. 

For the model of the network of melt phase in a partially 

molten rock, it is possible to use them as the approximation for 

the limited range of degree of partial melt, e.g. it is approp-

riate to apply the edge percolation when degree of partial melt 

is very small and to apply the corner percolation when the melt 

phase on the corner element is large enoughly to directly connect 

with neighbouring corner elements J Jurewicz and Watson, 1985 ] 

or the Ostwald ripening is occurred. The CE percolation might be 

the most important for the practical applications because network 

of melt phase consists of both the corner and edge elements 

alternatively. Unlike the assumption in the ordinary percola-

tion, existence of melt phase on the edge and corner elements is 

not determined independently. The edge or corner percolation are 

found to be able to substitute for almost all CE percolation, 

where the configuration of grains around the occupied corner and 

edge is determined by the combination of condition M for each 

elements, as described in Appendix A in detail. Therefore, we 

will consider mainly the edge and corner percolation in the 

following section. 

In our model, connectivity of occupied elements is defined as 
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Connectivity is a probability that some fraction of occu-

pied elements belong to the infinite cluster of occupied 

elements. 

From the analogy of the ordinary percolation, we expect that 

connectivity in the MGCP is a function of i and has only one 

* critical grain fraction i where connectivity changes from 0 to 1 

drastically. So, connectivity in the MGCP could be characterized 

by i*, i.e. connectivity is expected to be characterized by a 

critical grain fraction as 

if i < i*, the network of occupied elements is non-connective, 

and 

if i > i*, the network of occupied elements is connective. 
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Grain-site translation 

In the MGCP, the connection of the occupied elements whose 

distribution is controlled by the randomly distributed grain A 

becomes a subject of interest, while the connection of randomly 

distributed occupied elements does in the ordinary percolation. 

Because of this similarity about the randomly distributed grain A 

in the MGCP with the randomly distributed occupied element in the 

ordinary percolation, 

ndences between them. 

we expect that there can be some correspo­

The edge and corner element in the MGCP 

obviously correspond to the bond and site element in the ordinary 

percolation, respectively. So that, one might expect that the 

critical edge and corner concentration in the MGCP will be the 

same value for the critical bond and site concentration in the 

ordinary percolation, respectively. -However, the expec ta tion is 

generally incorrect and, moreover, there is a rigorous relation­

ship between the edge percolation of condition 1 and the ordinary 

site percolation as shown in the following example. 

In case of square grains, square lattice obviously corres­

ponds to the grain boundary. On this lattice, critical bond 

concentration of the ordinary bond percolation ( which is likely 

to correspond to the edge percolation) is exactly obtained as 

1/2 [ Sykes and Essam, 1964]. For the edge percolation of 

condition 1, an occupied edge is surrounded by at least one grain 

A which is indicated by closed circles in Fig. 1 (a). Considering 

a cluster of occupied edges as shown by thick lines in Fig. 1 

(b), it can be regarded as a cluster of grains A ( shaded squares 
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) because all edges around grain A are occupied. Regarding grain 

A as occupied site ( which is called the grain-site translation, 

hereafter ), connection of the occupied site is the same as that 

in the ordinary site percolation on the matching lattice [ Sykes 

and Essam, 1964 ] of square lattice ( Fig. 1 (c)). Therefore, 

the edge percolation of condition 1 around square grains should 

be equivalent to the ordinary site percolation on a lattice with 

eight coordination number ( Fig. 1 (d)). Since critical site 

concentration on this lattice is 0.407 ( which is obtained from 

the matching property [ Sykes and Essam, 1964 ] applied on the 

result of numerical simulation [ Stauffer, 1979, 1981 ] ), so 

that i* for the edge percolation of condition 1 around square 

grains should be 0.407. Note that critical edge concentration, 

* ~, calculated from equation [ 1 ] with N = 1 and M = 1 is 

0.648, which does not coincide with the critical bond concentra-

tion of 0.500 for the ordinary bond percolation on the square 

lattice. 

Critical grain fraction for the edge percolation of condition 

1 around 2 dimensional grains ( i.e. hexagon and triangle) can 

be obtained according to the same procedure described above and 

listed in Table 1. An exact critical grain fraction, 0.500, is 

obtained by using the grain-site translation for the edge perco-

lation with condition 1 around hexagonal grains. Because connec-

tion of occupied site is the same as that of the ordinary site 

percolation on the triangular lattice ( Fig. 1 (e) ) and critical 

site concentration on the lattice, 0.500, is exactly obtained in 

the ordinary percolation [ Stauffer, 1979, 1981 ]. 
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possible for the 

three dimensional edge percolation and the two and three dimen­

sional corner percolation of condition 1, it needs, however, to 

specify rather complex lattice with large coordination number 

to perform the site percolation in the ordinary percolation 

scheme. 

In the case of the edge and corner percolation for condition 

M ( M > 1 ), the grain-site translation does not become simple to 

estimate connectivity of occupied elements. For example, consi­

der the edge percolation of condition 1, in which an occupied 

edge is always surrounded by two grain A. Namely, occupied edge 

is covered with the shell of grain A. When the network of the 

occupied edge is fully connected, the shell should be fully 

connecting. At the bottle neck between two clusters of occupied 

edges, connection of the shell is clearly different from that of 

occupied site in the ordinary site percolation as shown in Fig. 

2. In the case of the ordinary site percolation ( Fig. 2 (a)), 

an occupied site at the bottle neck between two clusters, C1 and 

C2 , connects at least two adjacent occupied sites. However, in 

the case of the edge percolation of condition 1 after applying 

the grain-site translation ( Fig. 2 (b)), an occupied site ( Le. 

the shell of occupied edge ) at the bottle neck between two 

clusters, C3 and C4 , connects at least three adjacent occupied 

sites. 

Therefore, it is not easy to get i* by critical site and bond 

concentration for the ordinary percolation. So, numerical calcu­

lation is needed to get i* for the MGCP. 
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Numerical simulation 

To determine a critical grain fraction for various types of 

grain shape, the numerical calculation was performed by using 

the Monte Carlo method. As an example, the procedure is des-

cribed below for the corner percolation of condition 2 around 

hexagonal grains. 

First, hexagonal grains A and B with volumetric fraction i 
and (1-0) are distributed randomly, and the Monte CaIro trials 

are made for at least 105 of total grains for all trials. At 

each trial, occupied corners are marked according to the rule of 

condition 1. As a result of these procedures, concentration of 

occupied corner, ,£" in average, takes the value calculated from 

equation [ 1 ] with N = 2. and M = 1. Finally, the sizes of every 

cluster of occupied corners are counted by using the cluster 

multiple labeling technique [ Hoshen and Kopleman, 1976]. We 

always regard the largest cluster as the infinite cluster of 

occupied corners. By this approximation, connectivity, £, is 

calculated as [ Stauffer, 1979, 1981 ], 

C = max(Nc) / No, [2] 

where Nc and No are numbers of occupied corners in a cluster and 

total numbers of occupied corners, respectively. To judge the 

critical grain fraction clearly, we also calculate the mean size 

of finite occupied corner cluster, MSC, which diverges at criti­

cal point as does in the case of ordinary ( site) percolation 

and is obtained from : 
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MSC = ( ~ Nc1 - max(Nc)l ) / ( No - max(Nc)), [3] 

where summation takes for all clusters. 

One example for the case of M = 1 for the hexagonal grains ( 

N = 3) is shown in Fig. 3. Total number of grains and corners 

are 5 x 105 and 1.5 x 106 , respectively. Maximum value of MSC is 

5.7 x 104 • It is clear that both C and MSC change sharply within 

the narrow range of grain fraction. The value centered in this 

range can be regarded as the critical grain fraction, which can 

be determined within the range of about 0.01 for all simulations. 

