<RNEL

;f Kobe University Repository : Kernel

R
4ope

PDF issue: 2024-08-19

Stochastic partial differential equations and
stochastic controls

Nagase, Noriaki

(Degree)
Bt (1)

(Date of Degree)
1990-03-31

(Date of Publication)
2008-05-16

(Resource Type)
doctoral thesis

(Report Number)
0898

(URL)
https://hdl. handle. net/20.500. 14094/D1000898

X YAVTFUYVIIHRRZOEMBRRTY, BER - FTEFEASE2ELET, ZFEEITROOLNTWREEANT. BNICTFIALCEI W,

\j].\i\'l:lihl'['\'
AN



Doctoral Dissertation

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

AND STOCHASTIC CONTROLS

BB BRAB A BAR N v BR B 7

January 1990
Noriaki Nagase
The Graduate School

of Science and T echnology

Kobe University



Acknowledgment

I would like to express my heartfelt gratitude to my supervisor
Professor Makiko Nisio who, with high degree encouragement, had a
great deal of fruitful arguement and gave me many valuable
comments on the subjects of this thesis.

I owe a great debt to Professor Sadakazu Aizawa and Professor
Haruo Murakami who formed the members of my thesis committee for
their support and evaluation of this work. I am also grateful

for constant encouragement from Assistant .Professor

Yasunari Higuchi.



Contents

Introduction ......................................... 1

Chapter 1 ............................................ 4
On the existence of optimal control for controlled

stochastic partial differential equations

Chapter . L T R R T I R R I I AT 25

Optimal controls for stochastic partial differential equations

Chapter 3 ............................................ 70
On the Cauchy prdblem for non-linear stochastic partial

differential equations with continuous coefficients

Existence Theorenm

References ............................................ 90



INTRODUCTION

Stochastic partial differential equations appear in many areas,
for example filtering theory of diffusion processes, statistical
hydrodynamics, population genetics, control theory, etc. These
equations describe the evolutions in time of processes with values in
function spaces. For linear problems, the typical example is the
Zakai equation, the solution of which being an unnormalized
conditional density of diffusion process, - and this equation is
investigated by several authors, cf. Krylov, Kunita, Pardoux,
Rozovskii and Shimizu ( see [11] — [161, [221, (231, [251, [26] ).
Equations of population genetics and Navier-Stokes equation with
random external forces are the important examples of non-linear
problems. The former is studied by Dawson [31, Fleming [5] and
others, and for the latter, see Krylov & Rozovskii [13],

The purpose of this paper is the study of stochastic partial
differential equations and their applications to stochastic controls.
In Chapter 1 and 2 , we are concerned with control problems of
systems governed by stochastic partial differential equations. Let

W(t) be a d'-dimensional standard Brownian motion defined on a
probability space ( Q,?,?t,P ) and U(t) an admissible control,
namely, a process with values in [, where [ is a convex and
compact subset of RL, called a control region. We consider the

following stochastic partial differential equation.



d .
( dq(t,z)= S -2—5 (a'dz,y + W(t),U(t))—g— alt,z)
i,j =0 i T
0.1)" + fllz,y + W(t),UCt)) Hdt
d’ d . 5
+ S T blz,y o+ WOEND q(z, ) ¢ gz, y ¢ WCE))) dWR(t).
([ k=11=0 K oz; k

A solution q(t)

q(t,U) of (0.1) is sought in the space of Sobolev
type Hl(Rd). Define a criterion J(U) by

(0.2) J) = EL FC q(-,U) > + G(C q(T,U) ) 1

where F and G are real valued functions on LZ(O,T;LZ(Rd)) and LZ(Rd)

respectively. The problem is to minimize a criterion J(U) by
choosing a suitable admissible control.

In Chapter 1, assuming that
ij 3 d’ i j
Ca(@y,w -3 kz 1 b* (z,¥)b" (Z,¥) )i

positive definite and some regulality conditions on the coefficients,

= j:--..q Iis uniformly
- ’ ’

we show the continuity of solutions q(-,U) on U as

C u—Lz(O,T;Lz(Rd)) l-random variables, where [ w-X ] denotes the
space X carrying the weak topology. Then we can prove the existence
of optimal control. Moreover, we apply our results to stochastic
control with partial observation.

Chapter 2 is the extension of Chapter 1. In this chapter, an
admissible control U(t) is replaced by an admissible relaxed control
u(t,du), namely, a process with values in the space of probability
measures on ', and coefficients aij and fi are replaced by the

following &@'J and 7' respectively,

alict,z,y ¢ W, = f a'd(z,y + Wit , wact,dw
r

and

Flet,z,y + Wt ,m) = Lr Flez,y + W), wudt,du).
r
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Assuming that ( a'd(z,v,u) - %
kK = 1

is non-negative definite and some regularity conditions on the

i i
b k(TP k(T )i,j =1, +,d

coefficients, we prove the continuous dependence of solutions q(-,u)

on relaxed control ua as [ S—L2

(O,T;Lz(Rd)) l-random variable, where
[ s-X 1 denotes the space X carrying the strong topology. Moreover,
the existence of optimal relaxed control, the Bellman principle and
some other properties is proved.

In Chapter 3, we are concerned with the Caucy problem for
non~-linear stochastic partial differential equations. The main aim

of this chapter is to show the existence of solutions for the

following equations.
(0.3) du(t) = ( Au(t) + FCu(t)) Ydt + Gu(t))dw(t),

where A is a second-order elliptic differential operator, F and G
are continuous operators from L2( Rd ) to itself and W(t) 1is a one
dimensional Brownian motion.

When F and G satisfy the Lipschitz condition and A is uniformly
elliptic, Pardoux [23] and Walsh [29] proved the existence and

uniqueness of the solutions for (0.3) by Picard's method of

successive approximation. But, if F and G are merely continuous,
Picard's method is not effective. To overcome this difficulty, we
approximate the equation (0.3) by Cauchy polygon. Using this

approximate sequence, we show the existence of solutions.
Furthermore, we show a sort of stability on the perturbation of

coefficients.



CHAPTER 1

On the existence of optimal control for controlled stochastic

partial differential equations

§1 Introduction

In this chapter we are concerned with stochastic control problems
of the following Kind. Let Y(t) be a d'-dimentional Brownian motion
defined on a probability space (Q,?,?t,P) and u(t) an admissible
control. We consider the Cauchy problem of stochastic partial

differential equations ( SPDE in short )

dp(t,x) LY(t),u(t))p(t,x)dt + MCY(t))p(t,x)dY(t)

(1.1) ‘ zeRY, t5o0
p(0,x) $(x)

where L(y,u) is the 2nd order elliptic differential operator and
M(y) the 1st order differential operator.

By a solution p(t) = pu(t), we mean Hl—valued ?t—adapted process

which satisfies

t

(p(ti),n) = ($,n) + f < L{Y(s),u(s))p(s) , n > ds
0
t
+ I ¢ M(Y(s))p(s) , n ) dY(s), t 20
0

for any smooth n where <-,+> is the pairing between H_1 and



H® and (-,*) is L2 (RY) inner product ( see [11] & [22] ).
The SPDE (1.1) is related to the filtering, stochastic

control with partial obserbation, population genetics etc. and

investigated by Pardoux, Krylov & Rozovskii and Rozovskii &

Shimizu, etc.

The purpose of this paper is to prove the existence of

optimal controls for the following problem. Define a criterion
J(u) by
(1.2) Jw = EL FohH + ¢opYT» 1

where F and G are real valued functions on L2(0,T;L2(Rd))

and Lz(Rd) respectively. Now we want to minimize J(u) by a
suitable choice of an admissible process u

In §2 we will recall some known results in our convenient
way and formulate our problem precisely. In 83 we will prove
that the solution pu depends on u continuously which derives
the existence of optimal control [ Theorem 3.2 1]. In 84 we
apply our results to stochastic control with partial observation,

where an observation noise may depend on a state noise.

§2 Notation and preliminaries

We assume the following conditions (A.1) ~ (A.3).

(A.1) b : RY x RY —— R4 o RE
o : RY x RY' ——— g% & R’
a : Rd X Rd _— Rd ® Rd

R:RY x R4 —— Y



are bounded and continuous and @ is symmetric.

(A.2) There exists & > 0 such that

2a(x,y) - 30(z,9)0%(z,¥) = 81 for any (z,¥) € RY x RY

x

where o is the transposed matrix of o.

(A.3) aC-,y), oC,y) are C™!- class in z € RY,

h(,y), b(-,y) are ¢™ - class in T € Rd,
and their derivatives are bounded and continuous
in (z,y) € RY x Rd, where m = max{2,m}) and m is a

given nonnegative integer.
Let ' be a convex and compact subset of RL.

Definition 2.1 4 = (R, 7,P,Y,u) 1is called an admissible system,
if (Q,%,P) 1is a probability space and u is a TI-valued
measurable process and Y 1is a d'-dimensional (7t)—Brownian

s
motion on (Q,¥,P), where ?t = of{ Y(s), IO u(t) dt ; s <t }.

3 denotes the totality of admissible systems.

For 4 € U , nd denotes the image measure of (Y,u)
on €0,T;RYY x L%¢0,T;M).

Endowing the uniform topology on C(O,T;]Rd ) and the weak

topology on L2(O,T;F) ,we have

Lemma 2.1 { nd ; 4 € A} is compact under the Prokhorov metric.

( See Fleming & Pardoux [7] Lemma 2.3 )



1 1

Define Ley,uw) € ¢ v, u™t ), M%) e zc ul,L2ad)

(k=1,++-,4*', y € Rd , € T ) by

(2.1) < Ly, wp , qa >

d d

= - 2R 8 J ( _ aq)

= - 2_ ( aij( ,y)az. e + 'g Ej( Y, U)p , o
i,j=1 i j j=1

2.2) « Ma@p ,n )

d
- - . y)2R .
= .Z ( O kC¥igy D ] + ( %k( ,¥)P , N J

i=1 i
1 2 ,nd .
for p , g € H and n € L°(R7), where (-,*) = the inner
product in Lz(Rd), <+,*> = the duality pairing between H_l and
H! and
5 3 5 oL
AZ,Y,U) = b.,(z,yu, - =" (Z,¥)
] =1 3t ¢ 519
d aoik
Hk(:z:,y) = h (z,y) - 315-5-1— (z,¥)

By (A.1) ~ (A.3) , there exists o > 0 and X € R such that

.

2 2 d' K 2
(2.3) -2< L(y,wp ,p > + xlplys = «alpl + 33 M-y pl
0 1 ) 0

for any ©p € H1 , Y € Rd, uer

vhere H-H£ = the H{— norm ( £ = O,%x1,:+- )



( for the proof, see 82 of Krylov & Rozovskii [11] ).

(2.3) is called the coercivity condition.

For an admissible system d = (,%,P,Y,u), putting Ld(t) =

L(Y(t),u(t)) and Mdk(t) = Mk(Y(t)), we consider the Cauchy

problem of SPDE on (R,%,P),

E 4

dpcty = dcoprat + ¥iopnavn
(2.4) - t >0

p(0) = ¢ € H
where Micty = oflcer, - M%),

Definition 2.2 By a solution of SPDE (2.4), we mean an Hl—

valued ?t— adapted process p(t) defined on (Q,%,P) such that

T 2
(1) Etf HOUEERE
4}

(2) for any n € H1 and t € [0,T]

(2.8 (p(t)y ,n) = (¢ , n)
vt t 4
+ f < L7 (s)p(s) , n > ds + f ( M (s)p(s) , n ) dY¥(s)
0 0
holds.

By the coercivity condition (2.3), we have the following

proposition. ( See [12], [22] )



Proposition 2.1 For each o € % , the equation (2.4) has a

unique solution p = pd which satisfies

2.7y peliC 0,mxQ ; "y a2 ; co,T;E™ ) )

and
2 2 t d
2.8 dpcor1? = 1812 + 2}" < tqsrpes) L, pes) > ds
0
t

t
+ ZI ( Md(s)p(s) , P(s) ) dY¥(s) + f M
0 0

o 2
P(s)ll0 ds

The solution p = pd of the SPDE (2.4) is called the response

for 4

Remark 2.1 We can apply the results of Pardoux [22] also to the

'Y, 4 =t oang v¢ = wtl

£+1,H£-1

triplet (V,H,V*) , where V =

(& =0,1,"+,m). Define L(y,u) € £( H

1yt Similarly to L(y,u), M(¥) , where we

)R
M(y) € £C H

replace <-,-> and (*,*) by * <-,->{ = the duality pairing

between H{’-1 and H{+1 » and % (+,*), = the inner product in
Ht” respectively in (2.1), (2.2). Then the coercivity
condition holds. (In (2.3), "'"0 and H-Hl are replaced by H'H{
and -1 respectively.) Appealing to Krylov & Rozovskii

£+1

[11], the solution p of (2.4) turns out a unique solution of

SPDE (2.9)



dp(t) TAY(t),ult))pctydt + MY(t))p(t)dY(t)

2.9 t>0
2(0)

!
S

Moreover p(t) satisfies similar equality to (2.8). ( i.e.
“0” is replaced by *£”. )

Let F : L2¢ o,T;u™1!

)y — R and G : H
be weakly continuous functions,.
For 4 € U , we define the pay-off function J(d4) by

(2.100 J(d) = EIL F(pd) + G(pd(T)) ]

We want to minimize its value by a suitable choice of £ € 2.

§3 Existence of optimal control
First of all we will prove that the solution pSd of (2.4)
depends on 4 continuously .

nd(n)

Theorem 3.1 If _— nA in law , then

(3.1) pd(n)—————ﬂ pd in law as L2(0,T s Hm+1)- random variable
and
(3.2) pd(n)(T) _— pd(T) in law as Hm- random variable ,

where we endow the weak topologies on L2(O,T ; Hm+1) and Hm.



For the proof we need the following two lemmas.

Lemma 3.1 There exists a constant K > 0 such that

T
(3.3)  E{ I Ipfctrn? . at 3 < Kien?
0 L+1 £

(3.4) E{ sup np“(t)u% } < Ku¢ui
0<Lt<T

T
(3.5) E{ f pfcern? at 3 < xien?
. 2 2

for any 4 € U. (& = 0,1, --,m)

According to [17] we introduce the spaces ﬁy(D) and %Y(T,D)
as follows. Set ¥(:,z) = the Fourier transformation in t of
¥(,o, H°"2 D~ the HZ(D)—norm and l'llx = the norm of the dual

x
space ( H2(D) ) , where we identify Hl(D) with its dual space.

#Y(D)

= { v e L2(- », = ; HE(D)) ; f

- O

1 2¥ g o2 dt < w }

where

el 2Y g o2 de }1’2

-

- @ 2 °
Wle (o - {[maweon? Jae + |

%Y(T,D) = { ¢|[O'T] i ¢ o€ %Y(D) }

where



'I"l'”%y(T,D) = inf{ Ilcpll'%y(D) ;i @(t) = ¢¥(t) a.e. on [0,T] }

Remark 3.1 If D is a bounded and open subset of RY with a

smooth boundary , then , by the compactness lemma ( (171 p60 )

the imbedding : %Y(T,D) —_— L2(O,T ; Hl(D) Y is compact.

Lemma 3.2 Let 0 < v < 1/4

pd € #Y(T,D) a.s.

, then for each 4 € 2

and there exists K > 0 such that

4,2 2
(3.6 E[l Ip ”?f},(T,D) 1 < Kllqbll2 v 4 € .
Proof of Lemma 3.1 (3.3) and (3.4) are easy variants of
Corollary 2.2 of Krylov & Rozovskii [111]. Now we will show

(3.5). Since the response p is the solution of (2.9), using

Ito's formula, we get

4 4
(3.7) Hp(t)ﬂ£ = H¢H{

t
+ 4I Hp(s)"i < T¢s)pes) , p(s) >p ds
0

t 9 2
. 2[ Ipcs)13 I¥cs psH 15 as
0

t t
+ 4 2

¢ M¥¢sr)p(s) , p(s) )% ds
k=1 Y0



t
. 4J’ IpcH I ¢ MesIpCs) L pis) )
Q

where L(t)

Hence

) dY(s)

= T(Y(t),u(t)) and Mct) = McyYdt)y).

using the coercivity condition, we have

4 4
(3.8 E[Hp(t)"t 1l - H¢H£

t
2EL f Ipcs)l ¢ 2< Tesip , p >, + IFcs)IpIE ) ds ]
0

d *

t
+4Etf Z(H(s)p,P)%ds]

M

A

t
zch Ip) 12 (xip()13 - alipce)l
0

0 k=1

2

£+1 } ds 1]

¢ 4
20'E[ I Hp(s)H{ ds 1}
0

So the Gronwall's inequality derives (3.5).

