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Preface 

The triangular functions sin(x), cos(x) have a period 2n. These 

functions can be seen as the mappings from the real torus R/(2nZ), 

which is the division of R by the discrete subgroup 2nZ in Aut(R); 

the group of real analytic automorphisms of R. Automorphic 

functions are the holomorphic mappings from H to ( with periods r, 

where H is the complex upper half plane and r is the discrete 

subgroup of Aut(H)=PSL(2,R); the group of complex analytic 

automorphisms of H. In the triangular functions case, the discrete 

group 2nZ is commutative. But in the automorphic functions case, 

the group r is essentially non-commutative. 

Automorphic forms are the generalization of automorphic 

functions, which contain automorphic functions and their derivatives 

and more. The history of automorphic forms is deeply connected with 

that of number theory. 

In Chapter I, we deal with some special application of 

automorphic forms. Let us consider a certain family of discrete 

subgroups r which contains fuchsian triangle groups. The n-th 

coefficient of the Fourier expansion at cusps or elliptic fixed 

pOints has the form; 
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a = b . rn 
n n 

where b is a rational number and r is a complex constant. n 
Using 

these facts, we can construct an invariant quantity with respect to 

inclusion relations of groups. In the case of fuchsian triangle 

groups, the quantity can be written explicitly by the gamma function. 

See [1]. 

In Chapter 2, we treat the dimension formula of automorphic 

forms of weight one. In case of weight ~ 2, the dimension formula 

was written explicitly, using the geometric data of r. Bu tin our 

case, we cannot get expressions like these up to now. In the work 

of Hiramatsu [7], he gave the dimension of weight one for cocompact 

group r, using the residue of the Selberg type zeta function. The 

essential tool to derive this formula is the Selberg trace formula 

for a kernel function: 

s j y y' j y y' -i( fIJ - fIJ' ) e 
<z-z')/2i <z-z')/2i 

with Re{s»1. 

In this section, we devote to the case that r is not cocompact, 

and r ~(-6 _~) and derive the dimension formula of the same type. 

See [6]. In the case that r 3 (-6 _~), see [8]. 

In Chapter 3, we deal with the Selberg trace formula for odd 

we i gh t. See [2]. First we rewrite the Selberg trace formula in 

this case, concentrating on the difference between the contribution 

of regular cusps and that of irregular cusps. Such a difference is 
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already known even in the case of the dimension formula for 

weight ~ 3. So we are interested in writing this difference clearly 

in the general case. 

Second we improve the dimension formula of 

we i gh tone. In Chapter 2, we gave the dimension formula of weight 

one, using the residue of the Selberg type zeta function. But this 

formula is unsatisfactory because the zeta function has no functional 

equation. In this section we gave the dimension formula of weight 

one in general situation, using more natural zeta function which has 

a functional equation. The main result is 

* ord Zr<s ,X), 
s=1/2 

where "ord" denote the order of zeros, and Z;<s,X) is the Selberg 

zeta function and X is a finite dimensional unitary representation of 

r. 
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Chapter 1. 

On the Fourier coefficients of automorphic forms of triangle groups 

§ 1-0. Introduction 

In this chapter, we want to construct a certain analytic 

invariant quantity with respect to the inclusion relations of the 

special discontinuous groups. 

Denote Jd(z) the absolute invariant of the Hecke group ffid . Then 

Jd has the following Fourier expansion at i oo : 

00 

Jd(Z)= 2 an rn qn 
n=-1 

where an E~, r E Rand q=exp ( co~~~/d») 
The value r is algebraic if and only if d=3,4,6 and 00 ([11][16]). 

These results can be extended to the case of fuchsian triangle groups 

and the expansion at an elliptic fixed point ([17][18]). 

Now we consider the ratio of the value r's when there is an 

inclusion relation of groups. In § 1-1. we will show using purely 

algebraic method that the ratio is algebraic and etc. I n the 

remaining section we put into concrete this result in the case of 

triangle groups. Especially in this case, some power of the ratio 

belongs to the imaginary quadratic field. 

§ 1-1. Notation and results 

Let q be an indeterminate, and OC be some subfield of the complex 

number field (['. The quasi K-rationa~ po~er series of sty~e r is the 

formal power series of the form 

* a E IT< , r E ([' = (['- {O} • .t E 7L ) • 
n 
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The quasi K-rationa~ veotor spaoe of sty~e r is the vector space over 

[ spanned by these series. The style r of a power series is 

determined up to an equivalence relation 

-------(1) 

for some ~ E Z . 

Let f be a subfield of [ containing K, and c 1 ,c2 ···· ,c t be the 

complex numbers. We say that {c 1 ,c2 ···· ,c t } is f-independent over 

K if the property (P) is satisfied for all d. E OC (i=l,···,t). 

(P) 
t 
2 d.c.E f 

. III 
1= 

then d.= 0 
1 

1 

for i = 1, .... , t 

We can now state the main theorem. 

Theorem 1 

Let W be the quasi OC-rationa~ veotor spaoe of sty~e r
1 

,and I 

be an e~ement of V. Suppose that I is the quasi K-rationa~ 

infinite pouer series of sty~e r
2 

• Then the ratio of the sty~es 

y = r
1
/r 2 is a~gebraio over K, and I is a ~inear oombination of the 

basis of quasi K-rationa~ pouer series of sty~e r
1 

over K(y). 

Moreover there are distinot non negative integers 1
0

(= 0),1
1

, ... 

.. ·,1 (0 ~ m ~ dim V), and infinite numbers of n suoh that m 
n-l o n-l 1 n-l m {y ,y , ..... . ,y } is not K-independent. 

We can take the value m not larger than the maximum number of 

power series in the quasi OC-rational basis whose leading coefficient 

In § 1-4. we will consider automorphic forms which has 

real axis as a natural boundary. In this case, the condition of 

infinite series is naturally satisfied. The conclusion of this 
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theorem is rather complicated, but if the following conjecture holds, 

we can rewrite the theorem in a better style. 

