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PREFACE

In this dissertation I investigate some quasilinear p—Lapalace equations on
RR". My main tool is “variational methods” developed by Palais, Smale, Am-
brosetti, Rabinowitz et al. in 1970%s. These methods are widely used in the
study of nonlinear elliptic equations, and many authors have contributed to this
region since 1970’s. The basic idea is to consider a functional corresponding to
agiven nonlinear elliptic equation and its critical points in a (probably infinite
dimensional) funhction space. Critical points ol a functional are characterized as
“min-max” forms, which were established by Ambrosetti and Rabinowitz.

Especially,-if the so-called “Palais-Smale” condition holds, the existence of a
nontrivial solution to the nonlinear elliptic probleins is ensured. The condition
ensures the compactness of a bounded sequence in a Banach space. This result is
much related to the Rellich-Kondrachev theorein.

Hence, for example, existence theorems to the following problem are well-
known:

—Au=|u*"?u inQ,
=0 on 49,

where Q0 is a bounded domain in R™ with smooth boundary, 2 < a < 2n/(n — 2)
and n > 3. In this case, the Palais-Sinale condition holds because the embedding
HL(Q) = L*() is compact.

On the other hand, in case of = R" the situation is quite different.
The Palais-Smale condition fails. Though the “concentration compactness ar-
gument”(1985) due to P.-L. Lions can overcome this difficulty, there are many
unsolved problems in this case. lle gave a sufficient condition (but not a necessary
one) for a weakly convergent sequence to be a strongly convergent one. There
would be weaker conditions than Lions’ ones.

In case of the “critical nonlinearity”, the Palais-Smale condition also fails.
Here I use the method developed by Brezis and Nirenberg in 1983. The method
is to use the extremal function for the Sobolev best constant. This case is much
delicate. The extremal function for the embedding I} (R") & L™/ (n=2(R") is
a constant multiple of

u(z) = (1+ [o|*)~ (=22,
Taking into account the results as stated above, I investigate lere the unsolved
problem
—div(|Vu[P~2Vu) + |uff ~2u = q|u|[u on R"

withl<p<nand p—2 <o <np/(n-p)-2.
In this problem, I seek a solution in the Banach space WULP(R™). Since the

space is not a Ililbert space, the space does not have an inner product. Unlike the
case p = 2, I must notice this difference.



I show the basic existence theorems (Chapter 1), existence theorems in the
class of radial symmetry with the crilical Soblev exponent (Chapter 2) and mul-
tiplicity of solutions (Chapter 3). Iligher order cases are also treated in Chapter
1. The asymptotic behavior is shown in Chapters 2 and 3.
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Chapter 1. Existence Theorems for Quasilinear Elliptic Problems on R”.

§1-1. Introduction

In this chapter we consider the following quasilinear elliptic problem:
(1) —div(|Vuf~*Vu) + MuP "?u = ¢(2)|u[’« on R"

where p and o are constants which satisfy certain conditions stated later, and A is a
positive constant. We seek a nontrivial solution of (1) as a critical point of the functional

(2 Ba(u) = [ (VP + 2Pz = — [ (@)lui

in the Banach space W1?(R").

From the homogeneity of the first term of ®,(u), under appropriate assumptions
on the potential g(z), we can get a nontrivial solution of (1) by solving the constrained
minimization problem:

inf - z)|u|t2dz
uGW"P(Rl"),IIU|IA=1( /R a(@)l )

where ||u||x = {fR,,(IVuP’ + /\|u|”)d:c}1/p. Unlike the case p = 2, it seems that few
papers have treated the case of p-Laplace equations with a potential g(z) which may
change its sign.

For the case p = 2, many authors including Ding and Ni [1] and Rother [4], [5]
considered equations of this type. The former authors studied the case of positive
potentials and the latter potentials which may change its sign. In both papers, they
used “ & la uniform integrability” so that the treatment of the problem on R™ could be
similar to that in a bounded domain. Following the idea of them, we consider a more
general case, i.e. the case of p-Laplace equations (1).

In Section 1-2 we consider a general case (the non-radial case; but the result in
this case is still valid for the radial case). We assume here that 1 < p < n, and
p—2< o <pnf(n—p)—2. (If p=mn, we regard the latter inequality as p — 2 < 0.
Note that for v € Wh*(R"), we have u € L*(R") for all @ such that 1 < o < oo by
the Sobolev embedding theorem). In Section 1-3 we will treat the radial case. In this
case only assuming 1 < p < n and p— 2 < o, we can prove the existence of a nontrival
solution of (1) even if g(z) tends to infinity as |z| — oo with some growth order. The
precise expression of the order will be given in this section. In Section 1-4 we will treat
higher order cases of p-Laplacian forms. But we will investigate only the non-radial
case.

The regularity of our weak solution will be taken up in a later paper.
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We conclude the introduction with some notations. We denote W!?(R"™) by Wl-»
and L*(R") by L'. For a function f, we define f; = max(f,0) and f_ = max(—f,0)
which are the positive part and negative part of f respectively. We write p* as p* =
np/(n—p) (p* is the critical Sobolev exponent corresponding to the embedding of W1»
into LP"). We define the W?-norm by

1
= { [ (9P + Ap)is ),

whicl is equivalent to the usual W'P-norm if A > 0. We denote a ball in R™ with center
z and radius r by B,(z).

§1-2. The non-radial case.

Our main result in this paper is the following existence theorem.

Theorem 1. We assumel < p<n,p—-2< 0o < ;'1_25—2 andg: R" - R is
measurable and satisfies the following assumptions.

(A 1) g=4q4+ —¢q-, ¢g- € Llloc‘
(42) 9+ =q1 + 92,
where pn
> * for
@1(>0)e L’ for E(p(n+0+2)_n(a+2),+oo)
and
g2(20) € L%, lim gy(z) = 0.
(A3) There exists a function ug € W* such that [ qluo|”t*dz > 0.

Then, for all positive constant A, there exists a nontrivial weak solution u of (1) in
WP such that

3) [ {19up =9Vt A ~rup}de = [ gluleupds
n Rn
for every p € C§°(R").
Remark. If we assume g(z) < 0 on R", we find easily that the equation (1) has

onlya trivial solution in W!?. This is also true for higher order cases treated in Section

1-4. Thus assumptions (A 7), (A 10) which will be stated later are indispensable to our
existence theorems (so is (A 3)).



If ¢(z) > a > 0 on some ball B.(zg) where a and ¢ are constants, and zo € R",
then the assumption (A 3) is fulfilled.

The above remark will be appleid to Theorem 3 and Theorem 4. But, in Theorem
3, a sufficient condition for (A 7) will be changed to “g(z) is uniformly positive on some
annulus in R™”.

Proof. As stated in section 1-1, a critical value of functional (2) is expressed

. _ c+2
uevw-’»rfl{ulh:l( /nq(z)lul ds)

on the unit sphere of W17,

Below we will show that this infimum is attained by a function v in W1 and that
a constant multiple of v becomes a nontrivial weak solution of (1).

For this purpose, we set

I == [ aa)lul+ds,
and minimize I(u) on the set
D={uew' | /R g-|ul"*?dz < +oo, [lullx = 1}.
We denote the infimum of I(u) by Sy, i.e.
S = inf I(u).

First we estimate [, q4|u|”*?dz. Denoting the Holder conjugate of ¢ by ¢/, i.e.
t' = A=, from (A 2), we have

(0 +2)t' = (a+2)t—f_T=(a+2)(1+t—_1_—1)

<o+ 2)(1 + (.p(a,+ n + g)n—— n(oc+2) 1)-1)

pe+pn+2p—no—2n
= 2)(1
o)+ P )
np
(o )(n —p)o+2)
np .
= =p.
n-—p

If p = n then, from the Sobolev embedding theorem, we know u € WU'™ belongs to
L(+2)¥  Hence the Holder inequality makes sense and we have

/ qllur'“dzs(/ q;dw)*(/ |+ dz)
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From the Sobolev inequality and the fact that ||u|[x = 1, there exists a positive constant
C such that

|l e < CITulT < Ol =

holds independent of u € D. On the other hand, by an easy calculation in view of the
Sobolev inequality,

/ g2l dz < lgallieeC,
Rn

wlhere C' is a constant independent of © € D. Therefore, as ¢4 = q1 + g2 with ¢ € L*
and gy € L™, we conclude that there is a constant C" such that

/ g+|ul"t?dz < C"

independent of u € D.

Next, we will show S5 < 0. But tlis fact follows immediately from the assumption
(A 3) and the last inequality. We have

_OO<S,\SI(UQ)<0.

Now we prove any minimizing sequence has a minimizer in D. Let {u;} be a
minimizing sequence for Sy in D. As W7 is a reflexive Banach space and ||u;||x =1,
the sequence {u;} is sequentially weakly compact in W!'?. We may assume without
loss of generality, that {u;} converges weakly to v in W!?. Moreover, for all bounded
smooth domains 2 in R", we set

i = uj|q.

Obviously, {#;} is bounded in W1?(§2). Since the embedding
WP (Q) — L7 (Q)

in a bounded domain {2 is compact, we can choose a subsequence of {u;} if necessary
(still denoted by {u;}), such that

u; — v a.e. in
where ¥ = v|q. Since 2 can be chosen arbitrarily, we use a diagonal argument to conclude
u; — v a.e in R™.
As the norm || - ||x is lower semi-continuous under the weak convergence in W17, we
have

[lv][x < liminf ||u;|[x = 1.
j—oo
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Since {u;} is a minimizing sequence for S)(< 0), we may further assume I(u;) < 0.
From the fact that

[ byl < c”
R"
and
S) < -'/ g4 |u;|°+da +/ q-|u;]° 2dz < 0,
Rn rRr
we get

/ q_|u;|°*dz < C".
R"

Then, from the Fatou lemma, we obtain
/ q-|v|° Tz < lim inf/ g-|u;|°t3dz < C".
n J—+00 R"
Similarly, in view of the inequality

/ g+|u|"tdz < G’ forall u € D,

we have
/ g4 |v|°t2dz < lim inf/ g4 |u;|7 2 dz < C".
Rn J—+0o0 R"

From (A 2) we can easily choose R, > 0 for arbitrary € > 0 such that
4) ' / gau;|" 2dz <€ for all j.
|z]2 Re

Furthermore, taking into account the Rellich-Kondrachev theorem, we find
u; — v strongly in JACAENS (Bgr,(0)) asj— oo.

Hence we have

/ g4 |u;|°idz — g+ |v|°t?dz  as j — oo.
[z|<Re [z|< Re
Then we get in view of (4)

)=~ [ (g4~ a2)ol"*de

i
3
o<y
]
<
Q
+
[ %]
=
2}
|
T
a
[E)
sl
=
Q
+
(%]
QL
3]

IA

/ g_|v]**?dz — / g4 |0]7+2dz
" lzlSR'

< timint( [ o-lusl s~ [ gyjug|+ae)
R” 2| <Re

J—+ 0

J—+oo

< liminf( | g¢-|u;|"t%dz -—/ g+ |ui |7 2 dz + €)
R" R"

=S\ +e.



Since € is arbitrary, we obtain I{v) < Sy and v # 0.
Finally we must show v € D. We set a = ||v||x, then a € (0,1] and 1v € D. Thus

Sy < I(%v) = o=+ (y) < o=+ 5, < 0,

Since Sx < 0, we get @ = 1. Hence v € D and I(v) = Sy. We note that |g||v|]°*! is
locally integrable. This is because

qu”vla-i-ldz___ /;a|q|1/(¢7+2)|q|(a+1)/(a+2)|v|a+ldz

1/(s42) ag (0 +1)/ (04+2)
< ([ la=) 7 ([ valiol*?) < +oo
B

holds for all bounded domains B C R" in view of the Holder inequality. By the Gateaux
derivative at v in D, we have

/ {|Vu|”‘2Vu-V<p+/\|u|"‘2u<p}dm=|S,\|"1/ qlu|® updz
R" e

for every ¢ € C§°(R").
Thus in view of the Lagrange multiplier rule(see Struwe [6]), we find that v =
|Sa|~1/(?=P*2)y is a nontrivial weak solution of (1).

The proof is complete.

Remark. For the regularity of a weak solution of (1), some additional assumptions
are needed. However, we cannot hope the existence of classical solutions of (1) because of
the result of DiBenedetto[l] or Ullenbeck[7]( the solution has at most C*'* regularity).

§1-3. The radial case

In this section we will study the radial case,i.e., the cae when the potential ¢(z) in
(1) is a function of the variable r = |z|.

