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Introduction and Preliminaries

Topology is the branch of geometry which studies the property of
figures under arbitrary continuous transformations. Just as ordinary
geometry considers two figures to be the same if each can be carried
into the other by a rigid motion, topology considers two figures to
be the same if each can be mapped onto the other by a one-to-one
continuous function.

Knot Theory is a basic and important field of low dimensional
combinatorial topology. A classical knot i1s an embedding of a circle
5! into the three-sphere S®. Generally, a smoothly embedding of
S™ into S™*? has been studied in “higher dimensional knot theory”,
but this thesis is concerned with classical knots. And a link is an
embedding of a disjoint union of circles S}, (1 < ¢ < u), into the
three-sphere S%. Two knots are equivalent if they are ambient iso-
topic. A knot K may be a representative of a class of equivalent knots
or the class itself. If two knots K and K’ are equivalent, we shall
say they are same. A three-manifold is defined to be a topological
space which is locally homeomorphic to the Euclidean three-space.

There are very close relations between knots and three-manifolds.
In 1960’s, it was discovered independently by Lickorish and by Wal-
lace that every closed, orientable, connected three-manifold may be
obtained by surgery on a link in the three-sphere.

In 1920, Alexander stated, and proved rather sketchily, that ev-
ery connected closed orientable three-manifold may be constucted
as a branched covering of three-sphere. Since then, this has been
sharpened so that one may require that the associated unbranched
covering is at most three-fold and that the downstairs branching set
is connected, i.e. a knot. This improvement is due independently to
Hilden and Montesinos, using differrent methods. In 1982, Thurston
introduced the notion of a universal link and gave an example of a
universal link in [ 18 ]. A link L in the three-sphere is said to be uni-
versal if every closed orientable three-manifold can be represented as
a covering of the three-sphere branched over L.

Since then, Hilden, Lozano and Montesinos gave a necessary and



sufficient condition for a two-bridge to be universal.

In Sections 1 and 2, we shall give a necessary and sufficient con-
dition for a pretzel link to be unversal. In Section 1, we will give a
necessary and sufficient condition for a chain, that is a special type
of a pretzel link, and in Section 2, for a pretzel link.

Let K be a knot in the three-sphere, and F(K) the exterior of K.
A Heegaard decomposition of E(K) is the union of a handlebody H,
of genus g with (g — 1) 2-handles which are attached to H, along
curves on 0H,. The Heegaard genus of K is the minimal genus of
Heegaard decompositions of E(K). Two Heegaard decompositions
of E(K) are called homeomorphic if there exists a homeomorphism
of E(K) sending the handlebody of one of the decompositions to
that of the other one. We call 7 an unknotting tunnel if 7 is a
properly embedded arc in E(K) such that cl(E(K)— N(7)) is a
genus two handlebody. Here N(7) denotes a regular neighbourhood
of 7. The concept of an unknotting tunnel is closely related to a
genus two Heegaared decomposition of F(K). Boileau, Rost, and
Zieschang completely classified unknotting tunnels for torus knots
using the results on Nielsen equivalence classes of generator systems
for torus knot groups. Bleiler and Moriah applied their method to
distinguish the upper and lower tunnels for two-bridge knots, and
Kobayashi found other unknotting tunnels for two-bridge knots, and
classified them up to homeomorphism. And Sakuma classified these
unknotting tunnels using double coset of knot group.

In Section 3, we shall give an alternative proof of Sakuma’s result

using dihedral coverings. Let p: E’(\l?) — E(K) be covering space.
If two unknotting tunnels 71 and 7, are isotopic, p~!(7;) must be

——

isotopic to p~}(72) in E(K). So, if we want to show that 7; and 7
are not isotopic, it is sufficient to show that p~!(7;) is not isotopic

to p~1(73) in E(K).

Throughout the paper, we work in the smooth or p.l. category.
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1. Universal chains

1.1. Definition. A link L in S° is said to be universal if every

closed orientable 3-manifold can be represented as a covering of $°
branched over L.

1.2. Definition. A pretzel link is a link consisting of 2-strand
braids with ¢1-,92-, ...,¢m-half twists, which we denote by
p(q1,92, -+, @m)- We assume that g; # 0 for ¢+ = 1,2,...,m. For
example, p(3,6,—2) is shown in Figure 1.1.

r

POOOIXX

-~

(ol D

7(3,6,-2)
Figure 1.1.

If ¢; = £1, then p(q1, g2, ..., ¢m) Is equivalent to
p(Qh Q1,3 Qi=1,qit1,y 0y qm) So we can deform p(ql)qZ) seey qm) into
p(E)E)"‘76)p17p2)“’)pn)7 where € = +1 and | bi |> 1 (7' = 1)27 7n)
We denote this pretzel link by p(—eb; p1,p2, ..., Pn), Where b is the
number of €. If b # 0 and p; = —2¢, then p(—eb;p1,p2, ..., Pn) is

equivalent to p(—e(b —1); 1,02, .., —Di, -y Pn). S0 if b # 0, we can
assume that every p; is not —2e¢.

1.3. Definition. A chain C(a, ) is a pretzel knot or link of type
P(e,e,...,€,2,2,...,2) where ¢ = £1, the number of 2 is @, and the
sum of ¢ is 8. (For example C(3,—1) and C(4, —2) are illustrated in
Figure 1.2.)
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Cc(3,-1 C(4,-2)

Figure 1.2

1.4. Theorem.[16] A chain C(a,B) is universal if and only if

a# 0 and (a,8) # (1,-2), (1,-1), (1,0), (1,1), (2,-2), (2,-1),
2,0), (3,-2), (3,—1) or (4,-2).

Proof of Theorem. The “only if” part is clear. In fact, for o« = 0 or
(QMB) = (1) _2)) (1) _1)1 (170)) (1)1 ) (21 _2)7 (27 _1)7 (2)0)) (31 _2),
(3,~1) or (4,—2), we can easily see that C(«, 8) is a union of fibers
of a graph-manifold structure on S*. Hence, in these cases, C(a, )

1s not universal. The rest of the paper is devoted to the proof of the
“if” part.