Conjecture 1 

Assume that y E ~ has the Last properties of Theorem 1 then yt 

is an aLgebraic number of degree m+1 over X for some naturaL number 

t. Exchanging indices, hle have I. = l'i (i=O,'" ,m). 
1 

The style r for a quasi X-rational power series is determined 

by the equivalence relation (1). The style of the quasi OC-rational 

vector space is determined by the following theorem. 

Theorem 2 

Let V be the quasi OC-rationaL vector space hlhose styLe is taken 

If V has at Least one infinite pOhler series, 

then there exists some naturaL number ~ such that 

(rl/r2)~ EX. 

Choose basis of V of the form 

2: a rn qn (k=I,2,····,s; s=dim V) n,k 1 

If the vector (a ,a ,········,a ) is non zero for aLL n, then n,l n,2 n,s 

the number ~ can be taken not Larger than dim V • 

§ 1-2. The proof of Theorem 1. 

Let 

2: a rn qn (k=1,2,····,s=dim V) 
n~.t n,k 1 

* be the basis of V, where an,kE OC, r 1E ~ and.t E 1 By the 
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assumption. we have 

So 

, = 2: c rn qn 
n~.t n 2 

=~d (2:a 
k=l k n~.t n,k 

n s 
= r 1 2: d k a k 

k=l n, 

E V 

C n ~ .t ). 

Put y = r 1/r 2 ' D =C d1 ,d 2 •········· ,ds ) and 

---------(2) 

a = tc a a .......... a ) 
n n,l' n,2' 'n,s . 

Then (2) is written in the form 

c = yn D'a ----------(3) 
n n 

So 

for P E GLs (IlO . We can change basis of V by this method in order 

to get the assertion. At first we say that d. O=l,···.s) can 
1 

be taken in KCy). Assume d 1 ~ OCCy). 

XCY)-independent and d1 ,d 2 ,······ ·,d t +1 are not OC(Y)-independent, 

then we may replace d t +1 with 

t 
d t 1+ 2: h.d. 

+ . 1 1 1 
1= 

(h. ElIO. 
1 

Thus we are able to think that d t +1 belongs to XCy) from the start. 

Repeating this argument we get 

{ d1 ,d 2 ···········,d t 
d ........... d 

t + 1 • , s 

are OCCY)-independent ; 

belong to KCY), where t ~ 1 . 

From (2) we have 

t c n s 
---2: d a 

yn k=t+1 k n.k 
= 2: d k k=l 

a n,k E jj( (y) • 

Thus a = 0 n.k 
for k= 1 , ..... , t This is a contradiction. 

- 7 -
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get dk E OC(y) for k=1,2,"',s . Using similar arguments we can 

assume 

{ y.td1'y.td2'··········,y.tdt are OC-independent 
d =d = ........ = d =l/Y.t. 

t+1 t+2 s 

Without loss of generality, we can assume t < s . Define 

* n-.t g Y + 

and 

We define n1 ,n 2 ,'" by induction. By the definition we know 

S-t,l={O}. 

Let n1 be the smallest number of n such that Sn,l¢{O}. 

assume gt¢ 0 so that we can replace d t by 

We may 

-1 t~.I -1 * -.t 
d t + gt ~ dk gk +gt g Y 

k=l 

* n 1 and multiply some element of X we can put d t =l/y If 

. n1 n2 nw 
n1 ,n 2 ,····,nw are defIned and d t =l/Y ,d t _1=1/Y "",d t - w+1=1/Y , 

then we may assume S ={O} n,w for n=.t .t+1 •.•• n -1 and S ={O}. , , , w' n w+ 1 
w' 

Since we have chosen the basis of V, there is a number n such that 

S 1 ¢ {O} i f w+ 1 :s:: t n,w+ 

Then we may put d = t-w 

Let n 1 be the smallest number of these. w+ 

nw+1 
l/y , according to the same argument. 

Thus 
n t n t - 1 n1 we may consider that d 1 =l/y ,d

2
=1/Y , •...... ,d t =l/Y . 

There are infinite numbers of n such that n > n and a ¢ 0 , because 
w n 

f is an infinite power series. This concludes the proof. 
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§ 1-3. The proof of Theorem 2 

Let 

2: ann 
n~.t n,k r 1 q • 

2: b rn qn 
n~.t n,k 2 

(k=I.2.·· ··.s=dim V) 

be two quasi OC-rational basis of V whose styles r 1 • r 2 respectively. 

Put 

2: b 
n~.t 

y = 

a = n 

b = n 

Then 

b = n 

So 

P b = yn 
n 

In this way we 

n s n 2: d. k 2: n n r 2 q = a r 1 
q n,k k=1 J , 

n~.t 
n.k 

r
1
/r

2 • 0 =( d. k ) • J , 

t ( a 
n,l • 

a n,2 , . . . . . . . . .. a 
• n, s 

) • 
t ( b 

n,l • 
b n.2 

, . . . . . . . . .. b 
• n, s 

) 

yn O·a n 
----------(4) 

(p.O.Q). (Q-l a P,Q E GL (lK). 
s n 

will change basis. Next lemma is well known 

(see [14] page 81 ). 

Lemma 

Let 2: i; qn (k=I.····.s) be ~inear~y independent forma~ po~er 
n~.t n.k 

series over (['. Pu t B = t (~ , ~ •...... , ~ ), then the n ~n,1 "'n.2 "'n,s 

vector space spanned by a~~ B (n=I.2,··· .. ) has rank s. 
n 

are 

linearly independent over (['. Then from (4) we get 

o . ( a a . . . .. a ) = 
n ' n • • n 1 2 s 

-n -n 2 -n 
y 1 b ,y b

n 
, •.•• •• ,y s b

n 
) 

n 1 2 s 

Put 
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Then 

P·D·Q = 

) , Q = ( 

-n 
y s 

Since there are at least one infinite power series, there exists n 

n-n 
such that n ) nand y k E OC for some k (k=l,···.s). s 

assures the first assertion of Theorem 2. 

