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Congruence properties of Apéry numbers , binomial coefficients

and Fourier coefficients of certain n-products

Tsuneo Ishikawa

8§1. Introduction.

Let, for any =n20,

ew -3 @MY ww -3 (@

R.Apéry's proof of the irrationality of §(2) and %(3) made use of
these numbers, respectively (see van-der-Poorten [23]). So we call
these numbers Apery numbers. The first few values are given by
a{0)=1,a(1)=3,a(2)=19,a(3)=147,a(4)=1251 and u(0)=1,u(1)=5,u(2)=73,
u(3)=1445,u{4)=33001.

So far, many properties of a(n) and u(n) were discovered by
several people. Chowla-Cowles-Cowles([7] first considered
congruences for u{n), and some elementary congruences were proved by
Gessel[11], Mimura{22] and Beukers([4].

Moreover, these numbers are concerned with the théory of
differential equations, algebraic geometry, automorphic forms and
formal groups. Stienstra-Beukers[24] showed that Apéry numbers were

related to Picard-Fuchs equations associated to certain algebraic



variety(see Beukers-Peters[6], too), and they proved some congruences
using the theory of formal groups. Recently, Koike[20] showed some
relations between Apéery numbers and hypergeometric series over finite
fields.

At first, in Section 2, we will collect the results for the Apéry
numbers in Beukers [2],[5] by way of preparation.

In Section 3, we shall study about super congruences for the
Apéry numbers. These are congruences modulo pr(r>1) which we can not
prove using the usual method in the theory of formal groups. We
shall prove the following congruences conjectured by Beukers[5]. Let

p=3 be a prime, and write

< 2

2 Enqn = g1 (1-¢“M*(1-¢*™)
n=1

If u(Bél) 2 0 mod p then

p-1, _ 2
u( > ) = Zp mod p
And, let p>5 be a prime, and write
3 aqt = a7 (1-q°™°
n=1 1n=0
Then
p-1 _ 2
a(—i—) = ap mod p

For the more general statements see Theorem 3 and Theorem 4 of this

paper. The most general statements conjectured by Beukers are still



open. Our method is applicable to the mod p2 determination of other

numbers such as v(n) = 2 [ Z ] (-1)"
k=0

In Section 4, we shall study about the congruences between
Fourier coefficients of certain modular forms and binomial

coefficients (2;) where f = p-l is a integer, 1l and k are positive

k
integers with (k,1)=1 and p is a prime p=l mod k. The main result
is the following congruence (see Theorem 6 of this paper). Let k
and 1 be the above and put m = 4l/k. Write
S v D o ko Zn ok T Py cake) 373 ok 2R 2
a=1 "
where n(r)=q1/24 Il (l—qn) is the Dedekind n-function with q=62n1rand
n=0
Im >0 . Then
2f, _ 4 (k1)
( f) = (-1)7 v p mod p

The numbers (2;) are related to formal groups as the special case of
the congruences of Atkin- Swinnerton-Dyer type. Some modular forms
which appear in this section are non- holomorphic, so we can not use
the theory of Hecke operators and we do not know about the properties
of the coefficients y(ﬁ’L? But we prove the new congruences of the'
Fourier coefficients of certain modular forms in Corollaries 1 and 2.
For example,

= —2(21+k)

Y(ﬁ'k+L) nod p



In Section 5, we shall prove the following congruences of u(E%L)
applying to arguments in Section 4. Let k,1 be positive integers

with (k,l1)=1 and write

(Dt = g (ko)™ 2 (2k0) 2070 (3k0) 8 n (6k) * 70

2 &
n=1

10-m

-9 (k)™ 8 (2k0) %y (3kT) n(6kt)® 2

with m=121/k. Then ,for any prime p=l mod k ,

(see Theorem 8). But, we do not know the details of the properties

of g;k'L?
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§2. Some facts.

In this section, we mainly describe the results obtained by
Beukers[2],[3] and [5] by way of preparation of Sections 3,4 and 5.

We may state about the numbers u(n) as we can take the same method

for the numbers a(n).

Let
G(t) = S u(n)th
n=0

be the generating function of u(n). The function U(Z) is the

holomorphic solution around =0 of the 3rd order linear differential

equation

3 2
(2-1) (2% - 3413 + %) LY, (243 - 153t + 31) 9—5
dt

w
ol
o~

+ (Tt% - 112 + 1) g% + (t-5)y=0,

because the numbers u(n) satisfy the recurrence

il
(@

(n+l)3u(n+l) - (34n3+51n2+27n+5)u(n) + n3u(n—l)
Let yo=ﬂ(t),yl and LD be solutions of (2-1). Then we see
(2-2) Yo = O » Yy = 00 . Yy = 0

where @O and @l are some solutions of the differential equation

2
(t°-34221)% 2 & (2¢%-51£+1)22 + L(t-10)0 - 0
2 df * 2
dt
By transformations t = Ei%;%!l and ¢ = J1l-z ® , we have
d? 2 d
(2-3) z(z—l)(sz—l)——% + (27z —201—1)a§ + 3(3z-1)o = 0
dzx



This is the Picard-Fuchs equation associated to the family
of the elliptic curves

2

(2-4) vZ2 4 (1+2)XY - z2(z-1)Y = X°

- :z:(:z:-l)X2
Beukers and Stienstra[24] studied about the relations between the

Picard-Fuchs equations and the modular forms.

