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Congruence properties of Apery numbers. binomial coefficients 

and Fourier coefficients of certain n-products 

Tsuneo Ishikawa 

§1. Introduct ion. 

Let, for any n~O, 

R.Apery's proof of the irrationality of ~(2) and ~(3) made use of 

these numbers, respectively (see van-der-Poorten [23]). So we call 

these numbers Apery numbers. The first few values are given by 

a(O)=l,a(l)=3,a(2)=19,a(3)=147,a(4)=1251 and U(O)=l,u(l)=5,u(2)=73, 

u(3)=1445,u(4)=33001. 

So far, many properties of a(n) and u(n) were discovered by 

several people. Chowla-Cowles-Cowles[7] first considered 

congruences for u(n), and some elementary congruences were proved by 

Gessel[ll], Mimura[22] and Beukers[4]. 

Moreover, these numbers are concerned with the theory of 

differential equations, algebraic geometry, automorphic forms and 

formal groups. Stienstra-Beukers[24] showed that Apery numbers were 

related to Picard-Fuchs equations associated to certain algebraic 
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variety(see Beukers-Peters[6], too), and they proved some congruences 

using the theory of formal groups. Recently, Koike[20] showed some 

relations between Apery numbers and hypergeometric series over finite 

fields. 

At first, in Section 2, we will collect the results for the Apery 

numbers in Beukers [2],[5] by way of preparation. 

In Section 3, we shall study about super congruences for the 

Apery numbers. These are congruences modulo pr(r>l) which we can not 

prove using the usual method in the theory of formal groups. We 

shall prove the following congruences conjectured by Beukers[5]. Let 

p~3 be a prime, and write 

m 

L ~nqn = 
n=l 

If u(P-l) ~ 0 mod p then 
2 

And, let p~5 be a prime, and write 

Then 

For the more general statements see Theorem 3 and Theorem 4 of this 

paper. The most general statements conjectured by Beukers are still 
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open. 
2 

Our method is applicable to the mod p determination of other 

numbers such as v(n) 
ex> 3 
2: (n) (_l)n 

k=O k 

In Section 4. we shall study about the congruences between 

Fourier coefficients of certain modular forms and binomial 

coefficients (2~) where f n-L k is a integer. Land k are positive 

integers with (k.L)=l and p is a prime p=L mod k. The main result 

is the following congruence (see Theorem 6 of this paper). Let k 

and L be the above and put m = 4L/k. Write 

2: 
n=l 

where 1'/( ..... ) __ ql/24 n (l_qn) . th D d k· d f t· ·th 2n:i1: d ~ lS e e e In 1'/- unc lon Wl q=e an 
n=O 

1m 1:>0 . Then 

mod p 

The numbers (2~) are related to formal groups as the special case of 

the congruences of Atkin- Swinnerton-Dyer type. Some modular forms 

which appear in this section are non- holomorphic. so we can not use 

the theory of Hecke operators and we do not know about the properties 

of the coefficients (k. L) 
l' n . But we prove the new congruences of the 

Fourier coefficients of certain modular forms in Corollaries 1 and 2. 

For example, 

1 (k, L) 
" l' P -

-2(2L+kJ (k,k+L) mod p. 
l' P 
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In Section 5, we shall prove the following congruences of U(PkL) 

applying to arguments in Section 4. Let k. L be positive integers 

with (k,L)=l and write 

2: ~(k~)m-2~(2k~)10-m~(3k~)6-m~(6k~)m-6 
n=l 

- 9 ~(k~)m-6~(2k~)6-m~(3k~)10-m~(6k~)m-2 

with m=12L/k. Then ,for any prime p=L mod k , 

U(PkL) - mod p 

(see Theorem 8). But, we do not know the details of the properties 
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§2. Some facts. 

In this section, we mainly describe the results obtained by 

Beukers[2],[3] and [5] by way of preparation of Sections 3,4 and 5. 

We may state about the numbers u(n) as we can take the same method 

for the numbers a(n). 

