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PREFACE 

In lhis dissertalion I investigate some qunsilinear p-Lapalace equations on 
R n. My main tool is "variational methods" developed by Palais, Smale, Am
brosetti; Rabinowitz et al. in 1970's. These methods are widely used in the 
study of nonlinear elliptic equations, and many authors have contributed to this 
region since 1970's. The basic idea is to consider a functional corresponding to 
agiven nonlinear elliptic equation and its critical points in a (probably infinite 
dimensional) fuhction space. Criticnl points of a functional are characterized as 
"min-max" forms, which were established by Ambroselti and Rabinowitz. 

Especially, -if the so-called "Palais-Smale" condition holds, the existence of a 
nontrivial solution to the nonlinear elliptic problems is ensured. The condition 
ensures the compactness of a bounded sequence in a Banach space. This result is 
much related to the Rellich-Kondrachev theorem. 

lIenee, for example, existence theorems to the following problem are well-
known: 

{ 
-~u = lul a

-
2u in 0, 

u = 0 on a~, 

where ° is a bounded domain in R n with smooth boundary, 2 < a < 211/( n - 2) 
and n ~ 3. In this case, the Palais-Smale condition holds because the embedding 
HJ(n) '-+ La(n) is compact. 

On the other hand, in case of n = R" the situation is quite different. 
The Palais-Smale condition fails. Though the "concentration compactness ar
gument"(1985) due to P.-L. Lions can overcome this difficulty, there are many 
unsolved problems in this cnse. IIe gave a sufficient condition (but not a necessary 

one) for a weakly convergent sequence to be a strongly convergent one. There 
would be weaker conditions than Lions' ones. 

In case of the "critical nonlinearity", lhe Palais-Smale condition also fails. 
Here I use the method developed by Brezis and Nirenberg in 1983. The method 
is to use the extremal function for the Sobolev best constant. This case is much 
delicate. The extremal function for the embedding IIJ(R") '-+ L 2"/("-2)(R") IS 

a constant multiple of 

Taking into account the results as stated above, I investigate here the unsolved 
problem 

-div(IVuIP -
2 Vu) + lulp

-
2 u = qlttlO' u on R" 

with 1 < p < 11 and p - 2 < u :$ np/(l1 - p) - 2. 
In this problem, I seek a solution in the Banach space l-Vl,P(R"). Since the 

space is not a Ililbert space, t.he space does not have an inner product. Unlike the 
case p = 2, I must notice this difference. 



I show the basic .existence theorems (Chapter 1), existence theorems in the 
class of radial symmetry with the critical Soble v exponellt (Chapter 2) and mul
tiplicity of solutions (Chapter 3). Higher order cases are also treated in Chapter 
1. The asymptotic behavior is shown in Chapters 2 and 3. 
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Cbapter 1. Existence Theorems for QllaSilillear Elliptic Problems on Rn. 

§1-I. Introduction 

In this chapter we consider the following quasilinear elliptic problem: 

(1) 

where p and (T are constants which satisfy certain conditions stated later, and>' is a 
positive constant. We seek a nontrivial solution of (1) as a critical point of the functional 

(2) 

in the Banach space W1,P(Rn ). 

From the homogeneity of the first term of <I> >. (u), under appropriate assumptions 
on the potential q(x), we can get a nontrivial solution of (1) by solving the constrained 
minimization problem: 

where lIull..\ = {Jnn (I\1ulP + >.lttIP)dx rIP. Unlike the case p = 2, it seems that few 

papers have treated the case of p-Laplace equations with a potential q( x) which may 
change its sign. 

For the case p = 2, many authors including Ding and Ni [1] and Rother [4], [5] 
considered equations of this type. The former authors studied the case of positive 
potentials and the latter potentials which may change its sign. In both papers, they 
used (( a fa uniform integrability" so that the treatment of the problem on R n could be 
similar to that in a bounded domain. Following the idea of them, we consider a more 
general case, i.e. the case of p-Laplace equations (1). 

In Section 1-2 we consider a general case (the non-radial case; but the result in 
this case is still valid for the radial case). 'rVe assume here that 1 < p :::; 11., and 
p -'2 < (T < pnJ(n - p) - 2. (If p = n, we regard the latter inequality as p - 2 < (T. 

Note that for u E Wl,T1(RTI), we have u E LCt(UTI
) for all a such that 1 :::; a < 00 by 

the Sobolev embedding theorem). In Section 1-3 we will treat the radial case. In this 
case only assuming 1 < p < 11. and p - 2 < (T, we can prove the existence of a nontrival 
solution of (1) even if q(x) tends to infinity as Ixl -+ 00 with some growth order. The 
precise expression of the order will be given in this section. In Section 1-4 we will treat 
higher order cases of p-Laplacian forms. But we will investigate only the non-radial 
case. 

The regularity of our weak solu tion will be taken up in a later paper. 
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We conclude the introduction with some notat.ions. \Ve denote WI,P(Rn ) by nr1,p 
and Lt(R7l) by Lt. For a function I, we define 1+ = max(f,O) and f- = max(-f,O) 
which are the positive part and negat.ive pa.rt of I respectively. \Ve write p. as p* = 
np/( n - p) (p. is the critical Sobolev exponent corresponding to the embedding of W1,p 

into LP·). Vle define the W"l,p-norm by 

which is equivalent to the usual Wl,v-norm if A > 0. We denote a ball in R n with center 

x and radius r by Br(x). 

§1-2. The non-radial case. 

Our main result in this paper is the following existence theorem. 

Theorem 1. lYe assume 1 < p ~ n, p - 2 < 0- < ~ - 2 and q : R n --+ R is n-p 
measurable and satisfies the following assumptions. 

(A 1) 

(A 2) 

where 

and 

(A 3) 

for t E ( pn , +00) 
p(n + 0- + 2) - n(o- + 2) 

Tllere exists a function Uo E Wl,p sudl that [ qluol lT+2dx> o. iRn 
TIl en , for all positive constant A, tllere exists a nontrivial weak solution u of (1 ) in 

Wl,p such that 

(3) 

for every If> E Cg'(R7l). 

Remark. If we assume q(x) ~ ° on R n
, we find easily that the equation (1) has 

onlya trivial solution in W"l,p. This is also true for higher order cases treated in Section 
1-4. Thus assumptions (A 7), (A 10) which will be stated later are indispensable to our 
existence theorems (so is (A 3)). 
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If q(x) ~ a > 0 on some ball Bc(xo) where a and c are constants, and Xo E Rn, 
then the assumption (A 3) is fulfilled. 

The above remark will be appleid to Theorem 3 and Theorem 4. But, in Theorem 
3, a sufficient condition for (A 7) will be changed to "q(x) is uniformly positive on some 
annulus in R nIl • 

Proof. As stated in section 1-1, a critical value of functional (2) is expressed 

on the unit sphere of W1,p. 

Below we will show that this infimum is attained by a function v in ~Vl,p and that 
a constant multiple of v becomes a nontrivial weak solution of (I). 

For this purpose, we set 

and minimize J( u) on the set 

We denote the infimum of J(u) by S>.., i.e. 

S>.. = inf J( u). 
uED 

First we estimate JRn Q+lulu+2dx. Denoting the Holder conjugate of t by t', i.e. 
t' = t~l' from (A 2), we have 

t 1 
(0" + 2)t' = (T + 2) t _ 1 = (0" + 2)( 1 + t _ 1 ) 

«0"+2)(1+( pn _1)-1) 
p(O"+ n + 2) - n(O" + 2) 

= (0" + 2) (1 + pO" + pn + 2p - nO" - 2n) 
(n - p)(O" + 2) 

= (0" + 2) np 
(n - p)(O" + 2) 

up * =--=p. 
n-p 

If p = n then, from the Sobolev embedding theorem, we know u E w1,n belongs to 
L(u+2)t'. Hence the Holder inequality makes sense and we have 
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From the Sobolev inequality and the fact that IIttll>. = 1, there exists a positive constant 
C such that 

holds independent of u E D. On the other hand, by an easy calculation in view of the 

Sobolev inequality, 

where C' is a constant independent of tt E D. Therefore, as q+ = ql + q2 with ql E Lt 
and q2 E Loo , we conclude that there is a constant C" such that 

independent of u E D. 
Next, we will show S>. < O. But this fact follows immediately from the assumption 

(A 3) and the last inequality. We have 

-00 < S>. ~ J(uo) < O. 

Now we prove any minimizing sequence has a minimizer in D. Let {Uj} be a 
minimizing sequence for S>. in D. As H!l,p is a reflexive Banach space and IIUj II>. = 1, 

the sequence {Uj} is sequentially weakly compact in lVl,p. 'rVe may assume without 
loss of generality, that {Uj} converges weakly to v in W·l,p. l'vloreover, for all bounded 
smooth domains 0 in R n, we set 

Uj = Uj In. 

Obviously, {Uj} is bounded in Wl,p(O). Since the embedding 

in a bounded domain 0 is compact, we can choose a subsequence of {Uj} if necessary 
(still denoted by {Uj}), such that 

Uj - v a.e. in 0 

where v = vln. Since 11 can be chosen arbitrarily, we use a diagonal argument to conclude 

. Rn Uj - v a.e. III . 

As the norm II . 11>\ is lower semi-continuous under the weak convergence in W1,p, we 
have 

IIvll>. ~ lipl inf Ilttj II>. = l. 
) ...... 00 
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Since {uj} is a minimizing sequence for SA « 0), we may further assume I( Uj) < O. 
From the fact that 

and 

we get 

r q_lujlC1+2dx~CI/. 
JRn 

Then, from the Fatou lemma, we obtain 

r Q_lvl C1 +2dx ~ li~inf r q_lujlu+2dx ~ C". Jnn. }-+oo JRn 
Similarly, in view of the inequality 

we have 

r q+lulu+2dx ~ C' JRn for all U E D, 

From (A 2) we can easily choose R~ > 0 for arbitrary e: > 0 such that 

(4) r q+lujlC1+2dx ~ e: for all j. 
J1xl?R6 

Furthermore, taking into account the Rellich-Kondrachev theorem, we find 

Uj -+ v strongly in L(C1+2)t' (BR.(O)) as i -+ 00. 

Hence we have 

r q+luj 1C1+2dx __ r q+lvl C1 +2dx as j -+ 00. 

J1xl'S:R6 J1xl'S:R6 

Then we get in view of (4) 

I(v) = - r (q+-q_)lvl C1 +2dx JRn 
= r Q_l vlC1+2dx _ r q+lvlu+2dx JRn Jnn 
:::; r q_lvl C1 +2dx _ r Q+lvl C1+2dx 

Jnn J1xl'S:R6 

~ li~ inf( r q_IUj 1<1+2 dx - r q+ IUj 1C1+2 dx) 
}-+oo Jnn J1xl'S:R6 

~ li,minf( r Q_lujlC1+2dx_ r q+IUjlu+2dx+e:) 
}-OO Jnn Jnn 

= SA + c. 
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Since € is arbitrary, we obtain I{v) ~ S>. and v ¥= O. 

Finally we must show v E D. \Ve set a = IIvll>., then a E (0,1] and ~v ED. Thus 

S>. :::; I( .!.v) = a-(u+2) I( v} :::; a-(u+2) SA < O. 
a 

Since S>. < 0, we get a = 1. Hence v E D and I(v} = SA' \\Te note that Iqllvlu+l is 

locally integrable. This is because 

holds for all bounded domains B eRn in view of the Holder inequality. By the Gateaux 

derivative at v in D, we have 

for every If' E co(Rn). 

Thus in view of the Lagrange multiplier rule(see Struwe [6]), we find that u -
\S>.\-I/(u-p +2)v is a nontrivial weak solution of (1). 

The proof is complete. 

