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1.1 Approaches to non-equilibrium irreversible processes

The first step toward statistical mechanics was taken in 1736 by
J. Bernoulli who tried to derive Boyle-Charles law for rarefied gas
by Newtonian mechanics. Since then, great efforts were made by
physicists to reconstruct thermodynamics by considering
microscopic pictures of molecular motion. Macroscopic empirical
laws under thermal equilibrium condition were successfully
explained by ensembles of molecular dynamical quantities. In
1877, L. Boltzmann interpreted the second law of thermodynamics,
i.e., the irreversible increase of entropy, as a stochastic process of
equipartition of energy by elastic collisions of molecules. Though
the dynamical processes on microscopical level are reversible, the
macroscopic irreversibility is obtained. In the middle of this
century a general theory of near-equilibrium systems for which the
deviation from the thermal equilibrium is approximated by the
first order of expansion terms has been achieved. The formalism is
well-known as the linear response theory. However, it is not
applicable to far-from-equilibrium systems where responses are
nonlinear.

On the other hand, the study of far-from-equilibrium has been
attracting much attention in the last two decays. (The historical
progress of statistical physics from thermal equilibrium to far-
from-equilibrium is shown schematically in Fig.1.1). Though many
macroscopic phenomena in nature, such as turbulence, lightning,
earthquakes, fracture, erosion, and formation of clouds, aerosols,
and interstellar dusts are typical problems of far-from-equilibrium,

no unified view has been established.
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Linear non-equilibrium

{Far-from-equilibrium Phase transitions

Linear response theory

Approaches from Approaches from
stochastic models dynamical systems
Our present research Dissipative structure
Chaos
Fig.1.1 Schematic views of thermodynamics to

far-from-equilibrium statistical physics.

These problems in nature involve essential difference from thermal
equilibrium systems. First, at the macroscopic level the systems do
not satisfy the detailed balance and equipartition principles.
Second, the system is usually open to an outside source. In order to
describe such systems it is necessary to take into account of the
injection and dissipation processes. At present stage, we do not
know a universal distribution for far-from-equilibrium such as the
canonical distribution for thermal equilibrium.

Let us consider an approach by computer analysis. Here we
consider a typical far-from-equilibrium problem, aggregation of
macroscopic sticky grains, which is the basic process of forming

dusts in atmosphere or in outer space. If we try to simulate such
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systems by microscopic view we have to include typically an order
of Imol molecules to represent one macroscopic particle at local
equilibrium. At a collision of two macroscopic particles we will be
required a lot of CPU time to observe the fusion of incident
macroscopic particles, and still more calculation will be needed until
the system reaches a new thermal equilibrium. Further, we have to
calculate millions of collisions of macroscopic particles in order to
obtain the distribution of particle sizes. Obviously, this is far
beyond the capacity of present computers.

By changing the point of view, we can visualize the far-from-
equilibrium systems by directly considering in macroscopic terms.
Namely, we can make a model of far-from-equilibrium by assuming
irreversible rules for the macroscopic dynamics. For example, we
are able to make a model for aerosol formation by thinking of
particles’ coagulation process, neglecting details of microscopic
conditions. In such a way, we may explain the mechanism of some
universal behavior on macroscopic level found in the natural
irreversible systems.

One of the early attempts to use this approach was reported by
T. A. Witten and L. M. Sander(1981) who modeled a pattern formed
by cathode deposition of positive metalic ions in an electrolite
containing in a small concentration. When a randomly diffusing ion
hits the electrode or the already deposited metal on its surface, it
immediately sticks to the surface by electrostatic attraction. A
randomly branching pattern (see Fig.1.2a) obtained in this
experiment is realized by a simple model called diffusion-limited-
aggregation(DLA): Put a seed particle at the origin of a lattice.
Another particle launched far away from origin randomly walks on

the lattice. When it arrives at an adjacent site to the seed particle it
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stops and forms one more seed particle, and another diffusing
particle is launched. Repeating this process, we obtain a branched
pattern(Fig.1.2b) which realizes the main features of the deposition

pattern obtained experimentally.

R

e——— 1000 DIAMETERS —M—»

a b

Fig.1.2a Branched structure formed on a centrally positioned zinc
electrode by cathdic deposition. [M. Matsusita, M. Sano, Y.
Hayakawa, H. Honjo, and Y. Sawada(1984)]

b Simulation of a two-dimensional aggregation of particles
according to DLA rules. It was composed of 50,000 particles.
[P. Meakin(1985)]