Let 

e>:> 

~(t) = 2 u(n)tn 

n=O 

be the generating function of u(n). The function ~(t) is the 

holomorphic solution around t=O of the 3rd order linear differential 

equation 

(t4 _ 34t3 
+ t 2 ) d 3 

(2t3 - 153t2 d 2y (2-1) ---.J!... + + 3t) 
dt3 

dt2 

+ (7t 2 - 112t dy 
+ 1) dt + (t - 5) y = o I 

because the numbers u(n) satisfy the recurrence 

Let Yo=~(t)'Y1 and Y2 be solutions of (2-1). Then we see 

(2-2) 

where ¢O and ¢I are some solutions of the differential equation 

By transformations t x(I-9x) 
I-x and ~ = /I-x ¢ , 

(2-3) X(X-I)(9X-I)d
2

p + (27x2_20x-I)~ + 3(3x-I)~ 
dx2 dx 
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This is the Picard-Fuchs equation associated to the family 

of the elliptic curves 

(2-4) y2 + (l+x)XY - x(x-1)Y = X3 - X(X-1)X2 . 

Beukers and Stienstra[24] studied about the relations between the 

Picard-Fuchs equations and the modular forms. 

Proposition 1. (Beukers and Stienstra) Let J(x) be a hoZomorphic 

soZution of (2-3) around x=o uith f(O)=l and put 

co 

uhere n(T) = q1/24 TI (l_ qn) is the Dedekind n-function uith q=e2niT 

n=l 

and Im(T»O. Then 

"co 

f(x(T)) = 1 + 3 2 
k=l 

uhere E1 (T,x) denotes the Eisenstein series of ueight 1 and x(k) is 

the DiricZet charcter oj moduZo 6 uith x(-l)=-l. 

We give a sketch of the proof of Proposition 1. Elliptic curves 

(2-4) are the Tate normal forms with a point(O,O) of order 6, and they 

are parametrized by the modular curve H/r1 (6) where 

r
1

(6) = { (~ ~) ESL2 (Z) I (~ ~) == (~ ~) mod 6 } 

The function X(T) is the generator of the function fields on r
1

(6) 
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and maps the shaded open area in the picture below univalently onto 

the upper half plane and satisfies x(i~)=O. x(O)=1/9. x(1/3)=1. 

x(1/2)=~. 

~ ............................ .. ................... .................... ................. ................. .................. ................. ..................... ................... ....................... ................. ................... .................... .................... .................. ..................... .................... .................. .................. .................... ...................... ................... .................. .................. ................... ................. .................... ...................... ... .............. .. .................. 

o 1/3 1/2 

x( r) 

> 

. ........................................................... . 
• .................. 4 ••••••••• •• ••• ••• .... ·4 ..... ••• ...... •
iii 

O=X("ioo) 1/9=x(O) 1=x(1/3) 

We can consider IDl 

and ID2 as multivalued function on the x-plane via the mapping ~ ~ 

x(~). We denote them by IDI(X) and ID 2 (X). After an analytic 

continuation along a closed path y in [-{O.1/9.1} corresponding to 

(~~)Erl(6) • IDl and ID2 are changed by the transformation 

(2-5) y (a b) ( ID 2 (X») 
) C d ID1(x) 

Now IDI(x) and w
2

(x) satisfy the equation 

IDI IDi IDl wi' 
, , , 

(2-6) F' , F' 
IDI IDl 

F 0 , -
w:Z' 

+ , , , = 
ID2 ID2 ID2 ID2 ID2 

It is straightforward to see that 

w' 2 ID' , wi WI 1 (wI) WI 1 d IDI 
w2 w2 (dx/d~) ID2 w' , 

2 dx w2 w2 
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and 

and these determinants are rational functions of x by (2-5). 

Here we can check that x-1dx/d~ is a modular form of weight 2 for 

r
1

(6) and 

-1 
(dx/d~) 

= x 

has simple poles at ~=i=, 0 and 1/3, and a zero of order 3 at ~=1/2. 

Hence, we obtain 

6)1 6)' 
1 

6)2 6)' 
2 

for some constant c1 ' 

6)' 
1 

6)' 
2 

and 

6)' , 
1 

6)' , 
2 

= 

dx/d~ x(x-l)(9x-1) 

222 x (x-I) ( 9x-1 ) 

in the same way. We can determine the constants Cl ' c2 and c 3 by 

comparing with 

6)(x) = 1 + 3x + 15x2 
+ 93x3 

+ 639x4 
+ •••• 

Hence we see that (2-3) equals (2-6). See Stienstra- Beukers[24] . 

