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Preface

This thesis ié written under the subject “Knotted 2-spheres and tori in the 4-sphere”
to be submitted for the degree of Doctor of Philosophy at Kobe University. An n-knot is a
pair (S™*2, 5™} determined by either a smooth or piecewise-linear locally flat embedding
of an n-sphere S™ in the (n + 2)-sphere S™*2. 1-knot theory, what is called classical knot
theory, has been studied extensively. 2-knot theory has been also studied by many people
and many results are known, though some fundamental properties still remain unsolved.
2-knot theory may be extended to the knot theory of surfaces in the 4-sphere. Although it
is expected that the knot theory of surfaces in the 4-sphere is more complicated than that
of 2-spheres, few examples and constructions are known.

In this thesis, we shall study knotted 2-spheres and tori in the 4-sphere which are
obtained from classical knots and links having cyclic periods by symmetry-spinning. The
process of spinning was first defined by Artin [Ar] in 1925. It is the most geometrically
appealing way to construct a 2-knot from a classical knot. There are several descriptions
of the Artin spin. We may describe it as follows. Let (S3, K) be a 1-knot. Choose a
small 3-ball B_ which meets K in an arc K_ such that (B, K_) is homeomorphic to the
standard ball pair. Removing Int(B_, K_) from S® gives a knotted ball pair (B, Ky).

Then the Artin spin of K is the 2-knot
(S* oK)= 0(By,Ky) x B> Us (By, K1) x 0B

Fox (cf. [Fo]) considered a modification which combines the spinning process with
a simultaneous rotation of K about its axis. This operation has come to be known as
twist-spinning. Let m be an integer. Take an unknotted arc A in By with 94 = 9K .
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The axis A is oriented so that the orientations induced by A and K, on their common
boundary coincide. Let fy : By — B4 be the rotation through ¢ radians about A in the
positive meridian direction. Then
(S*,7™K) = 8(B4,K4) x B? Up (B+ x98% | (fmo(Ky) x {8}))
0<o<2r

is a 2-knot, called the m-twist-spin of K. Note that the 0-twist-spin is the Artin spin.
Twist spins have been studied by Zeeman [Ze], and he proved the remarkable result that
every m-twist-spin (m # 0) is fibered. The knot k is fibered if the exterior X (k) is a fiber
bundle over the circle, that is, X (k) is the mapping torus of a homeomorphism of the fiber.
More precisely, the main result of [Ze] asserted that the m-twist-spin of a 1-knot K is a
fibered 2-knot in $* with closed fiber X,,(K), the m-fold cyclic branched covering space of
S3 over K, and with closed monodromy the canonical generator of the group Z,, of cyclic
branched covering transformations. In particular, if m = 1 we have X;(K) = $3 and
the 1-twist-spin is always trivial, since it bounds a 3-ball. (The process of twist-spinning
generalizes to higher dimensions and Zeeman proved a corresponding fibration theorem,
too.)

In [Fo] Fox introduced another variation of the spinning process, called roll-spinning,
but he only gave a picture of rolling the figure-eight knot and showed that the roll spin
of the figure-eight cannot be obtained from the figure-eight by twist-spinning. (But his
knot was later shown to be obtained from the trefoil by twist-spinning [N-TJ].) To be exact,
Fox’s roll-spun figure-eight is the symmetry-spun figure-eight using period 2 in terms of
Litherland, as stated below.

Subsequently, Litherland [Li 1] gave a reformulation of twist-spinning and a precise
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definition of roll-spinning, and further, he introduced a general process, which is called
deform-spinning. The notion of deforming the knotted arc K, during the spinning process
may be expressed as follows. Let fy : By — By (8 € I) be an isotopy rel 8B, such that
fi(K+) = K4. Such an isotopy is also called a deformation of (B4, K). Then the 2-knot
8(By, K4) x B?Us (B+ x 0B, | J (fo(K4) x {6))
ser

is the deform spin of K corresponding to f = {fs}, where a circle is identified with R/Z.
He considered “untwisted” deformations and showed that, provided that one combines the
untwisted deformation with a twist, the resulting knot is again fibered. Symmetry-spinning
is an example of deform-spinning given by Litherland. It can be defined for 1-knots having
cyclic periods, and it may be considered as a generalization of roll-spinning. Roughly
speaking, the deformation of the knotted ball pair corresponding to symmetry-spinnig is
derived from the periodic homeomorphism which acts on (53, K).

For other formulations and extensions, see [G-K], [P]], [Mo].

Imitating the construction of deform-spun 2-knots we can form the deform-spun torus,
however few results are known.

Let (53, K) be a 1-knot. Removing a small 3-ball disjoint from K gives a pair (B3, K).

Then the knotted torus
(S* F(K)) = (B® K) x 8B* Uy S* x B?

is called the spun torus of K. Livingston [Lv 1] proved that if K is nontrivial, the spun
torus of K is irreducible, that is, it is not equivalent to the connected sum of any 2-knot and
the standardly embedded torus in S*. In fact, Livingston used the spun tori to construct
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knotted surfaces of arbitrary genus in S* which cannot be written as the connected sum of
a knotted surface of lower genus and an unknotted surface. Boyle [Bo] studied a method
of obtaining knotted surfaces in S* by attaching 1-handles to a given knotted surface.
This method was studied by Hosokawa and Kawauchi [H-K] before. Boyle defined the
spun torus and the twist-spun torus in terms of 1-handles, and showed that the nontrivial
spun torus is irreducible while the twist-spun tori are not necessarily irreducible; e.g. the
2-twist-spun torus of a 2-bridge knot K is a connected sum of the 2-twist-spun 2-knot of

K and the unknotted torus.
For other works on knotted surfaces, refer to {As 1], [Li 2], [Lv 2], [P-R], [Km].

Recall that a knot is fibered if its exterior is a fiber bundle over the circle. 1t is known
that a fibered knot has nice properties from a geometric and algebraic viewpoint, and so
fibered knots give a very important special class of knots. In particular, the fiber of a
fibered 2-knot is a 3-manifold. It makes the study of fibered 2-knots of great interest from

the viewpoint of 3-manifold theory as well as 2-knot theory.

In 1986, when I was in the first year of the graduate school, I studied fibered 2-knots
in S* (or more generally, a homology 4-sphere) with fiber a punctured lens space or a
punctured connected sum of lens spaces. A lens space is a 3-manifold having a Heegaard
decomposition of genus one. There are two reasons for selecting these fibered 2-knots.
One is that any 2-knot with Seifert surface a punctured connected sum of lens spaces is
determined by its exterior [Gl]. The other is that the diffeotopy groups of all lens spaces
were computed by Bonahon [Bn] and Hodgson-Rubinstein {H-R]. I proved that any fibered

[+]

2-knot with fiber a punctured lens space L{p, q)° is the 2-twist-spin of the 2-bridge knot
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S(p, q), and in general, any fibered 2-knot with fiber a punctured connected sum of r-copies
of L(p, q) and cyclic monodromy is the r-cable knot about the 2-twist-spin of S(p, ¢). These

results were arranged for my first paper [Te 3].

In January, 1987, following advice of my supervisor Professor Fujitsugu Hosokawa, I
began to study Fox’s paper [Fo] and Litherland’s paper [Li 1], which dealt with deform-
spinning. Litherland showed that if a 1-knot K is a torus knot then the deformation group
is generated by the twist-spinning deformation. In other words, we can obtain only twist
spins from a torus knot by deform-spinning. Using the moving picture method, I showed

that any symmetry spin of a torus knot is a certain twist spin [Te 1], [Te 2].

The moving picture method is a classical and fundamental method to study 2-knots,
however its effect is not made clear sufficiently. In [Ka 3], Kanenobu remarked that the
3-twist-spun trefoil, Fox’s roll-spun figure-eight, and the knot “K,”, which is constructed
by Kanenobu in [Ka 4] using the moving picture as an example of 2-knot whose knot
group has an element of order 4, have isomorphic knot groups, and asked whether they are
equivalent. I gave an affirmative answer by using the moving picture method in cooperation

with Nakanishi [Te 1], [Te 2], [N-T].