Critical grain fraction obtained from numerical simulation coin­

cides with those obtained from the grain-site translation as 

described in the previous section. Results of critical grain 

fractions and critical edge and corner concentratio~ for all 

variation of condition M are summarized in Table 1. 

Two characteristics are found in Table 1. First, critical 

edge and corner concentration for the MGCP are always different 

from critical site and bond concentration for the ordinary perco­

lation when the same network of grain boundary is applied. It 

seems, at this moment, to be no systematic trend of the differ­

ence of critical values between the MGCP and the ordinary perco-

lation. Secondly, the value of cri tical edge and corner concen-

tration decreases with increasing the value of M of condition M. 

Therefore, in any grain mixture, network of melt phase becomes 

eas~ to connect extensively when condition M with larger M is 

applied. 
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Connectivity diagram 

Connectivity diagram is a mineral composition diagram for 

connectivity of melt phase in a partially molten rock [ Toramaru 

and FUjii, 1986]. After translating the stability criteria of 

melt phase obtained from the partial melting experiment into the 

appropria te rule for the MGCP, connec ti vi ty diagram can be con­

structed. 

Since melt phase in a partially molten rock under the textu­

ral equilibrium is only possible to exist at the corner elements 

surrounded by 4 grains and the edge elements surrounded by 3 

grains [e.g. Bu1au et a1., 1979 ], most of man t1e material can 

be approximated as equal sized tetrakaidecahedra1 grains. 

For the synthetic peridotite composed of olivine ( OL ) and 

orthopyroxene ( OPX ), Fujii et a1. [ 1986 ] reported that melt 

phase stably existed at all corner elements and the edge elements 

of grain boundary except at those edge elements surrounded by two 

or three OPX grains in the water-free specimen. From the view 

point of the MGCP, it is appropriate to use the edge percolation 

of condition 1 ( N = 1 ) to make connectivity diagram if we 

regard OL and OPX as grain A and B, respectively. From Table 1, 

critical grain fraction of OL for this condition is 0.38. There­

fore, we can predict that, in this system, melt network is ex­

tensively connecting if volume fraction of OL exceeds 0.38. 

For the natural peridotite mainly composed of OL, OPX and 

clinopyroxene ( CPX ) crystals, Toramaru and Fujii [ 1986 ] 

concluded that melt phase were morphologically stable only on the 
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edge element surrounded by OL-OL-OL and on the corner element 

surrounded by OL-OL-OL-OL and OL-OL-OL-OPX ( Fig. 4). According 

to the discussion in Appendix B, we can obtain connectivity 

diagram for this peridotite by using critical grain fraction for 

the edge percolation of condition 1 ( N = 3 ) in binary grain 

mixture, i.e. the above conclusion for melt phase stability 

implies the OL tube connection. Regarding OL and two pyroxenes 

as grain A and B, respectively, critical grain fraction of OL is 

0.63 ( Table 1). Namely, melt phase in this partially molten 

natural peridotite becomes extensively connecting, if volume 

fraction of OL exceeds 0.63 which is independent on the relative 

ratio of CPX to OPX ( a line with symbol A in Fig. 5). The 

result by Toramaru and FUjii [ 1986 ], who used the ordinary 

percolation, are also shown by a curve TF for comparison. 

In these two examples, connectivity of melt phase in the 

partially molten peridotite is a function of the volume fraction 

of OL alone. This result is, however, exceptional case from the 

specific condition used for existence of melt phase at the corner 

and edge elements. In general, connectivity of melt phase be-

comes dependent on the volume fraction of pyroxenes. For exam-

pIe, if melt phase is possible to exist at the corner elements 

surrounded by OL-OL-OL-OL and OL-OL-OL-OPX and the edge elements 

surrounded by OL-OL-OL and OL-OL-OPX in a OL-OPX-CPX system, 

connectivity diagram can be obtained from numerical simulation of 

the CE percolation for three different solid phase mixture and 

the results are also shown by a curve with symbol B in Fig. 5. 

From Fig. 5, it is clear that critical grain fraction of this 



The MGCP 15 

system depends not only volume fraction of OL but also that of 

OPx. 
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Discussions and conclusions 

The MGCP can be classified as one of the correlated percola-

tion. However, it differs from the ordinary correlated percola-

tion in respect that correlation among occupied elements is 

caused by the types of grains and their combination around the 

occupied elements. Therefore, the rule which controls the confi­

guration of various phases of grains is the most important factor 

for the MGCP. The rule we used implies that grain A has more 

attractive properties of melt phase than that of grain B and the 

melt attraction is the additive one. This rule is widely appli­

cable in nature, such as connectivity diagrams for the natural 

and synthetic peridotite. In general, the rule which determines 

the configuration of grains around the occupied elements is very 

sensitive for the physical condition and chemical composition of 

a partially molten rock. To 'estimate connectivity of melt phase 

in partially molten layer in earth's upper mantle, it needs to 

relate condition M for the edge and corner element with stability 

criteria of melt phase on grain boundaries by using solid-solid 

and solid-melt interfacial energies [ Toramaru and Fujii, 1986 ]. 

Although there are some ambiguities what rule should be 

applied to each observations, it is likely to be correct that the 

distribution of melt phase in a partially molten rock is not 

random but depends on the distribution of various kind of grains 

in it. Network configuration for such a correlated melt distri-

bution is clearly different from one estimated by the ordinary 

percolation. The difference of the configuration of melt network 
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between the MGCP and the ordinary percolation should affect the 

estimation not only for connectivity but also of another macro­

scopic response of the partially molten system. 

Electrical conductivity is one example. Archie's law is well 

known empirical law in geophysical observations and suggests that 

the electrical conductivity, EC, and the volume fraction of melt 

phase, y, hold the nonlinear relationships as 

EC 00( v.!!!. [4 ] 

where the exponent.!!!. takes the value more than 1 [ Archie, 1942 

]. Although there are many theoretical studies about Archie's 

law [ e.g. Kirkpatrick, 1973; Webman et a1., 1975; Sen et a1., 

1981; Yonezawa and Cohen, 1983 ], it can also be demonstrated the 

relationship of EC and y by using the MGCP. Since conductance of 

solid phase is negligibly small in comparison with that of melt 

phase, it is possible to regard solid phase as an insulator. For 

simplicity, we assume that all corner element is occupied and the 

occupied edge and non-occupied edge are the conductor and insula­

tor, respectively, so that the network of melt phase consists of 

the conductance path. 

If the occupied edge is randomly distributed, EC and the 

edge concentration, .l2. (~ y ), hold linear relationships as 

predicted by effective medium approximation [ Kirkpatrick, 1973 ; 

Shankland and Waff, 1974]. In addition, if the conductance of 

occupied edges are assumed to be uniform, it is expected that the 

nonlinearlity between EC and .l2. in Archie's law is explained by 

the correlated melt distribution. Although there are some models 
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of the ordinary correlated percolation which can explain it, it 

should be noted that the power law relation between EC and .I!.. is 

also appeared in the MGCP, in which the distribution of corre­

lated occupied edge depends on the randomly distributed grains, 

For example, exponent.!!!. is obtained as 1.4 from the numerical 

calculation of EC for the two dimensional square binary grain 

system where the occupied edge is distributed by using the rule 

of condition 1 ( Fig. 6). Since critical concentration of 

occupied edge for this MGCP ( 0.49 ) and occupied bond for the 

ordinary bond percolation ( 0.5 ) around square grains are almost 

the same, the simulation seems to suggest that the occupied edge 

cluster of infinite size in the MGCP containes more dead ends 

relative to that in the ordinary percolation. 