Proof of
(—oo’eo
p(t)
Since

we obtain

Lemma 3.2 For the convenience, we extend p(t) on

)

in the following way

p(t , te€e L o0, T]

0 s t € (-» , YN[ O0, T]1

p(t) is a solution of (2.9), applying Ito's formula,



(3.9) 2nit( p(t) , n )

2
= (¢ ,n )2 - (p(TY , n )2 exp{-2mitTT}
T
RIS - C R IR f exp(-2mitt) ( M()p , 0 ), dY()
0
3
for any n € H
. . 3 .
Let { nk )k21 be an orthonormal basis in H™ . Using (3.3),

(3.4) and (3.9), we have

(3.10) 4rnt?Er uﬁ(r)uf y

= an?e? S E( ¢ BCTy |2

n }
k=1 k "2

< x1n¢n§ + K,EC | oo 12 1

1

Let 0 < Yy < 1/4 and 0 < x < 3/2, then

(3.11) f E( It12Vipco i ) de

2
< f EC uﬁ(r)nf 1 dt  + f EC —3131——E uﬁ(r)uf 1 dt
lti<1 ltl=zt 1 + |tl

@

* 2 dt 2
< X {Ec f Ipctyl? dt 1 + f 4T g4
3 w 1 o ]+ ltIK 1

+ EI f I Tct)p uf at 1 }
2
< K H¢H2

4

This concludes the lemma.



Remark 3.2 (3.5) implies the uniform integrability of
T

f et 1,2 d L deu
0

Remark 3.3 We define the metric d on H = L2(O,T;Hm+l(Rd))

by
« 1 .
d(p,q) = 2 4 min{ [Ce_, p-a)| , 1} p,q € H
- ¢ k
k=1 2
where (*,*) is the inner product on H and { ek )k:1 is the
orthonormal basis on H. Then Lemma 3.1 and Prokhorov's

theorem imply that the totality of image measure pd (4 €lU)
is relatively compact as a set of measures on the metric space
(H, d)»).

On the other hand, on each bounded set of H the weak
topology is metrizable by the metric d . Therefore, for any
weakly closed set F of H, Fn { q €H ; laql £ r )} ¢(r >0)
is closed with respect to the metric d .

4

Under this observation, { p° ; 4 € A} is relatively compact

as a set of measures on H associated with the weak topology.

Proof of Theorem 3.1 Let D, (k= 1,2,-+ ) be bounded and
open subsets of Rd with smooth boundary , ﬁk C Dk+1 and
kgl Dk = Rd. For an admissible system & = (,%,P,Y,0),
ud = the image measure of (Y,u,pd) on S,

the image measure of (Y,u,pd) on 5,



2

s = cco,T;RY HxL2 o, ;M= o, T;H™ L Ry,

and

s. = co,T;RY yxr2 o, T;ryxL2 o, T H (D

k
endowing the weak topology on L2(O,T;H

)
m*1 Rdy) and the strong

topology on L2(0,T;H1(Dk)). By the compactness of nd

and Remark 3.3, B = { ud ; 4 € 4 ) is relatively compact.

Moreover, by Lemma 3.2 and Remark 3.1 , %k = { uﬁ ; 4 € A Y is

;0 4 e U )

relatively compact.
Hence there exist a subsequence { 4(n') )n' , a probability u

on § and a probability By on Sk ( k=1,2,++ ) such that

(3.12) ud(n )—————4 # in law as n' ——
and
(3.13) uﬁ(" . iy in law as n' —— o,

By Skorohod's theorem, we can construct the Sk- valued random
variables (Yn,,un,,pn,), (Y,u,p), n' = 1,2,+-++, on a probability
space (R,F7,P) such that

_ ., 4" v = ce
(3.14) the law of (Yn"un”pn’) = My » n' =1,2, s

(3.15) the law of (Y,u,p) = By
and
(3.16) (Yn,,un,,pn,) —— (Y,u,p) almost surely ( n'! — = )

as Sk— valued random variables.

Now we will prove the following lemma.

Lemma 3.3 Let ¥ : [0,T] ——— R be an absolutely continuous
function with ¢' € L2(0,T) and ¥(T) = 0 and n € Cz(Rd) with

supp(n) c Dk ,then (Y,u,p) of (3.16) satisfies



T
(3.17) (8,mM¥(0) + I V() p(ty , n ) dt
0

T T
+ I Y(t)< L(Y(t),u(t))p , n > dt + I YO C MY(t))p , n ) dY(t) = ©
0 0

Proof Since P is the solution of the SPDE (2.4) for

(Yn,,un,), using Ito's formula to (2.5), we get

T
(3.17) , ($,m)¥(0) + f vt Cp ,(t) , n ) dt
n 0 n
T
+ IOW(t)< L(Yn,(t),un,(t))Pn. ,» 0 > dt

T
+ f0¢(t)( M(Yn,(t))pn, s N ) dYn'(t) =0

By Remark 3.2 and (3.16), we get

2
1,D

dt ] —m 0 (n' — =)

T
(3.18) EIL I "pn.(t) - pCtl
0 k

Recalling “supp(n) c Dk”, we obtain

T
(3.19) IO¢(t)< L(Yn,(t),un,(t))pn. ,» n > dt

T
- f W< LYCE),ult))p , o > dt in L2@).
0
(3.20) ¥(t)C p_,(t),n ) —— ¥ p(t),n ) in L2( [0,TI1xQ )

- 17 -



and
(3.21) ¢yt ( M(Yn,(t))Pn, s N — Y () MYt ))p , A )

in L2¢ [0,TIxQ )
For the proof of (3.19), putting

qn,(t) = ¥ (t)( bi{(',Yn,(t))pn.(t) s )

q (i)

Yt ( biz(',Y(t))p(t) , N )

and u(t) ( ul(t),-°~,uL(t) ), we have

T
£
(3.22) fow(t)( bit( ,Yn,(t))pn,(t) s 0 ) un,(t) dt

T
- fw(t)( b, CLYpct L n o utch at
0]

T
= I u ,(t)XCq_,(t) - q(t)) dt
On n

T
+ f ( uc.(t) - u{(t) Ja(t) dt
0 n

By (3.18) , the 1st term of the right hand side of (3.22)
converges to 0 in LZ(Q). By Remark 3.2 and (3.16), we get

T ) ¢ 2
(3.23) EL { I ( un.(t) = u (t) dq(t) dt } ] — 0
0

This implies (3.19). (3.20) and (3.21) can be proved

similarly. Moreover, combining (3.21) with (3.16), we get

T
(3.24) IO¢(t)( M(Yn,(t))pn. (A dYn,(t)

T
— f W C MCYCE)D , n ) dYet) in L2(@)
0



Hence,by taking limit of (3°17)n' , we obtain (3.17).

Let ik : § — Sk be the canonical injection. Then by the

definition

EICED A i Ca =

(3.25) 1, ( K k

K ) =

Hx
Let (Y,u,p) be S - valued random variable whose

law = a . Then (3.25) implies that the law of ( ¥,4,pl

) = M.
Dk k
Hence, by Lemma 3.3 , ( ?,H,SID ) satisfies the equation
k
(3.17). Noting that supp(n) c Dk , we obtain
T ~
(3.26) (9,m¥(0) + j () (p(t),n) dt
0
T ~ ~
+ I Vt)< LY H),uet)p , o > dt
0
T ~
+ f v MYt ® , n) d¥Ct) = 0
0
Since k is arbitrary, (3.26) holds for any n € CE(Rd).
By the same argument as Theorem 1.3 in [22]1, P becomes a
solution of SPDE (2.4) for(Y,uW). Since the law of (Y,W) =
nd, we get
~ o~ o
(3.27) u = the law of (¥,U,P) = u
This means that any convergent subsequence of { “d(n‘)}
converges to ud. Hence the original sequence { ud(n)}
converges to ud. So we get (3.1). Next we consider the law of

( Y,u,pd,pd(T) > then by the similar argument we can prove (3.2).



Theorem 3.2 If F and G are bounded from below, then there
exists an optimal admissible system & € U

that is

(3.28) inf { J(d) ; 4 €Uy = J(d).

Proof By theorem 3.1,

3G = EL mint Foon g+ ming co?m), 0y
is continuous on A . Since J(4) 1is the limit function of
non-decreasing sequence { Jn(ﬂ) }n:1 , it is lower-semicontinuous

on 4. This concludes the theorem.

84 Optimal control for partially observed diffusions

In this section we will apply theorem 3.2 to the stochastic
control problems for partially observed diffusions where an
observation noise may depend on a state noise.

We assume the following conditions (A.4) ~ (A.6).

(A.4) g Rd X Rd —_— Rd ® Rd is bounded and continuous.

(A.5) There exists & > 0 such that

o (z, 0% (z,y) - 20(z,y)o*(z,y) = 81 for V (z,y) € RY x R4

(A.6) G(,y) is Ca—class in ¢ € Rd and all derivatives are

bounded and contiuous in (z,¥) € Rd X Rd.

Put a(z,y) = ( 6(z, 0% (z,y) + o(z,y)o0*(z,¥) Y/2 , then

a(z,y) and o(z,y) satisfy (A.2).



Now we will consider the optimal control problems of the
following Kkind. Let X(t) denote the state process being
controlled, Y(t) the observation process and u(t) the control
process. The state and observation processes are governed by

the stochstic differential equations

dX(t) = B(X(t),Y(t)du(t)dt + F(X(t),Y(t))dW(t)
(4.1) + o(X(t),Y(t))dw((t)
X(0) = &
and
dY(t) = AX(t))dt + dW(t)
(4.2)
Y(0) = 0

where W and W are independent Brownian motions with values
in Rd and Rd respectively on a probability space (,%,P).

The problem is to minimize a criterion of the form
T
(4.3) Juy = B I £ X(t) ) dt + gC X(T) ) 1
0

In the customary version of stochastic control under partial
observation, u(t) 1is a function of the observation process
Y(s), s < t . Instead of discussing the problem of this type ,

we treat some wider class of admissible controls inspired by
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Fleming & Pardoux [7].

Let

1

ot

t 2
f |[R(X(s)){° ds

t
(4.4) p(t) = exp{ I h(X(s)) d¥(s) -
0 0

Then W and Y become independent Brownian motions under a
new probability P defined by

(4.5) dP = p(T) lap

and X(t) becomes a solution of the following SDE

AX(t) = { BCX(E),Y(t)ult) - o(X(£),YC(t))hX(t)) } dt
(4.6) X, Y(E))dR(E) + o(X(t),Y(t))dY(t)
X(0) = &

Suppose & has a probability density ¢ € Hz(Rd).

Definition 4.1 4 = (Q,7,P,W,Y,u,£) is called an admissible
system, if

(1) (Q,#%,P) is a probability space

(2) u is [I'- valued measurable process

(3) Y is a d'- dimensional (?t) Brownian motion where

) ]
?t = of{ Y(s), f u(t) dt ; s < t }
0
(4) W is a d- dimensional Brownian motion
(5) £ is a d- dimensional random variable and its distribution

has the density ¢

(6) £ , W and (Y,u) are independent with respect to P

- 22 -



For an admissible system 4 , the solution X(t) = Xd(t) of the

SDE (4.6) is called the response for 4. Putting dP = p(T)>dP, we

define the pay-off function by

T 4 d
(4.7) Jd) = BI I fC XT(t) )y dt + gC X°(T) ) 1
0

where f , g € Lz(Rd) and non-negative.

By the similar argument as Rozovskii [25], we obtain the

following.

Proposition 4.1 Let pd be a solution of the SPDE (2.4) for

an admissible system o , then pd(t) is the unnormalized

conditional density of Xd(t) with respect to 7t. Namely ,for
every ¢ € LRy, t € [0,T]

(4.8) EI[ o( Xd(t) Yoty | ?t l1=1Ce9, PA(t) ) P-a,s.

holds, where (+,+) is the inner product in Lz(Rd).

Using (4.8), we get

T d d
(4.9) J(d4) = EI[ I Cf , p(t)y >dt + (g, p (T) ) 1
0

Since ( f , pd(t) ) and ( g , pﬂ(T) ) are non-negative,

Theorem 3.2 assures the existence of an optimal admissible

system. Namely,

Theorem 4.1 There exists an optimal admissible system & ,

that is



(4.10) inf J(d4) =1JCd)
4 : ad.sys.



CHAPTER 2

Optimal controls for stochastic partial differential equations

1 Introduction
In this chapter we are concerned with control problems of systems
governed by the following stochastic partial differential equations (

SPDE in short )

d ..
dq(t,z)= > g—x ( a'dz,y + w<f;),U(t))-g—gc a(t,z)
i,j =0 i j
i
(1.1 + fi(z,y + W(E),UCt))y Hdt
&’ d i ) K
+ 2 (2 by(T,¥ + W(t))EF= q(z,t) + g, . (T,¥y + W(t))) dW (t)
< A k ox. k-
k=11i=20 i
where W = ( W1,~-~,Wd ) is a d'— dimensional standard Wiener

process and U(t) an admissible control, 0 < t < T, with T fixed.

The problem is to minimize a given criterion by choosing a
suitable admissible control. Namely, we treat stochastic optimal
controls for distributed parameter systems. The SPDE (1.1)
‘describes intuitively a physical object governed by a partial
differential equation with random perturbation, which has been
investigated from various viewpoints ( c¢f Y.Fujita [8], N.V.Krylov &
B.Rozovskii [ 11,14,15 ], H.Kunita [16], E.Pardoux [(22], J.B.Walsh
[29]1 ». But other important example is the Zakai equation for
controlled partially observed diffusions ( cf [2], [4]1, (71, [18],
[24] ). In this case, inhomogeneous terms fi and gk are zero and
bik arises from the correlation between system and observation noises.

Moreover the Wiener process W is the obserbation process and the



coefficients a'?d and blk depend on W ( cf [7], [24]1 ).
The main aim of this chapter is to show the existence of an
optimal relaxed control for systems governed by the SPDE (1.1) under

the ellipticity condition ( see (A.2) ); in particular we assume that
dl
i J
ké . b k(T ¥b7, (Z,9) )i,

non—negative definite and some regularity conditions on the

( all(w,y,u) -

Njes

jo=1,000,d 18

coefficients. In particular, if bik = 0 for i =1,¢-+,d, k =
1,++,d", then the matrix ( aij(x,y,u) )i,j = 1,--.,q4 Mav be
degenerate.

Let I' be a compact convex subset of RL. We call it a control

region. A denotes the set of all measures on [0,T] X I', such that
X([0,t] X T) =t for any t € [0,T]. The relaxed control, which is
introduced in [4] and [6], is a A-valued random variable ( see
Definition 2.1 ) and acts linearly on coefficients. Thus a relaxed
control u has a density ', namely upd(dt,du) = p’ (t,duddt, and when we
apply a relaxed control u, the coefficients aij and fi are replaced
by the following ' and Ti respectively,

aldct,z,y ¢ W), = f a'd(z,y + W, wu’ (t,dw)
r
and

3’i(t,z,y + W(t),p) = f Flcz,y + W), wn (t,du).
r

Moreover, the system moves according to the following SPDE (1.2)

( - T TP 8
da(t,z)= > 5z (@ T,y + W,z a(t, o)
i,i=0 Vi j
i
(1.2) + Fi(z,y + W(t),m) Hdt
d’ d i ) K
+ 2 ') by (x,y + Wt))m= a(z,t) + g, (T,¥y + W(t))) AW (t).