A prism manifold is a Seifert fibered manifold with orbit-manifold S? and with three
exceptional fibers of index corresponding to the triple (2,2, o) with & > 1 (cf. [Ja], [Or]).
Broadly speaking, a prism manifold is obtained from a twisted I-bundle over the Klein
bottle by gluing a solid torus along its boundary. Asano [As 2] and Rubinstein [Ru] inde-
pendently determined the diffeotopy groups of prism manifolds. Not all punctured prism

manifolds can be embedded in S* as fibers of fibered 2-knots. A punctured prism man-

6



ifold can be embedded in a homology 4-sphere as a fiber of a fibered 2-knot if and only
if @ = 2 [Te 2}, [Yo]. There is an important infinite series of prism manifolds My, whose
fundamental groups are Q(8) x Z;, where Q(8) is the quaternion group of order 8 and
d is an odd integer. We may express M  as the Seifert fibered manifold with invariants
{x(d - 3)/2; (01,0);(2,1),(2,1),(2,1)} (cf. [Or]). Morichi [Mr] ;ealized a smoothly em-
bedding of every Mg in S*. He has used an idea due to Hosokawa and Suzuki [H-S].
Thus there exists a 2-knot in S* which admits MJ as a Seifert surface. Does there exist
a fibered 2-knot in S* (with the standard smooth structure) whose fiber is M3? It may
be impossible to decide whether Morichi’s 2-knot is fibered, because his construction relies

heavily on a moving pictorial description.

The existence of such a fibered 2-knot is full of meaning. Hillman [Hi 1] determined
all the 2-knot groups with finite commutator subgroup. Let 7 be a 2-knot group with
commutator subgroup =’ finite. Then #' & G x Z; where G = {1}, Q(8),the generalized
binary tetrahedral group T'(k) or the binary icosahedral group I*, and (d, 2|G|) = 1. When
G = {1} all the groups are realized by the 2-twist-spins of certain 2-bridge knots. The
commutator subgroup of the 3-twist-spin of the trefoil is (8). (In fact, its fiber is M7.)
Yoshikawa, [Yo] has shown that the direct products of T'(k) and I* with cyclic groups are
realized by the 2-twist-spins of certain pretzel knots, however for the remaining groups
Q(8) x Z (d > 1) he only got fibered 2-knots in homotopy 4-spheres. These groups cannot

be realized by twist spins (cf. [Hi 2}).

On September 9, 1987, Professor Taizo Kanenobu told me that he obtained a fibered
2-knot in S* with fiber M¢ from the figure-eight by symmetry-spinning at the R.I.M.S.
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in Kyoto University. Kanenobu has used the surgery description technique due to Rolfsen
[Ro] to identify the fiber, and showed that there exists a fibered 2-knot in S* with fiber
M? or My, [Ka 1}. His idea motivated me to try it independently, and I obtained the
same result (cf. [Te 2]). In my Master Thesis [Te 2], I had expected that we can obtain a
fibered 2-knot with fiber M3, M7y by symmetry-spinning 73 knot, 84 knot, respectively. It
seemed to be difficult for me to identify the fiber, because of its very complicated surgery

description.

On February 21, 1988, I was successful in deciding the fiber. The result was for my
expectation. Reconsidering Litherland’s proof [Li 1], I became aware that one can make
use of a tower of branched coverings to decide a fiber. These results were arranged for my

second paper [Te 4].

Since then, my attempt to get a fibered 2-knot with fiber M for other value of d failed
many times. Litherland defined the process of symmetry-spinning for 1-knots having cyclic
periods, but he studied only the case of a single cyclic period. I have studied the case of
two cyclic periods. On May 14, 1989, I got a fibered 2-knot with fiber Mg, M3, or M2, by

symmetry-spinning certain pretzel knots [Te 5].

I might expect that there exists a fibered 2-knot with fiber M3 for any other value
of d, and so that the remaining groups Q(8) x Z; are also realizable by smooth (fibered)

2-knots in the standard S*, but I have been unable to prove this at present.

When a deformation is untwisted in terms of [Li 1], the resulting deform spin is not
always fibered. Roughly speaking, an untwisted deformation of (S, K') preserves a Seifert

surface for K. Therefore an untwisted deform spin of A has a nice Seifert (hyper)surface
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derived from a Seifert surface for K. Of course, if a 1-knot K is fibered, then any untwisted

deform spin of K is always fibered.

In the autumn of 1988, I studied untwisted deform spins of 2-bridge knots of genus
one by symmetry-spinning of period 2, and computed Alexander modules by constructing
the infinite cyclic covering spaces. Before long I got Kanenobu’s preprint {Ka 2}, which
dealt with untwisted deform spins, in particular symmetry spins of 2-bridge knots of genus
one and pretzel knots. In [Ka 2] Kanenobu had shown that in general symmetry spins of
2-bridge knots of genus one are not fibered, in fact the commutator subgroups of the knot
groups are nontrivial free products with amalgamation by constructing the infinite cyclic

covering spaces.

On January 17, 1989, I began to study symmetry spins in the case of two cyclic
periods. Soon I gained the existence of “untwisted” unknofting deformations for a certain
class of knots. The 1-twist-spin of any knot is trivial, but twist-spinning is not untwisted.
When the deform spin of a 1-knot K corresponding to a deformation 7 is trivial, we shall
call ¥ an unknotting deformation of K. It was unknown whether there exists an untwisted
unknotting deformation. In general a symmetry spin obtained by using two cyclic periods
may also be non-fibered. If so, we can obtain a non-fibered embedding of a punctured
Brieskorn manifold £(2,s,k)° in S* for odd integers s and k with (s,k) = 1; e.g. the

punctured Poincaré homology 3-sphere £(2,3, 5)°.

Since the summer of 1989, I have studied the construction of orientable or nonori-
entable surfaces in S* by deform-spinning. It is easy to construct tori whose knot groups

are infinite cyclic by symmetry-spinning periodic knots. Hosokawa and Kawauchi [H-K]
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conjecture that any knotted surface in S* with infinite cyclic knot group is necessarily
unknotted. A knotted surface is a smoothly embedded closed connected oriented surface
in S%. A knotted surface is unknotted if it bounds a handlebody. I was successful in show-
ing that all the symmetry-spun tori whose knot groups are infinite cyclic are unknotted
[Te 6]. In general a symmetry-spun torus of a periodic knot K is equivalent to a spun
torus of a factor knot of K. The proof is based on Dehn surgery on twins in S* (cf. [Mo]).
Other deformations may be used to construct tori with infinite cyclic knot group, however
it remains to be seen that the tori are indeed unknotted.

I also note that deform-spinning may be used to provide remarkable examples of
knotted Klein bottles in S*.

In Chapter I we give the definitions of deform spins of knots following Litherland
[Li 1] and we show how to identify the closed fibers of symmetry spins. In particular,
we investigate symmetry spins of some classes of knots and give remarkable examples of
fibered 2-knots having Seifert fibered manifolds as closed fibers. We also exhibit the first
examples of “untwisted” unknotting deformations.

In Chapter II we define symmetry-spun tori and show that any symmetry-spun torus
of K is equivalent to a spun torus of a factor knot of K.

