PDF issue: 2024-06-09 ## DOPPLER-FREE OPTICAL-OPTICAL DOUBLE RESONANCE POLARIZATION SPECTROSCOPY ON THE STRUCTURE AND DYNAMICS OF ALKALI METAL DIATOMIC MOLECULES #### 笠原, 俊二 (Degree) 博士 (理学) (Date of Degree) 1993-03-31 (Date of Publication) 2007-09-26 (Resource Type) doctoral thesis (Report Number) 甲1211 (JaLCDOI) https://doi.org/10.11501/3092491 (URL) https://hdl.handle.net/20.500.14094/D1001211 ※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 # 博士論文 # DOPPLER-FREE OPTICAL-OPTICAL DOUBLE RESONANCE POLARIZATION SPECTROSCOPY ON THE STRUCTURE AND DYNAMICS OF ALKALI METAL DIATOMIC MOLECULES ドプラーフリー光・光二重共鳴偏光分光法による アルカリ金属二原子分子の構造とダイナミックスに関する研究 平成 5 年 3 月神戸大学大学院自然科学研究科 笠 原 俊 二 #### TABLE OF CONTENTS | LIST OF TAB | LES | 4 | |-------------|---|----| | LIST OF FIG | URES | 5 | | Chapter 1. | INTRODUCTION | 8 | | Chapter 2. | SPECTROSCOPIC METHOD | 13 | | 2.1 De | oppler-Free Polarization Spectroscopy | 13 | | 2.2 D | oppler-Free Optical-Optical Double Resonance | | | Po | olarization Spectroscopy | 17 | | Chapter 3. | HIGH RESOLUTION LASER SPECTROSCOPY UP TO THE | | | | DISSOCIATION LIMIT OF THE 23 Na 39 K B $^{1}\Pi$ STATE, AND | | | | PREDISSOCIATION NEAR THE DISSOCIATION LIMIT | 25 | | 3.1 E | xperimental | 26 | | 3.2 D | etermination of the Molecular Constants of the | | | B | 1 П State | 30 | | 3.3 L | ong-Range Potential of the B $^1\Pi$ State | 36 | | 3.4 P | redissociation Near the Dissociation Limit of | | | tl | he B $^1\Pi$ state | 45 | | Chapter 4. | DOPPLER-FREE OPTICAL-OPTICAL DOUBLE RESONANCE | | | | POLARIZATION SPECTROSCOPY FOR HIGHLY EXCITED | | | | STATES OF THE ²³ Na ³⁹ K MOLECULE | 52 | | 4.1 Experimental | 54 | |---|-----| | 4.2 Determination of the Molecular Constants of Highly | | | Excited States of the 23 Na 39 K Molecule | 54 | | 4.2.1 Assignment of the Observed Transition Lines | 54 | | 4.2.2 Molecular Constants of Highly Excited States | | | And the Potential Curve of the $G^1\Delta$ State | 61 | | 4.3 Perturbation Between the Highly Excited States | 73 | | | | | Chapter 5. DOPPLER-FREE HIGH RESOLUTION LASER SPECTROSCOPY | | | OF THE Cs $_2$ $\text{D}^1\Sigma_u^+$ STATE AND THE PREDISSOCIATION | 80 | | 5.1 Experimental | 81 | | 5.2 Determination of the Molecular Constants of the | 01 | | $\operatorname{Cs}_2 \operatorname{D}^1\Sigma_{\mathfrak{u}}^+$ State | 85 | | 5.3 Perturbation Between the $\mathrm{D}^1\Sigma_{\mathrm{u}}^+$ and $(2)^3\Pi_{\mathrm{u}}$ States | 94 | | 5.4 Predissociation of the D $^1\Sigma^+_u$ State | | | -u - | | | ACKNOWLEDGEMENT | 108 | | REFERENCE | 109 | | | | | APPENDIX. THE OBSERVED ENERGY LEVELS OF HIGHLY EXCITED | | | STATES OF THE ²³ Na ³⁹ K MOLECULE | 113 | #### LIST OF TABLES | Table | I. | The J dependence of the polarization factor | | |-------|-------|---|-----| | | | $\zeta^{C,L}(J_1 \leftarrow J, J_2 \leftarrow J)$ | 18 | | Table | II. | The J dependence of the polarization factor | | | | | $\zeta^{C,L}(J_1\leftarrow J,J_2\leftarrow J_1)$ | 23 | | Table | III. | Hönl-London factor $\mathrm{S}(\Lambda_1,\mathrm{J}_1\leftarrow\!\Lambda,\mathrm{J})$ of a molecular | | | | | spectral line | 24 | | Table | IV. | Observed transition lines of the $^{23}\text{Na}^{39}\text{K}~\text{B}^{1}\Pi(\text{v'},$ | | | | | J'=16 and 18) - $X^1\Sigma^+$ (v"=4, J"=17) transitions | 33 | | Table | v. | Molecular constants E_{V}^{0} and B_{V} for $v'=16-43$ of | | | | | the $^{23}\text{Na}^{39}\text{K}$ B $^{1}\Pi$ state | 34 | | Table | VI. | Dunham coefficients for the $^{23}\text{Na}^{39}\text{K}~\text{B}^{1}\Pi$ state | 35 | | Table | VII. | RKR-extrapolated potential of the $^{23}\mathrm{Na}^{39}\mathrm{K}~\mathrm{B}^{1}\Pi$ | | | | | state | 38 | | Table | vIII. | Eigenfunctions of 1(a, b, and c) states correlated | 1 | | | | with the separated atoms $Na(3s) + K(4p)$ | 50 | | Table | IX. | Molecular constants $\mathrm{E}_{\mathrm{v}}^{0}$, B_{v} and D_{v} of the $^{23}\mathrm{Na}^{39}\mathrm{K}$ | | | | | ${\tt F}^1 \Delta$, ${\tt G}^1 \Delta$, and ${\tt K}^1 \Delta$ state | 62 | | Table | х. | Molecular constants $\mathrm{E}_{\mathrm{V}}^{\mathrm{O}},\ \mathrm{B}_{\mathrm{V}}$ and D_{V} of the $^{23}\mathrm{Na}^{39}\mathrm{K}$ | | | | | $^{1}\Sigma^{+}$, $^{1}\Pi$, and $^{1}\Delta$ states | 63 | | Table | XI. | Dunham coefficients of the $^{23}\text{Na}^{39}\text{K}$ $\text{G}^1\Delta$ state | 67 | | Table | XII. | RKR potential of the $^{23}\mathrm{Na}^{39}\mathrm{K}~\mathrm{G}^{1}\Delta$ state | 68 | | Table | xIII. | Molecular constants of the NaK $^1\Delta$ states and | | | | | NaK^+ $\text{X}^2\Sigma^+$ ion ground state | 71 | | Table | xiv. | Molecular constants of the Cs $_2$ D $^1\Sigma_u^+$ state 89~ | -90 | | Table | xv. | Dunham coefficients of the Cs $_2$ D $^1\Sigma_u^+$ state \ldots | 91 | | Table | XVI. | RKR potential curve of the Cs ₂ $D^1\Sigma_{11}^+$ state | 92 | #### LIST OF FIGURES | Fig. | 1. | Different double resonance schemes for the OODR | | |------|-----|--|----| | | | polarization spectroscopy | 21 | | Fig. | 2. | A scheme of the V-type OODR polarization spectro- | | | | | scopy to study high vibrational levels close to | | | | | the dissociation limit of the $B^1\Pi$ state | 27 | | Fig. | 3. | Experimental setup for OODR polarization spectro- | | | | | scopy | 28 | | Fig. | 4. | A comparison of the OODR polarization spectrum | | | | | and the normal polarization spectrum for the | | | | | NaK $B^1\Pi$ - $X^1\Sigma^+$ transitions | 31 | | Fig. | 5. | The rotationless RKR potential energy curve of | | | | | the NaK B $^1\Pi$ state | 39 | | Fig. | 6. | Plots of ${\tt G}_v$ for high ${\tt v}$ levels in the ${\tt B}^1\Pi$ state | | | | | against $[R_+(v)]^{-6}$ | 41 | | Fig. | 7. | LeRoy-Bernstein plot; $(\Delta G_{\mathbf{v}})^{3/2}$ is plotted against | | | | | the vibrational term value $G_{\ensuremath{\mathbf{V}}}$ for high ${\ensuremath{\mathbf{v}}}$ levels | | | | | in the $B^1\Pi$ state | 42 | | Fig. | 8. | Birge-Sponer plot; $\Delta G_{\mathbf{v}}$ is plotted against \mathbf{v} | 43 | | Fig. | 9. | The observed line shapes of the $B^1\Pi(v'=29-43,$ | | | | | $J'=16$) - $X^{1}\Sigma^{+}(v''=4, J''=17)$ transitions | 46 | | Fig. | 10. | The linewidths Γ of the $B^1\Pi(v'=15-43,\ J'=16$ and | | | | | 18) - $X^{1}\Sigma^{+}(v"=4,J"=17)$ transitions | 47 | | Fig. | 11. | Potential energy curves of NaK corresponding | | | | | asymptote Na(3s) + K(4p) | 49 | | | | (A): Spin-orbit interaction is neglected. | | | | | (B): Spin-orbit interaction is included. | | | Fig. 12. | A scheme of the OODR stepwise excitation to | | |----------|--|-----| | | study highly excited states | 53 | | Fig. 13. | Spectral patterns for the OODR polarization | | | | spectra. (A): Circularly polarized pump beam | | | | tuned to P or R line, (B): Linearly polarized | | | | pump beam tuned to Q line | 56 | | Fig. 14. | A part of the OODR polarization signals for | | | | (a): ${}^{1}\Sigma^{+} \leftarrow B^{1}\Pi$, (b): ${}^{1}\Pi \leftarrow B^{1}\Pi$, and (c): ${}^{1}\Delta \leftarrow B^{1}\Pi$ | | | | transitions 57- | -58 | | Fig. 15. | A part of the OODR polarization spectrum | 60 | | Fig. 16. | The vibrational level energies $(E_{\mathbf{V}}^{\mathbf{O}})$ of the | , | | | observed $^1\Delta$ states | 64 | | Fig. 17. | The vibrational level energies $(E_{\mathbf{V}}^{O})$ of the | | | | observed $^1\Sigma^+$ and $^1\Pi$ states | 65 | | Fig. 18. | The rotationless RKR potential energy curve of the | | | | NaK $G^1\Delta$ state | 69 | | Fig. 19. | The observed line positions against to intermediate | | | | J'e value (Fortrat diagram) | 74 | | Fig. 20. | Difference between measured term values and | | | | calculated values of the $F^1\Delta(v_f+3)$ levels | 75 | | Fig. 21. | The observed line shapes of the $\mathrm{H}^{1}\Sigma^{+}(\mathrm{v=v_{h}+2},$ | | | | $J=38-44_e) \sim T(v, J) \leftarrow B^1\Pi(v'=9, J'=J-1e)$ | | | | transitions | 78 | | Fig. 22. | A part of the Doppler-free polarization spectrum | | | | of Cs $_2$ near the band origin of the D $^1\Sigma_u^+(v'$ =27, | | | | $J\pm 1$) - $X^{1}\Sigma_{\alpha}^{+}(v''=2, J)$ transition | 82 | | Fig. | 23. | Block diagram for the experimental setup for the | | |------|-----|--|-----| | | | Doppler-free excitation spectroscopy | 84 | | Fig. | 24. | A part of the Doppler-free excitation spectrum of | | | | | Cs ₂ beam near the D ¹ Σ_u^+ (v'=28, J=45) - $X^1\Sigma_g^+$ (v"=2, | | | | | J=46) transition. (A): monitored by the D $^1\Sigma_u^+$ - | | | | | $\mathbf{X}^{1}\Sigma_{\mathbf{g}}^{+}$ molecular fluorescence, (B): monitored by | | | | | the D_2 atomic emission | 86 | | Fig. | 25. | The potential energy curves for Cs ₂ | 93 | | Fig. | 26. | The variation of vibrational spacing $\Delta G_{f V}$ of the | | | | | $-D^1\Sigma_u^+$ state with v | 95 | | Fig. | 27. | A part of the OODR polarization spectrum for the | | | | | $D^{1}\Sigma_{u}^{+}(v'=10\sim14, J'=32 \text{ and } 34) - X^{1}\Sigma_{g}^{+}(v''=9, J''=33)$ | | | | | transition | 96 | | Fig. | 28. | A comparison of the OODR polarization spectrum | | | | | and the normal polarization spectrum for the | | | | | $\texttt{Cs}_2 \ \texttt{D}^1 \Sigma_u^+ \ \textbf{-} \ \texttt{X}^1 \Sigma^+ \
\texttt{transitions} \ \dots $ | 97 | | Fig. | 29. | The unperturbed level energies (E $_{\!\mathbf{v}})$ of the ${\tt D}^1\Sigma_u^+$ | | | | | (v', J=0) state and the (2) $^3\Pi_u(v, J=0)$ state | 101 | | Fig. | 30. | The J-dependence of the spectral line shape of the | | | | | $D^{1}\Sigma_{u}^{+}(v'=46, J+1) - X^{1}\Sigma_{g}^{+}(v''=0, J)$ transitions | 103 | | Fig. | 31. | The linewidth Γ of the D ¹ $\Sigma_u^+(v'=28, J)$ - X^1 $R_g^+(v''=2, J)$ | | | | | $J\pm 1)$ transitions, plotted against $J(J+1)$ | 104 | | Fig. | 32. | J-dependence of the linewidth Γ of the $\text{D}^1\Sigma_u^+(v'\text{=}46,$ | | | | | J) - $X^{1}\Sigma_{\alpha}^{+}(v''=0, J\pm 1)$ transitions | 105 | #### Chapter 1. INTRODUCTION Spectroscopy is very useful to study the molecular structure and dynamics. In recent years the investigation and development of lasers changed conventional spectroscopy. The high intensity and high spectral resolution of lasers have opened a new class of spectroscopic techniques which allow investigation of the structure of atoms and molecules in much more detail. Information on the molecular structure and on the interaction of molecules with their surrounds can be derived in various ways from the absorption and emission spectra generated when electromagnetic radiation interacts with matter. 1 Wavelength measurements of spectral lines allow the determination of energy levels of the molecular system. The intensity is proportional to the transition probability which measures how strongly the two levels of a molecular transition are coupled. Since the transition probability depends on the wave functions of both levels, intensity measurements are useful to verify the spatial charge distribution of excited electrons. The natural linewidth of a spectral line, which can be resolved by special techniques, allows mean lifetimes of excited molecular states to be determined. Measurements of the Doppler width yield the velocity distribution of the emitting or absorbing molecules and with it the temperature of the sample. From pressure broadening and pressure shifts of spectral lines, information about collision processes and interatomic potentials can be extracted. hyperfine structure of spectral lines yields information about the interaction between the nuclei and the electron cloud and allows nuclear magnetic dipole moments or electric quadrapole moments to be determined. These examples represent only a small selection of the many possible ways by which spectroscopy provides tools to explore the microworld of atoms and molecules. The amount of information which can be extracted from spectrum depends essentially on the attainable spectral resolution and on the detection sensitivity that can be achieved. The spectral resolution was in principle limited by the Doppler width of lines in the conventional absorption and emission spectra, although the laser linewidth might have been much The Doppler-free techniques allow fully to resolve the smaller. The basic principle of most Doppler-free techniques relies on a proper selection of a subgroup of molecules with velocity components v_z in the direction of the incident monochromatic wave, which fall into a small interval Δv_z around v_z =0. This selection can be achieved either by mechanical apertures which select a collimated molecular beam, or selective saturation within the velocity distribution of absorbing molecules caused by strong pump, and a successive probing of this selective "hole burning" by a monochromatic tunable probe wave. However, even if all lines completely resolved by using the Doppler-free spectroscopic techniques, the unambiguous assignment of a large number of lines in a band system with overlapping bands may be greatly impeded when the level density is high or the perturbations cause irregular shifts of the line positions. In such cases an optical-optical double resonance (OODR) techniques provides powerful ways to study the excited molecules. These techniques yield simplified spectra, since only transitions can be detected which start either from a selected lower (v'', J'') level or an upper (v', J') level labeled by a known pump transition $(v', J!) \leftarrow (v'', J'')$. We have used the technique of the Doppler-free OODR polarization spectroscopy to study excited states of Alkali metal diatomic molecules. Alkali metal diatomic molecules have allowed electronic transitions in visible region, and the dissociated atoms have the radiative transition (such as the D_1 and D_2 lines) also in the visible region. Hence, alkali metal diatomic molecules are appropriate to study excited states, perturbation, and the dissociation dynamics. The energy levels and wave function of a rotating diatomic molecule may be worked out by diagonalizing the energy matrices. The angular momentum are defined as follows: - L total electronic orbital angular momentum - S total electronic spin angular momentum - J -- total angular momentum (J=R+L+S) - N total angular momentum excluding electronic spin (N=J-S) - R rotational angular momentum. The total electronic orbital and total electronic spin angular momentum ${\bf L}$ and ${\bf S}$ makes the projections Λ and Σ along the internuclear axis (z), respectively. The total angular momentum ${\bf J}$ makes the projection M along the laboratory-fixed Z axis and the projection $\Omega=\Lambda+\Sigma$ along the internuclear axis (z). In Hund's coupling case (a) and (b), the molecular electronic state can be represented by ${}^{2S+1}\Lambda_{\Omega}$. In the case (a), the ${\bf L}$ and ${\bf S}$ are strong- ly coupled to the internuclear axis, and in the case (b), the S is weakly coupled (or uncoupled) to the internuclear axis. In this representation, according as Λ = 0, 1, 2, 3, ..., the corresponding molecular state is designated a Σ , Π , Δ , Φ , ..., state. The basis functions for a rotating diatomic molecules may be written as a product of an electronic orbital part $|\Lambda\rangle$, an electronic spin part $|S\Sigma\rangle$, a vibrational part $|v\rangle$, and a rotational part $|J\Omega M\rangle$: $$|\Lambda\rangle |S\Sigma\rangle |v\rangle |J\Omega M\rangle,$$ (1.1) The Hamiltonian for a rotating diatomic molecule in the absence of an external field can be written as $$H = H_e + H_v + H_r,$$ (1.2) where H_e is the electronic part, H_v is the vibrational part, and H_r is the rotational part. The rotational level energies and wave function of the diatomic molecules can be obtained by solving the secular equation composed of the matrices for a H in terms of the basis set $|\Lambda\rangle|S\Sigma\rangle|v\rangle|J\Omega M\rangle$. The term energy ${\rm E_{v,\,J}}$ (in cm $^{-1}$) for a singlet state (S=0) of the diatomic molecule is simply expressed as $$E_{v,J} = E_v^0 + B_v[J(J+1) - \Lambda^2] - D_v[J(J+1) - \Lambda^2]^2 + H_v[J(J+1) - \Lambda^2]^3 + \cdots,$$ (1.3) where Λ is 0 for a $^1\Sigma^+$ state, ± 1 for a $^1\Pi$ state, ± 2 for a $^1\Delta$ state, $\bullet \bullet \bullet \circ$; B_V is the rotational constant, D_V is the centrifugal distortion constant, and E_V^O is the energy of the vibrational state V: $$E_{\mathbf{v}}^{\mathbf{O}} = \mathbf{T}_{\mathbf{e}} + \mathbf{G}_{\mathbf{v}}, \tag{1.4}$$ where T_e is the minimum energy of the corresponding potential energy curve, and G_v is the vibrational energy. By using Eq. (1.3), the molecular constants can be determined from observed spectral lines. In chapter 3, from the V-type OODR polarization spectrum, the determination of the molecular constants and the RKR potential energy curve of the NaK B $^1\Pi$ state will be discussed. Remarkable line broadening were observed for transitions to B $^1\Pi(v', J')$ level higher than the dissociation energy to Na(3s $^2\mathrm{S}_{1/2})$ + K(4p $^2\mathrm{P}_{1/2})$ atoms. This is identified as originating from the predissociation, and the mechanism will be studied. From the 2-step OODR polarization spectrum, several $^1\Sigma^+$, $^1\Pi$, and $^1\Delta$ states of the NaK molecule were observed in the energy regions 33016~33674 cm $^{-1}$ and 34449~34717 cm $^{-1}$. The assignments and the determination of the molecular constants of these highly excited states will be discussed in chapter 4. In chapter 5, the molecular constants and the RKR potential curve of the $\mathsf{D}^1\Sigma_u^+$ state of the Cs_2 molecule will be reported. The V-type OODR polarization spectroscopy was used in order to confirm the assignment. The perturbation and predissociation of the $\mathsf{D}^1\Sigma_u^+$ state was found. The predissociation of the $\mathsf{D}^1\Sigma_u^+$ state will be studied from the Cs_2 molecular beam experiment by monitoring separately the molecular fluorescence and the D_2 or D_1 atomic emission. #### Chapter 2. SPECTROSCOPIC METHOD #### 2.1 Doppler-free Polarization Spectroscopy In this section a brief summary of the Doppler-free polarization spectroscopy is described. A more detail description of this technique and its theoretical background can be found in Ref. 1~5. The output of a single mode dye laser is split into a weak, linearly polarized probe beam and a stronger pump beam which can be either circularly or linearly polarized. Both beams travel in opposite directions through the sample cell placed between two crossed polarizers. Assume the laser is tuned to a transition $(v', J') \leftarrow (v'', J'')$ between a level (v'', J'') in a ground state and a level (v', J') in a excited state. rotational level with angular momentum J consists of (2J+1)degenerate magnetic sublevels (J, M). If the pump beam is sufficiently strong to saturate the transition $(v', J') \leftarrow (v'', J'')$, the lower M" sublevels will be partly depleted while the population N(v', J', M') of the upper levels will be increased correspondingly. The degree of saturation depends on