RemaTk. For the regularity of a weak solution of (1), some additional assumptions 

are needed. However, we cannot hope the existence of classical solutions of (1) because of 

the result of DiBenedetto[1] or Uhlenbeck[7]( the solution has at most c1,a regularity). 

§1-3. The radial case 

In this section we will study the radial case,i.e., the cae when the potential q(x) in 

(1) is it function of the variable r = Ixl. 

We define 

CO,'r = {u E Co(Rn) I u is radial}. 

and denote by W rl,p the completion of COr with respect to the norm Wl,p. \Ve also , 
denote the area of oBdO) by W n . We use the same letter C for expressing various 
constants in this section. 

vVe can now prove the following ra.dia.l lemma which helps us to weaken the as
sumptions on q. 
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Lemma 2 (the radial lemma). For u E vV/'P and 1 < p < n, if x =1= 0, then for 

almost all x ERn 

llOlds. 

Proof. It suffices to show the lemma for tl E CQ".. For such u, we have 

100 d 
lu(x)IP = - -d {IU(7')IP}dr. 

Ixl r 

The right-hand side is estimated as follows: 

1
00 

d 100 

d I -d {IU(7')IP}d1'1::; p lu(r)IP-11-
d

, u(r)ldr. 
Ixl r Ixl 1 

Now we decompose the last integrand in such a way that identity 

lu( r )IP-11 ~ u( r) I = r-(n-l)(n+l-p )/n {Iu( r )Ir(n-l)/p· }P-11 ~u( r) 17,(n-l)/p 
dr dr 

holds. The total sum of the exponents of r is equal to O. In fact, 

_ (n - 1)( n + 1 - p) + (n - p)( n - l)(p - 1) + (n - 1) 
n pn p 

=_n_-_l {-p(n + 1 _ p) + (n _ p)(p _ I)} + n(n - 1) 
pn pn 

-n(n-l)+n(n-l) 
-

p71 

=0, 

We will estimate the integral using the Holder inequality. First we observe that the 
Holder inequality can be applied, because we can raise the power of the decomposed 

parts to a, /3, /, respectively, where a = n/(p - 1), /3 = p* /(p - 1), / = p, SInce 

Hence 

! + .!. + .!. = p - 1 + (n - p) (p - 1) + ! 
a /3 / n pn P 

_ p(p - 1) + (n - p)(p - 1) + n 
pn 

=1. 
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If we observe 

roo r-(n-l)(n+l-p)/(p-l)d,' 

Jlxl 

= {1 _ (n - 1)( 11, + 1 - p) }-l [,.l-(n-l)(n+1-p)/(P-l)] 00 

p -1 Ixl 

_ p - 1 \x\-n(n-p)/(p-l), 
n{n - p) 

we get 

\u( x) \P ::; p{ nrn __ ~) } (p-l)/n w~(n-p )(p-l)/pnw~ l/p \x\p-n lIull~~: \IV u\lLP 

::; p{ P - 1 }(p-l)/nw~(n-p)(p-l)/pnw-l/P\x\P-n (lI u\lLP. + IIVu \lLP)P 
n(n-p) n 

::; C\x\p-n \lVu\lip (by the Sobolev embedding theorem) 

::; C\x\p-n \lu\l~, 

where C is a constant independent of u E COr' but depending on p and n. , 
The proof is complete. 

We are now in a position to state our main theorem in this section. We assume that 
q(x) is a radially symmetric function which is allowed to satisfy some growth condition 
at infinity. 

Theorem 3. Let 1 < p < n, and p - 2 < u. 1Ve assume q : R n --+ R is measurable, 
radially symmetric, and satisfies the following assumptions: 

(A 4) 

(A 5) 

where f E LOO and k(u) 
Furtllermore 

(A 6) 

n;p {(u + 2) - p*} - 8, wllere 8 is a positive constant. 

o ::; f(\x!) ::; Clxl 26 on BTl (0) 

where 1] > 0 is a small constant. 

(A 7) Tllere exists Uo E IVr1,p SUell tllat r q\uo\o+2dx > 0 Jnn 
Tllen for all positive .A, there exists a nontrivial weak solution u of rm (1) in IVr1,p. 

Remark. Theorem 3 is valid for all 8 > 0, not only for a suitable 8. But, according to 
8 in (A 5), f(lx!) must vanish at the origin as sta.ted in (A 6). In the case p < u+2 < p*, 
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we can add ql, q2 in Theorem 1 to q+ here (the validity of this statement is ensured by 
the proof of Theorem 1.). 

P7·OOf. 'rVe prove the theorem by following the proof of Theorem 1. Instead of D in 
it, we define Dr = {u E IIV;'P I Inn q_l u IU+2dx < 00, lIull'\ = 1 }. 

Then, by the radial lemma, we have 

{ q+lulu+2dx =Wn roo q+lulu+2,.n-1dl' 
JRn Jo 

~CWn (foTl q+ lIull~+27·(p-n)(u+2)/p+n-ldr 

+ 100 

q+llull~+2r(p-n)(u+2)/p+n-ldr). 

We take u in Wrl,v and, from Assumptions (A 5) and (A 6), we get 

where 
n - p np n - p 

J-l =28 + --{(o- + 2) - --} - 8 - --(0- + 2) + n -1, 
p n -p p 

1/ = n - p {(o- + 2) - ~} - 8 - n - p (0- + 2) + n - 1. 
p n - p p 

Then these values yield J-l = 6 - 1, 1/ = -6 - 1. Hence, finally, we have 

(5) 

This value is independent of u E Dr. Let {Uj} be a minimizing sequence for SA in Dr. 
From the same reason as in the proof of Theorem 1 (by the Assumption (A 7)), we have 

S,\ < 0, and JRn q_luj lu+2dx ~ C for all j. Moreover, we may assume 

Uj ->. V weakly in W1,p, and Uj -+ v a.e. in R n. 

Then we have 

and 
{ q_lvlu+2dx~li.millf { q_lujlu+2dx~C. JRn J-+OO JRn 

By the fact that lIuj II>. = 1 and the above estimate (5), for every e > 0 there exist 
positive R£ and r£ such that 
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for U E Dr. 
We now set T€ = {x ERn I T€ S; Ixl S; R€ } and apply the Lebesgue dominant 

convergence theorem (from Lemma 2 and (A 5) , we can take a summable dominant 
function; see the above estimate on q+ lul u +2

) to obtain 

Since 

using the same argument as in Section 1-2, we have 

I( v) S; li.m inf(I( Uj) + 2c) = S>. + 2c. 
)-+00 

Hence, we obtain I( v) S; S>.. The remaining proof that v E Dr and U = ISI-1/(u-p +2)v 

is the same as in the proof of Theorem 1. 
The proof is complete. 

§1-4. The Higher order case. 

In this section we will extend our existence theorem in the non-radial case to a 
higher order problem of the form 

Ie 

(6) I) - V)' {Ivl uIV-2V'u} + >'lulp
-

2u = q(x )lulU u on Rn, 
/=1 

where 
/ {LlmU ifl=2m, 

Vu= 
V(Llm- 1 tt) if I = 2m - 1, 

and (-V)' which operates on { ... } means, if 1 = 2m - 1, 

As in the previous section, we seek a nontrivial solution of (6) as a critical point of the 
functional 

1 Ie 1 >'1 1 1 w(u) = - L Iv'ulPdx + - lulPdx - -- qlulu+2dx 
p 1=1 nn P nn (J' + 2 R n 

in the Banach space DIe,p. Here Dk,p is the completion of CO' with respect to the norm 
0::7=0 IIV' ·1I~p)llp. If P =1= 2, Dk,p may be different from Hlle.P (see P.-L.Lions[3]). Note 
that the Dk'P-norm is equivalent to 0::7=1 1I'II~p + >'1I·II~p)l/p. 

We have the following existence theorem. 
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Theorem 4. For 1 < p ~ n/k (k < n; n, kEN), we assume p - 2 < rr < n~kp - 2 
and q : R1l ---+ R is measurable and satisfies tile following assumptions. 

(A 8) 

(A 9) 

and 

(A 10) 

for t E ( pn , +00) 
np - (n - kp)(rr + 2) 

q2(~ 0) E Loo
, lim q2::: O. 

Ixl-oo 

There exists uo(¥= 0) E Dk,p sudl that r qluol d +2dx > 0 JRn 

Tllen tllere exists a nontrivial weak solution u of (6) in Dk,p such tllat, for all 

positive A, 

for every cp E Co(R"). 

Proof. First we note by the Sobolev embedding theorem, that the inclusion map 
Dk,p ~ L"p/("-kp) is continuous. \Ve need only to check the exponent of the last term 
q+ lulu+2. From (A 9) we have 

1 
(0' + 2)t' :::(rr + 2)(1 + -1) 

t-

< (rr + 2)(1 + np - (n - kp)(rr + 2)) 
(n - kp)(rr + 2) 

= (rr + 2) np 
(rr + 2)(n - kp) 

np = , 
n - kp 

and hence Inn q+lul u+2dx ::; C for all tt E Dk where Dk is the set of minimization 

The rest of the proof is the same as in Section 1-2. 
The proof is complete. 
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Remark. In Section 1-2 and Section 1-3, we may change>. into a(x) such that 
a(x) E UXJ and a(x) ~ c> O. In Section 1-4, we may change 

k 

2:) - \1)' {1\1'uI V
-

2\1'u} + >'lulv- 2u 
'=1 

into 
k 

I) -\1)' { a,{x )1\1'uIP-
2\1'u} 

'=0 
where a,{x) E LOO such that a,{x) ~ c> O. 

For a radial higher order case, a radial lemma like lemma 2 would be much more 
complicated and several assumptions would be needed. 
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Chapter 2. The Critical Sobolev Exponent Case. 

§2-1. Introduction. 

We consider in this chapter 

(1) 

in Wl~':'rad(Rn), and seek a radially symmetric solution of (1). Our aims are to extend 
the results of C.-S. Lin' and S.-S. Lin [IS] to p-Laplacian and to investigate the asymp
totic behavior of the solution. \Ve also consider the bounded case with zero-Dirichlet 
boundary condition. In this case, we can prove the existence of a nontrivial radially 
symmetric solution. Our results do not include those of Guedda and Veron [131 or 
Egnell [9], [10]. But the difference of assumptions enables us to show the existence of 
nontrivial solutions under assumptions on Q(x) which are weaker than those of them. 

The study of elliptic equations involving critical Sobolev exponents is mainly owed 
to Brezis and Nirenberg [4]. In their cerebrated paper, they have succeeded in showing 
the existence of a nontrivial solution of 

where n is a bounded domain in R n and 2* = 2n/(n - 2). 
Since the break-through paper of them, many authors has studied various equations 

involving critical Sobolev exponents. They are for example, Ambrosetti and Struwe 
[1], Cappozi, Fortunato, and Palmieri [5], Cerami, Fortunato, and Struwe [6], Cerami, 
Soli mini, and Struwe [7], Egnell [9], Fortunato and Jannelli [12], and Zhang [24]. 

Later, unbounded case (i.e. n = Rn) was treated by Benci and Cerami [3], C.-S. Lin 
and S.-S. Lin [17] and others. For the approach by the ordinary differential equations, 
there are also many results, for exsample, due to Kawano, Yanagida, Yotsutani [15] 

Vie should notice that as well as the Laplacian, a quasilinear version of this type 
(p-Laplacian) has also studied by Azorero and Alonso [2], Egnell[10], Guedda and 
Veron [S], Kawano, Yanagida and Yotsutani [16] and others. 

Though it is well-known that the Palais-Smale condition fails for these problems 
even in the bounded case, the deficiency of the compactness of embedding to the space 
with the critical Sobolev exponent has been overcome by the method used by Brezis 
and Nirenberg. The method has become a standard type for these problems. 