Randomly branching structures in DLA process and similar
models show statistically self-similar appearance. Namely, we
cannot tell the statistical difference in shape between a large
branch and its component small branches if we enlarge the small

ones. We can formulate such self-similar characteristic by a power-
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law function since power-law is the only function that has the scale
invariance. If a function n(r) is scale-invariant then n(r) satisfies
n (r) = n (kr) for all positive k. That is, if n(r) is scale-invariant then
n(r) should satisfy the functional relation; n (kr) =n (k)n(r) for all
positive k and r, from the symmetry of k£ and r. This equation is the
Cauchy's function equation whose only continuous solution(apart
from the trivial n(r)=0 for all positive r) is; n (r) =7 ¢ for some real
number « [see G. Korvin (1992)]. The self-similarity of DLA is
characterized as follows: If we consider a circle of radius r from the
origin then the number of particles within the circle, n(r), is scaled

as

n(r)erb (4.1.1)

where D is a fractional exponent which is called the fractal
dimension |[B. B. Mandelbrot (1975)] and the self-similar
geometrical patterns of this kind are called fractals. In the case of
DLA the fractal dimension is estimated by computer analysis as
D =1.7040.06 for two-dimensional lattice [P. Meakin (1983)].

Scale invariance and fractal geometry are the typical
macroscopic feature of far-from-equilibrium systems observed in
nature. Yet, we do not know how the self-similarity is achieved. We
can say that power-law distributions and fractal geometries are, in
a sense, macroscopic peculiarities of irreversible systems
corresponding to the empirical laws of classical thermodynamics.

The concept of fractal is not only used to describe geometrical
self-similar patterns, but also to the phenomena whose
distributions follow power-laws, which are typically observed in

far-from-equilibrium systems. In the following chapters we
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consider the processes of particles' coagulation, but mostly
concentrating on the mechanism of forming power-law size

distributions in open systems.

1.2 Random aggregating systems observed in nature
In this section we discuss open aggregating particle systems in

nature and the corresponding stochastic models.

Aggregation

L) Diffusion
1 Tlnjection

e o© O
o4 o 00
[ J

Factory

Fig.1.3 Mechanism of aerosol formation in air.

Let us consider aggregation of aerosols. The typical sizes of
aerosol are of diameter 10A(size of a cluster of molecules) to
100um(size of a fog waterdrop or a particle of fine dust). Since
aerosols are small enough they are regarded as particles randomly
floating in air, and coagulate with certain probability when they

collide. Diffusion and coagulation are repeated until a fully
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developed particle, which starts sedimentation, is formed. Beside,
small particles are continuously supplied by car fumes and smokes
from industrial factories. Fig.1.3 shows a mechanism of aerosol

development schematically.

-3

cm A
;E* slope=-3

n

=

[}
NC)

g

— >
log(diameter) um

Fig.1.4 A schematic diagram for particle size distribution in aerosols.

Effect of aggregation, sedimentation, and supply of small
particles balance to realize a steady state. As shown in Fig.1.4, the
steady state size distribution has a power-law range, and, due to
sedimentation, a fast decay at the large size range. It has been
reported that in actual observation, the diameter distribution for
aerosols follows a power-law with an exponent close to -3. Namely,
N (r) =< r -3, where N () denotes the density of aerosols of diameter
r [Takahashi, T. (1987)]. Let us discuss in more detail about this

power-law distribution.
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The system described above is called a random aggregating
system. In order to concentrate on to the power-law size
distribution, here we consider only coagulation and injection of
small particles. For convenience we neglect the sedimentation
process. If such random aggregating system is closed and no
particle is supplied, then the total number of particles decays
monotonically with time in the irreversible aggregating process. (In
the next chapter we will show that the decay follows a power-law
for a particular case of Scheidegger's river model; a model of
simplified randomly aggregating particles system in which particles
of different sizes diffuse in the same manner.) As a result, the
steady state will be a trivial configuration in which all particles
gather into one large particle. As we see, the system is required to
be open in order to reach a non-trivial steady state.

By injecting small particles continuously, a steady size
distribution of fractional power-laws can be observed. It has been
shown for Scheidegger's river model that this power-law is stable,
namely, the system recovers the same distribution regardless of
any perturbation(see chapter 2.5). The power-law is supported by
the balance of increasing the number of small particles by injection
and decreasing it by aggregation process. In other words, if we
single out a particle of any size it grows larger and larger by
repeating coalescence, but the number of particles of a given size is
kept constant by aggregation of newly injected small particles.
Moreover, for a given rate of supply of small particles the
aggregation rate is naturally controlled by the injection rate of
small particles so that the power-law is maintained for any
injection rate(see Fig.1.5), although the mean-size of particles

increases with time. We call this condition which is characterized
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by a stable power-law as a statistically steady state distinguishing
from usual steady states in which mean values converge as time

develops.

STABLE
POWER-LAW

Fig.1.5 A stable power-law is obtained by the balance
of aggregation process and injection of particles.