Finally, we describe deform-spun knots using the moving picture method in Appendix.
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Chapter I. Symmetry-spun 2-knots

Let 7 be the commutator subgroup of the knot group of a knot in the 4-sphere S*.
In [Hi 1] it is shown that if = is finite, then = = G x Z4 where G = {1}, the quaternion
group Q(8), the binary icosahedral group I* or the generalized binary tetrahedral group
T(k) and d is an odd integer which is relatively prime to the order of G. Yoshikawa [Yo]
has shown that these groups can be realized as the commutator subgroups of the knot
groups of knots in S* except Q(8) x Z4,d > 1. Actually these knots were constructed
by twist-spinning certain 2-bridge knots and pretzel knots. The exceptional groups were
realized only as the commutator subgroups of knot groups of knots in homotopy 4-spheres.
Note that Q(8) x Z; is isomorphic to the fundamental group of a prism manifold M, that
is, the Seifert fibered manifold with invariants {b;(01,0);(2,1),(2,1),(2,1)},d = |2b + 3|
(cf. [Ja], [O1]). Since then, by using deform-spinning introduced by Litherland [Li 1],
Kanenobu [Ka 1] showed that for d = 5,11 (equivalently b = —4,4) there is a fibered
2-knot in S* whose fiber is the punctured prism manifold M 2; thus for these values of d,
the groups Q(8) x Z; are realized as the commutator subgroups of knot groups of knots in
S*. Kanenobu has used the surgery description method (cf. [Ro]) for genus one 2-bridge
knots to identify fibers.

In this chapter we shall show that other five values can be realized.

Theorem 3.5. There exists a fibered 2-knot in S* whose fiber is a punctured prism
manifold M with fundamental group isomorphic to Q(8) x Z4 ford = 3,5,11,13,19, 21, 27

(equivalently b = 0,—4,4,—8,8,—12,12).

Our examples will be constructed by symmetry-spinning certain 2-bridge knots and
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pretzel knots. It should be noted that a fibered 2-knot with fiber M3 (d > 1) cannot
be constructed by twist-spinning (cf. [Hi 2]). It is unknown whether there exists such a
fibered 2-knot in S* for any other value of d.

We also consider 2-knots arising from 1-knots with two cyclic periods by untwisted
deform-spinning.

In Appendix we shall consider deform-spun 2-knots from a view of moving picture.

We shall work in the piecewise-linear category. All manifolds will be oriented and all

submanifolds are assumed to be locally-flat. A circle is identified with the quotient space

R/Z. The unit interval [0,1] is denoted by I.

1. Deform-spun knots

Let (S K) be a knot and K x D? be a tubular neighbourhood of K. Let X(K) =
cl(S® — K x D?) be the exterior of K. We always assume that K x v (v € dD?) is
null-homologous in X (K). Let H(K) be the group of self-homeomorphism g of (53, K)
with g|gxp2 = id, and D(K) be H(K) modulo isotopy rel K x D?. D(K) is called the
deformation group of K. It makes no matter the choice of tubular neighbourhoods. We call
elements of D(K) deformations of K. It is well-known that there is a map p : X(K) — §D?
such that plox (k) : 0X(K) = K x 0D?* — 9D? is the projection (cf. [K-W], [Ro]). By a
projection for K, we shall mean a pair (p, K x D?). A deformation v € D(K) is untwisted if
there is a projection (p, K x D?) and a compatible representative g of 7, that is, g| g xp2 = id
and p(g|x(k)) = p-

Fix a point z on K. Take a ball neighbourhood K_ of z in K, and set B_ = K_ x D2,
Then (B_, K_) is a standard ball pair. Let (B, K, ) be the complementary ball pair. For
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g € H(K), construct (B4, K1) x B2 Uy (B4, K4) x, 0B?, where
(By,K4) x, 0B = (By x I, K4 x I)/((z,O) ~ (g(z),1) for all & € B+).

This is a locally-flat sphere pair depending only on the class y of ¢ [Li 1:Lemma 1.2]. We
denote by yK this 2-knot in S*, and call the deform-spun knot of K corresponding to v

or, simply, y-spin of K.

Example 1.1. Twist-spinning. Let (53, K) be a knot with exterior X(K) = ¢l(S® — K x
D?). Take a collar dX(K) x I of 8X(K) in X(K) such that 0X(K) is identified with
OX(K) x {0}. Let t:(S® K) — (S3, K) be the homeomorphism defined by
t(z,0,9) = (z,0 + ¢, ¢) for (z,6,¢) € K x D* x I,
ty) =y for y¢0X(K)xI.
Let 7 be the class of ¢ in D(K). It is clear that 7 is not untwisted. For an integer m, the
7™-spin of K is called the m-twist-spin of K. The 0-twist-spin is just the Artin spin. This

definition corresponds to Zeeman’s original construction.

Example 1.2. Symmetry-spinning. Let (53, K) be a knot. Suppose that K has cyclic
period n # 0, that is, there is an orientation-preserving periodic homeomorphism g on
53 of period n which preserves K and its orientation, and Fiz(g) & S!. In this case,
J = Fiz(g) is an unknot disjoint from K. Let ¢ : $® — S3/g (= S%) be the quotient
map and write K = ¢(K) and J = g(K). There is a projection (7, K x D?) for K such that
K x D% is a tubular neighbourhood of K disjoint from J. Then ¢~ (X x D?) is a g-invariant
tubular neighbourhood K x D? of K such that q(z,v) = (nz,v) for z € K,v € D?. We
recall that K x v (v € 9D?) is null-homologous in X(K) = ¢l(S® — K x D?). It is
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clear that (pg, K x D?) is a projection for K. Since j = lk(K,J) is coprime to n, we
can choose an integer k such that jk =1 (mod n). It follows that g|xxp2 is given by
(z,9) = (z+k/n,v). Asin Example 1.1, we take a collar 0 X(K)xI of 0X(K) = K x 0D?

which is disjoint from J, and define a homeomorphism s, ; : (S3, K) — (53, K) as follows;

snk(z,0,0)=(z—k(1—-9¢)/n,0,¢) for (z,6,¢) € K x 8D* x I,
snk(z,v) = (z — k/n,v) for (z,v) € K x D?,
sne(y) =y for ye X(K)—-0X(K)x 1.
Then s,,k9lkxp? = id, $n k9leix (K)-0x(K)x1) = g and Pg(sa,k9|x(Kk)) = Pg. Let G x be
the class of s, ¢g in D(K). It is now evident that ¢, ; is untwisted. This may be regarded
as a generalization of roll-spinning introduced by Fox [Fo]. It can also be described in

terms of the moving picture method (see Appendix).

Example 1.3. Symmeiry-spinning again. Let (S3 K) be a knot and suppose that there
are orientation-preserving periodic homeomorphisms g; (i =1,2) on (53, K) of order n;
such that g1 g2 = g2g1, (n1,n2) = 1, and Jy U J; is the Hopf link with lk(J, Jo) = 1, where
Ji = Fiz(g;). Let n = nyny and g = g1g5. Let g : S — 53/g be the quotient map and
write K = ¢(K) and J; = ¢(J;). The map g is the Z,, @ Z,,-branched cover branched
over J; U Jy, corresponding to Ker[m(S® =Ty UJz) — H (S2 =T, UTs) = Z,, & Zns)s
where the first map is the Hurewicz homomorphism and the second sends a meridian
ty (t2 resp.) of Ji (J; rtesp.) to (1,0) ((0,1) resp.) € Z,, ® Z,,. Thereis a
projection (p, K x D?) for K such that K x D? is disjoint from J;. Then g HEKExD?isag-
invariant tubular neighbourhood K x D? of K such that ¢(z,v) = (nz,v) forz € K,v € D
Since j; = lk(K,J;) is coprime to n;, we can choose an integer k; such that j;k; = 1
(mod n;). As in Example 1.2, g;| g p2 is given by (z,v) — (z + k;/n;,v). Hence we have
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glgxp2 : (2,v) — (z + k/n,v), k = kany + kiny. Let w, i be the class of s, g in D(K).

It is obvious that w, ; is untwisted.

2. The fiber

Zeeman [Ze] has shown that if m # 0 then 7™ K is fibered, and the closed fiber is the
m-fold cyclic branched covering space of S® branched over K. In particular, 7! K is always

unknotted. For deform-spun knots, Litherland proved the corresponding fibering theorem.