We define
Coor = {u € Cg°(R™) | u is radial}.

and denote by WP the completion of Cg5 with respect to the norm W'?. We also
denote the area of dB,(0) by w,. We use the same letter C for expressing various

constants in this section.

We can now prove the following radial lemma which helps us to weaken the as-
sumptions on gq.



Lemma 2 (the radial lemma). Foru € W} and 1 < p < n, ifz # 0, then for
almost all z € R”
()P < ClaP" |1}

holds.

Proof. 1t suflices to show the lemma for u € C55. For such u, we have

lu(z)? = — /lmI 2 {u(r)P}dr.

The right-hand side is estimated as follows:
o _1, d
[ ey < [ gl
Now we decompose the last integrand in such a way that identity

()P u(r)

holds. The total sum of the exponents of 7 is equal to 0. In fact,

_n=mtl-p (-p-1E-1) (-1)

d

| = P (A= H1=p)/n {3y ()| p(n=1)/p" P~ 1|dr w(r)[rr= /P

n pn p
= 1= (=) - ) 2D
=—n(n -1+ n(n-1)
pn

=0.

We will estimate the integral using the Holder inequality. First we observe that the
Holder inequality can be applied, because we can raise the power of the decomposed
parts to a, 8, 7, respectively, where a =n/(p—1), §=p*/(p — 1), v = p, since
1,1, 1 _p=t (n=-plp-1) 1
a B9 n pn P
pp—+(n—p)(p—1)+n
pn

= 1.

[ g oran < p [t uler

|z

< p( p(n— 1)(n+1—p)/(p_1)dr)(p—l)/n
— M

®© (n=p)(p-1)/pn o d 1/p
pnf(n—p) n—-1 1. il p.n—1
X (/|=| |u(r)] T d1) (</|:,-| ldru( r)|Pr dr) )

Hence
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If we observe

o0
/ o= (=) (n+1-p)/(p=1) 4,
2|

={1- (n—1)(n+1 —P)}“ [0 ) 0
p—1 |z

Pl g ntn=p)-1),

n(n - p)

we get

p—l - n, —(n- - n - -n -
u(@)[P < p{———= PV mw (PP, S g P |7 00| V| e

n(n - p)
p—1 -1)/n, -(n- - n - -n P
Sp{m}(l’ 1)/ny=(n=p)p=1)/p W Up|gfp (“u”u' +||Vu||Lp)

< Clz”~™||Vu|}, (by the Sobolev embedding theorem)
< ClaP™* [l

where C is a constant independent of « € C§5,, but depending on p and .
The proof is complete.

We are now in a position to state our main theorem in this section. We assume that

q(z) is a radially symmetric function which is allowed to satisfy some growth condition
at infinity.

Theorem 3. Let 1 < p<n,andp—2< o. We assume ¢: R" — R is measurable,
radially symmetric, and satisfies the following assumptions:

(A 4) qd=4q+ —q4-, gq- EL}oc'

(A5) 0 < g4 (J2]) < F(Jz])|2|*)

where f € L* and k(o) = "p;”{(a + 2) — p*} — 6, where § is a positive constant.
Furthermore

(A 6) 0 < f(z]) < Clz|* on B, (0)

where 1 > 0 is a small constant.
(A7) There exists ug € WP such that / qluo|”*2dz > 0
Rn

Then for all positive A, there exists a nontrivial weak solution v of rm (1) in W7,

Remark. Theorem 3 is valid for all § > 0, not only for a suitable §. But, according to
6 in (A §), f(|z|) must vanish at the origin as stated in (A 6). In the case p < ¢ +2 < p*,

8



we can add gy, ¢ in Theorem 1 to g4 here (the validity of this statement is ensured by
the proof of Theorem 1.).

Proof. We prove the theorem by following the proof of Theorem 1. Instead of D in
it, we define D, = {u € W} | [p.q_|u|"t?dz < oo, |jullx =1}

Then, by the radial lemma, we have

oo
/ q+|u|a+2dz ___wn/ q+|u|”+21'"-1d1'
R” 0
N N L
0
+ /00 q+||u||:’\+27‘(p—")(6+2)/p+"—1dr).
n

We take u in WP and, from Assumptions (A 5) and (A 6), we get

7 )
/ g4 |u|"t2dz < Cwn{/ rHdr + Hf”oo/ r"dr},
R» 4] n

n—p

where

p=25+ {(e +2) - it 2 }—6-"—;—E(a+2)+n—1,

n—p

n—p np n—p
v=—"oc+2) - -6- c+2)+n—1.
(o427 - oy - 5= 2R+
Then these values yield g = 6§ — 1, v = —§ — 1. Hence, finally, we have

i 1 1 _s100
[ artutr e <Gun{ (10 + 1 flse [ - 57057

1

(5
=Cun g {1 + 1l }.

This value is independent of u € D,. Let {u;} be a minimizing sequence for Sy in D,.
From the same reason as in the proof of Theorem 1 (by the Assumption (A 7)), we have
Sx <0, and [p.q-|uj|”"?de < C for all j. Moreover, we may assume

u; — v weakly in W' and u; — v a.e. in R™.

Then we have
lolls < liminf fJuls <1
j—oo

and

/ g-|v|7t2dz < ﬁminf/ g-lu;]°t?dz < C.
nn J— o0 nn

By the fact that ||u;||» =1 and the above estimate (5), for every € > 0 there exist
positive R, and r, such that

/ g+|u|”*?dz < ¢, / g+lul"*?dz < e
|$|2Rc |$|ST¢

9



for u € D,.

We now set T, = {z € R" | r, < |2| < R, } and apply the Lebesgue dominant
convergence theorem (from Lemma 2 and (A 5) , we can take a summable dominant
function; see the above estimate on q4|u|°*?) to obtain

/ g+ |u; |7t 2dz —>/ g+ |v|°t2dz  as j — co.
T T,

Since

10)< [ alol e [ aulolotds,
n T,

using the same argument as in Section 1-2, we have

I(v) < liminf(J(u;) + 2¢) = Sy + 2e.

J—oo

Hence, we obtain I(v) < Sy. The remaining proof that v € D, and u = |S|~1/(9-2+2)y
is the same as in the proof of Theorem 1.
The proof is complete.

§1-4. The Higher order case.

In this section we will extend our existence theorem in the non-radial case to a
higher order problem of the form

k
(6) S =DV e} 4 AP = g(a)]ul7u on R,

=1

where
. A"y if | =2m,
Viu= -
V(A™ ) if [ =2m -1,

and (—V)' which operates on {---} means, if [ = 2m — 1,
(=V)'u = —div(A™ ).

As in the previous section, we seek a nontrivial solution of (6) as a critical point of the
functional

k
1 A 1
U(u) = - / |V ulPdz + —/ ulfdz — —— qlu|?t?dz
P ; n D Jmrn | | o+ 2 R" | |
in the Banach space D*?. Here D*? is the completion of C§° with respect to the norm

(Zf__.o (V! |[5.)7. If p # 2, D*Pmay be different from Wk-» (see P.-L.Lions[3]). Note
that the D¥”-norm is equivalent to (Zf;l -1 + Al J1E )Y 2.
We have the following existence theorem.

10



Theorem 4. For1 <p<nfk (k<n;n,keN), weassumep—2<o < == —2

n—kp

and q: R" — R is measurable and satisfies the following assumptions.
(A 8) =4+ —9-, q- eLlloc'
(A9) G+ =q+gq a(20) €L for te€ o +00)

* P np— (n—kp)(o +2)’
and

Q2(2 0) € L*®, lim ¢ =0.
|z}— o0

(A 10) There exists ug(# 0) € D*? such that / glug|”t3dz > 0

Then there exists a nontrivial weak solution u of (6) in D*? such that, for all
positive A,

/ {Z|V'u|”_2vlu-V'<p+/\|u|p'2u<p}dm = / qlu|® updz
for every ¢ € C§(R").

Proof. First we note by the Sobolev embedding theorem, that the inclusion map
DFEP s [nP/(n=kP) 5 continuous. We need only to check the exponent of the last term
g+|u|°*2. From (A 9) we have

, 1
(o +2)t' =(c +2)(1 + t—-—T)
np — (n —kp)(o +2)

<(@+2)(1+ (n —kp)(o + 2) )
_ np
(o+2) (o +2)(n ~ kp)
_ 7lp
T n—kp'

and hence [, g4|u|"*2dz < C for all u € Dy, where Dy, is the set of minimization

Dy={ueD* | [ q_[ul"*?dz < oo, ||ullprs =1}.
R"

The rest of the proof is the same as in Section 1-2.
The proof is complete.

11



Remark. In Section 1-2 and Section 1-3, we may change A into a(z) such that
a(z) € L* and a(z) > ¢ > 0. In Section 1-4, we may change

k
S =9I P2 e 4 AP 2
I=1

into
k

Z(—V)I{a;(:c)|V'u|p_2VIu}
=0
where a;(z) € L* such that a;(z) > ¢ > 0.

For a radial higher order case, a radial lemma like lemma 2 would be much more
complicated and several assumptions would be needed.
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Chapter 2. The Critical Sobolev Exponent Case.

§2-1. Introduction.

We consider in this chapter
(1) —~div(|VulP~?Vu) — Q(z)|u?"%u — K(z)|ul”" "2u =0

in W,la'zrad(R"), and seek a radially symmetric solution of (1). Our aims are to extend
the results of C.-S. Lin-and S.-S. Lin [18] to p—Laplacian and to investigate the asymp-
totic behavior of the solution. We also consider tlie bounded case with zero-Dirichlet
boundary condition. In this case, we can prove tlie existence of a nontrivial radially
symmetric solution. Our results do not include those of Guedda and Veron [13] or
Egnell [9], [10]. But the difference of assumptions enables us to show the existence of
nontrivial solutions under assumptions on Q(z) which are weaker than those of them.

The study of elliptic equations involving critical Sobolev exponents is mainly owed
to Brezis and Nirenberg [4]. In their cerebrated paper, they have succeeded in showing
the existence of a nontrivial solution of

—Au—Au = |u|* "2y in H3(Q)

where 2 is a bounded domain in R” and 2* = 2n/(n — 2).

Since the break-through paper of them, many authors has studied various equations
involving critical Sobolev exponents. They are for example, Ambrosetti and Struwe
[1], Cappozi, Fortunato, and Palmieri [5], Cerami, Fortunato, and Struwe [6], Cerami,
Solimini, and Struwe [7], Egnell [9], Fortunato and Jannelli [12], and Zhang [24).

Later, unbounded case (i.e. @ = R") was treated by Benci and Cerami [3], C.-S. Lin
and S.-S. Lin [17] and others. For the approach by the ordinary differential equations,
there are also many results, for exsample, due to Kawano, Yanagida, Yotsutani [15)

We should notice that as well as the Laplacian, a quasilinear version of this type
(p—Laplacian) has also studied by Azorero and Alonso [2], Egnell[10], Guedda and
Veron [8], Kawano, Yanagida and Yotsutani [16] and others.

Though it is well-known that the Palais-Smale condition fails for these problems
even in the bounded case, the deficiency of the compactness of embedding to the space
with the critical Sobolev exponent has been overcome by the meéthod used by Brezis
and Nirenberg. The method has become a standard type for these problems.

The key point of these problems is that the function

— prp—1) (= DIP?
U(z) = {,,(;’___;’)P ‘} (1 + [P/ G=D) =)/

s an entire solution of
—div(|Vuff2Vu) = w?"~! on R"
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and it is the extremal function of the functional

Jrn [Vude
(fn" |“|p.dz)p/p.

I(u) =

where p* = np/(n — p).

Using the fact, we compare the best Sobolev constant with the value of the func-
tional for the problem at the point of an “approximate ” function. If the best constant
is greater than the above value, we can prove the existence of a nontrival solution. For
details see Brezis and Nirenberg [4], P.-L. Lions [19], Talenti [20].

The bounded case is considered in Section 2-2. We consider there in the radially
symmetric class, that is, in W&'r”(BR)

@ { —div(|VulP"*Vu) — Q(z)|ulP~*u — K(z)|uf""*u =0 in Bp

u=0 ondBg

where Bp is a closed ball with radius R(> 0) whose center is the origin. Here we
can prove the C'®-regularity of a solution of (2). To show it, we invoke the results
of Guedda and Veron and DiBenedetto [3]. But if @(z) and K(z) are not radially
symmetric, readers should refer to Egnell [10].