(. k=1i=0 % 9z, k

Now A bocomes a compact metric space, by being endowed with the weak
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convergence topology, and the set of all relaxed controls turns out
to be a compact metric space by being endowed with the Prohorov
metric. Consequently, for our aim, it is enough to show that the
solution of the SPDE (1.2) depends on the relaxed control
continuously. But this is a difficult problem. We overcome this
obstacle, by using a method similar to that used by N. Nagase [18]
and the evaluations for SPDE given by N.V. Krylov & B. Rozovskii [141].
By this means, we can prove the existence of an optimal relaxed
control. Moreover, by applying our existence theorems to the Zakai
equation, we can obtain an optimal control for partially observed
diffusions with correlated noise ( see Section 7 ). This result is
new, and is a generalization of [ 2,4,6,7 and 18 J].

In Section 2, we will introduce several metric spaces which are
appropriate to our control problems and define a relaxed systems in
wider sense as a generalization of an admissible control. In
Section 3, we study the way in which the solution depends on the
initial data and the relaxed system. In particular, we will prove
the continuous dependence of the solution on the relaxed system, when
we endow with the weak convergence topology on the space of image
measures of relaxed systems [ Theorems 3.1 and 3.2 1. Section 4 is
concerned with existence theorems [ Theorems 4.1 and 4.2 1]. In
Section 5, we will construct an approximate optimal control which is
adapted to a Wiener process. Since the Wiener process in the Zakai
equation is nothing but the observation process, we have an
approximate optimal control, which is a function of the observed
data, for partially observed diffusions. The Bellman principle will

be proved in Section 6 and some applications will be discussed in
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Section 7.

2 Preliminaries

Let us define the operators L and M = (M, M

a . .
(2.1) Ly, w¥@ = Z 9.« a”(a:,y,u)aj\lf(z) + flez,y,u) )

and

d .
(2.2) M Y@ = 2 b! (,¥)9,¥(2) + g,(z,9)

for <« € Rd , ¥ € Rd , U €T

. _ . _ 9 A
respectively, where 80 = jdentity and Si = axi , 1 =1, ,d

and a'd, ft, blk and g, are bounded and uniformly continuous.
We denote by L? , 2 0, the space of real valued Borel

functions on Rd with the norm defined by

) 2,r/2 1/2
our (J'Rd|<1+| zl F@1? az )

m
r

7

Let H be the subspace of Li consisting of functions whose

generalized derivatives up to the order m belong to Lz.

Clearly H? becomes a Hilbert space with the inner product

|
Cf.gy, .= 5 el I g 1+ 1212 % (z)p%g(z) dz,
? leel £m a
where o = ( al, s ,ad ) is a multi-index with non-negative
. 1 d
integer ol, lal = ot + +-- + % and D% = (Q— )a ces (Q_ Ja .
ox ox
1 d
2 _ _ 2 _ .2 m _ .M
Let us set "f"m,r = ( f,f )m,r and, forr = 0, LO = L%, Hy = H,
(-,-)m,0 = (',')m and H'Hm’o = H'Hm , for simplicity, if no confusion
occurs.



Now we introduce the following conditions.

a.1) p%td , p®*B'. (0 < lal < m+l, i,j = 0,1,+-+,d, k =

k
1,¢+¢,d" ) are bounded and uniformly continuous,
(A.2) ellipticity condition : a'? = ad', i,j=1,---,d, and
1] 3 i J . . .. .

a -3 b -b i,j=1,---,4 18 a non-negative definite matrix ,
where b' = ( b'l, -,bld, ) and “ - » means the inner product in

i
RY .
.3 fle,yw, g, Ly e ™D = 0,444, , k= 1,---,d",

. m+1 . a’
and their H - norms are bounded in (y,u) € R™ x T
i {+1 . $+1

(A'4){,r fF e,y 0w , gk( ,Y) € Hr and their Hr norms are

bounded in ¥ and u.

(A.4)£ For some r > 0 , (A'4)£,r holds.

Hereafter we always assume (A.1) ~ (A.3) and, for
simplicity, we say

2.3) | p%a* &z, v, w) | < K, | Dablk(z,y) | < K ,

I i, y,u | <K, gLyl < K

m+1 m+1

To study relaxed systems ( in wider sense ), we need the following
spaces.
By A we denote the set of all measures A on [0,T] X T
such that |
(2.4) xX¢ [0,8] X T ) =38, for s < T.
Endowing with the weak convergence topology, we have the

following proposition,



Proposition 2.1 A is a compact metric space.

Proof By applying the Prohorov metric, A becomes a separable
metric space. Suppose X € A tends to A weakly as n —— o,
Then An( X)) — x(C + XTI ) weakly as a measure on [0,TI].
Since An( « XTI ) is Lebesgue measure by (2.4), aA( + x T )
also satisfies (2.4). Since A is tight , by virtue of

compactness of [ 0 , T 1] x T , this completes the proof. 0

Let us set B«

Borel field on [, ot(A) = the o-field generated
by { x([0,8]1 X A ) ; s £ t, A € B(I") } and o(A) =_GT(A). Let 2 =
P(A) be the space of probabilities on ( A, o(A) ), endowed with

the weak convergence topology. Then Prohorov's theorem asserts,
Proposition 2.2 ? 1is a compact metric space.

By virtue of (2.4), X has a ot(A)—adapted kernel X', namely,
x(dt,du) = 1’ (t,duddt, and x’ (t,-) is a probability on I' for almost

all t. Moreover, if A*

is a kernel of A, then X' (t,:) = a¥(t,-)
for almost all t. Let us set
R(t,z,v,2) =f h(z,y, WA’ (t,du) for h = a'? anda f!
r

and

(2.5) Lct,y, 0¥

I Ly, Wy x) X' (t,du)
r

d . :
S8« 51J(t,$,y,x)8j\lr(:z:) + Flav,z,y, 000
i,j =0



Now we introduce a relaxed system, according to [4] & [61].

Definition 2.1 ®R=CQ , F, ?t , P, W, ua) 1is called

a relaxed system, if

(2.6) «( Q,?,?t,P ) is a prpbability space with filteration 7t;
(2.7) W is an 7t—adapted d’' -dimensional Wiener process with
W(0) = 0;
and
(2.8) u 1is an ?t—adapted A-valued random variable ( A -
r.v. in short ). Namely, u( le B2 ) is ?t-measurable whenever
Bl € Bt 0, t ] and B2 € o(I'Y( = topological o-field on I').
For simplicity, we put ® =C W , u ) , if no confusion occurs, and

sometimes we call u a relaxed control.

4 =CQ , F, ?t , P, W, U) is an admissible system , if
(2.8) is replaced by (2.9) below.
(2.9) U 1is a I'-valued ?t—adapted process.

Remark Since U(t) 1is regarded as ' (t,-) =3 where

Ucty?
8 _ means S-measure at £ , o4 1is also a relaxed system.

T

R and U denote the totalities of relaxed and admissible
systems respectively. Let n(R) be the image measure of ( W,
4 ) on C(O,T;Rd) X A. Again endowing with the weak
convergence topology on the space W = { ni(R) ; R € R} , we

have the following proposition.



Proposition 2.3 T is a compact metric space.

Proof is easy , since W is a Wiener process and A is a

compact metric space. 0

Definition 2.2 We say @n converges to ® , ( put %n — &)

if , n( Qn ) — n( ® ) weakly.

Consider the SPDE (2.10) for & = ( Q,?,?t,P,w,u ),

dq(t) T(t,y + W(t),w)q(t)dt
(2.10) + My + W(t))q(t)dw(t)

q(0)

[}
A=
~
m
jang

An Hl-valued ?t—adapted process q = q(-,9,R) is called a solution

of (2.10) ( or a response for ® ), if (2.11) and (2.12) hold.

2

1,0 dt } < =

T
(2.11) E{ f I acty |
6

o«

and , for any n € CO ( smooth function on Rd with compact

support ) and almost all t ,

(2,12) CqCt)y , n) = (¢ , n>
;
+ I < Ti(s,y + W(s),mu)q(s) , n > ds
0
t
+ I ( M(y + W(s))a(s) , n ) dW{(s), w.p. 1
0

hoids, where (',') = Lz(Rd)—inner product and < , > = duality

pairing between H_1 and H1 under HO = ( HO »* ( = dual space of

HO ), namely

< Tis,y + W(s),m)als) , n >
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) il

(_
i, 0
where il = 0 ( for i = 0 ), =1 ( for i = 1,-+-+,d ).

1)

u Moo

Catdes, ,y + W(s), w0 acs) , 8,0 ),

Clearly (2.12) does not depend on any special choice of
derivative u’. The SPDE (2.10) can be regarded as an H—1~valued SDE.
( See K. 1to [10) for the general theory of Hilbert space valued SDE.)

According to [14]1 and [15], we see the following theorem.

Theorem 2.1 ( XKrylov & Rozovskii ) (I) Suppose the conditions

(A.1) ~ (A.3). Then, the SPDE (2.10) has a unique solution

2 m

ger®cro,T1x9; H"YnticQ; co, "L,

q(t) 1is a Borel function of {( ¢ , W(s) s < t , u(lI0,slIxB )
s <t B € o)} and there exists a constant N, depending
only on T and K in (2.3), such that

(2.13) EC sup_ I a(t) 1,2, )

t < T
2 d i 2
< NGl 2+ sup 31 aftCLyw 1,2
i y,u i =0 ’
+ osup gL,y 1,2 0, t=0,1,-- ,m

y

(I) Besides (A.1) ~ (A.3) , we assume (A.4)£ r and ¢ € Hﬁ .
Then the following evaluation holds.

N2

(2.14) E{ sup I q(td tr

t < T

}

: 2
< N (¢ "t,r + sup

b ot y,w u£?r
y,u i

H Mo

0

¢ sup gLy 1,2 )
y ’

where N’ = N’ (T,X,r)
(m Suppose Fi : [0,T] X Rd X Q —— Rl, i=20,1,---4d,

and G, : 10,71 xR x @ —— R, Kk =1,-:-,4,



are 7t—adapted and

2
m+1,0

T 2
dt)<w,E{Iile(t)ll dt ) < =
0

T .
1
B fo 1 Ficey 1 w2l

Let & be a solution of the following SPDE;

p d .. .
de(t) = 2 9, ¢ atdct,y +» W, mo.E(t) + Flet)y Hat
i,j =0 J
d .
(2.15) + (3 blct,y + W(t))8 . ECt) + G(t) W)
i =0
L £(0) = ¢ € H”
Then, £ satisfies the following evaluation (2.16)
2 2
(2.16) E{ sup I E(t) | } < NCH ol
L <T £,0 L,0
T d ; ) a’ )
+ E{ fo(' g I 8,F «t) "t,o + § I Gyt H£+1’O)dt )
i =20 k =1

(L =0,1,---,m ) where N = N(T,K).

Remark Krylov & Rozovskii proved Theorem 2.1, replacing (A.2)

by a weaker condition (A.2').

a.2') a*d = @, .5 =1,-+-,d and ( ald - 1 plp? Ji i -

1.-+-.d is a non-negative definite matrix
But we state all of our theorems under the condition (A.2), since we

need (A.2) for Proposition 3.1 etc.

3 Continuous dependence of q( ,¢,¥,%) on ¢ , v , X.
Since we are mainly concerned with the probability law n(®) , we

may assume the following canonical form , if necessary:

Q = C(0,T; Rd ) X A, F = 0(Q) = the topological o-field on @
W = the first coordinate function on Q , W(t,n) = W) (t)
# = the second coordinate function on § ,

.-34_



H(B,w) = u(e)(B), B € o([0,T) X I

7t = of W(s) , s <t , u(B

P = m(R).

xB2) , B, € Bro,t1 , B, € o(I') }

1 2

1

First we see the following lemma, which is crucial to the SPDE
with ellipticity condition (A.2). So it will be proved in the

Appendix, according to [14].

Lemma ( special case of Lemma 2.1 of [14] )

For any t € [0,T3, v € RY and x € A, put a'3¢or = a¥dct, - 9,0
and bi(') = bi(',y) , for simplicity. Under the conditions
(A.1) and (A.2), there exists a constant N , depending only on K

in (2.3) , T, and ¢ ( = 0,1,---,m ) , such that

d iy ¥ ij a1
(%) > ( 2 > -1 D aiu P'Ca'8.u+ £
lyl<t i,j=0 ]
d .
+3 1 DYC3 blau+ ) |2 ) dz
i=0
d . d’
2 iy, 2 A 2
<N { Iull, + 3 19,81 + 2 gl }
L {20 i £ k=0 k' L+1
for any fixed three functions u , fl, §k € H{+l and

~

g= (gli...’gdl)'

Remark (1) When we take F'(-,y,u) and g(-,y) of (2.1) as £' and &
respectively, (%) turns out to be the following form:

2¢ T(t,y,wdu , u >p + 3 | M(y>u |£2

2, 4 i 2 ¢ 2
< N { HUH{ + 2 8.7 (-,y.u>H£ + 2 Hgk(-,y)u£:1 }
i=o ! k=0

(2) [14] says that Lemma holds under the conditions (A.1) and
(A.2"), if we replace “3” of the integrand of the left hand side with

£‘11$

So a stronger condition (A.2) yields a stronger evaluation
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(%), which is necessary for Proposition 3.1.

Proposition 3.1 There is a constant € = C(T,K,%) such that

(3.1) sup E€ I q(t> 0,4y < ccn et

t<T ¢ ¢
d i 4 4
+ sup 2 | 8, f Ly, |, +sup Il gC, 9 M, ),
y,u i =0 y
L = 0,1, -,m-1.
-Proof For simplicity, we put F(t) = F(t,y + W(E),w)

gty = gy + W)y, Tty = TCt,y + W(t),m), M(t) = M(y + W(t)) and

Ht-l 4+1 24 4

<, >{ = duality pairing between and H under H™ = ( H)*

Then q satisfies

t

(3.2) C(a(t) , n ), = (% ,n), + f < T¢s)a(s) , n >p ds

0

+ f ( M(s)q(s) , n )t dW(s)
0

for n € H , t < T

So Ito's formula derives

¢
(3.3) I q(t) u{2 =1 ¢ ||{2 + 2 I ¢ Lesracs) , a(s) >, ds
0
t 2
+f I Mcsacs) I,2 ds
0
t
. 2 f C M(s)als) , als) ), dW(s).
0
Thus we see
(3.4) EC Il q(t) "¢4 1 - I ¢ "e4

2

t
= 2 E{ f I ac¢s) "t { 2 < T(s)a(s) , q(s) >y
0 .

+ I M(s)q(s) u{2 } ds )



¢
+ 4 B¢ I ( M(s)a(s) , q(s) )t2 ds )

< 2 E{ f acs) 1,2 (2 < Esracs) , als) >,

+ 3 1 Mesacs) 1,2 ) ds )

t 2 2, ¢ i 2 2
< ¢, EI IOHq(s)H{ Clacrn,® + 3187 @1,” + igcori?) 1ds 3

appealing to Lemma. Hence we have

¢
(3.5 EC I act) 0,41 <¢ [ El f I acs) 0,4 ds 2
¢ 2 . :

+ ¢ u{ + EI f ( 2 e, 7 (s) u£4 + I g(s u£+f ) ds ] ).

So Gronwall's inequality completes the proof. O

Now we will study continuous dependence of q(-,9,¥,%) on R.
For the following theorem 3.1, we endow with the weak topology on

£2¢0,T;H™ and H™ L,

Later Theorem 3.2 is concerned with strong
topology on these spaces.

From now on, we always assume m 2 3.

Theorem 3.1 Suppose %n _— R . Then, for ¢ € H™ and
y € Rd , we have
(3.6) ( Wn,un,q(',¢,y,@n) ) — ( W,u,q(,¢,¥,%) ) in law

as CC 0,T; RY ) x A x [ w - 1L2C0,T; H™ ) 1- r.v.