Put 

where B =t(~1·~2'··· '~s). 

define the linear map ~ by 

~ : IlJ --) OC S 

~ -) D·~ 

U is the vector space over OC . 

This 

We 

As ~ is injective, we get dimOC U ~ s . Each yn an belongs to U. 
t t+1 t+s So Y a t •y a t + 1 •·······• y a t + s are linearly dependent over OC • 

There exist ( kO,k1 ,·····,ks ) E OC s + 1_{O} such that 

s t+j 
2 k. Y at. = 0 . 

j=O J +J 

We can find j (j=O,···,s) such that k. ¢ O. then choose i O=l,···.s) 
J 

such tha t a ~ . . ¢ 0 • 
-\-+J.l 

Then 

s 
2 k. yj a p + .. = 0 

J -\- J, 1 j=O 

gives the non-trivial algebraic relation whose degree is not larger 

than s . This proves the second statement of Theorem 2.1 

§ 1-4. The ratio of styles in the case of fuchsian triangle groups 
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In this section we treat the special case of fuchsian triangle 

groups. For the precise notation, we refer to [18]. Let 60 = 
6o(p,q,r) be the triangle group whose signature is (p,q,r). If 

l/p+l/q+l/r < 1 then this group is realized and acts on the complex 

upper half plane H discontinuously. The fundamental domain of 60 is 

ABCD where ABC is the hyperbolic triangle, and ADC is the reflexion 

with respect to the geodesic AC . Denote Ak,v the space of 
60 

holomorphic automorphic forms of 60 and of weight k, multiplier v . 

Take' E Ak,v then 
60 

, is expanded at the elliptic point A of order p 

,(z)= ( z-A -k 2: ( z-A )n ) a 
n~O 

n z-A 

Ignoring ( z-A -k know that Ak,v is the quasi ) , we 
60 

rational vector 

space . The style of A~'v depend only on the vertex A and D.. 

Choosing good fundamental domain as Th 2 in [18], we can write down 

this style value: 

r(p;q,r)= 

_1_ + 1 1 + 1 + +}) - --p 
~ 

1 1 _1_} r + -- - + -- + p q r 

where ~2 = , 8 = ~(_1 1 +) + + 
2 p q 

We can easily check that 

T(p;q,r) = fCp;r,q) . 

Assume 60 1 =60 1 (pl,ql,r 1 ) c 60 2 = 60 2 (p2,q2,r 2 ) and A
1

B
1

C
1

D
1 

be 

the fundamental domain of 60
1 

which is suitably located in the sense 

of Th 2 0 f [18]. 

, 

We 

can't always assume that A2B2C2D2 is suitably located. Let t/J be the 
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natural covering map from H/~1 to H/~2 ' and assume ~(Al)=A2 Of 

All 

inclusion relations of triangle groups are classified in [15]. So 

we can calculate the value e in a straight forward way. After 

tedious calculations we know that 

for all inclusion relations. For example, in the case of ~1 (5,4,4) 

c ~2(5,2,4), we get e = 1~ . When we regard this relation as 

~1 (4,4,5) c ~2(4,5,2), we get cos(4 9)= +. The rotation at Al 

and of angle e causes small change of the style. Using the relation 

of [18] page 4, we see that the style is multiplied by eJ=1 e In 

J=1 e all cases, the value e is algebraic. From Theorem I, we see 

that the ratio T(Pl;Ql,r 1 )/T(P2;q2,r 2 ) is algebraic, because A~'V ~ 
1 

AK,v and A~'V contains elements other than constant functions for 
~2 2 

sufficiently large k. If the conjecture of § 1-1. is true, then 

some power of the ratio T(Pl;Ql,rl)/TCP2;Q2,r2) is of degree at most 

7, because 

Thus we are interested in calculating these ratios of the styles. 

Theorem 3 

Let ~1'~2 be fuchsian triang~e groups and ~lc ~2 . Then the 

ratio T(Pl;Ql,rl)/TCP2;Q2,r2) is given by the fo~~ohling tab~e. 

<I) Norma ~ case 
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rCEiEzE) = 3- 3/2P rCE i E z E) = 2
1/p 3-3/2p 

rCp;3,3) r(2p;2,3) 

r C p ; q, q) 
2

1/p r (q; q,p) -2/q = = 2 rC2p;2,q) rCq;2,2p) 

CIT) Non-normal, case 

r(7;7,7) -6/7 -3/7 = 2 3 TC7;2,3) 

r(7;7,2) -1/2 -3/7 T(2;7,7) -1/2 -1/4 = 2 3 = 3 7 rC7;2,3) r(2;3,7) 

[(7;3,3) -6/7 3-3/14 r(3;3,7) -1 -1/6 = 2 = 2 7 TC7;2,3) rC3;2,7) 

r(8;8,4) -1/2 -3/8 rC4;8,8) -3/8 = 2 3 = 3 TC8;2,3) T(8;2,3) 

r(8;8,3) -1/4 -1/2 r(3;8,8) -3/2 = 2 3 = 2 r(8;2,3) r(3;2,8) 

r(9;9,9) -2/3 -1/6 r(9;9,9) -1 -5/6 = 2 3 = 2 3 r(9;2,3) T(3;2,9) 

r(5;4,4) -1 r(4;4,5) -1/2 -1/4 = 2 = 2 5 r(5;2,4) TC4;2,5) 

r(4p;4p,p) = 2- 1/2P 3- 3/4P TCp;4p,4p) = 2
5/2P 3-3/4P 

r(4p; 2,3) rC4p; 2,3) 

rC2p;2p,p) -2/p rCp;2p,2p) 
1 = 2 = rC2p; 2,4) rC2p; 2,4) 