Al though a question whether the exponent, m = 1.4, holds the 

same value on the three dimensional model of the MGCP would 

remain unanswered, it is clear that the correlated melt distribu­

tion caused by the distribution of grains plays an significant 

role in the Archie's law. 

In our model of the MGCP, the variation of the grain size was 

not taken into consideration. Generally, the corner and edge 

percolation is enable to be regarded as the ordinary site perco-

la tion by using the grain-si te translation. Percolation theory 

suggests that connectivity of the occupied sites in the ordinary 

site percolation is determined by a few parameters alone ( e.g. 

coordination number of the lattice and dimensionality of the 

system ) and is not affected by geometrical irregularity [ 

Stauffer, 1979, 1981]. Therefore, little effect of grain size 
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distribution might be expected. 

As demonstrated in the previous section and in the Fig. 5, 

it will be straightfoward procedure to extend the MGCP from 

binary grain system to polymineralic grain system composed of 

more than three kind of grains. Although, for many cases, the 

MGCP through polycrystalline solids is enable to reduce to that 

through binary grain system as discussed in Appendix B, it needs 

further investigations such as the correlation with polychromatic 

percolation [ Zellen, 1977 ]. 
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Appendix A: Reduction from the CE percolation to the edge or 

corner percolation. 

The actual network model consists of the corner and edge 

elements chained each other, so that the fundamental approach 

will be to consider the CE percolation in every case. For many 

cases, however, it needs not to consider the CE percolation for 

the estimation of connectivity of occupied elements. Except for 

a few cases, the CE percolation in the binary grain system, where 

the distributions of the occupied edge and corner are separately 

determined by condition M, is equivalent to the edge or corner 

percolation. 

For example, consider the CE percolation in hexagonal binary 

grain mixture where melt network is constructed by the occupied 

corner elements satisfied with condition 2 and the occupied edge 

elements satisfied with condition I Le. 

and 

An occupied corner element is surrounded by at least two 

grain A among three grains, 

An occupied edge element is surrounded by at least one 

grain A among two grains. 

Consider two adjacent occupied corners ( Fig. Al ), these 

corners CI and C2 in Fig. Al are both surrounded by two or three 

grains A. As shown in Fig. AI, it is clear that at least one of 

grains located at X and Y is grain A. Therefore, the edge ele-
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ment among these occupied corners is always surrounded by at 

least one grain A. In other words, an edge element among two 

occupied corners is automatically an occupied edge. In this 

consequence, connectivity of occupied elements is controlled by 

the distribution of occupied corners alone, even though network 

of melt phase in this system is composed of both occupied corners 

and occupied edges. 

For all combinations of condition M for corner and edge 

elements in hexagonal and tetrakaidecahedral binary grain system, 

it is possible to reduce the CE percolation to the edge or corner 

percolation as a result of similar considerations described 

above. 

Although it is also possible to reduce from the CE percola-

tion to the edge or corner percolation for almost all combination 

of condition M for each element, there are a few exceptions in 

two dimensional square and triangular and three dimensional cubic 

binary grain system. For such exceptions, it needs to estimate 

connectivity of occupied edges and corners by judging to label 

the cluster of both elements at the same time. Reduction from 

the CE percolation to the edge or corner percolation for all 

system are summarized in Table 2. In the case that the reduction 

is not possible, we performed numerical simulation to get criti­

cal grain fraction, i*, which are shown by numeric instead of 

symbols in Table 2. 
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Appendix B : Hodel for connectivity diagram of the natural 

peridotite 

Toramaru and FUjii [ 1986 ] obtained the expressions of 

stability criteria for existence of melt phase on the elements of 

grain boundary in a partially molten rock composed of at most 

three different phases of minerals as a function of possible 

interfacial energies. Applying this criteria to the result of 

the partial melting experiment of the natural peridotite composed 

of OL, OPX and CPX crystals, they predict that melt phase are 

morphologically stable only on the edge elements surrounded by 

OL-OL-OL and the corner elements surrounded by OL-OL-OL-OL and 

OL-OL-OL-OPX. 

Compared to the corner and the edge percolation in the binary 

grain mixture, two new aspects should generally be introduced in 

the MGCP to estimate connectivity for this peridotite (1) 

three kind of grains must be introduced in the model of the MGCP, 

and (2) since the condition for the existence of melt phase on 

the edge and the corner element are given separately, the estima­

tion of connectivity in this peridotite needs the CE percolation. 

There are, however, some conditions for which it can be reduced 

to the edge percolation in binary grain mixture as follows. 

For example, consider a unit composed of the edge-corner-edge 

elements shown in Fig. A2 in which P, Q, Rand S are edges and 0 

represents a corner. If any two edges of this unit are occupied 

by melt phase, they should be both surrounded by OL-OL-OL. Since 

grain shape is tetrakaidecahedron, the corner element, 0, between 
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these edge elements is always surrounded by OL-OL-OL-OL. In other 

words, the corner element between any two occupied edges is 

automatically occupied by melt phase. Therefore, network of melt 

phase in the partially molten peridotite is equivalent to the 

network of the occupied edges and we can estimate connectivity by 

applying the edge percolation. Al though melt phase is possible 

to exist on the corner elements surrounded by OL-OL-OL-OPX, these 

elements should locate at the perimeter of the network of melt 

phase. Since the distribution of occupied edges in this perido­

tite is controlled by the distribution of the OL grains alone, it 

is not necessary to distinguish two pyroxenes but sufficient to 

introduce binary grains, OL and other minerals ( i.e. pyroxenes, 

PX ). 

Although Toramaru and Fujii [ 1986 ] also discussed the 

effect of the different mean grain size among OL, OPX and CPX 

onto connectivity, we can neglect this effect by following rea­

son. Except for the corner elements at the perimeter, network of 

melt phase in the peridotite is always covered with OL grains for 

the conditions deduced from the experimental results discussed 

above. In other words, network of melt phase is in the tube made 

only by OLe In order to connect the melt network extensively, it 

is necessary to connect this OL tube extensively. Since the 

formation of OL tube is not affected by the difference of the 

mean grain size between OL and PX, we can neglect the effect of 

the difference of the mean grain size between OL and two pyro­

xenes onto connectivity of melt phase in the peridotite. 
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Figure captions 1 

Figure captions 

Fig. 1 Correspondence between the edge percolation of condition 

1 around the two dimensional grains and the ordinary site perco­

lation. (a) Configuration of the square grain A ( closed circle 

) and B ( open circle ) around an occupied ( thick line ) and 

non-occupied edge ( double thin lines). (b) A cluster of occu­

pied edge ( thick lines). The edges around grain A ( shaded 

squares) are always occupied in the case of condition 1. (c) 

Connection of the occupied site after the grain-site translation. 

(d) The matching lattice of the square lattice, which indicates 

eight coordination number. (e) Connection of occupied site 

after the grain-site translation for the two dimensional hexago­

nal ( left ), square ( middle) and triangular ( right) grains. 

An occupied site ( solid circle ) can connect the adjacent sites 

( open circle ) through the break lines. 

Fig. 2 Schematic diagram indicating the difference of connection 

of two occupied site clusters between (a) the ordinary site 

percolation and (b) the edge percolation after applying the 

grain-site translation. Break lines denote the occupied edges. 