The key point of these problems is that the function 

is an entire solution of 
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and it is the extremal function of the functional 

where p* = np/(n - p). 
Using the fact, we compare the best Sobolev constant with the value of the func

tional for the problem at the point of an "approximate" function. If the best constant 
is greater than the above value, we can prove the existence of a nontrival solu tion. For 
details see Brezis and Nirenberg [4], P.-L. Lions [19], Talenti [20]. 

The bounded case is considered in Section 2-2. \Ve consider there in the radially 
symmetric class, that is, in W~,':(BR) 

(2) { 
-div(l\7uIP-2\7u) - Q(x)luIP-

2u - K(x)luy·-2 u = a in BR 

u = 0 on 8BR 

where BR is a closed ball with radius R(> 0) whose center is the origin. Here we 
can prove the Cl,a-regularity of a solution of (2). To show it, we invoke the results 
of Guedda and Veron and DiBenedetto [8]. But if Q(x) and [((x) are not radially 
symmetric, readers should refer to Egnell [10]. 

In Section 2-3, we seek a radially symmetric solution of (1) on R n as a limit of a 
sequence of radially symmetric solutions of (2). In Kabeya [14], if K tends to a with 
some order near the origin, the existence of nontrivial solution has been proved. But in 
this case, the method in [14] never applies. We use the method by Lin and Lin. In this 
case Q has to be nonnegative. 

Now we state some assumptions often used in Section 2-2 and Section 2-3. 

(I< - 1) K(lxl) = 1 + ,8lxl"YP near the origin and K(lxl) ~ 0, 

where ,8 > a and 1<1. 

(Q -1) 

But in Section 2-3, Q must be non positive. 
According to the mountain pass theorem, one of the critical values of the functional 

is expressed as 
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bu t if J( ? 0 it is equivalent to the follwing expression stated in "notations". 

We will check whether Sp.,Q(O) is attained in a suitable function space. 

\Ve conclude the introduction introducing some notations: 

Bn : a closed ball with radius R whose center is the origin, 

where 2 ~ q ~ p •. It is well known that S is never attained in W~::(BR) but is attained 

if W1,P(Rn
) (see Guedda and Veron [13] or Talenti [20]). It is also known that S is 

independent of R, and its value is equal to the case R n. 

If we can show Sp.,Q(Bn) < S, we are able to prove the exintence of a nontrivial 

solution to (2). 

§2-2. The Dirichlet problem in a bounded domain. 

In this section we consider 

(3) { 
-div(lV'ulp-2V'u) - Q(x)lu\1'-2 u - I{(x)lulr· - ~u = 0 in En 

u = 0 on aBR. 

As stated in the introduction, we first show Sp.,Q(BR) < S under suitable conditions. 

Hereafter we denote the best Poincare constant by >.( R) i.e. 

We find out that the behavior of J( near the origin plays a crucial role for the 

existence theorems. The next lemma will be used to ensure the existence of a nontrivial 

solution. 

15 



Lemma 2.1. Assume (I< -1), (Q -1). For any positive R, ifQ < Al(R) in BR , and 
1 < p < fo, 1 > I > lip, tllen we llave 0 < Sp.,Q(BR ) < S. 

Remark. This lemma is still valid for non-radial J( and Q. 
Proo/. As in Guedda and Veron [13] or Egnell [9] or Brezis and Nirenberg [4], we 

prove the lemma by using the function 

where c is an arbitrary positive number and </> E Co(R n) is a cut off function defined 
as 

</> = 1 near 0 and 0 :s; </> :s; 1 

with support in B6 (8 > 0). Now we calculate 

First, we have as c - 0, 

r l'VutlPdx JBR 
= (n - P)p r (c + IxIP/(p-l»)-n IxIP/(P-l) dx + 0(1) 

p -1 JBR 
= (n - p)P r (c + IxIP/(p-l»)-nlxIP/(P-l)dx + 0(1). 

p -1 JRn 

Now we set Ixl = c(p-l)/p p to get 

We set 

to have 

(4) 

Similarly, we have 

r Q(x)ludPdx ~ d r {(</>(x))P - 1 + 1 }(c + IxIP/(P-l)y-ndx JBR JBR 
= cp-n/pwnd 100 

(1 + pP/(P-l»)p-n pn-1dp + 0(1), 
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where d = minBR Q. Setting 

1(3 = Wn 100 

(1 + pP/(p-l)y-n pn-1dp, 

we have 

(5) 

Finally, using the assumptions on K(x) and 1>(x), we have 

We set 

and 

{ K(x)/ue/p• dx 
JBR 

2:: { (1 + .B/'xI'P)(e: + /x/p/(p-l»)-ndx 
JB6 

= { (6 + Ix/p/(p-l»)-ndx + (3 ( Ixl-YP(e: + IxIP/(p-l»)-ndx + 0(1) 
JR n JB6 

= e:-n/pWn 100 

(1 + pP/(p-l»)-npn-ldp 

6 -(p-l)!p 

+ (3e:(p- 1h-n /V wn 1 e p,P(1 + pp/(V-1»)-n pn-1dp + 0(1). 

for convenience. 
Now we check whether 1(-y is finite. \Ve only show the behavior of the integrand at 

infinity is o(p-l) as p -+ 00. Let 

Fb) = -bp - pn/(p - 1) + n - 1) + 1 = -,p + n/(p -1), 

we have F(l) > 0 by the assumption on p. According to the linearity of Fb), we have 
F(,) > 0 for all , < 1. Hence we find K-y is finite. Consequently, we obtain 

Hence we get 

{ Klue p,. dx 2:: K2e:- n / v + (3K-ye:- n /
p+(v- 1)-y + 0(1) 

JBR 

= K2e:-n/p (1 + (3!(-y e:(p-l}-t + O(e:n/v)). 
1(2 
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(6) 

then we have by (4), (5), and (6), 

J{ICI - n / p - J{adcp-n/p + 0(1) 
RQ(u~) ~ .::.i!:!..=El {3l' (n p)/n 

J(2 C p (1 + ~c(p-Ih) - + 0(1) 
1\2 

_ J{I - J{adcp-I + O{c(n-p)/p) 

- /(2 (1 + (3!!"1 e:(p-Ih)(n-p)/n + O{e:(n-p)/p) 
1\2 

J{l - /(ade:p-I + O{e:(n-p)/p) 

Setting 1= min{2{p - 1)')', (n - p)/p), we get 

J{I - /(adcp-I + O(c(n-p)/p) 

RQ(u~) ~ J{2(1 + (n-:}~Kle:(P-lh) + O(c') 

= ~(/(I - /(adEP-1 + O(e:(n-p)/p)) (1- (n - p~(3/(.., e:(p-1h +O(c1)) 
J{2 nA 2 

_ /(1 /(a d p-I (n - P)(3J{l/(.., (p-I).., (P-I)..,) - - - - c - - c +0 e: . 
](2 /(2 n/(2/(2 

Noting that p - 1 > (p - 1)')' and S = /(t! /(2, we obtain for every small e: > 0, 

For 0 < Sp.,Q(BR), we only notice that 0 < Q(x) < >'dBR). It follows from that 

under the condition fER /(luIP • dx = 1. 
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The proof is complete. 

Remark. If p = Vii, we have for some positive J{ 

and RQ ( u~) yields 

Thus even if p = fo~ the result of Lemma 2.1 still holds. 
In the proof, we find that the assumption (I( - 1) may be changed into 

(I< - lY 

where 0 < ffi < ~ and € is arbitrary positive. 

For the radial functions, the radial lemma is a key for the existence theorems (see 
for instance Egnell [11] or the author [14]). 

Lemma 2.2.( the radial Lemma). Let u be a radially symmetric [unction such that 

then 
lu( x)1 ::; C( n, p )Ixl(p-n)/p IIV UIlLPCR n) 

holds [or all x =I 0, where 1 < p < n. 

By the ssumption (J< - I), Q(lxl) may change its sign or may be nonpositive. The 
minimizer obtained here plays an important role in Section 2-3. 

Theorem 2.3. If(Cl(BR) 3)Q(lxl) < )'1 (BR ) ollER and J{ ~ 0 satisfies (I< -1), then 
there exists a minimizer [or Sp.,Q(BR) in Wci::(BR ). Aforeover the'minimizer belongs 

to Cci'C'«BR) wllere a E (0,1). 

Proof. We devide the proof into four parts. 

1 st step. To show the bounded ness of a minimizing sequence in W ~ '; (B R)' , 

(7) 

Let us consider the problem 

{ 
-div(lVu/P-2Vu) - Q(x)/uIP-

2u - Sq,Q(BR )J{(x)/u/q- 2u = 0 in BR 

'11.=0 onoBR, 
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and let u q be a solution of this problem, where p ~ q < p* . 

Since the domain BR is bounded, we can easily know that the solution uqbelongs to 

lvlq(BR) using the compactness of the embedding H!~":(BR) ~ Lq(BR) for p::; q < p*. 

Taking 

into account, we find out 

by using 

Invoking the result of Guedda and Veron, we get 

to obtain the boundedness of {uq } in l¥~':(BR). Thus we can choose a subsequence , 
{qj} as qj i p. such that the sequence {u qj }satisfies 

(8) 
{ 

Uq. ~ tLoo 

tL q: -t U oo 

U qj -t U oo 

Hereafter we denote U qj by tLj. 

weakly in Hr~';(BR) , 

stongly in LP (BR ) 

a.e. in BR . 

2nd step. "Ve show U oo is nontrivial. Suppose U oo = o. R.ecalling that 

and the strong convergence of {Uj} in LP(Bn), we have 

Moreover by the radial lemma and the Lebesgue dominant convergence theorem, 
we get 
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and 

Hence for 8 > 0 we have 

In addition, from (I( - 1) for all e > 0, there exists a 8 > 0 such that 

holds. Then using the Sobolev embedding theorem, we have 

Now by the Holder inequality, we have 

Using this inequality, we have 

Since € is arbitrary, we have 

But this fact contradicts to Lemma 2.1. We get Uoo t= o. 
3rd step. Now we prove that {ttj} is bounded in C~,a(BR). 

To show the boundedness, we utilize some propositions due to Guedda and Veron 
and DiBenedetto [7] without proof. For a proof, see their papers. 

Proposition 2.4.(Guedda and Veron). Suppose tt is a solution of 

(9) 
{ 

-div(lV'ttlp-2V'tt) - g(x)lttIP-
2u = f in G 

tt = 0 on fJG, 

wllere G is a bounded domain in R n, 1 < p < n, f E Ln/p ( G), and 9 E Ln/p ( G). Then 
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Proposition 2.5.(Guedda and Veron). Assume 1 < p ::::; n, I E £'(0) for some 
s > nip and tt E vV~'P(G) is a solution of 

(10) 
{ 

-div(IVuIV-2Vu) = I in G 

u = 0 on fJG. 

Tllen 

lIuIlLOO(G) ~ C( 71., p, G)II/II~.ra)l) 

W}lere G is a bounded domain in R n. 

Proposition 2.6.(Guedda and Veron). Let U~ is a solution of 

(11) 
{ 

R::1. 
-div {(e: + IVuI 2) 2 Vu} = Ie in G 

U = 0 on aG, 

W}lere e: > 0, G is a bounded domain, Ie E Cl(O)and tIle solution U~ is in C 2,.8(0). 
Tilen there exist a E (0,1) and C = C(p, n, G, IIf~ IILOO(G) > 0 such that 

lIu~ IIc 1''''(G) ~ C for anye: E (0,1). 

l\{oreover if Ilf~ IILoo(G) does not depend on e:, we can pass e: to O. 

Now we continue the proof. First, we show the sequence {Uj} belongs to L' (BR)' 
invoking the Proposition 2.4. 