Theorem 2.1. [Li 1:Theorem 2.4] Let (S3,K) be a knot and v € D(K) an untwisted

deformation. For any non-zero integer m, 7™+ K is fibered.

In fact, Litherland gave the closed fiber and the characteristic homeomorphism of
7"vK. But it is sufficient to consider the case where v = (,  or w, ; for our purpose.

Let a, b be coprime integers with b # 0. Let ® : K x D? — K x 8D? be a homeo-
morphism (z,8) — (z + b4, ad). By S3(K, a/b) we shall mean the manifold obtained from
S3 by removing K x D? and sewing it back using ®. Let K* be the image of K x {0}
under this surgery. Moreover for any integers ¢, d with d # 0, choose coprime integers a, b

such that a/b = c/d, and let S3(K,c/d) = S3(K,a/b).

Proposition 2.2. [Li 1:Proposition 5.4] Let (53, K) be a knot having cyclic period n.
Let g,K,J,k and (, ; be as in Example 1.2. For an integer m > 0, let M be the mn-
fold cyclic branched covering space of S*(K, m/k) branched over K= U7, corresponding
to Ker[my(S3 —KUJ) = Z <ty > XZ <t > T < t >]. Here ty (#; resp.)
corresponds to a meridian of K (J resp.) and the last homomorphism sends 1o tot, and
ty tot™™. Then the fiber of T™(, K is M°.
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Note that the projection M — S3(K,m/k) is n to 1 over K, and m to 1 over J.

Proposition 2.3. Let (S3, K) be a knot having the property as described in Example
1.3. Let g,K,Ji,k; (i = 1,2),k = kany + k1ny and n be as before. Form > 0, let M
be the mn-fold cyclic branched covering space of S*(K, m/k) branched over K- U7, UJa,
corresponding to Ker[mi(S? — K UJ1UJ2) = Z <tg > xZ <t; > XZ <ty > Zpmn

<t>]. Herety (t1,ts rtesp.) corresponds to a meridian of K (J1,J2 resp.) and the

last homomorphism sends tg to t, and ti1t5 to t~™. Then the fiber of T™w, K is M°.

Note that the projection M — S3(K,m/k) is n to 1 over ?*, mng to 1 over J;, mny
to 1 over Jo. This is a generalization of Proposition 2.2, and can be proved similarly. We

shall present here the sketch of proofs and how to identify the manifold M.

Sketch of proofs. In [Li 1], it is shown that the closed fiber is M = K x D?Uz {(y, ¢) €
X(K) Xs,,9 Sp(y) = m@}, where f: K x 0D — {(y, ¢) € 0X(K) x,,,, 5 |p(y) = mé}
is given by (z,¢) — ((z, m¢), ¢), and p = Bg. Then g acts on M naturally, since pg = p.
Let M; = M/g. Tt is easy to see that M; is obtained from X,,(K), the m-fold cyclic
branched covering space of S® over K, by performing 1/k-sugery (with respect to the
induced framing) along the lift of K. Thus M, is the m-fold cyclic branched covering space
of S3(K,m/k) over K . These observations imply that M is as described in Propositions.

In fact, given such a knot K, we can construct M as follows.

First, for 7™(, -spins, take X,,(K) and let J be the lift of J which is not necessarily
connected. Let M; be the manifold obtained from ¥,,(K) by performing 1/k-surgery along
the lift of K, and let J* be the image of J. Finally, take the n-fold cyclic branched covering
space of M; over J*, we get M.
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Secondly, for 7™wy, i-spins, take £, (K) and let J; be the lift of J; (i=1,2). M,
is the same, and let .Z* be the image of J; under this surgery. In this case, take the
Zp, ® Zy,-branched covering space of My over jf U j{ , and so we get M. In particular,
if K is unknotted, then I,,(K) and M; are homeomorphic to S3. Actually we shall deal

with only this case.

3. 2-bridge knots and pretzel knots

Let C(r,s) be the 2-bridge knot S(4rs + 2r + 1,2r) (Schubert’s notation) for r # 0
and s > 0. Note that C(r,0) is the torus knot of type (2,2r + 1). Then C(r,s) has a
symmetry g of order 2 with Fiz(g) = J, shown in Figure 1. Here 2s + 1 indicates the
number of left-half twists, and 2r the number of half twists, which are right-handed if

r > 0, left-handed if r < 0: C(2,1) in illustration.

Lemma 3.1. Let C(r,s), g and J be as above, and let k = sign(r). Then the closed fiber
of 7™ xC(r, s) is given as follows;
(1) For m = |2r|,§™L(2s + 1, s).
(2) For m = |2r| — 1,
the Seifert fibered manifold {—4r;(01,0);(s+1,1),...m...,(s+1,1)} (r>0),
the Seifert fibered manifold {—4r;(01,0);(s,1),...m...,(5,1)} (r <0,s #0),
7182 x St (r < 0,5 =0).
(3) Form =|2r| +1,
the Seifert fibered manifold {4r;(01,0);(s,1),...m...,(s5,1)} (r > 0,5 # 0),

18



the Seifert fibered manifold {4r;(01,0);(s+1,1),...m...,(s+1,1)} (r< 0),

fm-182 x St (r> 0,5 =0).

Proof. We shall follow the procedure given in Section 2 in determining the closed
fiber. Let ¢ : S® — 53/g be the quotient map. Then C(r,s) = ¢(C(r,s)) and J = ¢(J) are

unknotted (Figure 2).

: Figure 2 I

Let C and J be the lifts of C and J in the m-fold cyclic branched covering space of S% over

C, which is homeomorphic to $3. Trivialize 1/k-surgery by (—k)-twist (cf. [Ro:Ch 9]),
and we have a link J* in S3 again. To prove Lemma, it is therefore sufficient to identify
the link J* in each case.

(1) m = |2r|. Begin with the diagram of J* in Figure 3(i), and deform the arc connecting

bottom terminals of the first tangle to the dotted position. Repeating this gives a diagram

in Figure 3(ii), which shows that J* is {™5(2s + 1, s).

(2) m = |2r] — 1. Begin with the diagram in Figure 4(i), and deform the arc connecting
the right-bottom terminal of the first tangle with the left-bottom one of the second to the
dotted position. Repeating this, and after a slight move, gives a diagram in Figure 4(ii),
which shows that J* is the Montesinos link (cf. [B-Z])
M(~4r;(s+1,1),...m...,(s+1,1)) if »>0,
M(—4r;(s,1),...m...,(s,1)) f r<0,s#0,
the trivial m-component link if r<0,s=0.
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(3) m = |2¢| + 1. Similarly (Figure 5(i),(ii)), we have that J* is
M(4r;(s,1),...m...,(5,1)) if 7>0,s#0,
M(4r;(s+1,1),...m...,(s+1,1)) if r<0,

the trivial m-component link if r>0,s=0.

Finally, we take the 2-fold cyclic branched covering space over J*.

Example 3.2. (Compare [Ka 1:Examples 1,2,3])

(1) The knot C(r,0) is the torus knot Ty 9r41. In the deformation group D(T%,9,41),
we have 7121(, o = 77k, 71¥1=1¢, = 7o1=k £l2IH10, L = £17F where k = sign(r) (cf.
[Lil:Corollary 6.5}, [Te 1], [Te 2]). These equations are consistent with the results of Lemma
3.1. In fact, T3 2,41 is fibered, and its genus is equal to r if » > 0, —r — 1 if 7 < 0. Hence,
the 79%-spin of T3,2r41, the Artin spin, is a fibered knot whose fiber is punc(§?" S? x S?) if
r >0, punc(§~¥725% x S1) if r < 0.