(3.7) ( Wn,un,q(t,¢,y,%n) ) — ( W,u,q(t,9,¥,8) ) in law

as CC 0,T; RY )y x A x [ w - H" 11 - r.v.

where “ w - X ” denotes the space X carrying the weak topology.
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Proof This theorem is an extension of Theorem 3.1 in [18] to the
elliptic case (A.2) and we can apply the same method as [18], using
the evaluation (*).‘ First we introduce two spaces ﬁy(D) and
%Y(D,T). Let D be a bounded open set of Rd, with smooth

boundary. Define ﬂy(D) and %Y(T,D) as follows ( c¢f [131 ).

(3.8) £,(D) = (¢ € L% (—,=;H" 1 (D)) f 112V 16 ¢t 152 dT < = )

with the norm

* 2

3.9) 1w 1% o = J" loctrt 2 at +j 12716 (o) s 2 dt
¥ - H (D)

-

(o]

where, for simplicity, we put @(t) = I exp(-2nitt)@(t) dt in this

- QO

proof and f-llx = norm of ( Hm_l(D) ¥ ( = dual space of Hm—l(D)
under H" 2(0) = (H" 2(p))* ]
and

(3.10) #Y(T,D) = {

wl[O’T] i @ € #Y(D) }

with the norm
(3.11) I ¢ ny(T,D) = inf{ I ¢ "ﬂy(D) ;s ¢ =¥ a.e. on [0,T] }

respectively.

Now we divide the proof into three steps. The 1st step is the
preliminary lemma, which is useful for proving the compactness of

space of solutions.

Lemma 3.1 For any fixed Yy € ( 0 , 1/4 ),
(3.12) Q( ,¢,y,R) € %y(T,D) , w.p. 1

holds, and there is a constant K1 = Kl(T,K), such that



(3.13) E{ I qC ,¢,¥%,% } < Kllm(¢,f,9), for YV ® € R,

"ﬁz(T D)
Y H

where
2 d i 2
(3.14) 1 _(¢,F,9) =1 ¢ | +sup o I 8. fF C,y,w |
m m . 1 m
y,u i = 0
2
+ sup I gC-,y) "m+1‘
'}
Proof Put
h(t,®) , t € [0,T]
h(t) =
o, t ¢ [0,T]1,

for AC(t,®) = q(t,d,y,R), F(-,y + W(t),n) and g( -,y + W(t)).
T(t) and M(t), t € ( -»,» ), are defined in the same way as (2.5)
and (2.2), respectively. Since q 1is a solutiop, the following

equality (3.15) holds, for any n € Hm,

(3.15) ( q(t) , n )m-l = (¢ ,n )m—1+ fo< L(s)q(s) , n >m-1 ds
t
+ IO ( M(s)q(s) , n )m_ldW(s).
Therefore we have
) . N A o
(3.16) 2rit ( q(Tt),n )m—l = f_i at exp(-2ntitt))( q(t),n )m_1 dt
= Cé,n ) - exp(-2rnitT) ( a(T),n dm-1t ¢ f&(t),n >n-1
T
+ I exp(-2nitTtt)( M{(td>a(t),n ) dw(t).
0 m-1
Let nj € C;( Rd ), J = 1,2,*+* be a complete orthonormal system
of H".  Then we get
2.2 « 2 _ 2.2 < A 2
(3.17) 4n“t” EL I aco) N ,1 = 4nxc g EC |Caco,n, TR

i 1

2 2 2
< ¢ [ ten 2, + B¢ 1 aem 12+ EC 1 Ao 12,
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- z
. Ef 1w oaco 12, at ].
k=1 Yo K m-2
Since Hl:llx < H'Hm_2 < -0 _, » we see
2 . 2 2 2
T EL I aCo) Wx™ 1 < C, ( hett Z, + EL I} q(T) Ilm_1 )
T 2 2
cB0 [ Chaw e g 12 ) at g
0 m m-1

< C3

2
+ B0 I faco 1 2, 0 )

2
(1.,f,9 + EL 3o 2 1.

Hence for any fixed x € ¢ 1 , 3/2 ) ,
o 2_? N
EL I!®7l g¢T) lIx® 31 d=x
. 2 2 1t)? . 2
< f EL Il G(t) lIe? 1 dt + f B — 1 () x? de
Il <1 [t > 1 1 + |<l

2

<cC, ( f_mE[ I a¢o) Hm_

2

+

< ¢, ( I_WE{ bace) 1.2+ 0 Each
< Ce Im(¢,f,g)
where Ci = Ci(T,K). From this we get
2
(3.18) EL Il q "%y(D) 1< K1 Im(¢,f,9)

and complete the proof of Lemma 3.1.

2nd step. Let Dk (k=1,2, )
d . -
of R” with smooth boundary, Dk c Dk+1
metric d by

40 -

dt + Im(¢,y,ﬁ) I

” dt
Tl
a0

2
[ et faco 12, ac )

-

2

I—p ) dt + 1.5 )

]

a

be a bounded and open subset

p, = RY,

K Define a



o T
d(p,q) = 3 min( 1, ¢ f I pCt) - aCt) ym-2 2 gt 3172 )
- 0

(D, >

k=1 2K «
for p, q € LZ(O,T;Hm—Z). Wm_z(O,T) denotes the completion of
L0, T:H"7%) w.r.t. the metric d . Put S = C(O,T;R% ) x A x
20,1 and S, = 0, TiRY ) x A x € w - 1200, TsH™ 2y 1,

For ® = ( W,u ), ml(m) and mz(ﬁ) denote the image measures of

( W,pu,a¢-,9,¥,% ) on S, and 52 respectively.

1
B.= {qe€ 20,T;H" %) ; lql < 2K M2 w210,
r %Y(T,Dk)

is compact in Wm_z(O,T), because the injection ﬁy(T,Dk) —_—

LZ(O,T;Hm-z(Dk)) is a compact operator ( cf. [17] ).
On the other hand, Lemma 3.1 asserts

PC qC*,9,y,R) ¢ Br ) < K1 (¢,f.9>Ir.

I
m .

Hence, { ml(%) , R € R ) is relatively compact by Proposition 2.3.
Moreover, { mz(ﬁ) , R € R} is also relatively compact by (2.13)

and Remark 3.3 in [18].
3rd step. Suppose %n — R Then we can choose a
subsequence (nj}, such that ml(.‘Rn ) and m2(9?n ) converge to some
J 3
probability measures m1 and m2 respectively. So their marginal
distributions on C(O,T;IRd ) X A coincide with n(®) and

L Cm @) ) = Cmy@) ) and i, (m ) =g, (my ) (Kk=1,2,520),
where

i, 1§ —— co,T;RY ) x A x LZ(O,T;Hm—z(Dk) ) and

it S, — ¢, T:RY ) x A x L20,T;H" 2D ) are the

Kk
canonical injections.

2

m ¢ €0, T:RY ) x A x L2¢o, ;8™ %) ) = 1

1
holds by (2.13).

Endowing with the metric d , we can apply Skorohod’'s theorem.
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Hence, there exist Sl-valued random variables ¢ Wn ’ﬁn ,4_ ) and
J J Jj
( W,4,4 ) on a suitable probability space ¢ Q,%,P ), such that
(3.19) the law of ( wn.’“n.'qn.) = m,( %n.)
J J J J
The law of ( W,4,4 ) = m, ( = limit measure of mCR ),
J

(3.20) with probability 1,

(I) ®# — W uniformly on [0,T]

(IdD & ——— [ weakly

M § —— 4 in ¥ 2¢0,1).

Moreover, since (3.1) implies the uniform integrability, we have

) 4 —— §|,  in L2([0.T]xQ;Hm_2(Dk))

k kK
for k = 1,2,

n.|D
J

Hence, from (I) and (I) , we see, for V z € Rd

T
(3.21) f vit)alt,z,y + W _(t),a_ Hdt
0 nj n.i

T
= I ¥(t) f alz,y + Wn(t),u) ﬁ;n (t,du) dt
0 r i j

T
_— f V() I az,y + W (t),u) o’ (t,du) dt
nj——* ® 0 r

T
= f Y(t)act,z,y + W(t),a ) dt
0

for any bounded continuous function ¥ on [0,T]. Namely, we have
(3.22) a<-,z,y+wn ,an) — 4, x, ¥+ 8 ,4)
Jj Jj
intw-1%0,T) 1.
Since En is a response for ﬁn = ( Qn . ﬁn ), we see, for any
Jj Jj J J

bounded absolutely continuous function ¥ with ¥’ € L2(O,T) and
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¥(T) = 0, and n € c;,

T
(3.23) J ¥ (t) d( q_(t),n )
0 ny

T

( an(t), Ny (t) dt

- Y)Y ¢,n) - f
0 J

T
f < D(t,y + R_(),a_ H)q_(t) , n >¢(t) dt
n. n. n.

0 J ] J

T
+ f Y(t) ( My + Wn(t))én(t) , ) de(t).
0 . . .

J J J
Hence, we get , as nj — ®
T ~
(3.24) - f C q(t), n ¥ (t) 4t
0
T _ o
= y(0)(C ¢,n ) + I <CTCt,y + WCHO,0)at) , n > ¥(t) dt
0

T .
+ f ) My + RO qet) , o ) dRt)
0

whenever supp n € Dk for some K.

(3.24) yields that q is a response for ( W,d ). Since

n¢ R,0 ) = "(R), we obtain

m, = the law of ( W,0,9 ) = ml(%) and also m, = mz(ﬁ).

This fact concludes (3.6).

In the same way we can prove (3.7). 0

. R 2 Lym-2 m-2 .
Now we will deal with L"(0,T;H > and H instead of

- -9 T -
Lw- 120,768 % 1 and tw- W2 1. Puto_=H"n HT2, v > o,
with the norm I'Ir = H'Hm + "."m-z,r‘ By applying [15], we evaluate

q(t,x) for large lzl.

Theorem 3.2 Suppose (A.4) _, . besides (A.1) ~ (A.3).

, I
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Then for ¢ € ¢r , We have
(3.25) q(-,%,v, Qn ) — q(*,9,y, &)
in law as L2¢0,T;H™ %)-r.v.,
and for any fixed t
(3.26) q(t,d,vy, %n ) — q(t,9,y, R )
m-2

in law as H - r.v.,

whenever Qn — K.

Proof By theorem 2.1, there exists a constant C depending only on

T, K, r and ¢ such that

(3.27) EI I g 1+ 1212 (D%q(t,z,8,¥,80)° dz 1 < C
R

for all t, ¢, 0 £ t < T, 0 < leel < m-2, and R € R.

Hence, we have

(3.28) E[ I p%q(t,z)% dz 1 < ————9—5—; X
lzli>p (1 + p“»

By virtue of Skorohod's theorem, there exist LZ(O,T;Hm_Z)—valued
raﬁdom variables &n and q on a suitable probability space ¢ Q,%,P ),
such that
(3.29) in and 4 have the same laws as qk ,¢,y,ﬁn) and
a( ,9,¥,R) respectively,
and with probability 1
(3.30) 4 —— 4 in L%, T;H" 2 D))
for any bounded subset D of Rd.

On the other hand , we see from (3.1)

(3.31) EI ( I (0%q(t,z))? dz ]2 1< B0 act) 1 %0 < ¢
D

for 0 < Jal £ m-2,

where C’' is independent from D, t and R.

- 44 -



Since this implies the uniform integrability, we get

T
(3.32) EI f f 0%t - p%qct, D y2 dz dt 1 —— 0.
0 D lal<m-2

Combining (3.32) with (3.28), we obtain

T
E[IIIﬁ(t)—d(t)Il?‘dt]—>0.
0 n m-2
This concludes (3.25).
For the proof of (3.26), we can apply the same argument. 0

Putting
(3.33) P = rgo @r ,

we see

Corollary 3.1 Suppose mn = (W ,u4 ) tends to R=CW ,u).

Then, under the conditions (A.1) ~ (A.3), (A.4)m_ and ¢ € ¢ ,

2

there exist ﬁn = (W ,ﬁn yand ® = (%, 4 ) , on a suitable

n
probability space such that

1) n(wn,un)=n(wn,un),n(w,u)=n(w,u)

and with probability 1,
I Qn — W uniformly on [0,T]

an — i weakly

— 4 in L%¢0,T;H™3)

>

n
(I

lo

n

W) § () —— dct) in ym-2

where én and q are responses for ﬁn and ® respectively.
Next we will study the dependence of g on the initial (¢,y).

Theorem 3.3
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(3.34) EC sup | a(t,8,9,8) - aCt,¥,7,® 1,21 <N 1o -y I,>

t<T
(¢ =0,1,-+-,m ), where N is the constant of (2.13).
(3.35) E[ sup Il qCt,é,y,,8) - q(t,é,y.,% {,% 1

1 2 ]
t<T
2
SN CL+ T, ,0@,08 )1y -y, I7)

(¢ =0,1,"++,m2 ), where N, = N,(T,K).

1 1

Proof Put p = q(*,9,y,%) - q(,¥,%,%) . Then p satisfies

the following SPDE

,
dp(t)

n
1" Mo

3, ( alice,y + W(E) 100 p(dt

a
d
(3.36) z b (t,y + W(t))3,p(t) dW(D)

0

pe0) = ¢ -~ ¥

\
Therefore (2.13) derives (3.34).
Put & = a, -9, where q; = q(',¢,yi,%). Then we have

dE(t) = (il(t)ﬁ(t) + ( tl(t> - tz(t) da,(t)rdt

+

(3.37) (M) COECH + M (E) - My(t) Dg, (B)ydW(t)

£(0)

0
where ti(t) = t(t,yi + W(t),u) and M, (1) = M(t,y, + W(t)), i = 1,2.
So (2.16) asserts

(3.38) EL sup I £Ct) 1,2

T
1 < NEIL f uctict) - tz(t))q2(t)H£2 dat
t<T )

T
_ 2
+ Io "(Ml(t) Mz(t))qz(t)"£+1 dt 1.

Thus we see, from (A.1),

(3.39) E[ sup Il £¢t) 11,2 1 < Ny ly, ~ 912 (1 + 1, .(8,F.9) )
L 1'71 2 £+2
t<T
(¢ =0,1,"+,m2 ), where N1 = Nl(T,K). 0O
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Corollary 3.2 There is a constant N, = N2(T,K) such that

2
2
(3.40) E[ sup | q(t,¢1,y1,ﬁ) - q(t,¢2.y2,@) "t 1
t<T
sN(Iy-y|2{1+min(Il¢IlzII¢II2)+sup||9('y)l|2
2 1 2 1 4+2° 2°L+2 ¥ * L+3
% 2 2

cosup S U 8. FC,y,w) 0,2, 3 + 1 &, - ¢, I )

Ty 120 i L+2 17 %2y

4 Optimal relaxed systems

m-2 Rl

Let F : L?¢0,T; H"?) —> R! and ¢ : H
be unifermly continuous with linear growth , namely
(4.1) for any € > 0 , there is & = &6(g) > 0 such that

| F(y ) - F¥,) | <& if | ¥, - ¥, HLQ(O,T; g2, <8

) - G(9y) | <& if | @, -9, i < &

| Geo m-2

1
and there is ¢ > 0 such that

(4.2) |F| < aC 1 + ¢l 2.)

L2¢0,T; H™ %)
Gy < ¢ 1 + lel__,).

For ® € R, we will define the pay-off function J and the value

function V by

(4.3) JC ¢,y,% ) = E[l FC qC,%,%,% ) + G(C q(T,é,y,%) )

and
VC ¢, ) = inf JC ,¥,R )
® € R
respectively. Then Theorem 3.2 and Proposition 2.3 assert the
existence of an optimal relaxed system. Now we have

- 47 -



Theorem 4.1 Under the conditions (A.1) ~ (A.3) and (A.4) ,, there
exists an optimal relaxed system ®* = ®R*(¢,y) for ¢ € & ( see (3.33)
), namely,

(4.4) VC o,y ) = JC ¢,y,% )
holds. Moreover, for any r > 0, we can choose ®*(4,y), so that

n( ®*(d,y) ) is a Borel map from LI RY into 2¢ CLO,T1 x A ).