In Section 2-3, we seek a radially symmetric solution of (1) on R" as a limit of a
sequence of radially symmetric solutions of (2). In Kabeya [14], if K tends to 0 with
some order near the origin, the existence of nontrivial solution has been proved. But in
this case, the method in [14] never applies. We use the method by Lin and Lin. In this
case () has to be nonnegative. '

Now we state some assumptions often used in Section 2-2 and Section 2-3.

(K-1) K(|z|) =1+ B|z|"" near the origin and K(|z|) > 0,
where > 0 and v < 1.
(@-1) Q(lz]) € C'(R™) N L=(R").

But in Section 2-3, ) must be nonpositive.
According to the mountain pass theorem, one of the critical values of the functional
1 1 .
o) = & [ (IVuf’ - Q(z)[ufP)dz — —./ K (z)[uf" d
PJa P Ja

is expressed as

VulP — )| uf?
Sro@= pe TGl
uEW,y'P(0),uz0 (o K(2)|u P‘dm)p/p
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but if I > 0 it is equivalent to the follwing expression stated in “notations”.
We will check whether S,. () is attained in a suitable function space.

We conclude the introduction introducing some notations:

Bp : a closed ball with radius R whose center is the origin,
Wn = |BBll,

My(Br) = {u e W37 (Ba)l [ K(2)|ul*dz = 1},
Br

Sq.0(Br) = inf {/B (IVul” = Q(z)|ulP)dz | u € Mq(BR)},

S:inf{/ IVl ds | w € Wh(Br), / up"dz =1},
Br o Br

where 2 < g < p*. It is well known that S is never attained in Wol"rp(BR) but is attained
if WHP(R") (see Guedda and Veron [13] or Talenti [20]). It is also known that S is

independent of R, and its value is equal to the case R".

If we can show S,. g(BRr) < S, we are able to prove the exintence of a nontrivial
solution to (2).

§2-2. The Dirichlet problem in a bounded domain.

In this section we consider

3) { —div(|[VulP~?Vu) — Q)" ?u — K{z)lu|”" " *u=0in By

u =0 on JBpy.

As stated in the introduction, we first show S,. g(Br) < S under suitable conditions.
Hereafter we denote the best Poincaré constant by A(R) i.e.

Vul|Pdz
AR) = inf M——.
u€Wy'P(BR), uZ0 fBR lulPdz

We find out that the behavior of K near the origin plays a crucial role for the

existence theorems. The next lemma will be used to ensure the existence of a nontrivial
solution.
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Lemma 2.1. Assume (K — 1), (Q —1). For any positive R, if Q < A{(R) in Bg, and
1<p<+vn,1>v>1/p, then we have 0 < Sp+ o(Br) < S.

Remark. This lemma is still valid for non-radial K and Q.
Proof. As in Guedda and Veron [13] or Egnell [9] or Brezis and Nirenberg [4], we

prove the lemma by using the function
ue(z) = ¢(z)(e + [P/ P~ D)1=/

where € is an arbitrary positive number and ¢ € C§°(R") is a cut off function defined
as
¢=1lnear0and 0< ¢ <1

with support in Bs (8§ > 0). Now we calculate

[ (vupds, [ Q@hubde and [ K@l
Br Bp Br

First, we have as ¢ — 0,

/ IV u. P da

Bpr

(N~ Pvy pl(p=-1)\=n|.1p/(p=1)

= ( ) (e +|=| )"z dz + O(1)
Br

p—1
—_—_(’;_11’)?/ (€ + |z [P/~ )=n|g P/ (P=V gz + O(1).
— R”

Now we set |z| = eP~1)/Pp to get

/ |V, |Pdz = El—n/p(”;p)pwn/ (1+ pP/(P—l))—npn—l-H?/(P"l)dp + O(1).
Br 0

p—1
We set -
K, = (Z:f)pwn /0 (1+ pp/(p—l))—npn—1+p/(p—1)dp
to have
(4) /B |Vu,|[Pdz = Ke'—"/P + 0(1).
R

Similarly, we have

Q)lurdz 2d [ {(#@) =1+ 1}(e+ |zP/C-V)p"ds

Bg

= s”‘"/”wnd/ (1+ pP/(P—l))p—npn—ldp+ 0(1),
o
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where d = ming, Q. Setting

1{3 =wn/ (1+pP/(P‘1))P—npn—-1dp’
0
we have
(5) / | |Pdz > Kade?nIp 4 O(1).
Br

Finally, using the assumptions on K (z) and ¢(z), we have

/ K(z)|ue|P de

Br
2 / (14 Bl=z]"?P)(e + |z[P/(P=1) " dg
Bs
= / (e + |:v|”/(”'1))’"dz + 8 lz[™ (e + |z|p/(p—l))—ndz +0(1)
n By

o0
— e""/"wn / (1+ pp/(p—l))—npn—1dp
0

se—(P=1)/p

+ ﬁe(p—l)'y-n/pwn/o p‘n’(l + pP/(P-l))-npn—ldp + 0(1)
We set oo _
“’"/ (14 pP0=D)="pr=1dp = K,
¢}
and

o0
wn/ FP(1 4 Py p 1y =
0

for convenience.

Now we check whether I, is finite. We only show the behavior of the integrand at
infinity is o(p~!) as p — oo. Let

F(y)=~(yp—pn/(p—-1)+n—-1)+1=-1p+n/(p-1),

we have F(1) > 0 by the assumption on p. According to the linearity of F(v), we have
F(vy) > 0 for all ¥ < 1. Hence we find I, is finite. Consequently, we obtain

/ KluelP' dz > Koe™? + pI,e~m+(=17 4 o(1)
Br

= [pe™/P (1 + Efgle(""lh + 0(5"/11))_
2

Hence we get

. / , N /n
(/ K|ue|P d:c)p P > Kye~(n=r)/p (1 + ﬂ{‘—y e(P=1h +0(€n/p))( )/
Br K

]
{2
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. /r® K o
" 2

with I&’g = (f(g)p/p.. Let
fBR (|Vu|" - Q|u|")dm

(S K@luprdz)™”

Ro(u) =

then we have by (4), (5), and (6),

Kyel=™P — [3de?~™? + O(1)
Koe ™52 (14 Exctr-1m) /" 4 o)
_ Ky — Kade?~! + O(e(n—P)/»)
- Ko(1+ %6(""1)‘7)(""1’)/" + O(eln-p)/»)
_ Ky — K3deP~! 4 O(eln—r)/p)
(14 O -1y 4 O(e2e-107)) + O(e(rn)lr)

RQ(“:) <

Setting { = min(2(p — 1)v, (n — p)/p), we get

I — I{3d€p—1 + O(e(n—p)/p)
Ka(1+ g.'%%iile(?—l)ﬁ) + O(eh)

RQ(ue) <

1 i _ _ (n—p)BK B .

—_ - p—1 (n-p)/p _ AT PIFAy (p-1)y I
a (I&l K3de?™" + O(e )) (1 e +0(e ))
I(l 1{3 -1 (n fand p)ﬂ[(l IX’-Y — _

= = 2 geP-1 £ (r=1)7 4 o(clP-1)7Y,

Ky, I ¢ nky Ky ¢ o )

Noting that p— 1 > (p — 1)y and S = K, /K5, we obtain for every small € > 0,
Spe,@(Br) < Ro(u.) < S.

For 0 < Sp+,g(Br), we only notice that 0 < Q(z) < A (Bg). It follows from that

P _ x‘ P T uP_ Q
[ v - @@l > [ (9 - e

A1(Br) —max Q

2 SAL(BR) (/BR |u

A (Br) —max Q
SA1(Br)

p.dm)P/P'

2

(max K)~?/?"

>0

under the condition [, K|ulP*dz = 1.
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The proof is complete.

Remark. If p = \/n, we have for some positive

/ lu.fPde > K|log ] + O(1)

By

and Rg(u.) yields

I
Ro(ue) = 72— - —Iide""llloge

e ' - (n — p)ﬁKl K‘Y e(p—l)‘r + o(e(""l)").
2

nI, Ko

Thus even if p = \/n, the result of Lemma 2.1 still holds.
In the proof, we find that the assumption (/{ — 1) may be changed into

(K —1) 1+ BlzlP~ < K(|2]) < 1+ Blz|' e

where 0 < 8 < B and ¢ is arbitrary positive.

For the radial functions, the radial lemma is a key for the existence theorems (see
for instance Egnell [11] or the author [14]).

Lemma 2.2.(the radial Lemma). Let u be a radially symmetric function such that

/ |VulPdz < oo,
then
|u(z)| < Cln, p)la|®=™/?|| V|| Lo (rny

holds for all ¢ # 0, where 1 < p < n.

By the ssumption (K — 1), @(]z]) may change its sign or may be nonpositive. The
minimizer obtained here plays an important role in Section 2-3.

Theorem 2.3. If (C'(Br) 3)Q(|z|) < A\i(Br) on Br and K > 0 satisfies (K —1), then
there exists a minimizer for S+ o(Bg) In Wol",f’(BR). Moreover the minimizer belongs
to Cy'*(Br) where a € (0, 1).

Proof. We devide the proof into four parts.
15t step. To show the boundedness of a minimizing sequence in W7 (Bp).
Let us consider the problem

() { ~div([VulP V) ~ Q(=)uf~?u — Sy 0 (B)K(&)[ul*"2u =0 in Br
u=0 on 0Bpg,
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and let u; be a solution of this problem, where p < ¢ < p*.

Since the domain Bp is bounded, we can easily know that the solution u belongs to
M,(BRr) using the compactness of the embedding I/'Voll’rp(BR) — LI(Bp) for p < ¢ <p*.
Taking

[ 19wl = @@l )z = Sea(Ba)
Br
into account, we find out |

A (Br)
Vi, |Pdz < B
./BR | qu > Al(BR) _ llli\Xqu'Q( R)’

by using

m

/B |V‘uq|sz= 5 Q(z)‘uq|pdz+5qu(BR)S /\f’(ch))/;; |qu|”da:+Sq,Q(R).

Invoking the result of Guedda and Veron, we get

lim Sg,o(BRr) = Sp+,q(Br)

qtp*

to obtain the boundedness of {u,} in IV()I,':’(BR). Thus we can choose a subsequence
{gi} as g; T p* such that the sequence {u,; }satisfies

ug, — U weakly in VV&',”(BR)
(8) Ug; — U stongly in L?(Bpg)

Uy — U A€, in Bg.
Hereafter we denote u,; by u;.

Ond step. We show uy, 1s nontrivial. Suppose uy, = 0. Recalling that

Vu;|P — 1P\d
51 o(Br) = lim J2a{V2P = QeDls)ds
i=oo ([g, K(|z])|us|dz)rles,

and the strong convergence of {u;} in L?(Bpg), we have

S (B ) li fBR |Vu,|pd:z:+o(1)
. = 1im .
PO e ([, K (|25 |5 dz)PTo + o(1)

Moreover by the radial lemma and the Lebesgue dominant convergence theorem,
we get

limj — oo |Vu;|Pdz =0
Br\ B
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and

limj — oo K|u;|P" dz = 0.
BRr\B;

Hence for § > 0 we have

I, |Vu;|Pdz + o(1)
- > 1 6 : -
Spr.alBr) 2 o (g ey s + o(1)

In addition, from (K —1) for all € > 0, there exists a § > 0 such that

1< K(|z]) <(14¢€)? /P in By

holds. Then using the Sobolev embedding theorem, we have

S (fB6 |u,~|”.dx)p/p +0(1)
1+e¢ (fBa |9 dz)P/ %5 + o(1)

Spe,@(Br) 2 lim
j—oo

Now by the Hoélder inequality, we have
14 rlej (p*—~a;)p/p*q; e\t
(/B, sl dz)”" < ( 5 dz) ( [ il &)

Using this inequality, we have

S
1+¢

Sp'.Q(BR) >

Since ¢ is arbitrary, we have
Sp"Q(BR) Z S‘

But this fact contradicts to Lemma 2.1. We get uy, # 0.

3rd step. Now we prove that {u;} is bounded in Cy'®(Bg).
To show the boundedness, we utilize some propositions due to Guedda and Veron
and DiBenedetto {7] without proof. For a proof, see their papers.

Proposition 2.4.(Guedda and Veron). Suppose u is a solution of

) { —div(|Vulf72Vu) — g(z)|ufPu=f inG

u=0 on 0G,

where G is a bounded domain in R™, 1 < p <n, f € L™?(G), and g € L*/?(G). Then

”u”L'(G) < C(t1 G! “f”L"/Pl “g”L"/P) fort e [1,00)
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Proposition 2.5.(Guedda and Veron). Assume l < p < n, f € L*(G) for some
s > n/p and u € W'P(G) is a solution of

(10) —div(|Vulf~?Vu)=f in G
u=0 ondG.