Proposition 1. (Beukers and Stienstra) Let f(z) be a holomorphic
solution of (2-3) around z=0 with F(0)=1 and put
x(t) = n(o) *nzt) Bn(st) *n(e1)®

wvhere n(T) = ql/z4 I (l—qn) i8 the Dedekind n—Ffunction with gq=e

n=1

2nit

and Im(T)>0. Then

- X :
Flz(x)) =1+ 3 2 Zikl%— = El(r,x),
k=1 1-qg

where El(r,x) denotes the Eisensiein series of weight 1 and x(k) is

the Diriclet charcter of modulo 6 with x(-1)=-1.

We give a sketch of the proof of Proposition 1. Elliptic curves
(2-4) are the Tate normal forms with a point(0,0) of order 6, and they
are parametrized by the modular curve H/Fl(G) where

rye) = (2 Besi, @ | (2 2)=(3 1) mod 6 3

The function z(t) is the generator of the function fields on Fl(G)



and maps the shaded open area in the picture below univalently onto
the upper half plane and satisfies z(i«)=0, z(0)=1/9, z(1/3)=1,

z(1/2)==.

et 180 1o(1/9)

0 173172

Now, put ml(r) = El(r,x) and mz(r) = rEl(r,x) . We can consider ©;

and ©, as multivalued function on the z-plane via the mapping t —

z(t). We denote them by ml(z) and mz(z). After an analytic

continuation along a closed path y in C-{0,1/9,1} corresponding to

[g Zjerl(S) W and w, are changed by the transformation
o, (z) 0. (zx)

S e B 3 [
@l(I) c d ml(x)

Now ml(x) and mz(x) satisfy the equation

0, O 0, o) o) o]
(2_6) l :} F" - l %v F' + :} :1" F L= O
@y 99 Wy @y @y @y
It is straightforward to see that
m m' ( )2 1t m m'
1 ©1 ®1 %1 | _ d|*1
© i (dx/dT) ' mé' dx 0, ©.




and

@ 9
m' é'

: = (£5)73 2(de,/dv) 2~ o (d/dv) %} |

and these determinants are rational functions of z by (2-5).
Here we can check that m—ldm/dr is a modular form of weight 2 for

rl(s) and
2 2
(o)) _ | (o))
(dz/dT) z_ldm/dr

has simple poles at T=i«, 0 and 1/3, and a zero of order 3 at t=1/2.

Hence, we obtain

© o (o )2 c
1 1 _ 1 _ 1
0, mé dz/dt z(z-1)(9z-1)
for some constant cl, and
0 O } C, T + 03
@y @y 32(3—1)2(93—1)2

in the same way. We can determine the constants cl, 02 and 03 by

comparing with

o(lz) =1 + 3z + 15$2 + 93:1:3 + 639:1:4 + eee
Hence we see that (2-3) equals (2-8). See Stienstra- Beukers[24] ,
Beukers[2],[5] and Stiller([25]. o

The following proposition is the direct consequence of the above

(see Beukers[5]).



Proposition 2. (Beukers) Letl

t(t) = n()2n(20) 20 (31) 2n(60)1?

Then

U(t(t)) = 55 (2E,(21) - 3E,(31) - 5E,(1) + 30E,(67))

where Ez(r) =1+ 24 ol(k)qk is the Eisenstein series of weight 2
k=1

with o, (k) = > d
d|k

Moreover, let x(x) = Ji(2t). Then we have

(nz)*nan? - en(eny*n(121)%1dg/q

it

(2-7) . 4(P)da

The following lemma is convenient for the proof of the
congruences that is related to the theory of formal groups( see

Beukers[5] and Stienstra-Beukers([24] ).

Lemma 1. Let p be a prime and

o(t) =

1tNAS8
o~
~

. . . i n o
be a differential form with bnGZp . Let t(u)= ; e u with cnelp ,

n=1
ey 1S a p-adic unit , and suppose
o(t(w) = 3 d v tau
n
n=1
Then (2-8) is equivarent to (2-9) for m, r€N and ap,Bpezp , pIBp :



b(mpT) - apb(mpr"l> . pr(mpr’2>

(2-8)

2)

(2-9) d(mp’) - apd(mpr_l) + 8 d(mp’"

Proof. Note that the congruences(2-8) are

8 2
——% o(tP )
D .