TC3p; 3,p) -2/p rcp; 3,3p) -2/p 
3
2/p = 2 = 2 rC3p; 2,3) rC3p; 2,3) 

r(3;3p,p) -1 = 2 r(3;2,3p) 

r(2p; 2,p) = 3- 3/2p r(p;2,2p) 
= 2

3/p 3-3/2P 
rC2p; 2,3) r(2p;2,3) 

rC2;2p,p) -1/2 = 3 r(2;2p,3) 

Corollary 

Let ~1'~2 be !uchsian triangl,e groups and ~lc ~2' We have 
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E ~ 

Prime factors hlhich appear in the numerator and the denominator 

Remark 

Consider the case ~(5.4.4) c ~(5,2,4). As the elliptic pOint 

of order 4 of ~(5,4,4) and the elliptic point of order 2 of ~(5,2,4) 

are not identified by the covering map ~, it seems that we can't get 

the assertion of the corollary when we calculate r(4;4,5)/r(2;4,5). 

(The value becomes ~-3/2 r(1/4)r(1/40)rC9/40) up to algebraic factor.) 

So we can get informations not only of the inclusion relation but 

also of the covering surface from this corollary. 

Let us conclude this chapter with next fascinating conjecture. 

Conjecture 2 

Let r. (i=l,2) be the fuchsian triangLe groups and r. (i=l,2) be 
1 1 

the corresponding styLes. 

r
2 

are commensurabLe. 

There are no counter example for this conjecture up to now. 

Unfortunately we know few about the transcendency of r-value, this 

conjecture seems far out of our reach. 
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Chapter 2 

On some dimension formula for automorphic forms of weight one 

§ 2-0. Introduction 

In this chapter, we give a certain dimension formula for 

automorphic forms of weight one. In the case of weight m ~ 2, we 

can compute the dimension by the Riemann-Roch theorem for algebraic 

function of one variable. But we can get no informations of weight 

one by this way, because we cannot make good use of the duality of 

m ~ 2-m in the Riemann-Roch theorem. 

In his paper [12], Selberg has introduced the celebrated trace 

formula. He also calculated the dimension for m ~ 2, using this 

formula. So it is an interesting problem to apply his formula for 

the case of weight one. In [7], Hiramatsu gave the dimension 

formula for weight one by this method for the cocompact group.-r. 

The dimension was expressed not by the geometric data of r but by the 

residue of the Selberg type zeta function. 

In this chapter, we treat the case of the cofinite group r not 

containing (-~ _~), which has parabolic elements and give the formula 

of the same type. In this case, we must subtract the effect of the 

continuous spectra. For this purpose, we define the 

Maass-Eisenstein series which attaches to each cusp and modify the 

kernel function. 

Unfortunately our dimension formula is not computable, because 

the analytic continuation of this zeta function is given by the same 

trace formula. The essential reason why we cannot get the effective 

dimension formula of weight one by this way is that the Selberg 
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trace formula also have the duality of m ~ 2-m. The explanation 

of this situation will be given in Chapter 3. 

§ 2-1. Notations 

Let r be the fuchsian group of the first kind not containing the 

element (-1 -1)' and suppose r has a non-compact fundamental domain 

in the upper half plane H. Let T be the real torus R/Z, and 

!fl = H x T. Denote by 22(r'~) the space of functions fCz,¢) on ~ 

satisfying: 

(1) fCz,¢) is a measurable function on H 

(2) f(Y'(z,tP»=f(z,tP) for y E r 

h d -- y-2 dx dy were z 

Put 

Spectral decomposition with respect to ~ can be given 

in the form 

22(r'~) = $ 2~(r'~'A) $ 2;p(r'~) $ 2~ont(r'H) 
A 

where 2~(r'!fl'A) is the space of Maass cusp 

discrete part of the orthogonal complement 

is the continuous spectrum. 

forms, 22 (r,11) is the sp 

of 2 0
2 (r,!fl,A) and 22 t(r'~) con 

We denote by 2(m,A) the set of functions f(z,tP) satisfying 

(5) ~ fCz,tP) = A fCz,tP) 

- 16 -



(6) 88~ f(z,~) = - mJ=T f(z.~) 

To obtain the dimension of holomorphic automorphic forms of 

weight one, we note 

!y expC- ;-=1" ~) S1 (r) = fO, -1/4), 

where S Cr) is the space of holomorphic automorphic forms of weight m. 
m 

This relation is the special case of Hejhal [5J vol TI, p.383. (See 

also [8J.) 

§ 2-2. The definition of Eisenstein series 

We consider an invariant integral operator on the space f(m,A) 

defined by a point-pair invariant kernel 

k(z,q),z',</J') = j y y' 

(z-z')/2i 

j y y' 

(z-z')/2i 

-i( ~ - ~' ) 
e 

where (, > 1. Then the operator k vanishes on f(m,A) for all m * 1. 

It is easy to see that the integral 

J 2: k(z,~.yCz'.~'» dz d~ 
r"-H yEr 

is uniformly bounded at a neighborhood of each irregular cusps of r. 

We also see that by the Riemann-Roch theorem, the number of regular 

cusps is even. In the following we assume that K1 ,K 2 is a maximal 

set of regular cusps of r which are not equivalent with respect to r. 