Then
lullzoo(ay < Cln,p, OIFILSY

where G is a bounded domain in R".

Proposition 2.6.(Guedda and Veromn). Let u, is a solution of

(11) —div{(e + |Vu|2)L;3Vu} =f inG
vu=0 on dG,

where € > 0, G is a bounded domain, f, € C'(G)and the solution u, is in C*#(G).
Then there exist o € (0,1) and C = C(p,n, G, ||fc|lLe(c)) > 0 such that

[zellcra(gy £ C  for anye € (0, 1).

Moreover if || f.|| L (g) does not depend on ¢, we can pass € to 0.

Now we continue the proof. First, we show the sequence {u;} belongs to L*(Bg),
invoking the Proposition 2.4.
We regard (2) as

—div(|V; [P V;) = (Q + Sy;,0(Br) K |u;| ~P)|u;[P~u; =0 in Bg
(12)
u; =0 on O0Bg.

We only check Q(z) + S,; A(Br)K(z)|u;|%~? € L*?(BR). (We regard f. = 0). From
the assumptions (K — 1) ( K € L>(R")), and (Q — 1) we show |uj|%~? € L™/?(Bp).
In view of

P (g —p)" = n{pn — (n — p)g;}

P p(n—p)
and using ¢; < p*, we find p* — (g; — p)n/p > 0 to get |u;|%~P € L*/?(Bg). Using the
boundedness of {«;} in Wy'?(Bg), we get {|v;|?"~?} is uniformly bounded in L™/? (Br),
hence we have {u;} is uniformly bounded in Lf(Bp) for every ¢ € [1, c0).

Next we show {u;} is in L°°(Bpg).
In Proposition 2.5 we think of f as f; = Q|u;[?~2w; + S;,,(BR)|uj|%~%;. Using
the result obtained above, we have f € L*(Bgr) (s > n/p) and

1/(p=-1
lwjllLeo(BR) < C”fj“z,/'((};in))'
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The boundedness of {u;} in L®(Bp) is obtained from the boundedness of {f;} in
L*(BRr) (this comes from the boundedness of {u;} in L!(Bg)).

Finally, we prove the C'*(Bpg)-boundedness of {u;}. The fact that u; belongs to
C1*(Bp) follows from the regurality result due to DiBenedetto.

Proposition 2.7.(DiBenedetto). Let u € Wli'f(ﬂ) be a weak local solution of

div(|[VulP~2Vu) =, p>1, p € L] (Q)

loc

where ¢ > pn/(p — 1). Then u € CL%(9).

loc

In our case, we may take ¢ = f; = Q|y; [P~ ?u; + S;,,(Br)|uj|% " 2u;. On the
uniform boundedness, we use Proposition 2.5. Noticing that

fe=fi = Qlu;|P~%u; + Sy, 0(Br) K (z)|u;|%~?u; € C'(Bg),

we have a solution of (11) u. ; € C*#(Bgr) by the usual bootstrap method (because the
approximate equation is not degenerate.). Applying Proposition 2.6, we obtain

”uj ”C""(BR) < C(p, n, Br, “fJ ”L°°(BR))'

By the boundedness of u; € L*(Bg) (so is f;), the constant C(p,n, Br, ||fi||r=(8x))
is bounded. Cosequently, we obtain {u;} is bounded in C'*(Bp).
41h step. Conclusion.

Noticing that the embedding C1'*(G) — C14(G) is compact if 0 < ¢ <  and if
G is a bounded domain in R™, we find

u; — U strongly in CM*(Bg).
Letting
v= Sp"Q(BR)l/(p._p)uoo

we have v is a solution of (2) and v € Cp'%(BR).
The proof is complete.

Remark. Invoking the maximum principle for p-Laplacian due to Vazquez [23] (Stated
below), we find the solution ue, is positive in Bp.

Proposition 2.8.(Vazquez [23]). Let u(> 0) € C'() satisfies the following assump-
tions:

div(|VulP~*Vu) € LE.(Q), and div(|VuP"2Vu) < B(u) € Q,

and B : [0,4+00) — R™ is continuous, decreasing, #(0) = 0, B(s) = 0 for some s > 0 or

B(s) > 0 for all s > 0, but fol (B(s)s)~'/Pds = +oo. Then if u does not vanish identically
on §Q, u is positive everywhere in ().

Noticing that our solution u., may be assumed to be nonnegative, we only check
the property of ‘

B(s) = | max Qs
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Obviously, #(0) =0 and B(s) >0forall s >0. f0<s< 1,
(B(s)s)™MP > s

holds and we have . .
/ (B(s)s)~H*Pds > c'/ s™'ds = co.
0 0
Finally we obtain us, > 0 in Bp.

Remark. In general, we can’t expect the more regularity of the solutions of this type.
A counterexample is introduced by Tolksdolf [22].

As is well-known for the Laplacian, the Pohozaev type identity also holds for the
p-Laplacian. It is due to Guedda and Veron (also due to Egnell).

The extended Pohozaev Identity.

n/nH(z,u)dm+/nm-VxH(z,u)dz+(1—g)/ ug(z, v)dz

Q

=(1—l)/ z-v|u,|PdS
P Jaa

where g(z,u) = Q(z)|u[?~%u + K (z)|u[’"~2u and H(z,u) = [ g(=, s)dS.

Calculating directly the relation, we get

/ Qluldz +/{:1: V(@ + )Yl (1 + [uf"~P)dz = (1 - 1)/ (z - V)|, P ds.

Q Q P Jaa

Assuming that Q(z) = Q(|z|) < 0, K'(z) = K(|z]) (Q and K isradial), Q'(s)+K'(s) <0
for every s € R and Q is star-shaped with respect to the origin, we get any nonnegative
solution which belongs to WS'”(Q) N L*(Q) is only the trivial one. In our framework,
@ has to be decreasing near the origin so that @' + K’ < 0 holds.

If Q(z) > A1(R), then there exists no positive solution of (2). Namely, the following
theorem holds.

Theorem 2.9. If Q(z) > A{(R) and K(z) > 0, then there exists no positive solution
of (2).

Proof. The proof is almost same as in that of Guedda and Veron (Theorem 3.3.,

using the Vazquez maximum principle and the extended Hopf boundary point theorem),
so we omit it.
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§2-3. A Radially symmetric solution on R".

In this section we consider
(13) ~div(|VulP~2Vu) — Q(@)|uf~2u — K(z)|ul’ ~?u=0 on R",

i the radially symmetric class. We seek a solution of (13) as the limit of the sequence
of the minimizers obtained in Theorem 3.3. Since A;(Bp) — 0 as R — oo, we can not
show the existence of nontrivial solution of (13) if @ > 0( for given @, Lemma 2.1 fails
in a large ball.). Noting that Theorem 2.3 holds for nonpositive @ € C*(R")NL®(R"),

we assume here

(@-2) Q(l=[) < 0.

Now we set for radially symmetric functions
M= { ue L, (R") | Vue IP(RY) / 1Ql|ul? de < +oo, / Klu da =1}
R'l R'l

ueM>

rad

5% o= inf /R"(|Vu|” — Q()|ul?)da.

Noting that u € M,.(B,) (assuming u is radial) means u € M, we find out that
Sp-.q(B:) is decreasing as B, T R". Namely, for any sequence of domains {Bp;} such
that Bp; C Br,,, and Bp; T R" as j — oo, we get

1lim Sp-,Q(BRj) > S:?'Q.

J—*oo

On the other hand, let {;} € C§°(R") be a minimizing sequence in radially symmetric
class for S52 o with suppy; C Bp; for any j, where Bp, C Bpg,,, and Bg; T R" as
j — co. Then for any € > 0, there exists j(¢) € N such that for all j > j(€)

{ /R,.UW:-I” — QlusI7)da }{ /R K@) <sze e

Hence we have

. -p/p*
SeaBr) < { [ avup -Quspyh{ [ K@iwPras} " <spe e

Since ¢ is arbitrary, we get

(14) lim Spe,o(Br,) = 5% o

j—oo P
Noting the relation (14), we obtain the following existence theorem.
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Theorem 3.1. Assume that I{, Q) are radially symmetric and I{ and Q satisfy (K —2),

limsup K(Jz|) <1

|z] -+ 00

and (Q — 2), re;pective]y, then there exists a minimizer for 532 o in M7, 1.e., there
exists a solution of

~div(|VulP~2Vu) — Q(|e|)|u[P 2w — K(|z])|u[’" "2« =0 on R"

(e ]

in rad’

Proof. As a similar way of proof of Theorem 2.3, we will show the theorem in five steps.

1st step. To show the weak convergence of a minimizing sequence.
We take a sequence of balls {Bg,} (Bp, = B) such that

B CBg, C---CBg; CBpgy,,C--
and Bg; T R" as j — co. Let v; be the radial minimizer obtained in Theorem 2.3 of

—div(|VulP~2Vu) — Q(|z]) P~ = Sp+,0(Br,)K(|z)v" ™! in Bpg,
(15) u >0 in Bp;
u=0 on dBp;.

By the monotone decreaseness of S;+ q(BRr;), and the nonpositivity of @, we have
(16) / |VulPdz < Spe,o(Br;).
Br;

Since (16) implies the boundedness of {Vv;} in LP(R"), we can choose a subsequence
of {v;} (still denoted by {v;}) such that

Vv; — Vvs, weakly in LP(R")

This means v, € M2,.
2nd step. To prove vy, # 0.
Now we invoke the radial lemma 2.2.

By this lemma, we find {v;} € L{3.(R™\0). Now suppose that ve, = 0 holds. Using
the property of {v;}, we have

fRn(lvvJ IP -_ Q vj |p)d$
(fnn K(|z|)|vj|p*d=z)ple*”

26
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We note that {v;} is uniformly bounded on any annulus A, and the Lebesgue dominant
convergence theorem holds on A. Moreover, we should notice that by the assumption
on I, for € > 0 there exist § > 0 and R > 0 such that

1< K(|=])
K(|=])

(1+€)?" /P in By
(1+¢€)*"/? in R™\Bp.

IN A

Then we have
(Vv [P — 1P )d
Syriq(B) > lim Jne(7ul = Qi P
j—00 (fnn I(lvj‘poda:)p 4
I3, IVl + Jpmy\ g VUi P dz = [y g, QlvilPdz + 0(1)
im - . |
3= ([ Klul de + frm 5, Klv; v a2y + o(1)

Using the Sobolev embedding theorem and the property of K and @), we get

Vs »* + n V: p.dCE P/p. +o0 1
Sp+.@(B) 2 S lim U, v3! Jn \Bx |U17 d2) T (1)
Leimeo ([, vl de + [qny g, [vilP"dz)"'" +o(1)
S
1+

Since ¢ is arbitrary, we find this relation is a contradiction.
3rd step. Next we prove v € CLE(R™\0).

loc
Since {v;} is bounded in R"\B, (for any 5 > 0), we get v, € L2 (R™\0). Hence
invoking Proposition 2.6, we obtain v, € llo':(R"\O).
4th step. To show v, € M2,.

The above consideration shows that v, solves locally in the weak sense of Wllo‘:(R"),
(17) —div(| Voo [ " Voo ) = Q(|2])] 0 [P 000 — S22 o K (|2])]veo [P 000 = 0.
Then multiplying the both sides by vy, and integrating (17) over Bg, we get
(18) [ (90l = Qo) s = R PPl vee = 852 [ Kol d
Bp Br

Noting that by the radial lemma, v (R) — 0 as R — oo and

/ IVvoo|”d:c,/ Q|veo|Pdz, and K|v°o|".d:c
R" Rn Rn

are finite, we can choose an increasing sequnece {R;} such that

Ri— o0 asl— oo, and v (R;) <0 foranyle N.
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Then we have for any l € N

(19) / (V0o = Qlvco|?)dz < s;?,Q/ Koo |? dz.
BR,

Ry

Now letting | — oo in (19), we get

[ (090l = Qo )iz < 5520 [ K(eblvel” da.

Then
[ fR" Ivvoolp leoo|p)

pe,Q S
(Jre )"
< S;;‘.’,Q(/ Kveol?" dz) ' 7/7".
Rn

Using the Fatou lemma, we have

15/ K|u°°|"‘dmg_1im/ K|v;|P dz =1,
n J =00 Rn

Le.,

/ K|veo|P dz = 1.

