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Preface

The triangular functions sin(x), cos(X) have a period 2m. These
functions can be seen as the mappings from the real torus R/(2nZ),
which is the division of R by the discrete subgroup 2nZ in Aut(R);
the group of real analytic automorphisms of R. Automorphic
functions are the holomorphic mappings from H to € with periods I,
where H is the complex upper half plane and I' is the discrete
Subgroup of Aut(H)=PSL(2,R); the group of complex analytic
automorphisms of H. In the triangular functions case, the discrete
group 2nZ is commutative. But in the automorphic functions case,
the group I' is essentially non-commutative.

Automorphic forms are the generalization of automorphic
functions, which contain automorphic functions and their derivatives
and more. The history of automorphic forms is deeply connected with

that of number theory.

In Chapter 1, we deal with some special application of
automorphic forms. Let us consider a certain family of discrete
subgroups I' which contains fuchsian triangle groups. The n-th
coefficient of the Fourier expansion at cusps or elliptic fixed

points has the form;



where bn is a rational number and r is a complex constant. Using
these facts, we can construct an invariant quantity with respect to
inclusion relations of groups. In the case of fuchsian triangle

groups, the quantity can be written explicitly by the gamma function.

See [11].

In Chapter 2, we treat the dimension formula of automorphic

forms of weight one. In case of weight = 2, the dimension formula
was written explicitly, using the geometric data of T. But in our
case, we cannot get expressions like these up to now. In the work

of Hiramatsu [7], he gave the dimension of weight one for cocompact
group I'y using the residue of the Selberg type zeta function. The

essential tool to derive this formula is the Selberg trace formula

A
-

for a kernel function:

—_—— S
Sy y!

(z-2')/2i

J Yy y' e—i( ¢ - ')

k. (z,8,2",¢") = =
(z=-2*')/21

with Re(s)>1.

In this section, we devote to the case that I' is not cocompact,

and T 3[-é _?) and derive the dimension formula of the same type.
See [61. In the case that I' 3 (—é _?J, see [8].

In Chapter 3, we deal with the Selberg trace formula for odd
weight. See [21]. First we rewrite the Selberg trace formula in
this case, concentrating on the difference between the contribution

of regular cusps and that of irregular cusps. Such a difference is



already known even in the case 0of the dimension formula for
weight 2 3. S0 we are interested in writing this difference clearly
in the general case.

Second we improve the dimension formula of
weight one. In Chapter 2, we gave the dimension formula of weight
one, using the residue of the Selberg type zeta function. But this
formula is unsatisfactory because the zeta function has no functional
equation. In this section we gave the dimension formula of weight

one in general situation, using more natural zeta function which has

a functional eguation. The main result is
dim S, (F,x)+ dim S, ("',X) = ord Z (s,x),
1 1 - r
s=1/2

where "ord" denote the order of zeros, and Z;(s,x) is the Selberg

zeta function and x is a finite dimensional unitary representation of

r.



Chapter 1.

On the Fourier coefficients of automorphic forms of triangle groups

§ 1-0. Introduction

In this chapter, we want to construct a certain analytic
invariant gquantity with respect to the inclusion relations of the
special discontinuous groupé.

Denote Jd(z) the absolute invariant of the Hecke group Gd. Then

Jd has the following Fourier expansion at i«

o0

Jyt2)= g a T g ,
n=-1

where a_ €Q, r € R and q=exp(—€3§%%787]

The value r is algebraic if and only if d=3,4,6 and « ([1131[161).
These results can be extended to the case of fuchsian triangle groups
and the expansion at an elliptic fixed point ([171[181).

Now we consider the ratio of the value r's when there is an
inclusion relation of groups. In § 1-1. we will show using purely
algebraic method that the ratio is algebraic and etc. In the
remaining section we put into concrete this result in the case of

triangle groups. Especially in this case, some power of the ratio

belongs to the imaginary quadratic field.

§ 1-1. Notation and results

Let g be an indeterminate, and K be some subfield of the complex
number field C. The quasi K-rational power series of style r is the
formal power series of the form

E{an r gf (a € K, r € C*= C-(0} , £ € Z)
nz



The quasi K-rational vector space of style r is the vector space over
{ spanned by these series. The style r of a power series is

determined up to an equivalence relation ;

g I
(rl/rz) € K (1)
for some 9 € Z
Let F be a subfield of € containing XK, and CisCyr ™™ sy be the
complex numbers. We say that {cl,cz°~°~,ct} is F-independent over

K if the property (P) is satisfied for all di € K (i=1,--+,t).
. ‘

(P) dicie F then di= 0 for i=1,----,t

1

We can now state the main theorem.

1

Theorem 1

Let ¥V be the quasi K-rational vector space of style r, ,and {

. 1
be an element of V. Suppose that f is the quasi K-rational

infinite power series of style r Then the ratio of the styles

2
Y = rl/r2 i8 algebraic over X, and §f is a linear combination of the

basis of quasi K-rational power series of style r. over K(y).

1

Moreover there are distinet non negative integers 10(= 0,1

-,1m (0 < m< dim V), and infinite numbers of n such that

1

n—l0 n—l1 n—lm
{y s ¥ R Y y is not K-independent.

We can take the value m not larger than the maximum number of

power series in the gquasi K-rational basis whose leading coefficient

a£ is 0 . In § 1-4. we will consider automorphic forms which has
real axis as a natural boundary. In this case, the condition of
infinite series is naturally satisfied. The conclusion of this



theorem is rather complicated, but if the following conjecture holds,

we can rewrite the theorem in a better style.

Conjecture 1

Assume that v € C has the last properties of Theorem 1 then yt

is an algebraic number of degree m+1 over XK for some natural number

t. Fxchanging indices, we have 1i = 11 (i=0,---,m).