1.5. Lemma. A chain C(«a,B) is universal, if a — f = 0 (mod
3) and o > 5.

Proof. The link illustrated in Figure 1.3 is universal (see [ 4, Fig.
9]).
]sz the ball B in Figure 1.3, we consider the operations as illus-
trated in Figure 1.4. This operation keeps the universality of links
by an argument in [ 4, pp. 20-21 ]. Do this operation successively,
and we get the chains with @ — 8 = 0 (mod 3), and & > 5. This
completes the proof.

1.6. Lemma. A chain C(a,3) is universal, if a > 5.

Proof. The chain C(a, ), where a > 5, is depicted in Figure 1.5,
with an assignment of permutations to the components C; and C,.
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Figure 1.4.

The corresponding dihedral covering is also S® and the lift of C(a, 8)
is described in Figure 1.6.

This link contains a sublink which is equivalent to the chain
C(a',B') where o' =3(a—4)+4 =3a—8 and ' =33 + 4. Note
that o' — ' = 3(a—f—4) =0 (mod 3) and &’ > 5 since @ > 5. Thus
C(a',B') is universal by Lemma 1.5, and hence C(a, 3) is universal.

1.7. Lemma. A chain C(1,[) is universal, if B # 0,£1,-2.

Proof. The chain C(1,8), where § # 0,%1,—2 is a hyperbolic
2-bridge knot, so it is universal by [ 6 |.

1.8. Lemma. A chain C(2, ) is universal, if § # 0,—1,-2.
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Proof. The chain C(2,0), where 8 # 0,—1,-2 is a hyperbolic
2-bridge link, so it is universal by [ 6 |.

1.9. Lemma. A chain C(3,0) is universal, if § # —2,—1.

Proof. The preimage of C; U Cy under the 2-fold cyclic covering
of $% branched over Cj , shown in Figure 1.7, is a chain C(2,206 +2)
as shown in Figure 1.8. If § # —2, —1, then C(2,20+2) is universal.
Thus C(3,8) is universal by [ 6 ], if 8 # —1, —2.
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1.10. Lemma. A chain C(4,0) is universal, if § # —2.

Proof. The proof is divided into the following three steps.

Step 1. If B # —2, then there is a covering p; : §° — S$3 branched
over C(4,8), such that p;'(C(4,8)) contains a sublink L; which is
equivalent to C'(4, ;) with 8 =2-3™- (8 + 2) — 2 for some n > 3.

Step 2. There is a covering p; : $* — S branched over L;, such
that p;*(L;) contains a sublink L, which is equivalent to P(—2-3"-
B+2),-2-3"-(B+2),..,—2-3"- (B + 2)) where the number of
~2-3". (B + 2) is eight.

Step 3. There is a covering p3 : S° — 3 branched over L,
such that p3?(L;) contains a sublink which is equivalent to C(8,0)

or C(8,—8). Since C(8,0) and C(8 —8) are universal by Lemma 1.5,
C(4, B) is universal.

Proof of Step 1. Let C; (1 < i < 4) be the components of C(4, 8)
as illustrated in Figure 1.9. Then the preimage of C; U Cy U C;

under the 2-fold cyclic covering of S branched over Cy is a chain
C(4,2(8 +1)). (See Figure 1.9.

Let Cf Ig‘ < i < 4) be the components of C(4,2(6 + 1)) as illus-
trated in Figure 1.10, and consider the irregular 3-fold covering of
5% branched along Cl U C3 (see Figure 1.11).

=0
T
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Then the inverse image of Cj U C under this covering is a chain
C(4,3+2(8 + 2) — 2). Repeat the above operations (n + 1)-times
(n > 3), then we obtain the desired branched covering p; and the
sublink L; of p;!(C(4,2(8 + 1))

Proof of Step 2. Let C be a component of L; = C(4,2-3™- (8 +
2) — 2), and consider the double cover of S branched over C (see

Figure 1.12). Then the inverse image L1(1) of L; under this covering
is illustrated in Figure 1.13.

L1(1) contains a sublink L} (1) which is equivalent to C(4,2 - 3" -
(B+2)—2) as illustrated in Figure 1.13. Consider the irregular 3-fold
covering of $°® branched over L}(1) whose monodromy is given by
Figure 1.14. The corresponding covering space is S° by [ 8 |, and
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the inverse image of L;(1) is shown in Figure 1.15 (cf.[ 7, Figure
10. 6, pp. 499-455]). Let L1(2) be the sublink of the inverse image
of Ll(}g under this covering depicted by the bold line in IFigure
1.15. Then it is equivalent to the link illustrated in Figure 1.16.
Repeating the same procedure, we obtain the link as illustrated in
Figure 1.17 and repeating the same procedure once more, we obtain
the link as illustrated in Figure 1.18, which contains the desired
sublink L, = P(-2-3"- (8 -2),...,—2-3"- (8 — 2)).

Proof of Step 3. First, we prove the following lemma.

1.11. Lemma. There exists a covering f : S° — S° branched
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over P(aay,aaz,...,aa,) (o > 1,0dd) such that
f~YP(cay, aas, ...,aan)) D Pla1, az, ..., ay).

Proof of Lemma 1.11.. The covering of S° branched over n-
component trivial link whose monodromy is given by Iigure 1.19

is homeomorphic to S, and the branched line with branched index
q is shown in Figure 1.20.

/i\ T

\« ~
f i

Figure 1.19 Figue 1.20

+ (arl)q+a) 2q -l

By aa;-half twists at each ball B; , this n-component trivial link
can be deformed to P(aa, , 00ag, .. , @@y, ). To visualize the branch set
upstairs, we look the covering of B Each of these twists lifts to one
half twist (cf. [ 14, p. 318]).

Thus the bra.nch line, whose branch index ¢ is P(ay,as,...,an),
completing the proof.

Now, for 6 +2 = 2"-s (s : odd), there is a branched cover-
ing p : S — % branched over P(27+! . 3" .5, ... 2rt1 . 3" . )
such that its preimage contains a link which is homeomorphic to
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Figure 1.21 Figure 1.22

P(2rtl or+1 271} by Lemma 1.11. If r = 0, the proof is com-
plete. If r # 0, we consider the covering whose monodomy is given
by Figure 1.21. Then it is homeomorphic to S, and the preim-
age of the branch lines is illustrated in Figure 1.22. This contains
P(27,27,...,27) as a sublink. So, repeating this procedure r-times,
we obtain P(2,2,...,2) 2 C(8,0) as the preimage of a covering.

