

PDF issue: 2024-06-17

Congruence properties of Apery numbers, binomial coefficients and Fourier coefficients of certain η -products

石川, 恒男

<mark>(Degree)</mark> 博士(理学)

(Date of Degree) 1991-10-15

(Date of Publication) 2014-01-28

(Resource Type) doctoral thesis

<mark>(Report Number)</mark> 甲1029

(JaLCDOI) https://doi.org/10.11501/3062263

(URL) https://hdl.handle.net/20.500.14094/D1001029

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

博士論文

Congruence properties of Apéry numbers , binomial coefficients and Fourier coefficients of certain η -products

(アペリー数、二項係数とあるエータ積の

フーリェ係数の合同の性質について)

平成 3年 8月

1

神戸大学大学院自然科学研究科

石 川 恒 男

Contents

Section 1.	Introduction	1
Section 2.	Some facts	3
Section 3.	Super congruences for the Apéry numbers	7
3-1.	Congruences of $a(n)$	8
3-2.	Congruences of $b(n)$	9
3-3.	Congruences of $c(n)$	11
3-4.	Proof of Theorem 3	12
3-5.	Proof of Theorem 4	13
3-6.	Applications to other numbers	14
Section 4.	Congruences of binomial coefficients $({2f \atop f})$	15
4-1.	Proof of Theorem 6	16
4-2.	Examples	20
4-3.	Applications	20
Section 5.	Congruences of $u(\frac{p-l}{k})$	22
References		23

Congruence properties of Apéry numbers , binomial coefficients

and Fourier coefficients of certain η -products

Tsuneo Ishikawa

§1. Introduction.

Let, for any $n \ge 0$,

$$a(n) = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}} , \quad u(n) = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$$

R.Apéry's proof of the irrationality of $\xi(2)$ and $\xi(3)$ made use of these numbers, respectively (see van-der-Poorten [23]). So we call these numbers Apéry numbers. The first few values are given by a(0)=1, a(1)=3, a(2)=19, a(3)=147, a(4)=1251 and u(0)=1, u(1)=5, u(2)=73,u(3)=1445, u(4)=33001.

So far, many properties of a(n) and u(n) were discovered by several people. Chowla-Cowles-Cowles[7] first considered congruences for u(n), and some elementary congruences were proved by Gessel[11], Mimura[22] and Beukers[4].

Moreover, these numbers are concerned with the theory of differential equations, algebraic geometry, automorphic forms and formal groups. Stienstra-Beukers[24] showed that Apéry numbers were related to Picard-Fuchs equations associated to certain algebraic

- 1 -

variety(see Beukers-Peters[6], too), and they proved some congruences using the theory of formal groups. Recently, Koike[20] showed some relations between Apéry numbers and hypergeometric series over finite fields.

At first, in Section 2, we will collect the results for the Apéry numbers in Beukers [2],[5] by way of preparation.

In Section 3, we shall study about *super congruences* for the Apéry numbers. These are congruences modulo $p^{T}(r>1)$ which we can not prove using the usual method in the theory of formal groups. We shall prove the following congruences conjectured by Beukers[5]. Let $p\geq 3$ be a prime, and write

$$\sum_{n=1}^{\infty} \xi_n q^n = q \prod_{n=0}^{\infty} (1-q^{2n})^4 (1-q^{4n})^4$$

If $u(\frac{p-1}{2}) \not\equiv 0 \mod p$ then

$$u(\frac{p-1}{2}) \equiv \xi_p \mod p^2$$

And, let $p \ge 5$ be a prime, and write

$$\sum_{n=1}^{\infty} \alpha_n q^n = q \prod_{n=0}^{\infty} (1-q^{4n})^6$$

Then

$$a(\frac{p-1}{2}) \equiv \alpha_p \mod p^2$$

For the more general statements see Theorem 3 and Theorem 4 of this paper. The most general statements conjectured by Beukers are still

- 2 -

open. Our method is applicable to the mod p^2 determination of other numbers such as $v(n) = \sum_{k=0}^{\infty} {\binom{n}{k}}^3 (-1)^n$.

In Section 4, we shall study about the congruences between Fourier coefficients of certain modular forms and binomial coefficients $\binom{2f}{f}$ where $f = \frac{p-l}{k}$ is a integer, l and k are positive integers with (k,l)=1 and p is a prime $p\equiv l \mod k$. The main result is the following congruence (see Theorem 6 of this paper). Let kand l be the above and put m = 4l/k. Write

$$\sum_{n=1}^{\infty} \gamma_n^{(k, l)} q^n = \eta (k\tau)^2 \eta (2k\tau)^{1+m} \eta (4k\tau)^{3-3m} \eta (8k\tau)^{2m-2}$$

where $\eta(\tau) = q^{1/24} \prod_{n=0}^{\infty} (1-q^n)$ is the Dedekind η -function with $q = e^{2\pi i \tau}$ and n=0

$$\binom{2f}{f} \equiv (-1)^{f} \gamma \binom{k,l}{p} \mod p$$

The numbers $\binom{2f}{f}$ are related to formal groups as the special case of the congruences of Atkin- Swinnerton-Dyer type. Some modular forms which appear in this section are non-holomorphic, so we can not use the theory of Hecke operators and we do not know about the properties of the coefficients $\gamma \binom{k,l}{n}$. But we prove the new congruences of the Fourier coefficients of certain modular forms in Corollaries 1 and 2. For example,

$$l \gamma \frac{(k, l)}{p} \equiv -2(2l+k) \gamma \frac{(k, k+l)}{p} \mod p$$
.

- 3 -

In Section 5, we shall prove the following congruences of $u(\frac{p-l}{k})$ applying to arguments in Section 4. Let k, l be positive integers with (k, l)=1 and write

$$\sum_{n=1}^{\infty} \xi_n^{(k,l)} q^n = \eta(k\tau)^{m-2} \eta(2k\tau)^{10-m} \eta(3k\tau)^{6-m} \eta(6k\tau)^{m-6} - 9 \eta(k\tau)^{m-6} \eta(2k\tau)^{6-m} \eta(3k\tau)^{10-m} \eta(6k\tau)^{m-2}$$

with m=12l/k. Then , for any prime $p\equiv l \mod k$,

$$u(\frac{p-l}{k}) \equiv \xi_p^{(k,l)} \mod p$$

(see Theorem 8). But, we do not know the details of the properties of $\xi_p^{(k,l)}$.

Acknowledgements

I would like to take this opportunity to thank everyone who contributed in one way or another to the completion of this thesis. I would like to thank specifically Professors Toyokazu Hiramatsu, Yoshio Mimura, Fujitsugu Hosokawa and Takeshi Sasaki for their suggestions and encouragements.

§2. Some facts.

In this section, we mainly describe the results obtained by Beukers[2],[3] and [5] by way of preparation of Sections 3,4 and 5. We may state about the numbers u(n) as we can take the same method for the numbers a(n).

Let

$$\mathfrak{U}(t) = \sum_{n=0}^{\infty} u(n) t^n$$

be the generating function of u(n). The function $\mathfrak{A}(t)$ is the holomorphic solution around t=0 of the 3rd order linear differential equation

$$(2-1) \qquad (t^4 - 34t^3 + t^2) \frac{d^3y}{dt^3} + (2t^3 - 153t^2 + 3t) \frac{d^2y}{dt^2} \\ + (7t^2 - 112t + 1) \frac{dy}{dt} + (t - 5) y = 0,$$

because the numbers u(n) satisfy the recurrence

$$(n+1)^{3}u(n+1) - (34n^{3}+51n^{2}+27n+5)u(n) + n^{3}u(n-1) = 0.$$

Let $y_0 = \mathfrak{A}(t)$, y_1 and y_2 be solutions of (2-1). Then we see

 $(2-2) y_0 = \Phi_0^2 , y_1 = \Phi_0 \Phi_1 , y_2 = \Phi_1^2 .$

where Φ_0 and Φ_1 are some solutions of the differential equation

$$(t^{3}-34t^{2}+1)\frac{d^{2}\Phi}{dt^{2}} + (2t^{2}-51t+1)\frac{d\Phi}{dt} + \frac{1}{4}(t-10)\Phi = 0.$$

By transformations $t = \frac{x(1-9x)}{1-x}$ and $\varphi = \sqrt{1-x} \Phi$, we have

$$(2-3) \qquad x(x-1)(9x-1)\frac{d^2\varphi}{dx^2} + (27x^2-20x-1)\frac{d\varphi}{dx} + 3(3x-1)\varphi = 0 .$$

- 5 -

This is the Picard-Fuchs equation associated to the family of the elliptic curves

$$(2-4) Y2 + (1+x)XY - x(x-1)Y = X3 - x(x-1)X2.$$

Beukers and Stienstra[24] studied about the relations between the Picard-Fuchs equations and the modular forms.