The style r for a quasi K-rational power series is determined
by the equivalence relation (1). The style of the quasi K-rational

vector space is determined by the following theorem.

Theorem 2

Let YV be the quasi K-rational vector space whose style is taken

in two ways as rysr If Y has at least one infinite power series,

2

then there exists some natural number o9 such that
)

(rl/rz) e K

Choose basis of YV of the form

n n - e o o o 3 - 3
> a, ) 4 (k=1,2, ,s; s=dim V)
If the vector (a ,a R R , a Yy 18 nmon zero for all n, then
n,1” 'n,2 n,s

the number s can be taken not larger than dim VY

§ 1-2. The proof of Theorem 1.

Let
n n - . o o o = M
nz£an’k r, g (k=1,2, ,s=dim V)
be the basis of ¥, where a ke K, rle C* and ¢ € 7 . By the



assumption,

we have

F=3c rlgq”
n>¢ 1 2
2 n n
= > dk( > a Iy 4a ) evY
k=1 n={ °
So
n n 3
c T, =T, 2d an x (nz2dg), =—==——-=- (2)
k=1
Put ¥y = rl/r2 , D =¢( dl’dz’ °°°°°°°°° ,dS ) and
L D
a.= ¢ 4h,1° %n,2 40, s )
Then (2) is written in the form
-n' ——————————
c, = D a_ (3)
So
c_ =" @Py- P la
n n

for P € GLS(K).

to get the assertion.

be taken in XK(y).

X(y)-independent and dl’d

then we may replace dt+

Thus we are able to think that dt+

We can change basis of ¥ by this method in order
At first we say that di (i=1l,-+-+-,s8) can

Assume d1 g Ky)y.

gr e ,dt+1 are not K(y)-independent,
1 with
t
dt+1+i§1hidi (th, € X>.

belongs to X(y) from the start.

1

Repeating this argument we get

........

are K(¥)-independent ;

{ dy.dys t
dt+1’ """"""" ,dS belong to K(y), where t 2 1
From (2) we have
0 _ 3 ‘
- d, a = d, a € K
Yn K= t+] K "n,k k=1 K "n,k
Thus an Kk ° ¢ for k=1,°:--"- » t This is a contradiction. So we



get dk € K(y) for k=1,2,---,s . Using similar arguments we can

assume
{ del’yidZ’ ---------- ,det are K-independent ;
= e - - i
dpe179442" = dg =1/¥
Without loss of generality, we can assume t < s . Define
* t+1 * n-4 ¢ n
T = § (&,,8,,° """ ,8,,8 ) €K Y + 2 v d, g €K
n 1°°2 t k=1 k °k
and
- o o o o t-_e+1 000000 *

We define nl,nz,"- by induction. By the definition we know

S{’1={O}.
Let n1 be the smallest number of n such that Sn 1#(0}. We may
assume gt¢ 0 so that we can replace dt by

i-1

-1 - x  =¢
dy+ g, 2 d g *g&, & ¥
k=1
., % ny
and multiply some element of X : we can put dt =1/v . If
Ny Ny Ny

NysNy, - +,n_ are defined and dt=1/Y ,dt_1=1/Y ,"',dt_w+1=1/v ,
then we may assume S ={0} for n=¢{,L+1, -+ ,n -1, and S ={0}.

n,w w nw,w+1

Since we have chosen the basis of ¥V, there is a number n such that

S Z{0)y if w+tl < t . Let n be the smallest number of these.
n,w+l w+l
n
Then we may put dt—w= 1/v Wl , according to the same argument.
Ny D1 251
Thus we may consider that d1=1/Y ,d2=1/7 R ,dt=1/y

There are infinite numbers of n such that n > nw and an¢ 0 , because

7/ is an infinite power series. This concludes the proof.



§ 1-3. The proof of Theorem 2

Let

n _n n .n - e s=di
n§£an’k ry a ng{bn’k r, a (k=1,2, ,s=dim V)

be two quasi K-rational basis of V¥ whose styles rl, r2 respectively.

Put
n n S Z n n
> b r,q = 2 d, a ry a ,
n>¢ MK 2 k=1 41°K p5¢ Mok 1
Y = rl/r2 , D =¢( dj,k ),
= toa a4 e
an- ( an,l’ an’2 , ,an’S ),
— t oooooooooo
bn- ¢ bn,l’ bn,2 ’ ’bn,s )
Then
b =%"Da_. e (4)
n n
So
Pb =" (P-D.Q)-(Q'lan ) P,Q € GL_(K).
In this way we will change basis. Next lemma is well Known

(see [14] page 81 ).

Lemma
Let 2 £n K qn (k=1,----,8) be linearly independent formal power
n>{
{ =2 = t E E 4 e e e e
series over C. Put = ( - ,&n’z , ,£n’s ), then the
vector space spanned by all En (n=1,2,-+--" ) has rank s.
Take n,,n,, ***" ,i_(n, 2 &) such that a_ ,a_ ,------ ,a are
172 S i n n n
1 2 s
linearly independent over C. Then from (4) we get
-n n -n
1 2 s
D - ( a ’a gttt ,a ) - ( Y b ’Y b gttt ’Y b
R ) Ny M i) s
Put



P-D-Q = y 2

L Y -

Since there are at least one infinite power series, there exists n

n-n
such that n > ng and ¥y k € K for some kK (k=1,-°*°,s). This

assures the first assertion of Theorem 2.
Put
U= (=2€C% | D= eK5y,
where E =t(€1,€2,°--,£s). U is the vector space over K . We
define the linear map ¢ by
o : U > K
g —> D-&

As @ is injective; we get dimK U < s . Each ?n an belongs to U.