(2) The knot C(1,s) is the (—s — 1)-twist knot. (We shall adopt the convention that
(-1)-twist knot is the right-handed trefoil.) By Lemma 3.1, the closed fibers of 71¢2 1 C(1, s)
and 72(31C(1,s) are L(4s + 3,5 + 1), L(2s + 1, s)§ L(2s + 1, 5), respectively. Considering
the characteristic maps, these are the 2-twist-spin of S(4s+3, s+ 1) and the 2-cable about
the 2-twist-spin of S(2s + 1, s) [Te 3]. For the s-twist knot C(~1, s), similar results arise.
(3) The closed fiber of 72"+, 1C(r,1) (r > 0) is L(67 + 1, —1). Hence, it is the 2-twist-

spin of S(6r + 1, —1).



Let P(r,s) be the pretzel knot as illustrated in Figure 6, where s is an odd integer,
and 2r + 1 indicates the number of half twists (left-handed if r > 0, right-handed if r < 0).

Note that P(0,s) and P(—1,s) are torus knots of type (2, s), (2, —s), respectively.

It is clear that P(r,s) has two symmetries g; of order s, and g of order 2 such that
9192 = g2g1. Let J; = Fiz(g:) (i = 1,2), and orient them such that lk(P(r,s), J1) =
2,lk(P(r,8),J2) = (—1)"s,1k(J1,J2) = 1. Thus the knot P(r,s) has the property as
described in Example 1.3. By considering a suitable power of g, we may assume k = %1,

and consider these cases.

Lemma 3.3. Let P(r,s) be as above. Then the closed fiber of T wq, ; P(r,s), k = 1, is
given as follows;

(1) the Seifert fibered manifold {0;(01,0);(r,1),...5...,(r,)} (k=1,7#0),

(2) the Seifert fibered manifold {0; (01,0); (r+1,1),...s...,(r+1,1)} (k=-1,7 # —1),

(3) 27182 x St (k=1,r=0, ork=—1,r = -1).

Proof. The proof is similar to that of Lemma 3.1. Let ¢: S% — S3/g be the quotient
map, where g = g1g,. Let P(r,s) = q(P(r,s)),J; = ¢(J;) (i = 1,2). Note that P(r,s)
is unknotted (Figure 6). Since we consider the 1-twist-spinning, M; (see Section 2) is
obtained from S$% by performing 1/k-surgery along P(r,s). Hence M; is homeomorphic
to S3. Trivialize the surgery by (—k)-twist. Let J; be the image of J; under (—k)-twist
(1=1,2) (Figure 7).
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Finally, we must take the Z, @ Z;-branched covering space of M, over J{ U J3, corre-
sponding to Ker[m (M1 —J;UJ3) = Z < t1 > xZ <ty >— Z,®Z,), where the last homo-
morphism sends a meridian ¢; (f; resp.) of J; (J5 resp.) to (1,0) ((0,1) resp.).
Take the s-fold cyclic branched covering space over J;, and identify the lift f; of J5. By

taking the 2-fold branched covering over .7; , the results follow immediately.

Let Q(r, s) be the pretzel knot as illustrated in Figure 8, where s is an odd integer,

2r + 1 indicates the number of half twists (left-handed if 7 > 0, right-handed if r < 0).

Figure 8

Then Q(r, s) has two symmetries g; of order s, and g, of order 2, and has the property

as described in Example 1.3. We may assume k = 1, and consider this case.

Lemma 3.4. Let Q(r,s) be as above. Then the closed fiber of Ttwsy, 1Q(r, s) is given as
follows;
(1) the Seifert fibered manifold {—4s; (01,0); (r +1,1),...5...,(r+1,1)} (r # —1),

(2) 182 x St (r=-1).

Proof. We can determine the closed fiber in the same way as the proof of Lemma 3.3.

See Figure 9.

Now we shall prove the main theorem of this chapter, which gives a partial answer to
the problem of Hillman and Yoshikawa.
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Theorem 3.5. There exists a fibered 2-knot in S* whose fiber is a punctured prism

manifold M3 with fundamental group isomorphic to Q(8)x Z, ford = 3,5,11,13,19, 21, 27.

Proof. In Lemma 3.1(2), we set (r,s) = (2,1) or (~2,2). Then the closed fiber is the
prism manifolds M3, M1g respectively. In Lemma 3.1(3), we set (r,s) = (—1,1),(1,2),
and then we get Ms, M1, respectively. Let (r,s) = (2,3) in Lemma 3.3(1), or (1,3) in
Lemma 3.3(2). Then in either case we get M3. Finally, let (r,s) = (1,3),(—3,3) in Lemma

3.4(1). Then we obtain My, Ms7 respectively.

4. Untwisted deform-spun knots

Let (53, K) be a knot with projection (p, K x D?) (see Section 1). If § € D? is a
regular value, then F® = p~1(f) is a compact, codimension 1 submanifold of the exterior
X(K) and 8F° = K x {6}. That is, F? is a Seifert surface for K. Let v € D(K) be
an untwisted deformation with compatible representative g : (52, K) — (S, K). That is,
glgxp2 = id and p(g|x(x)) = p. Then for each F? g(F?) = F®. The exterior X(7K) of
the y-spin of K is the space X(K) x, B> U K_ x 8D? x B2, If F? is a Seifert surface
for K, then the space F? x, B> U K_ x {8} x B? gives a Seifert surface for 7K, which is

denoted by yF?.

Lemma 4.1. Let (53 K;) be a knot with projection (p;, K; x D?) (i =1,2). Let F; =
p7'(8) be a Seifert surface for K;. Let v; € D(K;) be an untwisted deformation with

compatible representative g;. If there exists a homeomorphism h : Fy — Fy such that

hgy = ga2h, then v, K| and vy3 K3 have homeomorphic Seifert surfaces v, Fy and v, Fy.

The proof is straightforward, so we omit it.
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Let P(r,s) be the pretzel knot stated in Section 3. As shown in Figure 10, P(r,s)
has a Seifert surface F(r,s) of genus (s — 1)/2, which is invariant under g; (i =1,2) and
J1NF(r,s) = {2 points}, Jo,NF(r,s) = {s points}. Note that F(0,s) (F(-—1,s) resp.)is
a fiber surface for P(0,s) (P(—1,s) resp.), whichisthe (2,s) ((2,—s) resp.) -torus

knot.

Figure 10

Theorem 4.2. The wy, k-spin of P(r, s) has a Seifert surface homeomorphic to the punc-

tured Brieskorn 3-manifold X(2,s,k)°.

Proof. By Lemma 4.1, w, x P(r,s) and wa,  P(0, s) have homeomorphic Seifert sur-
faces. It is therefore sufficient to show that wq, x F(0,s) is homeomorphic to (2, s, k)°.
The map s34,1(9192) is just the monodromy map on the fiber surface F(0,s) (cf. [Mi 2:Sec-
tion 9], [Kf:Chapter 19]). It follows that ws, (0, s) is the punctured one of the k-fold

cyclic branched covering of P(0, s). This completes the proof.

Remark 4.3. The k-fold cyclic branched covering of the (2, s)-torus knot is X(2, s, k) (cf.
[Mi 1]). Hence the k-twist-spin of the (2, s)-torus knot is the fibered 2-knot whose fiber
is X(2, s, k)°. The knot P(r,s) is a torus knot if and only if r = 0, —1. We might expect
that any nontrivial ws, i-spin of a non-torus knot P(r, s) is non-fibered, but I have been

unable to prove this. In fact, Kanenobu [Ka 2] has observed that if P(r,s) is non-torus

and if s fr then the w3, ;-spin is non-fibered with Seifert surface X(2,2,5)° = L(s,1)°.