Proposition 1. (Beukers and Stienstra) Let f(x) be a holomorphic solution of (2-3) around x=0 with f(0)=1 and put

$$x(\tau) = \eta(\tau)^4 \eta(2\tau)^{-8} \eta(3\tau)^{-4} \eta(6\tau)^8$$
.

where $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$ is the Dedekind η -function with $q=e^{2\pi i \tau}$ and $Im(\tau)>0$. Then

$$f(x(\tau)) = 1 + 3 \sum_{k=1}^{\infty} \frac{\chi(k)q^k}{1-q^k} = E_1(\tau,\chi) ,$$

where $E_1(\tau, \chi)$ denotes the Eisenstein series of weight 1 and $\chi(k)$ is the Diriclet charcter of modulo 6 with $\chi(-1)=-1$.

We give a sketch of the proof of Proposition 1. Elliptic curves (2-4) are the Tate normal forms with a point(0,0) of order 6, and they are parametrized by the modular curve $\mathbb{H}/\Gamma_1(6)$ where

$$\Gamma_{1}(6) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_{2}(\mathbb{Z}) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 6 \right\}$$

The function $x(\tau)$ is the generator of the function fields on $\Gamma_1(6)$

- 6 -

and maps the shaded open area in the picture below univalently onto the upper half plane and satisfies $x(i\infty)=0$, x(0)=1/9, x(1/3)=1, $x(1/2)=\infty$.

Now, put $\omega_1(\tau) = E_1(\tau, \chi)$ and $\omega_2(\tau) = \tau E_1(\tau, \chi)$. We can consider ω_1 and ω_2 as multivalued function on the *x*-plane via the mapping $\tau \rightarrow x(\tau)$. We denote them by $\omega_1(x)$ and $\omega_2(x)$. After an analytic continuation along a closed path γ in C-{0,1/9,1} corresponding to $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1(6)$, ω_1 and ω_2 are changed by the transformation (2-5) $\begin{pmatrix} \omega_2(x) \\ \omega_1(x) \end{pmatrix} \xrightarrow{\gamma} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2(x) \\ \omega_1(x) \end{pmatrix}$.

Now $\omega_1(x)$ and $\omega_2(x)$ satisfy the equation

(2-6)
$$\begin{vmatrix} \omega_{1} & \omega_{1} \\ \omega_{2} & \omega_{2} \end{vmatrix} F'' - \begin{vmatrix} \omega_{1} & \omega_{1}' \\ \omega_{2} & \omega_{2}' \end{vmatrix} F' + \begin{vmatrix} \omega_{1}' & \omega_{1}' \\ \omega_{2} & \omega_{2}' \end{vmatrix} F = 0$$

It is straightforward to see that

$$\begin{vmatrix} \omega_1 & \omega_1' \\ \omega_2 & \omega_2' \end{vmatrix} = \frac{(\omega_1)^2}{(dx/d\tau)} , \qquad \begin{vmatrix} \omega_1 & \omega_1' \\ \omega_2 & \omega_2' \end{vmatrix} = \frac{d}{dx} \begin{vmatrix} \omega_1 & \omega_1' \\ \omega_2 & \omega_2' \end{vmatrix}$$

- 7 -

and

$$\begin{vmatrix} \omega_1' & \omega_1' \\ \omega_2' & \omega_2' \end{vmatrix} = \left(\frac{dx}{d\tau}\right)^{-3} \{ 2\left(\frac{d\omega_1}{d\tau}\right)^2 - \omega_1 \left(\frac{d}{d\tau}\right)^2 \omega_1 \}$$

and these determinants are rational functions of x by (2-5). Here we can check that $x^{-1}dx/d\tau$ is a modular form of weight 2 for $\Gamma_1(6)$ and

$$\frac{(\omega_{1})^{2}}{(dx/d\tau)} = x^{-1} \frac{(\omega_{1})^{2}}{x^{-1}dx/d\tau}$$

has simple poles at $\tau=i\infty$, 0 and 1/3, and a zero of order 3 at $\tau=1/2$. Hence, we obtain

$$\begin{vmatrix} \omega_1 & \omega'_1 \\ \omega_2 & \omega'_2 \end{vmatrix} = \frac{(\omega_1)^2}{dx/d\tau} = \frac{c_1}{x(x-1)(9x-1)}$$

for some constant c_1 , and

$$\begin{vmatrix} \omega_{1}^{\prime} & \omega_{1}^{\prime} \\ \omega_{2}^{\prime} & \omega_{2}^{\prime} \end{vmatrix} = \frac{c_{2} x + c_{3}}{x^{2} (x - 1)^{2} (9x - 1)^{2}}$$

in the same way. We can determine the constants $c_{\rm l}^{}$, $c_{\rm 2}^{}$ and $c_{\rm 3}^{}$ by comparing with

$$\omega(x) = 1 + 3x + 15x^2 + 93x^3 + 639x^4 + \cdots$$

Hence we see that (2-3) equals (2-6). See Stienstra- Beukers[24], Beukers[2],[5] and Stiller[25].

The following proposition is the direct consequence of the above (see Beukers[5]).

Proposition 2. (Beukers) Let

$$t(\tau) = \eta(\tau)^{12} \eta(2\tau)^{-12} \eta(3\tau)^{-12} \eta(6\tau)^{12}$$

Then

$$\mathfrak{U}(t(\tau)) = \frac{1}{24} \left\{ 2\mathsf{E}_2(2\tau) - 3\mathsf{E}_2(3\tau) - 5\mathsf{E}_2(\tau) + 30\mathsf{E}_2(6\tau) \right\}$$

where $E_2(\tau) = 1 + 24 \sum_{k=1}^{\infty} \sigma_1(k)q^k$ is the Eisenstein series of weight 2 with $\sigma_1(k) = \sum_{d|k} d$. Moreover, let $\lambda(\tau) = \sqrt{t(2\tau)}$. Then we have $(2-7) \qquad \P(\lambda^2)d\lambda = \{\eta(2\tau)^4\eta(4\tau)^4 - 9\eta(6\tau)^4\eta(12\tau)^4\}dq/q$.

The following lemma is convenient for the proof of the congruences that is related to the theory of formal groups(see Beukers[5] and Stienstra-Beukers[24]).

Lemma 1. Let p be a prime and

$$\omega(t) = \sum_{n=1}^{\infty} b_n t^{n-1} dt$$

be a differential form with $b_n \in \mathbb{Z}_p$. Let $t(u) = \sum_{n=1}^{\infty} c_n u^n$ with $c_n \in \mathbb{Z}_p$,

 c_1 is a p-adic unit , and suppose

$$\omega(t(u)) = \sum_{n=1}^{\infty} d_n u^{n-1} du$$

Then (2-8) is equivarent to (2-9) for m, $r \in \mathbb{N}$ and $\alpha_p, \beta_p \in \mathbb{Z}_p$, $p \mid \beta_p$:

(2-8)
$$b(mp^{r}) - \alpha_{p}b(mp^{r-1}) + \beta_{p}b(mp^{r-2}) \equiv 0 \mod p^{r}$$
.