{ L {+s - ,
So v a, ,v Ay, 1 » Y a, . are linearly dependent over K
There exist ( Kg,ky, """ k) € KS*1-(0) such that
S .
£+]
S k. v a, . =0
jzo 4 i+
We can find j (j=0,°-*,s) such that kj # 0, then choose i (i=1,°+***,s)
such that a{ .. ® 0 Then
+3,1
§ i
k. v a . .. =0
jz0 J t+3,1

gives the non-trivial algebraic relation whose degree is not larger

than s . This proves the second statement of Theorem 2.1

§ 1-4. The ratio of styles in the case of fuchsian triangle groups



In this section we treat the special case of fuchsian triangle
groups. For the precise notation, we refer to [18]. Let A =
A(p,q,r) be the triangle group whose signature is (p,q,r). 1f
1/p+1/g+1/r < 1 then this group is realized and acts on the complex
upper half plane H discontinuously. The fundamental domain of A is
ABCD where ABC is the hyperbolic triangle, and ADC is the reflexion

with respect to the geodesic AC . Denote

Az’v the space of

holomorphic automorphic forms of A and of weight k, multiplier v
Take f € Az’v then

f is expanded at the elliptic point A of order p

_ _ _ n
F(z)= ( z-A Y ¥ S an(i]
n=0 z2-A

k k,v
AA

Ignoring ( z-A ) ©, we know that is the quasi rational vector

space . The style of Az’v

depend only on the vertex A and A.
Choosing good fundamental domain as Th 2 in [18], we can write down

this style value:

r(p;q,r)=

1 1 1 1 1 1 _ 1 1 1

r(h' p)r(Z P * q r}Jr[Z {1 p * g * r}J 2

_ 1 1 1 1 1 1 1 1 1 i

r(l p JF(Z p ¥ q r))r( 2 e p * q ¥ r)j

cos(s )cos[s - —E—J
where 4% = - 4 » & = g ( o i ]
cos(s)cos(s —?fJ P q

We can easily check that
r{p;a,r) = r(p;r,q)

Assume A_=A (pl,ql,rl) cC A, = Az(pz,qz,rz) and A,B.C.D, be

1 71 2 1717171
the fundamental domain of Al which is suitably located in the sense
of Th 2 of [18]. That is to say, Al=¢—1 and B1= t /-1 (¢ > 1)Y. We
can't always assume that A B2C2D2 is suitably located. Let ¢ be the



natural covering map from TH/A1 to H/A2 , and assume ¢(A1)=A . of

2
course P, (P, - Denote 8 (0 £ 8 < 7n) the angle of B2A1B1. All
inclusion relations of triangle groups are classified in [151]. So
we can calculate the value 8 in a straight'forward way. After

tedious calculations we know that

cos (2 p29) € Q

for all inclusion relations. For example, in the case of A1(5,4,4)
c A2(5,2,4), we get 8 = lg When we regard this relation as
A1(4,4,5) c A2(4,5,2), we get cos(4 9)= —%— . The rotation at A1
and of angle 8 causes small change of the style. Using the relation
of [18] page 4, we see that the style is multiplied by e“_1 6. In
all cases, the value e'_1 0 is algebraic. From Theorem 1, we see

that the ratio 1(p,;q,,r )/1t(p,;q,,r,) is algebraic, because Ak’v )
. 1’71°°1 2772772 Al

Az’v and Ag’v contains elements other than constant functions for
2 2
sufficiently large k. If the conjecture of § 1-1. is true, then

some power of the ratio r(pl;q ,rl)/r(pz;qo,rz) is of degree at most

1

7, because

dim A%V < qim AV + 3 <5
4y 4,

Thus we are interested in calculating these ratios of the styles.

Theorem 3

9 be fuchsian triangle groups and Alc A2 . Then the

ratio r(pl;ql,rl)/r(pz;qz,rz) 18 given by the following table.

Let AI,A

(i) Normal case



1(p;p,p) _ 3—3/2p
r(p;3,3)

r(p ;9,9) _ ,1/p
r(2p;2,q)

(I) Non—normal case
~-3/7

1(7;,7,7)

2—6/7
1(7;2,3)

3

((757,2) _ ,-1/2 4-3/7
1(7;2,3)

1(7;3,3) _ ,-6/7 ,-3/14
1(7;2,3)

1(8;8,4) _ ,-1/2 ,-3/8
1(8;2,3)

1(8;8,3) _ 2—1/4 3—1/2
1(8;2,3) ~

1(9;9,9) _ ,~2/3 ,-1/6
1(9;2,3)

1(5;4,4) _»2—1
1(5;2,4) ~

[(4p;4p,p) _ ,
((4p; 2,3)

1(2p;2p,pP) -2/p

r(2p; 2,4) - 2

_ 2—2/p

1(3p; 3,p) _
T(3p; 2,3)

1(3;3p,p) _ ,-1
1(3;2,3p)

r(2p; 2,p) _ 4-3/2p
T(2p; 2,3)

1(2;2p,p) _ o-1/2

1(2;2p,3) 3

Corollary

Let Al’Az

1(4;4,5) -1/2

-1/2p 3—3/4p

T(p ;p,p) _ 2l/p 3—3/2p
r2peps;2,3)

ra; a,p) _ ,-2/q
1(q;2,2p)

-1/4

3-1/2 7

1(25;3,7)

-1 .-1/6
1(3;2,7) - ¢ 7

1r(4;8,8)

3—3/8
1(8;2,3)

1(3;8,8) _ ,=3/2
1(3;2,8)

1(9;9,9)

-1 3—5/6
1(3;2,9)

2

_ _1/4
1(4;2,5) - 2 5

T(p;4p, 4p) 25/2p 3-3/4P

1(4p; 2,3)

T(p;2p,2p)

1(2p; 2,4)

T(p; 3,3p) 2—2/p 32/p

1

r(3p; 2,3)

1(p;2,2p) _

3/p 3-3/2P
1(2p;2,3)

2

be fuchsian triangle groups and A,c A

1 2

We have



2p2
(r(pl;ql,rl)/r(pz;qz,rz)) € Q

Prime factors which appear in the numerator and the denominator
are the prime factors of qQyryQ,T,.
Remark

Consider the case A(5,4,4) c A(5,2,4). As the elliptic point
of order 4 of A(5,4,4) and the elliptic point of order 2 of A(5,2,4)
are not identified by the covering map ¢, it seems that we can't get
the assertion of the corollary when we calculate 1(4;4,5)/1(2;4,5).