By combining Lemma 1.5 through Lemma 1.10, we complete the
proof of Theorem.
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2 Universal pretzel links

A. Introduction and Main Theorem.

2.1. In this section we consider the following question “which
pretzel links are universal ?” We remark that a link, being a union
of fibers of a graph-manifold structure on S? is not universal. That

is because the branched covering space over such a link is a graph-
manifold.

2.2. We consider only for the case that  p(—eb;p1,p2,. s Pn)
has two components or more, and so only the following two cases
occur :

(I) At least two p;’s are even.
(II) All of the p;’s are odd, and n + b is even. (In this case, the
number of components is two.)

We say that p(—eb;p1,p2, ..., Pa) is type (I) (or type (II), resp.), if
it is of the case (I) (or (II), resp.).

2.3. Theorem. For the pretzel link p of type (I), p is univeral if
and only if p is none of the following :

p(2s,2t),p(2,—2,8) (0 2 3 4) (0, : ?——4 p(0;

5,1 € Z\{0}.

-2),

) p(0;3
02,2, — 2 2) where

As a consequence of Theorem 2.3, we have :

2.4. Theorem. For a pretzel link p of type (I), p is universal if
and only if p is not a union of fibers of any graph-manifold structure

on S3.

B. Preliminaries.

We represent the 2-bridge torus knot 7°(2,a) as in Figure 2.1.
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2.5. Lemma. For an odd integer a, the following branched cov-
ering space of S° branched over T'(2,a) is S3.

The monodromy map ¢ : m1(S3\T(2,a)) — S\|a|, from the knot
group of T'(2,a) to the symmetry group of | a | indices, is defined by

¢(z1) = (12 ...9)
dlza)=(1qg+1g+2..2¢-1)

where ¢ = (| a | +1)/2 and z;, z; are the meridians as in Figure

We denote this covering by f: §® — S3.

Proof. The branched covering space of $® branched over a 2-
component trivial link, associated with the monodromy as in Figure

2.2, is S%. And the preimage of this link is a 2g-component trivial
link. Now we consider the 2-disk D as shown in Figure 2.2. The
| a |-fold branched covering space of D associated with ¢ is also a

2-disk D. By a-half twists at D, this trivial link can be deformed
into the torus knot T'(2,a). And the a-half twists at D are lifted to

one-half twist at D (cf. [ 9], [ 14, p.317]).

Hence the covering space is S%. And the preimage of T'(2,a) is
the torus link T'(2¢,eq) = T(] a | +1,€Jﬁl2+—l) = Ji“-‘;’—JT(2,€) where

X



14 Yoshiak: Uchida

(12---q) (1g+1g+2:--2g—1)

|
s
=
AN

!
Slq—]

c2
S] 9+1e2¢—1]

o~
=

D
Figure 2.2
52 5 5 B
\\
I F 2
( ENIN
L E N i
S - - o~ L
i \\\—g . Say —
(123) (145)
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Figure 2.3

e=1lifa>0o0re=—-1ifa<0. (In Figure 2.3, a = 5.) In Figures
2.2 and 2.3, the bold lines have branched index ¢. This completes
the proof of Lemma 2.5.

2.6. The line with branch index ¢ is a component of L‘1|2+—]T(2,:3),
and so it is a trivial knot. Then the n-fold cyclic branched covering
branched space over this knot is S®. The preimage of the other
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components is Jilz_—lT(2, En).
We denote this covering by g : §* — S3.

The monodromy of the covering f o g : $° — S3 branched over
T(2,a), is definded by

zy— (1121 q1 1229 ---qg -+~ ln 2, **-@qn),
T — (11 (¢+ 1)1 (¢+2)1 ---(2¢=1)1 12 (¢+1)2 (g +2)2
(2¢—1)2 -+ 1a (g+ 1Dn (@+2)n -+ (29 = 1)n).

We call this covering the (C})-covering. Unless confusmn we may
use a simple form like as

$11—>(123456789) (= (11 21 31 12 22 32 ].3 22 33)),
2o — (1101141213714 15) (= (1; 41 51 12 42 52 13 43 53)).

2.7. Remark. The length of the cyclic permutation associated
with this monodromy is n X q.

2.8. We consider the followmg branched covering space of S3
branched over T(2 a7 (2,a2)l - - - iT(2,am), where a; is odd for
1=1,2,.

In Figure 2.4, §* (i = 0,1,..,m) is a 2-sphere and §* (i =
1,2,...,m — 1) divides the factors of T(2,a;)’s. And zo,Z1,...,Tm
are the meridians as in Figure 2.4. Let ¢; = (| a; | +1)/2 and ¢ the

least common multiple of ¢1, ¢2,...,gm. Now we define the permuta-
tions corresponding to zg, 21, ..., Z,, as follows :

T; — (81,22, ..,0g) fori =0,1,....m

where we identify ¢34 &g, ,, With (i41)14kg,,, for0<i<m-1,0<
k< q/qis1-

We call this covering the (C3)-covering for T(2,a1)} - - - §T(2, am ).

2.9. Example. T'(2,5)§T(2,3)iT(2, 3).

The monodromy of the (C;)-covering is defined by
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s 5™

Figure 2.4

zo +— (03 02 03 04 Os Og), Oh=1=2,=3
zq — (11 15 13 14 15 1), 04 =14

wh
Iy — (21 22 23 24 25 26)7 ere 13 = 23 = 33
z3 — (37 32 33 34 35 3¢), 1ls =25 =35

2.10. Lemma. For T(2,a1)iT(2a,a2)f - - - 4T(2,am), the (Cs)-
covering space is S°.

Proof. For each factor T(2, a;), this covering is the (Cj)-covering.
Hence, we can assume that the corresponding monodromy is

T;_1+H— (]_1 21 e (Qi)l 12 22 e (qi)2 ...... 17_ 27_ ... (qi)r),
zi— (L1 (g+1)1 - Q=11 L2 (g +1)2 - (2 —1)2 -----
'11' (qx + 1)1’ e (2Q: - 1)1‘)7
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where 7 = ¢/q;.