Proof Suppose %n — R . Putting a, = q(-,¢,y,9Yn ) and

q = q(,%,¥y,R), F( a, ) and G( qn(T) ) converge to F( q ) and

G(C gq(T) ) in law respectively. On the other hand, (3.1) derives
2 T 2
sup E[ F(q ) 1 £ C,( 1 + sup EI I I a_¢t) | dt 1 ) ¢ =
n n 1 n 0 n m-2

Thus, the uniform integrability asserts
“E[F(q) 1——ElLFCaq) 17
In the same way we can prove
* EL G( qn(T)) ] — E[l GC q(T) 17
Hence, J(¢,¥,®) is continuous in &. Thus, Proposition 2.3
concludes (4.4).
For the proof of the latter half, we apply the same arguments as
[28, Chap. 12 1. Putting
(4.5) X(¢,y) = { TR ; V$,¥) = J($,¥y,R) },

we show the following lemma.

Lemma 4.1 ¥(#,y) is non-empty and compact

Proof Y¥(¢,y) is non-empty by (4.4). So we will prove the

closedness of X(é,¥). Suppose n(%n) € I(¢$,y) and converges to

- 48 -



nT(R) weakly. Then J(¢,y,%n) — J($,¥,R).

Hence J(¢,%,R) = V(#,¥), namely, n(R) € X(¢,¥). 0

Let ¢n — ¢ in ¢r and yn — Y. Suppose n(%n) € I(¢n,yn)
and n(%n) — n(R) weakly. Then we will show n(R) € ¥(¢,¥%),

which completes the proof.
4.6) | I .y R D - J,y,B) |
<1 I,y .20 - JG,y,% 0 |+ | J,y,2) - 1,9, |
We see, from (3.1), (3.40) and (4.1), the following:
(4.7) 1st term of the right hand side of (4.6)
< 2g + E[ | F¢ a(® ¥ R ) ) - FCa@s,y,R) ) I 5 A3

n

+ El | G¢( a(T,8 ¥ R ) ) = GC alT,¢,¥,R ) ) [ B, ]

<28 + C (1 + "¢n"m—2+ H¢Hm_2){|yn -yl + H¢Hm) + H¢n - ¢Hm_2}15

with C1 independent from € and n , where

A
n

m-2.> 8 }

ChaGnv,. 20 - a@.9.8) Hi20,1; 42

and

Bn {0 q(T,¢n,yn,%n) - q(T,¢,y,%n) IIm_2 > 8}
Since J(¢,y,®%) is continuous in ® , (4.6) and (4.7) yield
(4.8) J(¢n,yn,%n) — J(9,¥,R)

Using “ | V(¢ ,4 ) - V(¢,y0 | £ sup | J&_,¥ .% - J¢b,y, % | » ,
n "n QGER n-"n

(4.7) derives
(4.9) V(¢n,yn) — V(¢,%)
Thus, we have

J(¢,%,%) = lim J(¢n,yn,$n) = 1lim V(¢n,y ) = V(,¥)

n — o n — o n

Namely, n(®) € ¥(¢,y).

Therefore we can take a Borel selector Sr of X(¢,¥), i.e.
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Sr : ¢r X Rd — ®(C CL[O0,T] X A ) , Borel map, such that

Sr(¢’y) € X(é,y) ([28] Chap.l2).
So Sr(¢,y) = n( ®*(é,¥) ) holds. This completes the proof of
Theorem 4.1. 0

Since a relaxed control turns out to be an admissible control
under the Roxin condition, we can get an optimal admissible control.
Now we introducc the convexity condition for coefficients of (2.1).
Put ey, w) = ( @i ,y,w , FiC,y,uw 5 1,5 = 0,-+-,d ) and
Cy,I) = { ey,uw) ;s u €Tl
Convexity condition ( Roxin condition ) For any vy € Rdl, C(y,I) is
R(d+1)(d+2))

a convex subset of C( Rd ;

Endowing with the compact uniform topology on C( Rd s R(d+1)(d+2))

we have

Proposition 4.2 Under the convexity condition C(y¥,I’) is compact and

convex.
Proof ¢(y,*) is continuous in T. Since I' is compact, C(¥,[)
is compact. a

Let us set ¢(:,y,v) = f e ,y,u) vdu) for v € (M),
r

namely, &(-,¥,v) = € dC+,¥,v) , FC ,¥%,v) ).

Putting '(y,v) = { u €T ; G(,y,v) = c(+,¥%,U) }, we see

Proposition 4.3 F'(y,v) is non-empty and compact.



Proof Since C(y,[) is convex and compact, ¢(-,y,v) € C(y,[).
So T(y,v) # ¢ . Now we will show that I'(y,v) is closed.
Suppose un € I'(y,v) and un -— U. Then c(',y,un) _—

el ,y,u). Thus e(:,y,u) = ¢ ,¥,V). This completes the proof.
Again appealing to [28, Chap. 121, we see

Proposition 4.4 There exists a Borel selector § of T(y,v),

i.e. 8 : RY x 'y —— I Borel map , such that S(y,v) € I'(y,v).

Proof Suppose v, v weakly and vy —— ¥ . Then

(4.10) | 5($,yn,vn) - é(z,y,v) |
< I | e(z,y_,u) - ez, ¥y,u) | dv_ + | é(x,y,v.) - ¢(z,¥,v) |
r n n n

< sup | c(z,y ,u) - c(z,¥,u) [+ | 5($,y,vn) - clz,y,v) |

T, U
holds. By the uniform continuity of ¢ , the first term tends to
as n — =, The second term also tends to O by the assumption
“ v, —— Vv weakly ”. Hence, as n —— o |

| 5(',y,vn) - 8¢ ,y,v) | —— 0 uniformly in any compact set of
Rd, by virtue of uniform continuity of ¢ . This derives
(4.11) 5(~,yn,vn) — G(*,¥,V) , as n —— ®© ,
Suppose un € F(yn . vn) tends to u. Since e(',yn,un) —_—

el ,y,u), (4.11) yields “ u € I'(y,v) ™. This concludes

Proposition 4.4. d

For & = ( Q, ?,?t,P,w,u ), we define an ?t—adapted process U by
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(4.12)  UCt) = Sy + W(t) , o' (t) ).

Then we have

(4.13) C(T,y + W(t),u' (t)) = e(z,y + W(t),UCt))
and

(4.14) T(t,y + W(t),u ) = L(y + W(t),U(t)).
Hence, @ = q( ,¢,%,R) satisfies

dg(t) = Ly + W(t),UCt))qt)dt + M(y + W(t))aq(i)dW(t)
(4.15) q(0) = 4.
Since (4.15) has a unique solution, q turns out to be the response
for the admissible system 4 = ( Q,?,?t,P,W,U ).
Although an admissible system can be regarded as a relaxed

system, we denote the pay-off function by J(¢,v,d), stressing an

admissible system 4. Recalling Theorem 4.1 , we get

Theorem 4.2 Supposing (A.1) ~ (A.3), (A.4)m_ and the convexity

1
condition, there is an optimal admissible system «4*, for ¢ € @,

such that

(4.16) V(¢,y) = inf J(b,¥,d) = J($,v,4%).
. ‘ 4 €U

Proof Put U¥(t) = S(y + W (t),u* (t)) for an optimal relaxed
system ®* = ( Q,?,?t,P*,w*,u* ). Then 4% = ¢ Q,?,?t,P*,w*,U* )
satisfies

(4.17) V(8,y) = J(&,¥,%*) = J(d,y,4%) 2 inf J(d,¥,4)
4 € U

Since * V(¢,y) < inf J(d,y,4)” , (4.17) derives (4.16). 0
4 €

For Sections 5 and 6, we will introduce a subsidiary relaxed



system. R =( W,u ) is called a constant relaxed system , if
p ( t,du,e ) = v(du) for any t and o . In this case, we will call u
a constant relaxed control v and denote ® = ( W,v ). Stressing

the terminal time T, we put
(4.18) F(T,¢,y,v) = J(T,9,y,1) , if ' =v ( € 2(I) D

v(T,%,y)

inf }(T’¢Qy,\))
v € 2N

I(T,9,¥y) = (v € (") ; v(T,d,y)> = S(T,%,¥y,v) }.
Appealing to the fact * mn = ( wn’vn ) converges to & = ( W,v )

iff v, —— v weakly ¥ , we get

Theorem 4.3 Under the conditions (A.1) ~ (A.3) and (A.4)m_2 ,

X(T,9,y) is non-empty and compact. Moreover, there is a Borel

selector 9T r of ¥(T,d,y), for ( ¢,y ) € ¢r X Rd.

We consider the following usual pay-off function for the Bellman

principle.

m

Let h ¢ H —zx Rd e Rl be quadratic growth and satisfy (4.19),

namely,

2 2
| h¢ ¢,y ) | <C (1 + Il _, + lyl® )

and
(4.19) | h¢ $,.9,) - h( 9,,9,) l

< (B N, + UB,0 208, = 6,0,y l o+ 1y, Dy, -, ]
By ¥ we denote the set of functions g : H™ x Rd — Rl , which

satisfy (4.20) and (4.21) below,
2 2
(4.20) | geo,y) | < cg( 1 + u¢nm_2 + lyl® )

and
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(4.21) for any € , b > 0 , there is 6 = 8(g,b,g) > 0 such that

3

- m d
for ( ¢,,¥,) € By ( = { (¢é,¥y )€ H xR ; H¢Hm_2< b, 1yl < b} J
| g¢ $,.¥) - 8C 8,,¥y) | < &
holds, whenever H¢1 - ¢2Hm_2 < & and Iy1 - y2I < 8

Define J and V by (4.22) and (4.23) respectively,
t

(4.22) J(t,9,y,R,8) = E[I h(gq(s),y + W(s))ds + g(q(t),y + W(t))]
0

where q = q( ,¢,¥,®), and

(4.23) V(t,#,y,8) = inf J(t,9,y,R,2)
% € R

For a constant relaxed system, we define ¢ and v in the same way.

Proposition 4.5 JCt, , ,R,g8), V(t, -, ,8), $Ct, -, ,%,8> and
v(t,*,*,8) belong to ¥, whenever g € 4.

Proof From (2.13), we see
t 2 2
(4.24) | J(t,8,9,®%,8) | < EL cf (1 + gl o+ 1y + W(s)I®)
0

£ C L+ a2 o+ 1y + w12 )
< Clt,e 1+ 1812 o+ 1912 )
where C(t,g) is independent of R. So J, V, # and v also satisfy
the quadratic growth condition (4.20).
Recalling Corollary 3.2, we will show (4.21).

Put q; = q( ,¢i,yi,ﬁ) for ( ¢i,yi) € Bb' Then we have

t
(4.25) EIL f | h(gq,(s),y, + W(s)) - h(g,(s),y, + W(s)) | ds 1
0 1 1 2 2

la, ¢s)ll_,la, (s) — g, ()l o+ ly, + Wis)lly, - y,l dsl

t 2
<C E[f 2
0 i=1

" Mo

1

2 ¢ ¢
< c( S ( EC f la, (s>1%_,ds1 212 ¢ EC f la, (s> = a,ysd03_jas 1)1/
i=1 o ! m 0 m
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2
+ 2 Clygl e VDl - 3, )

< Cl(t) (1 + bl ( |y1 - y2|(1 + b) + lle, - oI )

1 2" m-2

2 olp-2?

(4.26) EL[ | gCq, ),y + W) | 5 g, <Ol 5 > n ]

2
< Cl(t) (1 + )" ( Iyl -y, + "¢1 - ¢

<€, B L+ Moy (OIZ , + 1y, + wen 1?5 g (ol , >0
< cg[E[ 1w g, (OIE )+ 1y, wct)|41]1’2 (E[Hqi(t)ﬂi_z /nzl]llz
< Cyg, )1+ 1812 o+ 1y 12y 1 a8, o+ 1yl )in
< Cg(g,t) (1 + b))%
(4.27) EL | &g(q;(t),y, + W(i)) | 5 1y, + WCt)1 > n ]
< Cg, )1+ I 1%+ 1y 12 5 1yl + /T )in
< C(g, ) 1+ b)%n
Taking a large enough n = n(g,b,t,g) such that
(4.28)  ( Ca(g,t) + Colg,t) (L + b)% < en/4,
we get
(4.29) | J(t,9,,¥,.8.8) - J(t,8,,¥,.8,8) |
t 2 2
< EIC 0i§1"qi(8)"m‘2"q1(5) - qz(s)um_2+i§1|yi + W)y, -y, | ds]

+ E[ | g(ql(t),y1 + W(t)) - g(qz(t),y2 + Wt | o IIqi(t)Ilm_2 < n,
Iyi + W(t)l ¢<¢n, i=1,21 + g.
From the continuity condition (4.21) for g, we see

(4.30) the middle term of the right hand side of (4.29)

2

g+ 20,01+ 20° ) PCla () = quCt) I

2
2 2
C 0 8°(E,n, 8 1,

> 8(g,n,g) }

<g+ 20,1+ 2n?

) EIL "ql(t) - q2(t) I
whenever Iy1 - y2I < d(g,n,8).

Using (3.48), (4.29) and (4.30), we can choose a positive constant
¥ = 3(t,e,b,g), independent from ®, such that

(4.31) | Jct, e R,2) - J(t,¢2,y2,m,g) | < g,

liyli
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whenever (¢, - ¢, 1 < & and Iyl - y2I < 3.

1 2'm-2
Since | V(t,8.,9,,8) - V(t,9,,9,,8) |

< sup | JCt,8,,y,.8,8) - J(t,9,,9,,8,8) | .
R € R
we can complete the proof. 0

Now, applying arguments similar to (4.6) ~ (4.9), we get the

following theorem.

Theorem 4.4 Under the conditions (A.1) ~ (A.3) and (A.4) there

m-2°

exists an optimal relaxed system ®*(é,y¥) , such that n( ®*(é,y) ) is

Borel measurable w.r.t. (¢,y) € ¢r X Rd , 1.e.

J(t,d,y,%*(d,y),g) = inf J(t,9,¥,R,8)
® e R

Example quadratic loss.
I) Put h(¢,y) = ﬂ¢ﬂ2(= ﬂ¢"g ) and g = 0. Then h satisfies (4.19).
So there exists an optimal relaxed system ®* = ®¥(d,y) , i.e.

T 2 T 2
min E[ f I qCt,é,v,®% 112 dt 1 = EI f I qct,é,v,®%) 1 dt 1
0 0

® € R

I) Put h = 0 and g(¢) = H¢H2. Then g € ¢ . So there exists

an optimal relaxed system X = Feod,y), i.e.

12 12

min EC | a(T,9,¥%,%)
® eR

] EL I q(T,%,%,%)

]

5 Approximation

In this section, we will show that there exists an approximate
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optimal control, which is adapted to a Wiener process.

We call ® = ( W,u ) a step relaxed system, if p’ (t) =
uw' ([t/AJA) with a positive A , where [ ] = Gauss symbol.
By RN we denote the totality of step relaxed systems with

A = 2-N . For 4 we define an approximate derivative u; as

follows:
2% ¢ t-27", t) x +) for t > 271

(5.1) u’(t,-) = _ _

n t7luc to,t) x - ) for t < 277,
Put

, N k -k
(5.2) “n,k(t’ ) = un( [27°t12 —, )

t

and “n,k( [0,t] X A ) = IO un,k(s,A) ds.
Then, for a suitable sequence k(n), n = 1,2,-++ , we have, w.Dp.

(5.3) — u weakly.