the transition probability $A(J',M' \leftarrow J'',M'')$ which generally differs for different M values. This M-selective optical pumping process leads to a partial orientation of the sample molecules. The molecular gas, which had been isotropic without the pump, now becomes optically birefringent and dichroic. If the probe beam and the pump beam can be absorbed by the molecules which have same velocity component, the polarization of the probe beam passed through the sample cell is being altered from a linear to slightly elliptical polarization. Then, the transmission of the probe beam can pass through the second polarizer, and a signal will be detected. The important point is that this signal shows a Doppler-free line profile, as can be seen from the following arguments: When a monochromatic wave with frequency ω and wave vector ${\bf k}$ passes in +z direction through a gas of molecules with a thermal velocity distribution ${\bf N}({\bf v}_{\bf z})$, the wave experiences absorption if ω lies within the frequency range of a Doppler-broadened absorption line centered at ω_0 . However, out of all molecules in the absorbing level (v", J"), only a small subgroup with velocity components ${\bf v}_{\bf z}=(\omega-\omega_0)/{\bf k}$ can absorb the wave because only those molecules are Doppler shifted into resonance with the laser wave. Since the pump wave and the probe wave travel into opposite direction, both waves will interact with different velocity subgroups around ${\bf v}_{\bf z}=+(\omega-\omega_0)/{\bf k}$ or ${\bf v}_{\bf z}=-(\omega-\omega_0)/{\bf k}$, respectively, as long as $\omega \nmid \omega_0$, but with the same subgroup of molecules (with velocity components around ${\bf v}_{\bf z}=0$) if $\omega=\omega_0$. A more detail analysis yields the results $^{1-5}$, that for a circularly polarized pump beam, the probe intensity $I(\omega)$ transmitted through the second polarizer can be written as $$I(\omega) = I_0 \left[\xi + \theta^2 + b^2 - \frac{1}{2} \theta L \Delta \alpha \frac{\chi}{1 + \chi^2} - \frac{1}{2} b L \Delta \alpha \frac{1}{1 + \chi^2} + \left(\frac{1}{4} L \Delta \alpha \right)^2 \frac{1}{1 + \chi^2} \right], \tag{2.1}$$ where ξ is the extinction ratio of the completely crossed polarizers; θ is the uncrossing angle, i. e., the angular deviation from complete crossing; b is a constant term which takes into account the nonnegligible birefringence of the sample cell windows; L is the length of the absorption path; $\chi = (\omega - \omega_0)/\gamma$ is the normalized frequency detuning, where γ is the homogeneous linewidth of the molecular transition; and $\Delta\alpha = \alpha^+(\omega_0) - \alpha^-(\omega_0)$ gives the change of the absorption coefficient at the line center ω_0 caused by the M-selective saturation, where $\alpha^+(\omega_0)$ and $\alpha^-(\omega_0)$ is the absorption coefficient of a right and a left circularly polarized component of the probe beam. For a linearly polarized pump beam, of which polarization is chosen to be 45° against the probe polarization, the probe intensity transmitted through the second polarizer can be written as $$I(\omega) = I_0 \left[\xi + \theta^2 + b^2 - \frac{1}{2} \theta L \delta \alpha \frac{1}{1+\chi^2} - \frac{1}{2} b L \delta \alpha \frac{\chi}{1+\chi^2} + \left(\frac{1}{4} L \delta \alpha \right)^2 \frac{1}{1+\chi^2} \right], \tag{2.2}$$ where $\delta\alpha = \alpha^{\mathbf{Z}}(\omega_0) - \alpha^{\mathbf{X}}(\omega_0)$ gives the change of the absorption coefficient at the line center ω_0 , where $\alpha^{\mathbf{Z}}(\omega_0)$ and $\alpha^{\mathbf{X}}(\omega_0)$ is the absorption coefficient of a parallel and a perpendicular linearly polarized component of the probe beam against to the polarization of the pump beam. In this situation, it is best to take the axis of quantization along the direction of the pump polarization. In Eq. (2.1) and (2.2), the first three terms represent background intensity, and the term of $\chi/(1+\chi^2)$ and $1/(1+\chi^2)$ represents, respectively, dispersion shaped signal and Lorentzian profile. In order to estimate the relative intensity of the polarization signal, it is necessary to calculate the difference in absorption coefficient $\Delta\alpha$ and $\delta\alpha$ of the two components of the probe beam. Assume the pump transition $(J'=J_1) \leftarrow (J''=J)$ and the probe transition $(J'=J_2) \leftarrow (J''=J)$ share a common lower level (v'', v'') J). For a circularly polarized pump beam, $\Delta lpha$ is given by $$\Delta \alpha = \sum_{M} n_{M} [\sigma^{+}(J_{2}, M_{2} \leftarrow J, M) - \sigma^{-}(J_{2}, M_{2} \leftarrow J, M)],$$ (2.3) where $\sigma^+(J_2,M_2\leftarrow J,M)$ and $\sigma^-(J_2,M_2\leftarrow J,M)$ are, respectively, the absorption cross sections for a right and left circularly polarization, which are proportional to the squares of the transition dipole moment. n_M is the number density in the (J, M) level pumped by a right circularly polarized pump beam, and it is given by $$n_{M} = \frac{N_{0}}{2J+1} \left(1 - \frac{I_{pp}}{S}\right), \tag{2.4}$$ where N^0 is the total equilibrium number density of the J level in the absence of the pump beam, I_{pp} is the intensity factor of the pump beam, and S is the saturation parameter of the cw laser; $$S = \frac{\hbar\omega_1}{\sigma(J_1, M_1 \leftarrow J, M)} \left(\frac{1}{\gamma_0} + \frac{1}{\gamma_1}\right)^{-1}, \qquad (2.5)$$ where γ_0 and γ_1 are the homogeneous widths of lower and upper levels, respectively. From Eq.(2.3)~(2.5), $\Delta\alpha$ can be written as $$\Delta \alpha = -\frac{1}{2} \alpha_0 \frac{I_{pp}}{S} \zeta^{C}(J_1 \leftarrow J, J_2 \leftarrow J). \qquad (2.6)$$ Here $\alpha_0 = N_0 \sigma(J_2 \leftarrow J)$ is the unsaturated absorption coefficient for the probe transition. The numerical factor ζ^C (subscript C represents for a circularly polarized pump beam), which is called polarization factor, can be calculated from a sum of the Clebsch-Gordan coefficients over all the M levels. For a linearly polarized pump beam, $\delta\alpha$ is given by $$\delta\alpha = \sum_{M} n_{M} \left[\sigma^{Z}(J_{2}, M_{2} \leftarrow J, M) - \sigma^{X}(J_{2}, M_{2} \leftarrow J, M) \right], \qquad (2.7)$$ where $\sigma^z(J_2,M_2\leftarrow J,M)$ and $\sigma^x(J_2,M_2\leftarrow J,M)$ are, respectively, the absorption cross sections for a parallel and a perpendicular to the pump polarization. Proceeding as before, the difference in absorption coefficients can be written as $$\delta\alpha = -\frac{1}{2}\alpha_0 \frac{I_{pp}}{s} \zeta^{L}(J_1 \leftarrow J, J_2 \leftarrow J). \qquad (2.8)$$ The factor ζ^L is the polarization factor for a linearly polarized pump beam. Under the assumption that γ_0 is much larger than γ_1 , the calculated values of ζ^C and ζ^L are tabulated in Table I. For the normal Doppler-free polarization signal, the both of pump and probe beam come from the same laser, we have only transition with $J_1=J_2$, which correspond to the diagonal elements of Table I. For large J values associated with molecules, the polarization factors ζ^C approach the limit 3/2 for $\Delta J=\pm 1$ and 0 for $\Delta J=0$, and the factors ζ^L approach 3/10 for $\Delta J=\pm 1$ and 6/5 for $\Delta J=0$. These results show that only P lines (for $\Delta J=-1$) and R lines (for $\Delta J=+1$) can be detected for a circularly polarized pump beam, and Q lines (for $\Delta J=0$) are strongly detected than P or R lines for a linearly polarized pump beam. It can be seen that Q lines can be clearly distinguish from P and R lines from the choice of pump polarization. ### 2.2 Doppler-free Optical-Optical Double Resonance Polarization Spectroscopy In this section a brief summary of the Doppler-free OODR polarization spectroscopy, ⁴ which is application of OODR technique to polarization spectroscopy, is described. A more detail description of OODR techniques, often called three-level laser Table I. The J dependence of the polarization factor $\zeta^{C,L}(J_1\leftarrow J,$ $J_2 \leftarrow J$). $\zeta^{C}(J_1 \leftarrow J, J_2 \leftarrow J)$ (circularly polarized pump) #### probe transition R: $$J_2 = J + 1$$ Q: $$J_2 = J_2 J$$ Q: $$J_2 = J$$ P: $J_2 = J - 1$ pump transition R: $$J_1 = J + 1$$ $\frac{3J}{2(J+1)}$ $$\frac{3J}{2(J+1)}$$ $-\frac{3}{2(J+1)}$ $$-\frac{3}{2}$$ Q: $$J_1=J$$ $-\frac{3}{2(J+1)}$ $$\frac{3}{2J(J+1)}$$ P: $$J_1 = J - 1$$ $-\frac{3}{2}$ $$\frac{3(J+1)}{2J}$$ $\zeta^{L}(J_1 \leftarrow J, J_2 \leftarrow J)$ (linearly polarized pump) probe transition R: $$J_2=J+1$$ Q: $J_2=J$ P: $J_2=J-1$ $$P: J_2 = J - 1$$ pump transition P: $$J_1 = J + 1$$ $\frac{3J(2J - 1)}{10(J + 1)(2J + 3)}$ $-\frac{3(2J - 1)}{10(J + 1)}$ $$-\frac{3(2J-1)}{10(J+1)}$$ Q: $$J_1=J$$ $-\frac{3(2J-1)}{10(J+1)}$ $\frac{3(2J+3)(2J-1)}{10J(J+1)}$ $-\frac{3(2J+3)}{10J}$ $$\frac{3(2J+3)(2J-1)}{10J(J+1)}$$ $$\frac{3(2J+3)}{10J}$$ $$=\frac{3(2J+3)}{10J}$$ $$\frac{3}{10} - \frac{3(2J+3)}{10J} \frac{3(J+1)(2J+3)}{10J(2J-1)}$$ spectroscopy of coupled transitions can be found in Ref. 6~8. This method uses two independent lasers. Assume laser 1, called the pump laser, is stabilized onto the center frequency of a transition $(v_1, J_1) \leftarrow (v, J)$. Due to selective M sublevel pumping, molecules in these levels with velocity components within a small interval v_z = $0\pm\gamma/k$ are partly oriented (see previous section). The linearly polarized beam of a second laser 2, called the probe laser, passes in the opposite direction through the sample cell. When the probe laser is tuned through the molecular absorption spectrum, the polarization is altered if the frequency of the probe laser coincides with a center of the Doppler profile of a transition $(v_2, J_2) \leftarrow (v, J)$ or $(v_2, J_2) \leftarrow$ $(\mathbf{v}_1,\ \mathbf{J}_1),\ \text{which shares either the lower or the upper common level}$ with the pump transition,
respectively. Then, the probe beam can pass through the second polarizer, and a signal will be detected. The important point is that these signals represent transitions which start from a known level and which can be therefore assigned much easier, anticipating that the pump transition is already known. In order to confirm that the pump laser stays on the center frequency of a selected transition, a small fraction of the pump laser output is split of and is sent as a linearly polarized "extra" probe beam through the sample cell, and the normal Doppler-free polarization signal is monitored by using only pump laser. From this signal, one can select any desired line and stabilize the pump laser onto its center of the Doppler profile of the pump transition. Thus, the OODR polarization signal can be obtained without either Doppler broadening or Doppler shift. The various types of signals, which can be detected by the OODR polarization spectroscopy, is shown in Fig. 1. Here a lower and upper level of the pump transition are assumed to (v, J) and (v_1, J_1) level, respectively, and a upper level of the probe transition to (v_2, J_2) level. The schemes of Fig. 1(a), (b), and (c) show the three-level system cases. The type of Fig.1(a) is called V-type double resonance, where the lower level (v, J) is shared by the pump and probe transition. The type of Fig. 1(b) is called Λ -type double resonance, the upper level (v_1 , J_1) is shared by the pump and probe transition, the induced fluorescence $(v_1, J_1) \rightarrow (v_2, J_2)$ can be observed. The type of Fig. 1(c) is the stepwise excitation. Only this transition among the OODR transition can be used to study highly lying levels. The schemes of Fig. 1(d) and (e) show the four-level system cases. In these two cases, the pump and probe transition is not directly coupled, but indirectly coupled by either a radiative transition [Fig. 1(d)] or non-radiative transition [Fig. 1(e)]. These different types of the OODR transition can be distinguished by the form and sign of the OODR polarization signals. For the V-type OODR transition, the polarization factor $\zeta^{C,L}(J_1\leftarrow J,J_2\leftarrow J)$ is given by the nondiagonal elements in Table I (for $J_1 \neq J_2$), and one can see that the sign of the signals is different between P and R lines when a circularly polarized pump beam tune to a P or R transition line. This allows to distinguish P lines from R lines and from Q lines. For the Λ -type OODR transition and stepwise excitation, the difference in absorption coefficient $\Delta\alpha$ (or $\delta\alpha$) is given by Fig. 1. Different double resonance schemes for the OODR polarization spectroscopy. (a) \sim (c): three-level system; (d) and (e): four-level system. The broken line in (d) represents a radiative transition, and the dotted line in (e) represents a non-radiative transition. $$\Delta\alpha \text{ (or } \delta\alpha) = \frac{1}{2} \alpha_0 \frac{I_{pp}}{S} \zeta^{C} \text{ (or L)}(J_1 \leftarrow J, J_2 \leftarrow J_1). \tag{2.9}$$ The polarization factor $\zeta^{C,L}(J_1\leftarrow J,J_2\leftarrow J_1)$ is tabulated in Table II. Note that the factor $\zeta^{C,L}(J_1\leftarrow J,J_2\leftarrow J_1)$ is described with J_1 which is the rotational quantum number of a common level shared by the pump and probe transition. In case of the stepwise excitation, the OODR technique is very useful to study highly lying levels, which cannot accessible to direct one photon transition. A modified OODR polarization technique, called "polarization labeling", where the second laser is a broadband dye laser has been used to study highly excited states. 8-10 From the results in Ref. 8 and 9, Eq. (2.9) can be rewritten as $$\Delta\alpha \text{ (or } \delta\alpha) = \frac{F}{(2J+1)(2J_1+1)} S(\Lambda_1, J_1 \leftarrow \Lambda, J) \cdot S(\Lambda_2, J_2 \leftarrow \Lambda_1, J_1)$$ $$\cdot \zeta^{C(\text{or L})}(J_1 \leftarrow J, J_2 \leftarrow J_1), \qquad (2.10)$$ where F is a factor independent on the angular momentum, and the $S(\Lambda_1,J_1\leftarrow\Lambda,J)$ factors, called Hönl-London factors, represent the line strength for a pump and probe transitions. The Hönl-London factor $S(\Lambda_1,J_1\leftarrow\Lambda,J)$ is tabulated in Table III. Eq. (2.10) is useful for the assignment of the electronic states excited by OODR stepwise excitation, because the information of Λ , which represents the projection of the electronic orbital angular momentum along the internuclear axis, is given by the S factors. In the case of the NaK molecule, the assignment of the electronic states which were observed by using the 2-step OODR polarization spectroscopy will be discussed in Chapter 4. Table II. The J dependence of the polarization factor $\zeta^{C,L}(J_1 \leftarrow J,$ $J_2 \leftarrow J_1$). P: $J=J_1+1$ $\frac{3J_1(2J_1-1)}{10(J_1+1)(2J_1+3)}$ $-\frac{3(2J_1-1)}{10(J_1+1)}$ $Q: J=J_1$ Table III. Hönl-London factor $S(J_1,\Lambda_1\leftarrow J,\Lambda)$ of a molecular spectral line. | | Λ ₁ =Λ+1 | Λ ₁ =Λ | Λ ₁ =Λ-1 | |---------------------|---|--|--| | J ₁ =J+1 | $\frac{(\mathtt{J}+\Lambda+2)(\mathtt{J}+\Lambda+1)}{4(\mathtt{J}+1)}$ | $\frac{(J+\Lambda+1)(J-\Lambda+1)}{J+1}$ | $\frac{(J-\Lambda+2)(J-\Lambda+1)}{4(J+1)}$ | | J ₁ =J | $\frac{(J+\Lambda+1)(J-\Lambda)(2J+1)}{4J(J+1)}$ | $\frac{(2J+1)\Lambda^2}{J(J+1)}$ | $\frac{(J-\Lambda+1)(J+\Lambda)(2J+1)}{4J(J+1)}$ | | J ₁ =J-1 | $\frac{(\mathtt{J}\text{-}\Lambda\text{-}1)(\mathtt{J}\text{-}\Lambda)}{4\mathtt{J}}$ | $\frac{(J+\Lambda)(J-\Lambda)}{J}$ | $\frac{(J+\Lambda-1)(J+\Lambda)}{4J}$ | # Chapter 3. HIGH RESOLUTION LASER SPECTROSCOPY UP TO THE DISSOCIATION LIMIT OF THE 23 Na 39 K B 1 H STATE, AND PREDISSOCIATION NEAR THE DISSOCIATION LIMIT The $\mathsf{B}^1\Pi$ state of the alkali metal diatomic molecules is correlated with separated atoms in the ${}^2\mathrm{S}_{1/2}$ and ${}^2\mathrm{P}_{3/2}$ states. The ${ t B}^1\Pi_{{ t u}}$ state of homonuclear molecules has a potential barrier caused by a repulsive long-range resonant dipole interaction. 12 Chawla et al. 13 determined the shape of the Na₂ B¹ $\Pi_{\rm u}$ state potential barrier by measuring the rotation-vibration line energies and linewidths of the quasibound levels using the technique of modulated gain spectroscopy. Heinze et al. 14 determined the ${\rm K}_2~{\rm B}^1\Pi_{\rm tt}$ state potential barrier. There is no resonant dipole interaction in heteronuclear molecules, and the NaK $B^1\Pi$ state is expected to dissociate to $Na(3s^2S_{1/2}) + K(4p^2P_{3/2})$ atoms without a potential hill near the dissociation limit. Barrow et al. 15 obtained the molecular constants of the $B^1\Pi$ state of v'=0~14 by analyzing the laser induced dispersed fluorescence spectra detected by a Fourier-transform spectrometer and the dye laser excitation spectra. Katô et al. 16 observed the $\mathrm{B}^{1}\Pi$ - $\mathrm{X}^{1}\Sigma^{+}$ transition with the technique of the Doppler-free polarization spectroscopy, and determined the molecular constants of the ${\mathtt B}^1\Pi$ state of v'=0~16. In order to observe the high vibrational levels near the dissociation limit and determine the long-range potential energy curve, the high resolution spectrum of the $B^1\Pi$ - $X^1\Sigma^+$ transition was measured by the Doppler-free OODR polarization spectroscopy. The transition lines up to the v'=43 level, which was estimated to be 1.8 cm⁻¹ below the dissociation limit, were observed. The molecular constants of the B¹ Π state, and the RKR potential energy curve were determined. Remarkable line broadenings were observed for the transitions to the B¹ $\Pi(v', J')$ levels higher than the dissociation energy to Na(3s²S_{1/2}) + K(4p²P_{1/2}) atoms. This is identified as originating from the predissociation, and the mechanism will be discussed in chapter 3.4. #### 3.1 Experimental From the calculated Franck-Condon factors between a potential of the $\mathrm{B}^1\Pi$ state extrapolated up to the dissociation limit and the RKR potential of the $\mathrm{X}^1\Sigma^+$ state, 17 it can be seen that the high vibrational levels near the dissociation limit of the $\mathrm{B}^1\Pi$ state can be excited effectively from the $\mathrm{X}^1\Sigma^+(\mathrm{v"=4})$ level. However, the transition lines from $\mathrm{v"=4}$ are overlapped with the strong lines from $\mathrm{v"=0}$ and 1. Using the technique of the Doppler-free OODR polarization spectroscopy, the transitions from the $\mathrm{X}^1\Sigma^+(\mathrm{v"=4})$ level to high vibrational levels close to the dissociation limit of the $\mathrm{B}^1\Pi$ state could be observed. The excitation scheme is shown in Fig. 2. The experimental arrangement for a Doppler-free OODR polarization spectroscopy is shown in Fig. 3. The output of a single-mode ring dye laser 1 (Coherent CR699-21, linewidth 500 kHz, Kiton Red dye) was split into a circularly polarized strong pump beam and a linearly polarized weak "extra" probe beam. Two beams passed in opposite directions through a heat pipe. Only a small fraction of the linearly polarized probe beam, which passes a linear polarizer P1, reaches a photomultiplier PM1 (Hamamatsu Fig. 2. A scheme of the V-type OODR polarization spectroscopy to study high vibrational levels close to the dissociation limit of the $\mathrm{B}^1\Pi$ state. and linear polarizers, PM1 and PM2 : photomultipliers, OSC1 and Experimental setup for OODR polarization spectroscopy. BS : beam splitter, CH : chopper, FR : $\lambda/4$ Fresnel rhomb, Pl OSC2 : oscilloscopes, and PD : photodiode. Fig. 3. P2 : R636) after passing through a crossed linear polarizer P2. The pump beam was modulated by a chopper (3kHz), and the output of the normal Doppler-free polarization signal was detected by a lock-in amplifier 1 (PAR model 128A). The pump beam is