Beukers[2],[5] and Stiller[25]. 0 

The following proposition is the direct consequence of the above 

(see Beukers[5]). 
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Proposition 2. (Beukers) Let 

Then 

uhere E2(~) = 1 + 24 ~ 0l(k)qk is the Eisenstein series of ueight 2 
k=l 

Horeover, Let A(~) = jt(2~). Then ue have 

(2-7) 

The following lemma is convenient for the proof of the 

congruences that is related to the theory of formal groups ( see 

Beukers[5] and Stienstra-Beukers[24] ). 

Lemma 1. Let p be a prime and 

~ 

wet) = ~ b tn-1dt 
n=l n 

be a differentiaL form uith bnElp . Let t(u)= 2 cnun uith CnEZp , 
n=l 

C1 is a p-adic unit , and suppose 

w(t(u» = 2 dnUn-1dU 
n=l 
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7'-1 7'-2 0 mod p7' Ct.ph(m p ) + B ph (mp ) -

7'-1 7'-2 0 mod p7' Ct. pd(1fJ.p ) + 8 pd (7I1.p - ) -

P7'oof. Note that the congruences(2-8) are equivalent to 

Since 

t (u) np 

and 

we see· 

Similarly 

2 
= ~(t(Up )) + dF3 (U) 

Hence (2-9) implies 

Ct. B 2 
w(t(u))- --E w(t(uP )) + --E w(t(up )) = dF

4
(u) , 

p 2 
p 

Conversely, since c
1 

is a p-adic unit, we can write 

(X) 

u( t) 

Thus we have completed the proof. 0 
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ex> ex> 

Now, since n(2~)4n(4~)4 = 2 ~ qn = q IT (1_q2n)4(1_q4n)4 is an 
n=l n n=O 

unique cusp form of weight 4 for roeS), its corresponding Dirichlet 

series has Euler product 

2 = 
n=l 

Let 

ex> 

n(2~)4n(4~)4 - 9n(6~)4n(12~)4 = 2 ~(n)qn. 
n=l 

Then 

~~ s n=l n 

Hence, for all odd prime p, 

Combining Lemma 1 and Proposition 2 (2-7), we can obtain the 

following theorem (see Beukers[5] ). 

Theorem 1. (Beukers) Let p~3 be a prime, and ~rite 

(2-10) 

Let m,rEW, m odd, then ~e have 

(2-11) 
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In the case of the numbers a(n), the generating function 

m 

~(t) = 2 a(n)tn 

n=O 

is a holomorphic solution of the Picard-Fuchs equation 

2 d2F 2 dF t(t -11t-1)--- + (3t -22t-1)-- + (t-3)F = 0 
dt2 dt 

associated to the family of elliptic curves 

Therefore, we can prove the following theorem in the same way. 

See Beukers[2] and Stienstra-Beukers[24]. 

Theorem 2. (Beukers and Stienstra) Let p~3 be a pTime, and ~Tite 

~ m 

(2-13) 2 ~ qn = q TI (1_ q4n)6 
n=l n n=O 

Let m, TEN, m odd, then ~e have 

(2-14) 
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§3. Super Congruence for the Apery Numbers. 

ex> 

Let {uCn)}n=l be a sequence of rational or p-adic integers. We 

will consider the congruences 

l' 1'-1 u(mp ) = a u(mp ) 

where K,m and T are positive integers and a is a p-adic integer. If 

K=l then these congruences arise from the theory of formal groups 

(see Hazewinkel[13], Stienstra-Beukers[24]). In the cases of K>l, 

we call thes~ congruences supeT congTuences Csee Coster[lO)). In 

this section, we will treat the super congruences for the Apery 

numbers a(n) and u(n), i.e., we shall prove that the congruences in 

Theorem 1 and Theorem 2 hold mod pKT in the case of K=2>1 and 1'=1. 

Theorem 3. Let p~5 be a pTime and mEN, m odd, and uTite 

ex> 

= q IT C1_ q4n)6 
n=O 

Then 1Je have 

Theorem 4. Let p~3 be a pTime and mEN, m odd, and uTite 

co 

2: !;nqn 
n=l 

If uCE=!)~O mod p then 
2 

ex> 

q IT C1_q2n)4C1_q4n)4 
n=O 
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F.Beukers inTormed me that Theorem 3 is proved by L.Van Hamme[12] 

in the cases of p=1 mod 4 using properties of the p-adic gamma 

function. We prove the general case involving p=3 mod 4 by entirely 

different method. 

In Theorem 4, U(p;1) _ 0 mod p Tor p=11, 3137 iT p<100000. But 

these cases hold, too. 