(The value becomes n~3/2

F(1/4)>(1/40)r(9/40) up to algebraic factor.
S0 we can get informations not only of the inclusion relation but

also of the covering surface from this corollary.

Let us conclude this chapter with next fascinating conjecture.

Conjecture 2

Let Fi(i=1,2) be the fuchsian triangle groups and ri(i=1,2) be
the corresponding styles. When v = rl/r2 18 -algebraic, then Fl and

F2 are commensurable.

There are no counter example for this conjecture up to now.
Unfortunately we know few about the transcendency of I'-value, this

conjecture seems far out of our reach.



Chapter 2

On some dimension formula for automorphic forms of weight one

§ 2-0. Introduction

In this chapter, we give a certain dimension formula for
automorphic forms of weight one. - In the case of weight m = 2, we
can compute the dimension by the Riemann-Roch theorem for algebraic
function of one variable. But we can get no informations of weight
one by this way, because we cannot make good use of the duality of
m < 2-m in the Riemann-Roch theorem.

In his paper [12]1, Selberg has introduced the celebrated trace

formula. He also calculated the dimension for m =2 2, using this
formula. So it is an interesting problem to apply his formula for
the case of weight one. In [7], Hiramatsu gave the dimension

formula for weight one by this method for the cocompact group-TI.
The dimension was expressed not by the geometric data of ' but by the
residue of the Selberg type zeta function.

In this chapter, we treat the case of the cofinite group I' not

containing [_é _?j, which has parabolic elements and give the formula
of the same type. In this case, we must subtract the effect of the
continuous spectra. For this purpose, we define the

Maass-Eisenstein series which attaches to each cusp and modify the
kernel function.

Unfortunately our dimension formula is not computable, because
the analytic continuation of this zeta function is given by the same
trace formula. The essential reason why we cannot get the effective

dimension formula of weight one by this way is that the Selberg

- 15 -



trace formula also have the duality of m < 2-m. The explanation

of this situation will be given in Chapter 3.

§ 2-1. Notations
Let ' be the fuchsian group of the first kind not containing the
element (—1 _1), and suppose I' has a non-compact fundamental domain
in the upper half plane H. Let T be the real torus R/Z, and
W =HxT. Denote by £2("\[) the space of functions f£(z,4) on J
satisfying:
(1) f(z,¢) is a measurable function on H

(2) f(y-(z,¢))=f(z,¢) for v € I

(3) j |f(z,¢)|2 dz d¢ ¢ = ,
r\H _

where dz = y_2 dx dy

2 2
Put A=y2(89+ 82J+y—88 —88¢
9 x~ 3y

Spectral decomposition of zz(r\ﬂ> with respect to A can be given

in the form

2 2 2 2 7 2 2
AN = & ¢ N\ AN ;
2=\ ¢ 2o H,20) @ g, (T H e zcont(r\H>
where Zg(r\ﬁ,k) is the space of Maass cusp forms, zip(r\ﬁ> is the

discrete part of the orthogonal complement of f%(F\ﬁ,A) and ziont(r\ﬁ>

is the continuous spectrum.

We denote by £{(m,x) the set of functions f(z,¢) satisfying

(4) f(z,8)€ 22\

(5) A f(z,¢) = x £(z2,9)



(6> §§$ f(z,¢) = - m/-1 f(z,9)

To obtain the dimension of holomorphic automorphic forms of

weight one, we note
JY exp(- /-1 ¢) 5,(M = £(1, =1/4),

where sm(r) is the space of holomorphic automorphic forms of weight m.
This relation is the special case of Hejhal [5] vol I, p.383. (See

also [81.)

§ 2-2. The definition of Eisenstein series
We consider an invariant integral operator on the space £{(m,x)

defined by a point—pair invariant Kernel

T~ |S oo . e
R(Z,¢’Zv,¢c) _Z# #_ e i( ¢ ¢ )
(z=-2')/21i (z-z2')/2i

where & > 1. Then the operator k vanishes on £Z{(m,x) for all m # 1.

It is easy to see that-the integral

f S k(z,6,v(z',8')) dz d¢
I'\H yer

is uniformly bounded at a neighborhood of each irregular cusps of I.
We also see that by the Riemann-Roch theorem, the number of regular
cusps is even. In the following we assume that Kl,K2 is a maximal
set of regular cusps of I' which are not equivalent with respect to I'.
Let Fi be the stabilizer of k, in T, and fix elements . € SL(2,R)
s0 that oglrioi is equal to the group Fw = { [1 T) tm € Z }. Then

the Eisenstein series attached to the regular cusp Ki is defined by



S
. - -y -/-1(¢+ Arg(cz+d))
(7) E (z,8;s) = > e

o€l \TI' |cz+d|2s ’
0—101_( * ok J
i “Led
where i=1,2, and Re(s) > 1. It is easy tb check that

(8) Ei(Y(z,¢);s)= Ei(z,¢;s) for y € I;
(9) A Ei(z,¢,s) = s(s-1) Ei(z,¢,s);

9 ) Y e .
(10 38 Ei(2,¢,s) = /-1 Ei(z,¢,s).