fixed to a center of Doppler-free line of a known transition $B^{1}\Pi(v'=0)$ J') - $X^{1}\Sigma^{+}(v''=4, J'')$. A linearly polarized probe beam (dye laser 2; Coherent CR699-29, linewidth 500 kHz, Rhodamine 6G dye, power of 10 mW), which passes a linear polarizer Pl, is propagated in the opposite direction to the pump beam through the heat pipe. Then, the probe beam passes the crossed linear polarizer P2 and reaches a photomultiplier PM2 (Hamamatsu R712). The signal output was detected by a lock-in amplifier 2 (EG&G model 5210). By choosing the polarization of the pump beam, either Q lines or P and R lines can be observed predominantly. In case of the observing P and R lines, the pump beam was circularly polarized with a $\lambda/4$ Fresnel rhomb retarder (FR). In case of the observing Q lines, the pump beam was linearly polarized at 45° against to the polarization of the probe beam. When a large number of lines are overlapped, the Doppler-free OODR polarization spectroscopy is very useful to detect selectively a series of transitions from a chosen level. Due to its high sensitivity, very weak absorption lines can be detected. NaK vapor was produced by heating a 1:4 mixture of sodium and potassium in a stainless steel heat pipe. The heat pipe oven was operated at 550 K with Ar as buffer gas of 0.4 Torr. The continuous scanning of the laser wavelength and data processing were carried out by a microcomputer. The absolute wavenumbers of the observed spectral lines were calibrated by the fluorescence excitation spectrum of iodine, and the fringe patterns of a confocal etalon (FSR = 150 MHz) were used as a frequency marker. The linewidth of the spectral line was sensitive to the vapor pressure and the laser power. #### 3.2 Determination of the Molecular Constants of the $B^1\Pi$ State The selection rules for a transition involving a change in electronic, vibrational, and rotational state are^{18} $$\Delta J = 0, \pm 1 \text{ (except J=0 } \forall \text{ J=0)}$$ (3.1) + $$\leftrightarrow$$ - (e \leftrightarrow f for ΔJ = 0, e \leftrightarrow f and f \leftrightarrow f for ΔJ = ± 1) (3.2) $$g \leftrightarrow u$$. (3.3) In Hund's case (a) and (b), $$\Delta\Omega = 0, \pm 1 \tag{3.4}$$ $$\Delta S = 0. \tag{3.5}$$ For a ${}^1\Pi$ - ${}^1\Sigma^+$ transition, the allowed transitions are three branches, P, Q, and R. With a circularly polarized pump beam, only P and R transitions are detected in the OODR polarization spectrum, and the signs are different in P and R transitions. Hence, the assignments are easy and can be accurate. A part of the OODR polarization spectrum and the normal polarization spectrum are shown in Fig. 4. In the normal polarization spectrum [Fig. 4(C)], the intensities of the transitions from the ${\rm X}^1\Sigma^+$ (v"=0 and 1) levels were strong, but the transitions from the ${\rm X}^1\Sigma^+$ (v"=4, J"=17) level were not detected with appreciable intensity. In the OODR polarization spectrum [Fig. 4(B)], the P and R transitions from the selected ${\rm X}^1\Sigma^+$ (v"=4, J"=17) level were observed predominantly, where the ${\rm B}^1\Pi$ (v'=0, J'=18) - ${\rm X}^1\Sigma^+$ (v"=4, Fig. 4. Top (A) is the fluorescence excitation spectrum of I_2 for calibration of the absolute wavenumber. The second (B) is a part of the OODR-polarization spectrum, where the $B^1\Pi(v'=0, J'=18) - x^1\Sigma^+(v''=4, J''=17)$ transition is used as the pump transition. Bottom (C) is the normal polarization spectrum and a part of the assignments. J"=17) transition at 16476.1728 cm⁻¹ was chosen as the pump transition by a circularly polarized pump beam. The extra lines of weak intensity are the transitions from the pumped $B^1\Pi(v'=0, J'=18)$ level and the collisionally depopulated $X^1\Sigma^+$ (v"=4, J") levels. When the $B^1\Pi(v'=0, J'=18) - X^1\Sigma^+(v''=4, J''=17)$ transition was chosen as the pump transition, the probe laser was scanned from 17250 to 17755 cm⁻¹. The $B^1\Pi(v', J'=16$ and 18) - $X^1\Sigma^+(v''=4, J''=17)$ transitions up to the v''=43 level could be observed, and the observed lines are listed in Table IV. The term energy $E_{V,J}$ is expressed in Eq. (1.3) and (1.4). From the Eq. (1.3), the energy separation between the R(J) and P(J) lines is given by $E_{V,J+1} - E_{V,J-1} = (4J+2)B_V - 2(J^2+J+1)(4J+2)D_V + \cdots . \eqno(3.6)$ For J=17, the higher order terms can be neglected, but the terms up to D_V cannot be neglected. At first, we have approximated the value of $\mathbf{D}_{\mathbf{V}}$ by $$D_{v} = \sum_{i=0, \dots, 3} Y_{i2}(v + 1/2)^{i}, \qquad (3.7)$$ where the Dunham coefficients Y_{12} were determined for v'=0~16 in Ref. 16. From a pair of P(17) and R(17) lines, which are listed in Table IV, we calculated the values of $B_{\rm V}$ and $E_{\rm V}^{\rm O}$ for v'=15~43. The values for v'=15 and 16 were in good agreement with the values reported in Ref. 16. The $E_{\rm V}^{\rm O}$ and $B_{\rm V}$ values for v'=16~43 and the values for v'=0~15 in Ref. 16 were taken together as input data of least-squares fitting, which yielded the Dunham coefficients $Y_{ij}(i=0$ and 1):19 Table IV. Observed lines (in units of cm⁻¹) of the $^{23}\text{Na}^{39}\text{K}$ B $^{1}\Pi$ (v', J'=16 and 18) - $\text{X}^{1}\Sigma^{+}(\text{v}"=4,\text{J}"=17)$ transitions measured by the OODR polarization spectroscopy. Pump beam is fixed to the B $^{1}\Pi(\text{v}'=0,\text{J}'=18)$ - $\text{X}^{1}\Sigma^{+}(\text{v}"=4,\text{J}"=17)$ transition at 16476.1728 cm⁻¹. | Probe transitions | | | |-------------------|---|---| | v' | $B^{1}\Pi(v', 16) - X^{1}\Sigma^{+}(4, 17)$ | $B^{1}\Pi(v', 18) - x^{1}\Sigma^{+}(4, 17)$ | | 15 | 17262.1180 | 17265.6801 | | 16 | 17298.1477 | 17203.0001 | | 17 | a a | a | | 18 | 17365.5094 | 17368.7598 | | 19 | 17396.5714 | 17399.7272 | | 20 | 17426.0677 | 17429.1222 | | 21 | 17454.0121 | 17456.9759 | | 22 | 17480.4105 | 17483.2287 | | 23 | 17505.7997 | 17508.4941 | | 24 | 17529.2262 | 17531.8889 | | 25 | 17551.4083 | 17553.9799 | | 26 | a | a | | 27 | 17591.7914 | 17594.2435 | | 28 | 17610.4232 | 17612.6948 | | 29 | 17627.5589 | 17629.7409 | | 30 | 17643.6550 | 17645.7304 | | 31 | 17658.3327 | 17660.0983 | | 32 | 17672.0339 | 17673.8876 | | 33 | 17684.2674 | 17686.0351 | | 34 | 17695.0490 | 17696.6299 | | 35 | 17705.0780 | 17706.5818 | | 36 | 17713.3327 | 17714.7392 | | 37 | 17720.1784 | 17721.4058 | | 38 | 17726.1100 | 17727.1912 | | 39 | 17730.9772 | 17731.9473 | | 40
41 | 17734.5880 | 17735.4286 | | 41
42 | 17737.2491 | 17737.9418 | | 42
43 | 17739.0423
17740.0896 | 17739.5765
17740.4112 | ^a Unlisted ones are strongly perturbed lines or weak and undetected lines. Table V. Molecular constants E_V^O and B_V for v'=16~43 of the $^{23}\text{Na}^{39}\text{K}$ $B^1\Pi$ state. All values are in units of cm $^{-1}$. The values for v'=0~16 are given in Table I of Ref. 16. | v | $\mathtt{E}_{\mathbf{V}}^{\mathbf{O}}$ | 10^2 B $_{ m v}$ | |----------|--|--------------------| | 16 | 17861.1958 | 4.98702 | | 17 | | ****** | | 18 | 17929.3469 | 4.67080 | | 19 | 17960.7753 | 4.53557 | | 20 | 17990.6638 | 4.39081 | | 21 | 18018.9592 | 4.26133 | | 22 | 18045.9211 | 4.05344 | | 23 | 18071.7892 | 3.87687 | | 24 | 18095.3378 | 3.83196 | | 25 | 18117.8719 | 3.70233 | | 26 | Miletwell | | | 27 | 18158.7149 | 3.53340 | | 28 | 18178.0436 | 3.27682 | | 29 | 18195.5239 | 3.15032 | | 30 | 18212.0298 | 2.99998 | | 31 | 18227.9033 | 2.55977 a | | 32 | 18241.2582 | 2.68909 | | 33 | 18253.8189 | 2.57006 | | 34 | 18265.3165 | 2.30795 | | 35 | 18275.6352 | 2.20369 | | 36 | 18284.2559 | 2.07180 | | 37 | 18291.7836 | 1.82406 | | 38 | 18298.2670 | 1.62404 | | 39 | 18303.5555 | 1.47117 | | 40 | 18307.6503 | 1.29771 | | 41 | 18310.8655 | 1.09869 | | 42
43 | 18313.2527
18315.1014 | 0.88530
0.59602 | a) The anomalous value may be originating from the perturbation. Table VI. Dunham coefficients for the $^{23}\text{Na}^{39}\text{K}$ B $^1\Pi$ state. All values are in units of cm $^{-1}$. The value of T $_{\text{e}}$, Y $_{i0}$ (i=0 to 4), Y $_{i1}$ (i=0 to 3), and Y $_{i2}$ (i=0 and 1) were fixed to the values derived in Ref. 16. | $^{\mathtt{T}}\mathbf{e}$ | 16992.7446 | Y ₀₁ | 7.23853x10 ⁻² | |---------------------------|----------------------------|-----------------|----------------------------| | Y ₀₀ | -0.0430 | Y ₁₁ | -1.17799×10^{-3} | | Y ₁₀ | 71.4630 | Y ₂₁ | -1.3502 × 10^{-5} | | Y ₂₀ | -1.15092 | Y ₃₁ | -4.7933×10 ⁻⁷ | | 90 ^Y | -1.0613×10^{-2} | Y ₄₁ | 4.82977x10 ⁻⁸ | | Y ₄₀ | 9.9950×10^{-4} | Y ₅₁ | -6.88606x10 ⁻¹⁰ | | ¥ ₅₀ | -1.42656x10 ⁻⁵ | Y ₆₁ | -1.13984x10 ⁻¹¹ | | Y ₆₀ | -8.67783×10 ⁻⁷ | Y ₇₁ | 2.09534x10 ⁻¹³ | | ¥ ₇₀ | 4.74996x10 ⁻⁸ | Y ₀₂ | -2.89859×10^{-7} | | Y80 | -9.30786×10 ⁻¹⁰ | Y ₁₂ | -1.93901x10 ⁻⁸ | | Y ₉₀ | 6.67343×10 ⁻¹² | Y ₂₂ | 6.45399x10 ⁻¹⁰ | | | | Y ₃₂ | -7.75355×10^{-12} | | | | Y ₄₂ | 9.91847×10 ⁻¹³ | | | | Y ₅₂ | -3.46351x10 ⁻¹⁴ | | | | -52 | -3.40331x10 | $$E_{v}^{O} - T_{e} - B_{v} = \sum_{i=0, \dots, 9} Y_{i0}(v + 1/2)^{i},$$ (3.8) $$B_{v} = \sum_{i=0, \dots, 7} Y_{i1}(v + 1/2)^{i}, \qquad (3.9)$$ where the values of T_e , $Y_{i0}(i=0-4)$, and $Y_{i1}(i=0-3)$ were fixed to those in Ref. 16. From the Dunham coefficients Yio and Yii obtained above, the rotationless potential curve of the $\mathtt{B}^1\Pi$ state is constructed up to the v'=43 level by the Rydberg-Klein-Rees (RKR) method. 19,20 We noticed that the inner wall of the RKR potential increases at v'≥40. We made a correction, and the method is described in the next section. For the corrected RKR potential curve, the values of $E_{\mathbf{v}}^{\mathbf{O}}$, $B_{\mathbf{v}}$, and $D_{\mathbf{v}}$ are calculated by a computational method described by Hutson. 21 The obtained value of D, was slightly different from the value of D, approximated by Eq. (3.7). Hence, by using the new D_{v}
value, we have calculated again the E_{v}^{O} and B_{v} values from a pair of P(17) and R(17) lines in Table IV, and the results are listed in Table V. From the new $\mathrm{E}_{\mathrm{v}}^{\mathrm{O}}$ and B_{v} values for v'=16~43 and those for v'=0~15, we have calculated the Dunham coefficients, and the results are listed in Table VI. ### 3.3 Long-range potential of the $\mathtt{B}^1\Pi$ state From the Dunham coefficients Y_{10} and Y_{11} , the rotationless potential curve of the $B^1\Pi$ state was constructed up to v'=43 by the RKR method. 20 , 21 Let us denote the outer and inner turning points of a vibrational level v as $R_+(v)$ and $R_-(v)$, respectively. The inner wall of the calculated RKR potential bent over at $v' \ge 40$ and the inner turning point $R_-(v')$ increased with v'. At v'=42 and 43, the inner wall increased abruptly. Such a nonphysical inner-wall behavior in the RKR inversion procedure was discussed by Wells, Smith, and Zare. 23 They showed that the RKR procedure was very sensitive to the errors in the B_v values, but relatively insensitive to the G_v values. The distance between the outer and inner classical turning points of a vibrational level v, R₊(v) - R₋(v), is given by the Klein action integral f, which is calculated from the G_v values. We modified the inner-wall by a repulsive potential: 24 V(R) = A/R¹² + B, where R is the internuclear distance. The constants A and B were determined by fitting to the inner turning points of v' =30 to 34; A = $^{3.85547}$ x10 9 cm⁻¹Å¹² and B = $^{-1450.79}$ cm⁻¹ for the RKR potential calculated from the Dunham coefficients in Table VI. The outer turning points were adjusted by adding the distance R₊(v) - R₋(v) to the extrapolated inner turning points. The resulting RKR turning points are listed in Table VII, and are shown in Fig. 5. Many theoretical studies on the long-range interactions of alkali metals $^{12,25-28}$ and the experimental studies by the crossed beam technique 29,30 have been reported. The long-range interaction energy between Na(3s) and K(4p) atoms may be expressed as 28 $$V(R)^{int} = -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} - \cdots, \qquad (3.10)$$ where C_6 , C_8 , and C_{10} are constants. These constants can be determined by analyzing outer RKR turning points in the long-range. 31,32 According to the criterion proposed by LeRoy, 31 the inverse-power expansion of interaction energy is valid for $R \geq 2[(\langle r_A^2 \rangle)^{1/2} + (\langle r_B^2 \rangle)^{1/2}]$, where $\langle r_X^2 \rangle$ is the expectation value of the square of the radius of the outermost electrons on atom X. For Na(3s) + K(4s), the value of $2[(\langle r_{Na}^2 \rangle)^{1/2} + \langle r_{Na}^2 \rangle)^{1/2}$ Table VII. RKR-extrapolated potential of the $^{23}\text{Na}^{39}\text{K}$ B $^{1}\Pi$ state. R_ and R_ are, respectively, inner and outer turning points of each vibrational level v. Re is the equilibrium internuclear distance. | Vibracional level V. | "e 13 the | edarrrprram | Internaciear | ars cam | |----------------------|-----------------------|-------------|-------------------|---------| | v | V(R)/cm ⁻¹ | R_/Å | R ₊ /Å | | | | | $R_{o} = 4$ | .0134 Å | | | -0.25 | 17.7507 | 3.8929 | 4.1489 | | | 0. | 35.3995 | 3.8467 | 4.2103 | | | 1.00 | 104.5311 | 3.7402 | 4.3790 | | | 2.00 | 171.2929 | 3.6735 | 4.5105 | | | 3.00 | 235.6649 | 3.6229 | 4.6286 | | | 4.00 | 297.6453 | 3.5818 | 4.7402 | | | 5.00 | 357.2477 | 3.5470 | 4.8686 | | | 6.00 | 414.4992 | 3.5168 | 4.9556 | | | 7.00 | 469.4370 | 3.4903 | 5.0623 | | | 8.00 | 522.1065 | 3.4668 | 5.1696 | | | 9.00 | 572.5591 | 3.4457 | 5.2779 | | | 10.00 | 620.8503 | 3.4267 | 5.3879 | | | 11.00 | 667.0383 | 3.4095 | 5.4997 | | | 12.00 | 711.1827 | 3.3940 | 5.6138 | | | 13.00 | 753.3433 | 3.3798 | 5.7305 | | | 14.00 | 793.5799 | 3.3669 | 5.8499 | | | 15.00 | 831.9514 | 3.3551 | 5.9723 | | | 16.00 | 868.5156 | 3.3443 | 6.0981 | | | 17.00 | 903.3294 | 3.3344 | 6.2273 | | | 18.00 | 936.4479 | 3.3252 | 6.3603 | | | 19.00 | 967.9254 | 3.3168 | 6.4974 | | | 20.00 | 997.8143 | 3.3091 | 6.6388 | | | | 1026.1658 | 3.3019 | 6.7849 | | | | 1053.0292 | 3.2953 | 6.9360 | | | | 1078.4516 | 3.2892 | 7.0926 | | | | 1102.4776 | 3.2836 | 7.2552 | | | | 1125.1485 | 3.2785 | 7.4243 | | | | 1146.5016 | 3.2739 | 7.6007 | | | | 1166.5694 | 3.2699 | 7.7854 | | | | 1185.3787 | 3.2663 | 7.9795 | | | | 1202.9500 | 3.2633 | 8.1846 | | | | 1219.2966 | 3.2608 | 8.4026 | | | | 1234.4244 | 3.2589 | 8.6361 | | | | 1248.3322 | 3.2574 | 8.8885 | | | | 1261.0122 | 3.2563 | 9.1642 | | | | 1272.4524 | 3.2552 | 9.4689 | | | | 1282.6387 | 3.2542 | 9.8107 | | | | 1291.5601 | 3.2533 | 10.2008 | | | 37.00 | 1299.2149 | 3.2526 | 10.6542 | | | 38.00 | 1305.6190 | 3.2520 | 11.1919 | | | 39.00 | 1310.8181 | 3.2514 | 11.8416 | | | 40.00 | 1314.9014 | 3.2510 | 12.6368 | | | 41.00 | 1318.0209 | 3.2507 | 13.6009 | | | 42.00 | 1320.4140 | 3.2505 | 14.6841 | | | 43.00 | 1322.4316 | 3.2503 | 15.6318 | | | | | | | | is shown as a. The dissociation limit to Na(3s $^2\mathrm{S}_{1/2}$) + K($^2\mathrm{P}_{1/2}$) levels. The dissociation limit to Na($3{ m s}^2{ m S}_{1/2}$) + K($4{ m p}^2{ m P}_{3/2}$) atoms $\mathrm{B}^{1}\Pi$ state. The horizontal lines show the observed vibrational Fig. 5. The rotationless RKR potential energy curve of the NaK atoms is shown as b. is plotted against the $[R_{+}(v)]^{-6}$, and it is shown in Fig. 6. The plot is linear in the limit of large $R_+(v)$ and the constant C_6 is determined to be 37.4×10^6 cm⁻¹Å⁶ from the slope. In the same way, we can determine the constant Cg from a plot of $G_v - C_6/[R_+(v)]^6$ against $[R_+(v)]^{-8}$. However, an appreciable deviation from the linear fit in Fig. 6 is observed only at $[R_+(v)]^{-6} > 10^{-6} \text{ Å}^{-6}$, where the inverse-power expansion of interaction energy becomes invalid. Hence, the interaction energy of higher order than the C_6/R^6 term is expected to be small at R>10 A and cannot be derived from the present data. Bussery and Aubert-Frécon²⁸ calculated the long-range coefficients by a perturbation model, and obtained $C_6 = 35.7 \times 10^6 \text{ cm}^{-1} \text{Å}^6$ and $C_8 =$ -0.51x10⁸ cm⁻¹Å⁸. They neglected the effect of spin-orbit interaction (we shall discuss about this effect in the next section), but these values are in fairly good agreement with our results. $(\langle r_{\kappa}^2 \rangle)^{1/2}$] is reported to be 10.8 Å.⁶ The vibrational energy G_v For long-range potentials expressed as $$V(R) = D_e - \frac{C_n}{R^n}$$, (3.11) where D_{e} is the dissociation energy, LeRoy and Bernstein 23 derived the relation $$\frac{dG_{v}}{dv} = K_{n}[D_{e} - G_{v}]^{(n+2)/2n}, \qquad (3.12)$$ where K_n is a constant proportional to $C_n^{-1/n}$. For n=6, it can be written as $$(\Delta G_{v})^{3/2} = (K_{6})^{3/2} [D_{e} - G_{v}], \qquad (3.13)$$ where $\Delta G_v = G_{v+1} - G_v$. The values of $(\Delta G_v)^{3/2}$ are plotted against G_v for the observed high v levels of the $B^1\Pi$ state in Fig. 6. Plots of $G_{\mathbf{v}}$ for high \mathbf{v} levels in the $\mathbf{B}^1\Pi$ state against $[R_+(v)]^{-6}$, where $R_+(v)$ is the outer turning point of a vibrational level v. Fig. 7. LeRoy-Bernstein plot; $(\Delta G_{\mathbf{v}})^{3/2}$ is plotted against the vibrational term value ${\tt G_v}$ for high v levels in the ${\tt B}^1\Pi$ state. The intercept of extrapolated line yields the dissociation energy $D_e = 1324.3\pm0.3 \text{ cm}^{-1}$. Fig. 7. The plot is linear and the dissociation energy is determined to be $1324.3\pm0.3~{\rm cm}^{-1}$ from the extrapolation. The Birge-Sponer plot, 34 which is the plot of the $\Delta G_{\rm V}$ against v, is shown in Fig. 8. Compared to the LeRoy-Bernstein plot [Fig. 7], there is more flexibility in extrapolating the convergence limit. The LeRoy-Bernstein plot is found to be more useful than the Birge-Sponer plot when transitions close to the dissociation limit, where the long-range potential can be expressed by Eq. (3.12), are observed. Ross et al. 17 reported D_e of the $\rm X^1\Sigma^+$ state to be 5274.9±0.5 cm $^{-1}$. D_e of the B $^1\Pi$ state can also be obtained from the atomic energy level difference $\Delta \rm E[K(4p^2P_{3/2})-K(4s^2S_{1/2})]=13042.89$ cm $^{-1}$ and the minimum electronic energy T_e = 16992.7446 cm $^{-1}$ reported in Ref. 16; $$D_e(B^1\Pi) = D_e(X^1\Sigma^+) + \Delta E[K(4p^2P_{3/2}) - K(4s^2S_{1/2})] - T_e$$ = 1325.05 ± 0.5 cm⁻¹. This value and the one obtained by the LeRoy-Bernstein plot are coincident within the experimental errors. From the obtained dissociation energy, the highest observed v'=43 level is estimated to be 1.8 cm $^{-1}$ below the dissociation limit. Thus 99.86±0.02 % of the well depth of the B $^1\Pi$ state is covered by OODR polarization experiment. #### 3.4 Predissociation near the Dissociation Limit of the ${\tt B}^1\Pi$ State The spectral line shapes of the $B^1\Pi(v'=29\sim43, J'=16)$ - $X^{1}\Sigma^{+}(v"=4, J"=17)$ transitions are shown in Fig. 9. Similar spectral lines with opposite sign were observed for the R lines. A remarkable line broadening was observed for transitions to the levels of v'≥33. The energy threshold of the broadening is coincident with the dissociation limit to $Na(3s^2S_{1/2})$ + $K(4p^2P_{1/2})$ atoms, which is located 57.72 cm⁻¹ below the one to $Na(3s^2S_{1/2}) + K(4p^2P_{3/2})$ atoms. Any irregular line shifts were not observed for all the broadened lines. The v'-dependence of the linewidths (FWHM) of the P(17) and R(17) lines are plotted in Fig. 10. For the levels of v'≤32, the linewidth is observed to be about 200 MHz. However, the linewidth of v'=34 is found to be This line broadening may originate from the predissociation, and the rate can be estimated from the linewidth to be about 2×10^{10} s⁻¹ for v'=34. The linewidth decreases somewhat for $v' \ge 35$, but is still broader than those for $v' \le 32$. In the
Hund's case (a) representation there are four molecular states, $^1\Sigma^+$, $^1\Pi$, $^3\Sigma^+$, and $^3\Pi$, correlated with the separated atoms Na(3s) + K(4p). By neglecting the spin-orbit interaction, Stevens et al. 35 calculated the potential energy curves for all these states up to R = 20 a₀ by the full-valence configuration interaction computations. We added a - C_{10}/R^{10} term to the long-range potential curve obtained by Bussery and Aubert-Frecon, 28 and the C_{10} value was determined so as to fit with the potential energies at R = 15 and 20 a₀ obtained by Stevens et al. 35 The resulting potential curves are shown in Fig. 11(A). Fig. 9. The observed line shapes of the $B^1\Pi(v'=29-43, J'=16)$ - $\chi^1\Sigma^+(v''=4, J''=17)$ transitions. The frequency scale is shown on the top. Lines with \bigstar are accidentally overlapped lines, which are not observed for the corresponding R lines. $x^1\Sigma^+(\mathbf{v}^*\text{=}4\,,\mathbf{J}^*\text{=}17\,)$ transitions. An open circle (o) is for the R Fig. 10. The linewidths Γ of the $B^1\Pi(\,v\,^{\prime}\,^{-}15-43\,^{\prime}$, J'=16 and 18) branch and a filled circle (•) for the P branch. At long internuclear distances, the effect of the spin-orbit interaction cannot be neglected, and the electronic states transform into Hund's case (c) states. The $B^1\Pi(\Omega=\pm 1)$ state transforms into the 1(a) state at long internuclear distances, and the outer RKR turning points in the long-range determined above compose the potential curve of the l(a) state. The energies and eigenfunctions for a given value of R can be obtained by diagonalizing the energy matrix composed of long-range interaction and spin-orbit interaction. The resulting energies are plotted in Fig. 11(B). The spin-orbit interaction mixes the ${}^{1}\Pi(\Omega=\pm1)$, $^3\Pi(\Omega=\pm 1)$, and $^3\Sigma^+(\Omega=\pm 1)$ states, but the mixing of the $^3\Sigma^+(\Omega=\pm 1)$ state, which is correlated with the separated atoms $Na(3s^2S_{1/2})$ + $K(4p^2P_{1/2})$, is small for the 1(a) state [see Table VIII]. potential curve of the 1(a) state does not cross with any curves of the other states in the long-range [see Fig. 11(B)]. Hence, the predissociation of the $B^1\Pi(\Omega=\pm 1)$ state to Na(3s 2 S $_{1/2}$) + $K(4p^2P_{1/2})$ atoms through the interaction at long-range is expected to be negligibly small. In order to cause an appreciable predissociation, a repulsive potential curve must either come very near to, or cross, the $\mathsf{B}^1\Pi$ state curve. According to the computations by Stevens et al., 35 the $(2)^3\Sigma^+$ curve comes close to the $\mathsf{B}^1\Pi$ curve on the inner limb and crosses just above the dissociation limit. The perturbation between the $\mathsf{B}^1\Pi$ and $(2)^3\Sigma^+$ states can occur through the spin-orbit interaction H_{SO} . The nonvanishing matrix elements are 36 $\langle\mathsf{B}^1\Pi(\mathsf{v'J})|\mathsf{H}_{\mathsf{SO}}|(2)^3\Sigma^+(\mathsf{vN}(=\mathsf{J}\ \mathsf{and}\ \mathsf{J}\pm 1)\mathsf{J})\rangle$. The rate of the predissociation is approximately proportional to the product of the Franck-Condon factor $|\langle\mathsf{v'}|\mathsf{v}\rangle|^2$ and the electronic-rotational Fig. 11. Potential energy curves of NaK corresponding asymptote Na(3s) + K(4p). (A): Spin-orbit interaction is neglected. The C_{10} values for $^1\Pi$, $^3\Pi$, $^1\Sigma^+$, and $^3\Sigma^+$ states are, respectively, -0.5, 4.3, 48, and -18 cm⁻¹Å¹⁰. (B): Spin-orbit interaction is included. The numbers are the values of Ω in Hund's case (c) notation, and a letter in () is a symbol to distinguish each. Table VIII. Eigenfunctions of 1(a, b, and c) states correlated with the separated atoms Na(3s) + K(4p), which are expressed as a linear-combination of the Hund's case (a) wave functions: $C_1|^3\Sigma^+_{\pm 1}\rangle \,+\, C_2|^1\Pi_{\pm 1}\rangle \,+\, C_3|^3\Pi_{\pm 1}\rangle.