We regard (2) as 

(12) 
{ 

-div(\VujIV-2Vuj) - (Q + Sqj,Q(B R)J<lujlqj-P)luj\p-2Uj = 0 in BR 

Uj = 0 on aBR . 

We only check Q(x) + Sqj,>.(BR)I«x)lujlqj-V E Ln/P(BR). (We regard f. = 0). From 
the assumptions (J< - 1) ( J< E L=(Rn), and (Q - 1) we show IUj Iqj-P E Ln/V(BR)' 
In view of 

* ( ) n n{pn - (n - p)qj} 
p - qj - p - = , 

p p(n -p) 

and using qj < p*, we find p* - (qj - p)nlp > 0 to get IUj Iqj-V € Ln/V(BR). Using the 
boundedness of {Hj } in Hf6 ,v (B R), we get {Iuj IP· -P} is uniformly bounded in Ln/p (BR), 
hence we have {ud is uniformly bounded in L'(Bn) for every tE'[I,oo). 

Next we show {Uj} is in L=(BR). 
In Proposition 2.5 we think of f as h = Qluj Iv-2 Uj + Sqj,Q(BR)luj Iqj-2 ttj . Using 

the result obtained above, we have f E U(BR) (s > nip) and 

IIUj IILOO(BR) ~ Cllh II~'\~-Rll· 
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The boundedness of {uj} in U'" (Ell) is obtained from the boundedness of {Ii} in 

L 3 (BR) (this comes from the boulldedness of {Uj} in Lt(BR))' 
Finally, we prove the CI,a(BR)-boundedness of {Uj}. The fact that Uj belongs to 

C1,a(BR) follows from the regurality result due to DiBenedetto. 

Proposition 2.7.(DiBenedetto). Let U E VV1~':(0) be a weak local solution of 

div(IVuIP- 2Vu) = rp, p > 1, rp E Lfoc(O) 

wllere q > pn/(p - 1). Then U E Cl~:(O). 

In our case, we may take rp = Ij = QIUj IP-2 Uj + Sq),Q(BR)luj Iqj-2 Uj . On the 
uniform boundedness, we use Proposition 2.5. Noticing that 

If. = Ii = Qlujlp-2 Uj + Sqj,Q(BR)I«x)lujlqj-2uj E C1(BR)' 

we have a solution of (11) Uf.,j E C 2,f3(BR) by the usual bootstrap method (because the 

approximate equation is not degenerate.). Applying Proposition 2.6, we obtain 

By the boundedness of Uj E LOO(BR) (so is Ii), the constant C(p, n, BR,!l1i Ilux)(BR») 
is bounded. Cosequently, we obtain {Uj} is bounded in CI,a(BR)' 
4th step. Conclusion. 

Noticing that the embedding CI,a(G) "-+ CI,a(G) is compact if 0 < a < a and if 
G is a bounded domain in R n, we find 

Letting 
v = Sp.,Q(BR)I/(P·-P)uoo , 

we have v is a solution of (2) and v E C6,a(BR ). 

The proof is complete. 

Remark. Invoking the maximum principle for p-Laplacian due to Vazquez [23] (Stated 
below), we find the solution U oo is positive in BR . 

Proposition 2.8.(Vazquez [23]). Let u(2: 0) E C1 (0) satisfies the following assump
tions: 

div(IVuIP- 2Vu) E Lfoc(O), and div(IVuIP- 2Vu) ~ j3(u) E 0, 

and f3: [0, +00) ---t R n is continuolls, decreasing, 13(0) = 0, f3(s) = 0 for some s > 0 or 
f3(s) > 0 for all s > 0, but J;(j3(s)s)-I/Pds = +00. Then ifu does not vanish identically 
on 0, u is positive everywhere in O. 

Noticing that our solution U oo may be assumed to be nonnegative, we only check 
the property of . 

f3(s) = ImaxQlsp-l. 
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Obviously, /3(0) = 0 and /3(5) > 0 for all 5 > O. If 0 :$ 5 :$ 1, 

((J(5)S)-I/P ~ C' S-1 

holds and we have 

11 ((J(s)s)-l/Pds ~ c' 11 s-lds = 00. 

Finally we obtain U oo > 0 in B R. 

Remark. In general, we can't expect the more regularity of the solutions of this type. 
A counterexample is introduced by Tolksdolf [22]. 

As is well-known for the Laplacian, the Pohozaev type identity also holds for the 
p-Laplacian. It is due to Guedda and Veron (also due to Egnell). 

The extended Pohozaev Identity. 

n 1 H(x, u)dx + 1 X· 'V :z;H(x, u)dx+(l -~) { ug(x, u)dx 
n n P Jn 

=(l-~) ( x'lIluv lPdS 
p Jan 

where g(x, u) = Q{x)luIP-2u + K(x)luIP·-2u and H{x, u) = Iou g(x, s)dS. 

Calculating directly the relation, we get 

Assuming that Q(x) = Q(lxl) < 0, K{x) = ]({Ixl) (Q and]( is radial), Q'(s)+]('(s) ::; 0 
for every s E Rand 0 is star-shaped with respect to the origin, we get any nonnegative 
solution which belongs to Wci'p(O) n LOO{O) is only the trivial one. In our framework, 
Q has to be decreasing near the origin so that Q' + ](' ::; 0 holds. 

If Q( x) ~ Al (R), then there exists no positive solution of (2). Namely, the following 
theorem holds. 

Theorem 2.9. IfQ(x) ~ Al(R) and ]((x) > 0, then there exists no positive solution 
of (2). 

Proof· The proof is almost same as in that of Guedda and Veron (Theorem 3.3., 
using the Vazquez maximum principle and the extended Hopf boundary point theorem), 
so we omit it. 
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§2-3. A Radially symmetric solution on R n • 

In this section we consider 

in tlte radially symmetric class. We seek a solution of (13) as the limit of the sequence 
of the minimizers obtained in Theorem 3.3. Since Al (BR) -+ 0 as R -+- 00, we can not 
show the existence of nontrivial solution of (13) if Q > O( for given Q, Lemma 2.1 fails 
in a large ball.). Noting that Theorem 2.3 holds for nonpositive Q E C 1(Rn)nLOO(Rn), 
we assume here 

(Q - 2) Q(lxl) ~ O. 

Now we set for radially symmetric functions 

M~d = { u E Lfoc(Rn) 1 \7u E LP(Rn) JRn IQl!ttlPdx < +00, in Klu( dx = 1} 

5;;,Q = int r (l\7uIP - Q(x)luIP)dx. 
uEMrad JR n 

Noting that u E .Mp.(Br ) (assuming tL is radial) means u E M~d' we find out that 
5p• ,0 (Br )is decrea.c;ing as Br i R n. Namely, for any sequence of domains {B R j } such 
that BRj C BRj+l and BRj i R n as j -+- 00, we get 

On the other hand, let {,pj } E Co (R n) be a minimizing sequence in radially symmetric 
class for 5;:;,0 with SUpp,pj C BR; for any j, where BRj C BRj+l and B Rj i R n as 
j -+- 00. Then for any c > 0, there exists j(c) E N such that for all j > j(c) 

Hence we have 

Since c is arbitrary, we get 

(14) 

Noting the relation (14), we obtain the following existence theorem. 
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Theorem 3.1. Assume that I<, Q are l'adially symmetric and I< and Q satisfy (I< -2), 

limsupJ((lxl)::; 1 
Ixl-+oo 

and (Q - 2), respectively, then tllere exists a minimizer for S;;,Q in M~d i.e., there 
exists a solution of 

. MOO In rad. 

Proof. As a similar way of proof of Theorem 2.3, we will show the theorem in five steps. 

1 st step. To show the weak convergence of a. minimizing sequence. 

We take a sequence of balls {BRj} (BRo = B) such that 

and BRj i R n as j - 00. Let Vj be the radial minimizer obtained in Theorem 2.3 of 

(15) 
{ 

-div(IVuIP-2Vu) - Q(lxl)up
-

1 = Sp.,Q(BRJJ((lxl)uP·-1 

u> 0 in BRj 

u = 0 on {JBRr 

By the monotone decreaseness of Sp.,Q (BRj ), and the nonpositivity of Q, we have 

(16) 

Since (16) implies the boundedness of {VVj} in LP(Un
), we can choose a subsequence 

of {Vj} (still denoted by {Vj}) such that 

This means Voo E M~d' 

2nd step. To prove Voo 1= o. 
Now we invoke the radial lemma 2.2. 

By this lemma, we find {Vj} E L~c(Un\O). Now suppose that Voo = 0 holds. Using 
the property of { Vj }, we have 

S (B) > r JRn(IVVj IP - QIVj IP)dx 
p.,Q - j2.~ (JRn J((lxl)lvj Ip· dx)plp·· 
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We note that {Vj} is uniformly bounded on any annulus A, and the Lebesgue dominant 
convergence theorem holds on A. "Moreover, we should notice that by the assumption 
on [(, for £ > 0 there exist 6 > 0 and R > 0 such that 

Then we have 

1 ::; [({Ix!) ::; (1 + c)p·/p in Bo 

[((Ix\) ::; (1 + c)p·/p inR n\B R. 

Using the Sobolev embedding theorem and the property of [( and Q, we get 

1+£ 

Since £ is arbitrary, we find this relation is a contradiction. 
31'd step. Next we prove Voo E CI~; (R n\O). 

Since {vi} is bounded in Rn\BI) (for any 7} > 0), we get Voo E L~c(Rn\O). Hence 
invoking Proposition 2.6, we obtain Voo E Cll~;(Rn\O). 
4th step. To show Voo E Mr~d' 

The above consideration shows that Voo solves locally in the weak sense of H!I~: (R n), 

Then multiplying the both sides by Voo and integrating (17) over BR, we get 

Noting that by the radial lemma, voo(R) -+ 0 as R -+ 00 and 

are finite, we can choose an increasing sequnece {R,} such that 

R,-+ 00 as 1-+ 00, and v:x,(R,)::; 0 for any 1 EN. 
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Then we have for any lEN 

(19) 

Now letting I -+ 00 in (19), we get 

Then 

Using the Fatou lemma, we have 

I.e., 

5th step. To show the strong convergence of VVj. 

In the previous argument, we have 

On the other hand by the Fatou lemma, 

holds and in view of (Q - 2), we have 

Finally, we find out 

. MOO I.e., Voo E rad' 
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As in Theorem 2.2., letting Woo = (S;::,Q)l/(P·-P)VOO , we have that Woo is a solution 
of (13), moreover we find Woo is positive by Proposition 2.7. 

The proof is complete. 

Remal·k. In general, though \lVj converges to \lvoo in LP(Rn) and Voo E LP(Rn), Vj 
converges to Voo only in locally LP (R n). But if Q < -c < 0 holds on R n (c is a positive 
constant.), Vj converges to Voo in LP(Rn

). 

If Q is uniformly bounded away from 0, then we expect that the solution obtained 
in Theorem 3.1. decays exponentially at infinity. Following the idea of Tolksdorf [21] 
or Li and Yan [17], we have the follwing theorem. 

Theorem 3.2. If there exists Ro sucb that Q ~ -go < 0 [or all/x/ 2:: Ro, tllen [or some 
positive g < go, RI 2:: Ro and C > 0, we have [or the solu tion obtained in tbe previous 
theorem, 

Woo ~ Cexp(-( ~l)l/p/x/) /x/2:: RI 
p-

Proof. Since Woo -+ 0 as Ixl-+ 00 (by the radial lemma), there exist Rl and q such that 

(20) 

for RI ~ Ixl. Now let C 2:: woo(Rd and V = C exp(O(RI -Ix!)). Then we have 

2 - p-l ( { }) (n - 1) -div(I\lVIP- \lV) = CO exp O(p - l)(Rl -Ixl) {-(p - 1)0 + /xl }. 