(2-9)
$$d(mp^{r}) - \alpha_{p}d(mp^{r-1}) + \beta_{p}d(mp^{r-2}) \equiv 0 \mod p^{r}$$

Proof. Note that the congruences (2-8) are equivalent to

$$\omega(t) - \frac{\alpha_p}{p} \omega(t^p) + \frac{\beta_p}{p^2} \omega(t^{p^2}) = dF_1(t) , \quad F_1(t) \in \mathbb{Z}_p[[t]]$$

Since

$$t(u)^{np} = t(u^{p})^{n} + np \ G_{n}(u) , \quad G_{n}(u) \in \mathbb{Z}_{p}[[u]]$$

and

$$\frac{1}{p}\omega(t(u)^{p}) = \sum_{n=1}^{\infty} \frac{b_{n}}{np} d(t^{pn}) ,$$

we see ·

$$\frac{1}{p}\omega(t(u)^{p}) = \sum_{n=1}^{\infty} \frac{b_{n}}{np} d(t(u^{p})^{n}) + b_{n}dG_{n}(u)$$
$$= \frac{1}{p}\omega(t(u^{p})) + dF_{2}(u) , F_{2}(u) \in \mathbb{Z}[[u]] .$$

Similarly

$$\frac{1}{p}\omega(t(u)^{p})^{2} = \frac{1}{p}\omega(t(u^{p})) + dF_{3}(u) , \quad F_{3}(u) \in \mathbb{Z}_{p}[[u]].$$

Hence (2-9) implies

$$\omega(t(u)) - \frac{\alpha_p}{p} \omega(t(u^p)) + \frac{\beta_p}{p^2} \omega(t(u^p^2)) = dF_4(u), \quad F_4(u) \in \mathbb{Z}_p[[u]] .$$

Conversely, since \boldsymbol{c}_1 is a p-adic unit, we can write

$$u(t) = \sum_{n=1}^{\infty} \tilde{c}_n t^n$$
, $\tilde{c}_n \in \mathbb{Z}_p$

Thus we have completed the proof. \square

- 10 -

Now, since
$$\eta(2\tau)^4 \eta(4\tau)^4 = \sum_{n=1}^{\infty} \xi_n q^n = q \prod_{n=0}^{\infty} (1-q^{2n})^4 (1-q^{4n})^4$$
 is an

unique cusp form of weight 4 for $\Gamma_0(8)$, its corresponding Dirichlet series has Euler product

$$\sum_{n=1}^{\infty} \frac{\xi_n}{n^s} = \prod_{p:\text{odd}} (1 - \xi_p p^{-s} + p^{3-2s})^{-1}$$

Let

$$\eta(2\tau)^4 \eta(4\tau)^4 - 9\eta(6\tau)^4 \eta(12\tau)^4 = \sum_{n=1}^{\infty} \tilde{\xi}(n)q^n$$

Then

$$\sum_{n=1}^{\infty} \frac{\tilde{\xi}(n)}{n^{S}} = \sum_{n=1}^{\infty} \frac{\xi_{n}}{n^{S}} - 3^{2-S} \sum_{n=1}^{\infty} \frac{\xi_{n}}{n^{S}}$$
$$= (1 - 3^{2-S}) \prod_{p: \text{odd}} (1 - \xi_{p} p^{-S} + p^{3-2S})^{-1}$$

Hence, for all odd prime p,

$$\xi(\mathfrak{m}p^r) - \xi_p \xi(\mathfrak{m}p^{r-1}) + p^3 \xi(\mathfrak{m}p^{r-2}) \equiv 0 \mod p^r.$$

Combining Lemma 1 and Proposition 2 (2-7), we can obtain the following theorem (see Beukers[5]).

Theorem 1. (Beukers) Let $p \ge 3$ be a prime, and write

(2-10)
$$\sum_{n=1}^{\infty} \xi_n q^n = q \prod_{n=0}^{\infty} (1-q^{2n})^4 (1-q^{4n})^4$$

Let $m, r \in \mathbb{N}$, m odd, then we have

$$(2-11) \qquad u(\frac{mp^{r-1}}{2}) - \xi_p u(\frac{mp^{r-1}-1}{2}) + p^3 u(\frac{mp^{r-2}-1}{2}) \equiv 0 \mod p^r$$

In the case of the numbers a(n), the generating function

$$\mathbf{A}(t) = \sum_{n=0}^{\infty} a(n) t^n$$

is **a** holomorphic solution of the Picard-Fuchs equation

$$t(t^2 - 11t - 1)\frac{d^2F}{dt^2} + (3t^2 - 22t - 1)\frac{dF}{dt} + (t - 3)F = 0$$

associated to the family of elliptic curves (2-12) $Y^2 = X^3 + (t^2+6t+1)X^2 + 8t(t+1)X + 16t^2$. Therefore, we can prove the following theorem in the same way.

See Beukers[2] and Stienstra-Beukers[24].

Theorem 2. (Beukers and Stienstra) Let $p \ge 3$ be a prime, and write (2-13) $\sum_{n=1}^{\infty} \alpha_n q^n = q \prod_{n=0}^{\infty} (1-q^{4n})^6$.

Let $m, r \in \mathbb{N}$, m odd, then we have

$$(2-14) \quad a(\frac{mp^{r-1}}{2}) - \alpha_p a(\frac{mp^{r-1}-1}{2}) + (-1)^2 p^2 a(\frac{mp^{r-2}-1}{2}) \equiv 0 \mod p^r .$$

§3. Super Congruence for the Apéry Numbers.

Let $\{w(n)\}_{n=1}^{\infty}$ be a sequence of rational or *p*-adic integers. We will consider the congruences

$$\boldsymbol{\omega}(\boldsymbol{\pi}\boldsymbol{p}^{T}) \equiv \boldsymbol{a} \; \boldsymbol{\omega}(\boldsymbol{\pi}\boldsymbol{p}^{T-1}) \qquad \text{mod } \boldsymbol{p}^{KT}$$

where κ, m and r are positive integers and a is a p-adic integer. If $\kappa=1$ then these congruences arise from the theory of formal groups (see Hazewinkel[13], Stienstra-Beukers[24]). In the cases of $\kappa>1$, we call these congruences super congruences (see Coster[10]). In this section, we will treat the super congruences for the Apéry numbers a(n) and u(n), i.e., we shall prove that the congruences in Theorem 1 and Theorem 2 hold mod $p^{\kappa r}$ in the case of $\kappa=2>1$ and r=1.

Theorem 3. Let $p \ge 5$ be a prime and $m \in \mathbb{N}$, m odd, and write

$$\sum_{n=1}^{\infty} \alpha_n q^n = q \prod_{n=0}^{\infty} (1-q^{4n})^6 .$$

Then we have

$$a(\frac{mp-1}{2}) - \alpha_p \ a(\frac{m-1}{2}) \equiv 0 \mod p^2$$

Theorem 4. Let $p \ge 3$ be a prime and $m \in \mathbb{N}$, m odd, and write

$$\sum_{n=1}^{\infty} \xi_n q^n = q \prod_{n=0}^{\infty} (1-q^{2n})^4 (1-q^{4n})^4$$

If $u(\frac{p-1}{2}) \not\equiv 0 \mod p$ then

$$u(\frac{\pi p-1}{2}) - \xi_p u(\frac{\pi-1}{2}) \equiv 0 \mod p^2$$

F.Beukers informed me that Theorem 3 is proved by L.Van Hamme[12] in the cases of $p\equiv 1 \mod 4$ using properties of the *p*-adic gamma function. We prove the general case involving $p\equiv 3 \mod 4$ by entirely different method.

In Theorem 4, $u(\frac{p-1}{2}) \equiv 0 \mod p$ for p=11, 3137 if p<100000. But these cases hold, too.

However, in the cases of r>2, these super congruences are still open.

3-1. Congruences of a(n).