154
(1) - —F o(th) + dF, (1)

Since

t(W)™ = t (@ + wp G, (w) ,

and

we see -

b
O]
np

n

>
=1

1
—0

o)

n

Similarly

1
—w

2
p +
se(t@P ) « dFg(u)

1 2
Tﬁ)(t(U)p) =

Hence (2-9) implies

“p

2
—L (2P )
D

o(t(u))- o(tuP)) +

Conversely, since cl

S "

u(t)
1 n

N8

T

Thus we have completed the proof. O

- 10 -

Gn

(t(uP)y) + dF,(u)

dF4

0 =mod pr

0 mod pr

equivalent to

Fl(t)ezp[[t]]

(u)ezp[[u]]

Dyny |
(¢2(u™)"™) 5dG, (u)

F,(u)€Z[[u])

Fs(u)ezp[[u]].

(u), F4(u)eZp[[u]]

is a p-adic unit, we can write



inqn = q 1 (1-q
1 n=0

4n, 4

2n. 4 .
m ) is an

Now, since n(21)4n(4t)4 = 2 (1-q

n

unique cusp form of weight 4 for FO(S), its corresponding Dirichlet

series has Euler product

@ g _ _ -
S —Z = m (1-g pSepEeTE
n=1l =n p:odd p
Let
n(2)inan)® - anen) a2t = 3 F(m)q"
n=1
Then
E g(n) _ E no_ 32—3 E 5n
n=1 nS n=1 nS n=1 nS
- (1_32—3) T (1 - Ep p—s+ p3—23 )—1

p:odd

Hence, for all odd prime p,
Z(ap”) - &, Emp' ) + p° E(mp" %) = 0 mod p

Combining Lemma 1 and Proposition 2 (2-7), we can obtain the

following theorem (see Beukers[5] ).

Theorem 1. (Beukers) Let p=23 be a prime, and write

@

(2-10) Seq® =l (1-¢"M% (1"

n=1 n=0
Let m, reN, m odd, then we have

mgr—l mér_l—l 3 mgr_z—l r
(2-11) u(=—=5—-) - €DU( 5 ) + pTu( > ) =0 mod p

_ll_.



In the case of the numbers a(nmn), the generating function

a(n)t®
0

4(1) =
n

\ZE:

is @ holomorphic solution of the Picard-Fuchs equation

2
t(t2-118-1)LE o (3¢2-22¢-1)%E L (t-3)F = 0
2 dit
di
associated to the family of elliptic curves
(2-12) vZ2 = %3 4+ (t2+61+1)X% + 8t(1+1)X + 16¢2.

Therefore, we can prove the following theorem in the same way.

See Beukers[2] and Stienstra-Beukers[24].

Theorem 2. (Beukers and Stienstra) Let p>3 be a prime, and write

(2-13) 2 anqn = q 1 (1-¢*™8
n=1 n=0
Let m, reN, m odd, then we have
-1
T_ r-1_ p= r-2_
(2-14)  a(®Br %) - 0 a®E"2) + (-1)? pPaPE L) = 0 mod p”

- 12 -



§3. Super Congruence for the Apery Numbers.

Let {w(n)} _; be a sequence of rational or p-adic integers. We

will consider the congruences

l) mod p*T

w(mp?) = a wlmp’
where x,m and r are positive integers and a is a p-adic integer. If
k=1 then these congruences arise from the theory of formal groups
(see Hazewinkel[13], Stienstra-Beukers[24] ). In the cases of x>1,
we call these congruences super congruences (see Coster[10]). In
this section, we will treat the super congruences for the Apeéery

numbers a(n) and u(n), i.e., we shall prove that the congruences in

Theorem 1 and Theorem 2 hold mod pKr in the case of kx=2>1 and r=1.

Theorem 3. Let p>5 be a prime and meN, m odd, and write
Seq = ql (1-¢*™©
n=1 n=0
Then we have
mp-1 -1 2
( 7)) - %, a(ﬂg—) =0 mod p
Theorem 4. Let p=3 be a prime and meN, m odd, and write
2 Enqn = q Il (1—q2n)4(1—q4n)4
n=1 n=0

If u(B%l)zO mod p then

_13_



u(EE%E) - Ep U(E%L) =0 mod p2

F.Beukers informed me that Theorem 3 is proved by L.Van Hamme[12]
in the cases of p=l mod 4 using properties of the p-adic gamma
function. We prove the general case involving p=3 mod 4 by entirely

different method.

In Theorem 4, u(Béi) = 0 mod p for p=11, 3137 if p<100000. But

these cases hold, too.

However, in the cases of r>2, these super congruences are still

open.

3-1. Congruences of a{(n).
The numbers a{n) satisfy the recurrence
2 2 2

(3-1) (n+1)%a(n+1l) = (11n"+11n+3)a(n) + n a(n-1) nx1
We know the following result. Let p be an odd prime, and m>0, then

_ 2
(3-2) a({mp) = a(m) mod p~,

2

(3-3) a(p-1) = 1 mod p”.