$ | State | R/Å | Energy/cm ⁻¹ | c_1 | c ₂ | c ₃ | |-------|------|-------------------------|-------|----------------|----------------| | 1(a) | 10 | -17.657 | 0.023 | 0.760 | -0.650 | | 1(4) | 10.5 | -8.141 | 0.019 | 0.742 | -0.670 | | | 11 | -1.371 | 0.019 | 0.731 | -0.682 | | | 11.5 | 3.520 | 0.013 | 0.731 | -0.689 | | | 12 | 7.105 | 0.013 | 0.720 | -0.694 | | | 13 | 11.772 | 0.008 | 0.714 | -0.700 | | | 14 | 14.469 | 0.006 | 0.712 | -0.702 | | | 16 | 17.107 | 0.004 | 0.709 | -0.705 | | | 18 | 18.190 | 0.002 | 0.708 | -0.706 | | | 20 | 18.682 | 0.002 | 0.708 | -0.706 | | | 20 | 10.002 | 0.002 | 0.700 | 0.700 | | 1(b) | 10 | -45.203 | 0.383 | 0.594 | 0.708 | | -(~) | 10.5 | -32.089 | 0.475 | 0.583 | 0.660 | | | 11 | -21.666 | 0.557 | 0.560 | 0.614 | | | 11.5 | -13.314 | 0.623 | 0.533 | 0.572 | | | 12 | -6.657 | 0.673 | 0.508 | 0.538 | | | 13 | 2.745 | 0.735 | 0.471 | 0.489 | | | 14 | 8.547 | 0.767 | 0.447 | 0.460 | | | 16 | 14.437 | 0.796 | 0.423 | 0.431 | | | 18 | 16.890 | 0.807 | 0.415 | 0.420 | | | 20 | 18.002 | 0.812 | 0.412 | 0.415 | | 1(c) | 10 | -121.842 | 0.923 | -0.265 | -0.278 | | | 10.5 | -97.139 | 0.880 | -0.330 | -0.341 | | | 11 | -80.463 | 0.831 | -0.389 | -0.399 | | | 11.5 | -69.136 | 0.782 | -0.437 | -0.444 | | | 12 | -61.319 | 0.740 | -0.473 | -0.478 | | | 13 | -51.844 | 0.679 | -0.518 | -0.521 | | | 14 | -46.750 | 0.641 | -0.542 | -0.543 | | | 16 | -42.047 | 0.605 | -0.563 | -0.563 | | | 18 | -40.203 | 0.591 | -0.571 | -0.571 | | | 20 | -39.384 | 0.584 | -0.574 | -0.574 | | | | | | | | factor $|\langle B^1\Pi(J)|H_{SO}|(2)^3\Sigma^+(N(=J\ and\ J\pm 1)J)\rangle|^2$. From the variation of the linewidth with v' [see Fig. 10], the $(2)^3\Sigma^+$ potential curve probably crosses the $B^1\Pi$ curve near the left turning point of the $B^1\Pi(v'=34)$ level. For such a crossing, we can expect on Franck-Condon considerations a very rapid rise of the predissociation just before the crossing and a gradual falling off at higher v'. We conclude that the remarkable line broadenings at $v'\geq 33$ occur through the predissociation to $Na(3s^2S_{1/2})+K(4p^2P_{1/2})$ atoms, the predissociation is caused by a strong spinorbit interaction between the $B^1\Pi$ and $(2)^3\Sigma^+$ states, and the potential curves cross around the inner turning point of the $B^1\Pi(v'=34)$ level. # Chapter 4. DOPPLER-FREE OPTICAL-OPTICAL DOUBLE RESONANCE POLARIZATION SPECTROSCOPY FOR HIGHLY EXCITED STATES OF THE ²³Na³⁹K MOLECULE Rydberg states of the homonuclear alkali metal diatomic molecules $\mathrm{Li_2}^{10,37,38}$, $\mathrm{Na_2}^{9,39}$, and $\mathrm{K_2}^{40,41}$ have been studied for many years, but the Rydberg states or highly excited states of the heteronuclear NaK molecule have not yet been reported. Density of the electronic states is very high at the high energy region and many transition lines can be overlapped. A Doppler-free OODR polarization spectroscopy is a very useful technique for studying the highly excited states. The spectrum is simplified, because transitions only from a chosen vibrational-rotational level can be observed. The highly excited states of the NaK molecule were observed by using a technique of the Doppler-free OODR polarization spectroscopy. By choosing the B $^1\Pi$ state as an intermediate state, the stepwise excitation allows to excite to the highly excited $^1\Sigma^+$, $^1\Pi$, and $^1\Delta$ states. The scheme of the stepwise excitation $^1\Delta(\mathbf{v},\ \mathbf{J}) \leftarrow \mathrm{B}^1\Pi(\mathbf{v}',\ \mathbf{J}') \leftarrow \mathrm{X}^1\Sigma^+(\mathbf{v}"=0,\ \mathbf{J}")$ is shown in Fig. 12. Four $^1\Sigma^+$, three $^1\Pi$, and five $^1\Delta$ states were observed in the energy regions 33016~33674 cm $^{-1}$ and 34449~34717 cm $^{-1}$, and the molecular constants were determined. In the observed OODR polarization spectra, many lines are found to deviate from the extrapolated values. Several types of the perturbation between closely lying electronic states were found. These results are reported in this chapter. Fig. 12. A scheme of the OODR stepwise excitation to study highly excited states. #### 4.1 Experimental The details and experimental arrangement of the OODR polarization spectroscopy is described in Chapter 2 and 3.1. In case of a stepwise excitation of the NaK molecule, the pump laser (Coherent CR699-21, operated by Rhodamin 6G dye) is tuned to a center of Doppler profile of a known transition $B^1\Pi(v', J') \leftarrow X^1\Sigma^+(v''=0, J'')$ and the wavenumber is fixed. The probe laser (Coherent CR699-29, operated by Kiton Red or Rhodamine 6G dye) is scanned through the spectral range of transitions to the highly excited levels R(v, J) from the intermediate $B^1\Pi(v', J')$ level. When two transition lines are accidentally located within the Doppler width of the pump transition, they are simultaneously excited and two intermediate levels are populated. In such case, another OODR spectrum was measured by changing the pump transition. For an example, if the P(J'+1) line is overlapped with the other line, the R(J'-1) line is selected as the pump line. By comparing the term values of the R(v, J') level obtained from the P(J'+1) and R(J'-1) lines, we can confirm that the assignment of the P(J'+1) line. - 4.2 Determination of the Molecular Constants of Highly Excited States of the $^{23}\mathrm{Na}^{39}\mathrm{K}$ Molecule - 4.2.1 Assignment of the Observed Transition Lines From the B $^1\Pi$ state, $^1\Sigma^+$, $^1\Sigma^-$, $^1\Pi$, and $^1\Delta$ states can be excited by an electric dipole transition. The electronic state excited by the OODR stepwise excitation can be assigned from the spectral patterns of the OODR polarization spectrum. From the selection rules for a electronic dipole transition [Eq. (3.1)~ (3.5)] and the relative intensities calculated by the Hönl-London factor $S(\Lambda_1 J_1 \leftarrow \Lambda J)$ [in Table III] and the polarization factor ζ^C $(\text{or L})(J_1 \leftarrow J, J_2 \leftarrow J_1)$ [in Table II]. The allowed transitions at large
J are schematically shown in Fig. 13. When a circularly polarized pump beam is tuned to a P or R line, P and R lines can be detected as the Lorentian shaped lines of different signs for the $^1\Sigma^+$ \leftarrow $^1\Pi$, $^1\Pi$ \leftarrow $^1\Pi$, and $^1\Delta$ \leftarrow $^1\Pi$ transitions. If the polarization of the pump beam is elliptical, Q lines can also be detected as a dispersed lines for the $^1\Sigma^- \leftarrow {}^1\Pi$ and $^1\Delta \leftarrow {}^1\Pi$ transitions. On the other hand, when a linearly polarized pump beam, of which polarization plane is chosen to be 45° against the probe polarization, is tuned to a Q line, Q lines can be detected for the $^1\Sigma^+$ \leftarrow $^1\Pi$ and $^1\Lambda$ \leftarrow $^1\Pi$ transitions, and weak P and R lines can also be detected for the $^1\Sigma^ \leftarrow$ $^1\Pi$, $^1\Pi$ \leftarrow $^1\Pi$, and $^1\Delta$ \leftarrow $^1\Pi$ transi-Note that the Q line of the ${}^{1}\Pi$ \leftarrow ${}^{1}\Pi$ transition can be detected at only small J, because the intensity is proportional to $1/J^2$ as we can see the Hönl-London factor. [Table III] In the observed region, several $^1\Sigma^+$, $^1\Pi$, and $^1\Delta$ states, except $^1\Sigma^-$ state, could be observed and assigned. The observed spectral lines, which are assigned as the $^1\Sigma^+$ \leftarrow $^1\Pi$, $^1\Pi$ \leftarrow $^1\Pi$, and $^1\Delta$ \leftarrow $^1\Pi$ transitions are shown, respectively, in Fig. 14(a), (b), and (c). The upper trace (A) represents the OODR polarization signals which were observed when the circularly polarized pump beam was tuned to the $^1\Pi(v'=9, J'=30e)$ \leftarrow $^1\Sigma^+(v''=0, J''=31e)$ transition [P(31) line]. The lower trace (B) represents the ones which were observed when the linearly polarized pump beam was # A. Linearly Polarized Pump ## **B. Circularly Polarized Pump** Fig. 13. Spectral patterns of the OODR polarization spectrum with circularly polarized pump beam tuned to P or R line (A), and linearly polarized pump beam tuned to Q line (B). A dotted-broken line in (A) is for the dispersion shaped signal, and a broken line in (B) is for the weak intensity signal. Fig. 14. A part of the OODR polarization signals. (a), (b), and (c) are the ${}^{1}\Sigma^{+}$ - ${}^{1}\Pi$, ${}^{1}\Pi$ - ${}^{1}\Pi$, and ${}^{1}\Lambda$ - ${}^{1}\Pi$ transition lines. Upper trace (A): a circularly polarized pump beam was tuned to the ${}^{1}\Pi(v'=9,\ J'=30e)$ - ${}^{1}\Sigma^{+}(v''=0,\ J''=31e)$ transition; lower trace (B): a linearly polarized pump beam was tuned to the ${}^{1}\Pi(v'=9,\ J'=30f)$ - ${}^{1}\Sigma^{+}(v''=0,\ J''=30e)$ transition. Lines with \bigstar originated from other types of the OODR transitions. Fig. 14. (Continued) tuned to the B¹ $\Pi(v'=9, J'=30f) \leftarrow X^1\Sigma^+(v''=0, J''=30e)$ transition [Q(30) line]. A part of the OODR polarization spectrum which contains the $^1\Delta(v,\ J=29e,\ 30f,\ and\ 31e) \leftarrow B^1\Pi(v'=9,\ J'=30e)\ and\ ^1\Sigma^+(v,\ J=29e)$ $\leftarrow B^1\Pi(v'=9,\ J'=30e)\ transitions\ is\ shown\ in\ Fig.\ 15.$ In this case, the $B^1\Pi(v'=9,\ J'=30e)\leftarrow x^1\Sigma^+$ (v"=0,\ J"=31e)\ transition\ was chosen as the pump transition by a circularly polarized pump beam. In addition to the lines of the sequential two photon absorption, many extra lines are observed, as we can see in Fig. 15. The extra lines in Fig. 15 are assigned as the transitions to the levels of the $B^1\Pi$ and $C^1\Sigma^+$ states from the $X^1\Sigma^+(v",\ J"=29e\ and\ 31e)$ levels populated by the radiative transitions $B^1\Pi(v'=9,\ J'=30e)\to X^1\Sigma^+(v",\ J=29e\ and\ 31e)$. [see Fig. 1(d)] Since the molecular constants of the NaK $X^1\Sigma^+$, $B^1\Pi$ and $C^1\Sigma^+$ states are known, $^{17},^{16},^{42}$ these extra lines can be easily assigned from the combination difference of the P(J+1) and R(J-1) lines. The energy region of 33016~33674 cm⁻¹ above the potential minimum of the ground state could be studied when the B¹ $\Pi(v'=9, J'e/f) \leftarrow X^1\Sigma^+(v''=0, J''e)$ transitions (mainly J'=30-40) were chosen as the pump transitions, and more than 400 rotational levels of the highly excited states were observed. Among them, 215 levels were assigned to $^1\Delta$ states, 21 levels to $^1\Pi$ states, and 106 levels to $^1\Sigma^+$ states. From the rotational constants B_V and the vibrational spacings ΔG_V , the observed lines were attributed to three $^1\Sigma^+$, two $^1\Pi$ and three $^1\Delta$ states. The molecular constants will be reported in the next section. The progression of the vibrational levels could be found in two $^1\Delta$ states Fig. 15, A part of the OODR polarization spectrum, where the $\rm B^1\Pi(v^*{=}9,~J^*{=}30e)$ - $\rm X^1\Sigma^+(v^*{=}0,~J^*{=}31e)$ transition is used as the pump transition. The extra lines with B and C originated from $\mathrm{B}^1\Pi$ - $\mathrm{X}^1\Sigma^+$ and $\mathrm{C}^1\Sigma^+$ - $\mathrm{X}^1\Sigma^+$ transitions, respectively. and three $^1\Sigma^+$ states. These states are notated as the $F^1\Delta$, $G^1\Delta$, $H^1\Sigma^+$, $I^1\Sigma^+$, and $J^1\Sigma^+$. The energy region of 34449~34717 cm $^{-1}$ above the potential minimum of the ground state could be studied when the $B^1\Pi(v'=6, J'e/f) \leftarrow X^1\Sigma^+(v''=0, J''e)$ transitions (J'=18, 20, and 22) were chosen as the pump transitions, and 32 rotational levels were assigned to two $^1\Delta$ states, one $^1\Pi$ state, and one $^1\Sigma^+$ state. The progression of the vibrational levels could be found in only one $^1\Delta$ state. This state is notated as the $K^1\Delta$ state. The excited states which were observed at only one vibrational level are noted as the R_n (n=1~6) in order of the energy. The assignment of J were easy because the intermediate level of known J' were chosen by the pump laser. But the vibrational numberings are difficult and the estimate will be discussed in the next section. # 4.2.2 Molecular Constants of Highly Excited State and the Potential Energy Curve of the $G^1\Delta$ State The term energy is expressed by Eq. (1.3) and (1.4). From the term energy of the observed transition lines, the molecular constants E_{v}^{0} , B_{v} , and D_{v} of the observed highly excited states were determined by a least-squares-fitting procedure. The obtained molecular constants of the $^{1}\Delta$ states and others are listed, respectively, in Table IX and X. The vibrational quantum number v_{f} , v_{g} , ..., in Table IX and X represent the lowest observed level of the F, G, ..., state, respectively. The energy E_{v}^{0} of the assigned levels are schematically shown in Fig. 16 and 17. Table IX. Molecular constants $E^0_{\,_{ m V}}$, $B_{_{ m V}}$ and $D_{_{ m V}}$ of the NaK F, G, and $K^1\Delta$ states. All values are in units of cm $^{-1}$. N is the number of rotational energy levels used to determine the constants. J_{min} and J_{max} are the minimum and maximum rotational quantum number used to determine the constants. | state | v | E ^O v | 10 ² B _v | 10 ⁷ D _V | N(J _{min} , | J _{max}) | |------------------------|-------------------|------------------|--------------------------------|--------------------------------|----------------------|--------------------| | $\mathtt{F}^{1}\Delta$ | ${\tt v_f}$ | 32877.147 | 6.7452 | | 2 (39, | 41) | | | v_{f}^{+1} | 32958.209 | 6.7750 | 2.0905 | 10 (29, | 42) | | | v_{f} +2 | 33039.174 | 6.7401 | 2.4856 | 9 (29, | 42) | | | v _f +3 | 33119.716 | 6.6976 | 2.2599 | 30 (2, | 41) | | | v_{f}^{+4} | 33200.233 | 6.6524 | 2.0065 | 11 (27, | 43) | | ${\tt G}^1\Delta$ | 11 | 32909.318 | 6.9904 | | 3 (37, | 41) | | | 12 | 32997.827 | 6.8010 | 1.8663 | 7 (29, | 41.) | | | 13 | 33084.295 | 6.7363 | 1.4801 | 8 (29, | 42) | | | 14 | 33169.183 | 6.6811 | 1.9249 | 6 (29, | 41) | | | 15 | 33252.134 | 6.6272 | 3.3997 | 14 (27, | 41) | | | 16 | 33335.759 | 6.2787 | -5.3069 ^(a) | 6 (31, | 41) | | | 17 | 33411.516 | 6.4805 | 2.2898 | 4 (29, | 41) | | | 18 | 33488.808 | 6.4041 | 1.5432 | 4 (29, | 41) | | | 19 | 33565.825 | 6.2364 | | 2 (39, | 41) | | $\kappa^1\Delta$ | $v_{\mathbf{k}}$ | 34518.842 | 6.8369 | 1.3211 | 5 (17, | 23) | | | v_{k} +1 | 34604.184 | 6.7906 | 0.8789 | 5 (17, | 23) | | | v_k+2 | 34688.856 | 6.7491 | | 2 (17, | 19) | ⁽a) The anomalous values may be originating from the perturbation. Table X. Molecular constants $E^0_{\,_{V}}$, $B^{\,}_{V}$ and $D^{\,}_{V}$ of the NaK $^1\Sigma^+$, $^1\Pi$, $^1\Delta$ states. All values are in units of cm $^{-1}$. N is the number of rotational energy levels used to determine the constants. J_{\min} and J_{\max} are the minimum and maximum rotational quantum number used to determine the constants. | state | v | E ^O v | 10 ² в _v | 10 ⁷ D _v | N(J _{min} , | J _{max}) | |------------------|--------------------------|------------------|--------------------------------|--------------------------------|----------------------|--------------------| | $^{1}\Sigma^{+}$ | $v_{ m h}$ | 32951.694 | 6.4095 | 1.5405 | 8 (29, | 41) | | | v_h+2 | 33123.350 | 6.3816 | 4.2940 | 41 (9, | 48) | | - | v_h +3 | 33206.686 | 6.2457 | 1.6150 | 8 (29, | 43) | | $1^1\Sigma^+$ | $v_{\mathtt{i}}$ | 33044.409 | 6.6032 | 3.2224 | 7 (29, | 42) | | | v _i +1 | 33127.937 | 6.4000 | -8.6281 ^(a) | 20 (17, | 41) | | $J^1\Sigma^+$ | ${\tt v_j}$ | 33161.873 | 6.4517 | -4.3626 ^(a) | 6 (29, | 41) | | | v _j +2 | 33333.544 | 6.5550 | 1.1833 | 9 (31, | 41) | | $R_1^{1}\Delta$ | v_1 | 33108.476 | 6.4865 | 2.2990 | 9 (29, | 41) | | $R_2^1\Pi$ | v_2 | 33143.131 | 6.5939 | 1.5362 | 8 (27, | 41) | | $R_3^1\Pi$ | v_3 | 33281.128 | 6.5773 | 3.5670 | 8 (29, | 41) | | $R_4^1\Sigma^+$ | v ₄ | 34510.430 | 6.3692 | -8.8132 ^(a) | 5 (17, | 23) | | $R_5^1\Pi$ | v 5 | 34529.425 | 6.6621 | 3.6313 | 4 (17, | 23) | | $R_6^1\Delta$ | v 6 | 34592.702 | 6.5642 | _ | 2 (17, | 19) | ⁽a) The anomalous values may be originating from
the perturbation. Fig. 16. The vibrational level energies (E $_{v}^{O}$) of the observed $^{1}\Delta$ states. Fig. 17. The vibrational level energies (E $_{V}^{O}$) of the observed $^{1}\Sigma^{+}$ and $^{1}\Pi$ states. For the $G^1\Delta$ state, the progression of the vibrational levels could be found for v_g to v_g+8 , where v_g is the vibrational quantum number of the lowest observed level of the $G^1\Delta$ state. The assignment of the vibrational quantum number is possible if the dispersed fluorescence is observed. However, we could not observe the fluorescence spectra from the $G^1\Delta$ state. The $^1\Delta$ state cannot directly radiate to the lower $A^1\Sigma^+$ or $X^1\Sigma^+$ state. The fluorescence to the $B^1\Pi$ state cannot be distinguished from the fluorescence originated from the pump or probe transition. Recently, Bautista et. al. 43 reported a method todetermine the vibrational quantum numbers by a simple algebraic procedure. By applying this method, we estimated as v_g =10 or 11, and v_f ≈20. From the estimated v value and the molecular constants in Table IX, we calculated the Dunham coefficients $Y_{i,j}(j=0 \text{ and } 1)^{16}$ for the $G^1\Delta$ state: $$E_{v}^{0} - T_{e} - 4B_{v} = \sum_{i=0,1,2} Y_{i0}(v + 1/2)^{i}$$ (4.1) $$B_{V} = \sum_{i=0,1,2} Y_{i1}(v + 1/2)^{i}. \qquad (4.2)$$ From the Dunham coefficients Y_{i0} and Y_{i1} obtained above, the potential energy curve of the $G^1\Delta$ state was calculated by the RKR method. 20,21 And then, we calculated the Frank-Condon factors of the $G^1\Delta(v) \leftarrow B^1\Pi(v'=9)$ transitions. These procedures were performed for several v values around the v_g =10. From the comparison between the calculated Frank-Condon factors and the intensity pattern of the observed OODR signals, we have determined v_g to be 11. The resulting Dunham coefficients and the RKR turning points for the $G^1\Delta$ state are listed, respectively, in Table XI and XII. The rotationless potential energy curve is Table XI. Dunham coefficients for the NaK ${\rm G}^1\Delta$ state. All value given by ${\rm cm}^{-1}.