The numbers a(n) satisfy the recurrence

 $(3-1) \qquad (n+1)^2 a(n+1) = (11n^2 + 11n + 3)a(n) + n^2 a(n-1) \qquad n \ge 1 \ .$

We know the following result. Let p be an odd prime, and $m \ge 0$, then

 $(3-2) a(mp) \equiv a(m) \mod p^2,$

 $(3-3) \qquad a(p-1) \equiv 1 \mod p^2.$

By (3-1), (3-2) and (3-3), we have $a(p-2) \equiv -3+5p \mod p^2$ and $a(p+1) \equiv 9+15p \mod p^2$.

Proposition 3. Let $m \ge 0$, $n \ge 0$ and m+n=p-1. Then

- 14 -

$$a(\mathbf{m}) \equiv (-1)^{\mathbf{m}} a(n) \mod p .$$

Proof. We proceed by induction on m to show that $a(m) \equiv (-1)^m a(p-m-1)$ mod p. From the above result, $a(0) \equiv a(p-1) \equiv 1 \mod p$ and $a(1) \equiv -a(p-2) \equiv 3$ mod p. Let 0 < m < p-1. From the recurrence (3-1),

$$(m+1)^{2}a(m+1) = (11m^{2}+11m+3)a(m) + m^{2}a(m-1)$$

$$\equiv \{11(p-m)^{2}-11(p-m)+3\}a(m) + (p-m)^{2}a(m-1)$$

$$\equiv \begin{cases} -\{11(p-m)^{2}-11(p-m)+3\}a(p-m-1) + (p-m)^{2}a(p-m) \\ if m : odd \\ \{11(p-m)^{2}-11(p-m)+3\}a(p-m-1) - (p-m)^{2}a(p-m) \\ if m : even \end{cases}$$

$$\equiv \begin{cases} (m+1)^{2}a(p-m-2) & \text{if } m : odd \\ -(m+1)^{2}a(p-m-2) & \text{if } m : even \end{cases} \mod p . \square$$

Proposition 4. For all primes $p, n \ge 0$ and $0 \le m \le p-1$, we have $a(np+m) \equiv a(m)a(n) \mod p$.

Proof. We shall need Lucas' congruence

$$\begin{pmatrix} a+pb\\ c+pd \end{pmatrix} \equiv \begin{pmatrix} a\\ c \end{pmatrix} \begin{pmatrix} b\\ d \end{pmatrix} \mod p$$

for $0 \le a, c \le p$, and

$$\binom{(a+pb)+(c+pd)}{c+pd} \equiv \binom{a+c}{c}\binom{b+d}{d} \mod p$$

Then for $0 \le m < p$ we have

$$a(m+pn) = \sum_{k=0}^{m+pn} {m+pn \choose k}^2 {m+pn+k \choose k}$$

- 15 -

$$= \sum_{i=0}^{p-1} \sum_{j=0}^{n} {\binom{m+pn}{i+pj}}^2 {\binom{m+pn+i+pj}{i+pj}}$$

$$\equiv \sum_{i=0}^{p-1} \sum_{j=0}^{n} {\binom{m}{i}}^2 {\binom{n}{j}}^2 {\binom{m+i}{i}} {\binom{n+j}{j}} \mod p$$

$$= \{\sum_{i=0}^{m} {\binom{m}{i}}^2 {\binom{m+i}{i}} \} \{\sum_{j=0}^{n} {\binom{n}{j}}^2 {\binom{n+j}{j}} \}$$

$$= a(m)a(n) \qquad \square$$

3-2. Congruences of b(n).

Let b(0)=0 and, for any $n\geq 1$,

$$b(n) = \sum_{k=1}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}} \left[\frac{2}{n-k+1} + \cdots + \frac{2}{n} + \frac{1}{n+1} + \cdots + \frac{1}{n+k} \right].$$

These numbers are (differential) of a(n) and they take important parts in the congruence of mod p^2 as shown in Gessel[11,Theorem 4].

Proposition 5. The numbers b(n) satisfy the recurrence (3-4) $(n+1)^2b(n+1) = (11n^2+11n+3)b(n) + n^2b(n-1)$ - 2(n+1)a(n+1) + 11(2n+1)a(n) + 2na(n-1),

and for all primes $p{>}3,\ n{>}0$ and $0{<}m{<}p{-}1$, we have

$$a(np+m) \equiv \{a(m)+pnb(m)\}a(n) \mod p^2$$

Proof. Let

$$B_{n,k} = (k^2 + 3(2n+1)k - 11n^2 - 9n - 2) {\binom{n}{k}}^2 {\binom{n+k}{k}} H_{n,k} + (6k - 22n - 9) {\binom{n}{k}}^2 {\binom{n+k}{k}},$$

and
$$H_{n,k} = \frac{2}{n-k+1} + \cdots + \frac{2}{n} + \frac{1}{n+1} + \cdots + \frac{1}{n+k},$$

- 16 -

then we have

$$B_{n,k} - B_{n,k-1} = (n+1)^2 {\binom{n+1}{k}}^2 {\binom{n+1+k}{k}} H_{n+1,k} - (11n^2 + 11n+3) {\binom{n}{k}}^2 {\binom{n+k}{k}} H_{n,k} - n^2 {\binom{n-1}{k}}^2 {\binom{n-1+k}{k}} H_{n-1,k} + 2(n+1) {\binom{n+1}{k}}^2 {\binom{n+1+k}{k}} - 11(2n+1) {\binom{n}{k}}^2 {\binom{n+k}{k}} - 2n {\binom{n-1}{k}}^2 {\binom{n-1+k}{k}}.$$

Taking summation from 1 to n+1 on k, recurrence(3-4) follows.

Next, we see that by Proposition 4 for fixed n and p, there exist numbers $\tilde{b}(k)$, with $\tilde{b}(0)=0$, such that

$$(3-5) \qquad a(k+pn) \equiv a(k)a(n) + p \tilde{b}(k) \mod p^2,$$

for $0 \le k \le p$. Let us write the recurrence(3-1) in the form

$$\sum_{i=0}^{2} r_{i}(n)a(n-i) = 0 .$$

Note that this congruence holds for $n \ge 1$ if a(-1) assigned any arbitrary value. Substituting k+pn for n, and using (3-5) and Taylor's expansion, we have

$$0 = \sum_{i=0}^{2} r_{i}(k+pn)a(k+pn-i)$$

$$\equiv \sum_{i=0}^{2} \{r_{i}(k) + p n r_{i}(k)\}\{a(k-i)a(n) + p \tilde{b}(k-i)\} \mod p^{2}$$

$$\equiv p \sum_{i=0}^{2} \{r_{i}(k)\tilde{b}(k-i) + n r_{i}(k)a(k-i)a(n)\} \mod p^{2}$$

for 0<k<p. Multiplying (3-4) by na(n), we see $\sum_{i=0}^{2} \{r_i(k)nb(k-i)a(n) + n r'_i(k)a(k-i)a(n)\} = 0$

- 17 -

with b(0)=0. Then since $r_0(k)=k^2$ is not divisible by p for 0 < k < p, we have $\tilde{b}(k) \equiv nb(k)a(n) \mod p$ for $0 \le k < p$. \Box

Proposition 6. Let $m \ge 0$, $n \ge 0$ and m+n=p-1. Then

$$b(m) \equiv (-1)^{m-1}b(n) \mod p .$$

Proof. From the congruence(3-2),(3-3) and Proposition 5, $b(0)\equiv -b(p-1)\equiv 0 \mod p$. And by the definition of b(n), $\operatorname{ord}_p b(p) \ge 0$. Then $b(1)\equiv b(p-2)\equiv 5 \mod p$ by the recurrence(3-4). By induction on m, similarly in Proposition 3, we can prove it. \Box

Theorem 5. Let $m \ge 0$, $n \ge 0$ and m + n = p - 1. Then

 $a(m) \equiv (-1)^m \{ a(n) - pb(n) \} \mod p^2$.

Proof. It is clear from (3-2), (3-3) and Proposition 6 in the case of $\pi=0,1$. From the recurrences(3-1), (3-4) and the congruence

$$(m+1)^{2}a(m+1) \equiv \{11(p-m)^{2}-11(p-m)+3\}a(m) + (p-m)^{2}a(m-1) - 11p\{2(p-m)-1\}a(m) - 2p(p-m)a(m-1) \mod p^{2},$$

it can be also shown by inductive method. $\hfill\square$

3-3. Congruences of c(n).