-3+5p mod p2 and

By (3-1),(3-2) and (3-3), we have a{(p-2)

a(p+l) = 9+15p mod p2

Proposition 3. Let m20, n20 and m+n=p-1. Then

- 14 -



a(m) = (-1)™a(n) mod p

Proof. We proceed by induction on m to show that a(m)z(—l)ma(p_m_l)
mod p. From the above result, a(0)=a(p-1)=1 mod p and a(l)=-a(p-2)=3

mod p. Let O<m<p-1. From the recurrence (3-1),

(m+1)2a(m+1) (11m2+11m+3)a(m) + mza(m—l)

{11(p-m)2-11(p-m)+3}a(m) + (p-m)2a(m-1)

~{11(p-m)%-11(p-m)+3}a(p-n-1) + (p-m)2a(p-m)
if m : odd

{11(p—m)2—11(p—m)+3}a(p—m—l) - (p—m)za(p—m)
if m : even

mod p . O

{ (m+1)2a(p—m—2) if m : odd

—(m+1)2a(p—m—2) if m : even

Proposition 4. For all primes p, n20 and 0<m<p-1, we have

a(np+m) = a(m)a(n) mod p

Proof. We shall need Lucas' congruence

om) = (2)(4)
(c+pd) - Ie] d mod p
for 0x<a, e<p, and

[(a+pgi;éc+pd)J - [a;cj[b;d} mod p .

Then Tor O<m<p we have

mpn m+pn 2 m+pn+k
a(mﬂ-’m) = E [ k j [ k j
k=0

- 15 -



2 2

i=0 7=0

pl n [m+pn)2[m+pn+i+pjj

i+pJg i+pJ
2

S () (30 moa s

2, . -
{igo[ ?) [mitj}{jgo( 7))

p-1

M3

a(m)a(n) . O

3-2. Congruences of b{n).

Let 5(0)=0 and, for any nxl,

n 2
_ n n+k 2 . 2 1 L 1
v kgl[ k J [ K )[ n-k+1 " TTw T wer * oot |

These numbers are (differential) of a(n) and they take important parts

in the congruence of mod p2 as shown in Gessel[11,Theorem 4].

Proposition 5. The numbers b(n) satisfy the recurrence
2 2 2
(3-4) (n+1)°b(n+1l) = (11n“+11n+3)b(n) + n"b(n-1)
- 2(n+1l)a(n+1l) + 11(2n+1)a(n) + 2na(n-1) ,
and for all primes p=3, 120 and O<m<p-1 , we have

a(np+m) = {a(m)+pnb(m)}a(n) mod p2

Proof. Let

2 2
2 2
B, y = (K“+3(2n+1)k-11n —9n<2)83 [ﬁ;kjyn,k + (sk—zzn—g)[ZJ [n;kj,
= L R + 2 + __l_ + l
and Hn k= wm-k+1 ° T n+1 Y Rk

_16_



then we have

2 2
_ 2(n+1 n+l+k _ 2 n) " (n+k
n,k-1" (#*1) [ K J [ K JHn+l,k (11m +lln+3)(kj [ K Jyn,k
2 2
2(n-1 n-1+k n+l n+l+k
- ( K ] ( K ]Hn—l,k+2(”+l)( k J ( K ]

s () (3 - () (4

Taking summation from 1 to n+l on k, recurrence(3-4) follows.

Bn,k— B

Next, we see that by Proposition 4 for fixed n and p, there exist

numbers b(k), with 5(0)=0, such that

(3-5) alk+pn) = a(K)a(n) + p B(k) mod p? ,

for O<k<p. Let us write the recurrence(3-1) in the form
2
> r.(n)a(n-i) = 0
i=0 *

Note that this congruence holds for n>1 if a(-1) assigned any
arbitrary wvalue. Substituting k+pn for n, and using (3-5) and

Taylor's expansion, we have

2
0= 3 ri(k+pn)a(k+Pn—i)
i=0 |
2 2
= 2 {r (k) + pnr.(k)}{alk-i)a(n) + p b(k=1)} mod p
i=0
2 2
=p 2 {r,(K)B(k-i) + n r (K)a(k-i)a(n)} mod p
1=0
for O<k<p. Multiplying (3-4) by na(n), we see
)
2 {ri(k)nb(k—i)a(n) +n ri(k)a(k—i)a(n)} = 0
=0

_17_.



with b(0)=0. Then since ro(k)=k2 is not divisible by p for O<k<p,

we have B(k)=nb(k)a(n) mod p for O<k<p. O

Proposition 6. Let m20, n20 and m+n=p-1 . Then

b(m) = (—1)m_1b(n) mod p

Proof. From the congruence(3-2),(3-3) and Proposition 5,
b(0)=-b(p-1)=0 mod p. And by the definition of b(mn), ordpb(P)zO
Then b(1)=b(p-2)=5 mod p by the recurrence(3—4). By induction on =n,

similarly in Proposition 3, we can prove it. O

Theorem 5. Let m20, 720 and m+n=p-1. Then

a(m) = (-1)®{ a(n) - pb(n) } mod p°

Proof. It is clear from (3-2),(3-3) and Proposition 6 in the case
of m=0,1. From the recurrencey3-1),(3-4) and the congruence

(m+1)2a(m+1) = {11(p-m)2-11(p-m)+3}a(m) + (p-m)3a(m-1)
- 11p{2(p-m)-1}a(m) - 2p(p-m)a(m-1) mod p2,

it can be also shown by inductive method. o

3-3. Congruences of c(n).