5th step. To show the strong convergence of Vu;.
In the previous argument, we have

[ (V0P = Qo = Jim [ (1905 = Qlos )
Rn J—+00 nn»
On the other hand by the Fatou lemma,

/ (Y00l = Qlowal?)de < lim / (V%P = Qlv; P)dz
R" J=+00 Rr

liolds and in view of (Q — 2), we have

/ |Vv°°|”d:c=llm/ |Vv;|Pdx

J =00

/ Qlveo |Pdx = lnn/ Qlv; [P d=.

Finally, we find out
Vv; = Vo,  strongly in LP(R"),
Le., Voo € M2,
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As in Theorem 2.2., letting we, = (,S‘Jl‘,’?'c_,)”("""’)'voo , we have that we, 15 a solution
of (13), moreover we find wy, is positive by Proposition 2.7.

The proof is complete.
Remark. In general, though Vv; converges to Vv, in LP(R") and ve € LP(R"), v;
converges to vy, only in locally LP(R™). But if @ < —¢ < 0 holds on R (¢ is a positive
constant.), v; converges to v, in LP(R™).

If @ is uniformly bounded away from 0, then we expect that the solution obtained
in Theorem 3.1. decays exponentially at infinity. Following the idea of Tolksdorf [21]
or Li and Yan [17], we have the follwing theorem.

Theorem 3.2. If there exists Rg such that ) < —qo < 0 for all |z| > Ry, then for some

positive ¢ < qo, Ry > Ro and C > 0, we have for the solution obtained in the previous

theorem,
q

-1

Proof. Since wo, — 0 as |z| — oo (by the radial lemma), there exist R; and ¢ such that

weo < Cexp(—(> Wrizl) z| > Ry

(20) —QuETt - Kl > quist > 0

for Ry < |z|. Now let € > weo(Ry) and V = Cexp(f(R; — |z|)). Then we have

—diV(IVVIP_2VV) =o' (exp {8(p - 1)(R: ~ |$|)}){——(p ~1)6 + (11|;|1)}

Hence we get

~div(|VVP~2VV) + qVP~! > é(exp{o(p ~1)(Ry - lzl)}) x

-1
x {~(p - 1)67 + O—llél—)gw +q}.
Letting 8 = (;{—1)1/”, we obtain
(21) —div(|[VV|P=2VV) + ¢VP~ 1 > 0.

Putting ¢ = (wee — V)7, then we have ¢ € W}P(R"™) and ¢(R;) = 0. Using (20), we
have for |z| > R,

(22) ~div(|Vweo [P "2 Vwe,) + quw?t < 0.

Now multiplying the both sides of (22) with ¢ and integrating over {|z| > R;}, we have
) /||>R (17eelP~2 Vs - Vo + quts ') dz < 0.
T|240

29



Similarly for (21), we have
(24) / (|VV|”"2VV Ve + gVl )dz 2 0.

|=12 Ra
Calculating (23) — (24), we have

0 2/ (| Ve P~2V ey — [TVIP-2VV) - Vopoda
|=12 Ry
[ gt =V pds.
|=12 R

Using

n

D (1EP=26 — InlP~2m) (& — m) 2 1€ + [nl” = (1€ =2 + [nlP =) I€] I

i=1
= (&P~ = [nlP=)(I€l = [nl)
>0 il {#n,

we have
0>

/ q(wiSt = VP Npdz.

{Iz|2R1}n{we2V}

Since wy, and V are continuous in |z| > R, we obtain {|z| > R;} N {we >V} = 0.
Finally we have

Weo < Cexp(—(ﬁ)"”lzh |2| > Ry.

The proof is complete.
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Chapter 3. On Multiple Solutions.

§3-1. Introduction.

In this chapter we study the number of nontrivial solutions of

(1) —div(|Vuf~2Vu) + |ulf " 2u = ¢(z)]u/°« on R,
and
(2) —div(|Vuf~2Vu) + |uff ~?u = f(z,u) on R",

where 1 < p<n, p—2 <o < np/(n—p)—2. The equation (1) is a typical case of
(2). In order to make ¢lear the essence of proofs of our existence theorem for (2), we
discuss (1) in Section 3-2. In [7], Y.-Y. Li treated (1) and (2) in the case p = 2. In [4],
the author showed some existence theorems of (1) (though the multiplicity of solutions
was not discussed) under some assumptions which were different from those of Y.-Y.
Li. Our aim is to unify the results of Y.-Y. Li and the author. Moreover we show that
the solutions obtained here decay exponentially at infinity.

In the case p = 2, P.-L. Lions [8] discussed the existence of a nontrivial solution of
this type of equations using his “concentration compactness argument”. Ding and Ni (2],
Ni [9] and Rother [11], [12] also considered similar type of equations, that is, semilinear
elliptic equations with “subcritical growth conditions” on R™. For quasilinear equations,
Egnell [3] dicussed mainly the existence and non-existence of the radial solutions of
(2) with f(z,u) > 0. le also considered a bounded domain case. G.-B. Li [6] also
considered a p-Laplace equation on R". 1lis main concern is the regurality of solutions.
The multiplicity of the solutions is not discussed in both of them.

In the following, we introduce some notations often used in this paper:

(-,-) means the dual coupling between (W'?(R™))" and W!P(R"), and let

[ / (IVul? + |uP),

o) = o [(VuP + o) = = [ el

1 1 og+2
() = 2 [UT6P 4 [uP) = =5 [ glul ™
vm—{uc—:W“(n")\{omq»' (w), ) =0,

- _1/}).
S= in{ /I l” (/(ul” ) (the best Sobolev constant),
ueD! ”(R")\{O}

Moo = inf ®oo(u),

R
n—p'

S
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where ¢o, is a positive constant and DV?(R") = {u € LP(R")|Vu € LF(R")}. Note
that the best Sobolev constant depends only on n and p.

Throughout this paper, if the integration is taken over the whole space, we do not
indicate the domain of integration, and the Lebesgue measure “dz” is always omitted
(except for Lemma 2.3). We denote various positive constants by C.

Now we state our main theorems. Condtions (Q,) — (Q3), (F1) — (F7) and (G),
(Gq) are stated later. For the equation (1), we have:

THEOREM 1.1. Suppose that (@), (Q2), and (Q3) hold. Moreover we assume there
exist N functions up € WYP(R"™) (k=1,---, N) with disjoint supports such that

/qluk|0+2>0) k=1)"'aN1
S ([17wp Fup) D
(J qluglo+z)P /4277 poot2

k=1

Then (1) has at least N pairs of nontrivial solutions in W»(R"). Moreover, if
g(z) € C°(R") N L2(R™),
then each weak solution to (1) belongs to L=(R™) N CL#(R") (0 < p < 1), provided
n>p2>2
For (2), we get:
THEOREM 1.2. Suppose that Conditions (Fy)— (F7) and (G,), (G;) hold. Moreover we

assume there exist N functions ux € WLP(R™) (k = 1,---, N) with disjoint supports
such that

/f(m)uk)uk>0; k=1)"')N)
and let
Xy = {tlul + -+ iIyuny I (ih"‘,tN) GRN}.

If

sup J(u) < M,
XN

holds, then (2) has at least N pairs of nontrivial solutions in W1?(R"™).

Since the proofs of these theorems require some lemmas, we discuss the details in
Section 3-2 and Section 3-3.
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§3-2. The case of separation of variables.

In this section we consider only the equation
(1) —div(|Vu[P~?Vu) + |u]? " ?u = ¢(z)|u|uv on R™,

where 1l < p < n, and p—2 < o < p* — 2. We assume that g(z) satisfies the following
conditions:

*

p
z) € L}Y(R™® , wheret > ———
(o) n ¢ n _ P.
g(z) € L5 (R")N LY (R") fort = gy
(Q2) /q(:t:)|uo|""'2 >0 for some ug € W'P(R™).
(Q3) There exists a number g (> 0) such that limsupg¢(z) < geo-
=] —o0

(Qa) q(z) € C°(R™) and ¢(z) > 0 for some z € R™.

First we state some lemmas, which ensure Proposition 2.5 and Lemma 2.6.

LEmMMA 2.1. Ifu € L?(R™*)NLP"(R™) then u € L*(R") for all s € [p, p*] with estimate

(3) Jrue s (frr)” 7 Jrapr)

Especially, by the Sobolev inequality, we have

(4 1l <o favap + ).

LEMMA 2.2. For any z,y € R, we have

_ _ Clm—yla if0<a<l1
z|® 11: - a-l | < { a— a- i
|| lyl*~y| < Cz|* '+ |yl* Dz —y| ifl<a.

Proof. f0 < a < 1, then the inequality follows from the IIGlder continuity with exponent
a of the function |z[*~'z. If a > 1, then the mean value theorem can be applied. Hence
the inequality holds.

The proof is complete.
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LemMA 2.3. Let p > 1. For a bounded sequence of functions f; € LP(R"), we assume
that f; — f(€ LP(R")) weakly in LP(R") and f; — g(€ LP(R")) a.e. in R" as j — oo.
Then

f=g aemR"
holds.
Proof. Let

AD — {:v e R™| |fu(2)] < 1},

AD =uz_ R, AV, and 4 = uR, AV,

Since f; € LP(R") converges almost everwhere to g, the (n-dimensional) Lebesgue
measure of R" — A equals to 0, that is, |R™ — A] = 0. Now for any ¥ € C°(R"), we

have by the Lebesgue convergence theorem

fivdz — gydz as j — oo.
AWM A

On the other hand, we get by the definition of weak convergence

/,;(1) fj?,/)d:l: - A" fj¢|A(l)dx - R™ fd)lA(l)dx - A fi,/)d:l: a8y = oo

Letting | — oo, we obtain
/ gydz = fydz.
n Rn

This imples f = g a.e. in R".
The proof is complete.

Now we show the crucial proposition for the multiplicity results. We recall the

definition of the local Palais-Simale condition (denoted by (PS).).

DEeFiNITION 2.4 (the (PS). condition). Let E be a real Banach space and J €
C'(E,R). We say that the functional J satisfies the (PS). if any sequence {u;} satis-
fying

(5) J(us) = ¢, J'(u;) = 0

contains a strongly convergent subsequence.

The proposition is :
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ProrosiTioN 2.5. ® satisfies (PS). for all ¢ € (—o00, My,).

Proof. Let {u;} C WLP(R") be a sequence satislying (5) for ¢ € (—o0, M), that is,

o+ 2
(@ (43), 9)] < o(L)llv]l for any v € WhP(R™).

1 1 .
(6) {;/(Wujl" +ylP) = — [y —c

Letting v = u; in the second inequality of (6), we have

") —ollusll < (AT + fusP) = [ alsl*2

By (6) and (7), we get

o+ 2
p

(

= Dljw; [P < o()][u; ]| + (o + 2)c + o(1).

Thus we obtain the boundedness of {u;} in W}?(R"™). Hence we may suppose that a
subsequence of {u;} (still denoted by {u;}) satisfies

u; — u, weakly in WHP(R™),
u; — Ue locally strongly in L*(R™) 1 < 8 < p*,

uUj — U a.e.in R".
The proof of Proposition 2.5 needs the following lemma.
LEMMA 2.6. (®'(¥eo), Uoo) = 0 holds.
Proof. Obviously, we have (®'(u;), te) = o(1), that is,
/(|Vuj|”_2VujVuoo + 5 ]P P ute0) — /q|uj|”uju°° = o(1).
First we observe

/(|Vuj|”'2VujVuoo + |5 [P oo ) — /l:|Vuoo|” + |ueo|?)-

Since the two sequences {|Vu;[P"2Vu;} and {|u;[P~2u;} are bounded in LP/(P=1)(R™),
we may assume these are weakly convergent in L”/(”'l)(Rn) (choosing a subsequence
once more if necessary). By Lemma 2.3, the weak limit of {|Vv;[P~2V;} coincides
with |V [P~2Vue. Hlence we have

/(IV‘ltjlp_2V‘U.jvuoo + Ju; P ) — /(IVuool” + |teo|?) = o(1).
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Next we show
/‘1|UJ|"UJ'U°° - /flluool"+2 = o(1).