However, in the cases of T>2, these super congruences are still 

open. 

3-1. Congruences of a(n). 

The numbers a(n) satisTY the recurrence 

(3-1) n~1 . 

We know the Tollowing result. Let p be an odd prime, and m~O, then 

(3-2) a(mp) = a(m) 

(3-3) a(p-1) = 1 

2 mod p , 

2 mod p . 

By (3-1), (3-2) and (3-3), we have a(p-2) _ -3+5p mod p2 and 

a(p+l) = 9+15p mod p2 

Proposition 3. Let mLO, nLO and m+n=p-1. Then 
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a(m) _ (-l)ma(n) mod p . 

Proof. We proceed by induction on m to show that a(m)=(-l)ma(p-m_l) 

mod p. From the above result, a(O)=a(p-l)=l mod p and a(1):-a(p-2)=3 

mod p. Let O<m<p-l. From the recurrence (3-1), 

2 (m+l) a(m+1) (11m2 +11m+3)a(m) + m2 a(m-l) 

_ {11(p-m)2-11 (p-m)+3}a(m) + (p-m)2 a (m-l) 

{ 
2 2 -{ll(p-m) -11(p-m)+3}a(p-m-1) + (p-m) a(p-m) 

if m odd 
- 2 2 {ll(p-m) -11(p-m)+3}a(p-m-l) - (p-m) a(p-m) 

if m even 

{ 
2 

if odd (m+1) a(p-m-2) m 
- 2 mod P 0 

-(m+l) a(p-m-2) if m even 

Proposition 4. For aLL primes p, n~O and O~m~p-l, ue have 

a(np+m) = a(m)a(n) mod p . 

Proof. We shall need Lucas' congruence 

for O~a, c<p, and 

Then for O~m<p we have 

a(m+pn) 
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p-l 
2: 

i=O 

a(m)a(n) 0 

3-2. Congruences of b(n). 

Let b(O)=O and. for any n~l. 

n (n)2(n+k)[ 2 b(n) = 2: k k n-k+l 
k=1 

2 + ••• + -- + 
n 

1 
n+l 

mod p 

+ '" + n!k ] 

These numbers are (differential) of a(n) and they take important parts 

in the congruence of mod p2 as shown in Gessel[ll.Theorem 4]. 

Proposition 5. The numbers b(n) satisjy the recurrence 

(3-4) (n+l)2b (n+l) = (1In2+11n+3)b(n) + n 2b(n-l) 

- 2(n+l)a(n+l) + 11(2n+l)a(n) + 2na(n-l) . 

and jor aLL primes p~3. n~O and O~m~p-l . ~e have 

and 

a(np+m) _ {a(m)+pnb(m)}a(n) 

Proof. Let 

H = n.k 
2 

n-k+l 
2 

+ ••• + -- + 
n 

- 16 -
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then we have 

Taking summation from 1 to n+l on k, recurrence(3-4) follows. 

Next, we see that by Proposition 4 for fixed nand p, there exist 

numbers b(k), with 1)(0)=0, such that 

(3-5) 

for O~k<p. 

a(k+pn) = a(k)a(n) + p b(k) mod p2 

Let us write the recurrence(3-1) in the form 

2 
2: 

i=O 
T. (n)a(n-i) = 0 . 

1-

Note that this congruence holds for nLl if a(-l) assigned any 

arbitrary value. substituting k+pn for n, and using (3-5) and 

Taylor's expansion, we have 

for O<k<p. 

o = 
2 
2: T.(k+pn)a(k+pn-i) 

. 0 1-1-= 

2 
2: {T. (k) + p n T'. (k) }{a(k-i)a(n) + p b(k-:-i)} mod p2 

i=O 1- 1-

2 
- p 2: {T.(k)b(k-i) + n T~(k)a(k-i)a(n)} 

i=O 1- 1-

Multiplying (3-4) by na(n), we see 

2 
2: {T.(k)nb(k-i)a(n) + n T~(k)a(k-i)a(n)} 0 

i=O 1- 1-

- 17 -



with b(O)=O. Then since r o(k)=k
2 

is not divisible by p for O<k<p, 

we have b(k)=nb(k)a(n) mod p for O~k<p. 0 

Proposition 6. Let ~~O, n~O and m+n=p-l . Then 

m-l b(m) = (-1) ben) mod p . 