If p=3 mod 4, we can not obtain the congruence of b(B%i) from

_18_



Proposition 8. Therefore we prepare the numbers c(n).

Let, for all odd numbers nx1,

2 ray® K 3 3
c(n) = kgl[k] (-1) [-71—k—+1+“‘+ 77. ]

p—l"'k k p-1
Let p be an odd prime. From the congruences | 2 =(-1) 2 mod p
K K
1 1 1 1
and — 4 e 4 + + +++ + ———— = 0 mod
P11 p1 T Tprd p1,, P
2 2 2 2
where 1sk§B%i, we have 3b(B%l) = C(B%l) mod p if p=3 mod 4.

Proposition 7. The numbers c(n) satisfy the recurrence

(3-8) nle(n) = -3{9(n-1)%-1}e(n-2)

for all odd numbers n=3.

Proof. Let

7 (k)= 2(14n2+n-1) - 3(26m%-n-3)k/n  + 3(29n2-3)k%/n2

_3(1572+2n-1)k°/n° + 3(3n+1)k%/n° |

g (k)= 2(28n+1) - 3(26n2+3)k/n>  + 18k%/n°
+3(157°%+14n-3)k°/n? - 9(2n+1) K%/t |

—_— 3 - - - 3
and Cn,k = k-1 M

Then we have

3 3
2(n+1 2 n-1
(n+1) [ K J Cn+l.k+ 3(9n —1)( K J Cn—l,k

3 3
+ 2(n+l)(nzlj + 54n(n;1]

- 19 -



- fn(k)(ZJBCn’k+ fn(k—l)(kfljscn,k_1+ gn(k)(Z]B * gn(k_l)(k?ljs

We multiply both sides by (-1)X. Taking summation from 1 to m+1 on k,

(3-7) (n+1)2e(n+l) + 3(9n2-1)e(n-1)
n+l 3 n-1, .3
+ 2(n+1) S [";1] (-1)% 4 547 3 ("kl] -1k = o
k=0 k=0
If n=0 mod 2, two latter summations are equal to O. o

The numbers c(n) satisfy the recurrence(3-7) if n=1 mod 2.

Proposition 8. Let p=3 mod 4 be a prime, then we have

c(Béi) = 0 mod p

Proof. It is trivial if p=3. If p=7 mod 12 then 2%3 is odd.

By (3-6), we have

(B3%)%e(B2) + 3(9(B2)?-11e(BH) - o

Then C(B%g)EO mod p. Hence, e(n)=0 mod p for B%gﬁnSp-z and 7 odd.

p+4
3

If p=1l1 mod 12 then is odd. Therefore it can be proved in the

same way. O

3-4. Proof of Theorem 3.

Beukers and Stienstra showed that the generating function of a(n)

is a holomorphic solution of the Picard-Fuchs equation associated to
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the family of elliptic curves(2-12). From this argument and the

t¢-function of a certain K3-surface, they proved Theorem 2 (see

Beukers[2] and Stienstra-Beukers[24]). Moreover, we know that the
. . . 6 . _ 2niz
right hand side of (2-13) is equal to n(4z) with g=e » Im(z)>0
1/24° n, . ) .
(where n(z) = g T (1-q") is the Dedekind np-function). From the

n=1

Jacobi-Macdonald formula, we see

[0 4 =

{ 4a2—2p if p=1 mod 4 and p=a2+b2. a=1l mod 2
p

0 if p=3 mod 4
Hence if p=l mod 4 then apéo mod p. According to Theorem 2, if m=1
and r=1 then a(B%l)sapio mod p.

Let us prove Theorem 3 using congruences of a(n), b(n), c(n), and

Theorem 2.

If p=l mod 4 then B%l is even. From Proposition 8, b(E%l)E

2
—b(Eﬁl) mod p. Hence b(E%l) = 0 mod p. Then a(Epz—l)Ea(mPél)a(pél)

mod p2 and a(mpél)za(mél)a(pél) mod pz. Putting r=2 in Theorem 2,

2
a(EBELL)Eapa(EB%l) mod p2_ Since a(B%l)zo mod p, it is reduced to

mp-1, _ m-1 2
a( 5 ) = apa(—i—) mod p

If p=3 mod 4 and p#3 then a(pél)'z g b(pél) —g—c(B%l) mod p2

0 mod p2. Hence

I

by Theorem 5. From Proposition 8, We have a(B%l)

a(mD;l)Ea(p;l)a(mél)EO mod p2. Thus we have completed the proof.