Since ¢ € L'(R"), for every £ > 0 there exists a bounded domain 2 such that

( /R nmlql‘)l/' <e

holds. Noticing that
/Q|uj|aujuoo —/QIUmI"“
= /(q|uj|"uju°o — qlueo]”*?) +/ (qlu;]” wjuco — gluco|”*?),
Q R™\Q
we find that the integration over 2 yields

[ Jalsl7 s = aluel ™+
Q

1/¢ 1/ 1/8
< (L) (1o = loeol”wen] ) ([ el
Q Q Q

where 1/t +1/a+1/8 =1, a and S satisfy if

P /(p* = (e +2)) <t <p*(a+2)/(p" — (0 +2)),

then

::———p‘t =p*
(8 o PP
and if ¢ > p*(o + 2)/(p* — (¢ + 2)),

_a+2 (o +2)
(9) a_a-.*.l’ﬂ_t-—(a'-{-?)‘

In both cases, p < (¢ +1)a < p* and p < B < p* hold. Il t > p*/(p* — (¢ + 2)),

then p < (¢ + 1)a < p*. By the strong convergence of {u;} in LY(Q) for each § with
1 <8 < p* and Lemma 2.2, we have

a7 = alucal”+7) = o(0)
Ift=p*/(p* — (¢ + 2)), we use another inequality:
[ Jals1735 e = alucal

o o (6+1)/(s42) 1/(e+2)
< su w7 — || Ueo (e+2)/(e+1) 0+2)
<suplal ([ [1us17; = ol oo ) ([ el
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Using the same fact stated above, we have again in this case
/(qlujl"Ujuoo — glteo|7**) = o(1).
Q

For R™\§2, we have
/ \QIujlaujuoo _QIuoo|a+2|
n\n

1/t 1/a 1/8
QS I A T P S R O T
m\Q R™\Q R™\Q
a\ /e 1/8
_<_€(/ Hu,-l"u)- - |u°°|"u0°| ) (/ |u°°lﬂ)
R™\Q R™\Q

where a and 8 are defined by (8) and (9). Then the boundedness of

1/8
/ ||uj|"uj - |u°o|"u°°|a and (/ |u°°|ﬁ)
R™M\Q R7\Q

follows from the boundedness of {u;} in W'?(R"),(3), and Lemma 2.2. Hence we have

/ \ |q|uj|"ujuoo - qluool"“l < Ce.
n\QN

Since ¢ is arbitrary, we have
(P'(%oo), Ueo) = 0.

The proof is complete.

Now we get back to the proof of Proposition 2.5. As in Y.-Y. Li, there is no other
possibility of {u;} except for the following two cases.

(A) For all § > 0, there exists an R > 0 such that

/ (VP + o ?) < §
[z]>R

holds for each integer j(> no(R)).
(B) The negative proposition of (A): There exists a § > 0 such that

/ (V[P + [u;]7) 2 6
lz|>R!

holds for each R’ > 0 and for a suitable integer j(> R').

First we consider the case (A). Recalling the lower semi-continuity of the norm, we
have

[ (19l + o) < limint [ 0vuib + i) <
IzI>R 17 JlzI2R
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As in (7), we get
i/(qujl”"ZVuva—}— | )P~ 2w v) - /q|u1-|°u,-v' < o(D)||v|| for v € WHP(R™).

In the unbounded domain {|z| > R}, we have as in the proof of Lemma 2.6,

. 1/t e\ e 1/8
[ aslu < ([ 1) () ) ([ r)
ls|> R |e|> R j2I> R lel> R

with 1/t +1/a+1/8 =1. o and f are determined by (8) and (9). In addition, by (3)

we get
- =[p \A/p*
[l ([ wl) ([ )
j=I> R lsl> R j#12 R

where k = p(p* — (¢ + 1)) /(p* —p) and A = p*((c + 1)a—p)/(p* —p). Now the Sobolev
inequality, we have

o =/p Alp
[omieeso( [ pwp) ([l r)
|=z|>R |=z|2 R |z|> R

Hence in the case (A), we obtain

(/II |uj|(d+1)a)1/a < C(&("'+’\)/P)1/a _ CslotVlp.
z|>R

'/ qlu;|° ujv
[z|>R

using (3) for v. For the domain B = {|z| < R}, we also have in a similar way,

|/ q|u,~|”u_,-v—/ q|u°°|”u°°v|
Br Br
1/t 1/ a 1/8
< (L) (it = ot ) ([ 10l)
Bpg Br B

; 1/t i
< o(l)C(/B lq] ) lv]| (by Lemma 2.1)
R

Hence we have
< CsHIIP |||,

if t > p*/(p* — (0 +2)). Even if t = p*/(p* — (o + 2)), we have

[ abulro= [ il u]
Bpr Br
o o +2)/(o+1)\ (e+1)/(o+2)
SCsuplql(/ “ujl U — |Uoo| uool(d )/ (o + )) o]l
Br Br
< o(1)|fv]l,
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Thus we have by letting v = u;,

I/UVU;I” + Iujl”)‘/qluool”uoouj < o(M)llu| + 8+ DIP||u).

Similarly, we calculate the behavior of the term

/B lal oo+ 15 = o],
R
as j — oo. We get if t = p*/(p* — (0 + 2)),
/ falltzeol” ;oo
Br

. o+1 he L] . _ *—(o+1 *
S Suplql(/ |u°°‘p )( Mp (/ ‘Uj _ uoo\p /(p (a+1)))(1’ (e+1))/p — 0(1)
Br Br Br

The last estimate follows from the fact that u; converges strongly to ue, in L7*=@+1 (Bp)
(this exponent is subcritical). If t > p*/(p* — (¢ + 2)), we get

/ gl 2o ]+ 25 — tco]
Bpr

1/t (o . . .
< (/ |q|'d:n\) (/ oo |? )( +1)/p (/ |u; _uwlp)llp = o(1).
Bpr Br Br

where 1/t + (¢ + 1)/p* +1/5 = 1. Since t > p*/(p* — (¢ + 2)), § < p* and the last
estimate follows.
Hence we get

| [a9up +155P) = [(Vual + o)

=| [4vuib + 1) = [ alucl™
l/ |V [P+ [u;]”) - /‘1'“0<>|auoo"j

< C(8L9FVIP 4 o(1))

+\/qluoo|"uoouj -/QIUooI””'

Since § is arbitrary, we have
luill = llucoll  as j — oo,

which implies, together with the weak convergence u; — o in a uniformly convex
Banach space W1.P(R™), the strong convergence

Uj — U in WHP(R).
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In the case (A), we obtain the strong limit us, of {x;}.
Next we consider the case (B). llere we inay assume, for some 65 > 0, that

/| T ) 2

holds for all ! € N and an appropriate j;(> I). For € > 0, there exists an Rq > 0 such
that

(10) [ (el + il +lallucl*) < &
=12 Ro

and

(11) ¢(z) < g0 +€ for|z| > Ry

hold. From the boundedness of {uj, }, we can choose an integer m(e) € N such that
m(e)e > [lu;, [P
holds for all {. Now let
IL={z€R"|Ro+k—~-1<|z| < Ro+k} fork=12---,m(e).

Then we have
P 2 [ (VP + i) 2 me) [ (il + s )
Uk:l Ik [‘

for a suitable i € {1,---,m(€)}. Hence we get, choosing a subsequence of {l} if necessary
(still denoted by {l}), independently of I,

[ (9w 1) <.

I;

Hereafter weset I; = {z € R* | R< |z| < R+1} (R < R).
Now we define a cut off function p;(z) € C§°(R") such that

USPI .<_.1) |vp1|.§.21

1 |z|<R
pr = .
YT lo 2> R+

and p; = 1 - p;. Let v; = pyu;,, and w; = pouj,. Then we have supp v, C Bg,, and
supp w; C R"\Bp. Now we estimate

(@ (), 00) = (@ (w1), )|
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The calculation shows

(@' (), ) = (@' (00, w1)

(192, P2V 3, Von + o P2tz ) — / Vol +|ul?)

/ﬂ%l”%vl—/fﬂvll”“

< / ||Vuj,|”_2Vuj,Vv, + |, [P, v
I;

/q[u,-,r’u,-,v,—/ glu|°*?|,
I; I;

where the last inequality follows from u;, = v; on By. For the integral

and /1; (|Vv,|1’ + |v,|p)’

we have the following estimate by using the Young inequality:

-+

+/ (1vul? + o)
I

4+

/I Ilvuillp—zvujlvvl + |uj||p—2'u)'1vl
i

/l ‘IVUle”'ZVuJ.sz + |u,~,|”"2u,~,v1‘
i

< (/, IVuj.I”)(p_l)/p(/h |Vv1|”)1/p+ (/, Iuj,l")(p"l)/p(/h lv,l.p)l/ﬂ
< %(/Ii IVuj.|”+/h |u,-,|") +11_’(/1.-|vv'|p +|v1|”)

< Ce.

The second term is estimated as follows:
Jagup 1Py < [ (9ap +1uiP) <€ [ (9w + 1) < e
I; I; I;

The last term yields, by using the Holder inequality and (4) with s = (¢ + 2)t/(t — 1),

l [ atuitr = [ i+ < [ el (o = o7l

t-1)/t

< [ talll+ < (1) " ( [ |u,-,|<”+”"<"”)‘ !
I; I; JI;

s(t-1)/pt
<o [ 19w +lul)

< Celo¥DIP = o(e).
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Note that (¢ +2) < s <p*ift > p*/(p* — (¢ + 2)). Finally, we get

(@' (s0), ) = (@'(w1), )

< Ce.

Similarly, we have

(2 (), wi) = (®' (1), wn)| < Ce.
Since (®'(u;,), v} = o(1) and (®'(x;,), wi) = o(1), we have

/ (Vo + [ul?) = / glul**? + O(e) + o(1),
/ (9l + ) = [ alurl**? + O(e) + o(1).

Because {u;,} is a sequence for ¢ satisfying (6),

(12)

c+o(1) = ®(u;) = (vi) + (wi) + O(e)
holds. In addition, from (12) we have

Bo) = (5= =

gllull” + Oe) + (1) 2 O(e) +o(1).

Then we have

"~ c+o0(1) > @D(w;) + O(¢)

(13) /(|le|p +|wif?) - 1_2 glw|°+? + O(e).
= (}] - ) [Vl + )+ 06)

Moreover, we get in this case, for large I(> R + 1),

Javule + 1) 2 6.

6
/qoolw1|0+2 2 30_.

€= {f(|Vw,|” + |w,|P)}1/(0+2—p)
and w; = §w;. Then w; € V. We should note £ # +o0. For |z| > I, by assumption
(@3), ¢ < goo + € holds. Then we have

By (11) and (12), we also get

Now let

/ (IVwrl? + |wnf?) < / dooln|7+? + / lwn]7*2 + O(e) + o(1),
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and € = {1 + O(E)}l/("+2"’). Hence we get

£p P Py _ £a+2 o+2
My < ) (IVwil? + [wil?) Joo|wi|

o+ 2
== ) [(Tul + )
p o+2
— (= )L+ 0E ) [(Tu + )
p o+2
1 1 ¥
<= 5) [(Tul + ) + 0,

where ¥ = min(1, p/(o + 2 — p)). From (13) and the above, we obtain
My — ¢ < O(e”).

Since € is arbitrary, we have
My <c¢,

which is a contradiction.
The proof is complete.

Now we are in a position to prove the following theorem.

THEOREM 1.1. Suppose that (@), (Q2), and (Q3) hold. Moreover we assume there
exist N functions uy € WUP(R") (k=1,---, N) with disjoint supports such that

/QIukI”+2>O’ k=1,"'1N,

N (flvuklp+|uk|p)(0+2)/(0+2-—1’) 1 1

> <-

= (fq|uk|0+2)}’/(0+2—l’) p a'+2

)~ Moo

Then (1) has at least N pairs of nontrivial solutions in WH?(R™). Moreover, if
g(z) € C°(R*) N L= (R"),

then our weak solution to (1) belongs to L*°(R™) N CY¥#(R™) (0 < u < 1), provided
n>p>2

REMARK. From (Q,), there exists at least one function u such that [ g|u[”*% > 0.

Proaof. Let
Xy ={tim+ - +iyun | (t,- -, in) € RV}

where uy, - -+, uy satisfy the assumptions of the theorem. Then
Xn N {ueWHP(R") | &(u) > 0}
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is a bounded set. By the Theorem of Rabinowitz in the appendix, it is sufficient to
prove My, > 0 and

sup ®(u) < Mo,.