Proof. From the congruence(3-2), (3-3) and Proposition 5, 

b(O)=-b(p-l)=O mod p. And by the definition of b(n), ord b(p)~O 
p 

Then b(1)=b(p-2)=5 mod p by the recurrence(3-4). By induction on m, 

similarly in Proposition 3, we can prove it. 0 

Theorem 5. Let m~O, n~O and m+n=p-l. Then 

a(m) = (_l)m{ a(n) - pb(n) } mod p2 

Proof. It is clear from (3-2), (3-3) and Proposition 6 in the case 

of m=O,l. From the recurrence&3-1), (3-4) and the congruence 

222 (m+l) a(m+l) _ {ll(p-m) -11(p-m)+3}a(m) + (p-m) a(m-l) 

- IIp{2(p-m)-1}a(m) - 2p(p-m)a(m-l) 

it can be also shown by inductive method. 0 

3-3. Congruences of c(n). 

2 mod p , 

If p=3 mod 4, we can not obtain the congruence of b(E=l) from 
2 
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Proposition 6. Therefore we prepare the numbers c(n). 

Let, for all odd numbers nLl, 

3 ] . --n 

Let p be an odd prime. From the congruences [P;:+k)=(-l)k[PtJ mod P 

and 1 
n-l .l:.......:::.-k+l 

2 

+ ••• + 1 
+ 

1 + ••• + 1 _ 0 mod p 
E=l 2 +k 

where l~k~P;l, we have 3b(P;1) _ c(p;l) mod p if p=3 mod 4. 

Proposition 7. The numbers c(n) satisfy the recurrence 

(3-6) 
22· 

n c(n) = -3{9(n-l) -1}c(n-2) 

for aLL odd numbers nL3. 

and 

Proof. Let 

fn(k)= 2(14n
2
+n-l) - 3(26n

2
-n-3)kln + 3(29n2-3)k2In2 

-3(15n2+2n-l)k3In3 
+ 3(3n+l)k4 In3 , 

gn(k)= 2(28n+l) - 3(26n2+3)kln2 
+ 18k21n3 

+3(15n2+14n-3)k3In4 - 9(2n+l)k4 In4 , 

3 C = + ••• + 
n,k n-k+l 

3 --n 

Then we have 
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We multiply both sides by (_l)k. Taking summation from 1 to n+l on k. 

(3-7) (n+l)2 c (n+l) 2 
+ 3(9n -l)c(n-l) 

n+l ( 1) 3 k 
+ 2(n+l) ~ n; (-1) 

k=O 

n-l 3 
+ S4n ~ (nil) (_l)k 

k=O 

If n=O mod 2, two latter summations are equal to o. 0 

= 0 

The numbers c(n) satisfy the recurrence(3-7) if n=l mod 2. 

Proposition 8. Let p=3 mod 4 be a prime. then ~e have 

CC P;l) _ 0 mod p 

Proof. It is trivial if p=3. If p=7 mod 12 then P;2 is odd. 

By (3-6), we have 

Then 
n+2 

c(3)=0 mod p. 
v+2 _ 

Hence, c(n)=O mod p for ~n~p-2 and n odd. 

If p=11 mod 12 then p+4 is odd. -"3 

same way. 0 

3-4. Proof of Theorem 3. 

Therefore it can be proved in the 

Beukers and Stienstra showed that the generating function of a(n) 

is a holomorphic solution of the Picard-Fuchs equation associated to 
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the family of elliptic curves(2-12). From this argument and the 

t-function of a certain K3-surface, they proved Theorem 2 (see 

Beukers[2] and Stienstra-Beukers[24]). Moreover, we know that the 

6 2 . 
right hand side of (2-13) is equal to n(4z) with q=e ntz, Im(z»o 

CD 

(where n(z) = q1/24 TI (l_qn) is the Dedekind n-function). 
n=l 

From the 

Jacobi-Macdonald formula, we see 

{ 4a 2 -2p if p=l mod 4 and 2 2 p=a +b , 
ex = p 0 if p=3 mod 4 

a=l mod 2 

Hence if p=l mod 4 then exp~o mod p. According to Theorem 2, if m=l 

E.:1:. and T=l then a( 2 )=exp~o mod p. 

Let us prove Theorem 3 using congruences of a(n), b(n), c(n), and 

Theorem 2. 