From 2.6 and Figure 2.3, the preimage is as in Figure 2.5. In
Figure 2.5, 51,..., 1s the lift of 5%, corresponding to the letter 1,2, ...,q
in the permutation of the monodromy.

Making the connect sum of T'(2,a;) and T(2,a;41) at §°, is lifted
to the following operation in the covering space :

(1) We attach these the (C1)-covering spaces of T'(2,a;) and

T(2’ a3+]) a't Sil (q'+1)1 (q'+2)1 ...... (Zq‘_l)r‘
(2) At the others, S} (unbranched), we attach a copy of the 3-ball
bounded by S* in $* which does not contain T'(2, a;).

So, the covering space is 93. We can perfoem this operation for
T(2,a1)f---4T(2,ai-1) and T(2,q;) ( = 2,3,...,n). Then, the cov-
ering space of the (C2)-covering is S®. This completes the proof of
Lemma 2.10.

2.11. Remark. The knot with branch index g is trivial, because
it is a connected sum of trivial knots.

2.12. Example. The preimage of T'(2,5)§T(2,3)§7'(2,3) under
the (C3)-covering.

The monodromy is given in Example 2.9. Figure 2.6 (a1) ((az),
(a3), resp.) shows the preimage of T(2,a;1) = T(2,5) (T(2,a;) =
T(2,3),T(2,a3) = T'(2,3), resp.) for the (C;)-covering. The preim-
age of T'(2,5)4T(2,3)§T(2,3) is shown in Figure 2.7.

2.13. Preparation I. We consider the preimage of the 2-disk X
as in Figure 2.4 under the (C;)-covering. Let XN{T'(2, a1 )§T'(2, a2)}
- 4T(2,am)} = {S0,Sm}. The preimage of X is the covering space
of the disk X branched over {So,S1}. And {the letter in the per-
mutation corresponding to Sp } N {the letter in the permutation
corresponding to Sy, } = {01(=m3)}. So the covering space of X is

also a 2-disk X. Let X intersect each S* in the equator. See Figure
2.4.
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Qi—1
S(fl:'l‘l)x

Figure 2.5

2.14. The relation between the preimage of X and the trivial
knot with branch index gq.
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For each T(2,a;) and X, the preimage of f : §* — §° in Lemma
2.5 is shown in Flgure 2.8. We notice the trivial knot with branch
index ¢ as in Figure 2.9. In Tigure 2.9, the twist of the band “1”
depends only on the sign of a;. (In Figure 2.9, a; > 0.) The preimage
of X under the r-fold cyclic covering g : $* — S? is shown in Figure
2.10. Then we perform this operation for each T'(2,a;) and attach
them at the lifts of S°.

2.15. Example. For T(2,5)iT(2,3)4T(2,3), Figure 2.11 (a1)
((az), (a3), resp.) shows the preimage of X for the (Cy)-covering of

T(2,a1) (T(2,a2), T(2,a3), resp.), and the knot with branch index
g. Figure 2.12 shows the preimage of X and the knot with branch
index gq.

2.16. Generally, from Example 2.15, the preimage X of X, which
is branched, and the trivial knot with branch index ¢ are indicated

in Figure 2.13. The twists of the preimage X depend on the sum of
signs of a;’s.

For the knot and X as in Figure 2.14, we consider the (Cs)-
covering similarly. The preimage is like as in Figure 2.15.

2.17. Preparation II. Let the permutation corresponding to the
meridian z, for the (Cs)-covering of T'(2, al)ﬂT(Z a)f -+ - 17(2,am)
be (11 27 -~ (q1) 12 22---(q1)g -+ 1,2, ---(q1)r). Now we consider
the lifts of X corresponding to 2; and (ql)r. We denote these lifts
by X9, and X(‘Il),-'

Remark. 2; and (g1), are not the letters contained in the per-
mutation of zg and z,. Hence go f | )~(21 : ).(21 — X and
go f| X(qx), : X(q), — X are homeomorphisms. If the per-
mutation corresponding to z; is (1 2) then 2; = (q1), = 2.

From Figure 2.8, the preimage of f : §° — % branched over
T(2,a;) is shown in Figure 2.16. And the preimage of g : §° — §3
is shown in Figure 2.17. We perform the same operation for 7(2, az).

Then the preimages le and X(ql) are shown in FFigure 2.18. Figure

2.19 shows the subset of the preimage under the 2-fold branched
covering branched over ! in Figure 2.18.
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Figure 2.11

branch index ¢

Figure 2.12
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branch index ¢
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Figure 2.13
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Figure 2.14
branch index. g

i
4

)
§

éL

Figure 2.15

We rewrite the bold lines in Figure 2.19 as in Figure 2.20. In
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Figure 2.20 K; (1 < < 4) is the connected sum of 2-bridge torus
knots.

Remark. In Figure 2.20, a;,a2 > 0, but even in the other cases
we can consider similar figures.

C. Proof of Theorem 2.3

In order to show a link L is universal, it is sufficient to find a
branched covering space p : $* — 3 branched over L such that
p~1(L) contains a universal link.

We denote the a-component pretzel link p(—eb;¢1,q2,-..,¢m) by
[1UlaU---Ulg,. In this case, the pretzel link is type (I) then each [; is
a trivial knot, a 2-bridge torus knot, or a connected sum of 2-bridge
torus knots.

We will give the proof on the number of components, o > 5,a =
4,3, or 2. The pretzel links in the list of Theorem 2.3 are not uni-
versal. Because these links are unions of fibers of graph-manifold
structures on S3. See Figure 2.21.

2.18. Theorem. Let a be the number of components of

p(—€b; 41,42, -, gm) and P = p(—€b;q1,q2, .-, gm ({71 T'(2, ai)),
where n € N U {0}) and a; is odd fori=1,2,...,n.
If « > 5, then P is universal.

2.19. Proposition (¢f Th.1.4 ). Let p = p(—p5;2,2,...,2) where
B € Z, a=|{2 = the number of components of p. If « > 5, then p is
universal.