Fn,k(n)

Hereafter we consider a pay-off function J as (4.22).
Therefore, (5.3) yields

(5.4) V(t,$,y,8) = lim inf J(t,9,v.R,2).
N oo R

Putting

(5.5) QN ={®R=(W,p)€R, ;uis¥ - adapted },

we have

Theorem 5.1 Under the conditions (A.1) ~ (A.3) and (A.4)  ,,

we have , for ¢ € ¢

(5.6) inf J(t,¢,y,R,g) = inf J(t,¢,7,R,8).
mN giN

Proof Since WN c mN , it is enough to show



(5.7) J(t,¢,y,R,g8) = inf J(t,9,¥,R,2) for V & € RN.
N
Putting A = 2”N and jA < t £ (j+1)A, we will evaluate I,

defined by (5.8),

t
(5.8 I = EL I h(q(s),y + W(s))ds + g(aq(t),y + W(t)) | & 1
iA

ja
where g = g( ,9,¥,%). Under the conditional probability
PC - I?jA),Wj(°)=W( -+ A ) - W( jA ) becomes a new
Wiener process which is independent of ?jA and p’ (8 + jA ,°)
= u' (jA,*), 0 £ 8 £t - jA , can be regarded as a constant
relaxed control. Moreover, the uniqueness of solution derives
(5.9) q(8+jA,8,y,%) = q( 0, a(jA,d,¥,R) , ¥ + W(jA) , p' (jA) )
for 0 £ 8 < t - jA,
Hence, we see |

(5.10) I =2 inf Ft - jA , a(jA,d9,¥,R) , ¥ + W(iA) , v , &)
v € 2(IM

= v(t - jA , q(ja,s,¥y,R) , ¥ + W(iAY , g ).

Defining v(s) : § —— @ by v(s,*,g) = v(s)g, we see from (5.10)
ja

(5.11) J(t,d,v,%,2> 2 EL I h(q(s),y + W(s)) ds
o

+ v(t - jAYg( q(jA) , ¥ + W(iA) ) 1.

By the same argument, we calculate E[ --- | ?(j—l)A ] and obtain
(i-1A

(5.12) J(t,¢,¥,R,8) = EI I h(g(s),y¥ + W(s)) ds
0

+ vAYU(t - jAYgC qQ((i-1YAY , ¥ + W((ij-1OA) ) 1.
Repeating this evaluation, we get
(5.13) J(t,8,¥,R,8) = vi(A)v(t-jAIg(8,y).

holds. Then (2.14) asserts that
0

q(t,d,y,R) € ¢r w.p. 1, whenever ¢ € wr for r £r

We assume that (A°4)m—2,r

0 According
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to Theorem 4.3 , we can take a Borel selector gr(t,g) of
X(t,d,¥,8) = { m(R) ; v(t,9,y.8) = J(t,¢,¥,R,8) }.

Let ( Qi,fli,Pi ) , i =1, *+- ,(j+1l) be a probability space and

wi be a Wiener process on it. Let us set
i+l j+1 i+l
Q= " Qi s, F = W ¥, ,P= T Pi and
i=1 i =11 i=1
wl(t) for 0 <t ¢ A
(5.14) W) wl(A) + Wz(t—A) for A < t < 2A

.....................

J
> W a) + W (t-3jA) for jA < t < (j+1)A.

k=1 i+l
Then W becomes a Wiener process on ( Q,?,?t,P ), where
F, = 0,(W). Fixv €XI@n, ¢ ,79, w3 la)u(t-jarg ) arbitrarily

and q1 denotes the solution of (5.15).

dg,(t) = I(y + W(t),v )q,(t)dt + My + W(t))a, (t)dW(t),
1 1771 1

(5.15)

ql(O) = ¢ 0 <t <A,

So q1 is W - adapted.
Put v2 = Qr(A,vJ_Z(A)v(t-jA)g(ql(A),y + W(A) ) and q2 denotes the
solution of (5.16).

dqz(t) = T(y + W), )qz(t)dt + M@y + W(t))qz(t)dW(t),

2
qz(A) = ql(A) A <t < 24,

(5.16)

Putting v3 = 9r(A,vj-2(A)v(t—jA)g(qz(ZA),y + W(2A) ), we repeat

the same argument. Now define ua’ by

(5.17) w' (t) = v for t € [ (k-1)A , kA ).

k
Then ' is W - adapted and & =¢ Q,?,?t.P,w,u ) € ?N .

Moreover, putting q = on [ (k-1)A , KA ), we get

y

t
(5.18) E[ f h(q(s),y + W(s))ds + g(a(t),y + W(t)) ‘ ?jA ]
A
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t
E[ I h(g. (s),y + W(s)) ds + g(q.(t),y + W(t)) J

v(t- jA)g(a(ja),y + W(jA)),

ia
E[ I h{a(s),y + W(s))ds + v(t-jA)g(q(jA),y + W(jA))| 7(
(J-1DA

= v Qv lt- ja)gla((j-Da),y + W((j~-1)a)) ,

i-1aA )

and so on . Thus, we have

t
(5.19) J(t,¢,y,%,2) = E[I h(g(s),y + W(s))ds + g(q(t),y + W(t))]
0

t
EL E( I h(q(s),y + W(s))ds + g(q(t),y + W(t)) | ?jA J
ia

iA
+ I h(q(s),y + W(s))ds 1

0
ja
= EI[ h(q(s),y + W(s))ds + v(t-jA)g(q(jA),y + W(jA))
0
(j-1)a
= EL h(a(s),y+W(s))ds + v(A)U(t-jAYg(q((j-1)A),¥y+W((j-1)A))]
0

viimrvct-jiarg 4,y .

From (5.13) and (5.19), we can conclude (5.7). |
Recalling (5.4), we obtain

Corollary 5.1 Under the same condition of Theorem,

(6.20) V(t,¢,y,g) = lim inf J(t,9,v,%,8)
N —x ﬁN

holds. In the other words, there is an approximate optimal step

relaxed system, which is adapted to a Wiener process.

Using Chattering lemma [ 6 1 , ® € ?N can be approximated

by admissible controls which are adapted to a Wiener process.
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Hence, putting

ﬂN =UAnN ?N = {4 = (W,U) ; U is W-adapted and U(t) = U([2Nt]2_N) }
and 7 = "1 ﬂN’ we have
Corollary 5.2 Under the same condition, there is an
approximate optimal step system £ € 7
6 Bellman Principle
Now we are ready to prove the Bellman principle. For ¢‘€ ¢r and
4d = (W,U) € ZN’ we will evaluate (6.1)
(6.1) J(s + t,9,v,4,8)
t
= E( f h(q(8),y + W(8))do
0
t+s
+ EL h(q(8),y + W(0))d8 + g(q(t+s),y + W(t+s)) | 7t ] ).
t
Since wt(-) = W(- + t) - W(t) is a Wiener process independent

from ?t , we see
(6.2) conditional expectation of 2nd term > V(s,q(t),y + W(t),g)
w.p. 1.
This asserts
(6.3) J(s + t,¢,y,4,8) 2 J(t,q(t),y + W(t), & , V(s, ,8))
2 V(t,q(t),¥y + W(t),V(s, ,g)).
Now Corollary 5.2 yields
(6.4 V(s+t,d,y,8) 2 V(t,q(t),y + W(t),V(s, ,g)).
Next we will show the converse inequality of (6.4), by a standard
argument.

Let yr(¢,y) denote a Borel selector of X(¢4,¥) = { n(R) ; V(s,9,%,8)
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J(s,9,¥,%,8) }. For any 4 = ( Q,?,?t,P,W,U ) € ﬂN, we put

0 = C([O,s];lRd ) X A, W first coordinate function

4 = 2nd coordinate function , ¥ = o¢ W,u ) , %, = T4 W,u )
Q* = Qx8, 5 =F x7Z.
Define P* by

(6.5) P*C ( W,u ) e B | Fo) =9 .Calt,8,y,d) , ¥ + W(E))(B)

namely,

P*(( W, ) €¢ B,( W,u) € C) = f g .« qlt,?,¥,4) , ¥ + W(t))(B) 4P.
{ ( W,u ) € C}

Hence, W is a Wiener process on ( Q*,%*,P* ) , independent from W.

Thus, putting

W8y , 06 <t
W(0) =
W(t) + Weo-t) , t £ 6 < s+t

d () . 0 <t
u*(e’.) = { ~U(9)
ué-t,-) , t <0 < s+t

x _ X x
99 = ae( wh,ut ),
we see ®* = ( W*,u* ) € R and its response q* satisfies

t+s
(6.6 EC h(q*(8),y + W(0))d0 + g(q*(t+s),y + W(t+s)) | 7£* 1
t

Vs, q(t,d,y,4) , ¥ + W(t), &)

V( s, q(t,s,¥,%%) , v + W(t), g ).
Therefore,

(6.7) J(s+t,d,y,%%, ) J(t,d,y,%%,V(s,",8))

J(t,o,y,4,V(s,°,2))
holds. This asserts
Vis+t,d,v,8) < J(t,9,y,4,V(s,°,8)).

Again, Corollary 5.2 concludes the converse inequality of (6.4).
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Thus, we obtain

Theorem 6.1 Under the conditions (A.1) ~ (A.3) and (A.4) _ we

2’
have

(6.8) V(t,*,g) € € whenever g € ¢,

and the Bellman principle holds, i.e.

(6.9) V(s+t,d,y,g8) = V(t,¢,¥,V(s,",8))

for ¢ € & and g € ¥

Remark The Bellman principle is formulated by some nonlinear group

[213.

7 Applications
1) Temperature control. Let us consider a heat systems in a
random medium. The field of temperature q(t,r) is governed by
the following SPDE,

da(t,z) = ( Ag(t,z) + f(z,U(t))) dt + g(z)dW(t), t > 0, T € Rd,
with the initial data q(0,z) = ¢(x), where A is the Laplacian
operator for £ and W a d-dimensional Wiener process. So the
temperature is controlled through the external force f(z,U(t)). The
problem is to minimize the deviation of temperature distribution from
the assigned distribution m at a given time T ( c¢f Y. Sakawa [271 ),
namely, the pay-off function J is defined by
|2

JU) = EIL f d | q(T,z) - m(x) dz 1.
R

Hence, Theorem 4.4 concludes the existence of an optimal relaxed

control, if f and g satisfy the condition (A.4)1.
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2) Nervous system. In Chap. 3 of [29], Walsh deals with the

following SPDE as the dynamics of nervous system,

2
dqgq(t,z) = ( Q—f q(t,z) - q(t,z) Ydt + ( q(t,z) - g(x) YAW(t),
oz

0<z <L, t >0,
with Neuman boundary condition, where W is a one-dimensional Wiener
process, and also considers the barrier problem.
Since a medical treatment acts an external force, we will here
consider the following SPDE as its variant,
a2

dq(t,z) = ( =—5 q(t,z) - q(t,x) + f(z,UCt)) >rdt
az2

+ Calt,z) - g(z) HdwW(t), z e R, 0 < t <,
q(0,z) = ¢(x).
Although we want to keep q(t,T) near an assigned level X at a given
spot ¥, we need some smooth modifications. For given two positive

constants b and ¢, we put

1 (64
p(t) = e I q(t,y + z)dz
-C
and
1 , T ¢ (X -Db, x +Db)
h(z) = ";m, X -b<z<2A
z 5 X, A<z <A+ b

T
Now the problem is to minimize EL I h( p(t) ) dt 1 and our theorems
0

are applicable.

3) Stochastic control with partial observation.
Let B and B be independent Wiener processes with values in

Rd and Rd respectively. Suppose that the d-dimensional state



process X and the d’ -dimensional observation process Y are
governed by the following stochastic differential equations
( SDE in short ) with bounded and smooth coefficients:

dX(t) = PC X(t),Y(t),UCt) ddt + o X(t),Y(t),UCt) )dB(t)
(7.1) + b(C X(t),Y(t) YdB(D),
X0 0<CtxT

I
See

and
(7.2) dY(t) = £( X(t) ) dt + dB(t) , Y(0O) = 0O,
where U is an admissible control. So in our model, the state
and observation noises may not be independent.

Let h and G : Rd X Rd/———% Rl, be bounded and Lipschitz
continuous. The problem is to minimize the pay-off function J,

defined by

T
(7.3) J@) = EI I hO X(Ct),Y(t) ) dt + GC X(TY, Y(T) ) 1
0

by a suitable choice of U.

In the customary version of stochastic control with partial
observation , U(t) is a function of the observation process
Y(s) , s £ t namely, admissible control in the stricf sense. Here
we treat some wider class of admissible controcls, according to [ 7 1,
as following:
A= ¢ Q,?,?t,ﬁ,B,Y,U) is called an admissible control system, if
(I> (Q,7,%,,P) is a probability space , with #, = ¢, ( Y,U)
(I> Y is a d'-dimensional 7t— Wiener process
(I U is I'-valued process
(V) B is a d-dimensional Wiener process on Q , independent
from C Y,U ).

Let £ be a random variable independent from ( B,Y,U ) and ¢
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be its probability density. For an admissible system A, we

consider SDE ,

dX(t) = (v X(1),Y(),UCt) > = b X(t),Y(t) YE(XC(E)) Hdt
(7.4 + o X(E),Y(t),UCt)y )dB(t) + b X(t),Y(t) dAY(t)
X(0) = E.

Put

t t
(7.5) p(t) = exp{ f f(X(t)) dyct)y - % I |f(X(t))|2 dt }
0 0

and define a new probability P by
(7.6) dP = p(T)dP.

Then Girsanov's theorem asserts that, under the probability P,

t

B(t) = Y(t) - I f(X(s)) ds , 0 £t £ T, turns out to be a
0 )

Wiener process independent from B, and ( X,Y ) satisfies (7.1)

Moreover, the pay-off function J(U) of (7.3) can be written by

T
J(A) = EI I hX(),Y(t))p(t) dt + GX(T),Y(T))p(T) 1
0

°

where E means the expectation w.r.t. P .

On the other hand, A = ( Q,?,?t,ﬁ,E,Y,U ) derives an
admissible system 4 = ( Q,?,?t,ﬁ,Y,U ), and an admissible system
turns out to be an admissible control system, when we add an
independent Wiener process B . For 4 = ( Q,?,?t,ﬁ,Y,U ), we

consider SPDE,

dg(t)
(7.7)

LCY(E),UCt) dalt) dt + MC Y(t) Jq(t) dY(t)

1

a0) = ¢ (€ H )
where
d 9 P) d g
(7.8) L(y,u)q = § 3% aij(',y,u)%.q - g 3z, @ wWD
i,j =1 j i i =1 J
MEyrq = - %

9
b ( ,y)gziq + ?k( ,¥)q

i 1
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alz,y,u) = ( bz, Yb*z,y) + alz,y, W™z, y,u) Y2

d da. .
5j(x,y.u) = v @y,u - § aacfl(x,y,u)
i=1 i
and
d abik
?k(z,y) = £,(2) -i E , 3%, (z,¥).

Then , under the conditions (A.1) ~ (A.3) , J(A) can be

represented by

T
(7.9) J(A) = EI I C h(,Y(t2),aCty H)dt + € G(-,¥Y(T)),a(T) ) 1
0

Now we have the following theorem, appealing to Theorems 3.1

and 4.2.