Corollary 4.4. If k = £1, then the wy, x-spin of P(r,s) is unknotted, that is, it bounds
a 3-cell.
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If P(r,s) is a torus knot, then wy, x = 7*F in D(P(r,s)) [Li 1:Corollary 6.5]. But
if P(r,s) is non-torus, the untwisted deformation wy,j is not contained in the subgroup
< 7 > of D(P(r,s)) generated by 7 [Li 1:Corollary 6.3]. Thus Corollary 4.4 means the

existence of “untwisted unknotting deformations” for certain knots.
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Chapter II. Symmetry-spun tori

In this chapter we will study knotted tori in S* which are obtained from classical links
or knots having cyclic periods by symmetry-spinning. By spinning and twist-spinning
a knot in a manner similar to the classical methods of Artin and Zeeman, we get the
corresponding knotted tori. It has been studied by several authors [As 1], [Bo], [Lv 1],
[Lv 2]. It is easy to construct ‘many examples of tori in S* having infinite cyclic knot
groups by symmetry-spinning. For example, let K be a 2-bridge knot in S3. Then K
has cyclic period 2. Removing an invariant 3-ball disjoint from K gives a pair (B3, K).
Think of $* as B® x S' US? x D?. If during the rotation B3 through the factor S? its
cyclic period acts on K, then K sweeps out a knotted torus T(K) which is called the
symmeiry-spun forus of K. In this case, m (S* — T(X)) is infinite cyclic, so it may be
unknotted. There is a conjecture that a surface in S* with infinite cyclic knot group is
necessarily unknotted, that is, it bounds a handlebody [H-K]. In fact, in Section 3 we will
prove that any symmetry-spun obtained from a periodic link or knot is equivalent to the
spun of its factor link or knot. In the case that K is a 2-bridge knot, its factor knot is

trivial. Hence T'(X) is indeed unknotted.

1.Preliminaries

We will work in the smooth category. All manifolds will be oriented, and all sub-
manifolds are assumed to be locally-flat. The circle is taken to be the quotient space
S' = R'/(6 ~ 8+ 2r for all § € R'). We will write § € S*. (a,b,...) stands for the g.c.d.
of the integers a,b,. ... A knotled surfaceis a pair (S*, F), where F is a closed oriented (and
connected or not) surface in S*. Two knotted surfaces (5%, F') and (S%, G) are equivalent if
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there exists a diffeomorphism f : (S*, F) — (5%, G) preserving the orientations of S* and
F. Then we use the notation (S*%, F) 2 (S*, G). Changing one or both of the orientations,
we have three new knotted surfaces (S*, —F), —(5% —F) and —(S*, F). (Note that we are
considering a surface itself, not its embedding map.) A knotted surface (S*, F) is called
(-)amphicheiral if (S*, F) & —(5%, F).

Let U be a standardly embedded torus in S* and let D? x U be a tubular neighbour-
hood of U in S*. We can assume that its framing is canonical, that is, the homomorphism
induced by the inclusion map H1(0 x U; Z) — Hi(p x U;2) — H1(S* — U; Z) where
p € 0D?, is zero (cf. [Li 2:Lemma 1]). Let I=8D?x0x 0,3=0xS' x 0,7 =0x 0 x S!
be curves on §D% x U = 8D?% x St x St.

Let E* = cl(S* — D? x U), which is a (trivial) twin (see [Iw 1:Lemma 2.1], [Mo]). Let
I, s, be canonical curves on E*4, which are identified with I, 5,7, respectively under the
natural identification map i : D2 x U — §E*. Then l, s, r represent a basis of H;(0E*; Z).

Let f : OE* — OE* be a diffeomorphism with fy[I s r] = [l s r]A’, where
Al € GL(3,2) = noDif f(0E*). Then f can be extended to a diffeomorphism f : E4 — E4

if and only if Af € H, where

+1 0 0
H={ * o v| €GL(3,Z) a+Bf+v+6=0 (mon)}
* B 6

(see [Mo:Theorem 5.3]).

1 00
Let ¢ : 0E* — QFE* be a diffeomorphism of matrix {0 1 1} . Then E*U,; D? x
0 0 1

S' x S! is diffeomorphic to S* (cf. [Go], [Mo]).
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2. Symmetry-spun tori

Let K1 be a knot in D? x S', which may be geometrically inessential. (We should
exclude cases where K; bounds a disk in D? x S! and K is ambient isotopic to the core.)
Let p; : D? x S — D? x S! be the a-fold cyclic cover given by (z,0) — (z,a8) for
a € Z\{0}. Let 74 : D? x S' — D? x S! be the rotation map given by (z,60) — (z,0 + ¢)
for ¢ € S'. Let K, = p;!(K,) C D? x 8!, which may be a link, and K, is given the
orientation induced by K if @ > 0, and is given the opposite orientation if a < 0. Then K,
is invariant under the rotation ro,/,. Note that the pairs (D?x S, K,) and (D?x S, K_,)
are diffeomorphic by a diffeomorphism (z, §) — (=, —6), which is orientation-reversing both

on D? x S! and K,.

Lemma 2.1. Let p: D? x S' — D? be the projection map. Then p(K, N (D? x §)) =

p(Ks N (D? x ab /b)) for a,b € Z\{0},8 € S*.

Proof. Since the covering p, : D? x S — D? x S! is induced by a covering S! — S!

given by § — af, p(K. N (D? x 8)) = p(K1 N (D? x af)) = p(K, N (D? x af/b)).

Definition 2.2. Let a,b € Z with b # 0. We define a surface T%(K,) in D? x S x S,
which satisfies
T*(Kp) N(D? x S x 8) = igrag/s(Ks).
Then we get two knotted surfaces in S*, called the symmetry-spun tori of K;, identifying
OF* and 8D? x S! x S! using the natural identification i and the twisted identification ¢i
(see Section 1). We denote (S*, T°(K,)), (S‘*,f“(Kb)), respectively.
Each connected component of T%(K}) is a torus. It is easy to see that K, has (b, w)

components and T%(K,) has (a,b, w) components, where w is the winding number of K;
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in D? x S'. Note that T9(Kj,) is just a spun torus of K; (cf. [Bo], [Lv 1]).

i

Lemma 2.3. Ifa = b (mod 2c), then (S%,T°(K.)) & (8% T%(K.)), (S*,T°(K.)) =

(S, TH(K.)).

Proof. Define f: D? x §' x S — D? x St x S1 by (z,4,0) — (2,4 + 20,8). Then
F(T*(K)) N(D? x 8' x 0) = figrape(Ke) = ioT(a2eyose(Ke),

since fip = igroe on D% x 5. The diffeomorphism 7 = i(f|spzxsinsi)i~! : 0E* — dE*

1 00
has a matrix [0 1 2], so 7 extends to E* (see Section 1). Hence (S*,T%(K.)) &
0 0 1

(54,T“+2°(Kc)), which gives the first equivalence. Since 70 = o7 on E*, the second

follows.
Lemma 2.4. (S%,T%(K;)) & (54, T%Y(K,)).

Proof. Define f: D? x S x S — D? x S! x S! by (z,¢,0) — (2,4 — 6,8). Then
F(T*(Ks)) N (D? x S* x 0) = figrapss(Ks) = io7(a—p)0/6(Kb).

1 0 0
The diffeomorphism 7 = i(f|sp2xsixst)i~! : E* — OE* has a matrix |:0 1 ——1] , SO
0 0 1

-1

o~ = 7. From this the result follows.

Lemima 2.5.

(1) (S*,T°(-K,)) & (S*, —~T4(K,)), where —K, is obtained from K; by reversing its
orientation.

(2) (S*,T~°(Ks)) & —(S%, T°(Ky)).

(3) (S%,T*(K-s)) = —(S*, T%(K3)).
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And also, the corresponding equivalences on the twisted cases hold.

Proof. It is easy to see (1). For (2) define f : D? x S x §' — D? x S! x S! by

(z)¢) 0) - (:L‘, ¢a —9) Then

F(T=(K3)) N(D? x 8 x 0) = fi_gr_ay—oy/s(Kb) = ig7a0/5(Ks),

and f induces an orientation-reversing diffeomorphism on T-%(K}3). The diffeonorphism

1 0 0
0 1 0 |, sorT extends to E%.