2.20. Proof of Theorem 2.18. Let P be as in Figure 2.22. In
Figure 2.22, R is a tangle containg a connected sum of 2-bride link
facters as in Figure 2.22.

(Step I) We divide the Step (I) into two cases.

(Case 1) 1y is a trivial knot.
(Case 2) Otherwise.
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Figure 2.21

(Case 1) Let A =| lk(ly, 4 %VI B =| k(1,1 c) | and C the least

common multiple of A and B. We consider the C-fold cyclic covering
7 : 8% — 83 branched over !;. See Figure 2.23, where A = 3, B = 2,
and C = 6.

Let I; (i = 1,2,...,@) be the component of 7!(I;) as in Figure
2.23. Note that R has at least four components. Figure 2.24 shows

71 U 72 u---u 70,. Then this operation changes each component into
one of the following :

| k(ly,1a) |=| k(1 T2) |= 1,
11 is a trivial knot,

1, is a connected sum of I, and a connected sum of 2- bridge torus
knots (possibilty empty), whlch is the component contained in R,

I3 is a connected sum of /; and a connected sum of 2-bridge torus
knots (possibilty empty), which is the component contained in R,

l; = I; otherwise.
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To simplify we denote il U72 U---Uia by i UlaU---Ul,.

(Case 2) We consider the (C3)-covering branched over lp. Let
q be the length of the permutation. To consider the preimage of
lpUl3U---Ul,, we can regared this link is contained in the 3-ball
X xI where I=[0,1]. See Figure2.25.
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branch index g

Figure 2.26
T \ \
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Figure 2.27

From IFigures 2.14 and 2.15, the trivial knot with branch index ¢
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and the preimage X of X can be regarded as the same as in Figure
2.15.
Let A =| lk(l1,14) |, B =| lk(l1,12) |, C the least common multi-

ple of A and B. Figure 2.26 shows the preimage of X in the C-fold
cyclic covering space branched over the trivial knot of Figure 2.26.
We rewrite the bold lines in Figure 2.26 as in Figure 2.27.

Now 1; is the preimage of /; whj_éh is shown in Figure 2.27. Then
we have a new link /; Ul U---Ul, such that

sz(il,"z},) |=| tk(l1,12) |= 1,
l1 is a trivial knot,

ly (14 resp.) is the connected sum of I; (I, resp.) and the con-
nected sum of 2-bridge torus knots (possibly empty) which is con-
tained in the tangle R,

l; = l; otherwise.

The twists of I, in Figure 2.27 are the result of the twists on X.
For convenience, we use the same simbole /; U --- U [, instead of

LU Ul,.
(Step II) We divide the Step (II) into two cases.

(Case 1) I3 is trivial.
(Case 2) Otherwise.

(Case 1) We perform the same operation of (Case 1) in (Step I).
Since !y is trivial and | lk(l1,la) |=| lk(l1,12) |= 1, we have a new
link Iy U---Ul, such that

1 and ZZ are trivial knots,

|~lk(11, lo) |=| k(hy, 1) |=| lk(lg, 13) |= 1,

Iy = 3T (2, 1)l ---4T(2,a,)} where T(2,a1)§---§T(2,a,) (pos-
sibly empty) C R,

I, = l; otherwise.

_ For convenience, we use the same simbole Iy U--- Ul instead of
LU---Ul,.
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(Case 2) We perform the operation of (Case 2) in (Step I). Since
Iy is trivial and | lk(l1,1a) |=| lk(l1,12) |= 1, we have a new link
Iy U---Ul, such that

71 and 22 are trivial knots,

|~lk(ll,la) |=| tk(l1,12) |=| tk(l2, 13) |= 1,

l3 = l3u{T(2, b])ﬂ LR ﬁT(2, bs)}) where T(Q, b])ﬂ o uT(2, b,) (pOS-
sibly empty) C R,

i; = [; otherwise.

For convenience, we use the same simbole [; U--- U, instead of
LU---Ul,.

We perform this operation in order on the number of the index of
l;. Finally, we perform this operation at /.. Since [y and [,_; are
trivial and | lk(la—1,la) |= | lk(la,ly) |= 1, then the connected sum
does not appear in /3. We have the following link,

I; (1 =1,2,...,a) is trivial knot,
l lk‘(l,‘,li+]) |= 1 ('t = 1,2,...,a and la+] = ll)

This link is the pretzel link p(—p;2,2,...,2) where §2 = a > 5,

B € Z. From Proposition 2.19, this link is universal. This completes
the proof of Theorem 2.18.

2.21. Corollary. The pretzel link, which has at least five compo-
nents, is universal.

2.22. Proposition. If a = 4, all pretzel links are universal, but
except p(0;2,2,—-2,-2).

Proof. Let p = p(—b&;¢1,92,--,qn) = L1 Ul Ul3 U l;. We divide
the proof into three cases.

(Case I) p D T(2,a)iT(2,a2) - - - §T(2,am) (a; is odd, | a; [> 3,

for i =1,2,...,m, and m > 2). Then p is universal.
(Case II) p D T(2,a) (aisodd and | a |> 3). Then pis universal.

(Case III) All I;’s (z = 1,2,3,4) are trivial. Then p is universal,
but except p(0;2,2, -2, —2).
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1 J 2 ‘ |a| (12)(34)--- |1 (23)(45)---
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Proof of Case (I). Let l; = T(2,a1)§T(2,a2)f:--47(2,am). We
consider the (Cz)-covering branched over /;. We regard that I3 U
l3Uly C X x1, see Figure 2.25. From Preparation 2.17 and Figure
2.20, we have (a 10-component pretzel link) § (2-bridge torus knots).
From Theorem 2.18, this link is universal, completing the proof.

Proof of Case (II).  Let Iy = T(2,a). Figure 2.28 shows the
| @ |-fold irregular dihedral branched covering space corresponding

to l; = T(2,a). See [6] and [ 7 ].

I

NN

Figuré 2.28

The bold line in Figure 2.28 is a pretzel link, which has at least
2 | a | +2 components. Since | @ |> 3, this link is universal, complet-
ing the proof.

Proof of Case (III). We divide the proof into two cases.