$ | e 31 | 761.70 | Y ₀₁ | 7.62861×10^{-2} | |------|--------------------------|-----------------|---------------------------| | 10 | 110.209 | Y ₁₁ | -6.56598x10 ⁻⁴ | | 20 | -9.0764×10^{-1} | | | Table XII. RKR potential energy curve of NaK $G^1\Delta$ state. $R_{\mbox{min}}$ and $R_{\mbox{max}}$ are turning points at the each vibrational value. $R_{\mbox{e}}$ is the equilibrium internuclear distance. | V | V(R)/cm ⁻¹ | R _{min} /Å | R _{max} /Å | |-------|-----------------------|---------------------|---------------------| | | | R _e = | 3.9095 | | -0.25 | 27.8029 | 3.8113 | 4.0159 | | 0. | 54.8307 | 3.7719 | 4.0637 | | 1.00 | 163.2244 | 3.6801 | 4.1892 | | 2.00 | 269.8029 | 3.6207 | 4.2827 | | 3.00 | 374.5660 | 3.5746 | 4.3635 | | 4.00 | 477.5139 | 3.5361 | 4.4371 | | 5.00 | 578.6464 | 3.5027 | 4.5061 | | 6.00 | 677.9637 | 3.4729 | 4.5721 | | 7.00 | 775.4657 | 3.4459 | 4.6357 | | 8.00 | 871.1524 | 3.4212 | 4.6977 | | 9.00 | 965.0238 | 3.3983 | 4.7585 | | 10.00 | 1057.0800 | 3.3768 | 4.8183 | | 11.00 | 1147.3208 | 3.3566 | 4.8776 | | 12.00 | 1235.7464 | 3.3375 | 4.9364 | | 13.00 | 1322.3567 | 3.3192 | 4.9950 | | 14.00 | 1407.1517 | 3.3018 | 5.0535 | | 15.00 | 1490.1314 | 3.2850 | 5.1121 | | 16.00 | 1571.2958 | 3.2689 | 5.1709 | | 17.00 | 1650.6450 | 3.2531 | 5.2299 | | 18.00 | 1728.1788 | 3.2378 | 5.2893 | | 19.00 | 1803.8974 | 3.2229 | 5.3492 | | 20.00 | 1877.8007 | 3.2084 | 5.4097 | | 21.00 | 1949.8886 | 3.1941 | 5.4709 | | 22.00 | 2020.1614 | 3.1800 | 5.5329 | | 23.00 | 2088.6188 | 3.1661 | 5.5957 | | 24.00 | 2155.2609 | 3.1524 | 5.6595 | | 25.00 | 2220.0878 | 3.1388 | 5.7243 | | 26.00 | 2283.0993 | 3.1252 | 5.7904 | | 27.00 | 2344.2956 | 3.1116 | 5.8577 | | 28.00 | 2403.6766 | 3.0980 | 5.9263 | | 29.00 | 2461.2423 | 3.0844 | 5.9966 | | 30.00 | 2516.9927 | 3.0707 | 6.0684 | Fig. 18. The rotationless RKR potential energy curve of the NaK $\mathsf{G}^1\Delta$ state. The horizontal lines show the observed vibrational levels. shown in Fig. 18. Starting from the intermediate $B^{1}\Pi$ state, which dissociates to the Na(3s) + K(4p) atoms, only the transitions involving the K(4p) electron have appreciable transition probability to states correlated with the atomic asymptote Na(3s) + K(ns) and Na(3s) + K(nd). Similarly, transitions involving the Na(3s) electron can lead to doubly excited states arising from the atomic asymptote Na(np) + K(4p). The possible atomic asymptotes of the $G^{1}\Delta$ state are shown in Fig. 18. Stevens et. al. 35 calculated the potential curves for the three $^{1}\Delta$ states correlated with the Na(3s) + K(3d), Na(3d) + K(4s), and Na(3p) + K(4p) atomic asymptote by the full-valence configuration interaction computations. The molecular constants of the $^1\Delta$ states and the NaK+ ion ground state ${\tt X}^2{\tt \Sigma}^+$ ${\tt 44,45}$ are listed in Table XIII for comparison. The molecular constants of the calculated $^1\Delta$ state correlated with the atomic asymptote Na(3s) + K(3d) and the ones of the $G^{1}\Delta$ state are similar. It suggests the $G^1\Delta$ state may be correlated with the Na(3s) + K(nd). From the similarity of the constants, we assumed the $G^{1}\Delta$ state correlated with the atomic asymptote Na(3s) + K(5d). As we can see from the Fig. 18, it is expected the doubly excited $^1\Delta$ state which is correlated with the atomic asymptote Na(3p) + K(4p) exists near the $G^1\Delta$ state. The strong electrostatic interaction between the Rydberg state and the doubly excited configuration were found in the Li2 10 and Na2 46 molecules. It is expected the NaK $G^1\Delta$ state interacts with the $^1\Delta$ state correlated with Na(3p) + K(4p), and the $G^1\Delta$ state is a mixture of the Rydberg state and a balence state. Table XIII. The molecular constants of NaK $^1\Delta$ states and NaK+ ${\rm X}^2\Sigma^+$ ion ground state. T_e, $\omega_{\rm e}$, $\omega_{\rm e}$, and D_e values are in cm $^{-1}$. R_e is the equilibrium internuclear distance in Å. | state | asymptote | Тe | ω _e | ^ω e ^x e | R _e | D _e | |-----------------------|---------------------------|----------------|----------------|-------------------------------|----------------|------------------| | $^{1}\Delta$ | Na(3s)+K(3d) ^a | 23352 | 103.6 | 0.70 | 3.724 | 4076 | | $\mathtt{1}_{\Delta}$ | Na(3s)+K(4d) | ********** | | | | | | ${\tt 1}_\Delta$ | Na(3d)+K(4s) ^a | 29905 | 72.8 | 0.30 | 4.178 | 4744 | | ${}^{1}\Delta$ | Na(3p)+K(4p) ^a | 35492 | 50.6 | | 5.034 | 266 ^f | | $G^1\Delta$ | Na(3s)+K(5d) ^b | 31762 | 110.2 | 0.91 | 3.909 | 3699 | | | | ^Т О | ^ω e | | R _e | D _O | | $x^2\Sigma^+$ | Na(3s)+ K ⁺ C | 35620 | | | | 4597 | | | đ | 34585 | 89.8 | | 3.81 | 5632 | | | | | | | | | a. Reference 35. b. This work. c. Reference 44. d. Reference 45. f. This state is metastably bound with respect to Na(3p)+K(4p). For the $^1\Pi$ and $^1\Delta$ states, the difference of the term values of the R(v, J) levels excited by the circularly and linearly polarized pump beam gives the Λ -type splitting Δ E [see Fig. 13], $\Delta E = E_{V,Je} - E_{V,Jf} = q_{V}[J(J+1) - \Lambda^{2}],$ (4.3) where q_{V} is the Λ doubling constants. The Λ -type doubling originates from the L-uncoupling interaction 18 between sufficiently distant two electronic states with $\Delta\Lambda$ = ± 1 . Many rotational levels were found to irregular and deviates from the extrapolated values. It suggests the perturbations between closely lying electronic states. The obtained Λ -type splittings ΔE are found to be irregular in many parts. From the observed unperturbed lines, we estimated the q_{V} of the $F^{1}\Delta$ and $G^{1}\Delta$ states, $F^{1}\Delta$ state : $q_{v} = 1.5 \times 10^{-5} \text{ cm}^{-1}$, $G^{1}\Delta$ state : $q_{v} = 0.5 \times 10^{-5} \text{ cm}^{-1}$. The highly excited states, involving the Rydberg states, belong with respect to the angular momentum coupling to the intermediate range between the two limiting Hunt's coupling case (a) and (d). In case (a) the electronic orbital angular momentum L is strongly coupled to the internuclear axis and its projection quantum number Λ is well defined. In case (d) L is completely decoupled from the axis of the rotating molecule and combines with the angular momentum R of the molecular rotation to form the resultant N=R+L. The relative small Λ -type splittings indicate that Λ is still a fairly good quantum number and Hund's case (a) coupling is a good approximation. #### 4.3 Perturbation between the highly excited states From the analysis of the observed transition lines, many rotational levels were found to irregular and deviates from the extrapolated values. It suggests the perturbations between closely lying electronic states. The selection rules for perturbation between the electronic states are 11 $$\Delta J = 0 \tag{4.4}$$ $$+ \leftrightarrow + \text{ and } - \leftrightarrow - (e \leftrightarrow e \text{ and } f \leftrightarrow f)$$ (4.5) $$\Delta S = 0, \pm 1 \tag{4.6}$$ $$\Delta\Lambda = 0, \pm 1. \tag{4.7}$$ If the perturbation occurs between two levels, the higher level is displaced upward and the lower level downward by an equal amount, and the smaller the separation between the levels the larger are their shifts. For the spectral range of the $F^1\Delta(v=v_f+3)\leftarrow B^1\Pi(v'=9)$ and $H^1\Sigma^+(v=v_h+2)\leftarrow B^1\Pi(v'=9)$ transitions, the OODR polarization spectrum was observed. The intermediate $B^1\Pi(v'=9,\ J'=1\text{-}60e$ and several J'f) levels were chosen by the pump laser. By using the OODR technique, only a pair of the mutual perturbing levels could be observed. The observed line positions (in cm⁻¹) for each intermediate J'e levels are schematically shown in Fig. 19 (similar to Fortrat diagram¹¹), where the only Q lines of the $F^1\Delta(v=v_f+3,\
Jf)\leftarrow B^1\Pi(v'=9,\ Je)$ transition are the transitions to f levels, and others are the ones to e levels. [see Fig. 13(A)] In addition to the expected transition lines to the $F^1\Delta(v=v_f+3)$ and $H^1\Sigma^+(v=v_h+2)$ levels, other transition lines, which are represented by \square and Δ in Fig. 19, could be observed Fig. 19. The observed line positions against to intermediate J'e value. [Fortrat diagram] o is shown a transition to the $F^1\Delta$ state, \bullet to $H^1\Sigma^+$ state, \Box to U-state, and Δ to T-state. The regions of the irregular line positions are represented by (a), (b), and (c). only at the place the interaction occurs with $\mathrm{H}^1\Sigma^+$ state. Here we shall call these interacting states as "U" state (for lines with \square) and "T" state (for lines with Δ), respectively. There are three regions of the irregular line positions, and these are shown as (a), (b), and (c) in Fig. 19. (a) is due to the perturbation between the $F^1\Delta(v=v_f+3)$ and $H^1\Sigma^+(v=v_h+2)$ states. The deviations from the expected values were found only for e levels. The molecular constants of the $F^1\Delta(v=v_f+3)$ state are determined from f levels and listed in Table IX. The differences between the measured term values and the values calculated from the molecular constants are shown in Fig. 20. The largest energy shift of the $F^1\Delta(v=v_f+3)$ levels is about 0.2 cm⁻¹ at J=34. From the direction and the magnitude of the energy shifts, the rotational level of the $F^1\Delta(v=v_f+3)$ and $H^1\Sigma^+(v=v_h+2)$ state is expected to cross at $J_c=34$. However, as we can see from the Eq. (4.7), the $^1\Delta$ state cannot directly interact to $^1\Sigma^+$ state. A possible state which perturbs with both a $^1\Delta$ and $^1\Sigma^+$ state is a $^1\Pi$ state. Both of the $^1\Delta \sim ^1\Pi$ and $^1\Pi \sim ^1\Sigma^+$ perturbation can be induced by L-uncoupling interaction; 18 $H_{JL} = - B(J_{+}L_{-} + J_{-}L_{+}), \eqno(4.8)$ where B = $\hbar^{2}/2\mu R^{2}$, μ is the reduced mass. J is the total angular momentum and L is the electronic orbital angular momentum. $J_{\pm} = J_{x} \pm iJ_{y}$ and $L_{\pm} = L_{x} \pm iL_{y}$, where x and y denote the molecule-fixed coordinates with the z axis coinciding the internuclear axis. The nonbanishing matrix elements between the $^{1}\Delta(v, Je)$ and $^{1}\Pi$ state, and between the $^{1}\Sigma^{+}(v, Je)$ and $^{1}\Pi$ state are given by 47 filled circle (ullet) is for an e level and an open circle (\circ) is for Fig. 20. Difference between measured term values and calculated values from the molecular constants of the $\mathrm{F}^1\Delta(\mathrm{v=v}_{\mathrm{f}}^{+}3)$ state. a f level. $<^1\!\Delta({\tt v},\ {\tt Je/f})\big|{\tt H}_{\tt JL}\big|^1\!\Pi({\tt v},\ {\tt Je/f})> = -\ 2\eta_1[{\tt J}({\tt J}{+}1){-}2]^{1/2}, \eqno(4.9)$ and $\label{eq:constants} <^1\Pi(v,\ Je)|_{\rm H_{JL}}|^1\Sigma^+(v,\ Je)> = -2\eta_2[J(J+1)]^{1/2}, \qquad (4.10)$ where η_1 and η_2 are constants. The energy shift of the f levels of the $F^1\Delta$ state could not be observed. It suggests the perturbing $^1\Pi$ state is far away from the $F^1\Delta$ and $H^1\Sigma^+$ states. Therefore, the perturbation between the $F^1\Delta$ and $H^1\Sigma^+$ levels occurs through a combination of the L-uncoupling interactions between the $^1\Delta(v,\ Je)$ and $^1\Pi(v,\ Je)$ levels: $<^1\Delta(v,\ Je)|_{\rm H_{JL}}|^1\Pi(v,\ Je)>$, and between the $^1\Pi(v,\ Je)$ and $^1\Sigma^+(v,\ Je)$ levels: $<^1\Pi(v,\ Je)|_{\rm H_{JL}}|^1\Sigma^+(v,\ Je)>$. In such an indirect perturbation of the ${\rm F}^1\Delta(v=v_f+3)$ levels with the ${\rm H}^1\Sigma^+(v=v_h+2)$ levels, the $^1\Pi$ state distant from these two states acts as "transfer" state for the $^1\Delta$ ~ $^1\Sigma^+$ perturbation. 48 - (b) is due to the perturbation between the $\mathrm{H}^1\Sigma^+(\mathrm{v=v_h+2})$ and U state. The largest energy shift of the $\mathrm{H}^1\Sigma^+(\mathrm{v=v_h+2})$ levels is about 0.55 cm⁻¹ at J=28. From the direction and the magnitude of the energy shifts, the rotational level of the $\mathrm{H}^1\Sigma(\mathrm{v=v_h+2})$ and U state is expected to cross at $\mathrm{J_C=25}$. The electronic state of the U band could not be identified because the only e levels can be observed through the perturbation with $\mathrm{^1}\Sigma^+$ state which has only e levels. - (c) is due to the perturbation between the $\mathrm{H}^1\Sigma^+(\mathrm{v=v_h+2})$ and T state. The observed line shapes of the $\mathrm{H}^1\Sigma^+(\mathrm{v=v_h+2})$, J=38~44e) \leftarrow B $^1\Pi(\mathrm{v'=9})$, J'=J-1e) and T(v, J=38~44e) \leftarrow B $^1\Pi(\mathrm{v'=9})$, J'=J-1e) transitions are shown in Fig. 21. As we can see in Fig. 21 (lower trace), the transition lines to perturbing T(v, J=39~42, and 44e) levels are split into four lines. Similar splittings Fig. 21. The observed line shapes of the transition lines to the $\mathrm{H}^{1}\Sigma^{+}(\mathrm{v=v_{h}}+2$, J=38-44e) levels perturbed by T state from the $\mathrm{B}^{1}\Pi$ (v'=9, J'=J-le) levels. [R lines] Upper trace: transitions to the is an accidentally overlapped line, which is not observed for the $\mathrm{H}^{1}\Sigma^{+}$ state. Lower trace: transitions to T state. A line with lacktrianglecorresponding P line. were found for the $B^1\Pi \sim c^3\Sigma^+$ perturbation and identified as the hyperfine splittings of the $c^3\Sigma^+$ state induced by the Fermi contact interaction between the nuclear moment of ^{23}Na and an electron spin. 16 It suggests the observed splitting of the perturbed lines may be the hyperfine splitting. At J=43, the transition line to the $H^1\Sigma^+$ state is split to two lines, and the transition line to T state has more complicate structure. [see Fig. 21] These line shapes suggests that another perturbing state interacts to the $H^1\Sigma^+$ and/or T state. In order to identify the perturbing states, more extensive work are necessary on the perturbed regions. # Chapter. 5. DOPPLER-FREE HIGH RESOLUTION LASER SPECTROSCOPY OF THE Cs $_2$ D $^1\Sigma^+_u$ STATE AND THE PREDISSOCIATION #### I. INTRODUCTION The absorption spectrum of Cs2 has six distinct band systems at 480, 580, 625, 720, 760, and 1000 nm. $^{49-51}$ Raab et al. 4 used the technique of the OODR polarization spectroscopy to study the 580 nm system, and they observed only P and R lines but no Q lines, which led to the assignment of the band to the $D^1\Sigma_{ii}^+$ - $X^1\Sigma_{ij}^+$ transition. The lines to low v' levels of the $\mathtt{D}^1\Sigma_u^+$ state are overlapped with the lines of the $\mathtt{C}^1\Pi_u$ - $\mathtt{X}^1\Sigma_q^+$ transition. selecting an appropriate wavenumber region with a monochromator to detect a selected series of the D $^1\Sigma_u^+(v^+)$ - X $^1\Sigma_q^+(v^-)$ transitions, Yokoyama et al. 52 observed the excitation spectra and determined the spectroscopic constants for v'=0-5. Collins et al. 53 studied the photolysis of Cs_2 by the two-photon technique; the time delay between the photodissociation and detection of the products was varied to separate the collisional effects from the primary dissociation process. They found that the $\mathtt{D}^1\Sigma_u^+$ state predissociates selectively to the $Cs(6^2P_{3/2})$ and $Cs(6^2S_{1/2})$ Amiot et al. 54 studied the D $^{1}\Sigma_{u}^{+}$ - $x^{1}\Sigma_{g}^{+}$ transition by Fourier transform spectroscopy, Doppler-free polarization spectroscopy, and OODR polarization spectroscopy. They found an unusual vibrational spacing. Line broadening was observed in the Doppler-free polarization spectrum and was attributed to the predissociation.4 However, more extensive studies are necessary in order to understand the perturbations and the mechanism for predissocia- tion. The Doppler-free polarization spectrum of the $D^1\Sigma_u^+(v^*, J^*)$ - $X^1\Sigma_g^+(v^*, J^*)$ transition up to $v^*=58$ was measured, and the assignments of the $D^1\Sigma_u^+$ - $X^1\Sigma_g^+$ transitions were confirmed by the V-type OODR polarization spectrum. From the observed spectrum, the molecular constants of the $D^1\Sigma_u^+$ state were determined more accurately. The Doppler-free excitation spectrum was measured by using an experimental setup where a collimated Cs beam is crossed at right angles by the laser beam. The v^* and J^* dependence of the linewidths of the $D^1\Sigma_u^+(v^*, J^*)$ - $X^1\Sigma_g^+(v^*, J^*)$ transition was found by selectively measuring the atomic emission at 852.3 nm $(6^2P_{3/2}$ - $6^2S_{1/2}$: D_2 line). Using these spectroscopic data, we identify the perturbing states and predissociation mechanism. ### 5.1 Experimental Two experimental methods were used in this work. (a) The Doppler-free normal polarization spectroscopy was mainly used for the observation of the $D^1\Sigma_u^+(v^+, J^+) - X^1\Sigma_g^+(v^+, J^+)$ transitions. The experimental details and arrangement is described in Chapter 2. and 3.1. In this case, Cs_2 vapor was produced by heating cesium metal (5g) in a stainless heat pipe oven, which was operated at 550K. A part of the Doppler-free polarization spectrum, which contains the rotational lines of the $D^1\Sigma_u^+(v^+=27) - X^1\Sigma_g^+(v^-=2)$ transition, is shown in Fig. 22. The linewidths of the unperturbed rotational lines were about 75 MHz, and were very sensitive to the vapor pressure. When the assignments are difficult due to the perturbation, the V-type OODR polarization spectrum was measured and confirmed the assignments. Fig. 22. A part of the Doppler-free polarization spectrum of Cs₂ near the band origin of the D¹ $\Sigma_u^+(v'=27,\ J\pm1)$ - $x^1\Sigma_g^+(v''=2,\ J)$ transition. The assignments are shown below the spectrum. In this case, a circularly polarized pump beam was tuned to a center of the Doppler profile of a known transition $C^1\Pi_u(v'=12, J'=34) - X^1\Sigma_u^+(v''=9, J''=33)$, and the probe laser was scanned through the spectral range
of the $D^1\Sigma_u^+(v', J'=32)$ and $M_1 - M_2 + M_3 + M_4 + M_5 + M_6 +$ (b) The experimental set-up for Doppler-free excitation ${\tt spectroscopy}^{55}$ is shown in Fig. 23. The cesium beam was generated by expanding the vapor from the oven through a 300 µm orifice into a high vacuum chamber ($< 10^{-6}$ Torr). Cesium metal (2q) was put in the oven cell, and heated to 400°C. The cesium beam was collimated by a conical skimmer with inner diameter of 1 mm at 5 cm from the nozzle, and crossed at right angles by the laser The cesium beam was trapped by a liquid-nitrogen trap after the excitation region. The emission was collected using a concave mirror and was detected by a red-sensitive photomultiplier (Hamamatsu R943-02) and a photon-counting system (Hamamatsu C767). The beam contained mainly Cs atoms, a small amount of Cs2 molecules, and a trace of higher clusters. From the rotational and vibrational line spacings of the excitation spectrum, we identified the spectral lines as originating from the D $^1\Sigma_u^+$ - $\mathrm{x}^1\Sigma_\alpha^+$ excitation of the Cs2 molecule. Contributions from the Cs atom and the higher clusters were negligible in the present study. The cesium beam was effusive with a rotational temperature of the Cs₂ molecule estimated to be about 200 K from the intensity distribution of the rotational lines. Two color filters (TOSHIBA C50S and R62), which transmit from 610 to 690 nm (transmittance > 20 %), were used to detect the fluorescence from the D $^1\Sigma_u^+$ state of the Cs₂ molecule, and appropriate interference filters to Fig. 23. The experimental setup for the Doppler-free excitation spectroscopy. S: conical skimmer, M: concave mirror, F: filter, PM: photomultiplier, and PD: photodiode. detect selectively the $D_2(6^2P_{3/2}-6^2S_{1/2})$ or $D_1(6^2P_{1/2}-6^2S_{1/2})$ line emission from the photodissociated Cs atoms. Thus, we measured separately the intensities of the $D^1\Sigma_u^+-X^1\Sigma_g^+$ molecular fluorescence and the D_2 or D_1 atomic emission as a function of the frequency of the tunable dye laser. We shall call these, respectively, "an excitation spectrum monitored by the molecular fluorescence," and "an excitation spectrum monitored by the D_2 or D_1 atomic emission." The Doppler-free excitation spectrum in Fig. 24 shows the rotational lines of the $D^1\Sigma_u^+(v^*=28)-X^1\Sigma_g^+(v^*=2)$ transition. The FWHM of the unperturbed lines of mostly 15 MHz was mainly due to the residual Doppler-width. ## 5.2 Determination of the Molecular Constants and Potential Energy Curve of the $\mathrm{D}^1\Sigma_{11}^+$ State The equilibrium internuclear distance of the $D^1\Sigma_u^+$ state is much longer than that of the $X^1\Sigma_g^+$ state (Fig. 25). Because of the Franck-Condon principle, 11 the transition to the low v' level of the $D^1\Sigma_u^+$ state can be allowed only from high v" levels of the $X^1\Sigma_g^+$ state. Furthermore, the transitions to the low v' levels are overlapped by lines of the $C^1\Pi_u - X^1\Sigma_g^+$ transition. Hence, it was difficult to assign the $D^1\Sigma_u^+(v', J') - X^1\Sigma_g^+(v'', J'')$ transition for low v' in the spectrum obtained by normal polarization spectroscopy. The transitions to the $D^1\Sigma_u^+(v'=6)$ level was measured with the excitation spectrum by choosing the appropriate wavenumber region through a monochromator to detect a selected series of the $D^1\Sigma_u^+(v') - X^1\Sigma_g^+(v'')$ transitions. 52 The transitions to the $D^1\Sigma_u^+(v'=7-58)$ levels were measured by Doppler-free Fig. 24. A part of the Doppler-free excitation spectrum of Cs₂ beam near the D¹ $\Sigma_u^+(v'=28,\ J=45)$ - $X^1\Sigma_g^+(v''=2,\ J=46)$ transition. Upper trace (A) is the excitation spectrum monitored by the D¹ Σ_u^+ - $X^1\Sigma_g^+$ molecular fluorescence. Lower trace (B) is the excitation spectrum monitored by the D₂ atomic emission. The atomic emission is about 5 times stronger than the molecular fluorescence. polarization spectroscopy. The molecular constants of the $x^1\Sigma_g^+$ state, which are accurate up to the dissociation limit, have been reported. Using these molecular constants, the quantum numbers v" and J" for each of a series of the P and R lines could be easily assigned. The term energies of $^1\Sigma^+(v,\ J)$ levels are expressed in Eq. (1.3) and (1.4). The wavenumber $\sigma(v'J',\ v''J'')$ of the $D^1\Sigma^+_u(v',\ J')$ - $X^1\Sigma^+_g(v'',\ J'')$ transition is given by $$\sigma(v'J', v''J'') = E_{v',J'} - E_{v'',J''}.$$ (5.1) The term energies $E_{v',J'}$ of the $D^1\Sigma_u^+(v':unassigned, J':assigned)$ levels are calculated by Eq. (5.1) from the observed wavenumber $\sigma(v'J', v''J'')$ of the transitions and the term energies $E_{v''J''}$ of the assigned $X^1\Sigma_g^+(v'', J'')$ levels. Molecular constants for the $D^1\Sigma_u^+(v'=6-58)$ levels were determined by the following procedures: (i) Preliminary values of T_v and B_v for each v were calculated by a nonlinear least-squares fitting procedure T_v for the levels with T_v smaller than 30. (ii) The values of T_V and B_V obtained in these separate fittings for v=6~58 and in Ref. 52 for v=0~5 were used as input data for least-squares fittings, which yielded the Dunham coefficients Y_{ij} (j=0 and 1):¹⁹ $$G_{v} = \sum_{i=1,2,\cdots} Y_{i0}(v+1/2)^{i},$$ (5.2) $$B_{v} = \sum_{i=0,1,\cdots} Y_{i1}(v+1/2)^{i}.$$ (5.3) (iii) From the Dunham coefficients Y_{i0} and Y_{i1} obtained above, the rotationless potential curve of the $D^1\Sigma_u^+$ state was construct- ed up to v=58 by the RKR method. 