3-5. Proof of Theorem 4.

The proof of super congruences for the numbers u(n) is easy

using Gessel's result in the same way.

Proposition 3 (Gessel) . Let d(0)=0 and

n 2 2 K
_ . n n+k 1
d(m) = 2(2m1) 3 (%) & {igl(n—ﬁl)(mi) =l

Then for any prime p , and 0<k<p , we have

u(k+pn) = { u(k) + pnd(k) } u(n) nod p2

Proof. The congruence can be proved in similar method of the

proof of Proposition 4 of this paper. See Gessl[11]. O

By the explicit formula of d(n), we have d(B%l) = 0 mod p
Then it follows that
U(B—:l) = { U(Béi) }2 mod p2
Hence by puting r=2 and m=1 in Theorem 1, we have

2
wBr ) = g ugh mod p?

Thus

{ U(B%l) }2 = ﬁp u(B%l) mod p2

Now since u(B%l) £ 0 mod p, it is reduced to u(B%l)

gp mod p
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Hence we have completed the proof of Theorem 4

3-6. Applications to other numbers.

Above method is applicable to other numbers which satisfy the

relations such as (2-11) and (2-14), and we can use the mod p2

determinations of the certain numbers. For example. Let, for any

n=0,
7 3
vin) = (-3 [T
k=o[ ¢)

F.Beukers and J.Stienstra[24] showed the following congruence. Let

p>3, and write

Sy q® = g T (1-qM2%(1-¢™ (1-¢*™) (1-¢
= n=1

8n)2

Then, for m,reN, m odd,
T r-1 r-2
mp -1, _ mp’ -1 [—2 J 2 mp' “-1, _ T
v(——g——) va(___i___) )P v(———§———) =0 mod p ,

where (—%—J is the Jacobi-Legendre symbol.

The numbers v(n) whichare (differential) of w(mn) can be formulated to

n 3
U(n) = 3(-1)7" kgl[ k J [ 7eT

And for all primes p>3, n>0 and O<m<p-1 , we have

vinp+m) = { v(m) + pnv(m) } v(n) mod p
Then v(B%i) of mod p2 is determined by our method if (:%—J=l, that is
p-1, _ p ~ p-1 2
v(57) = Yp * 5 v(==) mod p
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§4. Congruences of binomial coefficients (2;).

Let k and 1 be positive integers with (k,l)=1. Let p be a prime,
p = L mod k and the integer f is defined by p=kf+l. We consider the

congruences modulo p of binomial coefficients of the form (2;).

In the classical results, for k=4 and 1=1, Gauss proved that

(2;) = 2a mod p |,

where p=a2+b2=4f+1 and a=1 mod 4. For k=3 and 1=1, Jacobi proved that

27, _
( f) = -ga mod p ,

where 4p=a2+27b2 and a=1 mod 3. Moreover, the number 2a (resp. -a)
can be regarded as the p-th Fourier'coefficient of the cusp form of
CM-type associated with the Hecke character of Q(/-1) (resp. Q(/-3)).
In the recent results, for l=1 and k<24, these were studied by Hudson

and Williams [15] using Jacobi sums.
In this section, we shall prove the congruence properties between

and Fourier coefficients of certain

binomial coefficients (2;)

n-products

Theorem 6. Let k and 1 be the above and put m = 41/k . Write

S Yék'L)qn = neko) 2n 2k TRy (ko) STy (gk) 2R2
n=1

1/24 2nit

n

and

wvhere n(t)=q 1T (l—qn) 1S lhe Dedekind n—function with q=e

0
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Im >0 . Then , for p = 1 mod k and p=kf+l ,

(2;) b Y(k'L)

mod
p D

(-1)

il

For some k and 1, n-products in Theorem 6 are non-holomorphic

automorphic forms of weight 2, so they were not very studied for

details. But we can obtain the congruence relations like Corollary 1

for the family of these functions

4-1. Proof of Theorem 6.

We consider the generating function F(t)= 2 (_1)n(22)tn
n=0

Since the numbers (—1)n(22) satisfy the recurrence

mrl2(nrl)y o (one1) (-1) (2P 220

(4'—1) (Tl'*l)("‘l) n+1 - n ’
we have '

F(t) = (1+41) 1/2

Proposition 10. Let k and 1 be positive integers with (k,l)=1

and m = 41 / k . Write
_3 , \4/k =
(4-2)  a(x) = [ n(2k<)n (akt) "3 (8kt) ] = 3 A" (A1)
a=1 "
Then
(4-3) FOR e b= 1in (k) 2n(2ko) ™t n(4kr)3‘3mn(8kr)2m"2}’%ﬂ
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17k so that it

Remark 1. We may use the branch of k-th roots z
takes positive real values on the positive real axis, i.e., the

leading coefficients yik’L)and Al in the p-product of Theorem 6 and

Proposition 10 are equal to 1 respectively.