Fig.3 Example of result of the Monte Carlo simulation to obtain 

critical grain fraction i* for the corner percolation of condi­

tion 1 around the two dimensional hexagonal grains. By this 

simulation, l* and critical corner concentration, ~*, can be 

determined as 0.55 and 0.56, respectively. (a) Mean size of 

finite occupied corner cluster, MSC ( equation [3] ), vs. occu-
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pied corner concentration, ~. MSC diverges when network of 

occupied corners connects extensively. The mean values and varia­

nces of MSC for every 0.01 division of ~ are represented by the 

cross bars. (b) Fraction of grain A, fl, vs.~. i. and ~ relate 

each other by equation [1] with N = 1. and M = 1. (c) Connecti­

vity of occupied corners, .£ ( equation [2] ), vs.~. C changes 

from 0 to 1 if network of occupied corners becomes fully connec­

ting. 

Fig. 4 Three types of "occupied" corner-edge-corner elements in 

a natural peridotite composed of OL, OPX and CPX grains, in which 

an occupied edge must be surrounded by three OL grains. All 

grains are approximated by the equal size tetrakaidecahedrons. 

(a) The corner elements at both ends are not occupied because of 

CPX grains. (b) One corner element is not occupied because of 

CPX grain. The other is occupied because it is surrounded by OL­

OL-OL-OL or OL-OL-OL-OPX grains. (c) The corner elements at 

both ends are occupied because they are both surrounded by OL-OL­

OL-OL or OL-OL-OL-OPX grains. (Modified after Toramaru and 

Fujii [ 1986 ] ). 

Fig. 5 Connectivity diagram for a peridotite composed of OL, OPX 

and CPX crystals. Melt network is fully connecting in the area 

shown by hatched side. Boundary A and TF, which are obtained 

from the model of the MGCP and the ordinary percolation [ 

Toramaru and Fujii, 1986 ], respectively, are predicted for the 

natural peridotite in which melt phase can exist at the corner 

element surrounded by OL-OL-OL-OL or OL-OL-OL-OPX and the edge 

element surrounded by OL-OL-OL. Boundary B is the case that melt 
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phase can exist at the corner element surrounded by OL-OL-OL-OL 

or OL-OL-OL-OPX and the edge element surrounded by OL-OL-OL or 

OL-OL-OPX. Volume fraction of OL at P, Q, S, T and Rare 0.63, 

0.63, 0.72, 0.82 and 0.37, respectively. 

Fig. 6 Result of the numerical calculation of the macroscopic 

electrical conductivity, EC, of the two dimensional conductor 

network around the square grains. Two kind of conductors, Hand 

L whose ratio of conductance is 106 : 1, are distributed with the 

number fraction of ~ and (l-p), respectively. Total number of 

them is 104 • Top: distribution of conductor H is the same as 

that of occupied edge in the edge percolation of condition 1, 

Bottom : conductor H is distributed randomly. 

Fig. Al A unit of corner ( C1 ) - edge ( EO ) - corner ( Cl'z) 

elements around the two dimensional hexagonal grains. If both C1 

and C2 are surrounded by at least two grain A, one of two grains 

located at X and Y is a grain A. Therefore, EO is always beside 

at least one grain A. 

Fig. A2 The grain boundary surrounded by four tetrakaidecahedral 

grains. In the case that edge element P is surrounded by OL-OL­

OL grains, corner element 0 is always surrounded by OL-OL-OL-OL 

grains if one of edge elements among Q, Rand S is surrounded by 

OL-OL-OL grains. 



Table 1. Critical values for the MGCP 

Critical grain fraction, ~* 

Corner percolation 

Grain Condition number, M 
1 2 3 4 5 6 7 8 

HX 0.29 0.55 0.80 
SQ 0.20 0.43 0.62 0.84 
TR 0.12 0.27 0.42 0.58 0.74 0.89 
TD 0.10 0.23 0.40 0.63 
SC 0.03 0.11 0.20 0.30 0.41 0.53 0.66 0.80 

Edge percolation 

Grain Condition number, M 

1 * 2 3 4 
HX 0.500 0.80 
SQ 0.407 0.70 
TR 0.30 0.63 
TD 0.18 0.38 0.63 
SC 0.10 0.24 0.42 0.64 

Critical corner/edge concentration, 

Corner percolation 

Grain Condition number, M 
OS 1 2 3 

HX 0.698 0.64 0.56 0.51 
SQ 0.593* 0.59 0.58 0.51 
TR 0.500 0.54 0.51 0.50 
TD 0.45 0.35 0.23 0.18 
SC 0.311 0.25 0.21 0.20 

Edge percolation 

Grain Condition number, M 
OB * 1 * 2 

HX 0.653* 0.750 0.64 
SQ 0.500* 0.648 0.49 
TR 0.347 0.51 0.40 
TD 0.41 0.45 0.32 
SC 0.250 0.35 0.25 

Symbols 

* exact solution 
HX 2-D hexagon 
SQ 2-D square 
TR 2-D triangle 
TD 3-D tetrakaidecahedron 
SC 3-D simple cubic 

3 

0.25 
0.21 

* p 

4 5 6 

0.50 
0.50 0.50 0.50 
0.15 
0.18 0.18 0.18 

4 

0.18 

OS critical site concentration of ordinary percolation 
( values obtained from Stauffer [ 1981 ] ) 

OB critical bond concentration of ordinary percolation 
( values obtained from Stauffer [ 1981 ] ) 

7 

0.18 

8 

0.18 



Table 2. Reduction from the CE percolation to the edge or corner 
percolation 

2-D hexagon 
corner 

M 0 1 2 3 
0 * C1 C2 C3 

edge 1 E1 E1 C2 C3 
2 E2 E2 E2 C3/E2 

2-D square 
corner 

M 0 1 2 3 4 
0 * C1 C2 C3 C4 

edge 1 E1 E1 0.41 C3 C4 
2 E2 E2 E2 E2 C4 

2-D triangle 
corner 

M 0 1 2 3 4 5 6 
0 * C1 C2 C3 C4 C5 C6 

edge 1 E1 E1 E1 0-:-43 0.58 C5 C6 
2 E2 E2 E2 E2 E2 0.75 C6 

3-D tetrakaidecahedron 
corner 

M 0 1 2 3 4 
0 * C1 C2 C3 C4 

edge 1 E1 El C2 C3 C4 
"2 E2 E2 E2 C3 C4 
3 E3 E3 E3 E3 C4/E3 

3-D simple cubic 
corner 

M 0 1 2 3 4 2- 6 7 8 
0 * C1 C2 C3 C4 C5 C6 C7 C8 
1 E1 E1 E1 0.20 0.30 C5 C6 C7 C8 

edge 2 E2 E2 E2 E2 0.31 0-:-41 C6 C7 C8 
3 E3 E3 E3 E3 E3 0.45 0-:-54 C7 C8 
4" E4 E4 E4 E4 E4 E4 E4 0-:-69 C8 

---------------------------------------------------------------------

Symbols 

M 

* 
CM 
EM 
Ctl/EM 

numeral 

Note 

condition number ( M = Q, 1, ... ) 
always connecting 
enable to reduce to the corner percolation of condition M 
enable to reduce to the edge percolation of condition M 
enable to reduce to the corner or edge percolation ( in 
this case, critical grain fraction for both percolation 
takes the same value as sh~wn in Table 1 ) 
critical grain fraction, i , for the CE percolation 

Row of tl = Q is the corner percolation, and defined in the text. 
Column of tl = Q is the edge percolation, and defined in the text. 
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Abstract 

Connectivity of melt phase in a partially molten mUltiphase 

crystalline rock is considered. Under the textural eq~ilibrium 

where interfacial energies among melt and solid phases control 

the morphology and redistribution of melt phase, permitted range 

of interfacial energies to exist melt phase on the corner region 

of multiphase grains is determined according to the combination 

of grain species around the corner. Microscopic connectivity 

between two adjacent corners could also be calculated as a 

function of interfacial energies. The result shows that melt 

phase can exist more stably and with larger volume at the corner 

surrounded by larger number of grains with smaller interfacial 

energies. By using the model of the multiphase grain control 

percolation ( the MGCP), critical volume fraction of solid 

phase and melt phase where connectivity of melt phase changes 

drastically are obtained. 
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Introduction 

Connectivity of melt phase in a partially molten rock is one 

of the most fundamental factors to control the magma transport 

process under the volcanic area [ Frank, 1968; Turcotte, 1982; 

McKenzie, 1984; Scott and Stevenson, 1984; Stevenson, 1986 ]. 