20 , 21 - (iV) For the RKR potential curve, the values of $G_{\rm V}$, $B_{\rm V}$, $D_{\rm V}$, and $H_{\rm V}$ for v=6~58 were then calculated by the computational method described by Hutson. 22 - (V) With D_{V} and H_{V} fixed at these values, a nonlinear least-squares fitting procedure 50 for the levels with J \leq 30 and v=6-58 was used to redetermine the values of T_{V} and B_{V} . - (Vi) With T_v and B_v fixed at these values, a nonlinear least-squares fitting procedure 50 for all the assigned rotational lines of each v was used to redetermine the values of D_v and H_v . 5029 assigned lines were used to determine the molecular constants of the $\mathsf{D}^1\Sigma_\mathsf{u}^+$ state. The results are listed in Table XIV. Almost all line frequencies could be reproduced by these constants with deviations of less than 0.01 cm $^{-1}$. The standard deviation for each v level is listed in Table XIV. The T_v and B_v values of v=0-58 were used, respectively, to determine the Dunham coefficients Y_{10} and Y_{11} by least-squares fitting. The results are listed in Table XV. The values of D_v and H_v are irregular and are not appropriate for the Dunham expansion. From the Dunham coefficients Y_{10} and Y_{11} , the potential curve of the $\mathsf{D}^1\Sigma_\mathsf{u}^+$ state was constructed by the RKR method. The results are shown in Table XVI and are plotted in Fig. 25. | v | ${f T}_{f V}$ | 10 ³ в _v | 10 ⁹ D _V | 10 ¹⁵ H _V | 10 ² δΕ | N | |----|---------------|--------------------------------|--------------------------------|---------------------------------|--------------------|------------| | 0 | 16708.9281 | 7.7507 | 4.756 | -1.92 | 1.01 | 126 | | 1 | 16728.6344 | 7.7023 | 4.788 | -1.61 | 0.71 | 5 4 | | 2 | 16748.1360 | 7.6548 | 4.823 | -1.32 | 1.36 | 284 | | 3 | 16767.4350 | 7.6083 | 4.857 | -1.08 | 0.89 | 42 | | 4 | 16786.5366 | 7.5627 | 4.880 | -0.93 | 0.54 | 122 | | 5 | 16805.4192 | 7.5179 | 4.881 | -0.82 | 0.99 | 355 | | 6 | 16824.1493 | 7.4783 | 4.999 | 0.46 | 0.40 | 30 | | 7 | 16842.6481 | 7.4335 | 5.052 | 0.90 | 0.24 | 78 | | 8 | 16860.9737 | 7.3901 | 5.090 | 1.23 | 0.13 | 58 | | 9 | 16879.1207 | 7.3504 | 5.111 | 1.53 | 0.11 | 31 | | 10 | 16897.0793 | 7.3019 | 5.109 | 1.64 | 0.17 | 96 | | 11 | 16914.9148 | 7.2629 | 5.078 | 1.59 | 0.26 | 83 | | 12 | 16932.5845 | 7.2262 | 5.019 | 1.48 | 0.31 | 60 | | 13 | 16950.1233 | 7.1835 | 4.931 | 1.22 | 0.22 | 87 | | 14 | 16967.5461 | 7.1440 | 4.815 | 0.93 | 0.12 | 22 | | 15 | 16984.8653 | 7.1097 | 4.987 | -2.55 | 0.19 | 75 | | 16 | 17002.1049 | 7.0795 | 4.526 | 0.39 | 0.23 | 118 | | 17 | 17019.2808 | 7.0486 | 4.365 | 0.23 | 0.25 | 107 | | 18 | 17036.4099 | 7.0268 | 4.202 | 0.20 | 0.56 | 97 | | 19 | 17053.5125 | 7.0009 | 4.045 | 0.29 | 0.16 | 27 | | 20 | 17070.5936 | 6.9735 | 3.900 | 0.51 | 0.23 | 90 | | 21 | 17087.6721 | 6.9511 | 3.774 | 0.87 | 0.15 | 57 | | 22 | 17104.7393 | 6.9377 | 3.670 | 1.35 | 0.22 | 78 | | 23 | 17121.7833 | 6.9224 | 3.592 | 1.92 | 0.56 | 91 | | 24 | 17138.9109 | 6.9004 | 3.541 | 2.57 | 0.18 | 67 | | 25 | 17155.9796 | 6.8740 | 3.519 | 3.27 | 0.21 | 106 | | 26 | 17173.0459 | 6.8539 | 3.525 | 3.99 | 0.17 | 84 | | 27 | 17190.0991 | 6.8432 | 3.558 | 4.70 | 0.38 | 121 | | 28 | 17207.1373 | 6.8287 | 3.615 | 5.36 | 0.38 | 90 | | 29 | 17224.1738 | 6.7987 | 3.692 | 5.93 | 0.19 | 68 | | 30 | 17241.1668 | 6.7819 | 3.787 | 6.38 | 0.10 | 72 | | 31 | 17258.1293 | 6.7609 | 3.893 | 6.64 | 0.22 | 37 | | 32 | 17275.0321 | 6.7213 | 4.006 | 6.66 | 0.43 | 102 | | 33 | 17291.9292 | 6.7281 | 4.120 | 6.36 | 0.14 | 84 | | 34 | 17308.7414 | 6.6915 | 4.228 | 5.75 | 0.14 | 75 | | 35 | 17325.4206 | 6.6549 | 4.326 | 4.78 | 0.34 | 40 | Table XIV. (Continued) | v | T _V | 10 ³ B _v | 10 ⁹ D _V | 10 ¹⁵ н _v | 10 ² δΕ | N | |----|----------------|--------------------------------|--------------------------------|---------------------------------|--------------------|------------| | 36 | 17342.3070 | 6.6222 | 4.409 | 3.43 | 0.85 | 75 | | 37 | 17358.8184 | 6.6038 | 4.472 | 1.72 | 0.12 | 38 | | 38 | 17375.2403 | 6.5553 | 4.512 | -0.28 | 0.30 | 78 | | 39 | 17391.8996 | 6.5666 | 4.528 | -2.53 | 0.16 | 4 3 | | 40 | 17408.2092 | 6.5127 | 4.522 | -4.95 | 0.18 | 80 | | 41 | 17424.1763 | 6.4819 | -5.980 | -7.48 | 0.44 | 76 | | 42 | 17440.7890 | 6.4713 | 9.024 | -10.11
 0.27 | 108 | | 43 | 17456.7905 | 6.4225 | 4.395 | -12.76 | 0.20 | 105 | | 44 | 17472.0103 | 6.4511 | -9.235 | -15.41 | 0.79 | 88 | | 45 | 17488.8130 | 6.3623 | 4.266 | -18.09 | 0.23 | 78 | | 46 | 17504.4689 | 6.3229 | -3.749 | -20.79 | 0.39 | 91 | | 47 | 17520.5948 | 6.3145 | 1.466 | -23.38 | 0.65 | 71 | | 48 | 17535.8881 | 6.2604 | 4.098 | -25.77 | 0.15 | 83 | | 49 | 17551.1546 | 6.2382 | 4.060 | -27.81 | 0.70 | 90 | | 50 | 17566.9549 | 6.2055 | 14.784 | -29.23 | 0.61 | 86 | | 51 | 17581.9293 | 6.1609 | 4.005 | -29.63 | 0.27 | 98 | | 52 | 17596.7910 | 6.1483 | 3.972 | -28.50 | 0.63 | 90 | | 53 | 17612.2826 | 6.0823 | 9.716 | -20.50 | 0.25 | 85 | | 54 | 17626.8711 | 6.0579 | 3.793 | -17.87 | 0.19 | 76 | | 55 | 17641.3258 | 6.0553 | 3.548 | -4.80 | 0.32 | 62 | | 56 | 17656.4898 | 5.9715 | 10.737 | 15.93 | 0.36 | 72 | | 57 | 17670.6336 | 5.9473 | 2.287 | 40.49 | 0.20 | 81 | | 58 | 17684.7012 | 5.9337 | 1.256 | 54.11 | 0.31 | 61 | | | | | | | | | Table XV. Dunham coefficients Y $_{i,j}$ for the D $^{1}\Sigma_{u}^{+}$ state. All values are in cm $^{-1}.$ | i | j | Y _{ij} | i | ţ | Y _{ij} | |---|---|---|---|---|--| | 1 | 0 | 19.9103 | 1 | 1 | 7.7820 _* 10 ⁻³ | | 2 | 0 | -1.05117 _* 10 ⁻¹ | 2 | 1 | -5.1690 _* 10 ⁻⁵ | | 3 | 0 | 2.37699 _* 10 ⁻³ | 3 | 1 | 5.8034×10 ⁻⁷ | | 4 | 0 | -4.43514×10 ⁻⁴ | 4 | 1 | 4.8064×10 ⁻⁹ | | 5 | 0 | 3.83326×10^{-5} | 5 | 1 | -1.6010 _* 10 ⁻¹⁰ | | 6 | 0 | -1.46591×10 ⁻⁶ | | | | | 7 | 0 | 2.86676 _* 10 ⁻⁸ | | | | | 8 | 0 | -2.83418 _* 10 ⁻¹⁰ | | | | | 9 | 0 | 1.12767×10^{-12} | | | | a) These values are useful for J<30. Table XVI. The RKR potential energy curve of the $\text{D}^1\Sigma_u^+$ state. $\text{R}_{\text{min}} \text{ and } \text{R}_{\text{max}} \text{ are the turning points of each vibrational level.}$ $\text{R}_e \text{ is the equilibrium internuclear distance.}$ | v | $G_{\rm V}/{\rm cm}^{-1}$ | R _{min} /Å | R _{max} /Å | v | ${\rm G_{ m v}/cm^{-1}}$ | R _{min} /Å | R _{max} /Å | |----------|---------------------------|---------------------|---------------------|----------|--------------------------|---------------------|---------------------| | 0 | 9.9314 | 5.5581 | 5.8781 | 31 | 559.1414 | 4.8031 | 7.5379 | | 1 | 29.6373 | 5.4568 | 6.0134 | 32 | 576.0651 | 4.7924 | 7.5726 | | 2 | 49.1443 | 5.3912 | 6.1128 | 33 | 592.9382 | 4.7819 | 7.6071 | | 3 | 68.4536 | 5.3402 | 6.1976 | 34 | 609.7533 | 4.7714 | 7.6414 | | 4 | 87.5643 | 5.2974 | 6.2738 | 35 | 626.5039 | 4.7610 | 7.6758 | | 5 | 106.4753 | 5.2601 | 6.3443 | 36 | 643.1842 | 4.7507 | 7.7102 | | 6 | 125.1865 | 5.2268 | 6.4106 | 37 | 659.7896 | 4.7405 | 7.7445 | | 7 | 143.7005 | 5.1965 | 6.4737 | 38 | 676.3163 | 4.7305 | 7.7789 | | 8 | 162.0222 | 5.1685 | 6.5342 | 39 | 692.7615 | 4.7206 | 7.8133 | | 9 | 180.1595 | 5.1425 | 6.5924 | 40 | 709.1230 | 4.7108 | 7.8478 | | 10 | 198.1231 | 5.1182 | 6.6487 | 41 | 725.3993 | 4.7013 | 7.8823 | | 11 | 215.9262 | 5.0952 | 6.7032 | 42 | 741.5891 | 4.6919 | 7.9170 | | 12 | 233.5837 | 5.0736 | 6.7561 | 43 | 757.6910 | 4.6828 | 7.9517 | | 13 | 251.1123 | 5.0531 | 6.8074 | 44 | 773.7035 | 4.6739 | 7.9867 | | 14 | 268.5291 | 5.0336 | 6.8573 | 45 | 789.6241 | 4.6653 | 8.0218 | | 15 | 285.8520 | 5.0151 | 6.9057 | 46 | 805.4493 | 4.6570 | 8.0572 | | 16 | 303.0980 | 4.9976 | 6.9528 | 47 | 821.1746 | 4.6489 | 8.0931 | | 17 | 320.2836 | 4.9808 | 6.9985 | 48 | 836.7937 | 4.6411 | 8.1294 | | 18 | 337.4239 | 4.9649 | 7.0430 | 49 | 852.2994 | 4.6336 | 8.1662 | | 19 | 354.5320 | 4.9497 | 7.0862 | 50 | 867.6833 | 4.6263 | 8.2036 | | 20 | 371.6193 | 4.9351 | 7.1283 | 51 | 882.9365 | 4.6193 | 8.2418 | | 21 | 388.6946 | 4.9212 | 7.1692 | 52 | 898.0506 | 4.6126 | 8.2808 | | 22 | 405.7644 | 4.9078 | 7.2092 | 53 | 913.0192 | 4.6062 | 8.3207 | | 23 | 422.8331 | 4.8949 | 7.2482 | 54 | 927.8395 | 4.6002 | 8.3614 | | 24 | 439.9021 | 4.8825 | 7.2864 | 55
56 | 942.5153 | 4.5948 | 8.4027 | | 25
26 | 456.9712 | 4.8704 | 7.3239 | 56 | 957.0602 | 4.5900 | 8.4445 | | 20
27 | 474.0379
491.0978 | 4.8586
4.8472 | 7.3607
7.3969 | 57 | 971.5018 | 4.5862 | 8.4863 | | 28 | 508.1452 | 4.8472 | 7.3969
7.4327 | 58 | 985.8872 | 4.5837 | 8.5273 | | 20
29 | 525.1734 | 4.8339 | 7.4327
7.4681 | | ם ב | 7005 \$ | | | 30 | 542.1748 | 4.8248 | 7.4081 | | $r_e = 3$ | .7095 Å | | Fig. 25. The potential energy curves for Cs₂. The curves of the D¹ Σ_u^+ , C¹ Π_u , and X¹ Σ_g^+ states are calculated by the RKR method from the molecular constants in this work, Ref. 4, and Ref. 56, respectively. The curve of the (2)³ Π_u state is a Morse function estimated in this work. The dotted line is the estimated diabatic potential energy curve of the c³ Σ_u^+ state, which is expected to cross the potential curve of another $^3\Sigma_u^+$ state, 55 which is bound and separates into the Cs(5²D_{3/2}) and Cs(6²S_{1/2}) atoms. ## 5.3 Perturbation Between the ${\tt D}^1\Sigma_u^+$ and (2) $^3\Pi_u$ States The vibrational spacing ΔG_{v} = G_{v+1} - G_{v} = T_{v+1} - T_{v} for the $\mathrm{D}^{1}\Sigma_{\mathrm{u}}^{+}$ state was calculated from T_{v} in Table XIV, and is plotted as a function of v by open circles in Fig. 26. The fitted values of $\Delta G_{_{f V}}$, which are calculated from Eq. (5.3) and the Dunham coefficients $Y_{\dot{1}\dot{0}}$ in Table XV, are shown by filled circles in Fig. 26. ΔG_{v} decreases linearly as v increases for v=0~12. ΔG_{v} is almost invariant for v=17-29, but large differences between $\Delta G_{_{\mathbf{V}}}$ and the fitted values are observed for v>35. The striking variation of ΔG_{v} with v was first found by Amiot et al., ⁵⁴ but their detailed values are slightly different from our results. They reported a large deviation from the fitted ΔG_{v} curve around v=12~19, but we could not find such a deviation. The discrepancy may result from a wrong assignment of v' or J'. In order to confirm our assignments, the V-type OODR polarization spectrum was observed. Starting from a selected lower level X $^{1}\Sigma_{\mathbf{q}}^{+}(v"=9\text{, }J"=33\text{), the OODR}$ polarization signals for a vibrational progression to the upper levels $D^1\Sigma_{u}^+(v'=5\sim14$, J'=32 and 34) were observed. A part of the OODR polarization spectrum is shown in Fig. 27. A comparison of the OODR polarization spectrum and the normal polarization spectrum is shown in Fig. 28. Because transitions only from the selected $\mathbf{X}^{1}\Sigma_{\mathbf{q}}^{+}(\mathbf{v}",\;\mathbf{J}")$ level are observable in the OODR polarization spectrum, the v' and J' quantum numbers of the $\mathtt{D}^1\Sigma_u^+(\mathtt{v}^{\hspace{0.2mm} \text{!`}}, \mathtt{J}^{\hspace{0.2mm} \text{!`}})$ - $\mathbf{X}^{1}\Sigma_{\mathbf{q}}^{+}(\mathbf{v}",\ \mathbf{J}")$ transition could be accurately assigned. Usually, $\Delta G_{\mathbf{V}}$ decreases regularly as \mathbf{v} increases because of the anharmonicity. The observed change of $\Delta G_{\mathbf{V}}$ with \mathbf{v} results from a change in the gradient of the potential curve of the $D^1\Sigma_{\mathbf{U}}^+$ Fig. 26. Open circles (o) show the variation of vibrational spacing $\Delta G_{\mathbf{V}}$ of the $\mathrm{D}^1\Sigma_{\mathbf{U}}^+$ state with v. Filled circles (\bullet) are the fitted values of $\Delta G_{\mathbf{V}}$, which are calculated from Eq. (5.4) and the Dunham coefficients $\mathbf{Y}_{\mathbf{10}}$ in Table XV. Fig. 27. A part of the OODR polarization spectrum for the D $^1\Sigma_u^+$ (v'=10-14, J'=32 and 34) - $x^1\Sigma_g^+$ (v"=9, J"=33) transitions: P(33) and R(33). The $C^1\Pi_u(v'=12,\ J'=34)$ - $x^1\Sigma_g^+(v''=9,\ J''=33)$ transition is used as the pump transition. Rotational lines R(35) and P(31), which are induced by a collisional energy transfer, are also observed. Fig. 28. Top (A) is the fluorescence excitation spectrum of I_2 for calibration of the absolute wavenumber. The second (B) is a part of the OODR-polarization spectrum, where the $C^1\Pi_u(v'=12, J'=34) - X^1\Sigma_g^+(v''=9, J''=33)$ transition is used as the pump transition. Bottom (C) is the normal polarization spectrum and a part of the assignments. state. No perturbations were found in the individual rotational lines of the P and R branches for each vibronic transition. However, large deviations of $\Delta G_{\rm V}$ from the fitted $\Delta G_{\rm V}$ curve were observed for v larger than 35 (Fig. 26). Almost all rotational levels of a vibrational state deviate uniformly from the regular changes in a vibrational progression. Such a perturbation is called a vibrational perturbation. ¹¹ Perturbations can occur only between levels of the same total angular momentum J; the selection rule is $\Delta J=0.11,18$ resulting shift of a level increases as the energy separation between the perturbing levels decreases. The $\Delta G_{\mathbf{v}}$ values for v=35~58 are fluctuating; some are shifted upward and some downward from the fitted values. If the perturbing state is a continuous state, such non-uniform energy shifts are not observed. From this fact, we can conclude that the perturbing electronic state is a bound state. The shift of all rotational levels of a vibrational state can occur if the rotational constants of two perturbing vibrational states are nearly equal; when the energy separations between levels of the same J of the two perturbing vibrational states are equal, the uniform shift of all rotational levels of a vibrational state occurs. Hence, the equilibrium internuclear distance of the perturbing state can be estimated to be nearly equal (within ± 0.2 Å) to the $D^1\Sigma_{11}^+$ state. A possible perturbing state is the $(2)^3\Pi_u$ state, which asymptotically dissociates into the $\text{Cs}(6^2\text{S}_{1/2})$ and $\text{Cs}(5^2\text{D}_{3/2})$ atoms. The perturbation between the $\text{D}^1\Sigma_u^+$ and $(2)^3\Pi_u$ states is induced by the spin-orbit interaction
(H_{SO}) . The nonvanishing matrix elements between the three Hund's case (a) states $^3\Pi_\Omega$ (Ω = 0, 1, and 2) and a $^{1}\Sigma^{+}$ state are 47 $$<^{1}\Sigma^{+}(v', J)|H_{so}|^{3}\Pi_{0}(v, Je)> = \xi = \xi_{el}< v'|v>,$$ (5.4) where the symbol e refers to an e level of the Λ -type doubling. The perturbed term energies are expressed as $$PTE_{+} = \{E_{2} + E_{1} + [(E_{2} - E_{1})^{2} + 4\xi^{2}]^{1/2}\}/2,$$ $$PTE_{-} = \{E_{2} + E_{1} - [(E_{2} - E_{1})^{2} + 4\xi^{2}]^{1/2}\}/2,$$ (5.5) where E_1 and E_2 are the unperturbed energies of the $D^1\Sigma_u^+(v^*,J)$ and $(2)^3\Pi_{0u}(v,Je)$ levels, respectively. For a given pair of interacting levels, the higher level is displaced upward and the lower-level downward by an equal amount. For a given ξ , the smaller the separation between the levels, the larger are their shifts. From the direction of the energy shift of the $D^1\Sigma_u^+(v^*)$ level, we can estimate the location of the perturbing $(2)^3\Pi_{0u}(v^*)$ level. By analyzing a series of shifts of the observed vibrational energies of the $D^1\Sigma_u^+(v^*=35-58)$ levels from the extrapolated values, the value of $\Delta G_v = G_{v+1} - G_v$ for the $(2)^3\Pi_u$ state around $D^1\Sigma_u^+(v^*=40)$ is estimated to be 12 cm⁻¹, and the value of $\omega_e x_e$ to be 0.033 cm⁻¹. Large shifts of the vibrational levels of $\mathrm{D}^1\Sigma_{\mathrm{u}}^+(\mathrm{v}^+)$ around $\mathrm{v}^+=35\text{--}58$ suggest that the potential curve of the $(2)^3\Pi_{\mathrm{u}}$ state crosses the potential curve of the $\mathrm{D}^1\Sigma_{\mathrm{u}}^+$ state at about $\mathrm{v}^+=40$. Since the level shifts are observed only for $\mathrm{v}^+>32$, the potential minimum of the $(2)^3\Pi_{\mathrm{u}}$ state is predicted to lie above the potential minimum of the $\mathrm{D}^1\Sigma_{\mathrm{u}}^+$ state. In order to reproduce the above factors, we estimate that the potential curve of the (2) $^3\Pi_{\rm u}$ state is described by the Morse potential $V(R) = 17028 + 1500\{1 - \exp[-0.35886(R - 5.85)]\}^2, \qquad (5.6)$ where V(R) is in units of cm⁻¹ and the internuclear distance R is in units of Å. The vibrational level energies are given by; ⁵⁹ $E_{V} = 17028 + 14.0(v + 1/2) - 0.032667(v + 1/2)^{2}. \qquad (5.7)$ The unperturbed energy (E_{V}) of the $D^{1}\Sigma_{u}^{+}(v, J=0)$ level, which can be approximated by the fitted level energy, is calculated from the Dunham coefficients in Table XV. The energies E_{V} of the $D^{1}\Sigma_{u}^{+}(v=34-58)$ and $(2)^{3}\Pi_{u}(v=21-53)$ vibronic states are shown in Fig. 29. The difference between an observed level energy, which is listed as T_{V} in Table XIV, and the unperturbed level energy (E_{V}) is shown as ΔE (= T_{V} - E_{V}) in Fig. 29. The observed shifts $(\Delta E's)$ of the $D^{1}\Sigma_{u}^{+}$ vibronic states can be explained very well by the location of the unperturbed $D^{1}\Sigma_{u}^{+}$ and $(2)^{3}\Pi_{u}$ vibronic states, as can seen in Fig. 29. Eq. (5.6) should represent the potential curve of the $(2)^{2}\Pi_{u}$ state fairly well for $V(R) < 17700 \text{ cm}^{-1}$. ## 5.4. Predissociation of the $\textbf{D}^{1}\boldsymbol{\Sigma}_{u}^{+}$ State Line broadening was observed in the Doppler-free polarization spectrum, and was attributed to the predissociation. In order to study the predissociation more directly, we measured separately the excitation spectra monitored by the molecular fluorescence and the excitation spectra monitored by the D₂ or D₁ atomic emission. In order to eliminate collisional effects and to obtain a Doppler-free high resolution spectrum, we used a collimated cesium beam crossed at right angles with the laser beam. The intensity of the excitation spectrum of the D¹ $\Sigma_{\rm u}^+({\bf v}^+,{\bf J}^+)$ - ${\bf X}^1\Sigma_{\rm g}^+({\bf v}^-,{\bf J}^-)$ transition monitored by the molecular fluorescence became very weak as ${\bf v}^+$ increases. Conversely, only the Fig. 29. The unperturbed level energies (E_V') of the $D^1\Sigma_u^+(v^+, J=0)$ state, as calculated from the Dunham coefficients in Table XV. ΔE is the difference between the observed level energy, which is listed as T_V in Table XIV, and the unperturbed level energy E_V^+ . The unperturbed level energies (E_V) of the (2) $^3\Pi_u^-(v, J=0)$ state is calculated from Eq. (5.7). Strongly perturbing levels ($|\Delta E| > 0.1 \text{ cm}^{-1}$) are connected by broken lines. excitation spectrum monitored by the molecular fluorescence could be detected for v'<15. We could not detect any excitation spectrum monitored by the D₁ atomic emission for any v'. The observed results show that (i) the predissociation of the D¹ Σ_u^+ state occurs appreciably for v'>20, and the probability of predissociation increases with v'. (ii) all of the D¹ Σ_u^+ (58>v'>20) levels decompose selectively into two atoms Cs(6²P_{3/2}) and Cs(6²S_{1/2}). A significant change in the linewidth was observed for v'>25. We measured the v' and J' dependence of the linewidth Γ . An example of the change of the line shape with J' is shown in The linewidth increases with increase in J'. broadening may be due to hyperfine splitting, but such structure is not observed with our spectral resolution of 15 MHz. The predissociation ratio, which is proportional to the intensity ratio of two excitation spectra monitored by the atomic emission and monitored by the molecular fluorescence, is observed to increase in parallel with the increase of the linewidth. the hyperfine splitting is ignored. The observed linewidth can be attributed to the lifetime broadening. The J' dependence of Γ was found to change significantly with v'. The observed dependence of Γ on J' for v'=28 and v'=46 is shown, respectively, in Figs. 31 and 32. The linewidth Γ is related to the lifetime τ of the level by $$\tau(s) = \frac{5.3 \times 10^{-12}}{\Gamma(cm^{-1})} = \frac{159 \times 10^{-9}}{\Gamma(MHz)}.$$ (5.8) The lifetime τ is related to the predissociation rate \mathbf{k}_p and the radiative decay rate \mathbf{k}_r by Fig. 30. The J-dependence of the spectral line shape of the $D^1\Sigma_u^+(v'=46,\ J+1)$ - $X^1\Sigma_g^+(v''=0,\ J)$ transitions. These are the excitation spectra monitored by the D_2 atomic emission. The spectral resolution is 15 MHz, and the frequency scale is shown on the top. between the P and R branches is due to the experimental uncertainty. the R branch and a filled circle (•) the P branch. The difference transitions, plotted against J(J+1). An open circle (o) denotes $x^{1}\Sigma_{g}^{+}(v^{-}=0,\ J\pm1)$ transitions. An open circle (0) denotes the P branch and a filled circle (•) the R branch. The difference between the P and R branches is due to the experimental uncer-Fig. 32. J-dependence of the linewidth Γ of the ${\rm D}^1\Sigma_{\bf u}^+({\rm v}\,^{\scriptscriptstyle -}46,\;{\rm J})$ tainty. $$\tau = 1/(k_{\rm p} + k_{\rm r}). \tag{5.9}$$ The increase of the linewidth represents the increase of the predissociation rate. The lifetimes of the $D^1\Sigma_u^+(v'=46,\ J'=30\sim70)$ levels are calculated to be about 1 ns from the observed Γ (Fig. 32) and Eq. (5.8). The radiative lifetime of the $D^1\Sigma_u^+$ state is about 35 ns. 60 Hence, the observed linewidth can be attributed to the predissociation rate; the predissociation rates k_p of the $D^1\Sigma_u^+(v'=46,\ J'=30\sim70)$ levels are $10^9\ s^{-1}$. In the previous section, it is shown that the $D^1\Sigma_{\mathbf{u}}^+(\mathbf{v}', \mathbf{J})$ level is perturbed by the $(2)^3\Pi_{\mathbf{u}}(\mathbf{v}, \mathbf{Je})$ level. The $(2)^3\Pi_{\mathbf{u}}$ state is expected to be bound. Hence, the perturbation with the $(2)^3\Pi_{\mathbf{u}}$ state does not lead directly to predissociation. The most probable repulsive state, which leads to predissociation, is the $\mathbf{c}^3\Sigma_{\mathbf{u}}^+$ state. However, there is no interaction between $^1\Sigma^+$ and $^3\Sigma^+$ in the first order approximation. The perturbation between the $^3\Pi$ and $^3\Sigma^+$ states occurs through L-uncoupling interaction. [Eq. (4.9)] The nonvanishing matrix elements between the $^3\Pi_0(\mathbf{v}, \mathbf{Je})$ and $^3\Sigma^+$ states are given by 47 $\label{eq:sigma} <^3\Sigma^+(\text{N=JJ})\big|\text{H}_{\text{JL}}\big|^3\Pi_0(\text{v, Je})> = [\text{J}(\text{J+1})]^{1/2}2\eta, \tag{5.10}$ where η is a constant. Therefore, the predissociation of the $\text{D}^1\Sigma_u^+$ state occurs through a combination of the spin-orbit interaction between the $\text{D}^1\Sigma_u^+(\text{v', J})$ and $^3\Pi_{0u}(\text{v, Je})$ levels: $<^1\Sigma_u^+(v^+,~\rm J)\,|\rm H_{SO}|^3\Pi_{Ou}(v,~\rm Je)>;~\rm and~\rm the~L-uncoupling~interaction~between~the~}^3\Pi_{Ou}(v,~\rm Je)~\rm and~}^3\Sigma_u^+(\rm N=JJ)~\rm levels:$ $<^3\Pi_{0u}(v, Je)|_{H_{JL}}|^3\Sigma_u^+(\text{N=JJ})>$. From these results, the potential curve of the $c^3\Sigma_u^+$ state, which is repulsive and decomposes into the $\text{Cs}(6^2P_{3/2})$ and $\text{Cs}(6^2S_{1/2})$ atoms, is presumed to extend to the inner wall of the D $^1\Sigma_u^+$ state potential curve and to cross near the D $^1\Sigma_u^+$ (v'=40), where the crossing with the (2) $^3\Pi_u$ state also occurs. As we can see in Fig. 31, the linewidth Γ , hence the predissociation rate, of the $D^1\Sigma_u^+(v^*=28)$ level increases proportionally to J(J+1). This is in agreement with Eq. (5.11), which shows that L-uncoupling induces the predissociation and the rate is proportional to J(J+1). This tendency is observed for $v^*=25-30$. However, the J dependence of the linewidth Γ is found to change drastically at higher v^* (>35) levels. An example is shown in Fig. 32. The linewidths Γ increase significantly at large J in the $D^1\Sigma_u^+(v^*=46)$ level. This J dependence may originate from a change in the energy spacing or the Franck-Condon factors between the perturbing