If $p\equiv 3 \mod 4$, we can not obtain the congruence of $b(\frac{p-1}{2})$ from

Proposition 6. Therefore we prepare the numbers c(n).

Let, for all odd numbers $n \ge 1$,

$$c(n) = \sum_{k=1}^{n} {\binom{n}{k}}^{3} (-1)^{k} \left[\frac{3}{n-k+1} + \cdots + \frac{3}{n} \right]$$

Let p be an odd prime. From the congruences $\binom{p-1}{2} + k = (-1)^k \binom{p-1}{2} \mod p$

and
$$\frac{1}{\frac{p-1}{2}-k+1} + \cdots + \frac{1}{\frac{p-1}{2}} + \frac{1}{\frac{p+1}{2}} + \cdots + \frac{1}{\frac{p-1}{2}+k} \equiv 0 \mod p$$

where $1 \le k \le \frac{p-1}{2}$, we have $3b(\frac{p-1}{2}) \equiv c(\frac{p-1}{2}) \mod p$ if $p \equiv 3 \mod 4$.

Proposition 7. The numbers c(n) satisfy the recurrence $n^{2}c(n) = -3\{9(n-1)^{2}-1\}c(n-2)$ (3-6)

for all odd numbers $n \ge 3$.

Proof. Let

$$\begin{aligned} f_n(k) &= 2(14n^2 + n - 1) - 3(26n^2 - n - 3)k/n + 3(29n^2 - 3)k^2/n^2 \\ &- 3(15n^2 + 2n - 1)k^3/n^3 + 3(3n + 1)k^4/n^3 , \end{aligned}$$

$$\begin{aligned} g_n(k) &= 2(28n + 1) - 3(26n^2 + 3)k/n^2 + 18k^2/n^3 \\ &+ 3(15n^2 + 14n - 3)k^3/n^4 - 9(2n + 1)k^4/n^4 , \end{aligned}$$

and $C_{n,k} = \frac{3}{n-k+1} + \cdots + \frac{3}{n}$.

Then we have

$$(n+1)^{2} {\binom{n+1}{k}}^{3} C_{n+1,k}^{+} 3(9n^{2}-1) {\binom{n-1}{k}}^{3} C_{n-1,k} + 2(n+1) {\binom{n+1}{k}}^{3} + 54n {\binom{n-1}{k}}^{3} - 19 -$$

$$= f_{n}(k) {\binom{n}{k}}^{3} C_{n,k} + f_{n}(k-1) {\binom{n}{k-1}}^{3} C_{n,k-1} + g_{n}(k) {\binom{n}{k}}^{3} + g_{n}(k-1) {\binom{n}{k-1}}^{3}$$

We multiply both sides by $(-1)^k$. Taking summation from 1 to n+1 on k. (3-7) $(n+1)^2 c(n+1) + 3(9n^2-1)c(n-1)$ $+ 2(n+1)\sum_{k=0}^{n+1} {\binom{n+1}{k}}^3 (-1)^k + 54n\sum_{k=0}^{n-1} {\binom{n-1}{k}}^3 (-1)^k = 0$.

If $n \equiv 0 \mod 2$, two latter summations are equal to 0. \Box

The numbers c(n) satisfy the recurrence(3-7) if $n\equiv 1 \mod 2$.

Proposition 8. Let $p\equiv 3 \mod 4$ be a prime, then we have $c(\frac{p-1}{2}) \equiv 0 \mod p$.

Proof. It is trivial if p=3. If $p\equiv7 \mod 12$ then $\frac{p+2}{3}$ is odd. By (3-6), we have

$$\left(\frac{p+2}{3}\right)^2 c\left(\frac{p+2}{3}\right) + 3\left\{9\left(\frac{p-1}{3}\right)^2 - 1\right\} c\left(\frac{p-4}{3}\right) = 0$$

Then $c(\frac{p+2}{3})\equiv 0 \mod p$. Hence, $c(n)\equiv 0 \mod p$ for $\frac{p+2}{3} \le n \le p-2$ and n odd. If $p\equiv 11 \mod 12$ then $\frac{p+4}{3}$ is odd. Therefore it can be proved in the same way. \Box

3-4. Proof of Theorem 3.

Beukers and Stienstra showed that the generating function of a(n)is a holomorphic solution of the Picard-Fuchs equation associated to the family of elliptic curves(2-12). From this argument and the ξ -function of a certain K3-surface, they proved Theorem 2 (see Beukers[2] and Stienstra-Beukers[24]). Moreover, we know that the right hand side of (2-13) is equal to $\eta(4z)^6$ with $q=e^{2\pi i z}$, $I\pi(z)>0$ (where $\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$ is the Dedekind η -function). From the n=1

Jacobi-Macdonald formula, we see

$$\alpha_p = \begin{cases} 4a^2 - 2p & \text{if } p \equiv 1 \mod 4 \text{ and } p = a^2 + b^2, \quad a \equiv 1 \mod 2 \\ 0 & \text{if } p \equiv 3 \mod 4 \end{cases}$$

Hence if $p\equiv 1 \mod 4$ then $\alpha_p \not\equiv 0 \mod p$. According to Theorem 2, if m=1and r=1 then $a(\frac{p-1}{2})\equiv \alpha_p \not\equiv 0 \mod p$.

Let us prove Theorem 3 using congruences of a(n), b(n), c(n), and Theorem 2.

If $p\equiv 1 \mod 4$ then $\frac{p-1}{2}$ is even. From Proposition 6, $b(\frac{p-1}{2})\equiv -b(\frac{p-1}{2}) \mod p$. Hence $b(\frac{p-1}{2}) \equiv 0 \mod p$. Then $a(\frac{mp^2-1}{2})\equiv a(\frac{mp-1}{2})a(\frac{p-1}{2})$ mod p^2 and $a(\frac{mp-1}{2})\equiv a(\frac{m-1}{2})a(\frac{p-1}{2}) \mod p^2$. Putting r=2 in Theorem 2, $a(\frac{mp^2-1}{2})\equiv \alpha_p a(\frac{mp-1}{2}) \mod p^2$. Since $a(\frac{p-1}{2})\equiv 0 \mod p$, it is reduced to $a(\frac{mp-1}{2}) \equiv \alpha_p a(\frac{m-1}{2}) \mod p^2$.

If $p\equiv 3 \mod 4$ and $p\neq 3$ then $a(\frac{p-1}{2}) \equiv \frac{p}{2}b(\frac{p-1}{2}) \equiv \frac{p}{6}c(\frac{p-1}{2}) \mod p^2$ by Theorem 5. From Proposition 8, We have $a(\frac{p-1}{2}) \equiv 0 \mod p^2$. Hence $a(\frac{mp-1}{2}) \equiv a(\frac{p-1}{2})a(\frac{m-1}{2}) \equiv 0 \mod p^2$. Thus we have completed the proof.

3-5. Proof of Theorem 4.

The proof of super congruences for the numbers u(n) is easy using Gessel's result in the same way.

Proposition 9 (Gessel) . Let d(0)=0 and

$$d(n) = 2(2n+1)\sum_{k=1}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2} \left\{ \sum_{i=1}^{k} \frac{1}{(n-i+1)(n+1)} \right\} , n \ge 1 .$$

Then for any prime p , and $0{\leq}k{<}p$, we have

 $u(k+pn) \equiv \{ u(k) + pnd(k) \} u(n) \mod p^2$.