XN

First we show My, > 0. By (4) with s = o + 2, we have
/|u|"+2 < 5—p‘(a+2—p)/(p‘—P)(fWulp +|u|p)(”+2)/1’.
Hence we obtain for u € V
Sp‘(a+2-p)/(p‘—p)q°-°1 < (/|vu|p + Iulp)("“'l’)/l’_

Then we have

1
c+2

(14) Poo(u) > (% - )GP Pl (" =p) g=p/(+2-p)

hence M, > 0.
Next we show supy,, ®(u) < M.
Since suppu; Nsuppy; = @, we have for u = tju; +-+- + tyuy,

N
Jawar +1up) = 168 (493 +1P),

N
a2 = 30165142 [ algle+
ji=1

Now Let Aj = [(|Vu;|? + |uj|P) and B; = [ q|u;]|°+2. Then, by the Holder inequality
and the assumption on {u;}, we have

N N
Z |t; 17 4; = Z [t; P A; B;’/(a+2)Bj—p/(a+2)
j=1 j=1
al p/(o+2) oy et2-p) e+ o L pl(o+2)
< { Z(AJ B,‘ P )(a+2)/(a+2 p)} { Z lltj |a+2Bj}
j=1 j=1
N
< (11.7 _ 0__1;5)-(a+2-p)/(a+2)M£g+z-p)/(a+z){ S 161742 B; }P/(a+2)
j=1

Hence we get

—ple42) 11 _
p p o+2 - —(o+2-p)/(0+2) o+2- o+2
([avur 1) ( [ ki) < (0 = ) RN 04,
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where Mo, (< My) is a constant for which the second inequality in the assumption
holds. Since

1 ){ f(lV‘u.lp + |u|") (04+2)/(o42-p) .

1
max ®(su) = (- — ([ alule 2y lto+D) <My,

s>0 p o+2
we find that

sup ®(u) < Myo.
u€Xpyn

Thus we have checked all the hypotheses of the Rabinowitz Theorem and the conlusion
of our theorem comes immediately from it. The regularity of solutions to our problem
comes from the regularity theorem due to G.-B. Li [6].

The proof is complete.

COLLORARY 2.7. In addition to the assumptions of Theorem 1.1, if (Q4) holds and

limsup ¢(z) <0,

|z]— o0

then there exist infinitely many solutions of (1).

Proof. We can take go, > 0 so small that M, is large enough. In fact, this is possible by
the estimate (14). Then, according to Theorem 1.1, we can take N functions assumed
in it with their supports in the open set {z € R"|g(2) > 0} assumed in (Q4). Since ge
can be taken arbitrarily small, N may be arbitrarily large.

The proof is complete.

THEOREM 2.8 (Exponential decay). Under the assumptions of Theorem 1.1, if
¢(z) € C(R™)N L= (R"),

then for given 7 (0 < 1 < 1), there exists an R(n) > 0 such that our solution u to (1) is
estimated as

[u(2)] < G exp { = (17)/7lal}
for |z| > R(n), where C(3) is a positive constant.

Proof. We may assume that the solution u to (1) is nonnegative, continuous and satisfies

lim|g| oo u(z) = 0 (due to G.-B. Li [6]). Then for given 5 > 0, there exists an R(5) > 0
such that

(15) ul~?u = g(@)]uu 2 (1 = n)[ul~*u
holds for |z| > R(n).
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Now let 1=y,
V(@) = Ol ex { = (=) 1al)
with C(n) = u(R(y))exp {(;%’)1/"12(1])}, where u(R(n)) = max|z|=Rr(y) ¥(z). Then

putting » = |z|, we have

d dv dv
i p—2 — 1-n 2 (o n=-112" p-2727
div(|VV|P~“VV) T dr(1 |d1'| dr)
1 —1n,(p-1 nd, L _
- (p_l)(p )/Prl E-(r 1|V|p 2V)
(n=1) ,1=7n\(p-1 -
= {2 Dol vy

Hence we get

- -\ (p-1)/
(16)  —d(VVPIIV) + - mivpty = 2= (C2 T ety o
On the other hand, by (15), we have for solution u to (1)
(17) —div(|Vu|f~2Vu) + (1 - 9)|u|P~2u < 0.

Now let ¢ = (u—V)*. Then by G.-B. Li’s regularity theorem, ¢ € CO(R")NL>°(R"). In
addition, integrating (16) and (17) over {|z| > R(%)} with a test function ¢ (#(R(7)) =
0), we get

(IVulP~?VuVe + (1 — n)|ul’~?ug) <0,
|z|> R(n)

and

/ (IVVIP2VV V¢ + (1 - n)|VIP~2V4) > 0.
|z|>R(n)

Substracting the above two inequalities, we obtain

(1—-7))/ ([ulP=2u — [VIP~2V)é < 0.
{izI2R(m)}n{u>V}

Here we have used for £,{ € R™ with £ # ¢

Z(Ifl”"&- — 11726 (& — &) = 1€ + 117 — (1€1P=2 + [¢P~2)|¢l|¢]
= (eI~ = I¢IP=) (1l = 1<) > o

Since u and V are continuous, we have
{lz2l > R(M}Nn{z € R" [u>V} =0.
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This implies u < V for |z| < R(7).
The proof is complete.

§3-3. The general case.
In this section we consider more general equations of the form
(2) ~div(|Vu[P~?Vu) + |u[f"?u = f(z,u) on R".

We assume that f(z, u) satisfies the following assumptions:

(Fy) f(z,u) is continuous in u for almost all z € R".
(F2) f(z,u) is odd in u € R.
(F3) (2, u)| < ba@)ul™* + ba(z)[u]**!

where p—2<r <o <p*—2,b € L(R")NL.(R") (s > p*/(p* — (r +2))), and
by € L*(R™) N L2, (R™) (s > p*/(p* — (0 +2))), but L (R") is needed only for the

loc loc
cases when the equality on ¢ or s holds

(Fa)  |f(z,u1) = f=,u2)] < b (2)||ur] wr = |ua| us| + by (2)|[u1]” ur — |ug|” us|

for all uy,uy € R, where b} € L* N L2 (R™), and b, € L* N LS (R") with the same ¢
and s in (F3), but L2 (R™) is again needed only for the cases when the equality on ¢
or s hold.

1
(Fs) F(z,u) < Ef(z:,u)u for (z,u) € R" x R and some p > p
where F(z,u) fo

lfu(l%% is locally bounded in R™ x R, and nondecreasing in u if u > 0.

(Fs)

There exists a mapping g : R™ x R — R satisfying the following properties:

( f(z,uv)u < g(z,u)u, forall|z|> Ry, u €R,
g € C(R" x R,R), u+ g(-,u)u is a continuous map Wi’p(R") — LY(R™),
(Fy) gz, u)u < g(z,Tu)rufor > 1, 2 € R®, u € R (¢ > 0),

1
lim sup — g(z,7w)Tw =0 for all w € WH?(R™)
T—+0

\ with supp w C R"\Bp, for some R; > 0.
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Now let u
G(z,u) =/ g(z,s)ds, (z,u) € R® xR,
0

ﬂw~1/hwm+ww /Fuw

K(u) = /(|Vu|” + |uf?) /G z,u)

¥, = {u € WHHIRINO} | (K'(w),1) = 0},

M, —“lél‘f, K(u).

Moreover we assume for G and g of (F),
1
(Gl) G(ml u) < Eg(m: ‘U.)‘UL

for some ¢(> p) and

2

(G2) [ 19tz vy <30 ([avup +1up)”
for some C; > 0 (CE+ C2 #0),; > 1 (i =1,2).

EXAMPLE. Let

f(z,u) = qu(@)|u| v + qa(2)|u|"u

with limsup,_, ¢i(z) < § (i = 1,2) and f(z,u)u > 0 for some (zo,u0) € R" x R.
Here we assume ¢;(> 0) € CO(R*) N LY (R™) with ¢; > p*/(p* — (0: + 2)) (i = 1,2),
p<o;+2<03+2<p* and § > 0. Then f(z,u) satisfies (F}) — (F7) with g(z,u) =
G(Ju|?1w + |u|?2u). Moreover g(z,u) satisfies (G1) and (G3).

REMARK. Obviously b, by, b}, and b, are nonnegative. From (F;), f(z,u)/(Ju|P~2u)
is even in u. Then (Fs) implies that f(z,u)/(|u[’~%u) is non-increasing in u if u < 0.
Note that for w € WH?(R") with supp w C R"\Bg,, we have by (F%)

(18) /F(:z:, w) < /G(:z:, w).

Then, as in Section 3-2, we have a similar proposition to Proposition 2.5.

ProposiTioN 3.1. J satisfies (PS). for ¢ € (—oo, M,).

Proof. Let {u;} C WHP(R") be a sequence for ¢ € (—oo, M,) satislying (5), that is,
1
- Vau; P + |u;|P) - / F , ,

) {p/ﬂuA ) = [ Plau) -
[(J'(u;),0)| < o(Dlv]| for any v € W!P(R™).
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As in the proof of Proposition 2.5, letting v = u; in (19) and using (Fs), we have
—o(lsll < [V +[5P) = [ )
< [QvuP +1uP) =5 [ P w)

—(1- §) / (V5P + s ) + e + o(1).

Hence we get

p—p

llu; 17 + Be + o(1) < o(1)]|;]l.

This implies the boundedness of {u;} in W1?(R") by p > p. Hence we may suppose
that a subsequence of {2;} (still denoted by {u;}) satisfies

u; — U, weakly in WHP(R™),
u; — U locally strongly in L°(R™), 1<46 < p",
U; — U a.e. in R™.

Similarly, to prove Proposition 3.1, we need the next lemma.

LEMMA 3.2. (J'(¥e), oo} = 0 holds.

Proof. As in the proof of Lemma 2.6, we have (choosing a subsequence if necessary)

[ (9577295 Vit + 5P~ 500) = [ (Vtnl? + [n]?) = o0,
Next we prove
/f(:z:,u,-)uoo —>/f(m,u°o)u°° as j — oo.

For any € > 0, there exists an R > 0 such that

/ b <, / b <e.
jz|2 R |zI2R
Now we estimate

LIZR f(:v,uj)uoo‘, |-/|z|2Rf(z,u°°)u°°|’ and

For the first term, we have, in a similar manner to the proof of Lemma 2.6, using (F3),

[ twua| < [ 15w
[z]>2R [z|2R
S/ b1|uj|"+1|u°°|+/ ba|u; |7 oo |
[z|2R [z|>R
1/¢ 1/v 1w
< b$ ’ / w, |(r v / Yoo |®
(/|=|zn ) |=|znl 1) .. )
. 1/s ; I/Vl ; I/w’
+ f b3 / |uj |0+ 1) / Uoo|®
( lsl> R ) ( sl>R ) ( mznl )

<Cg,

{f(:l!, uj)uoo - f(:z:, uoo)uoo} .
Br
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where 1/¢+ 1/v +1/w =1, and 1/s + 1/v' 4+ 1/w’' = 1, and they are determined as
follows: i p* /(" — (r +2)) <5 < p*(r +2)/(¢" ~ (r +2)),

Y = p’s w=p"
(p* = 1)s—p*’

if ¢ >p*(r+2)/(p* — (v +2),

(20)

r+2 _ (r+2)

(21) U=r+1’w_c—(r+2)'

V', @' are determined as (8) and (9). Also for the second term, we have

/ |f(:l:, uoo)uool < Ce.
lz]> R
For the last term, we have by (Fj)

i {f(z)uj)uoo“f(z)uoo)uoo}|
Br

< [ (@135 = ol o] + 3] 35175 = el oo -
Bgr

By Assumptions (F3) and (F}y), it suffices to calculate only the terms which have r as
the exponent of |u|. If ¢ > p*/(p* — (v +2)) and 5 > p*/(p* — (¢ + 2)) then we have,
using Lemma 2.2 with exponents (20) and (21), respectively,

[ Bl 5 = il oo
Br
1/¢ vy\1/v 1/w
< (1), It =t )7 () o) =t

[ lisl" s ol ool = o(1).
Br
If ¢ =p*/(p* = (r+2)) or s =p*/(p* — (¢ + 2)) then we get
[ Gl 5 = ol e e

Br

' r r r+2)/(r+ 1)\ (r+1)/(r+2 , r
ssupbl(/ 725 — Jaga| 10| T2 H) DI )(/ e[ +2) D = (1)
Br Br Br

and

and

[ @l 175 = ol oo o

R

gsupb;(/ ||u,-|”u,-—|u°°|”u°°|(”+2’””+”)‘”*”"”*2’(/ i +2) M0+
Br Br Br

= o(1).
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Finally, we have

l/f(-’ﬂ»“j)uoo"/f(fc,uoo)uoo, < Ce+o(1).