By the above (8), Ei(z.¢;s) has the Fourier-Bessel expansion at

Ki in the form

E{(0,(2,8)58) = 2 a;,  (y,85s) 27/~ 1kx

K=-w ij’

The constant term aij 0(y,¢;s) is given by

J-1¢ e o .
e aij,O(y’¢’S)' aij,O(y’S)
_ S 1-s
where Bij=1 or 0 according to i=j or not, and
N
o ()= - /TR rs) 5 (sgn c)hij(c)
ij r(S+1/2)c#O |c,25
. * ok -1 .
with N, . (c)= # { 0 £d < |c|: ( )e c. T o. . Define
1] c d i J
2 X 2 matrix ®(s) by (wij(s)) . Considering the involution y - y_l,

it is easy to see that ®(s) is an alternative matrix. This matrix is

called the Eisenstein matrix.

§ 2-3. The Selberg trace formula



First we define the compact part of Ei(z,¢;s) by

E.(z,9;s)- a,. (Im(o,2),%;s) if Im(o.2z2)>Y
EY(Z $:s) = i ij,o0 i i
i 7 Ei(2,¢;s) otherwise,
where Y denotes a sufficiently large number. Then, the following

Maass-Selberg relation of our case can be obtained in a similar way

to the proof of Theorem 2.3.2. in Kubota [10]:

0

. v v . yS*s -1 _ wij(s)wij(g,)Y—s—s +1
(11) EE_( Ei(z,¢,s),Ei(z,¢,s »)= s + s5' - 1 s
where i#j. Using this, we see that the Eisenstein matrix ®(s)
converges to a unitary matrix when s tends to the point s0=1/2+J-1r
Therefore we have
b(s HIP(1-5 )=b(s )D(5 )= - d(s )D(s) = d(s.) D(s 5 = (1 O)-
Q 0 0 0 0 0 0 0 0 1)°

and hence each Ei(z,¢;s) has a meromorphic continuation to the whole
s-plane, and the column vector &(z,¢:s)= t(El,Ez) satisfies the

functional egquation
E(z,9;8) = Bd(s) E(z,0;1-s).

Since I' is a cofinite group, the integral operator defined by
k(z,¢,2',¢') is not always compact. To subtract the effect of the

continuous spectrum, we put

2 @
H(z,¢,2',6')= 1S J h(r)E, (z,4;s)E, (z',¢";s) dr,
8n” i=l Y-w
where s=1/2+/-1r. Here h(r) denotes the eigenvalue of k(z,¢.2',¢"')

in £(1,x) which is given by
h(r)=h(r,8)= 2% o B(1/2,(1+8)/2) B(&/2+/-1r,8/2-/-1r)

with A=s(s—1)=—r2—1/4, and B(x,y) is the beta function. Define
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K(z,$,z',9')= 2> k(z,¢,¥(z',9"'))
YEIr

and
K¥(z,6,2',6')= K(z,8,2',8')- H(z,8,2',8").

Calculating the asymptotic behavior at each cusps Ki’ we see that the

integral operator defined by K* is compact.

Considering traces of K* on zg(r\ﬁ), we obtain the following
trace formula. (See Selberg [131.)
(12) 2 hx,) = f K*(z2,9,2,8) dz d¢
j=1 ! ™

f [ S k(z,6,v(z,8)) - H(z,¢,z,¢)]dz d¢
F\ﬂ ver

=lim 2 I G* 2 k(z,9,v(z,4)) dz d¢
Yoo [ ST @ LEr g,

~ f *H(z,¢,z,¢) dz d¢,
I\

where each of Aj denotes an eigenvalue corresponding to an
orthonormal basis (fj} for %O(F\ﬁ) and the last summation is taken

over conjugacy classes [ox] of T. Here we denote by I'(x) the
X 2
centralizer of ¢ in I' and ﬂ = ﬂ -V vy oi( z € H: Im(2z) > Y }.

So far, the positive quantity & is restricted to the condition
S > 1. To get informations of the spectra of A, we treat & as a
complex valuable from now. The analytic continuation of the right
hand side of (12) is given by the explicit calculation in § 2-4.
For the continuation of the left hand side of (12), we should notice

that h(r) is rapidly decreasing when [Re(r)| - .



To get the dimension formula of weight one, we want the
multiplicity of the eigenvalue x = -1/4. When X = -1/4, we have

r = 0 and

Res h(0,8) = 16 n°.
6=0
If x # -1/4 the function h(r,8) is holomorphic at 8§ = 0. So we have
. 1 *
dim Sl(F) = 5 Res I K (z,6,2,¢) dz d¢.
16 =« 6=0 '\
§ 2-4. A formula for the dimension d

1

Throughout this section, we neglect the 0(1) term with respect

to Y - o, We put

[2] fr(a)\ﬂ* 2 k(z,¢,v(z,9)) dz d¢ H(z,$,z,9) dz dé,

YEL () fr\ﬁ*
=J(id)+J(R)+J (H)+J (=),

where J(id),J(R),J(H), and J(») denote respectively the identity
component, the elliptic component, the hyperbolic component, and the
parabolic component of the traces.

(I) The identity component
J(id) = Ir\g dz d¢ = 2 m vol (I"'\H).