Proof. The congruence can be proved in similar method of the proof of Proposition 4 of this paper. See Gessl[11]. □

By the explicit formula of d(n), we have $d(\frac{p-1}{2}) \equiv 0 \mod p$. Then it follows that

$$u(\frac{p^2-1}{2}) \equiv \{ u(\frac{p-1}{2}) \}^2 \mod p^2$$

Hence by puting r=2 and m=1 in Theorem 1, we have

$$u(\frac{p^2-1}{2}) \equiv \xi_p \ u(\frac{p-1}{2}) \mod p^2$$

Thus

$$\{ u(\frac{p-1}{2}) \}^2 \equiv \xi_p u(\frac{p-1}{2}) \mod p^2$$

Now since $u(\frac{p-1}{2}) \not\equiv 0 \mod p$, it is reduced to $u(\frac{p-1}{2}) \equiv \xi_p \mod p^2$.

Hence we have completed the proof of Theorem 4 .

3-6. Applications to other numbers.

Above method is applicable to other numbers which satisfy the relations such as (2-11) and (2-14), and we can use the mod p^2 determinations of the certain numbers. For example. Let, for any $n \ge 0$,

$$v(n) = (-1)^n \sum_{k=0}^n {n \choose k}^3$$

F.Beukers and J.Stienstra[24] showed the following congruence. Let $p \ge 3$, and write

$$\sum_{n=1}^{\infty} \gamma_n q^n = q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^{2n}) (1-q^{4n}) (1-q^{8n})^2$$

Then, for $m, r \in \mathbb{N}$, m odd,

$$v(\frac{mp^{r-1}}{2}) - \gamma_p v(\frac{mp^{r-1}-1}{2}) + (\frac{-2}{p}) p^2 v(\frac{mp^{r-2}-1}{2}) \equiv 0 \mod p^r$$

where $\left(\frac{\cdot}{\cdot}\right)$ is the Jacobi-Legendre symbol.

The numbers $\widetilde{v}(n)$ which are (differential) of v(n) can be formulated to

$$\widetilde{v}(n) = 3(-1)^n \sum_{k=1}^n {n \choose k}^3 \left[\frac{1}{n-k+1} + \cdots + \frac{1}{n} \right]$$

And for all primes $p \ge 3$, $n \ge 0$ and $0 \le m \le p-1$, we have

 $\upsilon(np+m) \equiv \{ \upsilon(m) + pn\widetilde{\upsilon}(m) \} \upsilon(n) \mod p^2 .$

Then $v(\frac{p-1}{2})$ of mod p^2 is determined by our method if $\left(\frac{-2}{p}\right)=1$, that is $v(\frac{p-1}{2}) \equiv \gamma_p + \frac{p}{2}\widetilde{v}(\frac{p-1}{2}) \mod p^2$.

§4. Congruences of binomial coefficients $\binom{21}{f}$.

Let k and l be positive integers with (k, l)=1. Let p be a prime, $p \equiv l \mod k$ and the integer f is defined by p=kf+l. We consider the congruences modulo p of binomial coefficients of the form $\binom{2f}{f}$. In the classical results, for k=4 and l=1, Gauss proved that

$$\binom{2f}{f} \equiv 2a \mod p$$

where $p=a^2+b^2=4f+1$ and $a\equiv 1 \mod 4$. For k=3 and l=1, Jacobi proved that $\binom{2f}{f}\equiv -a \mod p$,

where $4p=a^2+27b^2$ and $a\equiv 1 \mod 3$. Moreover, the number 2a (resp. -a) can be regarded as the p-th Fourier coefficient of the cusp form of CM-type associated with the Hecke character of $\mathbb{Q}(\sqrt{-1})$ (resp. $\mathbb{Q}(\sqrt{-3})$). In the recent results, for l=1 and $k\leq 24$, these were studied by Hudson and Williams [15] using Jacobi sums.

In this section, we shall prove the congruence properties between binomial coefficients $\binom{2f}{f}$ and Fourier coefficients of certain η -products :

Theorem 6. Let k and l be the above and put m = 41/k. Write $\sum_{n=1}^{\infty} \gamma_n^{(k, l)} q^n = \eta (k\tau)^2 \eta (2k\tau)^{1+m} \eta (4k\tau)^{3-3m} \eta (8k\tau)^{2m-2}.$ here $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 q^n)$ is the Dedekind reference with $\pi = 2\pi i \tau$

where $\eta(\tau) = q^{1/24} \prod_{n=0}^{\infty} (1-q^n)$ is the Dedekind η -function with $q = e^{2\pi i \tau}$ and n = 0

Im $\tau > 0$. Then, for $p \equiv l \mod k$ and p=kf+l, $\binom{2f}{f} \equiv (-1)^f \gamma \binom{k,l}{p} \mod p$.

For some k and l, η -products in Theorem 6 are non-holomorphic automorphic forms of weight 2, so they were not very studied for details. But we can obtain the congruence relations like Corollary 1 for the family of these functions .

4-1. Proof of Theorem 6.

We consider the generating function $F(t) = \sum_{n=0}^{\infty} (-1)^n {\binom{2n}{n}} t^n$. Since the numbers $(-1)^n {\binom{2n}{n}}$ satisfy the recurrence

$$(4-1) \qquad (n+1)(-1)^{n+1}\binom{2(n+1)}{n+1} = -(2n+1)(-1)^n\binom{2n}{n} , \qquad n \ge 0 ,$$

we have

$$F(t) = (1+4t)^{-1/2}$$
.

Proposition 10. Let k and l be positive integers with (k,l)=1and m = 4l / k. Write

(4-2)
$$\lambda(\tau) = \left(\eta(2k\tau)\eta(4k\tau)^{-3}\eta(8k\tau)^2 \right)^{4/k} = \sum_{n=1}^{\infty} A_n q^n \quad (A_1=1)$$

Then

(4-3)
$$F(\lambda^{k})d(\lambda^{l}) = l\{n(k\tau)^{2}n(2k\tau)^{m+1}, n(4k\tau)^{3-3m}n(8k\tau)^{2m-2}\} \frac{dq}{q}$$

Remark 1. We may use the branch of k-th roots $x^{1/k}$ so that it takes positive real values on the positive real axis, i.e., the leading coefficients $\gamma_l^{(k,l)}$ and A_1 in the n-product of Theorem 6 and Proposition 10 are equal to 1 respectively.

Proof. First we prove the case of k=4 and l=1. We consider the following congruence modular subgroup

$$\Gamma_0(8) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \mod 8 \right\}$$

It has no elliptic elements , and a set of representatives of inequivalent cusps is $\{i_{\infty}, 0, \frac{1}{4}, \frac{1}{2}\}$. $\mathbb{H}^*/\Gamma_0(8)$ is a curve of genus 0. Putting

$$t(\tau) = \eta (2\tau)^4 \eta (4\tau)^{-12} \eta (8\tau)^8$$

it is a modular function with respect to $\Gamma_0(8)$, and the values at the cusps are given by $t(i\infty)=0$ (simple), $t(0)=\frac{1}{4}$, $t(\frac{1}{4})=\infty$ (simple), and $t(\frac{1}{2})=-\frac{1}{4}$. Hence $t(\tau)$ generates the function field of modular functions with respect to $\Gamma_0(8)$. Therefore we see that $F^2(t(\tau))$ $=\frac{1}{1+4t(\tau)}$ has a simple pole at $\tau=\frac{1}{2}$ and a simple zero at $\tau=\frac{1}{4}$. $H_k(\Gamma_0(8))$ (resp. $S_k(\Gamma_0(8))$) denotes the space of modular forms (resp. cusp forms) of weight k. It is not hard to check that $t^{-1}\frac{dt}{d\tau}$ is in

 $H_2(\Gamma_0(8))$ and it has a simple zero at $\tau=0$, $\frac{1}{2}$. Hence the function

$$(4-4) \qquad \Psi(\tau) = \left(\frac{1}{2\pi i}\right)^4 F^4(t(\tau)) \left(t^{-1}\frac{dt}{d\tau}\right)^4 t(\tau)$$
$$= q - 8 q^2 + 12 q^3 - 64 q^4 + 210 q^5 - 96 q^6 + \cdots$$

is an element of $S_8(\Gamma_0(8))$. We choose

$$\eta(\tau)^{8} \eta(2\tau)^{8} = q - 8 q^{2} + 12 q^{3} - 64 q^{4} + 210 q^{5} - \cdots$$

as another form (this is an old form) in $S_{8}(\Gamma_{0}(8))$. Since
dim $S_{8}(\Gamma_{0}(8)) = 5$, comparing with the coefficients, we have
(4-5)
$$\Psi(\tau) = \eta(\tau)^{8} \eta(2\tau)^{8}$$
.