Hence we get 

-div(I\lVl
p
- 2\lV) + qVp

-
1 2 C( exp {O(p - l)(Rl -Ix\)}) x 

(n -1) x {-(p - l)OP + Ixl Op-l + q}. 

Letting 0 = (~)l/P, we obtain 

(21) 

Putting c.p = (woo - V)+, then we have c.p E Wr1,P(Rn) and c.p(Rt) = O. Using (20), we 
have for Ixl2:: R 1 , 

(22) 

Now multiplying the both sides of (22) with c.p and integrating over {Ixl 2:: R 1}, we have 

(23) 

29 



Similarly for (21), we have 

(24) 

Calculating (23) - (24), we have 

Using 

we have 

n 

02: r (IVwoo IV- 2vwoo -lvvIV- 2VV) . V<pdx 
JI:cI~Rl 
+ 1 q( w~l - Vp-l )<pdx. 

1:cI~Rl 

I)leIV
-

2ei -177Iv-
27]i)(ei - l7d 2: lelV + Il71 V 

- (Ie1P
-

2 + 177IV-
2)lell '71 

i=l 
= (leIP -

1 -177I P-
1)(lel-I7]\) 

» 0 if e ~ 77, 

02:1 q(W~l - VP-l)<pdx. 
{1:cI~Rdn{woo~ V} 

Since Woo and V are continuous in Ixl 2: R1 , we obtain {Ixl 2: Rd n {woo 2: V} = 0. 
Finally we have 

The proof is complete. 
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Chapter 3. On Multiple Solutions. 

§3-1. Introduction. 

In this chapter we study the number of nontrivial solutions of 

(1) 

and 

(2) 

where 1 < p < n, p - 2 < u < np/(n - p) - 2. The equation (1) is a typical case of 
(2). In order to make clear the essence of proofs of our existence theorem for (2), we 
discuss (1) in Section 3-2. In [7], Y.-Y. Li treated (1) and (2) in the case p = 2. In [4], 
the author showed some existence theorems of (1) (though the multiplicity of solutions 
was not discussed) under some assumptions which were different from those of Y.-Y. 
Li. Our aim is to unify the results of Y.-Y. Li and the author. IVIoreover we show that 
the solutions obtained here decay exponentially at infinity. 

In the case p = 2, P.-L. Lions [8] discussed the existence of a nontrivial solution of 
this type of equations using his "concentration compactness argument". Ding and Ni [2], 
Ni [9] and Rother [11], [12] also considered similar type of equations, that is, semilinear 
elliptic equations with "su bcritical growth conditions" on R n. For quasilinear equations, 
Egnell [3] dicussed mainly the exist.ence and non-existence of the radial solutions of 
(2) with f(x, u) 2: O. He also considered a bounded domain case. G.-B. Li [6] also 

considered a p- Laplace equation on R". His main concern is the regurality of solutions. 
The multiplicity of the solutions is not discussed in both of them. 

In the following, we introduce some notations often used in this pCl-per: 

(.,.) means the dual coupling between (ltV1,P(R"))' and lV1,P(R"), and let 

lIuliP = j (!"vulP + luIP
), 

cI>(u) = ~j(l\7uIP + lulP ) - _1_ jq(x)lu lu+2, 
p u+2 

cI>oo(u) = ~j(l\7uIP + lulP
) - ~jqoolulu+2, 

P u+~ 

Voo = {u E vV1,P(R")\{a} I (cI>~(u),u) = a}, 

S = inf (jlV'uIP)l/P(jluIP·)-l/P. (the best Sobolev constant), 
uED1,p(Rn)\{O} 

Moo = inf cI>oo( u), 
uEVoo 

• np 
p =--, 

n-p 
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where qoo is a positive constant and D1,P(Rn) = {u E LP(Rn)/V'u E LP(Rn)}. Note 

that the best Sobolev constant depends only on nand p. 

Throughout this paper, if the integration is taken over the whole space, we do not 

indicate the domain of integration, and the Lebesgue measure "dx" is always omitted 
(except for Lemma 2.3). \Ve denote various positive constants by C. 

Now we state our main theorems. Condtions (Qt} - (Q3), (Fd - (F7) and (Cd, 
(C2 ) are stated later. For the equation (1), we have: 

THEOREM 1.1. Suppose tllat (Qd, (Q2), and (Q3) hold. ~Moreover we assume there 

exist N functions Uk E }V1,P(Rn) (k = 1,"" N) with disjoint supports such tllat 

Tllen (1) lIas at least N pairs of lIOn trivial solutions in Wl,P(R n). lIt/oreover, if 

tJlen each weak solution to (1) belongs to Loo(Rn) n Cl,J.I(Rn) (0 < Jl < 1), provided 

n > p ~ 2. 

For (2), we get: 

THEOREM 1.2. Suppose tllat Conditions (Fd-(F7) and (Cd, (G2 ) llOld .. Moreover we 

assume there exist N functions Uk E IV1,P(Rn
) (k = 1"", N) witll disjoint supports 

such that 

k = 1 ... N , , , 

and let 

If 

supJ(u) < Mg 
XN 

llOlds, tilen (2) has at least N pairs of nontrivial solutions in W1,P(Rn). 

Since the proofs of these theorems require some lemmas, we discuss the details in 
Section 3-2 and Section 3-3. 
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§3-2. The case of separation of variables. 

In this section we consider only the equation 

(1) on R n , 

where 1 < p < n, and p - 2 < (J' < p. - 2. vVe assume that q(x) satisfies the following 
conditions: 

(Qd 

(3) 

There exists a number qoo(> 0) such that limsupq(x) ~ qoo. 
1,1;1 ..... 00 

First we state some lemmas, which ensure Proposition 2.5 and Lemma 2.6. 

Especially, by the Sobolev inequality, we llave 

(4) 

LEMMA 2.2. For any x, y E R, we have 

Clx - yla if 0 < a < I, 
C(lxla- 1 + Iyla-l )Ix - yl if 1 ~ a. 

Proof. If 0 < a < 1, then the inequality follows from the Holder continuity with exponent 
a of the function Ixla-Ix. If a ~ 1, then the mean value theorem can be applied. Hence 
the inequality holds. 

The proof is complete. 
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LEMMA 2.3. Let p > 1. For a bounded sequence of functions h E LP(Rn
), we assume 

tllat h --'" f(E LP(Rn
)) weakly ill LP(Rn

) alld h -+ g(E LP(Rn
)) a.e. in R n as j -+ 00. 

Tllen 

f =g a.e. in R n 

holds. 

Proof. Let 

A~') = {x E Rn/lh(x)1 ~ I}, 

A (I) - uoo n°o A(I) d A - U OO A(I) 
. - m= 1 k ~ m k' an - 1= 1 • 

Since h E LP(Rn
) converges almost ever where to g, the (n-dimensional) Lebesgue 

measure of R n - A equals to 0, that is, IRn - AI = O. Now for any 1f; E Co(Rn), we 

have by the Lebesgue convergence theorem 

r Ii 1f;dx -+ r g1j;dx as J -+ 00. J A(/) J A (I) 

On the other hand, we get by the definition of weak convergence 

Letting I -+ 00, we obtain 

r g1j;dx = r f1f;dx. Jan Jan 
This implies f = 9 a.e. in R n. 

The proof is complete. 

Now we show the crucial proposition for the multiplicity results. vVe recall the 

definition of the local Pala.is-Sma1e condition (denoted by (PS)c). 

DEFINITION 2.4 (the (PS)c condition). Let E be a real Banadl space and J E 

C1(E,R). lYe say tllat tlle functiollal J satisfies the (PS)c if allY sequence {Uj} satis

fying 

(5) 

contains a strongly convergent subsequence. 

The proposition is : 
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PROPOSITION 2.5. q, satisfies (PS)c [or all c E (-<Xl, Moo). 

Proof. Let {Uj} C W1,P(Rn
) be a sequence satisfying (5) for c E (-<Xl, 11100 ), that is, 

(6) { ~ J (I\lUj IP + IUj IP) - 0- ~ 2 J qluj lu+2 -+ c 

I(q,'( Uj), v)1 :s; o(l)llvll for any v E W1,P(Rn
). 

Letting v = Uj in the second inequality of (6), we have 

(7) -o(l)IIUjll :s; j(I\lHjIP + IUjIP) - j qlujlu+2. 

By (6) and (7), we get 

0-+2 
(-- - l)IIUj W :s; o(l)lIuj II + (0- + 2)c + 0(1). 

p 

Thus we obtain the boundedness of {Uj} in W1,P(Rn
). lIenee we may suppose that a 

subsequence of {Uj} (still denoted by {Uj}) satisfies 

{ 

Uj ---" U oo weakly in W1,P(Rn ), 

Uj -+ Hoo 10ca~IY st~onglY in L 9 (R n) 1 :s; () < p. , 

Uj -+ U oo a.e. m R . 

The proof of Proposition 2.5 needs the following lemma. 

LEMMA 2.6. (<I>' ( Uoo), Uoo ) = 0 holds. 

Proof. Obviously, we have (<I>' ( Uj), Hoo) = 0(1), that is, 

First we observe 

Since the two sequences {1\lUj IP-2\lUj} and {Iuj IP-2 Uj } are bounded in LP/(P-l)(Rn ), 

we may assume these are weakly convergent. in LP/(p-l)(Rn
) (choosing a subsequence 

once more if necessary). By Lemma 2.3, the weak limit of {I\luj IP-2\lUj} coincides 
with l\luoo lp -

2 \luoo ' lIenee we have 

36 



Next we show J qlUj 1(7 Uj Uoo - J qluoo 1(7+2 = 0(1). 

Since q E L t (R n), for every € > 0 there exists a bounded domain n such that 

holds. Noticing that 

J qlujl(7ujuoo - J qluoo l(7+2 

= r (qlujlQ"Uju oo - qluoo l(7+2) + r (qIUjl(7ujU oo _ qluoo l(7+2), 
Jn JRn\n 

we find that the integration over 0 yields 

In /qlujl(7ujuoo - qluoo l(7+2/ 

:::; (In Iqltf 't (In Ilujl(7uj -luool(7uoolar/a (In IUooltJr
/tJ 

where I/t + I/a + 1/13 = 1, a and 13 satisfy if 

p* /(p* - (0" + 2)) :::; t :::; p*(O" + 2)/(p* - (0" + 2)), 

then 

(8) p*t * 
a = (p* _ 1) t _ p*' 13 = p 

and if t > p*(O" + 2)/(p* - (0" + 2)), 

(9) a = 0" + 2 13 = (0" + 2)t 
0"+1' t-(0"+2) 

In both cases, p :::; (0" + l)a :::; p* and p :::; 13 :::; p* hold. If t > p* /(p* - (0" + 2)), 
then p < (0" + l)a < p*. By the strong convergence of {Uj} in LII (0) for each 0 with 
1 :::; 0 < p* and Lemma 2.2, we have 

In (qlujl(7Ujuoo - qluoo l(7+2) = 0(1). 

If t = p* j(p* - (0" + 2)), we use another inequality: 

In /qlujlUuju oo - qluoo l(7+2/ 

:::; s~p Iql (In Iluj 1(7 Uj -Iu
oo 

1(7 Uoo 1«7+2)/«7+1») (u+1)/(u+2) (In IU
oo

l(7+2) 1/«7+2) 
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Using the same fact stated above, we have again in this case 

For Rn\n, we have 

r /qlujlC1 UjUOO - qluoo lC1 +2
/ 

JRn\fl 

:::; (r Iqlt)l/t( r IlujlCT Uj _lttooICTuoola)l/a( r luool.B)l/.B 
JRn\fl JR"\n JRn\n 

:::;€( r IlujlC1uj-luoolC1uoola)l/a( r luoo l.B)l/fJ 
JRn\n JRn\n 

where a and f3 are defined by (8) and (9). Then the boundedness of 

r lIujlCT Uj -luoolCTuoola 
and (r luoo lfJ)l/fJ 

JRn\fl JRn\n 

follows from the boundedness of {Uj} in Wl,p(Rn),(3), and Lemma 2.2. Hence we have 

Since € is arbitrary, we have 

The proof is complete. 