Proof. First we prove the case of k=4 and (=1. We consider

the following congruence modular subgroup
- {[a b _
To(8) = {[C d)ESLz(ZH ¢=0 mod 8 }
It has no elliptic elements , and a set of representatives of
. . . . 1 1 * .
inequivalent cusps is { i= , 0 , T 3 } . H/ FO(B) is a curve of
genus 0. Putting
-12
) = no*han Zeod

it is a modular function with respect to FO(B) , and the wvalues at

the cusps are given by 1(1i=)=0 (simple), t(0)=% , t(%)=m (simple) ,

and t(%)=— % Hence t(t) generates the function field of modular
functions with respect to FO(B) . Therefore we see that Fz(t(r))
S has a simple pole at r=l and a simple zero at r=l
1+4t(T) 2 4

Hk(FO(B)) (resp. Sk(ro(S))) denotes the space of modular forms (resp.

cusp forms ) of weight k. It is not hard to check that t*l%% is in

HZ(FO(B)) and it has a simple zero at =0 , % . Hence the function



4

1.4 -1dt

(4-4) $(1) = () P @D 1o
- q-8q°+12q° -64 g%+ 210q° - 96 q° + -....
is an element of SB(TO(S)). We choose
n(t)sn(21)8 = q - 8 q2 + 12 q3 - 64 q4+ 210 q5 - eeae
as another form (this is an éld form) in SB(FO(B)) . Since
dim SB(FO(B)) = 5 , comparing with the coefficients , we have
(4-5) ¥(t) = n(0)® n(2t)8

Taking 4-th roots with Remark 1 and replacing t by 4t , we have
(4-6) FHda = nan)®p(en)? da/q

In the general case, from (4-4) and (4-5) , we see

1 .k k,,-1dt. k l
Tk.L(t) = (EE?) F(i(T)) (2 a;) t(T)
_ n(t)an(Zt)4L+kn(4t)3k_12ln(81)8l_2k

Hence our proposition follows from taking k-th roots and replacing <

by ktT. o

Remark 2. When k=4 and 1=1 , since the function
Sry.qt o= n(at)2n(81)?

is the unique cusp form in SZ(TO(SZ)), applying Beukers[5,Prop.3]
to (4-3), for any m,reN , m=1 mod 4 and any prime p=1 mod 4 , we have

(mpT-1)/2 (mpT-1)/4 (mpT " 1-1)/2 (mp” " 1-1) /4
[(mp’"—l)m] (-1) T Y [(mp’"“l—l)/cJ (-1)
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-2 r~2
. (mpl~ —1)/2] (@l f-1) /4 r
p [(mpr 2_1)/4 (-1) =0 mod p

These congruences are quite Atkin-Swinnerton-Dyer type associated to

the elliptic curve: yz = x3 + 2z (see Atkin-Swinnerton-Dyer(1]).

In our case, we can not use directly the method of Beukers[5] or
Stienstra-Beukers[24,Th.A9] because the non-holomorphy of n-products
of the right hand of Proposition obstructs that we apply the theory

of Hecke operators to them. But the following lemma is useful.

Lemma 2. Let p be a prime and

Lat

o(t) = 3 bnt“"
n=1
be a differential form with b_€Z_ . Let t(u)= 3 ¢ u" with c_€Z .
n p el B np

c., i85 a p—adic unit , and sSuppose

1

m(t(U))A=

"8
b=
|
Y

Then dp = ¢ bp mod D
Proof. It is clear that
0(t) -~ b_tPYdt = tPe_ (t)dt + dC.(t) . G.(t),Co(t)eZ [[%])
P 1 2 ! 1 T2 o)
Jt is straightforward to see that

p-1 . P _p-1 + P
t dt = ey u du U Gs(u)du , Gs(u)ezp[[u]]
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Then we can write

>~

o(t(w)) - bpcf Pl = uPe (wdu + dog(w)
64(u),65(u)62p[[u]],

Hence

=0 mod p. 0O

Now, (4-2) and (4-3) satisfy the condition of Lemma 2 because the
denominators of the coefficients of g-expansion do not divide p

Comparing with the equation

2 raMaah -3 ()RR Ly 3 D gnelyg
= n=0

we have proof of our Theorem 6.

The following corollary is obtained by applying the conseguence of

our theorem to the recurrence (4-1)

(k, 1)

n be the above .

Corollary 1. Let k¥, 1 and v
Then , for p = 1l mod k ,

1 Y(k' L)

P mod p .

= —z0z10k0 ¥ KKV

4-2. Examples.