levels. More accurate molecular constants for the $(2)^3\Pi_u$ state are necessary for more detailed analysis. Generally, the linewidth is observed to increase with v^* . This also indicates that the $D^1\Sigma_u^+$ state is more predissociative at high v^* values. ## **ACKNOWLEDGEMENTS** The work reported in this thesis was done at the Kobe University from April 1990 until December 1992, under the direction of Professor Hajime Katô. I am specially grateful to H. Katô for his help and encouragement during the course of studies. His helpful suggestions and advice propelled forward this research work. I would like to thank Professor M. Baba for helpful discussions and warmly encouragement and for his help about the early stage of this experiments. I would like to thank Mr. K. Ishikawa for helpful discussions about the experiments and analysis. I would like to thank Mr. M. Chosa and Mr. K. Nishizawa for their help about the early stage of this experiments. I would like to thank H. Ikoma for his help about the experiments and helpful discussions for analysis. I am very grateful to my fellows of graduate and undergraduate students in group for helpful discussions and warm assistance. Finally, I would like to thank the Fellowship of the Japan Society for the Promotion of Science for Japanese Junior Scientists. ## REFERENCE - 1 W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1981). - 2 C. Wieman and T. W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976). - ³R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, and T. W. Hänsch, SPIE vol. 113 Laser Spectroscopy, p.80 (1977). - ⁴M. Raab, G. Höning, W. Demtröder, and C. R. Vidal, J. Chem. Phys. 76, 4370 (1982). - ⁵R. E. Teets, Ph. D. thesis, G. L. Report No. 2821, Stanford University (1978). - 6 M. S. Feld and A. Javan, Phys. Rev. 177, 540 (1969). - 7 T. W. Hänsch and P. Toschek, Z. Phys. 236, 213 (1970). - ⁸Z. -G. Wang and H. -R. Xie, Molecular and laser spectroscopy (Springer, Berlin, 1991). - ⁹N. W. Carlson, A. J. Taylar, K. M. Jones, and A. L. Schawlow, Phys. Rev. A24, 822 (1981). - ¹⁰B. Hermmerling, R. Bombach, W. Demtröder, and N. Spies, Z. Phys. D5, 165 (1987). - ¹¹G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950). - 12 R. S. Mulliken, Phys. Rev. 120, 1674 (1960). - ¹³G. K. Chawla, H. J. Vedder, and R. W. Field, J. Chem. Phys. 86, 3082 (1987). - 14 J. Heinze and F. Engelke, J. Chem. Phys. 89, 42 (1988). - ¹⁵R. F. Barrow, R. M. Clements, J. Derouard, N. Sadeghi, C. Effantii J. d'Incan, and A. J. Ross, Can. J. Phys. 65, 1154 (1987). - 16H. Katô, M. Sakano, N. Yoshie, M. Baba, and K. Ishikawa, J. Chem. Phys. 93, 2228 (1990). - ¹⁷A. J. Ross, C. Effantin, J. d'Incan, and R. F. Barrow, Mol. Phys. 56, 903 (1985). - 18H. Lefebvre-Brion and R. W. Field, Perturbation in the Spectra of Diatomic Molecules (Academic, Orlando, 1986). - ¹⁹J. L. Dunham, Phys. Rev. 41, 721 (1932). - ²⁰R. Rydberg, Z. Phys. 73, 376 (1931); O. Klein, <u>ibid</u>. 76, 226 (1932); A. L. G. Rees, Proc. Phys. Soc. London Ser. A59, 998 (1947). - ²¹R. N. Zare, J. Chem. Phys. 40, 1934 (1964). - ²²J. M. Hutson, J. Phys. B14, 851 (1981). - ²³B. H. Wells, E. B. Smith, and R. N. Zare, Chem. Phys. Lett. 99, 244 (1983). - 24 R. J. LeRoy, J. Chem. Phys. 52, 2683 (1970). - 25 G. W. King and J. H. Van Vleck, Phys. Rev. 55, 1165 (1939). - 26p. R. Fontana, Phys. Rev. 123, 1865, (1961), <u>ibid</u>, 123, 1871 (1961). - 27 A. Dalgarno and W. D. Davison, Mol. Phys. 13, 479 (1967). - ²⁸B. Bussery and M. Aubert-Frécon, J. Phys. B18, L379 (1985). - ²⁹R. Düren, W. Gröger, and R. Liedtke, Chem. Phys. Lett. 109, 424 (1984). - 30L. Brencher, B. Nawracala, and H. Pauly, Z. Phys. D10, 211 (1988). - ³¹R. J. LeRoy, Molecular Spectroscopy, Vol. 1. p.113 (The Chemical Society, London, 1973). - 32 W. C. Stwalley, Chem. Phys. Lett. 7, 600 (1970). - 33 R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970). - $^{34}\mathrm{R}.$ T. Birge and H. Sponer, Phys. Rev. 28, 259 (1926). - 35W. J. Stevens, D. D. Konowalow, and L. B. Ratcliff, J. Chem. Phys. 80, 1215 (1984). - ³⁶M. Baba, T. Nakahori, T. Iida, and H. Katô, J. Chem. Phys. 93, 4637 (1990). - ³⁷R. A. Bernheim, L. P. Gold, and T. Tipton, J. Chem. Phys. 78, 3635 (1983). - 38 X. Xie, and R. W. Field, J. Mol. Spectros. 117, 228 (1986). - 39S. Martin, J. Chevaleyre, M. C. Bordas, S. Valignat, M. Broyer, B. Cabaud, and A. Hoareau, J. Chem. Phys. 79, 4132 (1983). - 40M. Broyer, J. Chevaleyre, G. delacretaz, S. Martin, and L. Wöste, Chem. Phys. Lett. 99, 206 (1983). - 41G. Jong, H. Wang, C. -C. Tsai, W. C. Stwally, and A. M. Lyyra, J. Mol. Spectros. 154, 324 (1992). - ⁴²R. F. Barrow, R. M. Clements, G. Delacrétaz, C. Effantin, J. d'Incan, A. J. Ross, J. Vergès, and L. Wöste, J. Phys. B: At. Mol. Phys. 20, 3047 (1987). - 43 M. Bautista, and C. L. Ladera, J. Chem. Phys. 96, 5600 (1992). - 44S. Leutwyler, M. Hofmann, H. P. Harri, and E. Schumacher, Chem. Phys. Lett. 77, 257 (1981). - 45 P. Cavaliere, G. Ferrante, and L. Lo Cascio, J. Chem. Phys. 62, 4753 (1975). - 46 L. Li and R. W. Field, J. Mol. Spectrosc. 117, 245 (1986). - 47I. Kovács, Rotational Structure in the spectra of Diatomic Molecules (Adam Hilger, Bristol, 1969). - 48B. Hermmerling, R. Bombach, and W. Demtröder, J. Phys. Chem. 87, 5186 (1987). - 49 F. W. Loomis and P. Kusch, Phys. Rev. 46, 292 (1934). - ⁵⁰R. P. Benedict, D. L. Drummond, and L. A. Schlie, J. Chem. Phys. 66, 4600 (1977). - ⁵¹R. Gupta, W. Happer, J. Wagner, and E. Wennmyr, J. Chem. Phys. 68, 799 (1978). - ⁵²K. Yokoyama, M. Baba, and H. Katô, J. Chem. Phys. 89, 1209 (1988). - ⁵³C. B. Collins, J. A. Anderson, D. Popescu, and I. Popescu, J. Chem. Phys. 74, 1067 (1981). - 54 C. Amiot, W. Demtröder, and C. R. Vidal, J. Chem. Phys. 88, 5265 (1988). - 55M. Baba, T. Nakahori, T. Iida, and H. Katô, J. Chem. Phys. 93, 4637 (1990). - ⁵⁶H. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtröder, and W. Müller, J. Chem. Phys. 82, 5354 (1985). - ⁵⁷R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, J. Mol. Spectrosc. 46, 37 (1973). - 58 H. Katô and K. Yoshihara, J. Chem. Phys. 71, 1585 (1979). - ⁵⁹L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935). - ⁶⁰H. Katô, T. Kobayashi, Y. C. Wang, K. Ishikawa, M. Baba and S. Nagakura, Chem. Phys. 162, 107 (1992). ## APPENDIX. THE OBSERVED ENERGY LEVELS OF HIGHLY EXCITED STATES OF THE ²³Na³⁹K MOLECULES From the 2-step OODR polarization spectrum for the transitions to the highly excited states of the NaK molecule, many rotational levels of several $^1\Sigma^+$, $^1\Pi$, and $^1\Delta$ states could be observed and assigned (see Chapter 4). Here the transition energies of the transitions to highly excited levels from the pumped $B^1\Pi(v', J')$ levels and the term energies of the highly excited levels are listed. - (1): The observed lines where the $B^1\Pi(v'=9,\ J')\leftarrow X^1\Sigma^+$ (v"=0, J") transition was chosen as the pump transition are listed in Table A1. - (2): The observed lines where the $B^1\Pi(v'=6,\ J')\leftarrow X^1\Sigma^+$ (v"=0, J") transition was chosen as the pump transition are listed in Table A2. - (3): For the perturbed region of the $F^1\Delta(v=v_f+3)$ and $H^1\Sigma^+(v=v_h+2)$ levels, the intermediate $B^1\Pi(v'=9)$, $J'=1\sim60e$ and several J'f) levels were chosen by the pump transition. In this case, observed lines are listed in Table A3. - (4): The unexpected levels could be observed through the perturbation with ${\rm H}^1\Sigma^+$ (v=v_h+2) levels, and these levels are listed in Table A4. Table A1(a). Observed lines of the $^{23}\text{Na}^{39}\text{K}$ $^{1}\Delta(v, J) \leftarrow \text{B}^{1}\Pi$ (v'=9, J') transitions. The pump transition is fixed to one of the $^{1}\Pi(v'=9, J') \leftarrow \text{X}^{1}\Sigma^{+}(v''=0, J'')$ rotational transition lines. | state | inter-
mediate
level | probe
transition
energy | term
energy | assignment | |--------------------------|----------------------------|--|--|--| | | (v', J') | (cm ⁻¹) | (cm ⁻¹) | (v, J) | | ${\mathtt F}^{1} \Delta$ | 9, 40e | 15320.0262
15330.9534 | 32982.1018
32993.0290 | v _f , (b)39e
41e | | | 9, 30e | 15396.1667
15400.3696
15404.3851 | 33016.7246
33020.9275
33024.9430 | v _f +1, 29e
30f (a)
31e | | | 9, 38e | 15399.7886
15410.1321 | 33052.7820
33063.1255 | v _f +1, 37e
39e | | | 9, 38f | 15400.0705
15405.1007
15410.4086 | 33052.8594
33057.8896
33063.1975 | v _f +1, 37f
38e
39f | | | 9, 4 0e | 15401.0489
15406.4752
15411.9135 | 33063.1245
33068.5508
33073.9891 | v _f +1, 39e
40f (a)
41e | | | 9, 30e | 15476.7978
15480.8013
15484.9675 | 33097.3557
33101.3592
33105.5254 | v _f +2, 29e
30f (a) | | | 9, 30f | 15476.7836
15480.8154
15484.9515 | 33097.3417
33101.3735
33105.5096 | v _f +2, 29f
30e
31f | | | 9, 37e | 15479.6910
15489.6978 | 33128.2418
33138.2486 | v _f +2, 36e
38e | | | 9, 38e | 15480.1878
15490.4563 | 33133.1812
33143.4497 | v _f +2, 37e
39e | | | 9, 40e | 15481.3732
15492.1612 | 33143.4488
33154.2229 | v _f +2, 39e
41e | | $(\mathbf{F}^1\Delta)$ | 9, | 40f | 15481.14
15486.49
15491.94 | 68 | 33143.
33148.
33154. | 7768 | v _f +2, | 39f
40e
41f | | |------------------------|----|-----|----------------------------------|----|----------------------------|------|---------------------|-------------------|-----| | | 9, | 41e | 15481.61
15492.65 | | 33148.
33159. | | v _f +2, | 40e
42e | | | | 9, | 30e | 15556.97
15560.98
15565.05 | 29 | 33177.
33181.
33185. | 5408 | v _f +3,c | 30f
31e | (a) | | | 9, | 40e | 15561.40
15566.61
15572.12 | 21 | 33223.
33228.
33234. | 6877 | v _f +3(c | 39e
40f
41e | (a) | | - | 9, | 28e | 15636.55
15640.25
15644.10 | 70 |
33250.
33253.
33257. | 8431 | v _f +4, | 27e
28f
29e | (a) | | | 9, | 30e | 15637.13
15641.11
15645.20 | 14 | 33257.
33261.
33265. | 6693 | v _f +4, | 29e
30f
31e | (a) | | | 9, | 30f | 15637.13
15641.10
15645.21 | 49 | 33257.
33261.
33265. | 6630 | v _f +4, | 29f
30e
31f | | | | 9, | 32e | 15637.77
15642.03
15646.37 | 05 | 33265.
33270.
33274. | 0166 | v _f +4, | 31e
32f
33e | (a) | | | 9, | 34e | 15638.49
15642.96
15647.57 | 72 | 33274.
33278.
33283. | 8390 | v _f +4, | 33e
34f
35e | (a) | | | 9, | 36e | 15639.22
15644.02
15648.88 | 07 | 33283.
33288.
33293. | 2362 | v _f +4, | 35e
36f
37e | (a) | | | 9, | 38e | 15640.10
15645.14
15650.22 | 09 | 33293.
33298.
33303. | 1343 | v_{f}^{+4} , | 37e
38f
39e | (a) | | | 9, | 38f | 15640.33
15645.32
15650.50 | 52 | 33293.
33298.
33303. | 1141 | v _f +4, | 37f
38e
39f | | | | 9, | 40e | 15641.15
15646.53
15651.85 | 94 | 33303.
33308.
33313. | 6150 | v _f +4, | 39e
40f
41e | (a) | | $(F^1\Delta)$ | 9, 40f | 15641.0077
15646.2737
15651.6883 | 33303.2877
33308.5537
33313.9683 | v _f +4, 39f
40e
41f | |---------------|--------|--|--|--------------------------------------| | | 9, 41e | 15641.3925
15652.3692 | 33308.5558
33309.5325 | v _f +4, 40e
42e | | | 9, 42e | 15641.9237
15653.1311 | 33313.9294
33325.1368 | v _f +4, 41e
43e | ⁽a) These Q lines are dispersion shaped signals. ⁽b) The lowest observed vibrational level $\mathbf{v_f}$ is approximately 20. ⁽c) These $F^1\Delta(v=v_f+3)$ levels are listed in Table A3(a). Table Al(b). Observed lines of the $^{23}\text{Na}^{39}\text{K G}^1\Delta(\text{v},\text{J})\leftarrow \text{B}^1\Pi$ (v'=9, J') transitions. The pump transition is fixed to one of the $\text{B}^1\Pi(\text{v'=9},\text{J'})\leftarrow \text{X}^1\Sigma^+(\text{v"=0},\text{J"})$ rotational transition lines. | state | inter-
mediate
level | probe
transition
energy | term
energy | assignment | | |-------------------------|----------------------------|--|--|-------------------------|------------| | | (v', J') | (cm^{-1}) | (cm ⁻¹) | (v, J) | | | ${\tt G^1}{\tt \Delta}$ | 9, 38e | 15353.0219
15358.0204
15363.4839 | 33006.0153
33011.0138
33016.4773 | 11, 37e
38f (
39e | (a | | a. | 9, 4 0e | 15354.3990
15359.8279
15365.3731 | 33016.4746
33021.9035
33027.4487 | 11, 39e
40f (
41e | 'a | | | 9, 30e | 15436.0269
15440.0795
15444.2800 | 33056.5848
33060.6374
33064.8379 | 12, 29e
30f (
31e | a | | | 9, 38e | 15439.8170
15450.2028 | 33092.8104
33103.1962 | 12, 37e
39e | | | | 9, 38f | 15440.0167
15445.1520
15450.4070 | 33092.8088
33097.9441
33103.1991 | 12, 37f
38e
39f | | | | 9, 40e | 15441.1216
15446.5067
15452.0456 | 33103.1972
33108.5823
33114.1212 | 12, 39e
40f (
41e | a | | | 9, 4 0f | 15446.3074 | 33108.5874 | 12, 40e | | | | 9, 30e | 15521.9609
15525.9760
15530.1486 | 33142.5188
33146.5339
33150.7065 | 13, 29e
30f (
31e | [a] | | | 9, 37e | 15534.9845 | 33183.5353 | 13, 38e | | | | 9, 38e | 15525.4512
15535.7584 | 33178.4446
33188.7518 | 13, 37e
39e | | | | 9, 40e | 15526.6802
15532.0187
15537.5135 | 33188.7558
33194.0943
33199.5891 | 13, 39e
40f (
41e | a) | | $(G^1\Delta)$ | 9, | 40f | 15526.4673
15531.8238
15537.2977 | 33188.7473
33194.1038
33199.5777 | 13, | 39f
40e
41f | |---------------|----|-----|--|--|-----|-----------------------| | | 9, | 41e | 15538.0376 | 33205.2009 | 13, | 42e | | | 9, | 30e | 15606.3387
15610.3284
15614.4471 | 33226.8966
33230.8863
33235.0050 | 14, | 29e
30f (a)
31e | | | 9, | 38e | 15609.4793
15619.6815 | 33262.4727
33272.6749 | 14, | 37e
39e | | | 9, | 40e | 15610.6017
15621.3197 | 33272.6773
33283.3953 | 14, | 39e
41e | | | 9, | 40f | 15610.3823
15615.6916
15621.3197 | 33272.6623
33277.9716
33283.3872 | 14, | 39f
40e
41f | | | 9, | 30e | 15688.7112
15692.6520
15696.7221 | 33309.2691
33313.2099
33317.2800 | 15, | 29e
30f (a)
31e | | | 9, | 30f | 15688.7096
15692.6568
15696.7208 | 33309.2677
33313.2149
33317.2789 | 15, | 29f
30e
31f | | | 9, | 32e | 15689.2902
15697.8139 | 33317.2763
33325.8000 | 15, | 31e
33e | | | 9, | 34e | 15689.9210
15698.9597 | 33325.7981
33334.8368 | • | 33e
35e | | | 9, | 36e | 15690.6196
15700.1669 | | 15, | 35e
37e | | | 9, | 38e | 15691.3864
15701.4361 | 33344.3798
33354.4295 | 15, | 37e
39e | | | 9, | 40e | 15692.3553
15697.5767
15702.9073 | 33354.4309
33359.6523
33364.9829 | 15, | 39e
40f (a)
41e | | | 9, | 40f | 15692.1578
15697.3624
15702.7173 | | 15, | 39f
40e
41f | | | 9, | 30e | 15777.7552 | 33398.3131 | 16, | 31e | | $(G^1\Delta)$ | 9, 32e | 15770.3246 | 33398.3107 | 16, 31e | |---------------|--------|--|--|---------------------------| | | 9, 34e | 15779.5713 | 33415.4484 | 16, 35e | | | 9, 36e | 15780.6161 | 33424.8316 | 16, 37e | | | 9, 38e | 15771.8364
15776.5870
15781.7531 | 33424.8298
33429.5804
33434.7465 | 16, 37e
38f (a)
39e | | | 9, 39e | 15772.1883
15777.0899
15782.3673 | 33429.7236
33434.6252
33439.9026 | 16, 38e
39f (a)
40e | | | 9, 40e | 15772.6717
15777.7209
15783.1063 | 33434.7473
33439.7965
33445.1819 | 16, 39e
40f (a)
41e | | - | 9, 40f | 15772.3477
15777.6216
15782.8299 | 33434.6277
33439.9016
33445.1099 | 16, 39f
40e
41f | | | 9, 41e | 15772.7353
15777.9358
15783.4068 | 33439.8986
33445.0991
33450.5701 | 16, 40e
41f (a)
42e | | | 9, 42e | 15773.1725
15778.5207
15784.2402 | 33445.1782
33450.5264
33456.2459 | 16, 41e
42f (a)
43e | | | 9, 30e | 15847.1658
15855.0178 | 33467.7237
33475.5757 | 17, 29e
31e | | | 9, 40e | 15849.9798
15855.0973
15860.3548 | 33512.0554
33517.1729
33522.4304 | 17, 39e
40f (a)
41e | | | 9, 30e | 15923.5925
15931.3753 | | 18, 29e
31e | | | 9, 40e | 15926.0052
15931.0761
15936.3016 | | 18, 39e
40f (a)
41e | | | 9, 40e | 16000.7870
16010.8899 | | 19, 39e
41e | ⁽a) These Q lines are dispersion shaped signals. Table Al(c). Observed lines for the $^{23}\text{Na}^{39}\text{K}~^{1}\Sigma^{+},~^{1}\Pi$ and $^{1}\Delta$ transitions. The pump transition is fixed to one of the $\text{B}^{1}\Pi(v'=9,~J') \leftarrow \text{X}^{1}\Sigma^{+}(v''=0,~J'')$ rotational transition lines. | state | inter-
mediate
level | probe
transition
energy | term
energy | assignment | |---------------------|----------------------------|-------------------------------|--------------------------|---| | | (v', J') | (cm^{-1}) | (cm ⁻¹) | (v, J) | | ${\tt H}^1\Sigma^+$ | 9, 30e | 15386.8038
15394.5389 | 33007.3617
33015.0968 | v _h , 29e
31e | | | 9, 38e | 15388.4837
15398.3805 | 33041.4771
33051.3739 | v _h , 37e
39e | | | 9, 4 0e | 15389.2935
15399.5013 | 33051.3691
33061.5769 | v _h , 39e
41e | | | 9, 30e | 15558.1979
15565.8527 | 33178.7558
33186.4106 | v _h +2,c)29e
31e | | | 9, 4 0e | 15559.8475
15569.9117 | 33221.9231
33231.9873 | v _h +2 ^(c) 39e
41e | | | 9, 28e | 15639.9047
15647.1825 | 33253.4908
33260.7686 | v _h +3, 27e
29e | | | 9, 30e | 15640.1825
15647.9608 | 33260.7657
33268.5187 | v _h +3, 29e
31e | | | 9, 30f | 15644.0263 | 33264.5844 | $v_h + 3$, 30e | | | 9, 32e | 15640.5293
15648.7219 | 33268.5154
33276.7080 | v _h +3, 31e
33e | | | 9, 34e | 15640.8344
15649.4001 | 33276.7062
33285.2719 | v _h +3, 33e
35e | | | 9, 36e | 15641.0578
15649.9521 | 33285.2733
33294.1676 | v _h +3, 35e
37e | | | 9, 38e | 15641.1762
15650.4895 | 33294.1696
33303.4829 | v _h +3, 37e
39e | | | 9, 40e | 15641.4077 | 33303.4833 | v _h +3, 39e | | | | | | | | ${_{ m I}}^{f 1}\Sigma^{f +}$ | 9, 30e | 15481.0344
15489.0684 | 33101.5923
33109.6263 | v _i , 29e
31e | |-------------------------------|--------|--------------------------|--------------------------|---| | | 9, 30f | 15484.9871 | 33105.5452 | v_{i} , 30e | | | 9, 37e | 15483.4499
15492.9867 | 33132.0007
33141.5375 | v _i , 36e
38e | | | 9, 38e | 15483.9096
15493.6409 | 33136.9030
33146.6343 | v _i , 37e
39e | | | 9, 40e | 15484.5558
15495.0942 | 33146.6314
33157.1698 | v _i , 39e
41e | | | 9, 40f | 15489.5657 | 33151.8457 | ${ m v_i}$, 40e | | a. | 9, 41e | 15484.6790
15495.4453 | 33151.8423
33162.6086 | v _i , 40e
42e | | | | | | (3) | | | 9, 30e | 15563.6967
15571.7411 | 33184.2546
33192.2990 | v _i +1 ^(d) 29e
31e | | | 9, 40e | 15567.7349
15578.4063 | 33229.8105
33240.4819 | v _i +1 ^(d) 39e
41e | | ${ t J}^1\Sigma^+$ | 9, 30e | 15597.7239