Various geophysical observations such as electrical conductivity 

[ Shankland and Waff, 1977 ], seismic wave propagation and 

attenuation [ Mavko, 1980 ; Shankland et a1., 1981 ] in the 

partially molten layer in earth's upper mantle are also depend on 

it. 

From geometrical consideration, it is known that melt network 

can be extensively connecting if volume fraction of melt phase 

exceeds 0.15 [ Ziman, 1979]. However, this value is an upper 

limit when distribution of melt phase at the grain boundary is a 

priori random. In partially molten layer, melt and solid phases 

are undergone the textural equilibrium where interfacial energies 

among melt and solids control the morphology and redistribution 

of the melt phase on the grain boundary [ Bulau et al., 1979, 

Waff and Bulau, 1979]. Under this condition, it is enable to 

connect melt phase extensively even when volume fraction of melt 

phase is very small compared to the upper limit and the critical 

melt fraction can be determined theoretically [ Beere, 1975; 

Wray, 1976; von Bargen and Waff, 1986 ]. 

As demonstrated by experimental studies [ Toramaru and FUjii, 
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1986; Fujii et aI., 1986 ], connectivity of melt phase in a 

partially molten polymineralic rock is also affected by volume 

fraction of minerals. Due to the variety of interfacial energies 

among melt and polymineralic solid phases, distribution of melt 

phase on the grain boundary is determined by the surrounding 

grain species or their combinations. For example, in a partially 

molten peridotite, melt phase can exist around olivine crystals 

and it looks like that pyroxines prevent the connection of net­

work of melt phase [ Toramaru and Fujii, 1986]. Therefore, the 

mUltiphase grain control percolation ( the MGCP ) [ Nakano and 

Fujii, 1987; Chapter 1 of this paper ] is a fundamental factor to 

estimate the connectivity of melt phase in a partially molten 

rock. 

Although both volume fraction of melt phase and volume frac­

tion of minerals in a partially molten polymineralic rock are 

important factors to determine the connectivity of melt phase, it 

is poorly understood about the relation between connectivity and 

mineral composition of the rock. In this paper, we study connec­

tivity of melt phase as a function of both volume fraction of 

polymineralic solid phases and melt phase. First, thermo­

dynamical consideration including interfacial energies will be 

made to determine the condition to exist melt phase on the multi­

phase grain boundary. This is an extension of the study for the 

single solid with melt system. By assuming that the system is 

the two dimensional and solid phases are binary hexagonal grains, 
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relationship between existence of melt phase on a corner and its 

surrounding grain species are obtained as a function of inter­

facial energies. And, by taking advantage of the model of the 

MGCP proposed by Nakano and Fujii 1987; Chapter 1 of this paper 

] , connectivity of melt phase will be estimated as a function of 

both volume fraction of solid phases and melt phase. 
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Thermodynamical consideration 

In a partially molten system under the textural equilibrium, 

chemical potentials for i-th component in solid phase, M~, and 

mel t phase, M~, take the same value and relate wi th in terf acial 

energy, TSM' between melt and solid as follows [ Bulau et al., 

1979 ] : 

M~ = M~ = MO - 2 V~ TSM CSM 
[ 1 ] 

CS M = (1/2) ( 1 / RSM + 1 / RSM' ) 

where MO is chemical potential for i-th component when boundary 

surface is flat. V~ is a factor with unit of volume and equal to 

((aM~ / dP M)-1 - (-aM~ / apS)-1)-1, where PM and P s are surface 

pressure in melt and solid phase, respectively [ Landau and 

Lifshitz, 1970 ]. CSM represents the mean curvature of the 

boundary surface between two phases. RSM and RSM' are principal 

radii of curvature and positive when they have centers inside 

melt phase. Since all terms in equation [ 1 ] is a constant in 

single solid with melt system, it becomes a constant mean curva-

ture condition of two phase boundary [ von Bargen and Waff, 1986 

] : 

CSM = constant. [ 2 ] 

In the case of mUltiphase solid A, B, ••• with melt system under 

the textural equilibrium, equation [ 1 ] becomes 
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= constant, [ 3 ] 

where subscripts A, B, represent solid phase A, B, ••• , 

respectively. If we assume that V~ takes the same value for all 

solid and melt phases ( or -V~ x TSM ( S = A, B, ) is 

regarded as newly defined interfacial energy between solid and 

melt phase), equation [ 3 ] can be reduced as follows : 

= constant. [ 4 ] 

Hereafter, binary solids, A and B, with melt system is considered 

and equation [ 4 ] is used for the basic equation to determine 

the equilibrium interface between melt and solid phases. 

Since all interfacial energies is positive, equation [ 4 ] 

states that sign of curvature of all melt and solid interfaces is 

the same. If not all of the sign is the same, melt phase surrou­

nded by the surface with positive curvature is morphologically 

unstable [ Toramaru and Fujii, 1986]. Generally, volume of melt 

phase surrounded by the positive curvature surface is larger than 

that by negative curvature surface [ Wray, 1975; von Bargen and 

Waff, 1986]. So, we assume that all interfaces between melt and 

solid has negative curvature to study the connectivity of melt 

phase in a partially molten rock with very small melt fraction. 

To solve equation [ 4 ] explicitly, boundary conditions 

around the boundary surface are needed. If we assume that all 

interfacial energies among solid and melt phases is isotropic, 
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force balance at dihedral edge shown as Fig. 1 can be used for 

those conditions . i.e. from force balance at point P in Fig. 1, . 
dihedral angles, Q~~ and MB 

QAB' can be calculated as 

QMA arccos(( TAM 
2 + TAB 

2 
- TBM 

2 )/( 2 TAM TAB )) AB = 
[ 5 ] 

QMB arccos(( TBM 
2 + TAB 

2 
- TAM 

2 )/( 2 TBM TAB ) ) , 
AB = 

where TAB is the interfacial energy between two solids A and B. 

Note that this definition of dihedral angle is usually not used 

in single solid with melt system but defined as [ Jurewicz and 

Watson, 1984 ] 

Q = 2 arccos( TSS / ( 2 TSM )). [ 6 ] 

However, this definition is insufficient to study the melt mor-

phology in a partially molten mUltiphase solid with melt system 

as described in following section. 

Solid phases is assumed to be the polyhedral grains. When 

melt fraction is very small and interfacial energies take approp-

riate values, melt phase exists only at the corner region of the 

grains as shown in Fig. 2 ( a ) [ Bulau et a1., 1979]. In this 

case, boundary surface of melt and solids is a part of sphere 

whose radius, RS = -1/C SM ' is determined by equation [ 4 ]. 