Taking 4-th roots with Remark 1 and replacing τ by 4τ , we have (4-6) $F(\lambda^4)d\lambda = \eta(4\tau)^2\eta(8\tau)^2 dq/q$.

In the general case, from (4-4) and (4-5) , we see

$$\Psi_{k,l}(\tau) = \left(\frac{1}{2\pi i}\right)^{k} F(t(\tau))^{k} \left(t^{-1} \frac{dt}{d\tau}\right)^{k} t(\tau)^{l}$$
$$= \eta(\tau)^{2k} \eta(2\tau)^{4l+k} \eta(4\tau)^{3k-12l} \eta(8\tau)^{8l-2k}$$

Hence our proposition follows from taking k-th roots and replacing τ by $k\tau$. \Box

Remark 2. When k=4 and l=1, since the function

$$\sum_{n=1}^{\infty} \gamma_n q^n = \eta (4\tau)^2 \eta (8\tau)^2$$

is the unique cusp form in $S_2(\Gamma_0(32))$, applying Beukers[5,Prop.3] to (4-3), for any $m, r \in \mathbb{N}$, $m \equiv 1 \mod 4$ and any prime $p \equiv 1 \mod 4$, we have

$$\begin{pmatrix} (mp^{T}-1)/2 \\ (mp^{T}-1)/4 \end{pmatrix} (-1)^{(mp^{T}-1)/4} - \gamma_p \begin{pmatrix} (mp^{T-1}-1)/2 \\ (mp^{T}-1-1)/4 \end{pmatrix} (-1)^{(mp^{T-1}-1)/4}$$

- 27 -

+
$$p = \begin{pmatrix} (\pi p^{r-2}-1)/2 \\ (\pi p^{r-2}-1)/4 \end{pmatrix} (-1)^{(\pi p^{r-2}-1)/4} \equiv 0 \mod p^r$$

These congruences are quite Atkin-Swinnerton-Dyer type associated to the elliptic curve: $y^2 = x^3 + 2x$ (see Atkin-Swinnerton-Dyer[1]).

In our case, we can not use directly the method of Beukers[5] or Stienstra-Beukers[24,Th.A9] because the non-holomorphy of η -products of the right hand of Proposition obstructs that we apply the theory of Hecke operators to them. But the following lemma is useful.

Lemma 2. Let p be a prime and

$$b(t) = \sum_{n=1}^{\infty} b_n t^{n-1} dt$$

be a differential form with $b_n \in \mathbb{Z}_p$. Let $t(u) = \sum_{n=1}^{\infty} c_n u^n$ with $c_n \in \mathbb{Z}_p$,

 c_1 is a p-adic unit , and suppose

$$u(t(u)) = \sum_{n=1}^{\infty} d_n u^{n-1} du$$

Then $d_p \equiv c_1 b_p \mod p$.

Proof. It is clear that

 $\omega(t) - b_p t^{p-1} dt = t^p G_1(t) dt + dG_2(t) , \quad G_1(t), G_2(t) \in \mathbb{Z}_p[[t]] .$ It is straightforward to see that

$$t^{p-1}dt = c_1^p u^{p-1}du + u^p C_3(u)du \quad , \quad C_3(u) \in \mathbb{Z}_p[[u]] \quad .$$

- 28 -

Then we can write

$$\omega(t(u)) - b_p c_1^p u^{p-1} du = u^p G_4(u) du + dG_5(u) , G_4(u), G_5(u) \in \mathbb{Z}_{p}[[u]].$$

Hence

$$d_p - b_p c_1^p \equiv d_p - b_p c_1 \equiv 0 \mod p . \square$$

Now, (4-2) and (4-3) satisfy the condition of Lemma 2 because the denominators of the coefficients of *q*-expansion do not divide *p*. Comparing with the equation

$$\frac{1}{l}F(\lambda^{k})d(\lambda^{l}) = \sum_{n=1}^{\infty} (-1)^{n} {\binom{2n}{n}} \lambda^{kn+l-1} d\lambda = \sum_{n=0}^{\infty} \gamma_{n}^{(k,l)} q^{n-1} dq$$

we have proof of our Theorem 6.

The following corollary is obtained by applying the consequence of our theorem to the recurrence (4-1) .

.

Corollary 1. Let k , l and $\gamma_n^{(k, l)}$ be the above . Then , for $p \equiv l \mod k$,

$$l \gamma \frac{(k, l)}{p} \equiv -2(2l+k) \gamma \frac{(k, k+l)}{p} \mod p$$
.

4-2. Examples.

Let k=4 and l=3. Then

$$\sum_{n=1}^{\infty} \gamma_n^{(4,3)} q^n = \eta (4\tau)^2 \eta (8\tau)^4 \eta (16\tau)^{-6} \eta (32\tau)^4$$

$$= q^3 - 2 q^7 - 5 q^{11} + 10 q^{15} + 13 q^{19} + \cdots$$
If $p=11$ then $\binom{2f}{f} = \binom{4}{2} = 6 \equiv -2 = \gamma \binom{4,3}{11} \mod 11$.
If $p=19$ then $\binom{2f}{f} = \binom{8}{4} = 70 \equiv 13 = \gamma \binom{4,3}{19} \mod 19$.
This form is the non-holomorphic automorphic form of weight 2 with respect to $\Gamma_0(32)$, but we do not know about the properties of $\gamma_p^{(4,3)}$.
Let $k=5$ and $l=2$. Then
$$\sum_{n=1}^{\infty} \gamma_n^{(5,2)} q^n = \eta (5\tau)^2 \eta (10\tau)^{13/5} \eta (20\tau)^{-9/5} \eta (40\tau)^{6/5}$$
.

$$= q^{2} - 2 q^{7} - \frac{18}{5} q^{12} + \frac{36}{5} q^{17} + \frac{122}{25} q^{22} - \cdots$$
If $p=7$ then $\binom{2f}{f} = \binom{2}{1} = 2 \equiv -(-2) = (-1) \gamma \binom{5,2}{7} \mod 7$.
If $p=17$ then $\binom{2f}{f} = \binom{6}{3} = 20 \equiv -(\frac{36}{5}) = (-1)^{3} \gamma \binom{5,2}{17} \mod 17$.

4-3. Applications.

We can try to apply our method to other numbers of which the generating function satisfies the differential equation of the form

$$F(\lambda(\tau)^{k})d\lambda(\tau) = G(\tau) \frac{dq}{q}$$

and several examples can be seen in Beukers[5] and Stienstra-Beukers [24].

For the numbers $\binom{2n}{n}^2$, $n \ge 0$, Steinstra and Beukers[24] proved that the generating function

$$F_1(t) = \sum_{n=0}^{\infty} {\binom{2n}{n}^2 t^n}$$

satisfies

$$F_{1}(\lambda^{4})d\lambda = \eta(4\tau)^{6} \frac{dq}{q} ,$$

where $\lambda(\tau) = \eta (4\tau)^2 \eta (8\tau)^{-6} \eta (16\tau)^4$

Extending this by the same method , we have

$$F_{1}(\lambda^{k})d(\lambda^{l}) = l \eta(k\tau)^{m+2}\eta(2k\tau)^{6-3m}\eta(4k\tau)^{2m-8} \frac{dq}{q}$$

where $\lambda(\tau) = \{ \eta(k\tau)\eta(2k\tau)^{-3}\eta(4k\tau)^{2} \}^{8/k}$ and $m = 8l/k$.
Consequently,

Theorem 7. Let k, l be positive integers with (k, l)=1 and write for m = 8l/k,

$$\sum_{n=1}^{\infty} \alpha_n^{(k,l)} q^n = \eta(k\tau)^{m+2} \eta(2k\tau)^{6-2m} \eta(4k\tau)^{2m-8}$$

Then , for any prime $p \equiv l \mod k$ and p = kf + l ,

$$\binom{2f}{f}^2 \equiv \alpha \binom{k,l}{p} \mod p$$

Remark 3. If k=4 and l=1 then $\alpha_n^{(4,1)} = \alpha_n$. These are the Fourier coefficients of the cusp form $\eta(4\tau)^6$ of CM-type.