Let r. be the stabilizer of K. in r, and fix elements (j.E SLC2,1R.) 
1 1 1 

so that (j~1ri(ji is equal to the group roo = { e ~) : m E 1.}. Then 

the Eisenstein series attached to the regular cusp K. is defined by 
1 
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(7) E. (Z,¢;S) 
1 

-j=T(¢+ Arg(cz+d» 
e 

where i=I,2, and ReCs) > 1. It is easy to check that 

(8) E. (y(z,¢) ;s)= E. (z,¢;s) for y E r; 
1 1 

(9) I:::. E. (Z,¢,s) = s(s-1) E. (Z,¢,s); 
1 1 

(10) ~ E. (Z,¢;s) = - j-=! E. (Z,¢;s). a ¢ 1 1 

By the above (8), E. (z.¢;s) has the Fourier-Bessel expansion at 
1 

K. in the form 
1 

00 

E. (a.(Z,¢);s) = 2: a .. k(y,¢;s) 
1 J k=-oo IJ, 

2n:j-=!kx e 

The constant term a .. O(y,¢;S) is given by 
1 J , 

j-=!¢ 
e a .. OCy,¢;S)= a .. oCy;s) 

1 J , 1 J , 

t S I-s 
= o .. y + <p . . (s)Y t 

1 J 1 J 

where O .. =1 or 0 according to i=j or not, and 
1 J 

res) (sgn C)Nij(C) 
cp .. (s)= - F17I 2: 

IJ r(S+I/2)c~0 Icl 2s 

with N .. Cc)= # { 0 :>: d < Icl: 
1 J 

-1 
0'. ra.}. 

1 J 
Define 

2 x 2 matrix $(s) by (<Pij<S» Considering the involution y ~ y-I, 

it is easy to see that $(s) is an alternative matrix. This matrix is 

called the Eisenstein matrix. 

§ 2-3. The Selberg trace formula 
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First we define the compact part of E. Cz,cP;s) by 
1 

Y 
{

E. Cz,cP;s)- a .. oOmCo.z),cP;s) 
E C A.· ) - 1 IJ, 1 . z,~,s - E ( A.. ) 

1 . z, ~,s 
1 

if ImCo.z»Y 
1 

otherwise, 

where Y denotes a sufficiently large number. Then, the following 

Maass-Selberg relation of our case can be obtained in a similar way 

to the proof of Theorem 2.3.2. in Kubota [10]: 

(11) 
YS+S'-1 _ - -s-s'+1 cp .. (s)cp .. (s')Y 

1 J 1 J 
s + s' - 1 

where i=i:j. Using this, we see that the Eisenstein matrix $Cs) 

converges to a unitary matrix when s tends to the point SO=I/2+J=IrO' 

Therefore we have 

and hence each E. Cz,cP;s) has a meromorphic continuation to the whole 
1 

s-plane, and the column vector &(z,cP:s)= t(E
1

,E2 ) satisfies the 

functional equation 

&(z,cP;s) = $Cs) &Cz,cP;l-s). 

Since r is a cofinite group, the integral operator defined by 

kCz,cP,z',cP') is not always compact. To subtract the effect of the 

continuous spectrum, we put 

2 00 

HCz,cP,z',¢')= ~ 2: f hCr)E. CZ,cP;s)E. Cz',cP';s) dr, 
8n i=1 -00 1 1 

where s=I/2+/=ir. Here hCr) denotes the eigenvalue of kCz,¢.z' ,¢') 

in 2Cl,A) which is given by 

hCr)=hCr,o)= 22+0 n BCl/2, (1+0)/2) BCo/2+/=ir,o/2-/=ir) 

with A=SCs-l)=-r 2-1/4, and BCx,y) is the beta function. Define 
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and 

K(z,¢.,z',¢.')= 2: k(z,¢.,Y(z',¢.'» 
yEr 

K*(Z,¢.,Z',¢.')= KCz,¢.,z',¢.')- HCz.¢..z'.¢.'). 

Calculating the asymptotic behavior at each cusps K .• we see that the 
1 

integral operator defined by K* is compact. 

Considering traces of K* on 2~(r'~). we obtain the following 

trace formula. (See Selberg [13J.) 

02 ) 2: hO ... ) 
j=1 J = fr'lli 

= lim 
Y-+oo 

* K (z.¢..z.¢.) dz d¢. 

where each of A. denotes an eigenvalue corresponding to an 
J 

orthonormal basis {f.} for 2 (r'~) and the last summation is taken 
J 0 

over conjugacy classes raJ of r. 

:1: 
centralizer of a in rand lli = lli 

Here we denote by rCa) the 

2 
u u 

i=l yEr 
ya.{zElH 

1 
Im(z) ) Y}. 

So far. the positive quantity 0 is restricted to the condition 

o ) 1. To get informations of the spectra of 6. we treat 0 as a 

complex valuable from now. The analytic continuation of the right 

hand side of (12) is given by the explicit calculation in § 2-4. 

For the continuation of the left hand side of (12). we should notice 

that hCr) is rapidly decreasing when IRe(r) I -+ 00 
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To get the dimension formula of weight one, we want the 

multiplicity of the eigenvalue A = -1/4. When A = -1/4, we have 

r = 0 and 

Res h(O,o) = 16 n 2 . 
0=0 

If A * -1/4 the function h(r,o) is holomorphic at 0 = O. 

§ 2-4. 

dim 51 (r) = 
1 Res 

0=0 

A formula for the dimension d 1 

50 we have 

Throughout this section, we neglect the 0(1) term with respect 

to Y -+ 00 We put 

=J(id)+J(R)+J(H)+J(oo), 

where J(id),J(R),JCH), and J(oo) denote respectively the identity 

componen t, the e 11 i p tic componen t, the hyperbo 1 i c componen t, and the 

parabolic component of the traces. 

<I) The identity component 

ell) The elliptic component 

J(R) = 2: (20n BO/2,(1+0)/2) 
R #rCR) sin e 

00 

x I BCo/2+J=Tr o/2-J=Tr)Sin~ rCn-2e) dr , slnh nr 
-00 

+ 2
0nJ=T ) #reR)sin e B(1/2,(1+0)/2) B(0/2,0/2) , 
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where R is taken over the representatives of elliptic conjugacy 

classes of r. Suppose that R is conjugate to ( ~~~ ~ -~~~ ~ ) in 

(13 ) 

From this formula, we have 

limoJ(R) 
O~O 

= 2: 
R 

4 )12 ;-=T 
#r(R)sin e . 