However, this solution is only possible when melt phases at the 

corner are isolated. If melt phases at the corner region of 

grains are microscopically connecting shown as Fig. 2 (b), it 

becomes too complex to solve equation [ 4 ] because additional 
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boundary conditions are needed to connect melt phase smoothly [ 

von Bargen and Waff, 1986]. In this paper, our analysis will be 

restricted to the critical state when melt phase at the two 

adjacent corners just connect with each other, so that it is 

enough to analyse the case when melt phase is isolately distri­

buted at corner region of polyhedral grains. 

In binary solid with melt system, there is a possibility that 

the existence of melt phase at each corner is determined by its 

surrounding grain species because solution of equation [ 4 ] with 

boundary condition [ 5 ] is permitted only in a limited range of 

interfacial energies TAA' TBB' TAB' TAM and TBM. For simplicity, 

we assume that interfacial energies among solid phases, TAA , TBB 

and TAB' take the same value: i.e. 

[ 7 ] 

Geometrical consequence of this assumption is that all faces of 

polyhedral grains should be intersected with equal angle. In 

this paper, relative interfacial energies TA and TB between melt 

and solids defined as follows are used instead of TAM and TBM • 

TA = TAM / TS 

TB = TBM / TS· 

[ 8 ] 

In the case of single solid with melt system, critical volume 

fraction of melt phase at the critical state can be estimated 

from equations [ 2 ] and [ 6 ] [ Wray, 1975; von Bargen and Waff, 
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1986]. Fig. 3 ( a ) and ( b ) show the critical volume fraction 

of melt phase as a function of dihedral angle in two dimensional 

and three dimensional system. Critical volume fraction of melt 

phase in the three dimensional system is enable to become effec­

tively zero when dihedral angle is less than 60· ( this dihedral 

angle is the one defined by equation [ 6 ]). And from Fig. 3 ( 

a ) and ( b ), we notice that critical volume fraction of melt 

phase varies mildly as a function of dihedral angle. So, we 

firstly consider about the critical volume fraction of solid 

phases by obtaining the condition to exist the solution of equa­

tion [ 4 ] with boundary condition [ 5]. And, after the analy­

sis, we try to get the critical melt fraction by solving the 

eq ua tion exactly. 
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Two dimensional binary hexagonal grain system 

Hereafter, we call solid phases as grains. In the case that 

system is the two dimensional and all grains is equal size hexa­

gon, interfaces between melt and solids are part of circles as 

shown in Fig. 4. In this binary grain with melt system, there are 

four types of corners where melt phase is enable to exist ( Table 

1 ) : e.g. corner 0 means that the corner is surrounded only by 

grains B, corner 1 is surrounded by one grain A and two grains B 

and so on. 

For each types of corners, range of TA and TB to exist melt 

phase are mapped on the different area of TA-TB plane and ob­

tained as follows. First, dihedral angle appeared in the corner 

must be enable to define: i.e. 

cos G < 1. [9] 

Secondly, edge length, L, of melt phase, which is a distance from 

corner of grains ( point 0 in Fig. 4 ) to intersection point of 

two interfaces between melt and grain, must be positive : i.e. 

L > O. [10] 

For each type of corner in the two dimensional binary hexago­

nal grains with melt system, edge length expressed by dihedral 

angles is represented as follows. 



Corner 0 ( B-B-B corner ) 

Corner 1 ( A-B-B corner) 

L~~ = RA «1/31/ 2 ) 

= RB «2/31/ 2 ) 

(1/3 1 / 2 ) 

L~~ = RB «2/3 1 / 2 ) 

(1/31/ 2 ) 

cos 

cos 

cos 

cos 

cos 

Corner 2 ( A-A-B corner) : 

L~~ = RB «1/31/ 2 ) 

= RA «2/3 1 / 2 ) 

(1/3 1/ 2 ) 

L~~ = RA «2/3 1/ 2 ) 

(1/3 1 / 2 ) 

cos 

cos 

cos 

cos 

cos 

Corner 3 ( A-A-A corner ) : 

g~~ - sin 

MB gBB -

g~~ - sin 

g~~ -

gMB _ sin 
BB 

g~~ - sin 

g~~ -

gMA 
AB - sin 

g~~ -

g~~ - sin 

gMA) 
AB 

gMB) AB 

gMB) AB 

gMA) AB 

gMA) 
AA 

gMA) 
AA 
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[ 11] 

[12] 

[ 13] 

[14] 

[15] 

[16] 

In these equation, RA and RB are radius of circles which bound 

the grain A and B and melt phase, respectively and take the 

values determined by equation [ 4 ] : 

RA = -1/(2 CAM) = TA R 

RB = -1/(2 CBM ) = TB R 
[17] 
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where R is a constant. 

For corner 0 and 3 ( equation [11] and [16] ), conditions 

described in equations [ 9 ] and [ 10 ] are satisfied if 

1/2 < TB < 1/3 1 / 2 [18] 

and 

[19] 

respectively. Left hand sides of the inequalities in [ 18 ] and 

[ 19 ] represent the conditions described by equation [ 9]. And 

right hand sides denote the conditions for negative curvature of 

interfaces between melt and solids ( i.e. positive value of edge 

length of melt phase, L, in equation [ 10 ]). For corner 2 and 

3, range of TA and TB can not be simply expressed like [ 18 ] and 

[ 19]. By the numerical calculation about the conditions des­

cribed by equations [ 9 ] and [ 10 ] for equations [ 12 ] and [ 

13], we get Fig. 5 which shows the range of TA and TB where 

melt phase can exist on corner 2. As comparing equations [ 14 ] 

and [ 15 ] to equations [ 12 ] and [ 13 ], it is clear that the 

range of TA and TB for corner 3 becomes the one which TA and TB 

is exchanged on Fig. 5. By superimposing these ranges, we can 

get the relationships between relative interfacial energies, TA 

and TB, and the corner type where melt phase can exist ( Fig. 6). 

It is enough to consider only the case of TA > TB on TA-T B map 
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shown in Fig. 6. If melt phases surrounded by interfaces with 

positive curvature and negative curvature coexist in a system, 

melt phase surrounded by interface with positive curvature is 

morphologically unstable [ Toramaru and Fujii, 1986]. There-

fore, melt phase can exist only in the one of four areas numbered 

from 1 to 4 on the TA-T B map. In area 1, it is enable to stably 

exist melt phase on corner ° alone. In area 2, melt phase can 

coexist stably on corner ° and 1. And in area 3 and 4, it is 

enable to coexist melt phase on corner 0, 1 and 2 and 0, 1, 2 and 

3, respectively. From this classification, we know that melt 

phase always exists on corner ° when melt phase can be located at 

the corner surrounded by grain A. In other words, melt phase 

covered with grain B alone is the most stable. 

Volume ( or area in present analysis) of melt phase on each 

types of corner can be obtained in the case that interfacial 

energies lie in the range to exist melt phase on the corner. It 

can be expressed by the dihedral angles ( equations [ 5 ] and [ 8 

]) and the edge lengths of melt phase ( equations [ 11 ] - [ 16 ] 

) as follows. 