Let k=4 and 1=3 . Then
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5 y# 3¢ = pao) (s *n1e<) Cn(3z0)®

n=1 n
_ q3 _ 9 q7 _ s qll + 10 qla + 13 q19 .
_ 2fy _ /4, _ - _ _ ., (4,3)
If p=11 then ( f) = (2) =6 = 2 = v 11 mod 11
B 2f, _ .8y _ _ _ .. (4,3)
If p=19 then ( f) = () =70 = 13 = v [} mod 19

This form is the non-holomorphic automorphic form of weight 2 with

(4,3)"

respect to F0(32), but we  do not know about the properties of yp

Let k=5 and 1=2 . Then

2 Yés’z)qn = n(Sr)zn(1Or)13/5n(20r)_9/5n(40r)6/5
n=1
2 7 18 12 36 _17 22
=q - 29 - qg7+—Fq + 122 Q-
If p=7 then (2§) =B =22 -(-2)= (-1) 7(2'2) mod 7
_ 2f, _ 6, _ _ _,36,_ ,_.13.(5,2)
If p=17 then ( f) = (3) = 20 = -( 5)— (-1)7y 17 mod 17

4-3. Applications.

We can try to apply our method to other numbers of which the
generating function satisfies the differential equation of the form
FOuo S = 6o 2
and several examples can be seen in Beukers[5] and Stienstra-Beukers

[24].

For the numbers (22)2 , nz0 , Steinstra and Beukers[24] proved

that the generating function



satisfies

Foada - n(41)® _g%_ ,

- 4
where a(x) = n(4r)2n(81) 6n(lSr)
Extending this by the same method , we have
F, 6500 = 1 ko™ 20 (zkn 8 4k P78 S

{ n(ko)n(2kt) Sn(akc)? (87K

where x(t) and m = 81l/k

Consequently ,

Theorem 7. Let k, 1 be posilive integers with (k,1)=1 and write

for m = 8l/k ,

5ol Dg® (k)™ %0 (200) 0% (4kr) 2R8
n=1
Then , for any prime p=l mod k and p=kf+l .
272 _ _(k,1)
( f) = o mod p
Remark 3. If k=4 and 1l=1 then a£4’1)= o, - These are the

Fourier coefficients of the cusp form n(4-c)6 of CM-type.

Combining this with Theorem 6, we can obtain the congruences of

Fourier coefficients of the automorphic Torms of the different
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weights.

(k, 1)

Corollary 2. Let k, 1 , v - and a(i’l) be the above .

Then ,for p = 1 mod k ,

' 2
(k, 1) -~ {k, 1)
o D {AY D } rod p .
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8§5. Congruences of u(EEl)

Let
u(n) = kgo [ Z ]z[n;ka , n>0

be Apéry numbers with the proof of irrationality of §(3).

Beukers(5,Proposition 1] proved that the generating function
U(t)= 3 u(n)t"
n=0
satisfies

13 da = { nzn)nan)? - 9 nsn)%n(12m)? ) -E%}- .

where x(T) = n(2r)6n(4r)—6n(6r)~6n(12r)6 (see Proposition 2 of this

paper). Extending of this in the same method of Proposition 10, we
have
152 = 1 ko™ %02k 0 (3k) P (6 P8
-9 n(kr)m_sn(Zkr)sfmn(Bkr)lo_mn(Bkr)m_z} _ég_ ,

where  a(t) = { n(kt)n(2kt)n(3kt)n(6kt)} 2/K and m = 121/k

Consequently , by Lemma 2, we have

Theorem 8. Let k,1 be positive integers with (k,l)=1 and write
form = 121/k ,

S gék-L)qn = n(kr)m—zn(zkr)lo_mn(3kr)6_mn(6kr)m—6

n=1

10-m

-9 n(kr)m_sn(Zkr)s—mn(Skr) n(6kr)m_2
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Then , for any prime p=l mod Kk ,

(k,1)

D mod p

U(—k—) = £
Since the Apéry numbers u(n) satisfy the recurrence
3 3 2 3
(n+l) u(n+l) - (34n"+51n " +27n+5)u(n) + n u(n-1) = 0 , n>l

the following corollary is an easy consegquence

Corollary 3. Let k, 1 and E(g’L) be the above . Then

for any prime psl mod k ,

(k,l+2k)

3 ,(k,1) | (1,743
A (k+1)” &)

= (341°+5112k+271k%+5K°) 5ék'L+k) nod p.

Example. Let k=3 and l=1 . Then

- X 2 6 -

> E£3 l)qn = n(3t)"n(6T) n(9r)2n(181) 2

n=1

-2
~9n(31) "%n(61)2%n(97)8n(181)2
= q - 11 q4 - 25 q7 + 15 qlO + 20 q13 + e

If p=7 then u(zgl) - u(2) = 73 = -25 = 5(3'1) mod 7
If p=13 then u(lsgl) - y(4) = 33001 = 20 = g(fél) mod 13
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