(Case ITI-1) | lk(l;,1i41) |[=1 (1 €1 <4 and I5 = 1y).
Then p is universal, but except p(0;2,2, -2, —2).

The proof is in Theorem 1.4.
(Case III-2) | lk(l;,l;41) |# 1 for some i(1 < 1 < 4). Then p is

universal.

Proof. Since I; and l;41 are trivial, {; U l;4; = T(2,a) (a is even
and | @ |> 4 ). We consider the | a |-fold irregular dihedral covering
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space branched over T'(2, a) (cf. IFigure 2.28). Then we have a pretzel
link with | a | +2 components or more. Since | a |> 4, it is universal
by Theorem 2.18. This completes the proof of Proposmon 2.22.

2.23. Remark. Suppose that the pretzel link has two (three,
resp.) components. If it contains a connected sum of 2-bridge torus
knots as a sublink, then we perform the operation of Case (I) in the
proof of Proposition 2.22. We have { a six (eight resp.)-component
pretzel link } § { 2-bridge torus knots}. Then p is universal.

2.24. Proposition. If a = 3, the pretezl link p is universl, but
except
p(0;4,4, —2), p(0; —4,—4,2), and p(2,—2s) (s is even).

Proof. Let p =17 Ul Ul3. We divide the proof into three cases.

(Case I) p D T(2,a1)iT(2,a2)f - - - 4T(2,am) (a; is odd, | a; |> 3
and m > 2). Then p is universl.

(Case II) p D T(2,a) (a is odd and a > 3). Then p is universal.

(Case II1) All I;, (¢ = 1,2,3) are trivial. Then p is universal, but
except p(0;4,4, —2), p(0; —4,-4,2), and p(-2,-2,s) (s is even).

Proof of Case (I). See Remark 2.23.

Proof of Case (II). Let Iy = T'(2,a). By the operation in Case(II)
in the proof of Propositon 2.22, we have a pretzel link with | a | +2

components or more. Since | a |> 3, this link is universal, completing
the proof.

Proof of Case (III). We divide the proof into two cases.

(Case I1I-1) | lk(l;,1;41) |= 1 for 1 <1 < 3. Then p is universal,
but except p(0;2, -2, —2) and p(0; —2,2,2).

Proof. See Theorem 1.4.
(Case III-2) | lk(liylip1) |# 1 for some ¢ (1 = ). Then

1,2,3
p is universal, but except p(2,—2,s) (s : even), p(0; 4 4 —2) and
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Proof. 1;Ul;1 is equivalent to T'(2, a) where a is even and | a |> 4.
Let Iy Uly = 1; U liyq and a; =| k(15 13) |.

(Case I1I-2-1) a; = 1 (mod 2) for i = 1,2. We will show that pis
universal, but except p(2, -2, s). ,

(i) In the case of a; = ay = 1.

We can represent p by p(—0;2,—2,a) (8 € Z). Then we have
p(—=(] a| B—1)=%1;2,2) as a sublink of the preimage by the| a |-fold
irregular dihedral covering space branched over T'(2,a) (cf. Figure
2.28). Now p(—p';2,2) is universal, but except ' = —2,1, and 0. If
|la|B—-1+1= —-2,10r0, then 3 =0, from | a |> 4. Hence, if
B # 0, then this link is universal.

(i1) In the case of a; # 1 or az # 1.

We can assume that a; # 1. Let z; (1 = 1,2) be the meridian of
I;. Then we consider the | a |-fold irregular dihedral covering space
branched over T'(2,a) with the monodromy defined by

There is a 2-component pretzel link in the preimage (see Fig-
ure2.28.). Since ay is odd, a1 # 1 and | a |> 4, this pretzel link con-
tains a connected sum of 2-bridge torus knots T(2,a;1)f- - - 17(2, a1).
From Remark 2.23, p is universal.

(Case I1I-2-2) a; = 0 or a2 = 0 (mod 2). Then p is universal, but
except p(0;4,4, —2) and p(0; —4, —4, 2).

Proof. We can assume that a; = 0 (mod 2). We consider the | a |-
fold irregular dihedral covering space branched over T'(2,a). (See
Figure 2.28.) Then we have a new pretzel link. If | a |> 6 (az =0
(mod 2) resp.), then the new pretzel link has at least | a |/2 + 2
(] @ | +1, resp.) components. Thus we have a pretzel link with five
components or more. Then it is universal.

We consider the case of | a |= 4 and a2 = 1 (mod 2). The new
pretzel link has four-components. If a; > 4 or a; # 1, this pretzel



36 Yoshiaki Uchida

knot is not p(0;2,2,—2,—2), then it is universal. (See Proposition
2.22.

W)e consider the case of a; = 2 and ay = 1. This pretzel link
is equivalent to p(—p@;4,4¢,2) or p(—0;—4,4¢,2) (¢ = £1). If p =
p(—B;4,4¢,2), then we consider the | a |-fold irregular dihedral cov-
ering space branched over T(2,a). See Case III-2-1-(ii) in the proof
of Proposition 2.24. Then we have a new pretzel link p(—(46 + 1 +
€);2,2,2,2). This link is universal, if 48 + 1 + ¢ # —2. So p is uni-
versal, but except € = 1 and § = —1. Hence p is universal except
p(0;4,4,-2). If p = p(—pB;—4,4¢,2), we perform the same opera-
tion. Then p is universal, but except p(0; —4, —4,2). This completes
the proof of Proposition 2.24.

2.25. Proposition. If a = 2, the pretzel link p is universl,
but except p(0;2s,2t) (s,t € Z\{0}), p(0;3,6,-2), p(0;-3,—6,2),
p(O;_Z,_3)4)) p(0;2>37_4)) p(2$_213) (S ; Odd)

Proof. Let p =1; Uly. We divide the proof into three cases.

(Case I) p D T(2,a1)f---17T(2,am) (a; is odd, | a; |[> 3 and m >
2). Then p is universal.

(Case II) p D T(2,a) (a is odd and | a [> 3). Then p is univer-
sal, but except p(2,-2,s) (s : odd), p(0;3,6,-2), p(0;-3,-6,2),
p(O, 3) 4) _2)) p(oa _3> _4)2)'

(Case III) Both I; and /5 are trivial. Then p is universal, but
except p(2s,2t) (s,t € Z\{0}).