Corner 0 ( B-B-B corner ) 

cos MB MB QBB + QBB - 7[./6) [20] 

Corner 1 ( A-B-B corner ) 
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(LMB 
AB / RB) cos gMB 

AB 
+ gMB _ 

AB TC/3) + [21] 

R 2 ((L~~ / RA) gMA MA 'It/6 ) A cos AB + gAB -

Corner 2 ( A-A-B corner ) 

S2 = R 2 A ((L~~ / RA) cos gMA + 
AA 

gMA + 
AA 

(LMA / RA) gMA MA rr/3) + [22] AB cos AB + gAB -

R 2 ((L~~ / RB) gMB + MB 7f./6) B cos AB gAB -

Corner 3 ( A-A-A corner ) 

[23] 

Since RA and RB contain an arbitary constant, R, as shown in 

equation [17], these equations can give us the informations only 

about the relative values of the volume of melt phase on each 

types of corner. By calculating the relative values, the order 

of volume of melt phase on each types of corner can be obtained 

as follows : 

[24] 

Therefore, melt phase at the corner surrounded only by grain B is 

the most largest. 

To connect melt phase on two adjacent corners ( Fig. 7 ), sum 

of two edge length of melt phase, LCEC' obtained from equation [ 

11 ] - [ 16 ] should be greater than edge length of the grain, LE 

[25] 
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We call two adjacent corner as a CEC unit. In the two dimensional 

binary hexagonal grain with melt system, there are nine types of 

CEC unit shown in Table 2. Each unit is constructed by combina­

tion of various types of corners and, therefore, conditions to 

connect melt phase as described by equation [ 20 ] are different 

among them. If we assume that edge length, L, of a CEC unit is 

zero when melt phase can not exist on one of two corners, we can 

regards the relative value of LCEC for each CEC unit as micro­

scopic connectivity: Le. CEC unit with the largest LCEC is the 

most connective. Name of CEC unit ( 0 - S ) shown in Table 2 is 

determined by this connective order i.e. 

LCECO> LCECI > .•• > LCECS· [26] 

Therefore, if CEC unit S is microscopically connecting, all CEC 

units are microscopically connecting. In other words, melt phase 

covered with grain B alone is the most connective, because CEC 

unit 0 is constructed by two corner 0 which are surrounded only 

by the grain B. 
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The multiphase grain control percolation 

As demonstrated in the previous section, existence of melt 

phase on the corner in the binary grain with melt system under 

the textual equilibrium is determined by the surrounding grain 

species through relative interfacial energies, TA and TB. To 

connect such a localized melt phase extensively over the system, 

three elementary conditions must be satisfied : ( 1 ) Melt phases 

exist both on the two adjacent corners and ( 2 ) they are micro­

scopically connecting. (3) These two conditions are realized 

extensively over the system. Condition ( 1 ) and ( 2 ) are 

related with interfacial energies shown in previous section. The 

model of the multiphase grain control percolation ( the MGCP ) 

proposed by Nakano and Fujii [1987; Chapter 1 of this paper] 

is a simple model to consider the condition ( 3 ). 

Outline of the model of the MGCP is as follows. For simplicity, 

we consider the corner percolation which treats the melt network 

constructed by the melt phase on the corner. According to the 

naming of the MGCP, a corner where melt phase can exist is called 

as an occupied corner. Basic assumption of the MGCP is that 

distribution of occupied corners is determined by some rule 

specified by the surrounding grain species or their combinations. 

If the rule is specified and grains are assumed to be well-mixed, 

relation between the number density ( or volume fraction if all 

grain is assumed to be equal size ) of grain A ( or B ) and 
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number density of occupied corner can be obtained statistically. 

Connectivity of melt phase is defined as a probability that some 

fraction of the occupied corners belong to the infinite cluster 

of occupied corners. From numerical simulation or, in some 

cases, analytic procedures supported by percolation theory [ 

Stauffer, 1981 ], we can obtain critical grain fraction of grain 

A ( or B ) where connectivity of melt phase changes drastically. 

First, we try to estimate the connectivity of melt phase in 

the two dimensional binary hexagonal grain with melt system 

without considering the condition ( 2 ) : i.e. we regard that 

melt phase is always microscopically connecting when two adjacent 

corners are occupied. Area 1 - 4 of interfacial energies shown 

in Fig. 6 can be translated into the rule which determines the 

types of corners where melt phase can exist. This rule is almost 

the same one used by Nakano and Fujii [ 1987; Chapter 1 of this 

paper ] : 

If a corner is surrounded by at least M ( i.e. 0 - 3 ) of 

grains B among the adjacent 3 grains, it is occupied. 

From Table 1 about the corner percolation presented by Nakano and 

Fujii [ 1987; Chapter 1 of this paper ], we can obtain the 

critical grain fraction of grain B for area 1 - 4 on TA-TB map in 

Fig. 6 ( Table 3 (a)). This result shows that, at any condi­

tions in consideration ( i.e. system is undergone the textural 

equilibrium and melt fraction is very small ), it is always 
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enable to connect melt phase extensively when the volume fraction 

of grains with smaller interfacial energy ( i.e. grain B ) ex­

ceeds 0.8 ( 80 % ). 

If we take the condition ( 3 ) into consideration, CEC unit 

is a element which constructs the melt network. Classification 

of CEC unit obtained in previous section can be regarded as the 

rule of the MGCP. If we slightly modifY the corner-edge ( CE ) 

percolation [ Nakano and Fujii, 1987; Chapter 1 of this paper ], 

it is easy to obtain the connectivity of melt phase as a function 

of types of CEC unit which is microscopically connecting. In 

Table 2 ( b ), critical grain fraction of grain B is shown as a 

function of the types of CEC units. Obviously, this result 

becomes the more specified version of the case of the corner 

percolation described above. 

When volume fraction of grain B exceeds 0.8 in the binary 

hexagonal grain system, critical volume fraction of melt phase 

can be easily calculated as follows. In this condition, connec­

tive melt network is possible to covered mainly with grain B. As 

described in equation [ 26 ], the most connective CEC unit is the 

one covered with grain B, so that it is enough to consider the 

critical state that edge length of melt phase on corner 0 is 

equal to a half of edge length of the hexagonal grains : 

[27] 

Combining it with equations [ 11] and [ 17], an arbitary con-
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stant R is expressed as a function of LE and relative interfacial 

energies. And by using equations [ 11 ] - [ 16 ] and [ 20 ] - [ 

23 ], volume fraction of melt phase on each types of corners can 

be expressed as a function of LE and dihedral angles. Since 

number densities of each types of corners are determined by the 

volume fraction of grains as shown in Table 1, critical volume 

fraction of melt phase, F, becomes as follows 

F = (8 31/ 2 / LE2) ( 6B3 So + 3 6A 6B
2 SI + 

3 6A
2 6B S2 + 6A

3 S3 ), [28] 

where r/JA and r/JB are volume fraction of grain A and B, respective-

1y. Note that volume of melt phase is zero on the corner which is 

not satisfied with the condition of relative interfacial energies 

as shown in Fig. 6. Examples of critical volume fraction of melt 

phase as a function of relative interfacial energies are shown in 

Fig. 8. 
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Discussion 

In previous section, we restrict ourselves to consider the 

connectivity of melt phase in the two dimensional system. In the 

three dimensional system, it is expected that correspondence 

between the types of corners and classification of the area of 

interfacial energies on TA-TB map is similar with that in two 

dimensional system. Since melt phase always exists on the cor­

ners surrounded only by the grain B when the two dimensional 

binary hexagonal system is under the condition in consideration, 

therefore, in the three dimensional system, it should be also 

realized that existence of melt phase is easy on the corner 

surrounded only by the grain B. This condition means that melt 

network is connective if grain B around the melt phase is exten­

sively connecting. In other words, connective melt network in a 

partially molten system can be covered only with grains with 

smallest relative interfacial energy. 