(I) The elliptic component

5 [ 295 B(1/2,¢1+8)/2)

J(R) 2 #T(R) sin 0

X

” - _ —_.sinh r(n-20)
I_wB(6/2+/ 1r,8/2-/-1r) Sinh nr dr

5
2°n/-1
* Er(mysin @ B(1/2,(1+8)/2) B(6/2,6/2)),
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where R is taken over the representatives of elliptic conjugacy

. . cos 8 -sin 6 ) )
classes of I. Suppose that R is conjugate to ( sin 8 cos 6 in
SLZ(R). From this formula, we have

2_.
. 4 n°/-1
(13) lim & J(R) = 2 -
590 R #'(R)sin @

Considering the involution R - R_l, we see that the right hand side
of (13) vanishes.
() The hyperbolic component

JCH) = 25%% 5 B(1/2, (s+1)/2)

/2 k/2. -s

¢ N(TYE %4 nqr)yTK/2,7s,

© k
x 53 (sgn trT) log NA{T)

T k=1 N(T)K/2 - nyT) K/2

where the summation about T is taken over primitive hyperbolic

1

conjugacy classes of T. Here we put a,a - are the eigenvalue of T

such that la] > 1 and N{(T) = a2

The results of [7] which correspond to (I), () contain minor errors

which were corrected by the author himself.

(¥) The parabolic component

We have

2
J (=)= lim( 2 f x 2 k(z,8,v(z,8))dz d¢ - f . H(z,9,2,8) dz d¢).
Yoo ti=1 “TF NHT ver N\

For the first half of J(«), we have

I v 2 k(z,9,v(z,4)) dz d¢ =
Fi\ﬁ yeri
Y#1



Y .1 . s
= f f S k(z,¢,( n)'(z,¢))y dx dy d¢
0

0 n#0 01
(sgn n)eo S
:27[2 —%—'J' 2 l ,2 dt
n#0 n/Y 2 +/-1t 2 +/-1t
@ 8/2+1
= 47 Y —%— f ( 4 5 J dt
n>1 n/Y 4 +t

© 4 /2+1
4H((C + log Y) B(1/2,(1+86)/2) + J log(t)( dt).

0 4 +t2
Here C denotes the Euler constant. To derive the last formula,
we use the Euler-Maclaurin summation formula. See Kubota [10] p.103
~ p.104 . We notice that the first part of J(») can be written in
the form

4 B(1/2,(8+1)/2)108Y + (),

where 1im & (&) = 0.

-0
For the second half of J{(«), we employ (11). Then we have
Lo f % f h(r)E, (z,851/2+/-1r)E, (z,8;1/2+/-1r) dr dz d¢
gn® YIM\H Y-w

=1 1in f ; f h(r)E?(z,¢;t+/—1r)E?(z,¢;t+/-1r) drdzdé + o(1)
i Y -o

8n2 t-1/2
. o y2t-1l. wi.(t+/?Tr)wi‘(t+/?Tr)Y1_2t
= o lim f h(r) T dr + o(1)
t21/2 Y-
= 4 1 B(1/2,(8+1)/2)10gY - Z% f h(r)w;j(1/2+/-1r)wij(1/2—/—1r)dr
+ 0(1),



as Y > «© and t =» 1/2 , where j # i.
We note that the Eisenstein matrix $(s) is unitary and thus det & (s)

is not zero on the line Re(s)=1/2. So we have
@12(1/2)@21(1/2) # 0.

From the analytic continuation of this part, we see that the function
I h(r,é)(@12(1/2+J—1r)@12(1/2—J—lr)+wél(1/2+/—1r)w21(1/2—/—1r))dr

is holomorphic at 6=0.
Now we can state the main theorem.
Theorem

Let ' be the fuchsian group of the first kind not containing

the element (_é _?J, and suppose that the number of regular cusps of
' is two. Let d1 be the dimension of the space of cusp forms of
weight one with respect to T. Then d1 is given by
d, = 1 Res §*(s),
1 g OF
s=0

where

* S (sgn _trD¥ 1og N(T) k/2 ~k/2 -s

¢ (s) = 2 2 /3 7z ¢ N(T) + N{T} > .

T k=1 NAT} NA{T}

Here the summation with respect to T is taken over primitive

hyperbolic conjugacy classes, and N{T}~ a2, where ::l,a_1 are the

eigenvalue of T satisfying |al > 1.

Remark. Let I' be a general fuchsian group of the first kind not

containing the element (_é _?J. Then, using the properties of the

Eisenstein series defined at each regular cusp of ', we can reprove



that the number of regular cusps of ' is even. We can also prove
that in the same way as in the above case, the contribution from

parabolic conjugacy classes to d1 vanishes.



Chapter 3

Selberg trace formula for odd weight

§ 3-0. Introduction

Let ' be a fuchsian group of the first kind which does not

0 -1

to rewrite the Selberg trace formula for odd weight and the group I'

contain the element -I= (_1 0). The first aim of this chapter is

for the general kernel function, in a form which makes clear the

difference between the contribution of regular cusps and of irregular

cusps. Let us explain this difference by an example.
Put I',= I, (4) = { ( ab J € SL.(Z): a=d = c+l =1 (mod 4) }.
1 1 c d 2
Then Fl is generated freely by ( é } ) and ( i ? J. Denote by F2 the
group generated by (_é :i) and (:i _?J. Although the action of Fl

and that of F2 on H are equivalent, we have

dim 53(r1> = 0,

dim SS(FZ) =1,
by the classical dimension formula. We can easily see that
{ 0,1/2,= } are the Fi—inequivalent cusps ( i=1,2 ). For Fl, we see
that { 0,2 } are regular and { 1/2 } is irregular. But for F2, all
cusps are irregular. These facts causes the difference of the
dimension. So it is an interesting problem to write down the

difference in the general case.

Our second aim is to improve the dimension formula for weight
one. In Chapter 2, we studied a dimension formula for weight one,
using special Kkernel function

hir)= 22%S n B(1/2,(1+s)/2) B(s/2+/~1r,s/2-/-1r).
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We note that the corresponding Selberg type zeta function does
not have a functional equation. In this chapter, we apply the

Selberg kernel

h(r) = — 1 s - ——5—1——5— ¢ B>>0)
re+(s-1/2) r- + B

to the above trace formula. Then we can give a dimension formula of

weight one, using more natural "zeta" function which has a functional

equation of type s & 1-s.