15605.8230 | 33218.2818
33226.3809 | v _j , 29e
31e | | | 9, 38e | 15600.4029
15610.6010 | 33253.3963
33263.5944 | v _j , 37e
39e | | | 9, 40e | 15601.5173
15612.1987 | 33263.5929
33274.2743 | v _j , 39e
41e | | | 9, 40f | 15606.5733 | 33268.8533 | v _j , 40e | | | 9, 30e | 15768.7685
15776.7628 | 33389.3264
33397.3207 | v _j +2, 29e
31e | | | 9, 32e | 15769.3313
15777.7626 | 33397.3174
33405.7487 | v _j +2, 31e
33e | | | 9, 36e | 15770.0312 | 33414.2467 | v _j +2, 35e | | | 9, 38e | 15770.3285
15779.93 | 33423.3219
33432.92 | v _j +2, 37e
39e | | | 9, 39e | 15770.5301 |
33428.0654 | v _i +2, 38e | | $(J^1\Sigma^+)$ | 9, 40e | 15770.8344
15780.8704 | 33432.9100
33442.9460 | v _j +2, 39e
41e | |------------------|-----------------|--|--|------------------------------------| | | 9, 40f | 15775.5850 | 33437.8650 | v _j +2, 40e | | | 9, 41e | 15770.7051 | 33437.8684 | v_j+2 , 40e | | | 9, 42e | 15770.9360 | 33442.9417 | v _j +2, 41e | | $R_1^{-1}\Delta$ | 9, 30e | 15543.9256
15551.7733 | 33164.4835
33172.3312 | v ₁ , 29e
31e | | | 9, 32e | 15544.3473
15552.7209 | 33172.3334
33180.7070 | v ₁ , 31e
33e | | | 9, 34e | 15544.8316
15553.7122 | 33180.7034
33189.5840 | v ₁ , 33e
35e | | | 9, 34f | 15544.4864
15549.2058
15553.3451 | 33180.3628
33185.0822
33189.2215 | v ₁ , 33f
34e
35f | | | 9, 36e | 15545.3466
15554.7551 | 33189.5869
33198.9707 | v ₁ , 35e
37e | | | 9, 38e | 15545.9771
15555.8597 | 33198.9705
33208.8532 | v ₁ , 37e
39e | | | 9, 40e | 15546.7779
15557.1574 | 33208.8535
33219.2330 | v ₁ , 39e
41e | | | 9, 40f | 15551.6966 | 33213.9766 | v ₁ , 40e | | _{R2} 1П | 9, 28e | 15579.2424
15586.7259 | 33192.8285
33200.3120 | v ₂₋ , 27e
29e | | | 9, 30e | 15579.7503
15587.7737 | 33200.3082
33208.3316 | v ₂ , 29e
31e | | | 9, 32e | 15580.3447
15588.8727 | 33208.3308
33216.8588 | v ₂ , 31e
33e | | | 9, 3 4 e | 15580.9888
15590.0328 | 33216.8606
33225.9046 | v ₂ , 33e
35e | | | 9, 34f | 15580.6951
15589.6793 | 33216.5715
33225.5557 | v ₂ , 33f
35f | | | 9, 36e | 15581.6857
15591.2550 | 33225.9013
33235.4706 | v ₂ , 35e
37e | | | | 9, 38e | 15582.4752
15592.5624 | 33235.4686
33245.5558 | v ₂ , 37e
39e | |---|------------------|--------|--------------------------|--------------------------|---| | | | 9, 40e | 15583.4816
15594.0844 | 33245.5572
33256.1600 | v ₂ , 39e
41e | | • | _{R3} 1П | 9, 30e | 15717.4594
15725.3958 | 33338.0173
33345.9537 | v ₃ , ²⁹ e
31e | | | | 9, 30f | 15717.4695
15725.4096 | 33338.0276
33345.9677 | v ₃ , 29f
31f | | | | 9, 32e | 15717.9662
15726.3915 | 33345.9523
33354.3776 | v ₃ , 31e
33e | | | - | 9, 34e | 15718.5028
15727.4754 | 33354.3799
33363.3525 | v ₃ , 33e
35e | | | | 9, 36e | 15719.1395
15728.6068 | 33363.3550
33372.8223 | v ₃ , 35e
37e | | | | 9, 38e | 15719.8331
15729.8327 | 33372.8265
33382.8261 | v ₃ , 37e
39e | | | | 9, 40e | 15720.7526
15731.1776 | 33382.8282
33393.2532 | v ₃ , 39e
41e | | | | 9, 40f | 15720.5407
15730.9705 | 33382.8207
33393.2505 | v ₃ , 39f
41f | | | | | | | | ⁽c) These $\mathrm{H}^1\Sigma^+(\mathrm{v=v_f}+2)$ levels are listed in Table A3(b). ⁽d) These $I^1\Sigma^+(v=v_1+1)$ levels are listed in Table A3(c). Table A2(a). Observed lines of the $^{23}\text{Na}^{39}\text{K}$ K $^1\Delta(v, J) \leftarrow \text{B}^1\Pi$ (v'=6, J') transitions. The pump transition is fixed to one of the B $^1\Pi(v'=6, J') \leftarrow \text{X}^1\Sigma^+(v''=0, J'')$ rotational transition lines. | state | inter-
mediate
level | probe
transition
energy | term
energy | assignment | |-------|----------------------------|--|--|---| | | (v', J') | (cm^{-1}) | (cm^{-1}) | (v, J) | | κ¹Δ | 6, 18e | 17110.4020
17115.4562 | 34539.4784
34544.5326 | v _k (b)17e
19e | | | 6, 18f | 17112.8557 | 34541.9321 | $v_{\mathbf{k}}$, 18e | | | 6, 20e | 17110.4775
17112.9533
17116.0726 | 34544.5313
34547.0071
34550.1264 | v _k , 19e
20f (a
21e | | | 6, 22e | 17110.6014
17116.7348 | 34550.1350
34556.2684 | v _k , 21e
23e | | | 6, 18e | 17195.6087
17200.6288 | 34624.6851
34629.7052 | v _k +1, 17e
19e | | | 6, 18f | 17198.0466 | 34627.1230 | v _k +1, 18e | | | 6, 20e | 17195.6530
17198.3631
17201.2132 | 34629.7068
34632.4169
34635.2670 | v _k +1, 19e
20f (a
21e | | | 6, 22e | 17195.7354
17198.7201
17201.8360 | 34635.2690
34638.2537
34641.3696 | v _k +1, 21e
22f (a
23e | | | 6, 18e | 17280.1620
17282.5956
17285.1563 | 34709.2384
34711.6720
34714.2327 | v _k +2, 17e
18f (a
19e | ⁽a) These Q lines are dispersion shaped signals. ⁽b) $\mathbf{v}_{\mathbf{k}}$ is the lowest observed vibrational level. Table A2(b). Observed lines for the $^{23}\text{Na}^{39}\text{K}$ $^{1}\Sigma^{+}$, $^{1}\Pi$ and $^{1}\Delta$ states. The pump transition is fixed to one of the $^{1}\Pi(v'=6,\ J')\leftarrow X^{1}\Sigma^{+}(v''=0,\ J'')$ rotational transition lines. | state | inter- | probe | term | | |--------------------------------------|------------------|--------------------------|--------------------------|-------------------------------| | State | mediate
level | transition
energy | energy | assignment | | | (v', J') | (cm^{-1}) | (cm^{-1}) | (v, J) | | $R_4^{1}\Sigma^{+}$ | 6, 18e | 17100.9243
17105.6834 | 34530.0007
34534.7598 | v ₄ , 17e
19e | | | 6, 18f | 17103.2408 | 34532.3172 | v ₄ , 18e | | - | 6, 20e | 17100.7061
17105.9886 | 34534.7599
34540.0424 | v ₄ , 19e
21e | | | 6, 22e | 17100.5114
17106.3228 | 34540.0450
34545.8564 | v ₄ , 21e
23e | | R ₅ ¹П | 6, 18e | 17120.6353
17125.5405 | 34549.7117
34554.6169 | v ₅ , 17e
19e | | | 6, 20e | 17120.5629
17126.0098 | 34554.6167
34560.0636 | v ₅ , 19e
21e | | | 6, 22e | 17120.5292
17126.4873 | 34560.0628
34566.0209 | v ₅ , 21e
23e | | R ₆ ¹ Δ | 6, 18e | 17183.4491
17188.3066 | 34612.5255
34617.3830 | v ₆ , 17e
19e | | | 6, 18f | 17185.7898 | 34614.8662 | v_6 , 18f | | | 6, 20e | 17183.3336
17188.7802 | 34617.3874
34622.8340 | v ₆ , 19e
21e | | | 6, 22e | 17183.3056
17186.2270 | 34622.8392
34625.7606 | v ₆ , 21e
22f (| ⁽a) This Q line is dispersion shaped signals. Table A3(a). Observed lines of the $^{23}\text{Na}^{39}\text{K}$ $^{1}\Delta(v=v_f+3,\ J) \leftarrow$ $^{1}\Pi(v'=9,\ J')$ transitions. The pump transition is fixed to one of the $^{1}\Pi(v'=9,\ J') \leftarrow \text{X}^{1}\Sigma^{+}(v''=0,\ J'')$ rotational transition lines. | - | inter-
mediate
level | probe
transition
energy | term
energy | assign-
ment | |---------------|----------------------------|--|--|-----------------------| | | (v', J') | (cm^{-1}) | (cm^{-1}) | (J) | | $(F^1\Delta)$ | 9, 1e | 15554.4037 | 33119.8471 | 2e | | | 9, 2e | 15554.5679 | 33120.2491 | 3e | | | 9, 3e | 15554.7484 | 33120.7864 | 4e | | | 9, 6e | 15553.6351
15555.3760 | 33121.4601
33123.2006 | 5e
7e | | | 9, 7e | 15553.6043
15555.6113 | 33122.2627
33124.2697 | 6e
8e | | | 9, 10e | 15553.6009
15556. 4 102 | 33125.4766
33128.2859 | 9e
11e | | | 9, 11e | 15553.6277
15556.7061 | 33126.8115
33129.8899 | 10e
12e | | | 9, 14e | 15553.7964
15555.6680
15557.6761 | 33131.6290
33133.5006
33135.5087 | 13e
14f (a)
15e | | | 9, 15e | 15553.8815
15555.8826
15558.0281 | 33133.5038
33135.5049
33137.6504 | 14e
15f (a)
16e | | | 9, 18e | 15554.2282
15556.6262
15559.1707 | 33139.9231
33142.3211
33144.8656 | 17e
18f (a)
19e | | | 9, 19e | 15554.3679
15556.9041
15559.5820 | 33142.3267
33144.8629
33147.5408 | 18e
19f (a)
20e | | | 9, 20e | 15554.5297
15557.1983
15560.0018 | 33144.8673
33147.5359
33150.3394 | 19e
20f (a)
21e | | | 9, 21e | 15554.7053
15557.5088
15560.4438 | 33147.5402
33150.3437
33153.2787 | 20e
21f (a)
22e | | $(F^1\Delta)$ | 9, 22e | 15554.8958
15557.8243
15560.9015 | 33150.3429
33153.2714
33156.3486 | 21e
22f (a)
23e | |---------------|--------|--|--|-----------------------| | | 9, 23e | 15555.1008
15558.1652
15561.3680 | 33153.2814
33156.3458
33159.5486 | 22e
23f (a)
24e | | | 9, 24e | 15555.3202
15558.5244
15561.8560 | 33156.3480
33159.5522
33162.8838 | 23e
24f (a)
25e | | | 9, 25e | 15555.5561
15558.8968
15562.3496 | 33159.5487
33161.8894
33166.3422 | 24e
25f (a)
26e | | - | 9, 26e | 15555.8089
15559.2752
15562.8595 | 33162.8827
33166.3490
33169.9333 | 25e
26f (a)
27e | | | 9, 27e | 15556.0722
15559.6822
15563.4453 | 33166.3409
33169.9509
33173.7140 | 26e
27f (a)
28e | | | 9, 28e | 15556.3475
15560.0976
15563.9459 | 33169.9336
33173.6837
33177.5320 | 27e
28f (a)
29e | | | 9, 29e | 15556.6980
15560.5307
15564.4965 | 33173.7110
33177.5437
33181.5095 | 28e
29f (a)
30e | | | 9, 29f | 15556.6663
15560.5171
15564.5273 | 33173.6816
33177.5320
33181.5426 | 28f
29e
30f | | | 9, 30e | 15556.9709
15560.9829
15565.0515 | | 29e
30f (a)
31e | | | 9, 31e | 15557.2920
15561.4512
15565.6244 | 33181.5063
33185.6655
33189.8387 | 30e
31f (a)
32e | | | 9, 32e | 15557.6216
15561.9420
15566.1592 | 33185.6077
33189.9281
33194.1453 | 31e
32f (a)
33e | | | 9, 33e | 15557.9635
15562.4331 | 33189.8414
33194.3110 | 32e
33f (a) | | | 9, 33f | 15558.0486
15566.9513 | 33189.9272
33198.8299 | 32f
34f | | $(F^1\Delta)$ | 9, | 34e | 15558.2713
15562.9546
15567.7660 | | 33e
34f (a)
35e | |---------------|----|------------|--|--|-----------------------| | | 9, | 34f | 15558.4351
15563.1812
15567.6063 | 33194.3115
33199.0576
33203.4827 | 33f
34e
35f | | | 9, | 35e | 15563.4881
15568.3700 | 33203.4777
33208.3596 | 35f (a)
36e | | | 9, | 36e | 15564.0457
15569.0723 | 33208.2613
33213.2879 | 36f (a)
37e | | |
9, | 37e | 15559.8100
15564.6161
15569.7683 | 33208.3608
33213.1669
33218.3191 | 36e
37f (a)
38e | | | 9, | 38e | 15560.2955
15565.2203
15570.4829 | 33218.2137 | 37e
38f (a)
39e | | | 9, | 39e | | 33223.3865 | 38e
39f (a)
40e | | | 9, | 40e | | 33228.6877 | 39e
40f (a)
41e | | | 9, | 40f | 15561.1040
15566.4996
15571.8423 | 33228.7796 | 39f
40e
41f | | | 9, | 41e | 15572.5999 | 33239.7632 | 42e | | | 9, | 42e | 15562.2005
15573.4491 | 33234.2062
22245.4548 | 41e
43e | | | 9, | 42f | 15567.8680
15573.4749 | 33239.7591
33245.3660 | 42e
43f | | | 9, | 43e | 15562.7629 | 33239.7618 | 42e | | | 9, | 43f | | 33239.6771
33245.4512
33251.1917 | 43e | | | 9, | 44e | 15563.3412
15575.1023 | | 43e
45e | | | 9, | 44f | | 33245.3653
33251.2643
33257.1403 | | | $(F^1\Delta)$ | 9, 45e | 15563.9282
15575.9528 | 33251.2627
33263.2873 | 44e
46e | |---------------|--------|--|--|-------------------| | | 9, 46e | 15564.5416
15576.8173 | 33257.2129
33269.4886 | 45e
47e | | | 9, 47e | 15565.1729
15577.7083 | 33263.2852
33275.8206 | 46e
48e | | | 9, 47f | 15565.0997
15571.3726
15577.6361 | 33263.2162
33269.4891
33275.8169 | 46f
47e
48f | | | 9, 48f | 15565.7533
15572.1493
15578.5607 | 33269.4209
33275.8169
33282.2283 | 47f
48e
49f | | | 9, 49e | 15566.4979 | 33275.8182 | 48e | | - | 9, 51f | 15567.8465
15574.6462
15581.3998 | 33288.8105
33295.6102
33302.3638 | 50f
51e
52f | ⁽a) These Q lines are dispersed signals. Table A3(b). Observed lines of the $^{23}\text{Na}^{39}\text{K H}^1\Sigma^+(v=v_h+2,\ J)\leftarrow$ B $^1\Pi(v'=9,\ J')$ transitions. The pump transition is fixed to one of the B $^1\Pi(v'=9,\ J')\leftarrow \text{X}^1\Sigma^+(v''=0,\ J'')$ rotational transition lines. | • | inter-
mediate
level | probe
transition
energy | term
energy | assign-
ment | | |-----------------|----------------------------|-------------------------------|--------------------------|-----------------|--| | | (v', J') | (cm^{-1}) | (cm ⁻¹) | (J) | | | $(H^1\Sigma^+)$ | 9, 2e | 15558.1273
15558.7253 | 33123.8085
33124.4065 | 1e
3e | | | | 9, 3e | 15558.0087
15558.8561 | 33124.0467
33124.8941 | 2e
4e | | | | 9, 6e | 15557.6838
15559.2806 | 33125.5088
33127.1056 | 5e
7e | | | | 9, 7e | 15557.5835
15559.4356 | 33126.2419
33128.0940 | 6e
8e | | | | 9, 10e | 15557.3369
15559.9735 | 33129.2126
33131.8492 | 9e
11e | | | | 9, 11e | 15557.2895
15560.1628 | 33130.4733
33133.3466 | 10e
12e | | | | 9, 14e | 15557.1370
15560.7826 | 33134.9696
33138.6152 | 13e
15e | | | | 9, 15e | 15557.0966
15561.0071 | 33136.7189
33140.6294 | 14e
16e | | | | 9, 18e | 15557.0655
15561.7191 | 33142.7604
33147.4140 | 17e
19e | | | | 9, 19e | 15557.0685
15561.9667 | 33145.0273
33149.9255 | 18e
20e | | | | 9, 20e | 15557.0759
15562.2152 | 33147.4135
33152.5528 | 19e
21e | | | | 9, 21e | 15557.0887
15562.4548 | 33149.9236
33155.2897 | 20e
22e | | | | 9, 22e | 15557.1019
15562.6889 | 33152.5490
33158.1360 | 21e
23e | | | | 9, 22f | 15559.8392 | 33155.2904 | 22e | | | $(H^1\Sigma^+)$ | 9, | 23e | 15557.1067
15562.8974 | 33155.2873
33161.0780 | 22e
24e | |-----------------|----|-----|--------------------------|--------------------------|------------| | | 9, | 24e | 15557.1086
15564.1966 | 33158.1364
33165.2244 | 23e
25e | | | 9, | 25e | 15557.0857
15564.3613 | 33161.0786
33168.3539 | 24e
26e | | | 9, | 26e | 15558.1507
15564.5883 | 33165.2245
33171.6621 | 25e
27e | | | 9, | 27e | 15558.0825
15564.8591 | 33168.3512
33175.1278 | 26e
28e | | | 9, | 28e | 15558.0744
15565.1694 | 33171.6605
33178.7555 | 27e
29e | | , | 9, | 29e | 15558.1142
15565.5008 | 33175.1272
33182.5135 | 28e
30e | | | 9, | 29f | 15561.7376 | 33178.7529 | 29e | | | 9, | 30e | 15558.1979
15565.8527 | 33178.7558
33186.4106 | 29e
31e | | | 9, | 31e | 15558.2958
15566.2458 | 33182.5101
33190.4601 | 30e
32e | | | 9, | 32e | 15558.4219 | 33186.4080 | 31e | | | 9, | 33e | 15558.5800
15566.6458 | 33190.4579
33198.5237 | 32e
34e | | | 9, | 33f | 15562.7839 | 33194.6625 | 33e | | | 9, | 34e | 15558.7882
15567.0921 | | 33e
35e | | | 9, | 34f | 15562.6455 | 33198.5219 | 34e | | | 9, | 35e | 15558.5338
15567.5011 | 33198.5234
33207.4929 | 34e
36e | | | 9, | 36e | 15558.7534
15567.8905 | 33202.9689
33212.1060 | 35e
37e | | | 9, | 37e | 15558.9403
15568.1893 | 33207.4911
33216.7401 | 36e
38e | | | 9, | 38e | 15559.1112
15568.9306 | 33212.1046
33221.9240 | 37e
39e | | | 9, | 39e | 15559.2040
15569.3407 | 33216.7393
33226.8760 | 38e
40e | | $(H^1\Sigma^+)$ | 9, | 40e | 15559.8475
15569.9117 | 33221.9231
33231.9873 | 39e
41e | |-----------------|----|-------------|--|--|---------------------------| | | 9, | 40f | 15564.5946 | 33226.8746 | 40e | | | 9, | 41e | 15559.7098
15570.0532 | 33226.8731
33237.2165 | 40e
42e | | | 9, | 42e | 15559.9777
15570.5723
15570.5857 | 33231.9834
33242.5779
33242.5914 | 41e
43e (s)
43e (s) | | | 9, | 43e | 15560.2154
15570.9240 | 33237.2143
33247.9229 | 42e
44e | | | 9, | 44e | 15560.4699
15560.4852
15571.4169 | 33242.5799
33242.5952
33253.5269 | 43e (s)
43e (s)
45e | | | 9, | 45e | 15560.5866
15571.8607 | 33247.9211
33259.1952 | 44e
46e | | | 9, | 46e | 15560.8593
15572.5762 | 33253.5306
33265.2475 | 45e
47e | | | 9, | 47e | 15561.0823
15573.0527 | 33259.1946
33271.1650 | 46e
48e | | | 9, | 48e | 15561.5815
15573.5803 | 33265.2455
33277.2443 | 47e
49e | | | 9, | 49e | 15561.8463
15574.1501 | 33271.1666
33283.4704 | 48e
50e | | | 9, | 50e | 15562.1610
15574.8691 | 33277.2471
33289.9552 | 49e
51e | | | 9, | 51e | 15562.5083
15575.1354 | 33283.4658
33296.0949 | 50e
52e | | | 9, | 52e | 15563.0166
15575.7928 | 33289.9517
33302.7279 | 51e
53e | | | 9, | 53e | 15563.0735
15576.3675 | 33296.0899
33309.3839 | 52e
54e | | | 9, | 54e | 15563.5202
15577.0408 | 33302.7242
33316.2448 | 53e
55e | | | 9, | 55e | 15563.8882
15577.7984 | 33309.3818
33323.2920 | 54e
56e | | | 9, | 55 f | 15570.7442 | 33316.2411 | 55 e | | $(H^1\Sigma^+)$ | 9, 56e | 15564.3534
15578.5577 | 33316.2408
33330.4451 | 55e
57e | |-----------------|--------|--------------------------|--------------------------|------------| | | 9, 57e | 15564.9061
15579.4186 | 33323.2886
33337.8011 | 56e
58e | | | 9, 58e | 15565.4663
15580.4596 | 33330.4418
33345.4351 | 57e
59e | | | 9, 59e | 15566.1290
15581.6255 | 33337.7982
33353.2947 | 58e
60e | | | 9, 59f | 15573.7313 | 33345.4341 | 59e | | | 9, 60e | 15566.9910 | 33345.4313 | 59e | ⁽s) These lines are split into two lines. This splitting may be originating from the perturbation. Table A3(c). Observed lines of the $^{23}\text{Na}^{39}\text{K}$ I $^1\Sigma^+(v=v_1+1,\ J) \leftarrow$ B $^1\Pi(v'=9,\ J')$ transitions. The pump transition is fixed to one of the B $^1\Pi(v'=9,\ J') \leftarrow X^1\Sigma^+(v''=0,\ J'')$ rotational transition lines. | | inter-
mediate
level | probe
transition
energy | term
energy | assign-
ment | |------------------------------|----------------------------|-----------------------------------|--------------------------|-----------------| | | (v', J') | (cm ⁻¹) | (cm ⁻¹) | (J) | | $(\mathbf{I}^{1}\Sigma^{+})$ | 9, 18e | 15562.0221 | 33147.7170 | 17e | | | 9, 19e | 15562.0453 | 33150.0041 | 18e | | | 9, 20e | 15562.0862 | 33152.4238 | 19e | | | 9, 21e | 15562.1352 | 33154.9701 | 20e | | | 9, 22e | 15562.2151 | 33157.6622 | 21e | | | 9, 23e | 15562.3054 | 33160.4860 | 22e | | | 9, 24e | 15562.4246 | 33163.4524 | 23e | | | 9, 25e | 15562.5339 | 33166.5265 | 24e | | | 9, 26e | 15562.7706 | 33169.8444 | 25e | | | 9, 28e | 15563.1781
15570.6749 | 33176.7642
33184.2610 | 27e
29e | | | 9, 29e | 15563.4249 | 33180.4379 | 28e | | | 9, 30e | 15563.7026
15571.7411 | 33184.2605
33192.2990 | 29e
31e | | | 9, 32e | 15564.3094
15572.9069 | 33192.2955
33200.8930 | 31e
33e | | | 9, 3 4 e | 15565.0220
1557 4. 1275 | 33200.8938
33209.9993 | 33e
35e | | | 9, 34f | 15569.5528 | 33205.4292 | 34e | | | 9, 36e | 15565.7851
15575.4529 | 33210.0007
33219.6685 | 35e
37e | | | 9, 38e | 15566.6713
15576.8165 | 33219.6647
33229.8099 | 37e
39e | | | 9, 39e | 15567.1361 | 33224.6714 | 38e | | | | | | | | $(I^1\Sigma^+)$ | 9, 4 0e | 15567.7349
15578.4063 | 33229.8105
33240.4819 | 39e
41e | |-----------------|----------------|--------------------------|--------------------------|------------| | | 9, 4 1e | 15567.9531 | 33235.1164 | 40e | | | 9, 42e | 15568.4749 | 33240.4806 | 41e | | | 9, 43e | 15569.0076 | 33246.0065 | 42e | | | 9, 44e | 15569.5512 | 33251.6612 | 43e | | | 9, 45e | 15570.1036 | 33257.4381 | 44e | | | 9, 4 6e | 15570.6791 | 33263.3504 | 45e | | | 9, 47e | 15571.2656 | 33269.3779 | 46e | | | | | | | Table A4(a). Observed lines of the $^{23}\text{Na}^{39}\text{K U}(v,\ \text{J})\leftarrow \text{B}^1\Pi$ $(v'=9,\ \text{J'})$ transitions. The pump transition is fixed to one of the $\text{B}^1\Pi(v'=9,\ \text{J'})\leftarrow \text{X}^1\Sigma^+(v"=0,\ \text{J"})$ rotational transition lines. | inter-
mediate
level | probe
transition
energy | term
energy | assign-
ment | |----------------------------|-------------------------------|---------------------|------------------| |
(v', J') | (cm ⁻¹) | (cm ⁻¹) | (J) | | 9, 18e | 15560.2393 | 33145.9342 | 17e | | 9,
10e | 15564.2795 | 33149.9744 | 17e
19e | | 9, 19e | 15559.9559 | 33147.9147 | 18e | | | 15564.1939 | 33152.1527 | 20e | | 9, 20e | 15559.6386 | 33149.9762 | 19e | | | 15564.1270 | 33154.4646 | 21e | | 9, 21e | 15559.3175 | 33152.1524 | 20e | | | 15564.0822 | 33156.9171 | 22e | | 9, 22e | 15559.0135 | 33154.4606 | 21e | | | 15564.0653 | 33159.5124 | 23e | | 9, 22f | 15561.4622 | 33156.9134 | 22e | | 9, 23e | 15558.7366 | 33156.9172 | 22e | | | 15564.1007 | 33162.2813 | 24e | | 9, 24e | 15558.4873 | 33159.5151 | 23e | | | 15563.0779 | 33164.1057 | 25e | | 9, 25e | 15558.2857 | 33162.2783 | 24e | | | 15563.1992 | 33167.1918 | 26e | | 9, 26e | 15557.0354 | 33164.1092 | 25e | | | 15563.2959 | 33170.3697 | 27e | | 9, 27e | 15556.9229 | 33167.1916 | 26e | | | 15563.3104 | 33173.5791 | 28e ⁻ | | 9, 28e | 15556.7806 | 33170.3667 | 27e | | | 15563.4100 | 33176.9961 | 29e | | 9, 29e | 15556.5627 | 33173.5757 | 28e | | | 15563.4749 | 33180.4879 | 30e | | 9, 29f | 15559.9814 | 33176.9967 | 29e | | (U) | 9, | 30e | 15556.4364
15563.5488 | 33176.9943
33184.1067 | 29e
31e | |-----|----|-----|--------------------------|--------------------------|------------| | | 9, | 31e | 15556.2731 | 33180.4874 | 30e | Table A4(b). Observed lines of the $^{23}\text{Na}^{39}\text{K}$ T(v, J) \leftarrow B $^{1}\Pi$ (v'=9, J') transitions. The pump transition is fixed to one of the B $^{1}\Pi$ (v'=9, J') \leftarrow X $^{1}\Sigma^{+}$ (v"=0, J") rotational transition lines. | | inter-
mediate
level
(v', J') | probe
transition
energy
(cm ⁻¹) | term
energy
(cm ⁻¹) | assign-
ment
(J) | |-----|--|--|---------------------------------------|------------------------| | | | | | | | (T) | 9, 36e | 15568.4750 | 33212.6906 | 37e | | | 9, 37e | 15568.4540 | 33217.0048 | 38e | | | 9, 38e | 15559.6976
15568.5860 | 33212.6910
33221.5794 | 37e
39e | | | 9, 39e | 15559.4680
15569.0167 | 33217.0033
33226.5520 | 38e
40e | | | 9, 40e | 15559.5024
15569.6304 | 33221.5780
33221.7060 | 39e
41e | | | 9, 41e | 15559.3863
15569.8280 | 33226.5496
33236.9913 | 40e
42e | | | 9, 42e | 15559.6991
15570.3966 | 33231.7048
33242.4023 | 41e
43e | | | 9, 43e | 15559.9886
15571.1013 | 33236.9875
33248.1002 | 42e
44e | | | 9, 44e | 15560.2937
15571.6769 | 33242.4037
33253.7869 | 43e
45e | | | 9, 4 5e | 15560.7650
15572.3059 | 33248.0995
33259.6404 | 44e
46e | | | 9, 4 6e | 15561.1171 | 33253.7884 | 45e | | | 9, 47e | 15561.5313 | 33259.6436 | 46e |