Considering the involution R ~ R- 1 , we see that the right hand side 

of (13) vanishes. 

(ll) The hyperbolic component 

s+2 J(H) = 2 )1 B(1/2,(s+1)/2) 

x 

where the summation about T is taken over primitive hyperbolic 

conjugacy classes of r. Here we put a,a- 1 are the eigenvalue of T 

such that lal > 1 and N{T} = a 2 . 

The resul ts of [7J which correspond to (II), (lIl) contain minor errors 

which were corrected by the author himself. 

(N) The parabolic component 

We have 

2 
J(oo)= lim( 2: f 2: k(z,~,y(z,~»dz d~ - f * H(z,~,z,~) dz d~). 

y~oo i=l r.~~* yEr r~~ 
1 

For the first half of J(oo), we have 

f * 2: k(z,~,y(z,~» dz d~ = 
r.~t'I· YEr. 

1 Y:#11 
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IY II e n) -2 dx dy d~ = L: k(z,~, 0 1 . (z,~»y 
o 0 niO 

2n L: 1 {sgn n)m

l 2 1.1 2 dt = 
niO n n/Y 2 +Rt 2 +Rt 

4n L: 1 I <X> ( 4 ),)/2+1 dt = 
n::<!1 n n/Y 4 +t 2 

4n (C + 1 0 g Y) B (1 12 , 0 + 0) 12) + fOO log ( t) ( 4 J/2+1 ) = 2 dt. 
o 4 +t 

Here C denotes the Euler constant. To derive the last formula, 

we use the Euler-Maclaurin summation formula. See Kubota [10] p.l03 

'" p.l04 . We notice that the first part of J(oo) can be written in 

the form 

4n BO/2,(0+1)/2)logY + (t(o), 

where lim 0 (t(o) = O. 
0-+0 

For the second half of J(oo) , we employ (1), Then we have 

1 

f r'JI* Sn 2 

<X> 

f h(r)E. (z,~;1/2+j=Tr)E. (z,~;1/2+j=Tr) dr dz d~ 
1 1 

-<X> 

1 lim = 
Sn 2 t-+ 1/2 

<X> 

I I h(r)E~(Z,~;t+Rr)E~(z,~;t+Rr) drdzd~ + 0(1) 
r'H -<X> 1 1 

<X> 

= 1 lim I her) 
4n t-+1/2 -<X> 

= 4 n B 0 12 , (0 + 1) 12) logY 

+ 0(1), 

2 t - 1 
dr + 00) 

4
; I <X> h(r)<p~. 0/2+Rr)<p . . 0/2-Rr)dr 
"-<X> IJ IJ 
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as Y ~ 00 and t ~ 1/2 , where j * i. 
We note that the Eisenstein matrix $(s) is unitary and thus det $(s) 

is not zero on the line Re(s)=1/2. So we have 

From the analytic continuation of this part, we see that the function 

f oohCr,O) (~i2(1/2+J=1r)~12(1/2-J=1r)+~;1(1/2+J=1r)~21 (1/2-J=1r»)dr 
-00 

is holomorphic at 0=0. 

Now we can state the main theorem. 

Theorem 

Let r be the fuchsian group of the first kind not containing 

the e~ement 

r is i2Jo. 

1Jeight one 

1Jhere 

(-1 0) o -1 ' 
and suppose that the number 

Let d
1 

be the dimension of the space 

1Jith 

00 

respect 

d = 1 
1 
4 

to r. Then d 1 is given 

* Res ~ (s), 

s=O 

~*(s) = 2: 2: 
T k=l 

of regu~ar cusps 

of cusp forms of 

by 

Here the summation 1Jith respect to T is taken over primitive 

hyperbo~ic conjugacy c~asses, and N{T}= a 2 , 1Jhere a, a-I are the 

eigenva~ue of T satisfying lal > 1. 

of 

Remark. Let r be a general fuchsian group of the first kind not 

containing the element (-~ _~). Then, using the properties of the 

Eisenstein series defined at each regular cusp of r, we can reprove 
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that the number of regular cusps of r is even. We can also prove 

that in the same way as in the above case, the contribution from 

parabolic conjugacy classes to d1 vanishes. 
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Chapter 3 

Selberg trace formula for odd weight 

§ 3-0. Introduction 

Let r be a fuchsian group of the first kind which does not 

(-1 0) contain the element -1= ° -1 . The first aim of this chapter is 

to rewrite the Selberg trace formula for odd weight and the group r 

for the general kernel function, in a form which makes clear the 

difference between the contribution of regular cusps and of irregular 

cusps. Let us explain this difference by an example. 

Pu t r 1 = r 1 (4) = {( a cd b) E SL
2 

(1): a - d - c+l - 1 (mod 4) ). 

Then r 1 is generated freely by ( ~ i ) and ( 1 ° ) . Denote by r 2 the 
4 1 

group generated by (-~ =i) and (-1 0) -4 -1 . Although the action of r 1 

and that of r 2 on H are equivalent, we have 

dim S3(r1 ) = 0, 

dim S3(r2 ) = 1, 

by the classical dimension formula. We can easily see that 

{ 0,1/2,00 } are the r.-inequivalent cusps ( i=1,2 ). 
1 

that { 0,00 } are regular and { 1/2 } is irregular. 

For r 1 , we see 

Bu t for r 2' all 

cusps are irregular. These facts causes the difference of the 

dimension. So it is an interesting problem to write down the 

difference in the general case. 