7 = i(flop2xsixst)i”t : OE* — HFE* has a matrix l
0 0 -1

Hence (S*, T~4%(K,)) = — (5%, T%(Ky)).
For (3) define g : D* x S — D? x S* by (2,¢) — (z,—¢), and let h = g x id :

D? x St x 8 — D? x §* x St. Then
h(Ta(K._b)) N (D2 X Sl X 9) = hia’l‘ag/(_b)(K_b) = iégrao/(—b)(K—b)

= tg7ag/p9(K 1) = ig7apsp(—K3).

Since i(h|ppaxs1xs:)i~! extends to E*, we have the equivalence
(%, T(K_y)) = (-S*, T°(~Ky)) = — (5%, T°(K3)).
For the twisted cases, by Lemma 2.4 and the above equivalences
(T (Ky)) 2 (S%, 77 (Ky)) & — (8%, T (Ky)) & (8%, T*(K»)),

(S*,T2(K_p)) & (S*, T*¥(K_4)) 2 — (5%, T°4(K,)) = —(S*, T°(Ky)).

Corollary 2.6. Spun tori (S*,T°(K)), (S“,TO(K,,)) are (-)amphicheiral.
It is known that every ribbon 2-knot is (-)amphicheiral and in particular every spun
2-knot is so (cf. [Go], [Su]). In the case a = 0, T°(Kj,) is obtained by spinning K, so it

has a symmetric normal form. Hence T°(K,) is a ribbon surface (cf. [K-S-9]).
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Corollary 2.7. Leta=0 (mod b). Then

. o J (SLT(Ky) if a/b=0 (mod 2),
(5%, T°(K3)) —{(54,@(1{,,)) if a/b=1 (mod 2).

Proof. This is an immediate consequence of Lemmas 2.3 and 2.4.
Remark 2.8. It is clear that = (54 — TO(Ky)) = m (St - TO(KI,)). If K is a nontriv-
ial knot or a link with no separated trivial component, then the exteriors of spun tori
(5%, T°(K)) and (54,T°(K )) have different diffeomorphism types. This can be proved

using the Z;—intersection number (see (Iw 2:Lemma 2.8], [Lv 1]).
Lemma 2.9. (S* T%(K,)) 2 (S*, T*(K-,)) for a,b € Z\{0}.
Proof. Define an orientation-preserving diffeomorphism f : D? x S! x §! — D? x

S! x S by (z,4,8) — (=,0,~¢). By Lemma 2.1,
T*(Ky) N (D? x (—¢) x S*) = | (T°(&x) N (D? x (—¢) x 6))

fest
= {J islpax(-g)(raop(Ks) N(D? x (~9)))
feS?t
= | iolpax(-s)(p(Ks N (D? x (—¢—09/b))),—¢)

0651

GES1

d
= zalmx( -4) (P K_oN(D* x (b/a+0))), "¢)
(

U #oloaxc-0) (p(rasy-a (K-0) 0 (D? x 6)),—9).
fes?

Hence
F(T2(E) N (D* x5 x 9) = is (| (p(rses-a)(K-a) N (D? x0)),0))
gesS?
i4Tb/(-a)(K-a),

H

and f induces an orientation-preserving diffeomorphism on T¢(K;). The diffeomorphism

1 0 0
7 = i(flop2xsixs1)i~! has a matrix I:O 0 1:', so 7 extends to E*. Therefore
0 -1 0

(54’ Ta(Rrb)) & (S4v Tb(K—a))'
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Thus we have (S*,T%(K;)) = —(S% T%(K,)) by Lemmas 2.4 and 2.9. Note that
a similar equivalence on the twisted case does not hold, because the above equivalence
permutes the cores of the twin E* (see [Mo)).

Take a symmetric Wirtinger presentation of a periodic link or knot K,. By van
Kampen Theorem we can see that m (S* — T%(K;)) = m (S* — T(K,)) = m(S® - K,),

where d = (a, b).

Theorem 2.10. Fora,b € Z\{0}, let a = 2Pa’', b = 29¥ with p,q > 0 and o', b’ odd. Then

(S, T(Ka2) if p#yq,

(S%,7°(Ks)) = { (S4,T%(Ky) if p=gq,

where d = (a,b) > 0.
We will give a proof of Theorem 2.10 in the next section.

Corollary 2.11. Let K be a trivial knot. Let a,b € Z with b # 0. If (a,b) = 1, then

(S, T%(Ks)) and (S*,T°(K;)) are unknotted, that is, these bound solid tori in S*.

Example 2.12. Let K; be the pretzel link (or knot) p(n,...b...,n) in S3. It is clear
that K has cyclic period b. Let g : (53, K;) — (S, K3) be the diffeomorphism of period b.
Let z be a point on Fiz(g) and By an invariant regular neighbourhood of z disjoint from
Ky. Removing IntBg from S3 gives the pair (B3, K}). We may assunlle that g|sps = id.
Choose an integer a with (a,b) = 1. Then

(8%, T%(K,)) 2 9B% x D? Up (B, K}) x 4a OD?,

(S*,T%(Ks)) = 8B® x D? U, (B® K,) x 4« 0D?,
where

(B® K4) x g2 9D = (B*, K4) x [0,1] / ((,0) ~ (¢°(2),1) forall = € BY),
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and 7: 5% x §' — S2 x S! represents the nontrivial element of m (SO(3)) (cf. [Gl]). By

Corollary 2.11 symmetry-spun tori (S*, T%(K})) and (S*, T“(Kb)) are unknotted.

3. Proof of Theorem 2.10

In this section, we prove Theorem 2.10. To do this, we use the generalized Euclidean

algorithm.

For a,b € Z\{0} with [§] > 2, let z_; = a,z¢ = b. Then
T_1 = To¥ + 1, where y; even and 2 <|zy| < |zol.
If |z1| < |zo|, then
To = Z1Y2 + 22, where y; evenand 2 <|zo| <|zyf.

If |z3| < |21], then proceed to the next step. Repeating this, we have that there exists an

integer k such that
Tk-1 = ZkYk41 + Tk, where |z;| >2 (0<i<k),

and one of the following cases holds,

(-1) 241 =0, yr41 is even,

(2) zr41 =0, yr41 is odd,

(ii-1) |zg4+1] =1, ye41 is even, zy is even,

(1-2) |zp+1| = 1, yk+41 Is even, zi s odd.

As in the (usual) Euclidean algorithm, we can prove that (a,b) = |z| > 2 (Cases
i-1,3-2), (a,b) = |zz41| (Cases ii-1,ii-2). In particular, if (a,b) = 1 then neither (i-1) nor
(i-2) occurs.
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Lemma 3.1. Let a,b € Z\{0} with |b] > 2. Let a = 2Pa’,b = 29’ with p,q > 0 and o', b’
odd. In the generalized Euclidean algorithm, we have the following.
(1) Let (a,b) # 1. If p # q, then (i-1) occurs, otherwise (i-2).

(i) Let (a,b) = 1. If p # g, then (ii-1) occurs, otherwise (ii-2).

Proof. Suppose that (a,b) = 1. Then as stated before, either (ii-1) or (ii-2) occurs. If
zy, is even, than either a or b is even, so p # ¢. Assume that z; is odd. Since zj_; is odd,
both a and b are odd, so p = ¢ = 0. Thus in the case (a,b) = 1, if p # ¢ then (ii-1) occurs,
otherwise (ii-2).

Next suppose that d = (a,b) > 2. Let a = a”d,b = b"d. If [b"| = 1, then a = *ba".
Hence if a” is even, then (i-1) occurs, otherwise (i-2). So if p # ¢ then (i-1) occurs,
otherwise (i-2). If |”| > 2, then we apply the generalized Euclidean algorithm to the pair
{a",b"}. Since (a”,b") = 1, either (ii-1) or (ii-2) occurs. Multiplying the equations by d,
we have

a=by +da;,...,deg_1 = deryre £ d.