Proof of Case (I). See Remark 2.23.

Proof of Case (II). Let Iy = T'(2,a). From Case (I), we can assume
that /5 is a torus knot or a trivial knot.

Step 1. I5 is a torus knot. We can denote p by p(—8; 2p1, a, 2p;, p4)
(p1,p3 € Z\{0}, a, ps are odd, and | a |, | s [ 3).

We consider the | a |-fold dihedral covering space branched over
I = T(2,a). See Figure 2.28. If both p; and p; are even, then we
have a l| |+ 1)-component pretzel link. If | a |= 3, then we have a
4-component pretzel link and it contains T(2,p4) (| p4 |> 3), and so
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it is not p(0;2,2,—2,—-2). From Proposition 2.22, p is universal. If
L_'a |> 4, we have a pretzel link which has at least five components.
o it is universal.
If p; or p; is odd, then we have a pretzel link with two com-
ponents or more (cf. Figure 2.28) and this pretzel link contains

T(2,p4)f - - §T(2, Ps). From Theorem 2.18 and Remark 2.23, it is
universal.

Step 2. l; is a trivial knot. We can denote p by p(—p;2p1,a, 2p3)

=1 Ul; (a: odd, p1, p3 € Z\{0}). We divide the proof into two
cases.

(Case II-1) py, p3 = 1 (mod 2).
(Case II-1-1) | p1 |=| p3 |= 1.
p(2,-2,5) (s : odd).
(Case II-1-ii) | p1 |# 1 or | ps |# 1. Then p is universal, but except
»(0;3,6,—2) and p(0; -3, -6,2).

Then p is universal, but except

(Case I1-2) p; = 0 or p3 = 0 (mod 2). Then p is universal, but
except p(0; 3,4, —2) and p(0; -3, —4, 2).

Proof of (Case II-1-i). We can denote p by p(—8;2,a,-2). We
consider the | a |-fold dihedral covering space branched over l; =
T(2,a) (cf. Figure 2.28). Then we have a 2-component pretzel link
p(—|al|B—-1+aflal;2,2). If p(—f';2,-2) is universal, then
B # —2,-1, and 0 (cf. Theoreml.4). Since | a |> 3, if § # 0,
then p(—p;2, a,—2) is universal. We conclude that p(—f3;2,a,—2) is
universal, but except p(2, s, —2) (= p(2, -2, s)) (s : odd), completing
the proof.

Proof of (Case II-1-i1). We can assume that | p; |# 1. We divide
the proof into four cases.

(1) ]al|>5 Then p is unversal.
(2)|al=3,|ps|#1 Then p is universal.
@B)|lal=3,|lps|=1,|p|>5 Then p is universal.
4)|lal|=3,|ps|=1,|p1|=3 Then p is univesal,

but except p(0;3,6,—2) and p(0; —3,-2,6).

We consider the | a |-fold dihedral covering space branched over
l; = T(2,a). Then we have a 2-component pretzel link.
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Figure 2.29

(1) Since | p1 |# 1, the pretzel link contains T'(2, p1)f - - - §71°(2, p1)-
From Case (I) in the proof of Proposition 2.25, this pretzel link is
universal.

(2) Since | a |= 3 and | p3 |# 1, this pretzel link contains
T(2,p1)iT(2,p3)f < - -. From Case (I}, this link is universal.

(3) We consider the 3 ( =| a |)-fold dihedral covering branched
over | = T'(2,a). Then we have p(—(36+ a/| a |+ p3);2p1,p1,203).
(cf. Figure 2.28.) Since | p; |> 5, this pretzel link is universal from
(1).

(4) It is sufficient to consider p(—g0;6,3,2) and p(—pg;6, -3, 2).
For p(—8;6,3,2), the 3-fold covering associated with Figure 2.29 is
the lens space L(2,1) by [ 8]. And the 2-fold unbranched covering
of L(2,1) is S3.

First, we consider p(—0;6,3,2). We will show that, in this cover-
ing S — S the preimage of this pretzel link contains p(—(68 +
4);2,2,2,2). First we consider the link L with the permutation
shown in Figure 2.30. If we perform 3 (6 resp.)-half twists at the
3-ball 3 (6 resp.) in Figure 2.30, then we have p(—f;6,3,2). There
is a sphere S? dividing S® into two balls A and B such that A and
B are shown in Figure 2.30 (b). The ball B does not contain the

permutation (13). Thus the covering space of $* branched over L
is divided by the preimage of S? into two part A and B, the lifts
of A and B respectively. We note that A and B are tori. Figure
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2.31 indecates the lift A. In Figure 2.31, the bold line has branched
index two, and the others have one.

The link with branch index 1 is contained in A. We denote this
link by !. So we can show this link in L(2,1) as Figure 2.32(a). In
Figure 2.32, the bold circle denotes the surgery link. By the twist
at the ball 3 and 6, we have the link as in Figure 2.32 (b).(See |

14 ; p. 317.].) We denote this link by p, which is a sublink of the
preimage of p(—(68 + 4);2,2,2,2). Figure 2.33 shows the preimage
of p under the 2-fold unbranched covering S® — L(2,1). Now we
have p(— (668 + 4);2,2,2,2). Unless 68 + 4 = -2, i.e. § = —1, this
pretzel link is universal. (See Proposition 2.22.) So p(—#;6,3,2) is
universal, but except p(0;6,3,—2) (= p(-1;6,3,2)).

For p(—f;6,—3,2), we perform the same operation. And we have
the pretzel link p(—(—68+5);2,2,2,2). From Proposition 2.22, since
—60 + 5 # —2, this pretzel link is universal.

Then p is universal, but expect p(0;6,3,-2) and p(0;—6,-3,2),
completing the proof.

Proof of (Case II-2). We divide the proof into two cases.

(1) pi =0 (mod 2) for i = 1,3.
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Since | a |> 3 and p; = 0 (mod 2), we can have a 4-component
pretzel link, which is not p(0;2,2, —2,—2), or a pretzel link with five
or more components link, by the | a |-fold dihedral covering space
branched over I; = T'(2,a). So this pretzel link is universal.