Our second aim is to improve the dimension formula for weight 

one. In Chapter 2, we studied a dimension formula for weight one, 

using special kernel function 

hCr)= 22+s n BCl/2, Cl+s)/2) BCs/2+;=Tr,s/2-;=Tr). 
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We note that the corresponding Selberg type zeta function does 

not have a functional equation. In this chapter, we apply the 

Selberg kernel 

h (r) = 1 1 
( (5 > >0) 

r 2+(s-I/2)2 r2 + 82 

to the above trace formula. Then we can give a dimension formula of 

weight one, using more natural "zeta" function which has a functional 

equation of type s ~ I-s. 

§ 3-1. Notation 

Let H be the complex upper half plane and T=R /(2n). We 

put ~= H x T, G=SL(2,R) and G= G x T. Then G acts transitively on ~ 

in the following way: 

(g, cO-(z, ¢J)=( g'z , ¢J+ arg 
-... 

¢J)E~ j (g, z) -en (g, a)EG , (z, , 

where ( a ~ ) EG 
az +b EH and j(g,z)= +d. With the g= , g'Z= +d cz c cz 

i;(z,¢J)=(- - ¢J) (G.IH.i;) involution Z • - • the triple is the weakly 

symmetric Riemannian space. The ring of G invariant differential 

operators on this space 

( 
82 

t::.= y2 8 x 2 + 

8 is generated by t::. and e-¢ 

8 2
) 8 8 

8 y2 + y 8 x e-¢ . 

where 

Let r be the discrete subgroup of G not containing -I. We 

identify G with G x {a} , and r with r x {a}. Take a unitary 

representation X of r of degree v ( < 00 ) • 

the complete representatives of r-inequivalent cusps of r'lH. r. 
1 

o _ 
denotes the stabilizer of K .• and r. -r.n ker X • We will consider 

III 

the cusp form of r'lH • o so take X under the condi tion [r. ,r. ] < 00 for 
1 1 

i=1.2, ..... ro. Take o.E G such that a 00 =K . 
1 i 1 

• satisfying the following 

condition: 
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is regular then r -1 is generated by ( ~ 1 ) ; r K. = o. r.O. 
1 00 1 1 1 1 

irregular then r -1 is generated by (-~ -1 ) . If K. is = o. r.O. 
1 00 1 1 1 -1 

We consider (CV valued, square integrable functions on fi1 

satisfying 

fey' (z,¢»= x(y)f«z,¢», 

for any yEr, and denote the space which consists of these functions 

by L~(r,fi1). The Selberg eigenspace is a subspace of L~(r,~) defined 

by two additional conditions: 

{

I) 

2 ) 

~ f= - Am f 
8 ¢ 

~ f = A f • 

2x Cm,A) denotes this space. 

numbered in the following way 

We assume the eigen values A are 

¥(¥ -1) ~ Al ~ A2 ~ A3 ~ ...... . 

For the convenience, we set An= -(r~ + -i-)= s (s -1) and n n 

s = _1_ +Ar . 
n 2 n 

To describe the continuous spectrum. we define the Eisenstein 

series which attaches to K. (i=I ...... CI): 
1 

( -rnA 

2 

yS (-mj~ ( ¢ (cz +d» ) 
-1 

P .. = exp + arg X (0.0) 

0 Icz +dl 2s 1 1 

In the last summation. 0 i s taken over all representatives of 

r "- -I and ( ~ b ) P. is defined by o. r. 0 = . 
00 1 d 1 

1 
1 

2 x(g) ( if K. is regular ) ; r. gEr. I r? 1 
1 

P.= 1 1 

1 1 2r. 
(-1)i x (n i ) 

2r. 
21 ( if K. is irregular ) . 

i = 1 1 
1 

where r.=[ r.: r? ] and n E r. is chosen so that n mod (r?)2 should 
1 1 1 1 1 
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be a generator of r./(r?)2. These Eisenstein series are 
1 1 

meromorphically continued to the whole s-plane and satisfies an 

analogous functional equation with Chapter 2 (cf.[6][9]). We denote 

by $ (s) the constant term matrix of these Eisenstein series. 
m 

§ 3-2. The Selberg trace formula for odd weight 

First of all we rewrite the Selberg trace formula in our case. 

The calculation was done by Hejhal in [5] vol IT, but we do this by 

our formulation of the Eisenstein series, using the Euler-Maclaurin 

summation formula. 

Theorem 1 eSelberg trace formula for odd weight ). 

Let N be a non negative integer and m= 2N+1. We assume that 

her) is an anaLytic function in the region IIm(r) I~ maxeN,1/2)+& 

satisfying foLLo~ing t~o conditions: 

1) h(r)=h(-r); 

2) There exists a sufficientLy Large number M such as 
-2-0 

h(r)~ M 11+Re(r) I , 

~here 0 is some positive reaL number. Put 

1 J 00 -J=Tnru geu)= ~ her) e dr, 
-00 

then the foLLo~ing formuLa hoLds: 

00 

2 her )= v voler~H) [ 
00 N J rher)coth(nr) dr + 2 2 k h(J=T k) 

n=l n 4n 

+ 2 
(T}Ehyperbol ic 

+ 2 
{R}Eell iptic 

-00 k=O 

TreXCT» sgnCT) In N{T o} 

N{T} 1/2 1/2 -- N{T} 

Tr(x(R» [ J ~(r) 
-00 

4 #r(R) sin e 
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sinh C71:-29)r 
sinh 71:r 

] 

dr 



-J=T hCO) + 2J=T ~ e 2J=Tke hCJ=Tk) ] 
k=O 

- gCO) 2: In 11_e 2n:iCX ij I + 
cx .. rz:!0 

N 
2: (-21- cx .. ) ( 2: hC/=Tk) _ hCO) ) 