Theorem 7.1 Suppose (A.1) ~ (A.3), (a.4)1 and the convexity
condition for the coefficients of the SPDE (7.7). Then, for ¢ € ¢,
there is an optimal admissible control system A*, namely

(7.10) J(A*) = inf J(A)
A

Appendix

Let us prove Lemma in Section 3. Here we use the following

notations, according to [141]:

= i .. i a: oo =
For o = ( i, iy ) , D 9, 2. , lal L

€ - (4 el <

(?t] is the binomial coefficient
I )

Cfor v = Cyp,orydy ), 0§, <, )
lil = 0 for i =0 , =1 fori=1,"-,d

I---dz stands for I .
Rd

‘dz and hereafter N NZ,--- denote

19
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constants depending only on K , T and ¢
assumed to be summed from 1 ( not O ) to 4

We will estimate the principal part of J defined by (1).
For u € C,( Rd) , we put

0
(1> J = 3
lvli<e

= - 2 I a'd 9.y o.u dz
i %j

I ( -2 Dy(aijaju)Dyaiu + 3 Dy<bieiu)ny(bjaju) } dz

£+ 3 ¢ -2 Do, wp¥8,u + 3 DY b8 WD BB W ) g,
1<lyl<e 1 ! ]
where a'd = ag'd - % pl-pd

Using integration by part, we get

2) f -2 DY(aiJaju>DYeiu az

= I -2 alip¥s u DY, u dz + 2 3 (g) f p%gld DBaiS.u pYu dz
J o+B=y . J
feel =1
+ 23 (;J I Daaiaij DBS‘u pYu dz
a+B=7y J
leel =1
+ 23 ;) f p%g ! DBaia.u p¥u dz
o+p=7 1
lal=2

Appealing to “IB8| +1 £ & in the 3rd term and 8] + 2 < £ in the

4th term” ,

< 1st term + 2nd term + N1 Huﬂi
since DY( b'8,u) - b'D¥8.u is independent of the ({+1)-th
order derivative of u , we obtain, in the same way as (2),

(3) f 3 DY(bieiu)'DY(bjaju) dz

f 3 | biDYOiu v ( DY(biaiu) - biDyaiu y 12 4z

f 3 bip¥9.u-»3Dp¥8 u dz + f & 3 (V)D“biDBa.u-bjDYa.u dz
1 J o+B=y o 1 J
lee 121

I 3 | DY(biaiu) - biDyaiu 12 az

+
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2
Hth

< 1st term - 6 > [YJ I %ply . pd DBaLe.u pYu dz + N
8 o i’ 2
|

o+8=y
lal=1

= 1st term -3 3 (Y) f p%pi-pdy pfa.5.u DYy dz + N, nuu%.
a"'B y 04 1 ]
leel=1

(1>,(2) and (3) yield

J< -2 3 I ald Dyaju Dyeiu dz

lyl<g
+2 2 > [;) f p%atd Dﬁaia.u p¥u dz + NSHuH%.
1lyi<i ax+8=v .
lal=1
On the other hand,
orij B 2 ~ij B B
| D& D 8i8ju | < N, @ D aiaku D Sjaku
S B . 14
< N, > a D eiu D Sju

lvisi
. ~ij 2 od . ~ij -
holds, by virtue of a € C°(R™) and matrix ( a ) 20,

( see Lemma 1.7.1 [211 ).

Noting 2 labl < Szlal2 + |b|2/82, we get

I < CNg g2 -2y 3 I ald Dyaju DY, u dz + ( N
lrise
So J £ N7 Hu“i holds , putting 82 = 2/N5

2 2
3 * N6/8 )Hu"t.

Applying the same calculation to the other terms, we can

4+1

prove Lemma for u € Cg(Rd). Since Cg(Rd) is dense in H , We

can conclude Lemma by the routine method. 0
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CHAPTER 3

On the Cauchy problem for non-linear stochastic partial differential

equations with continuous coefficients

Existence Theorem

§ 1 Introduction
The subject of this chapter is to show the existence of solutions

for the following non-linear stochastic partial differential equation

derived by white noise:
(1.1) dudt) = ( Audt) + F(u(t)) )dt + Gut))dw(t),

where A 1is a second-order elliptic differential operator, F and G
are continuous operators from L2( Rd ) to itself and W(t) 1is a one
dimensional Brownian motion,

A solution u(t) of the problem is sought in the space of Sobolev
type Hm(Rd) ( for the precise definition of solution, see § 2
Definition 2.1 ).

When F and G satisfy the Lipschitz condition and A is
uniformly elliptic, Pardoux [23] and Walsh [29] proved the existence
and uniqueness of the solutions for (1.1) by Picard's method of
successive approximation. But, if F and G are merely continuous,
Picard's method is not effective. To overcome this difficulty, we
approximate the equation (1.1) by Cauchy polygon ( see § 3 (3.4) )..
Moreover, in our problem, the operator A may be degenerate.

This chapter is formulated as follows. In Section 2 we state our

problem and recall some results in our convenient way. Section 3 is

._70_



devoted to the proof of existence theorem [ Theorem 3.1 1. In

Section 4 we prove a sort of stability on the perturbation of

coefficient.

§ 2 Preliminaries

Let us define an operator A by

d d
(2.1) Au(z) = 2 8.Ca..(m)d.u(x)) + 2 b.(2)8.ulz) + e(x)uld)
. e i ij ] s i 1
i,i=1 i=1
where 9. = g i =1,---,d
i azi ’ * O
2

We denote by Lr , 20, the space of real valued Borel

functions on Rd with the norm defined by

= ( f g 1 1212772 reen? az )1’2
R

Let H"
r

Ilfllo’r

be the subspace of Li consisting of functions whose
generalized derivatives up to the order m belong to Li.

Clearly H? becomes a Hilbert space with the inner product

1]
C f.9 ) . > _T_LEL;E_ I g 1+ lez)rDaf(x)Dag(x) dz,
’ leel<m ¢ e e ! R
where o0 = ( al, s ,ad ) is a multi-index with non-negative
. 1 d
integer al, el = al + e+ ad and D% = (%— )a e (Q— ]a .
z oz
1 d
2 _ ~ 2 _ .2 m _ .M
Let us set "f"m,r = ( f,f )m,r and, for r = 0, Ly = 1%, Hy = HY,
(',')m’O = (',')m and "'"m,o = "'"m , for simplicity, if no confusion

occurs.

We consider the following equation



du(t) =  ACudt)) + Fu(t)) Hdt + Gult))dwW(t)

(2.2)
ueo) = u 0< &t T

)
where F and G are operators from L2 to itself and W(t) is a

l1-dimensional Brownian motion.

Definition 2.1 By a solution of the equation (2.2), we mean an
Hl—valued process u = ( u(t) ) defined on a probability space

,( Q,7,P ) with a reference family ( ?t ) such that

(I) there exists a l-dimensional ( ?t J-Brownian motion W = ( W(t) )

with W(0)

it

0
(I u = C udt) ) is adapted to ¢ ?t ) and

El I Hu(t)ﬂlz dt 1 ¢ =
0

@

(T for any n € CO( Rd Yy ( Cm—function on Rd with compact support )

and almost all t € [ 0,T 1,

t

(2.3) C ult),n )0 = ( Uy N )O + IO < A(u(s)) + F(u(s)),n >O ds
t
+ f ( G(u(s)),n )0 dW(s)
0
_ . L -1 {+1
holds, where <-,->£ = the duality pairing between H and H under
Y = (vt »* ( = the dual space of HY ) £ = 0,1,2,-++ , namely
< A(udt))y + Fu(t)), n >£
d d
= —i jgl ( aijaju(t),ain Yy * i§1( b8, ult),n ), + C cult),n ),



+ ( F(udt)),n )t'

To emphasize the particular role of ( ?t )-Brownian motion

W= ( W(t) ), sometimes we call the pair ( W,u ) itself a solution of

(2.2).

Now we introduce the following conditions.

(A.1) The functions aij’ aiaij’ bi’ ¢, (i,j=1,*--,d ) and their

derivatives up to the order m do not exceed K in absolute value.

(A.2) alj = aji ( 1, = ls"'rd ) and (aij )i,jzl,...,d 1s a

non-negative definite matrix.

(A.3) F and G are continuous operators from L2 to itself with linear

growth.
Hereafter we always assume “m 2 2 " .

The following Lemma is proved by Krylov & Rozovskii [14].

Lamma 2.1 ( the special case of Lemma 2.1 of [14]1 )
Under the conditions (A.1) and (A.2), there exists a constant a,

depending only on K and m in (A.1), such that

(2.4) < Au,u >, < ,\Ilull{2 for Vue ™! (4 =0,1,---,m>).

Now we consider the following equations.

du(t) C Au(t)) + £(t) HXdt + g(t)dw(t)

(2.5) weo)

u 0 <Ct<T

0

According to Krylov & Rozovskii [14], we see the following



proposition.

Proposition 2.1 ( Krylov & Rozovskii )

Let f£,2 € LZ¢( Q x (0,T) ; H™ ) be adapted to ¢ F, ) and

uO € L2( e ; Hm Y, ?O—measurable. Then (2,5) has a unique solution
u, which belongs to L2¢ Q x (0,T) ; H" »nL?¢( @ ; cco,7;H™ L) ), ana

satisfies

(2.6) sup E[Hu(t)"tzl < &°T

2 T 2
¢ Etlugl,®1 + EI f NEcon,? at
0<t<T 0

T 2
+ EI I Hg(t)n{ dt 1y , &€ = 0,1,-++,m,
O .
where C depends only on K in (A.1), and

t
2.7y luct)l,? = fluol,? + 2 j < Au(s) + £(s),u(s) >, ds
L ole o ¢

t

t
v 2 f C g(s),uls) ) ,dWls) + f ug(s)u£2 ds,
0

0

for te€0,T1, £=20,1,--,m1.

Moreover the solution u of (2.5) satisfies the following equation:

t

(2.8) ( u{t),n ){ = ( uo,n )£ + I < Au(s) + f(s) , n >£ ds

0

t
+ f ( g¢s) , n ){ dwW(s),
0

for t € [ 0,T 1, n € cg(Rd>, L= 0,1, ,m1.

Sketch of proof For € > 0, define the operator A8 by (2.1) with aij

replaced by aij + s&ij . We consider the following equation.
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du(t) ( Asu(t) + £(t) )dt + g()dW(t)

(2.9)

u(o) u

0

By Theorem 1.1 in [11], the equation (2.9) has a unidue solution u8

which belongs to LZ¢ @x¢0,T) ; H™1! yarL2¢ Q ; c¢o,T;H™ )and
satisfies,

2 2 t
(2.10) lug¢o)l % = Hugh 2 + 2 f0< Agu(s) + £(s5) , u_(s) > ds

t

t
+ 2 f Cg(s) , u_(s) )_ dW(s) + f lges)l 2 ds.
0 € m m

0

By Lemma 2.1, there exists a constant A such that
2 m+1
(2.11) < Asu , U >m < AHuHm for any u € H and 0 < € £ 1.

Hence, Gronwall's inequality yields

T
(2.12) sup EI ||u8<t>||m2 1< P DT gy lluollm2 1+ ch NECol % dtl
0<t<T 0
T 2
+ E[I Hg(t)"m dtl }, for 0 < Vg < 1.
0
So, there exist a subsequence. { u8 }) and u € L2( Qx(0,T) H” )
n

adapted to ( ?t ) such that

(2.13) u, — u weakly in L2¢ @x¢0,T) ; HM

) as Sn — 0.
n

By the same argument as the proof of Theorem 1.3 in [22], we can see
that u is a solution of (2.5).

Moreover, using a routine method we can prove the unigueness of
solution of the equation (2.5).

Furthermore, by (2.12) and the uniqueness of solution, for each t €

[ 0,T 1, there exists a subsegquence { u8 () } such that
n



(2.14) u, (1) —— ult) weakly in L2 ; u"
n

).

Combining (2.14) with (2.12), we get (2.6).

§ 3 Existence of solutions

Besides (A.1) ~ (A.3), we assume the following conditions.
(A.4) The restrictions of F and G on H" operate to itself and satisfy
the linear growth condition ( see (3.2) ).
(A.5) For some r > 0, the restrictions of F and G on L? operate to
itself and satisfy the linear growth condition ( see (3.3) ).
-Namely, there exists a constant L such that

(3.1) HH(u)H02 < L(1 + ||u||02 ) for Vu € L ( by (A.3) )
(3.2) llH(u)llm2 <L(1 + ﬂuum2 > for VYu € H"
(3.3) W2 < L1+ lul2 ) for Yu € L2

o,r o,r r

where H = F, G.

(A.6) u, € Hani, where r is the same number as in (A.5).

Theorem 3.1 Under the conditions (A.1) ~ (A.6), the equation (2.2)

has a solution which belongs to L2( Qx  0,T ) 3 ™
AL2¢ Q 5 ¢co0,T:H™ ) ) and satisfies
(3.4) E[ sup NuCt)l 2 1 < NC 1 + Hunll 2

* m O'm !

0<t<T

where N depends only on K, L in (A.1), (A.5) and T.

Proof of Theorem 3.1 We divide the proof into two steps. In the

first step, we construct an approximate sequence of (2.2) and show
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the preliminary lemmas. Let us define an approximate sequence un (

= 1,2, ) of (2.2) by

dun(t) = ( Aun(t) + F(un(tk))dt + G(un(tk))dW(t)
(3.5)
20 = u t € ¢ttty 1, k=0,1,",n-1
n ¢
where tk = kT/n.

On each small interval ( tk ,tk+1 J, k= 0,1,*++,n-1, we can

apply Proposition 2.1 . Hence we can construct the solution of
(3.5) which belongs to L2( Q@ x ¢ 0,T > Hm ). For the approximate

sequence un , n=1,2,+-, the following facts hold.

Lemma3.1 There is a constant N, depending only on K, L in (A.1),

(A.5) ( resp. ) and T, such that

(3.6) sup EI uun(t)llm2 1 < NC 1+ lluollm2 ), n-=1,2,
0<t<T

(3.7) sup Ef Hu_ ()l %2 1 < NC1 + fu . ? ) no=1,2

: n(th, oo , 2,

0<t<T

T
(3.8) EI f lu (t) - T_()l.2 dt 1 <
0 n - n 0

where un(t) = un(tk) , t €[ tk’ tk+1 ), k = 0,1,+-°,n-1.
Lemma 3.2 There is a constant N, depending only on K, L in (A.1),

(A.5) ( resp. ) and T, such that

2
NC1 + Jlu.ll )
(3.9) EI f Iun(t,x)lz dr 1 < g 0,r
lzt > p 1+ p° )

]
r
for any t € [ 0,T 1, n = 1,2,*-+, p > 0.
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First we introduce two spaces %Y(D) and ﬁY(D,T). Let D be a
bounded open subset of Rd, with smooth boundary. Define %Y(D) and
ﬂy(T,D) as follows ( cf Lions [17] ).

(3.10) %Y(D) = { ¢ € L2(—m,w;H1(D)) ; I Itlz”ﬂé(r)nx2 dt < ® }

-—0
with the norm

xQ

@an e 12 o - f loct)l 2 gt o« f 12V 16 (0 152 dt
Y - H™ (D) -

2]

‘where, for simplicity, we put ¢(t) = f exp(-2nitt)@(t) dt and ll-llx =

norm of ¢ HL(D) )* ( = dual space of H (D) under HO(D) = H®(D))* )
and

(3.12) ﬂy(T,D) = { ¢'[0,T] i @ € %y(D) )

with the norm

(3.13) Il ¢ H% (T.D) = inf( I ¥ Hﬁ (py > @ = ¥ a.e. on [0,T1 }
: y Y

respectively.

Lemma 3.3 For any fixed ¥ € ( 0,1/4 ),
(3.14) u € ﬂY(T,D), w.p. 1, n=1,2,°""
holds and there is a constant N, depending only on K, L in (A.1),

(A.5) ( resp. ) and T, such that

2
(3.15) E[ | ] < NC1 + "uO"m ),

'un"xch D)
.Y ’

for any subset D of Rd and n = 1,2,-+-

Proof of Lemma 3.1 Since u_ is the solution of (3.5), Proposition

2.1 derives,



2
(3.16) sup EI Hun(t)ﬂm 1

tkststk+l
t
CT/n 2 k+1 2 2
< e { EL Hun(tk)ﬂm ] + It E[(HF(un(tk))Hm + IIG(un(tk))llm Yldt}
k
2LT CT/n 2LT CT/n 2
< s + (1 + o de EL Ilun(tk)llrn }J, ( by (3.2) )
where C is independent of k = 0,1,*++,n-1 and n = 1,2, "

Hence we have

(3.17) max sup EL Ilun(t)llm2 1
0<k<n-1 tkStStk+1
2LT .n _CT
g2t crm (1T ) e . (1 + ZET 0 LTy 2
n 2LT CT/n n O'm .
(1 + T ) e -1

Since the right hand side of (3.17) is a convergent sequence of n =
1,2,-++, we get (3.6).
Using Ito's formula to (2.7), we have

4 4
(3.18) EL lu ()0," 1 = EL lu (£ 00," 3

t
2
+ 4 Et It Ilun(s)ll0 < Aun(s) + F(un(tk)).un(s) >, ds 1

k

0

t

+ 2 EI f Hun(s)H02 uG(un(tk))uO2 ds 1
t
K

t
+ 4 EL I ¢ Gu_(t,)),u_(s) )02 ds 1
t R
K

t t
4 4 ' 4
< BC uy (el 1+ EI It IFCu (t,000,% ds + 3 E ItHG(un(tk))HO ds1
k K

t
+ ( 41 + 6)EI f Hun(s)HO4 ds 1
b
for tk <t < tk+1’ k=0,1,y,n-1, n=1,2,+-"
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So Gronwall's inequality yields

(3.19) sup EL Hun(t)H04 1
bo<tst

kSt
t
(4X+6)T/n 4 k+1 4
<e CEL B el s ft EC IFCu ¢, 0 0,% 1ds
K
+ 3 ftk+1E[ IGcu b .21 ds )
. Unttx? g s
K
k=0,1,<+,n-1, n = 1,2,

By virtue of the assumption (3.2), we can apply the similar argument

to (3.6) and obtain (3.7).