§ 3-1. Notation

Let H be the complex upper half plane and T=R /(2m). We
put A= H x T, G=SL(2,R)> and G= G x T. Then & acts transitively on H
in the following way:

(g, o)+ (z, é)=( gz , ¢+ arg j(g,z)-o) (g, 0)EG ,(z, ¢)€H ,

_ ab ..,_ az +b , . _ .

where g= ( c d JGG , &g*2= oz *d €H and j(g,z)= cz +d. With the
involution £(z,¢)=(- z ,- ¢) , the triple (G,H,£) is the weakly
symmetric Riemannian space. The ring of G invariant differential

operators on this space is generated by A and 5§3 where
2 2
_ o 3] 1) 1) 3]
A=y ( 9 x2 T 3 y2 ) *Y 9 x5 ¢
Let ' be the discrete subgroup of G not containing -I. We
identify G with G X (0} , and I"' with I' x {(0}. Take a unitary

representation x of I' of degree v ( ¢ «© ) | Let Kl,K *yK _Dbe

ps .
the complete representatives of I'—inequivalent cusps of I'\H. Fi
denotes the stabilizer of Ki’ and F? =Fin ker x . We will consider
the cusp form of '\H , so take x under the condition [ri,r? ] < « for

i=1,2,«-++,0. Take oie G such that ciw =Ki , satisfying the following

condition:



1
Q
—
Q

):

is generated by ( é i
-1 -1 ]
0 -1 :

If k. is regular then ' =
1 (o]

[
Q
—
Q

If Ki is irregular then [ is generated by (

We consider Cv valued, square integrable functions on H
satisfying
f(y-(z,8))= x(y)f((z,9)),
for any Y€, and denote the space which consists of these functions
by Li(r,m). The Selberg eigenspace is a subspace of Li(r,ﬁ) defined

by two additional conditions:

B . _ /o
{ 1) 34 f= J-Im £ ,

2) A f

%X(m,k) denotes this space. We assume the eigen values A are

X f

numbered in the following way

m(—lm—l)lezx 2 X, = e .

2 2 2 3
For the convenience, we set X _= —[rQ + 1 ]= s (s _-1) and
n n 4 n n
. 1 -
sn— > +/ 1rn.
To describe the continuous spectrum, we define the Eisenstein
series which attaches to Ki (i=1,°*+*,w):
E.(z, ¢ ;8= 5 Im( o lo 2)5 exp [ -n/~T o7 lo ¢ ) x L) p.
1 o€ ri\r ! ! !
ys — -1
= > —— 5 ©XP (—m/—l ( ¢ + arg (cz +d))] X (oio) Pi’
o |cz +d|
In the last summation, ¢ is taken over all representatives of
-1 _ a b . .
Fm\ oi ', and ¢ = ( c d J . Pi is defined by
—%— > x(g) ( if k. is regular );
i ger./ro !
P = 1 1
i 2r. . .
1 i i 1 . . .
5 2 -1y 'x(n ( if ¥, is irregular ),
1=l '

where ri=[ Fi: F? ] and n € Fi is chosen so that n mod (l“(i’)2 should



be a generator of Fi/(F?)z. These Eisenstein series are
meromorphically continued to the whole s-plane and satisfies an
analogous functional equation with Chapter 2 (cf.[6]J[9]). We denote

by Qm(s) the constant term matrix of these‘Eisenstein series.

§ 3-2. The Selberg trace formula for odd weight

First of all we rewrite the Selberg trace formula in our case.
The calculation was done by Hejhal in [5] vol I, but we do this by
our formulation of the Eisenstein series, using the Euler-Maclaurin
summation formula.
Theorem 1 (Selberg trace formula for odd weight ).

Let N be a non negative integer and m= 2N+1. We assume that
h(r) is an analytic function in the region |Im(r)|< max(N,1/2)+$
satisfying following two conditions:

1> h(r)=h(-r);

2) There exists a sufficiently large number M such as

-2-8
h(r)< M |[1+Re(r)]| ,

where 8 i8 some positive real number. Put

-/-1nru dr

s

gu)= E%—f h(r) e

then the following formula holds:

© . 00 N

S h(r )= Y VOL(IND [ f rh(r)coth(mr) dr + 2 S k h(/=1 k) ]
- n 47
n=1 - k=0

. 5 Tr(x(Ti;zsgn(T) In T}EOL £(in N(T))

(T)€hyperbolic  N{T} N{(T}
, Tr(x(R)) w sinh (m-2@)r
' {R}eel%iptic TGy s | I_Z(r) sinh 7r ar



-/-1 h(0) + 2/-1

n Mz

e2V/1ke L /Tx) ]

k=0
2nix 1 N — h(0)
- g2(0) 2 In [1-e ij |+ 2 (—5—,— ai.J( > h(/-1k) - 5 J
o, .#0 o, .#0 1/ (=0
ij 1]
regular regular
2mio N h(0)
- g(0) 2 In [1+e“" %55 | - 3 ai.( > h(/-1k) - - J
o, E-1/2 o, #-1/2 I k=0
1] 1]
irregular irregular
{ h(0) 1
+ 4 h(0) 1 Tr(@m( > )J
1P 1 1
+ T I_g(r)Tr(¢ m( > +/-1r) mm(_E_ —/—lr)Jdr -t g(0)In 2
. o o0 l1-cosh( gu )
~ Tom I—z(r)¢(1+/-1r)dr + ¢ IO gu) 5 sinh(u/2) du
Here the notation is as follows. We denote by "~" the
conjugation in SL(2,R) and by {( } its conjugate class. Take X such

that T ~ ( A , 71 j , where [A| > 1; I'(T) denotes the centralizer of T

in " and #T'(T) is the order of this group. T, is a generator of

= 12 - - cos 8 -sin 8 j, .
(TY),N{T}= Xx“ and sgn T= sgn x. R ( sin 6 cos 6 J° Ti is a

generator of Fi, the stabilizer group of cusp Ki.

exp(zn/TTail)
X(T.) ~ [ T ]
)

exp(2n/—1aiv

We determine aij so that

[ o €L 0, 1) if x, is regular

aij €[ -1/2 , 1/2 ) if Ky is irregular

t=A+B where A denotes the number of pairs (i, j) such that ai

_30_

=0 ,
J



where i moves in the range that Ki is regular and j =1,+++-" , V

And B denotes the number of pairs (i,j) such that aij= - —%— , Where
i moves in the range that Ki is irregular and j =1,+++-" ,V . ¥ (s)=
—%—(s) is the digamma function.