CX .. rz:!0 IJ k=O 2 
1 J 1 J 

regular regular 

- gCO) 2: In 
cx . . rz:!-1/2 

N 
2: cx .. ( 2: hCJ=Tk) 

cx . . rz:!-1/2 IJ k=O 
1 J 1 J 

irregular irregular 

+ __ l_ hCO)- hCO)Tr($ C __ 1_») 
4 4 m 2 

+ 4~ f ~Cr)Tr($' mc-t- +J=Tr) $mc-t- -J=Tr»)dr - l gCO)ln 2 
-00 

00 00 - ---l-f hCr)~C1+J=Tr)dr + l f gCu) 
2n: -00 0 

1-coshC--1!l!L) 
2 

2 sinhCu/2) du • 

Here the notation is as follows. We denote by""''' the 

conjugation in SLC2,R) and by { } its conjugate class. Take A such 

that T '" (A A-I) • where IAI > 1; reT) denotes the centralizer of T 

in rand #reT) is the order of this group. To is a generator of 

reT) N{T} 2 d T R '" ( co. s e -sin e) T . • = A an sgn = sgn A. SIn e cos e ; i IS a 

generator of r .• the stabilizer group of cusp K .• 
1 1 

We determine cx .. 
1 J 

( cx .. E [ 0 
1 J 

CX .. E [ 
1 J 

so that 

1) 

1/2 • 1/2 ) 

exp (21tFl~. J 
IV 

if K. is regular 
1 

if K. is irregular 
1 

l=A+B where A denotes the number of pairs Ci,j) such that cx .. =0 
1 J 
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where i moves in the range that K. is regular and j =l.·····.v 
1 

And B denotes the number of pairs (i.j) such that a ij = - -t
moves in the range that K. is irregular and j =1,····· ,v 

1 

r' -y-(s) is the digamma function. 

§ 3-3. The Selberg Zeta Function for Odd Weight 

Put 

00 

IT 

n=O 

where 

I/ICs)= 

where the first product IT is taken over all primitive hyperbolic 

conjugate classes {Pa } of r , and Ev is the vxv unit matrix. 

Now we can write down the functional equation. We put 

= 2 2 
Tr(X(p~» sgn 00 

a k=l 

Theorem 2 ( Functional Equation). We have 

* * ~r(s.X)+~rC1-s.X) = -v volCr~H)cs- 1/2)cotCncs- 1/2» 

n 2 Tr(x(R» 
{R} lirCR) sin e 

sin CCn-2e)(s-1/2» 
sin CnCs- 1/2» 

+ 2 2 
aij;;eO 

In 11 - 2nAa .. 
e IJ + 2 2 In 11 + e2nAa i j I 

a ij ;;e-1/2 
regular irregular 

'.p' 1 ( ) - --(s) - -- ~ (s)+ ~mC1-S) + 2 1 In 2 '.p 2 m 

where ~ (s)=I/I(s+ m/2)+I/I(s- m/2)-2 I/I(s) -2 I/I(s+ 1/2), '.p(s)= det $ (s). m m 

proof. 
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Apply Th. 1 to the kernel function 

h (r) = 1 1 
2 2 r +(s-1/2) 

where 8 is a sufficiently large positive number. Then the analytic 

continuation of the right hand side can be done except the hyperbolic 

component by the precise argument of complex integration of each 

component. Analytic continuation of the left hand side due to the 

fact 

where S is an arbitrary positive number. 

§ 3-4. A dimension formula of the space of cusp forms of weight one 

First we consider the space g cr.X) which consists of ~v 
m 

valued holomorphic functions satisfying: 

{ 1) Fin] = XCT) F for T E r; 
m 

2) J tF(z) FCz) ym dz < 00 

r"-H 

where FI[T] = FCT'z) jCT.z')m . 
m The connection of this space g cr.X) 

m 

and the Selberg eigenspace is given by the next lemma. 

Lemma 1. 

£xCm+2. ~ (1 + ~ )= yCm+2)/2 exp (-F1(m+2)cp) gm+2 Cr •X). 
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Lemma 2. 

Using these two lemmas, we can calculate the difference between 

the dimension of Y Cr,X) with that of Y2 er,X), and induce the m -m 

explicit dimension formula for m ~ 2. In the case of weight one, we 

have 

Theorem 3. 

= 

+ 

;-=-1" 2: 
{ R} 

TrCxCR» 
2 "'reR) sin e 

2: (-21 - ex 10 JO) -
ex i j ~O 

regular 

2: ex 0 0 

ex i j ~-1 12 1 J 

irregular 

Now we treat the trace formula in a different way. Assume that 

hCr)=hCr,s) is a meromorphic function of rand s, and the trace 

formula is analytically continued to the whole s-plane. Let hCr,s) 

has a pole s=m/2 when r=/ -A-1/4 and A= ~(~ -1), and hCr,s) 

is holomorphic at s=m/2 whenever r~/ -A-1/4. This situation can be 

realized by various functions of rand s. Especially we can take 

the Selberg kernel 1 1 
2 2' where 8»0. 

r + 8 
Let us 2 2 r +(s-1/2) 

compare the residues at s=m/2 of both sides. If m ~ 3, we get 

the analogous formula of Theorem 3. In this case, the hyperbolic 

contribution vanishes because the Selberg zeta function is 

holomorphic at s=m/2. But if m=l, we have 
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Theorem 4. 

dim 9'1 Cr,X) = 1 * 11 ~ TrCxCR)) 
2 ord ZrCs,X) + v-I £ 4 #rCR) sin e 

+ 
1 
2 2: 

ex i j ~O 
regular 

s=1/2 {R} 

(-2
1 

- ex l' J') - -2
1 2: ex •. 

ex i j ~-1 12 1 J 

irregular 

where "ord" denotes the order of zeros. 

By Theorem 3 and 4, we get 

Theorem 4' . 

* ord ZrCs,X). 
s=1/2 

- -1-Tr (Ill C_1_)) 
4 1 2 

This result is the good explanation why the residue of the 

Selberg type zeta function appear in the dimension formula of [6], [7] 

[8] and [9]. Comparing trace formulas of different odd weight, we 

~asilY get the following. 

Theorem 5. 

FOT N ~ I, ue have 
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