Combining this with Theorem 6, we can obtain the congruences of Fourier coefficients of the automorphic forms of the different weights.

Corollary 2. Let k, l, $\gamma_n^{(k, l)}$ and $\alpha_n^{(k, l)}$ be the above. Then, for $p \equiv l \mod k$,

$$\alpha_{p}^{(k,l)} \equiv \left\{ \gamma_{p}^{(k,l)} \right\}^{2} \mod p.$$

.

§5. Congruences of $u\left(\frac{p-1}{k}\right)$.

Let

$$u(n) = \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2} , n > 0$$

be Apéry numbers with the proof of irrationality of $\xi(3)$. Beukers[5,Proposition 1] proved that the generating function

$$\mathfrak{U}(t) = \sum_{n=0}^{\infty} \mathfrak{U}(n) t^n$$

satisfies

$$\mathfrak{U}(\lambda^{2})d\lambda = \{ \eta(2\tau)^{4}\eta(4\tau)^{4} - 9 \eta(6\tau)^{4}\eta(12\tau)^{4} \} - \frac{dq}{q} ,$$

where $\lambda(\tau) = \eta(2\tau)^{6}\eta(4\tau)^{-6}\eta(6\tau)^{-6}\eta(12\tau)^{6}$ (see Proposition 2 of this

paper). Extending of this in the same method of Proposition 10, we have

$$\mathfrak{U}(\lambda^{k})d(\lambda^{l}) = l \{ \eta(k\tau)^{m-2}\eta(2k\tau)^{10-m}\eta(3k\tau)^{6-m}\eta(6k\tau)^{m-6} - 9 \eta(k\tau)^{m-6}\eta(2k\tau)^{6-m}\eta(3k\tau)^{10-m}\eta(6k\tau)^{m-2} \} \frac{dq}{q}$$

where $\lambda(\tau) = \{ \eta(k\tau)\eta(2k\tau)\eta(3k\tau)\eta(6k\tau) \}^{12/k}$ and $m = 12l/k$.
Consequently, by Lemma 2, we have

Theorem 8. Let k, l be positive integers with (k, l)=1 and write for $m = \frac{12l}{k}$,

$$\sum_{n=1}^{\infty} \xi_n^{(k,l)} q^n = \eta(k\tau)^{m-2} \eta(2k\tau)^{10-m} \eta(3k\tau)^{6-m} \eta(6k\tau)^{m-6}$$

- 9 $\eta(k\tau)^{m-6} \eta(2k\tau)^{6-m} \eta(3k\tau)^{10-m} \eta(6k\tau)^{m-2}$

- 33 -

Then , for any prime $p \equiv l \mod k$,

$$u(\frac{p-l}{k}) \equiv \xi \frac{(k,l)}{p} \mod p$$

Since the Apéry numbers u(n) satisfy the recurrence $(n+1)^3u(n+1) - (34n^3+51n^2+27n+5)u(n) + n^3u(n-1) = 0$, n>1, the following corollary is an easy consequence.

Corollary 3. Let k, l and $\xi_n^{(k,l)}$ be the above . Then for any prime $p \equiv l \mod k$,

$$l^{3} \xi_{p}^{(k,l)} + (k+l)^{3} \xi_{p}^{(k,l+2k)}$$

$$\equiv (34l^{3} + 51l^{2}k + 27lk^{2} + 5k^{3}) \xi_{p}^{(k,l+k)} \mod p$$

Example. Let
$$k=3$$
 and $l=1$. Then

$$\sum_{n=1}^{\infty} \xi_n^{(3,1)} q^n = \eta (3\tau)^2 \eta (6\tau)^6 \eta (9\tau)^2 \eta (18\tau)^{-2}$$

$$-9\eta (3\tau)^{-2} \eta (6\tau)^2 \eta (9\tau)^6 \eta (18\tau)^2$$

$$= q - 11 q^4 - 25 q^7 + 15 q^{10} + 20 q^{13} + \cdots$$
If $p=7$ then $u(\frac{7-1}{3}) = u(2) = 73 \equiv -25 = \xi \binom{3,1}{7} \mod 7$.
If $p=13$ then $u(\frac{13-1}{3}) = u(4) = 33001 \equiv 20 = \xi \binom{3,1}{13} \mod 13$.

References

- [1] A.O.L.Atkin and H.P.F.Swinnerton-Dyer, Modular Forms on noncongruence subgroups, "Combinatorics", 1-25, Providence, Amer.Math.Soc. 1979.
- [2] F.Beukers, Irrationality of π^2 , periods of an elliptic curve and $\Gamma_1(5)$, Progress in Math. 31, pp.47-66, Birkhäuser, 1983.
- [3] F.Beukers, Arithmetical properties of Picard-Fuchs equation, Progress in Math. 51, pp.33-38, Birkhäuser, 1984.
- [4] F.Beukers, Some congruence for the Apéry numbers, J.Number Theory 21 (1985),141-155.
- [5] F.Beukers, Another congruence for the Apéry numbers, J.Number Theory 25 (1987),201-210.
- [6] F.Beukers and C.Peters, A family of K3 surface and g(3), Clelle J. 351 (1984),42-54.
- [7] S.Chowla, J.Cowles and M.Cowles, Congruence properties of Apéry numbers, J.Number Theory 12 (1980),188-190.
- [8] S.Chowla, B.Dwork and R.J.Evans, On the mod p^2 determination of $\binom{(p-1)/2}{(p-1)/4}$, J. Number Theory 24 (1986), 188-196.
- [9] M.J.Coster, Generalisation of a congruence of Gauss, J. Number Theory 29 (1988),300-310.

[10] M.J.Coster, Supercongruences, Lecture Note in Math. 1454,

pp194-204, Springer, 1989.

- [11] I.Gessel, Some congruences for Apéry numbers, J. Number Theory14 (1982),362-368.
- [12] L.Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, Proceedings of the conference on p-adic analysis, Hengelhoef, 189-195, Belgium, 1986.
- [13] M.Hazewinkel, Formal groups and applications, Academic Press, New York, 1978.
- [14] T.Honda, Invariant differentials and L-function. Reciprocity law for quadratic fields and elliptic curves over Q, Rend. Sem. Math. Univ. Padova 49 (1973),322-335.
- [15] R.H.Hudson and K.S.Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc. 281 (1984),431-505.
- [16] T.Ishikawa, On Beukers' conjecture, Kobe J. Math. 6 (1989), 49-52.
- [17] T.Ishikawa, Super congruences for the Apéry numbers, Nagoya Math. J. 118 (1990) 201-207.
- [18] T.Ishikawa, Congruences between binomial coefficients $\binom{2f}{f}$ and Fourier coefficients of certain *n*-products, to appear in Hiroshima Math. J. (1991).
- [19] T.Ishikawa, Modular forms and Apéry numbers, R.I.M.S.

Koukyuroku ,752 (1991),77-85 (Japanese).

- [20] M.Koike, Hypergeometric series over finite fields and Apéry numbers, preprint, 1989.
- [21] S.Lang, Introduction to modular forms, G.M.W.222, Springer, 1976.
- [22] Y.Mimura, Congruence properties of Apéry numbers, J. Number Theory 16 (1983),138-146.
- [23] A.J.van der Poorten, A proof that Euler missed ··· Apéry's proof of the irrationality of \$(3), Math. Intelligencer 1 (1979), 195-203.
- [24] J.Stienstra and F.Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3 surface, Math. Ann. 271 (1985),269-304.
- [25] P.F.Stiller, A note on automorphic forms of weight one and three, Trans. Amer. Math. Soc. 291 (1985),503-518.