This situation can be observed in some partial melting 

experiments of the peridotite [ Toramaru and Fujii, 1986; FUjii 

et a1., 1986]. In a partially molten peridotite composed of 

olivine and pyroxene, relative interfacial energies of olivine is 

generally small compared to that of pyroxene [ Toramaru and 

Fujii, 1986]. Therefore, it can be predicted that melt network 

in partially molten peridotite is almost covered with olivine 

tube. The MGCP can be applicable to estimate the volume fraction 
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of olivine for such connective melt network. By using the value 

calculated by Nakano and FUjii [ 1987; Chapter 1 of this paper ], 

critical volume fraction for binary tetrakaidecahedral grains 

which is usually adopted in the three dimensional model is 0.63. 

So, we can predicted that melt network can be connective in a 

partially molten peridotite under the textural equilibrium if 

volume fraction of olivine exceeds 0.63 ( 63 % ). 

In the three dimensional case critical volume fraction of melt 

phase is calculable when melt phase can exist only on the corners 

surrounded by grain B. In this case, number density of the 

corner with melt phase, p, is calculated as 

p = ~N [29] 

where ~ is volume fraction of grain Band N is numbers of grains 

around the corner. This relation is hold at critical state and, 

therefore, critical volume fraction of melt phase in binary solid 

with melt system takes the value multiplied the critical volume 

fraction of melt phase in single solid by p. Since critical 

volume fraction of grain B is 0.63 in the three dimensional 

tetrakaidecahedral grain system ( N = 4 ), critical volume frac­

tions of melt phase takes the value as shown in Fig. 2 (b) 

multiplied by 0.157. 

In this paper, variations among solid-solid interfacial ener­

gies are neglected. Validity of this assumption is not obvious 

because there are a little experimental measurement of inter-
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facial energies. In a partially molten synthetic peridotite 

composed of olivine and orthpyroxene, FUjii et. a1. [ 1986 1 

reported that interfacial energies among solid phases took almost 

the same value. To judge the validity of this assumption, it is 

expected that many measurements of dihedral angles defined by 

equation [ 5 1 ( Fig. 1 ) instead of equation [ 6 1 are performed 

in the future. 
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Figure captions 1 

Figure captions 

Fig. 1 Definition of dihedral angles, Grt and GrR. At a inter­

section point, P, of three interfaces among solids and melt 

phases, three forces TAM' TBM and TAB denoted as thick arrows are 

balanced. 

Fig. 2 Sketches of melt shape in a partially molten system. (a) 

Melt phase exists at the corner of grain in isolation. (B) Melt 

phases at adjacent two corners are macroscopically connecting. 

Fig. 3 Critical volume fraction of melt phase, F, and mean 

curvature of solid - melt interface, C, expressed by dihedral 

angle, theta ( defined by equation [6] in text). These diagram 

are drawn for the system composed of single solid with melt 

phase. Solid phase is assumed to be ( a ) the two dimensional 

hexagonal grains and ( b ) the three dimensional beta-tetra­

kaidecahedron [ Wray, 1975 ], respectively. Value of FC and FO 

are 0.00622 ( 0.622 % ) and 0.03562 ( 3.562 % ), respectively. 

Fig. 4 Schematic picture showing melt shape at a corner of the 

two dimensional hexagonal grain. RA, RB and RC are radius of 

circles bounded melt phase on solid phases A, Band C, respecti­

vely. TA, TB and TC are relative interfacial energies between 

melt phase and solid phase A, Band C, respectively ( defined by 

equation [ 8 ] in text). Lr~, Lr~ and L~~ are distances from 

corner of hexagon, 0, to intersection point of three interfaces 



Figure captions 2 

among melt phase and two solid phases, A and B, A and C and Band 

C, respectively. In text, these distances are called as edge 

length of the melt phase. 

Fig. 5 Permitted range of relative interfacial energies, TA and 

TB' to exist melt phase on corner type 2 in the two dimensional 

binary hexagonal grain with melt system under the textural equi­

librium. 

Fig. 6 C las s i fie at ion 0 f the reg ion .. 0 nth e map 0 f r e 1 a t i v e 

interfacial energies, TA and TB• According to the conditions to 

exist melt phase on the four types of corners in binary hexagonal 

grain with melt system under the textural equilibrium, four area 

labeled by 1 - 4 can be identified in the case of TA > TB• In 

area 1, it is possible to exist melt phase on corner type 0 

alone. In area 2, melt phase can exist on both corner type 0 and 

1. In area 3 and 4, melt phase is possible to exist on corner 

type 0, 1 and 2 and 0, 1, 2 and 3, respectively. 

Fig. 7 Schematic figure showing the edge length of melt phase, 

Ll and L2 , and edge length of the the hexagonal grain, LE• 

Microscopic connectivity of the CEC unit, LCEC ' described in text 

is Ll + L2 • Shaded area is melt phase. 

Fig. 8 Critical volume fraction of melt phase to connect melt 

network extensively over the system expressed as a function of 

relative interfacial energies, TA and TB, in the two dimensional 



Figure captions 3 

hexagonal binary grain with melt system under the textural equi­

librium. Thick lines denote the boundaries of permitted range to 

exist melt phase at various types of corner as shown in Fig. 6. 

Numerics represent the values of critical melt fraction. Volume 

fractions of the grain B ( i.e. solid phase with smaller rela­

tive interfacial energy) are ( a ) 0.8 and (b) 0.9, respective­

ly. 



Table 1 Name of corner 

Corner name Configuration Probability * 

o 
B 

6B
3 B )-

B 

1 
B. 2 

B )- 3 6A 6B 
A 

2 
B 2 

A )- 3 6A 6B 
A 

3 
A 

6A
3 

A )-
A 

* 6A and 6B are number density of grain A and B, respectively. 



Table 2 (a) Name of CEC unit 

GEG 0 GEG 1 GEG 2 --

B B B 
B )-< B B )-< A A )-< A 

B B B 

B 
A )-< B 

B 

GEG 1 GEG 4 GEG 2-

A A A 
B )-< B A )-< B A )-< A 

B B B 

B B B 
B )-< B A )-< B A )-< A 

A A A 

A 
B )-< A 

B 

B 
B )-< A 

A 

GEG .§. GEG I GEG .§. 

A A A 
B )-< B A )-< B A )-< A 

A A A 

A 
B )-< A 

A 



Table 2 (b) Specification of CEC unit 

CEC Name Edge length Probability* Corner Name 

MB 
6i 0,0 0 2 LBB 

MA MB 3 
1 LBB + LBB 2 6A 6B 0,1 

2 2 
MA 

LBB 6~ 6~ 1,1 

MB 
6A 6~ 1,1 3 2 LAB 2 

4 
MA MB 

LAB + LAB 4 6~ 6~ 1,2 

5 2 LMA 
AB 2 

3 
6A 6B 2,2 

6 2 
MB 

LAA 6~ 6~ 2,2 

7 
MA MB 

LAA + LAA 2 6i 6B 2,3 

8 
MA 

2 LAA 61 3,3 

* 6A and 6B are number density of grain A and B, respectively. 



Table 3 Critical fraction of grain B in binary hexagonal grain 
system 

Corner percolation 

CEC 

Corner names 

o 
0-1 
0-2 
0-3 

percolation 

CEC unit names 

0 
o - 1 
0 - 2 
o - 3 
0 - 4 
0 - 5 
0 - 6 
0 - 7 
0 - 8 

area 

1 
2 
3 
4 

critical fraction 

0.80 
0.55 
0.29** 
0.00 

critical fraction 

0.80 
0.80 
0.80 
0.55 
0.50 
0.50 
0.29 
0.20** 
0.00 

* area on the map of interfacial energies, TA and TB numbered in 
Fig. 6. 

** always connecting. 
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