Now we get back to the proof of Proposition 2.5. As in Y.-Y. Li, there is no other 
possibility of {Uj } except for the following two cases. 

(A) For all 0 > 0, there exists an R > 0 such that 

r (I\luj IV + IUj IP) < 0 
Jlxl~R 

holds for each integer j(~ no(R)). 
(B) The negative proposition of (A): There exists a 00 > 0 such that 

r (I\lUjIP+IUjIP)~oo 
Jlxl~R' 

holds for each R' > 0 and for a suitable integer j(~ R'). 
First we consider the case (A). Recalling the lower semi-continuity of the norm, we 

have 

38 



As in (7), we get 

In the unbounded domain {Ixl 2: R}, we have as in the proof of Lemma 2.6, 

with l/t + l/a + 1//3 = 1. a and /3 are determined by (8) and (9). In addition, by (3) 
we get 

{ IUj I(u+l)a ~ (r IUj IP Y"/P (r IUj IP· Y\/p· 
J1:cI?R J1:cI?R J1:cI?R 

where K. = p{p. - (O"+ l)a)/{p· - p) and A = p. ((0"+ l)a - p)/(p. - p). Now the Sobolev 
inequality, we have 

Hence in the case (A), we obtain 

(1 )l/a ( )l/a IUj l(uH)a ~ C r/"'+>')/p = C6(u+1)/p. 
1:cI?R 

Hence we have 

I { qlUjlUUjVI ~ C6(u+l)/PllvIL 
J1:cI?R 

using (3) for v. For the domain BR = {Ixl ~ R}, we also have in a similar way, 

if t > p. /{p. - (0" + 2». Even if t = p. /(p. - (O" + 2», we have 

I { qlujlUujv- { qluoolUuoovl 
JBR JBR 

~ C sup Iql (r /lUj IU Uj -Iuoolu U
OO 

I(U+2)/(UH))(U+1)/(U+2) II vII 
BR JBR 

~ o{l)lIvll, 
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Thus we have by letting v = Uj, 

Similarly, we calculate the behavior of the term 

as j -+ 00. We get if t = p. /(p. - (0" + 2)), 

r rqlluoo lu+lluj - uool 
JBR 

~ sup Iql( r IUoo IP·)(U+l)/P· (r IUj - U oo IP·/(P·-(U+l»)(P·-(U+l»/P· = 0(1). 
BR JBR JBR 

The last estimate follows from the fact that Hj converges strongly to U oo in L p. -(,,+1) (BR) 
(this exponent is subcritical). Ht > p./(p. - (0"+ 2)), we get 

where l/t + (0" + l)/p· + 1/ P = 1. Since t > p. /(p. - (0" + 2)), p < p. and the last 
estimate follows. 

Hence we get 

I jWVUjlP + IUjIP) - j(lVUoolP + IUooIP)1 

= I j(IVujiP + IUjIP) - j qluoo lu+2! 

~ I !(IVUjIP + IUjIP) - ! qluoolUuooUjl +!! qluoolUuoouj -! qluoo lu+21 
~ C(<<5(U+l)/P + 0(1)) 

Since «5 is arbitrary, we have 

which implies, together with the weak convergence Uj ->. Hoo in a uni.formly convex 
Banach space Wl.P(Rn

), the strong convergence 
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In the case (A), we obtain the strong limit U oo of {ttj}. 
Next we consider the case (B). Here we may assume, for some 80 > 0, that 

holds for all lEN and an appropriate jl(?: I). For c > 0, there exists an Ro > 0 such 
that 

(10) 

and 

(11) q(x) < qoo + c for Ixl ?: Ro 

hold. From the boundedness of {uh}, we can choose an integer m(c) E N such that 

holds for all I. Now let 

h = {x ERn I Ro + k - 1 ~ Ixl ~ Ro + k} for k = 1,2,· .. , m(c). 

Then we have 

for a suitable i E {I,···, m(c)}. Hence we get, choosing a subsequence of {I} if necessary 
(still denoted by {I}), independently of I, 

hi (I\luj, IP + IUh IP) < c. 

Hereafter we set Ii = {x ERn I R ~ Ixl ~ R + I} (R ~ R). 
Now we define a cut off function Pl(X) E CO'(Rn) such that 

o ~ Pl ~ 1, 1\7 pd ~ 2, 

{
I Ixi ~ R 

Pl = 0 Ixl?: R + 1 

and P2 = 1 - Pl' Let VI = PI Uj" and WI = P2uh' Then we have supp VI C B R+! and 
su pp WI eRn \ B kNow we estima.te 

I (<I>'(uj,), VI) - {<I>'(vd, vI)I· 
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The calculation shows 

I (<I>' (Uj,), VI) - (<I>' ( VI), VI)I 

::; j(I'\1tti ,IP-2'\1Uir'\1VI + IU irl p
- 2Uj,VI) - j(l'\1vdP + IvdP) 

+ J qlUj,lUUjrVI - J qlvdu+2 

::; 1; II'\1Ujr IP-2'\1Ujr '\1VI + IUjr IP-2 ui , VII + 1; (l'\1vdP + IvdP) 

+ 1 qlui,lU Ui, VI -1 qlvd
U
+

2 
, 

I; I; 

where the last inequality follows from ui, = VI on B k For the integral 

we have the following estimate by using the Young inequality: 

1; 11'\1 uir IP-2'\1 Uj, '\1 VI + IUjr IP-2uir VII 

::; (li l'\1UirIPYP-1)/P(1; l'\1vdPrlP 
+ (1; Itti ,IP)(P-1)/P(1; IvdPr

lP 

~ p; 1 (1; l'\1ui,IP + 1; IUi,IP) + ~ (1; l'\1vdP + IvdP) 

::; C€. 

The second term is estimated as follows: 

The last term yields, by using the Holder inequality and (4) with s = (0- + 2)t/(t - 1), 

::; 1i Iqllui,lu+2 ::; (1; Iqlt) 111 (1; IUi,I(U+2)tl(/-l») (t-1)/t 

(1 )6(t-l)IPt 
::; C I; l'\1ui,IP + IUi,lP 

::; C€(u+2)lp = o(€). 
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Note that (0" + 2) < s ~ p. if t 2 p. j{p. - (0" + 2)). Finally, we get 

1(<I>'(uj,),vI) - (<I>'(vd,v,)1 ~ Ce. 

Similarly, we have 

1(<I>'(Uj,),wI) - (<I>'(wd,w,)\ ~ Ce. 

Since (cI>'(Uj,), VI) = 0(1) and (<I>'(uj,)' WI) = 0(1), we have 

(12) 
{ 

jWvvdP + IvdP ) = j qlvdu+2 + O(e) + 0(1), 

J (l'VwIIP + IwdP) = j qlwdu+2 + Ok) + 0(1). 

Because {uj,} is a sequence for c satisfying (6), 

c + 0(1) = <I>(uj,) = cI>(VI) + <I>(WI) + O(e) 

holds. In addition, from (12) we have 

1 1 
<I>(VI) = (- - -2)IIvdIP + O(e) + 0(1) ~ O(e) + 0(1). 

p 0" + 

Then we have 

C + 0(1) ~ <I> ( wJ) + O(e) 

(13) = ~ !(I'VwdP + IwdP) - _1_! qlwdu+2 + O(e). 
p 0"+2 II! = (- - --2) (l'VwdP + IwdP

) + O(c) 
p 0" + 

Moreover, we get in this case; for large l(~ R + 1), 

By (11) and (12), we also get 

Now let 
~ = {J(I'VwdP + IwdP) }1/(U+2-P) 

J qoolwdu+2 

and WI = ~WI. Then WI E Voo. We should note ~ f. +00. For Ixl ~ I, by assumption 
(Q3), q ~ qoo + e holds. Then we have 

j (I'VwdP + IwdP) ~ j Qoolwdu+2 + e j Iwdu+2 + O(e) + 0(1), 
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and ~ = {I + O(c)P/(0'+2-p ). Hence we get 

M= ~ e !(!'VwdP + !wdP) - C+:! q=!wdO'+2 
p CT + ~ 

= e( ~ - _1_) !(!'VwdP + !wliP) 
P CT + 2 

= (~ - _1_)(1 + O(c))P!(0'+2-P) !(!'VwdP + !wzlP) 
P CT + 2 

S (~- ~) !(!'VwdP + !wzlP) + O(c"), 
p CT + ~ 

where 1J = min(l, p/(CT + 2 - p)). From (13) and the above, we obtain 

Af= - c ~ O(c"). 

Since c is arbitrary, we have 

which is a contradiction. 
The proof is complete. 

N ow we are in a position to prove the following theorem. 

THEOREM 1.1. Suppose tllat (Qt}, (Q2), and (Q3) llOld. ~Moreover we assume there 
exist N functions Uk E W1,P(Rn

) (k = 1,···, N) witll disjoint supports SUell that 

! qIUk!0'+2 > 0, k = 1,,", N, 

N (JI'VUk!P + !Uk!P)(0'+2)!(U+2-P) 1 1_1 

{; (J q!Uk!U+2)P/(U+2-P) < (p - CT + 2) M=. 

Then (1) llas at least N pairs of nontrivial solutions in W1,P(Rn
). l\foreover, if 

then our weak solution to (1) belongs to L=(Rn) n Cl,J.I(Rn) (0 < J-t < 1), provided 

n > p ~ 2. 

REMARK. From (Q2), there exists at least one function U such that J q!u!u+2 > O. 

Proof. Let 

where UI, ... , UN satisfy the assumptions of the theorem. Then 
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is a bounded set. By the Theorem of Rabinowitz in the appendix, it is sufficient to 

prove !vIoo > 0 and 

First we show Moo > O. By (4) with s = u + 2, we have 

Hence we obtain for U E Voo 

Then we have 

(14) <P (u) > (~ _ _ 1_)Sp·p/(p·-P)q-p/(u+2-p) 
00 - p u+2 00 , 

hence Moo > O. 
Next we show SUPXN <p(u) < Moo. 
Since SUppUj n SUppUj = 0, we have for U = t1 U1 + ... + tNuN, 

N J (j'VuIP + lulP) = ?= li j IP J (l'Vuj IP + IUj IP), 
)=1 

N J qlulcr+2 = ?= Itj Icr+2 J qlUj Icr+2, 
)=1 

Now Let Aj = J(I'VUjIP + IUjIP) and Bj = J qlujlcr+2, Then, by the Holder inequality 
and the assumption on {Uj}, we have 

N N L lij IP Aj = L Itj IP Aj Bj/(U+2) BjP/(cr+2) 

j=l j=l 

S { t(A
j 

B
j
- P/(cr+2»)(cr+2)/(U+2- P)} (cr+2-p)/(cr+2) {flt

j 
Icr+2 B

j 
}P/(U+2) 

)=1 j=l 

N 
< (! __ 1_)-Ccr+2-p )/Ccr+2) l\ICcr+2- p )/(cr+2) { " It 'lcr+2 B. }P/CtT+2) 

P u+2 00 L-) J 
j=l 

Hence we get 
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where Moo ( < 11100 ) is a constant for which the second inequality in the assumption 
holds. Since 

_ ! __ 1_ { J(lV'tt.IP + lulP) }(17+2)/(17+2-P) :-: 
max<1>(su)-( 2) (J II +?) /( +?) <111001 ~~o P (f' + q tL 17 ~ P 17 ~ 

we find that 

sup <1>( tl.) < Moo. 
UEXN 

Thus we have checked all the hypotheses of the Rabinowitz Theorem and the conlusion 
of our theorem comes ilumediately from it. The regularity of solutions to our problem 
comes from the regularity theorem due to G.-B. Li [6]. 