E:l. . If p=l mod 4 then 2 lS even. From Proposition 6, b(p;l)= 

_b(p;l) mod p. Hence b(p;l) :: 0 mod p. 

mod p2 and a(mp;l)::a(m;l)a(p;l) mod p2. 

2 
Then a(mP

2
-1)::a(mp;1)a(p;1) 

Putting T=2 in Theorem 2, 

2 
a(mP

2-1)=ex pa(m p;1) mod p2. Since a(p;l)~O mod p, it is reduced to 

mp-1 m-1 2 
a (---2-) :: expa(~) mod p 

If p::3 mod 4 and p~3 then a(p;l) :: -¥-b(p;l) _ -g-C(p;l) mod p2 

E.:1:. 2 by Theorem 5. From Proposition 8, We have a( 2 ) _ 0 mod p. Hence 

mp-1 p-1 m-1 2 a(---2-)::a(--2-)a(--2-)::O mod p. Thus we have completed the proof. 
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3-5. Proof of Theorem 4. 

The proof of super congruences for the numbers u(n) is easy 

using Gessel's result in the same way. 

Proposition 9 (Gessel) . Let d(O)=O and 

Then for any prime p , and O~k<p . ue have 

u(k+pn) = { u(k) + pndCk) } u(n) 

Proof. The congruence can be proved in similar method of the 

proof of Proposition 4 of this paper. See Gessl[ll]. 0 

By the explicit formula of den) . we have dC P- 1 ) 
2 - 0 mod P 

Then it follows that 

2 
u(E:l.) }2 2 u(~) { mod 

2 - 2 P 

Hence by puting r=2 and m==l in Theorem 1. we have 

2 
uCE.:l.) 2 uC~) t;p mod 2 - 2 P 

Thus 

{ uCLl.) }2 t;p uCE.::..!) mod 2 
2 - 2 P 

Now since uCLl.) :J: 0 mod it is reduced to uCE.::..!) t;p mod 
2 

2 P. 2 - P 
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Hence we have completed the proof of Theorem 4 . 

3-6. Applications to other numbers. 

Above method is applicable to other numbers which satisfy the 

relations such as (2-11) and (2-14), and we can use the mod p2 

determinations of the certain numbers. For example. Let, for any 

n~O, 

v(n) = (_l)n ~ (~)3 
k=O 

F.Beukers and J.Stienstra[24] showed the following congruence. Let 

p~3, and write 

q 
00 

n (1_ qn)2(1_ q 2n) (1_ q4n) (1_ q8n)2 
n=l 

Then, for m,TEN, m odd, 

T-2 
2 (mp -1) 0 

P v 2 -

where (-:-) is the Jacobi-Legendre symbol. 

The numbers v(n) which are (differential) of v(n) can be formulated to 

v(n) = 3(-1)n ~ (n)3 [ 1 
k=l k n-k+1 

+ - _. + 

And for all primes p~3, n~O and O~m~p-l , we have 

v(np+m) = { v(m) + pnv(m) } v(n) 2 mod p 

1 
n ] . 

Then V(p;l) of mod p2 is determined by our method if (-~ )=1, that is 

y + 
p 

-Lv(E.:1.) 
2 2 
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§4. Congruences of binomial coefficients (2f). 

Let k and L be positive integers with (k,L)=l. Let p be a prime. 

p = L mod k and the integer f is defined by p=kf+L. We consider the 

congruences modulo p of binomial coefficients of the form (2~). 

In the classical results, for k=4 and L=l, Gauss proved that 

2 2 where p~a +b ~4f+l and a=l mod 4. For k=3 and L=l, Jacobi proved that 

2 2 where 4p=a +27h and a=l mod 3. Moreover, the number 2a (resp. -.a) 

can be regarded as the p-th Fourier coefficient of the cusp form of 

eM-type associated with the Hecke character of ~(j-l) (resp. ~(j-3». 

In the recent results, for L=l and k~24, these were studied by Hudson 

and Williams [15] using Jacobi sums. 

In this section, we shall prove the congruence properties between 

binomial coefficients (2~) and Fourier coefficients of certain 

n-products : 

Theorem 6. Let k and L be the above and put m = 4L/k . Write 

~ 

~ y~k, L)qn = n(kT)2n (2kT)1+m n (4kT)3-3mn (BkT)2m-2 
n=l 

= 
"he~e n(~) __ ql/24 IT (l_qn) ~s th D d kO d f t" th 2rriT d 
W I 'r ~ ~ e e e l..n n- une l..on ui q=e an 

n=O 
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1m -.:>0 . Then , jor p = L mod k and p=kj+L , 

m.od p 

For some k and L, n-products in Theorem 6 are non-holomorphic 

automorphic forms of weight 2, so they were not very studied for 

details. But we can obtain the congruence relations like Corollary 1 

for the family of these functions . 