(ii) p1 =0, p2 =1 (mod 2)

If | a |> 5, then we perform the same operation of (i). Thus it is
universal. In the case of | a |= 3. If a = 3, we denote this pretzel
link by p = p(—f;4m, 3,2n) (m,n € Z\{0}). And we consider the 3-
fold dihedral covering space branched over 3 = T(2,3). (See Figure
2.32.) Then we have a new pretzel link p(—(38 + 1); 2n,4m,n,2m)
— (1). This link has three components. The 3-component pretzel
link, which is not universal, is p(2,—2,s) (s:even) and p(4,4, —2).
From (1), if (m,n,B) # (1,1,-1), then p is universal. Hence p is
universal, but except p(0;4,3,-2) (= p(0;3,4, —2)).

If a = -3, then we perform same operation. Thus p is universal,
but except p(0; —4,-3,2) (= p(0; -3, —4,2)), completing the proof.

Proof of Case (III). This pretzel link is a 2-bridge link. From [ 6],
it is universal, but except p(0; 2s,2t) (s,t € Z\{0}). This completes
the proof of Proposition 2.25.
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3. Detecting inequivalence of some unknotting tunnels
for two-bridge knots

Figure 3.1
A. Introduction

3.1. Let k be a knot in the 3-sphere S°. An ezterior of k is the
closure of the complement of a regular neighborhood of k, and is
denoted by E(k). An unknotting tunnel for k is an embedded arc
7 in S% such that 7Nk = 7 and S® — IntN(k U 1,5%) is a genus
two handlebody. N(H, K) denotes a regular neighborhood of H in
I{. Then we denote 7 N E(k) by 7. Let 71,7 be unknotting tunnels
for k. We say that 71 and 7, are homeomorphic if there is a self-
homeomorphism f of E(k) such that f(#;) = 72, and 7y and 7, are
isotoic if 71 is ambient isotopic to 7, in E(k).

Suppose that k is a two-bridge knot. Then by | 10. Prop. 3.1], 7
and 72 shown in Figure 3.1 are unknoting tunnels.

For two-bridge knots, we refer to [ 6 ]. To each rational number a/b
with a odd, there is associated the two-bridge knot K(a/b) shown in
Figure 3.2. In Figure 3.2, the central tangle consists of lines of slope
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+b/a which are drawn on a square “pillowcase”. In Figure 3.2 we
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also describe 7; and 2. By m-twist of CD about z-axis, 7; (i = 1,2)
for K (a/b) is isotopic to 7; for K(a/b+a) and K (a/—b) is the mirror
image of K(a/b). Then we can assume that 0 < b < a/2.

3.2. Theorem. For a two-bridge knot K(a/b) with a odd and
0 < b <a/2, 1 and 1, are isotopic if and only if (a,b) = (2n + 1,n)
or (2n+1,1) (n € N).

3.3. Remark. w-rotation about y-axis, shows that 7y and 75 are
homeomorphic. Morimoto and Sakuma/[ 11 | has proved this theorem
by the argument of algebraic argument.

B. Proof of Theorem

Since the “if” part is easily seen (cf. [ 11, Theorem 5.2]), we prove
“only if” part. Assume that 7; and 77 are isotopic for K(a/b) with
(a,b) # (2n 4+ 1,n) and (2n + 1,1). Then, there exists an ambient
isotopy fi(0 < t < 1) of E(K(a/b)) such that f1(7;) = 75. Let
p: M — E(K(a/b)) be a covering of E(K(a/b)), fi : M — M a
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m 13233

Figure 3.5

lift of fy, 7:(i = 1,2) a component of p~*(#;) such that f1(f) = .
By restrincting fi : M xI — M to 73 x I (2 I x I), we get a
continuous map ¢ : I X I — M with the following properties.

(1) g |1x{o) is an embedding whose image is 7y,
(2) g |rx{1) is an embedding whose image is 7, and
(3) g({0,1} x I) C a component of OM.

Then, 7 is homotopic (rel.0) to 7, in M.

From [ 6 ], the a-fold dihedral irregular branched covering of
53 ranched over K(a/b) is S3. And the preimage of K(a/b) (=
K(11/3)), 1 and 72 is described as in Figure 3.3. The link
p~1 (K (a/b)) has 1 + [a/2] components Co,Ch,...,Clayg. In Figure
3.3, 87, is containd in N (C}) and only 7, in p~!(7,) whose bound-
ary is contained in N (C}). Then f1 () = 2. Since 7, is homotopic

(rel.8) to 7, in S° — Int(Ul-_;g%] N(C;)), 71 is homotopic (rel. 9) to
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’7‘2 in 33 — Int(N(Co) U N(C]) U N(Ca—[a/2]b) U N(C[a/z])) Figure
3.4 shows the preimage after puncturing the “pillowcase”, twisting
one of its ends and flatting out onto the plane.

Remark. Since 0 < b < a/2,b # 1, and (a,b) # (2n + 1,1), then
0<a-—[a/blb<b<[a/2).

From [ 6. pp.502 - 503}, the link Co U Cp U Ca_jaspp is uniquely
determined. And there are only four cases for Ciq /9 (Figure 3.5). In
the case of Figure 3.5(I), the two-fold branched covering branched
over Cy_ja/8)s is described in Figure 3.6(I). Then, in Figure 3.6(I),
7| must be homotopic (rel.d) to 74 in S — Int(U?=l N(D;)). So 7
must be homotopic to 75 in $* — Int(N(D1) U N(D3z) U N(Dy)).
Now, Hi(S% — Int(N(D;) U N(D;) U N(D3),dN(Dy)) & Z &
< dy |>, where d; is a meridian of Dz, and 7, ~ d; and 7{ ~ 0
in H;(S% — Int(N(D1) UN(D2)UN(D3),0N(Dy))). Then 7 is not
homotopic (rel.d) to 73, so 71 and 7, are not isotopic.

In the other cases, Figure 3.6 (II) ((III), (IV), resp.) describes the
two-fold branched cover branched over Cy_[/s in Figure 3.5(II)
((II1),(IV), resp.). Then we do the similar operation for the bold

lines. Hence, we can show that 7, and 72 are not isotopic. This
completes the proof.
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