The proof is complete. 

COLLORARY 2.7. In addition to the assumptions of TIl eo rem 1.1, if(Q4) holds and 

limsupq(x) ~ 0, 
Ixl-oo 

then there exist infinitely many solutions of (1). 

Proof. We can take qoo > 0 so small that 11100 is large enough. In fact, this is possible by 
the estimate (14). Then, according to Theorem 1.1, we can take N functions assumed 
in it with their supports in the open set {x E Rnlq(x) > O} assumed in (Q4). Since qoo 

can be taken arbitrarily small, N may be arbitrarily large. 
The proof is complete. 

THEOREM 2.8 (Exponential decay). Under tIle assumptions of Theorem 1.1, if 

tllen for given TJ (0 < TJ < 1), there exists an R(TJ) > 0 sUell that our solution u to (1) is 
estimated as 

lu(x)1 ~ C(TJ) exp { - (_TJ_)l/Plxl} 
p-1 

for Ixl ~ R(TJ), where C(17) is a positive COllstant. 

Proof. We may assume that the solution tL to (1) is nonnegative, continuous and satisfies 
limlxl_oo u(x) = 0 (due to G.-B. Li [6]). Then for given 11 > 0, there exists an R(TJ) > 0 
such that 

(15) 

holds for Ixl ~ R(TJ). 
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Now let 
1 - 7} / 

V(X) = C(17) exp { - (_-1)1 Plxl} 
p-

with C(17) = U(R(1J)) exp {(!=i )l/p R(17)}, where U(R(1J)) = maxlxl=R('1) u(x). Then 
putting l' = lxi, we have 

Hence we get 

(16) 
n -1 (1 -1J)(P-1)/P -div(IVVIP-2VV) + (1 - 17)1Vlp- 2V = -- --1 IVlp- 2V ~ O. 

l' p-

On the other hand, by (15), we have for solution u to (1) 

(17) 

Now let </J . (u-V)+. Then by G.-B. Li's regula.rity theorem, </J E CO(Rn)nLOO(Rn). In 

addition, integrating (16) and (17) over {Ixl ~ R(17)} with a test function </J (</J(R(77)) = 
0), we get 

and 

r (IVVIP- 2VVV</J + (1- 77)IVlp- 2 V</J) ~ 0, 
J1xl?R('1) 

Substracting the above two inequalities, we obtain 

Here we have used for e, ( E R n with e =I ( 
n 

I)leIP-2ei -1(IP-2(d(ei - (d ~ lelP + I(IP - (leIP-2 + 1(IP-2)lell(1 
i=l 

Since u and V are continuous, we have 

{Ixl ~ R(1J)} n {x ERn lu > V} = 0. 
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This implies u :s; V for Ixl :s; R(7J). 
The proof is complete. 

§3-3. The general case. 

In this section we consider more general equations of the form 

(2) 

We assume that I(x, 11) satisfies the following assumptions: 

(Fd I(x, u) is continuous in u for almost all x E Rn. 

(F2) I(x, u) is odd in u E R. 

where p - 2 < r < u < p* - 2, hI E L~(Ie) n L/:,'ARn) (, 2: p* j(p* - (1' + 2))), and 
b2 E L$(Rn) n L~c(Rn) (s 2: p* j(p* - (u + 2))), but L~c(Rn) is needed only for the 
cases when the equality on <; or s holds 

for all UI, tL2 E R, where b~ E L( n L~c(Rn), and b~ E U n L/:,'c(Rn) with the same <; 

and s in (F3), but L/:,'c(Rn) is again needed only for the cases when the equality on , 
or s hold. 

1 
F(x, u) ~ -::I(x, u)u for (x, u) E R n x R and some p > p 

p 
(Fs) 

where F(x, u) = Iou I(x, s)ds. 

( 
z;o ) 1 (x, u) . 1 II b d d . n 
r6 lulp - 2 u IS oca y oun e 111 R x R, and nondecreasing in u if u> o. 

There exists a mapping 9 : R n x R f--Io R sat.isfying the following properties: 

I(x, tL)u :s; g(x, u)u, for alllxl > Rl , u E R, 

9 E C(R n x R, R), u f--Io g(., tL)u is a continuous map Wi,P(R n) -+ Ll (R n), 

TP+'g(X,u)u ~ g(X,TU)TU for T 2: 1, x ERn, tL E R (t > 0), 

limsup ..!-.!9(X,TW)TW = 0 for all W E W 1,P{Rn
) 

T-++O TP 

with supp we Rn\BR1 for some Rl > o. 
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Now let 

G(x,u) = l Ug(x,s)ds, (x,u)ERnxR, 

J(u) = ~ !(I"vulP + IttIP) - ! F(x, u), 

1((u) = ~ !(I\luIP + lulP) - ! G(x, u), 

Vg = {u E vV1,P(Rn
)\ {O} I (1('( u), u) = O}, 

Mg = inf K(u). 
ue Vg 

Moreover we assume fo'r G and 9 of (F7), 

(Gd 

for some q(> p) and 

1 
G(x, u) < -9(X, u)u 

q 

2 

! 19(x, u)ul ::; ?= Gj (! (l\luIP + luIP)) orj 

1=1 

for some Gj 20 (Gr + ci =I- 0), (Xi > 1 (i = 1,2). 

EXAMPLE. Let 
/(x, u) = ql (x )lul U1 

U + q2(X )lulUlu 

with limsuplxl ..... oo qi(X) < q (i = 1,2) and /(x, u)u > 0 for some (xo, uo) E R n x R. 
Here we assume qj(2 0) E GO(Rn

) n Vi(Rn) with tj > p. /(p. - (Uj + 2)) (i = 1,2), 
p < Ul + 2 < U2 + 2 < p. and q > O. Then /(x, u) satisfies (Fd - (F7) with 9(X, u) = 
q(lulU1 U + luI U2 u). Moreover 9(X, u) satisfies (Gd and (G2 ). 

REMARK. Obviously b1 , b2 , b~, and b~ are nonnegative. From (F2 ), /(x, u)/(luIP-2u) 
is even in u. Then (F6) implies that /(x, u)/(luIP-2u) is non-increasing in u if u < O. 
Note that for w E W1,P(Rn

) with supp we Rn\BRlI we have by (F7) 

(18) ! F(x, w) ::; ! G(x, w). 

Then, as in Section 3-2, we have a similar proposition to Proposition 2.5. 

PROPOSITION 3.1. J satisfies (PS)c for c E (-00, Alg). 

Proof. Let {ud C W1'P(RIl) be a sequence for c E (-00, Mg) satisfying (5), that is, 

(19) { 
~ ! (I\luj IP + IUj IP) - ! F(x, u) -+ c, 

I(J'( Uj), v)1 ::; o(I)llv" for any v E W1,P(Rn
). 
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As in the proof of Proposition 2.5, letting v = Uj in (19) and using (Fs), we have 

-0(1)IIUj II ~ j (I\7ttj IP + Ittj IP) - j !(x, Uj )Uj 

Hence we get 

~ j (I\7Uj IP + IUj IP) - p j F(x, ttj) 

= (1-~) j(I\7UjIP + IUjIP) +pc+o(I). 

p-p 
--lIuj liP + pc + 0(1) ~ 0(1)1I1tj II· 

p 

This implies the boundedness of {ttj} in Hfl,p (R n) by p > p. Hence we may suppose 
that a subsequence of {ttj} (still denoted by {ttj}) satisfies 

{ 

Uj -... Uoo weakly in Wl,P(Rn
), 

Uj --+ Uoo loca~IY st~onglY in L i1 (Rn
), 

Uj --+ Uoo a.e. III R . 

1 ~ 8 < p., 

Similarly, to prove Proposition 3.1, we need the next lemma. 

LEMMA 3.2. (J'( uoo ), uoo } = 0 holds. 

Proof. As in the proof of Lemma 2.6, we have (choosing a subsequence if necessary) 

j(I\7UjIP-2\7Uj\7Uoo + IUjIP-2 UjUoo ) - j(I\7Uoo IP + luoolP) = 0(1). 

N ext we prove 

j !(x, Uj )uoo --+ j !(x, uoo)uoo as j --+ 00. 

For any E > 0, there exists an R > 0 such that 

r bl < E, r b~ < E. 
J1xl?R J1xl?R 

N ow we estimate 

I r !(x,Uj)uoo l,11 !(x,ttoo)uool, and I r {!(x,Uj)uoo-!(x,uoo)uoo}l· 
J1xl?R Ixl?R J BR 

For the first term, we have, in 'a similar manner to the proof of Lemma 2.6, using (F3), 

I r !(x, Uj )uoo I ~ r I!(x, Uj )uool 
J1xl?R J1xl?R 

~ r bduj r+1lttoo l + r b21uj IU +11uoo l 
J1xl?R J1:r:I?R 

~(r b~r/« r IUjl(T+l)Vr
IV

( r luoolwr'w 
J1:r:I?R J1:r:I?R J1:r:I?R 

+ (r b;) 1/11 (r Itt; I(U+1)V') 11 v' (r IUool w ') 1/
w

' 

J1:r:I?R J1:r:I?R J1:r:I?R 
~CE, 
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where 1/t:; + 1/11 + l/ro = 1, and 1/ s + 1/11' + l/ro' = 1, and they are. determined as 
follows: if p* /(p* - (r + 2)) ~ t:; ~ P*(1' + 2)/(p* - (1' + 2)), 

(20) p*c; * 
11= ,ro=p. 

(p* - 1)t:; - p* 

if t:; ~ p*(r + 2)/(p* - (r + 2)), 

(21) 
r+2 (r+2)c; 

11= --, ro= . 
r + 1 c; - (r + 2) 

II', ro' are determined as (8) and (9). Also for the second term, we have 

r I/(x, uoo)uool ~ Ce. 
Acl?R 

For the last term, we have by (F4) 

I r {/(x,Uj)u oo - /(x,uoo)uoo}1 
JBR 

~ r (b~lIujlruj -Iuoolruool +b~llujIUuj -luooluuooDluool. 
JBR 

By Assumptions (F3) and (F4), it suffices to calculate only the terms which have r as 

the exponent of lui. If c; > p* j{p* - (r + 2)) and s > p* j(p* - (0" + 2)) then we have, 
using Lemma 2.2 with exponents (20) and (21), respectively, 

and 

If c; = p* /(p* - (r + 2)) or s = p* j(p* - (0" + 2)) then we get 

r (b~lIujlruj -Iuooiruoo/}Iuool 
JBR 

~supb~ (r lIujlruj _luooruool(r+2)/(r+1»)(r+l)/(r+2)( r luoo lr+2)1/(r+2) = 0(1) 
DR JDR JDR 

and 

~ sup b~ (r Il U j IU Uj -IUoolu U oo l(U+2)/(U+1») (u+1)/(u+2) (r IUoo IU+2) 1/(u+2) 
DR JBR iBR 

= 0(1). 
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Finally, we have 

Since £ > 0 is arbitrary, we obtain (J'(uoo),u oo ) = O. 

The proof is complete. 

Now we get back to the proof of Proposition 3.l. 

As in the proof of Lemma 2.6, let us consider two cases: 

(C) For all 8 > 0, there. exists an R > 0 such that 

{ (IV'uj IP + IUj IP) < 8 
JI:t:I~R 

holds for each integer j(~ no(R)). 