4-1. Proof of Theorem 6. 

a::> 

We consider the generating function F(t)= 2 (_1)n(2n)tn 
71.=0 71. 

Since the numbers (_1)71.(271.) satisfy the recurrence 
71. 

(4-1) 

we have 

F(t) = (1+4t)-1/2 . 

n~O , 

Proposition 10. Let k and L be positive integers uith (k,L)=l 

and m = 4L / k Write 

(4-2) ( 
3 2 ) 41k 

A(-':) = n(2k-.:)n(4k-.:)- n(8k-.:) 

Then 

(4-3) 

- 25 -
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11k Remark 1. We may use the branch of k-th roots x so that it 

takes positive real values on the positive real axis, i.e., the 

leading coefficients yik,L)and Al in the n-product of Theorem 6 and 

Proposition 10 are equal to 1 respectively. 

Proof. First we prove the case of k=4 and L=I. We consider 

the following congruence modular subgroup 

It has no elliptic elements , and a set of representatives of 

. . 1 t . {. 0 II} IH* I r (8) . f 1nequ1va en cusps 1S t m , '4' 2' 0 1S a curve 0 

genus O. Putting 

it is a modular function with respect to ro(8) , and the values at 

the cusps are given by t(im)=O (simple), t(O)=~ , t(i)== (simple) , 

and t(!) =- ~ Hence t(~) generates the function field of modular 

f~nctions with respect to f o(8) Therefore we see that F2(t(~» 

1 1 1 
1+4t(~) has a simple pole at ~=2 and a simple zero at ~=4 . 

Hk (fO(8» (resp. Sk(fo(8») denotes the space of modular forms (resp. 

cusp forms) of weight k. It is not hard to check that t-l~~ is in 

H2 (fO(8» and it has a simple zero at ~=O , ~ Hence the function 
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(4-4) 

+ ••••• 

We choose 

as another form (this is an old form) in S8(ro(8)) Since 

5 , comparing with the coefficients, we have 

(4-5) 

Taking 4-th roots with Remark 1 and replacing ~ by 4~ , we have 

(4-6) 

In the general case, from (4-4) and (4-5) , we see 

Hence our proposition follows from taking k-th roots and replacing ~ 

by k-c. 0 

Remark 2. When k=4 and L=l, since the function 

is the unique cusp form in S2(ro(32», applying Beukers[5,Prop.3] 

to (4-3), for any m,rEW , m=l mod 4 and any prime p=l mod 4 , we have 

( 
r) r ( r-1 r-1 (mPr -1)/2 (-1) (mp -1)/4 _ (mPr _1 -1)/2) (-1) (mp -1)/4 

(mp -1)/4 Yp (mp -1)/4 
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+ p 
r-2 r-2 

(
CMPr _2-1)/2)C_1)CMP -1)/4 = 0 
Cmp -1)/4 

These congruences are quite Atkin-Swinnerton-Dyer type associated to 

the elliptic curve: y2 = x
3 

+ 2x (see Atkin-Swinnerton-Dyer[l]). 

In our case, we can not use directly the method of Beukers[5J or 

Stienstra-Beukers[24,Th.A9] because the non-holomorphy of n-products 

of the right hand of Proposition obstructs that we apply the theory 

of Heeke operators to them. But the following lemma is useful. 

Lemma 2. Let p be a prime and 

= 
met) = 2 b t n- 1dt 

n=l n 
00 

be a differentiaL form uith b EZ . Let t(u)= 2 C un uith CnEZp , 
n p n=l n 

C
1 

is a p-adic unit . and suppose 

= 
m(t(u)) = 2 d un- 1du 

n=l n 

Proof. It is clear that 

It is straightforward to see that 
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Then we can write 

UPG4 (U)dU + dGS(u) 

G4 (U) ,GS(U)EZ
p

[ [uJ]. 

Hence 

Now, (4-2) and (4-3) satisfy the condition of Lemma 2 because the 

denominators of the coefficients of q-expansion do not divide p . 

Comparing with the equation 

we have proof of our Theorem 6. 