Since € > 0 is arbitrary, we obtain (J'(ue), %) = 0.
The proof is complete.

Now we get back to the proof of Proposition 3.1.
As in the proof of Lemma 2.6, let us consider two cases:

(C) For all 6 > 0, there exists an R > 0 such that

/| IROLTETORS.

holds for each integer j(> no(R)).
(D) The negative proposition of (C): There exists a 6o > 0 such that

L, o7+l 2 8

holds for each R' > 0 and for a suitable integer j(> R').
According to the proof of Proposition 2.5, we first consider the case (C). To show
the strong convergence of {u;}, it remains to estimate

|/ f(zvuj)via l/ f(z)uoo)v
jzl>R jz]>2 R
The first term yields
[ t@wpl< [ 1w
lzI>R lz|>R
<[l [ ball
lz|>R lzI>R

, and ‘/;R(f(z,uj)—f(z,uoo))v.

On the other hand we have

[ mlusl
lz|>R

<O ([t e
[=I2R |=[2 R lz|2 R

1/v
¢ N ,
sc{( L (| |uj|*’)"’} ol < 8+ o]
[zI2R Iz|>R
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and

[ babul
l=]2R
1/s o+1)p'\1/¥' w1/ &’ o
<O e[ =) < ester b
lz]> R |z1> R

=12 R
where v, @, V', '@’ are defined by in (20) and (21), and {/p+&/p* =1,(+ &= (r+1)v.
The last inequality comes from the same reason in Section 3-2.

Hence we get

| / £(z,u5)0| < CECHIP 4 6@ +D/p)|ly)
|=|> R
Similarly, we have

| | I>Rf(m,uoo)v| < G 4 gle+DIry| 1y,

For the domain Bg, we have as in the proof of Lemma 3.2,

|/Bn(f(m,uj) = (2, ue0))o] < o(D)o]l

Then we get

\/(|Vu,-|”'2Vuva+|uj_|”_2ujv—/f(a:,uoo)v

Especially letting v = u;, we get

| Q90 +150) = [ £, uem)i | < {C(E D12 +.80400) 4 of0) s ).

Now we consider

< {C(str 411 4 5o+ Ip) 1 o(1) o]

| [49P +15P) = [Tl + el

Using
/(|Vuj|"+|u,-|”) = /f(m,UJ)uj +o(1),

J 19l + el = [ 1210,

we have
JUuP + 1w = [(Funl + )
<| [ (@) = (o, we)uo)| + o(1)

< [ 15w = flo s+ [ 1121 ven)s = 122 a)en| + 0(1)
< {0(5(r+1)/p + (oD 4 o(l)} +/|f(2:,u°o)uj - f(z,uoo)uoo|

< {0(5(r+1)/p + slo+ 1Py 4 o(l)} + /BR |f($,u°°)Uj — f(2, Uoo ) Uoo |-
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f|=v|>R |f(:v, Ugo ) Uj — f(:v,uoo)uoo| has been estimated in the proof of Lemma 3.2. For
the term

/B |f(a:,u°°)uj - f(=, uoo)uoo|,

we have by using (F3)

/ |f(z)uoo)uj - f(z)uoo)uool < / (blluoolr+1 + b2|u°°|a+1)|uj — Ueo|-
Bp Bgr
If¢>p*/(p* — (r + 2)), we have

bl|u°°|’+1|uj — Ugo|
Bpr

<(L )" el g = vl = o)

where 1/¢ + (r + 1)/p* + 1/p = 1. Since ¢ > p*/(p* — (r +2)), p < p* and the last
inequality follows. If ¢ = p*/(p* — (r + 2)), we have

b1|u°°|'+1|uj — Ueo|
Bpr

Ssupb1(/ |u°°|p‘)(r+1)lp'(/ |u; _uoolp‘/(p‘—(r+1)))(p‘—(r+1))/p‘ = o(1).
Bp Br

R

The last inequality of the above follows from the fact that u; converges strongly to u
in LP"/(P"~(r+1))( BR) (this exponent is subcritical).
Similarly, for the latter term we have

[ bl = ol = of0).
Bg

Hence, finally we have

| (1950 +1050) = [(Vual + ol

<{cEH +6%) +o(1)}
Since 6 > 0 is arbitrary, we have

lls]] = Hl2tool;
which implies the strong convergence of {u;}.

If (D) occurs, then we may assume that for some 6§, > 0
L (vl +lusp) 2 6
l212j
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holds for all j € N. In addition, there exists an Ry > 0 such that for any € > 0,
[ Vel + ol + 1z vl <
|212 Ra

holds. As in the proof of Proposition 2.5, for a subsequence of {u;} (denoted by {u;,}),
there exists an annulus I = {z € R" | R < |z| < R+ 1} (R > R;) such that

/, (Vs P + [z, ?) <.

Now let v; = py(z)uj,, and w; = pa(z)u;, where p; and p, are stated in Section 3-2. As
in Section 3-2, we estimate

(7" (i), ) = (o), w0)|
The estimate is as follows:

|7 (a3 ), 1) = (7' (), 00)|

S/ ||Vu,-,|”‘2vu,-,vv, + uj, [P %uj, 0
I

+ [(vop +1up)
+/I|f(-"~',uj.) — f(z, v)|lvi
SCe+/[|f(a:,uj.)—f(m,v:)llvzl

g ) R w1 4 e PR
<Ge+ G{( [T P+ 1PN 4 ([ (95, 4 s )2}
<Ce+o(e) =0(c) (by p-2<r <o)

Here we have estimated [, |f(z,u;,) — f(z, v)||wi| by using (F4) and (4) in the same
spirit of the proof of Proposition 2.5. Hence we have

(J'(v1),v) = O(e) + o(1).
Similarly, we have
(J'(wr), wi) = O(e) + o(1)
and
J(u) + J(w) = c+ O(e) + 0(1).
Using
Iy =2 [ qwap i) - [ R

R+1 R+l
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and

('), = [

BR+1

(IVal +|ul?) - / f(z, v = O(€) + o(1),

BR+1

we have

Ty = [ St mu = Pla,u)} +0(e) +ol1),

R+1
From (F5s), we get
J(vi1) > O(€) + o(1).

Thus we obtain
J(w) < c+ 0(e) + o(1),

that is,

> [ + 1) - [ Fla,w) < e+ 0(e) +o(0).

In addition, by

[a9u + 1wy = [ 16, w10+ 0(e) +o(0),
we have
(22) J(w) = :—J/f(z,wl)w,—/F(a:,w,)+0(e)+o(l).

Now let .
(t)= t—p/g(m,tw;)tw,.

Then, for t = 1 + Ce, we have by (F7) and the assumption [(|Vw|P + |w|?) > &,

{1}

21+Ce) 2 (1+Ce) [ fa,wun2 [ 1(z,wu

= /(|Vw,|” + |wi|?) + O(e) + o(1) > 8o + O(e) + o(1).

Since lim;_, 40 Z(t) = 0 holds by (F%), there exists a {o(< 1 + Ck¢), such that
(to) = [(Vuil + furP).
Let 1y = tow;. Then 1y € V}; and by (18) we have
tl’
M, < K(in) =';° /(leIV’ + {wil”) —/G(m,iowz)
tl’
< ;O/f(:z:,wl)wl - /F(m,towx) + O(e).
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Now set

A(t) = %/f(a:,w,)wz—/F(a:,tw,).
Then A(t) is non-decreasing in ¢ € [0,1]. This is because
A’(t)=t"‘1/f(a;,w1)w;—/f(z,tw;)w;
=t”"/( f(z,w) f(z,tw) )lwl|p >0

|w;|P‘2w, B tP-llwllp—Zwl

by (Fg). Hence if tg € {0, 1] we have
M, < J(w)+ O(e) L c+ O(e) + o(1).

If 1 <1y < 14 Ce, we have from the mean value theorem, for some ¢; € {1,1g],

(23) IA(to) — A(1)] < Ce{t’l"l/|f(z,w;)w;|+/|f(:c,t1w;)w;|}.

By (22)
A(1) = J(wi) + O(e) + o(1)

holds and the integrals on the right hand side of (23) are bounded. Hence we have
M, < J(wi) + O(e) < c+ O(e) + o(1).

Since € > 0 is arbitrary, M, < ¢, but this is a contradiction.
The proof is complete.

Now we prove Theorem 1.2,

THEOREM 1.2. Suppose that conditions (Fy) — (F7) and (Gy), (G2) hold. Moreover we
assume there exist N functions uy € WI?(R") (k = 1,---,N) with disjoint supports
such that

ff(m,uk)uk >0 k=1,---,N,
and let
Xy ={tiwr +---+iyun | (&, --,tn) € RV}

If

sup J(u) < M,
XN

holds, then (2) has at least N pairs of nontrivial solutions in W1?(R"™).

REMARK. From (), u = 0 is also a solution of (2). But we are concerned with nontrivial
solutions. Also in this case, all our solutions decay exponentially at infinity under similar
assumptions stated in Theorem 2.8. But we do not prove it.
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Proof. First we note
Xy N {ue WHP(R™) | J(u) > 0}

is a bounded set. By the Theorem of Rabinowitz in the appendix, it is sufficient to
prove M, > 0. For u € V,, we have by (G,), v
1
- —)/g(z,u)u
q

1 4 4
—p/ﬂw4+h4y

K(u) = -l—/g(m,u)u - /G(z,u)u > (

1
p p
1

_(p

In addition, by (G2) we get

ﬂWW+Mws/mmmmfyuﬂww+wm“
i=1
This means
(24) Jawar +1ar) > ¢
for some C > 0 and each v € V,;. Hence under the assumption on «;, we obtain

K(u) > (

)C

-

!
p
for all u € V,,. This implies My > 0.

Thus we have checked all the hypotheses of the Rabinowitz Theorem and the con-
lusion of this theorem comes immediately from it.
The proof is complete.

COLLORARY 3.3. Let
£z, 4) = @ (@)l + (e [l
satisfies (Fy) — (F7) with q1,q2 € CO(R™). If

limsupg;(z) <0 (i=1,2)

|z] =00

and f(z,u)u > 0 for some (zo,u0) € R™ x R then (2) has infinitely many solutions.

REMARK. As stated in Exa‘mple,’if ¢:(> 0) € CO(R™)NLH(R™) with ¢; > p*/(p* — (o3 +
2)) (1=1,2)and p < 01 +2 < 02+ 2 < p*, then Assumptions (F1) — (F7) are satisfied.
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Proof. For every € > 0, we can take g in (F7) as
g(z,u) = elu| " u+ u|7H ).

Then in (24) the constant C tends to infinity as € — 0 (a similar estimate to (14) holds),
and M, can be arbitrarily large. Hence by (Fi) there exist N functions with disjoint
supports (in a neighborhood of (zg, ug)) which satisfy the assumptions of Theorem 1.2.
Moreover we can take NV arbitrarily large.

The proof is complete.

§3-4. Appendix.

In this section, we state a minimax lemma due to Rabinowitz [9] which ensures
the multiplicity of critical points. Suppose that E is a real Banach space, and let
J € C'(E,R) be an even functional satisfying the following conditions:

For some C > 0,

(J1) J satisfies (PS). for all ¢ € (0,C).

There exist p, a > 0 such that

' J > 0inB,\{0}
(J2)
J>aondB,.

There exists an n-dimensional subspace X,, of E such that
X, N Ag 1s bounded in F,

supJ < C,
Xn

(Ja)

where Ag = {u € E | J(u) > 0}. Let I'* be a set of odd homeomorphisms from E onto
E with the following property, that is,

I'* = {h € Homeo(E, E) | h{(B;) C Ao, his odd}
and let
['={K C E| K is compact, symmetric with respect to 0},
and

I'm = {K CT[y(KNk(S)) >mfor any h € r},

where 7(Z) indicates the Krasnoselskii genus of a symmetric set £ and S = 8B,. For
the Krasnoselskii genus, refer to Deimling [1} or Krasnoselskii and Zabreiko [5].
Now we are in a position to state the theorem due to Rabinowitz.
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THEOREM 4.1. (Rabinowitz). Let E be a real Banach space, and let J € C'(E,R)
satisfy (J1), (J2), (J3). Let

by = Inf maxJ(u) m=1,... n:
™ Kelm wek (u) e

Then we have

0<a<b<..<b,<C

and {b;} are critical values of J. Moreover ifb; = b4, for some j € {1,...,n—1}, then
J has infinetely many critical points corresponding to b,.
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