Put vn k(t) = un(t + tk) - un(tk), 0 £t £ T/n. Then v

’

n,k
satisfies the following equation.

dvn,k(t) = ( Avn,k(t) + Aun(tk) + F(un(tk)) Ydt
(3.200 + G(U_(t,))dW, (t)
v .€0) = 0 nookTTK
n,k
where Wk(t) = W(t + tk) - W(tk). So Proposition 2.1 yields
(3.21) sup EC an k(t)IIO2 1
0<t<T/n ’
T/n
CT/n f 2 2 2
< e o El HAun(tk)HO + lIF(un(tk))lIO + llG(un(tk))IlO 1ds
CT/n
N e T 2
< o {1 + EL[ Hun(tk)Hz }
where N and C are constants independent of kK and n. Combining
(3.21) with (3.17), we get (3.8). This completes the proof.

Proof of Lemma 3.2 We define the operator A by

(3.22) Audz) =

1l Mo

d.C a. . ()d.ux )
0 1 1] J



where 80 = identity

a;; = ay; Ci,j = 1,-++,d )

_ d

ag; = bj - . § 1 aj Ry 3 =1, sd )

_ d

ag = - y E . a;, Ry (i=1, yd )

_ d d

o0 T €~ « E lbk R * k.2 §  Gxt By B
and

I‘:L‘k
R () = —————  (k=1,""+,d).
1 + |zl

Then

< AC Ru ), n > = < ACu), Rn >, for any u € H' and n € C:( R4 Y,

where R(z) = ( 1 + |zl T2

Hence qn(t) = R un(t) satisfies the following equations.

dqn(t) = an(t) + RF(un(tk)) ydt + RG(un(t ))dW (L)

k
(3.23)

qn(O) = Ruo t € ( tk s tk+1 I, k = 0,1,°--,n—1.

( See Krylov & Rozovskii {15] Theorem 2.2 ).
By virtue of the assumption (3.3), we can repeat the similar
argument to (3.16)~(3.17) and obtain

(3.24) EIL an(t)H02 1 < N( 1+ uRuOuo2 )

for any n = 1,2,*++, and 0 £ t < T.

This yields (3.9) and completes the proof.

Proof of Lemma 3.3 Put £ (t) = F(En(t)) and g (t) = G(Hn(t)).



For the convenience, we extend un(t), fn(t) and gn(t) on ( ~®,® ) in
the following way,

h(t)

h¢t) , t €[ 0, T
= 0 , t € ( = | ©» ) N T O, T
where h(t) = un(t), fn(t), gn(t).
Since u_ is a solution of (3.5), applying Ito's formula to (2.8),

we obtain

(3.25) 2nit ( un(t),n )1 = ( uo,n )1 N un(T),n Y,exp(-2nitT)

1

T
Ad
n

+ < (t) + fn(r),n >+ I exp(-2miti) C g (t),n ) dW(t),

0
© d

for any n € CO( R™ .

Let nj € Cz( Rd ) , j=1,2,+++, be a complete orthonormal system of

Hz. Using (3.1) and the similar evaluation to (3.17) in which m is

replaced by 0 , we have
(3.26) 4n’c’EL Md_(o)1,7 1

2.2

= 47T 2

EL | ( un(t),nj)1 1= 1

(U oV I

1

2
< Nl(

T
2 o 2 2 2 2
HuOHO + Et"un(T)Ho + "Aun(r)ﬂo + "fn(t)ﬂo + joﬂgn(t)ﬂo datl }

2 AN 2 2 2
< N2( 1 + "uO"O + EL ||Aun('c)||O + "fn(t)ﬂo 1}

Hence for any fixed x € ( 1 , 3/2 ),

(3.27) I E[ |t|2yﬂﬁn(r)H02 1 dt

<]

® 2
< EI I_mﬂun(t)ﬂo dt 1+ Ny f

2
" 2 21t
EC Hun(r)HO ldt + I Ef —————————

i (ol ? 1 dr
fel>1 1 + Itl

ltli<1

@«

dt
- 1 + |7l

2

C1 o+ Tughy™ o

K
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® 2 . 2
. f_mE[ lau (1,2 + 1E 1,2 1 at )

2
< N4( 1+ "uO"m ) ( by (3.6) ).

This concludes the Lemma.

Second step: Let Dk = { z € Rd s lzl <k} Ck=1,2,-°* ).

Define a metric d by

dtp,a) = 3 —- minC1, JT I pCt) - act) b o o atat/Z
k=1 2 0 Kk

for p, q € L2( O,T;Lz(Rd) ). ¥(0,T) denotes the completion of

L2¢ 0,7;L2(RY) ) with respect to the metric d . Put S =

C(0,T;R »yx¥r¢o,T). u(n) (n=1,2,-+« ) denote the image measure of

( W,un ) on § where W 1is a l-dimensional Brownian motion appeared

in (3.5).

B = { q€¥(,T) ; lal < (250012 w2 1,2,

o] #Y(T,Dk)

is compact in ¥(0,T), because the injection %Y(T,Dk) _—
L2( O,T;Lz(Dk) ) is a compact operator ( c¢f Lions [17] Chapitre ¥

Proposition 4.1 ).

On the other hand, Lemma 3.3 asserts

NC 1+ ||u0||m2 )
P B < , = 1,2,
( u ¢ o ) 3
By Prohorov's theorem, { u(n) : n = 1,2,-+-+- } is relatively compact.

Hence there is a subsequence {n’} and a probability measure 4 on S
such that { p(n’) }n’ converges weakly to u . Moreover, by
Skorohod's theorem, there exist S-valued random variables ( Bn”qn‘ )

and ( B,q ) on a suitable probability space ( @,%,P ) such that



(3.28) the law of ( Bn”qn’ ) = u(n'),

the law of ( B,gq ) = 4 ( = the limit measure of { u(n’) }n’ )

and, with probability 1,

(3.29) Bn’ — B uniformly on [ 0,T 1
(3.30) q, — q in ¥(0,T)

that is,

) for Yk = 1,2, --.

(3.31) q_, —— q |, in L2¢ (0,T) x D

X K k

Since (3.7) implies the uniform integrability of

D

T
2
{ foﬂqn,(t)HLz(Dk) dt )n’zl’ we have

(3.32) q ,I — g in Lz( d x (0,T) x D, ) for Yk = 1,2,
n Dk Dk k
Hence,
. T 9
(3.33) EI I I lg¢t,z)|" dz 4t 1
0 vlxl >p

T
= lim lim  EI[ f f lqn,ct,m)l2 dz dt 1
k — o n’ 0 Yp ¢ |

— o zl ¢ k
2
TNC 1 + HuOHO r )
< ) ; s, ( by (3.9) ).
(1 + p~ )

(3.32) and (3.33) yield that q € L2( @ x (0,T) X Rd ).
Furthermore, combining (3.9) and (3.33) with (3.32), we have
(3.34) a, —— q in L°CQ x 0,1 x RY ),

Moreover, by (3.8), we get
(3.35) T, —— a in LZCQ x 0,1 x RY),

where En,(t) =aq, (t) if t €0t k = 0,1, ++,n-1.

kK * tker 7o
Hence there exists a subsequence { n’’ } of { n’ } such that
(3.36) T_,, (t) — at) in L2C R ) for almost all (o, t).

Since F and G are continuous, we obtain
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(3.37) FC g, (t) ) — FCa(t) ) in L2¢ rY
and

—_ . 2 .d
(3.38) GCq_,, (1) ) — GCact) > in LZCRY )

for almost all (w,t).

1

By (3.7) and the linear growth condition (3.2), { IIF(En,,(t))IIO2 Y

and { HG(En,,(t))IlO2 )n” are uniformly integrable on § X (0,T). So
we get

(3.39) F(3_,, (1)) — Fa(t) in L7 @ x 0,1 x RY)

and

(3.40) G(@@_,, (1)) — Gty in L2 2 x 0,1 xR ).

On the other hand, combining (3.6) and (3.34), we can take a

subsequence { n’’’ } of { n'’ } such that

. 2 .o
(3.41) Qe T 4 weakly in L°C @ x (0,T) ; H” ).
Particulary, we can see that q € L2( 0 x (0,T) ; Hm .

Let ¢ be an absolutely continucus function from [0,T] into Rl,
. , 2 _ @ d
with ¢’ € L"C (0,T) >, ¢(T) = 0 and n € CO( R™ .
Since ( Bn”’ s Qe ) is a solution of (3.5), the following

‘equality holds.

T -
(3.42) o0 ( uy 5 N )O + IO P{t)< Aqn"'(t) + F(qn"'(t)) s N Dy dt

T
+ f @I G, ,, (8)) , n )y dB,,, ()
0

T
+ f ¢ (1) qn,,,(t) s 1Y, dt = 0.
0

By (3.29), (3.39), (3.40) and (3.41), we can take the limit in

L?( @ ) weakly and obtain



(3.43) 0(0)( u

0

T
L )0 + I ©(t)< Aq(t) + F(q(t)) , n >, dt
0

T T
+ f et GGa(t)) , n )O dB(t) + f o (X q(t) , n )0 dt = 0.
0 0

By the same argument as the proof of Theorem 1.3 in [22], we see that
(B, q ) is a solution of (2.2). Since the solution gq €

m

L2( (0,T)x ; H" ), Remark 1.1 in [14] asserts that q €

L2¢ 0 ; cco,T;H™ 1y ).  Moreover, by Theorem 2.2 in {1531, we obtain

(3.44) E[ sup Hq(t)“m2 1
0<t<T

2 T 2 2
< NgClugl 2+ EL Io( IFcaco)l 2+ lacacent ? ) at ]

2

< N6( 1 + Iluollm ).

This completes the proof.

§ 4 On the convergence of solutions
In this section we will show that the solution of (2.2) has a sort
of stability property on the perturbation of coefficients. For n =

1,2,+++, we suppose that

ai? ’ bln ’ cn : [Rd—‘)IRl ( ls.] = 1;.'.td ))
F, G : t2crYy —— 12¢rYH,
uon € Hm

satisfy the conditions (A.1) ~ (A.6) with the same constants as K, L,

and r in (A.1), (A.5) ( resp. ). Define an operator An by (2.1)

with aij . bi , ¢ replaced by ai? . bin , e respectively.

Now we consider the following stochastic PDE:
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du(t)

( Anu(t) + Fn(u(t)) )dt + Gn(u(t))dW(t)

(4.1)n n

0

u(0> u 0<t<<T

Let ( wn s un ) be the solution of (4.1)n.

Theorem 4.1 Suppose that

(4.2) ai?(m) — a; (@), b, "(z) —— b, (z) and (@) —— e(@)
as n —— ® for Vz € Rd, i,j=1,++,4d,

(4.3) F () — F(w) and G (1) —— G(w in r?2¢ Y )

as n — o for Yu € Lz( Rd ),

(4.4) u o, u weakly in Hm as n —— o

and llu o,r * n=1,2,--+, are bounded,

(4.5) { Fn } and ( Gn } are equi-uniformly continuous.

Then there exist a subsequence {n’} and S ( = C(0,T;R) x #(¢0,T) ) -
valued random variables ( W , u ) on some probability space such
that ‘

(4.6) ( wn s u ) —— (W, u ) in law as S - valued random

variables.

Moreover the limit ( W , u )Ais a solution of (2.2).

Proof Since the constant N appeared in Lemma 3.1, 3.2 and 3.3
depends only on K, L in (A.1), (A.5) and T , by the similar

calculation in § 3 , we can obtain

92
(4.7) sup EI Hun(t)ﬂm2 1SN L ™ %, 0= 1,2,
0<t<T
(4.8) sup E[ lu ()i P 1 <N 1+ 0w ™%y, n=1,2
. n¢t2 o g™ s 12,000

0<t<T



N C 1o+ llu ™
2 0 O,r
(4.9) EL f Iun(t,z)l dr 1 < D) T s

lzl > p 1+ p"
for any t € £ 0, T 1, n=1,2,+*, p > 0.

and

2

(4.10) EIL ”unnﬁy(T,D)

I <N C1 + Huo m

for any bounded subset D of Rd and n = 1,2,+--

Hence, by the same argument as the proof of Theorem 3.1 ( see (3.29),
(3.34) ), we can obtain a subsequence {n’} and S - valued random
variables ( Bn’ I ), ¢ B, g9 ) on a suitable probability space
such that

(4.11) the law of ( Bn’ , qn, > = the law of ( wn, s un, Y,

(4.12) Bn' — B uniformly on [ O , T 1, w. p: 1,

2

T
(4.13) EIL I g, (t) - q(t) "0 dt ] — 0
0 n

as n/ — =,

So, there exists a subsequence {n’’} of {(n’'} such that

2 7

] ——— 0 as n’'—— o«

(4.14) EL | qn,,(t) - q(t) "0
for almost all t € [ 0 , T 1.
Fix t € [ 0, T 1 which satisfies (4.14). For each & > 0, by

(4.5), there is a & > 0 such that

(4.15) | Fn(u) - Fn(v) "O < g forllu-wv “0 < 8 and n = 1,2,++-
Hence
(4.16) EL | F_,, Ca_,, () - F_,, @ct) 1%

2 2 I
£ 8% + EL | Fn"(qn"(t)) Fn,,(q(t)) "0 An,,(S) 1, for V¥n ,
where An,,(a) = { | qn,,(t) - q(t) "O =8 ).

From (4.14), we get

1
52

2
0

(4.17) P( An,,(5) ) € EC | qn,,(t) - q(ty | ] — 0
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Moreover, by the linear growth condition for Fn" and (4.8),

2 . . .
| Fn,,(qn,,(t)) Fn,,(q(t)) "O )n" is uniformly integrable.

Hence

2
0

On the other hand, by (4.3) and the uniform integrability,

2
0

Combining (4.19) with (4.16) and (4.18), we get

(4.18) E[ " FnAl(qnll (t)) - Fnll (Q(t)) " Anll(a) ] _— 0.

(4.19) EC | Fn"(q(t)) - F(qdt)) | ] — 0.

) e 2 .
(4.20) EL | Fn,,(qn,,\t)) Flgd{t)y) it ] — 0
for almost all t € L 0 , T 1J.

Furthermore, (4.8) and the linear growth condition yield that

{ EC |l Fn,,(qn,,(t)) - F(g(t)) H02 ] )n" is uniformly integrable on
L o ,T 1. Hence, we get
T 2
(4.21) EI I Il F_,,(a_,, (t)) - Flg(t)) | dt ] — 0
0 n n 0
By the same argument,
T 2
(4.22) EI f h G.,,¢a_,,(t)) - GGa(t)) | dt ] — 0.
0 n n 0

On the other hand, combining (4.7) with (4.13), we can take a
subsequence {n’’'’'} of {n’’}) such that

(4.23) a_,,, —— a weakly in L% @ x 0,7 ; H" ).
Repeating the same argument as (3.42) ~ (3.43), ((4.12), (4.21),
(4.22) and (4.23) yield that ( B, q ) is a solution of (2.2).
Thus we obtain the subsequence { ( wn,‘, s un,,, ) }n"‘ which

converges to a solution ( B, q@ ) of (2.2) in law as S - valued

random variable. This completes the proof.
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