The following corollary is obtained by applying the consequence of 

our theorem to the recurrence (4-1) . 

Coro II ary 1. Let k , Land l' (~' 1,) be the above . 

Then , JOT p = L mod k , 

1 (k, L) 
t- l' P -

4-2. Examples. 

-2(2L+k) 1'(k,k+L) mod p 
p 

Let k=4 and 1..=3 . Then 
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CD 

1'(4,3)qn 2 4 -6 . 4 
l = n(4~) n(8~) n(16~) n(32~) 

n=1 n 

3 2 q 
7 5 qll + 10 q15 13 19 

= q - - + q + ........ 

If p=11 then (21) (4 ) 6 -2 (4,3) 
mod 11 = - = l' 11 1 2 

If p=19 then (21) (8 ) 70 13 (4,3) 
mod 19 = - = l' 19 f 4 

This form is the non-holomorphic automorphic form of weight 2 with 

respect to f o (32), but we do not know about the properties of 1'~4,3~ 

Let k=5 and L=2 . Then 

CD 

(5,2) n n(5~)2n(10~)13/5n(20~)-9/5n(40~)6/5 l I'n q = 
n=1 

2 2 q 
7 18 12 36 q17 122 22 = q - -5 q + - + -- q - ........ 

5 25 

If p=7 then (21) = (2 ) = 2 - -(-2)= (-1) 1'(5,2) mod 7 
1 1 7 

If then (21) (6 ) 20 36 (_1)3 (5,2) mod p=17 = = -(-)= 17 
1 3 - 5 l' 17 

4-3. Applications. 

We can try to apply our method to other numbers of which the 

generating function satisfies the differential equation of the form 

G(~) -.!l!L 
q 

and several examples can be seen in Beukers[5] and Stienstra-Beukers 

(24) . 

For the numbers (2n)2 , n~O . Steinstra and Beukers[24) proved n 

that the generating function 
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satisfies 

F
1

(t)= 2: 
n=O 

Extending this by the same method . we have 

where 

Consequently . 

Theorem 7. Let k. L be positive integers ~ith (k.L)=l and ~rite 

for m = S-Llk • 

2: 
n=l 

Then • f 01' any p1'ime p= L mod k and p=kf+ L -, 

Mod p 

Remark 3. If k=4 and 1=1 then a~4,l)= an These are the 

Fourier coefficients of the cusp form n(4~)6 of CM-type. 

Combining this with Theorem 6, we can obtain the congruences of 

Fourier coefficients of the automorphic forms of the different 
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weights. 

Coro II ary 2. Let k • ], , y(k.],) and ex.(k,],) be the above. 
n n 

Then .for p = L Mod k . 

(k. L) 
ex. p { . (k. U }2 

. y P 

- 32 -
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§5. Congruences of u<Efl) . 

Let 

, n>O 

be Apery numbers with the proof of irrationality of ~(3). 

Beukers[5,Proposition 1] proved that the generating function 

co 

~(t)= 2: u(n)tn 

n=O 

satisfies 

where (see Proposition 2 of this 

paper) . Extending of this in the same method of Proposition 10, we 

have 

where 

Consequently, by Lemma 2, we have 

Theorem 8. Let k, L be positive integers uith (k,L)=l and urite 

JOT m = 12L/k , 

2: 
n=l 

t;(k,L) n 
sn q 
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Then ,Jor any prime p=L mod k . 

1;(k.1,) 
p mod p 

Since the Apery numbers u(n) satisfy the recurrence 

the following corollary is an easy consequence . 

Corollary 3. Let k, Land 1;(k,1,) be the above. Then 
n 

Jor any prime p=1, mod k , 

1,3 1;(k,1,) + (k+1,)3 1;(k.1,+2k) 
p p 

= (34L 3+51L2k+271,k2+5k3 ) 1;(k.L+k) 
p 

Example. Let k=3 and L=1 Then 

CD 

1;(3,1) n 2: 2 6 2 -2 
n q = n(3~) n(6~) n(9~) n(18~) 

n=1 

-2 2 6 2 
-9n(3~) n(6~) n(9~) n(18~) 

mod p. 

11 4 25 7 15 10 20 13 = q q - q + q + q 

If p=7 then u(7-1) 
3 u(2) 73 - -25 1;(3.1) 

7 mod 

If p=13 then u(13-1) U(4) = 33001 = 20 = 1;(3.1) mod 3 13 
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7 
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