(D) The negative proposition of (C): There exists a 80 > 0 such that 

{ (IV'Uj IP + IUj IP) ~ 80 
JI:t:I~R' 

holds for each R' > 0 and for a suitable integer j(~ R'). 

According to the proof of Proposition 2.5, we first consider the case (C). To show 

the strong convergence of {Uj}, it remains to estimate 

The first term yields 

On the other hand we have 
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and 

r b2 1Uj IU+llvl 
J1xl?R 

s (r b;) 1/ ~ (r IUj I(U+l)V') l/v' (r Ivl ro ') l/ro' S C8(u+l)/Pllvll 
J1xl?R J1xl?R J1xl?R 

where v, w, v', ·w' are defined by in (20) and (21), and (/p+ ~/p* = 1, (+ ~ = (r + 1)v. 
The last inequality comes from the same reason in Section 3-2. 

Hence we get 

I r f(x, Uj )vl S C(8(r+l)/p + cS(u+l)/P)lIvll. 
J1xl?R 

Similarly, we have 

I r f(x, uoo)vl S C(cS(r+l)/p + 8(U+l)/P)lIvll. 
J1xl?R 

For the domain BR, we have as in the proof of Lemma 3.2, 

I r (f(x, Uj) - f(x, uoo))vl s 0(1)lIvll· JBR 
Then we get 

I j (I'luj Ip- 2'lu/'Vv + IUj IP-2 Uj V - j f(x, Uoo)vl s { C( cS(r+l)/p + 8(U+l)/P) + 0(1) }lIvll. 

Especially let ting v = Uj, we get 

I j (l'lUj IP + IUj IP) - j f(x, uoo)Uj I s { C(8(r+l)/p + 8(U+l)/P) + 0(1) }lIuj II· 

Now we consider 

/ j(I'lUjIP + IUjIP) - j(I'lUooIP + IUooIP)/. 

Using 

{ 

j (I'luj IP + IUj IP) = j f(x, Uj )Uj + 0(1), 

j(l'lUooIP + luoolP) = j f(x,uoo)u oo , 

we have 

I jO'lUjIP + IUjIP) - j(I'luooIP + IUooIP)1 

s I j (J(x, Uj )Uj - f(x, uoo)uoo ) 1+ 0(1) 

S j If(x, Uj)Uj - f(x, uoo)Uj 1+ j If(x, uoo)Uj - f(x, uoo)uool + 0(1) 

s { C(8(r+l)/p + 8(U+l)/p) + 0(1)} + j If(x, uoo)Uj - f(x, uoo)uoo I 

s {C(8(r+l)/p + 8(U+l)/p) + 0(1)} + r If(x, uoo)Uj - f(x, uoo)uool. 
JBR 
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~xl~R I/(x, Uoo)Uj - /(x, ttoo)U oo 1 has been estima.ted in the proof of Lemma 3.2. For 
the term 

we have by using (F3) 

If, > p* /(p* - (r + 2)), we have 

r bduoolr+lluj - uool iBR 
~ (r b1r/« r luoo()(r+l)/p*( r IUj-uoo IP)l/P=o(l), 

iBR iBR iBR 
where 1/, + (r + l)/p* + 1/ p = 1. Since, > p* /(p* - (r + 2)), p < p* and the last 
inequality follows. If, = p* /(p* - (r + 2)), we have 

The last inequality of the above follows from the fact that Uj converges strongly to Uoo 

in LP*/(p· -(r+l»(BR ) (this exponent is subcritica.l). 
Similarly, for the latter term we have 

lIenee, finally we have 

Since 0 > 0 is arbitrary, we have 

which implies the strong convergence of {Uj}. 

If (D) occurs, then we may assume that for some 00 > 0 
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holds for all j EN. In addition, there exists an R2 > 0 such that for any e > 0, 

holds. As in the proof of Proposition 2.5, for a subsequence of {Uj} (denoted by {uj,}), 
there exists an annulus I = {x ERn I R::; Ixl ::; R + I} (R ~ R 2 ) such that 

Now let VI = Pi(X)Uj,; and WI = P2(X)Uj, where Pi and P2 are stated in Section 3-2. As 
in Section 3-2, we estimate 

The estimate is as follows: 

\(J' (uj,), VI) - (J' ( VI), VI) I 
::; 1/IV'UirIP-2V'UirV'VI + IUj,IP-2 uj,v,1 + h(lV'vdP + IvdP) 

+ i I/(x,uj,) - l(x,vl)l\vd 

::;Ce + hl/(x, ui,) - I(x, v,)IIvd 

::;C€ + C { ( 1 (lV'uj, IP + IUJr IP») (r+2)/p + (1 (lV'uJr IP + \ui,IP») (U+2)/P} 

::;Ce + o(c) = a(e) (by p - 2 < 7' < 0'). 

Here we have estimated II I/(x, uj,) - I(x, v,)IIvd by using (F4) and (4) in the same 

spirit of the proof of Proposition 2.5. Hence we have 

(J'(V,), VI) = a(e) + 0(1). 

Similarly, we have 

(J'(w,), w,) = a(e) + 0(1) 

and 

J( v,) + J( w,) = c + a(e) + 0(1). 

Using 
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and 

we have 

J( VI) = r { ~ I{x, v,)v/ - F{x, v,)} + O(€) + 0(1). 
JBR+1 p 

From (Fs), we get 

Thus we obtain 

that is, 

In addition, by 

we have 

(22) 

Now let 

J(v/) ~ O(€) + 0(1). 

J(w/) ~ c+ O(€) + 0(1), 

~ / (l"VwdP + IwdP) - / F(x, w,) ~ c + O(€) + 0(1). 

! (l"VwdP + IwdP) = ! I(x, w/)w/ + O(€) + 0(1), 

J(w,) = ~ / I(x, w/)w/ - / F(x, w,) + O(€) + 0(1). 

3(t) = ~ /g(x, tw,)tw/. 
tP 

Then, for t = 1 + G€, we have by (F7) and the assumption J(I"VwdP + IwdP) ~ 00, 

3(1 + Ge:) ~ (1 + Ge:)' / I(x, w/)w/ ~ / !(x, w/)w/ 

= !(I"VwdP + IwdP) + O(c) + 0(1) ~ 00 + O(e:) + 0(1). 

Since limt_+03(t) = 0 holds by (F7 ), there exists a to(~ 1 + Ge:), such that 

Let w/ = tow/. Then w/ E Yo and by (18) we have 

.Mg ~ I« w,) =; / (l"VwdP + IwdP) - / G(x, taw,) 

~ ; / I(x, w/)w/ - / F(x, tow,) + O(e:). 
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Now set 

A(t) = : J !(x, Wt)Wl - J F(x, tWl)' 

Then A(t) is non-decreasing in t E [0,1]. This is because 

A/(t) = tp- 1 J !(x, Wt)Wl - J !(x, twdwl 

= tp-1 J ( !(x, WI) _ f(x, tw,) ) IwdP > 0 
Iwdp-2wl tp-llwdp-2Wl -

by (F6)' Hence if to E [0,1] we have 

Mg ::; J(w,) + O(€:) ::; C + O(€:) + 0(1}. 

If 1 ::; to ::; 1 + G€:, we have from the mean value theorem, for some tl E [1, to], 

(23) IA(to) - A(l)1 ::; G€:{ti-
1 J I!(x, wl)wd + J If(x, t1W1)wd}. 

By (22) 
A(l) = J( WI) + O(€:) + 0(1) 

holds and the integrals on the right hand side of (23) are bounded. Hence we have 

NIg ::; J(wt) + O(e:) ::; c + O(e:) + 0(1}. 

Since € > 0 is arbitrary, Mg ::; c, but this is a contradiction. 
The proof is complete. 

Now we prove Theorem 1.2. 

THEOREM 1.2. Suppose that conditions (Ft) - (F7) and (Gd, (G2 ) hold. Moreover we 
assume there exist N fUIIctiolls Uk E W1,P(Rfl

) (k = 1,···, N) witl} disjoint supports 
such tllat 

and let 

If 
supJ(u} < Mg 
XN 

holds, then (2) lIas at least N pairs of lIontl-ivial solutiol}s in W1,P(Rn
). 

REMARK_ From (F2)' u = 0 is also a solution of (2). But we are concerned with nontrivial 
solutions. Also in this case, all our solutions decay exponentially at infinity under similar 
assumptions stated in Theorem 2.8. But we do not prove it. 
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Proof. First we note 

is a bounded set. By the Theorem of Ra.binowitz in the appendix, it is sufficient to 

prove /l.lg > O. For u E \'g, we have by (Cd, 

I«u) = ~ J g(x, u)u - J C(x, 1l)U > (~ - t) J g(x, u)u 

1 1 J = (- - -) (lV'uIP + InIP). 
p q 

In addition, by (C2 ) we get 

This means 

(24) 

for some C> 0 and each u E Vg • Hence under the assumption on ai, we obtain 

1 1 
J«u) > (- - -)C 

p q 

for all u E Vg. This implies Mg > O. 
Thus we have checked all the hypotheses of the Rabinowitz Theorem and the con

lusion of this theorem comes immediately from it. 
The proof is complete. 

COLLORARY 3.3. Let 

limsupqj(x) ~ 0 (i = 1,2) 
Ixl-+oo 

and f(x, 1l)U > 0 for some (xo, 1lO) E R n x R then (2) has infinitely many solutions. 

REMARK. As stated in Exa.mple, if qi(~ 0) E CO(n,n) nVi(Rn) with tj > p. j(p. - (O'j + 
2)) (i = 1,2) and p < 0'1 + 2 < 0'2 + 2 < p., then Assumptions (F1) - (F7) are satisfied. 
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Proof. For every € > 0, we can take 9 in (F7) as 

Then in (24) the constant C tends to infinity as € -+ 0 (a similar estimate to (14) holds), 
and lvfg can be arbitrarily large. lIenee by (Fd there exist N functions with disjoint 
supports (in a neighborhood of (xo, tto)) which satisfy the assumptions of Theorem 1.2. 
Moreover we can take N arbitrarily large. 

The proof is complete. 

§3-4. Appendix. 

In this section, we state a minimax lemma due to Rabinowitz [9] which ensures 
the multiplicity of critical points. Suppose that E is a real Banach space, and let 
J E C l (E, R) be an even functional satisfying the following conditions: 

For some C> 0, 

J satisfies (PS)c for all c E (0, C). 

There exist p, Q' > 0 such that 

{ 
J > 0 inBp\{O} 

J ~ Q' on oBp • 

There exists an n-dimensional subspace Xn of E such that 

{ 

Xn n Ao is bounded in E, 

supJ < C, 
Xn 

where Ao = {tt EEl J (u) ~ O}. Let f* be a set of odd homeomorphisms from E onto 
E with the following property, that is, 

r* = {h E Homeo(E, E) I h(Bd C A o, h is odd} 

and let 

t = {J< eEl J< is compact, symmetric with respect to O}, 

and 

r m = {I( C th(J< n h(S)) ~ m for any h E r*}, 

where I(~) indicates the Krasnoselskii genus of a symmetric set ~ and S = OBI. For 
the Krasnoselskii genus, refer to Deimling [1] or Krasnoselskii and Zahreiko [5]. 

Now we are in a position to state the theorem due to Rabinowitz. 
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THEOREM 4.1. (Rabinowitz). Let E be a l'eal Banach space, and let J E C 1(E, R) 
satisfy (Jt), (J2), (J3 ). Let 

Then we have . 

bm = inf maxJ(u) m = 1, ... ,n; 
KEr m uEi( 

and {bj } are critical values of J. lIforeover ifbj = bj+1 for some j E {I, ... , n -I}, tllen 
J bas infinetely many critical points corresponding to bm . 
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