§ 3-3. The Selberg Zeta Function for 0dd Weight

Put

* _ @ _ -s-n
Zr(s,x)= T 2 det ( E - sgn(P ) X(P) N{P,} J

o n=0
where the first product T is taken over all primitive hyperbolic
conjugate classes (Pa} of ' , and Ev is the vxXxv unit matrix.

Now we can write down the functional equation. We put
* _ _d *
§r(s,x)— Is log Zr(s,x)

k k (e
Tr(X(Pa)) sgn (Pa) In N(Pa} (s— 1/2)k

2 — N(P_}
1 N{Pa}k/z - N(P) k/2 &

=2
® k

Theorem 2 ( Functional Equation ). We have

;F(s,x>+§F(1—s,x> = -v vol(M\H)(s- 1/2)cot(n(s- 1/2))

B - 2 Tr (x(R)) sin ((m-28)(s~-1/2))
*T(R) sin 8 sin (m(s- 1/2))

(R)
+2 3 In |1 - 2%y | 4 o ) In |1 + 215
i j=0 {j=-1/2
regular irregular
-2y - —i—(g (s)+ £ (l-s)J + 2 ¢ 1n 2
® 2 m m

where ﬁm(s)=W(s+ m/2)+¥(s- m/2)-2 Y(s) -2 ¥(s+ 1/2), @(s)= det ¢m(s).

proof.



Apply Th. 1 to the kernel function

h(r) = 5 1 ) - ————i————,
r-+(s-1/2) r- + B

where B is a sufficiently large positive number. Then the analytic
continuation of the right hand side can be done except the hyperbolic
component by the precise argument of complex integration of each
component. Analytic continuation of the left hand side due to the

fact

S rl727% ¢ e,
A

where 6 is an arbitrary positive number.

§ 3-4. A dimension formula of the space of cusp forms of weight one
First we consider the space Qm(r,x) which consists of Cv

valued holomorphic functions satisfying

{ 1) FI[TJm = x(T) F for T € T;

2) I ey F y™ dz < e
'\H

where Fl[TJm= F(T-2z) j(T,z>" . The connection of this space 9m(r,x)

and the Selberg eigenspace is given by the next lemma.

Lemma 1.

m m _ .(m+2)/2
Zx(m+2,—§—(1 + —E—J)— y exp(—/—l(m+2)¢] 9m+2(r,x).

m m _ ,~m/2 o =
%x(m,—g—(l * )) =y exp( J-1m ¢] 9_m(r,x).



Lemma 2.

Suppose A# ———(1+ ), then dim Zx(m,x) = dim Zx(m+2,x).

Using these two lemmas, we can calculate the difference between
the dimension of 9m<r,x> with that of 92_m<r,x), and induce the
explicit dimension formula for m = 2. In the case of weight one, we

have

Theorem 3.

dim ¢, (I',x) - dim 91<r,§>

— Tr(x(R))
= \/‘1 z ] :
R 2 *T(R) sin 8
1 1 1
+ > (——— - a..) - > . . - ———Tr(¢ (———)).
aij#O 2 i] aij¢-1/2 i] 2 1 2
regular irregular
Now we treat the trace formula in a different way. Assume that

h(r)=h(r,s) is a meromorphic function of r and s, and the trace

formula is analytically continued to the whole s-plane. Let h(r,s)
has a pole s=m/2 when r=/ -1-1/4 and = —%—(—g— —1], and h(r,s)

is holomorphic at s=m/2 whenever r&/ -x-1/4 . This situation can be
realized by various functions of r and s. Especially we can take

the Selberg kernel 1 - 1 , Where 8>>0. Let us

r +(s—1/2)2 r2+ 82

compare the residues at s=m/2 of both sides. If m=> 3, we get
the analogous formula of Theorem 3. In this case, the hyperbolic
contribution vanishes because the Selberg zeta function is

holomorphic at s=m/2. But if m=1, we have
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Theorem 4.

. 1 * Tr(x(R))
dim ¢, (F',x) = —— ord Z.(s,x) + /-1 2 T ;
1 2 s=1/2 r (R 4 *T(R) sin 8
1 ( 1 ) 1 ’ 1 ( 1 )
s = 3 — -] - =3 o, . - —Tr|e, (—)
2 aij#O 2 i] 2 aij¢—1/2 1] 4 1" 2
regular irregular

where "ord" denotes the order of zeros.

By Theorem 3 and 4, we get

Theorem 4’ .

dim ¢.(IC,x)+ dim 9. (T,%X) = ord Z (s,x).
1 1 r
s=1/2

This result is the good explanation why the residue of the
Selberg type zeta function appear in the dimension formula of [6]1,[7]
{8] and L9]., Comparing trace formulas of different odd weight, we
Easily get the following.

Theorem 5.

For N 2 1, we have

. L ! 1 1
dim ¢, (T,x) = dim £, (2N +1,= —) + ——Tr ¢1( > )
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