Since d > 2, we must proceed to the next step dzy = (+d)(Fz;). Hence if z; is even, then
(i-1) occurs, otherwise (i-2). But if zj is even, then either a” or b” is even, so p # ¢. If 2
is odd, then both a” and 4" are odd, so p = ¢. Thus in the case (a,b) > 2, if p # ¢q then

(1-1) occurs, otherwise (i-2). The proof is complete.

Proof of Theorem 2.10. If |b] = 1, then the result is a consequence of Corollary 2.7.

Suppose that |b] > 2. We apply the generalized Euclidean algorithm. Then by Lemma 2.3,

(8%, T7=1(Kz,)) 2 (S, T%'(Kz)),
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and by Lemmas 2.4 and 2.9,
(S, T (K,,)) & — (S, T°°(Ky,)).

Hence

(8,75 (K.,)) = (5, T%(K..).

Repeating this, we have
(8%, T71(Ka,,)) & £(S*, T*-2(Ks,)).

In each case, we have the following;
(1) (S%,T7(Ks,)) = (S*, T+ (Ka,)) = £(5%, T°(K4)).
(-2) (S%,T%1(Ks,)) = (8%, T (Ky,)) = £(5%, TO(Ky)).
(i-1) (8%, T™*-1(Ks,)) & (8%, T7+1(K,,)) = (54, T (K, )
& +(5%, T (K1) 2 £(54, T°(Ky)).
(i-2) (S%,T7*-1(Ko,)) = £(8%, T (K1) 2 +(5%, TO(Ky)).

Thus (5%, T4(K,)) & £(S*, T°(Ky)) or i(S‘*,fo(Kd)). By Corollary 2.6,
(S*,T(Ky)) = (S*,T°(K4)) or (S*, TO(Ka)).

The result follows from Lemma 3.1.
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Appendix. From the viewpoint of moving picture

We have the so-called moving picture method to describe a 2-manifold in R%, but it is
still difficult to determine whether the given two knotted surfaces, in particular 2-knots, are
equivalent or not by using the moving picture method. For brevity we shall consider only
2-knots. By virtue of [K-S-S], we can assume that a 2-knot has only elementary critical
points, and furthermore that all maximum-disks (all upper saddle-bands, all lower saddle-
bands, or all minimum-disks, resp.) have the same level. Therefore, we can describe a
2-knot into one picture consisting of an equatorial cross section, upper saddle-bands and
lower saddle-bands. We shall call such a picture a moving picture of a 2-knot. To be exact,
we can define a moving picture as follows. Here, R3[t] denotes the hyperplane R® x {t} in

R* = R® x R!.
Let K be a 2-knot in R*. A moving picture of K is a system (k,U, L) such that
(1) k is a classical knot in R3;

(2) U is a set of images of embeddings u; : I x I — R3 such that Unk = {w;(I x {0,1})}
and (k— (UnNk)) U {u;({0,1} x I)} is a trivial link O, in R3, which bounds a set of

disks D, in R3;

(3) L is a set of images of embeddings I; : I x I — R3 such that LNk = {L:(I x {0,1})}
and (k— (L Nk)) U {:({0,1} x I)} is a trivial link O; in R3, which bounds a set of
disks D; inR3;

36



(4)

( (D4, R?) for ¢t =2
(0., R?) for 2>t>1
(kUU, R®) for t=1
3 srmy ) (k, R®) for 1>t>-1
(KN R[], Bl]) = (kUL,R®) for t=-1
(O1, R®) for -1>¢t> -2
(Dy, R®) for t=-2

\ (an empty set, R3) otherwise

We call U upper saddle-bands and L lower saddle-bands. There are two elementary
moves on a moving picture (cf. [Su]).

Firstly, we can exchange the levels of saddle-bands. That is, let down the upper
saddle-band into the level of lower saddle-bands and pull up the lower saddle-band into
the level of upper saddle-bands. If necessary, we may slide the roots of bands by an ambient
isotopy to keep the number of components of the equatorial cross section.

Secondly, we consider an image b of an embedding n: I x I — R?2] (or R3[-2])
such that b ¢ D, (or D;) and bN K C 8D, (or OD;). Then we move b into the
level of upper (or lower) saddle-bands, and we get a new band. Conversely, if an upper
(or lower) saddle-band can move in R*[2] (or R3[-2]) with avoiding Dy (or D), we

can eliminate such a band.

We shall show how to describe a deform-spun knot by using the moving picture
method. Let K be a knot in R3. First, we consider the Artin spin of K. Let K, be
an associated knotted arc in the half-space R3 = {(z,y,2,0) € R*z > 0} such that
0K, C A= {(z,4,0,0) € R*}. Spinning R3 about the axis A, and R% sweeps out R,
and simultaneously K sweeps out a 2-sphere ¢ X' C R*, which is just the Artin spin (or the
0-twist-spin) of K. Thus 0K = {(z,y, zcosf,zsinf) € R*|(z,y,2,0) € K4,0 <8 < 27}.
We can see that o K N R3[0] = K}§rK, where rK denotes the mirror image of K, and

37



each minimum (or maximum) of K with respect to the third coordinate induces a critical
point of 0K with respect to the fourth coordinate. Then we can deform ¢ K by an ambi-
ent isotopy of R* such that each critical point of 0 K corresponds to a maximum-disk, a
minimum-disk, or a saddle-band. Moreover, we can deform ¢ K so that all maximum-disks
(minimum-disks, upper saddle-bands, or lower saddle-bands, resp.) have the same fourth
level. So it is easy to get a moving picture of ¢ K. For example, a moving picture in Figure
11 corresponds to the spin of the trefoil knot with one minimum, where the band with

label u (I resp.) means the upper (lower resp.) saddle-band.

Next, we consider a deform-spun knot. Let K be a knot in R® and K, an associated
knotted arc in R3. Take a 3-ball By in IntR3 which contains a knotted part of K (Figure
12).

Let go : R} — R% (8 € I) be an ambient isotopy such that gy fixes cI(R3 — Bo) and
91(K4) = K. During the rotation of R3 about the axis A, deform R3 by g = {gs}. Since
K4 returns to its original position, K sweeps out a 2-knot K(g), which is the deform-
spun knot corresponding to g. Thus K(g) = {(gs(2), g6 (y), 9¢(2) cos 278, g4(z) sin 2r0) €
R‘*l(z,y,z,O) € Ky,8 € T}. See [Li 1:Section 1. We may assume that g deforms R3
within a final sufficiently short time. Then for a suitable small number € > 0, (K(g) N
R[], R*[t]) = (oK N R3[Y], R3[t]),1 > 0,t < —&, where oK is the Artin spin of K.
Moreover we may assume that K(g) has no critical point with respect tot (—& < < 0).
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Thus we have a moving picture (K{rK, U, L?) of K(g) which is obtained from the moving

picture (K§rK,U,L) of ¢ K by deforming the lower saddle-bands L using g.

Examples. (1) The 2-knot k C R* shown in Figure 13 is the 1-twist-spin of the trefoil,

where v (I resp.) indicates the upper (lower resp.) saddle-band of k.

If we change the levels of the bands u and [, then we have an equivalent 2-knot k given in

Figure 14, whose equatorial cross section is unknotted.

In fact, the unknottedness of % can be checked by deforming the moving picture (O, ZZ,T)
using a suitable level preserving, vertical-line preserving isotopy of R*. Refer to [Na).
(2) Let P(r,3) be the pretzel knot described in Section 3 of Chapter I. We consider the

we,1-spin of P(r, 3), denoted by T for short. A moving picture of T is given in Figure 15.

By Corollary 4.4 of Chapter I, T is unknotted. Indeed, we visualize the equivalence of T
and a trivial 2-knot as follows. In the moving picture of T in Figure 15, we slide the root
of l; as in Figure 16 (i) and exchange the levels of saddle-bands. Then we have Figure 16

(i), which is equivalent to Figure 16 (iii).
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