The classical understanding of aggregation kinetics is given by
the rate equation approach proposed by M. von Smoluchowski
(1917). The basic assumptions of his theory are the followings:

i) The reaction rate K; for two particles of mass i and j is

the same for any pair of particles having masses i and j.

ii) The concentration of particles with a given mass can be
represented by its spatial average. Thus the spatial
dependence of all quantities is neglected, consequently, the
results of this approach give the values of the mean-field
theory.

iii) The system is sufficiently diluted so that the reaction rate
between two types of particles is not influenced by the
presence of other particles.

The so-called Smoluchowski equation is found by writing the
population balance of both the gains and losses due to collisions

under above assumptions. It can be written as follows;
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a% m=LY Kyn(ni6)- n(6) Y, Kynj(e) + I - Remi(),  (1.2.1)
i+j=k J=1

where 74(f) denotes the concentration of particles having mass k at
time ¢, Ix denotes the concentration of particles having mass &
injected at time ¢, and Ry denotes the sedimentation rate of
particles having mass k at time ¢. The first term at the right hand
side expresses the number of particles of mass k increased by
aggregation, formed by particles having mass i and j coalescing to
form a particle of mass k=i+j. The second term shows the number of
particles of mass k decreased by aggregation of particles having
mass k and the other particles. The third term and the last term
correspond to injection and sedimentation rate, respectively.
Eq(1.2.1) has been studied extensively for decades and it can
explain power-law size distributions widely observed in
aggregation process. The collision matrix Kj is determined by the
physics of the aggregation process. For aggregation of diffusing
spherical particles Kj; is known to be expressed as
Kj o (i 34713 (i 134j-13) The exact solutions were known only
for the case of K; >« 1[M. von Smoluchowski (1916)], K;j <i+j [J. B.
Mcleod (1962)], and Kj < [R. M. Ziff (1980)]. The Eq.(1.2.1)
involves essential difficulties of nonlinearity. The exact solutions for
many other cases with complicated collision matrices are still
unknown.

In the next chapter, we introduce a special model for which the
size distribution and the other statistical properties are rigorously
analyzed not only in the mean-field case but also in one-dimension
with spatial effects taken into account. We mathematically show

that our model has a stable power-law distribution under any
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perturbation and derive the functional forms of relaxation to the
power-law. Critical dimensions and the exponents of the size
distribution depending on the injection types are discussed.

In chapter 3, we introduce some extended models and analyze
their statistical properties. The models introduced in this chapter
are an aggregation of exponentially growing particles with injection,
a random advection dynamics in which a portion of the particles
are distributed to neighboring sites, and a modified version of
Scheidegger's model where particles' jumping rates depend on their
mass.

In the last chapter, we discuss the spatial correlation of
aggregation with injection system. The author introduces two new
general methods to analyze the correlation of spatial and temporal
data. We show that these methods are powerful even for violently
fluctuated data which are often encountered in far-from-

equilibrium systems.



Chapter 2

Scheidegger's river model
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2.1 The model and the basic equations

In the previous chapter, we reviewed some examples of far from
equilibrium irreversible systems found in nature, which
automatically organize steady states with power-law distributions. In
this section we introduce a simple model of random aggregating
particles. We will find that even a simplified model can reproduce
some peculiarities of non-trivial self-organizing processes found in

nature.

2.1.1 The model

Fig.2.1 Rivers pattern on the slope.
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Let us picture a slope of paved road under rain with many
pebbles uniformly distributed on the surface (see Fig.2.1). Raindrops
fall uniformly and they flow along the slope. When a stream of water
encounters one of the pebbles on the surface it slides down to the
left or to the right randomly. When two streams happen to gather at
the same spot, they coalesce and continue to glide down the road,
randomly diverted by the pebbles without penetration into the
ground. Once a path has been created, all later raindrops that come
upon it follow the same route. If the surface is large enough, after
some time we see a hierarchy of little streams and rivulets. Fig.2.2
shows a similar phenomenon observed in a real system. The
branched pattern appears on the surface of a glass by the flow of
watery yogurt instead of raindrop in above description [H. Takayasu

and M. Takayasu (1988)].

Fig.2.2  River-like pattern made of yogurt on the rough glass.
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) %

L >

et o

Fig.2.3  An example of a space-time configuration of sticky
random walkers in one-dimension with injection.

We can formulate the most essential points of this picture as a
random aggregating particle system in discretized space-time. In
order to avoid complexity, here, we consider ideal massive
particles(material particles) that one can ignore its volume in the
model. Consider a process in which at every time step massive
particles on sites of a one-dimensional lattice randomly jump to
neighboring sites, while a unit mass particle is added to each site of
the lattice. When particles meet at a site they coagulate to form a

new particle with mass conserved. Fig.2.3 shows the trajectories of
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particles in space-time. It involves branched structures which
coincide with the river patterns under the rain introduced in the
beginning of this chapter. The particles at the latest time step are at
the bottom of this figure, and each of them has mass equal to the
area of the drainage basin of corresponding branched structure since
we inject a unit mass particle per one time step at every site. The
ridges of the drainage basins corresponding to the particles at the
latest time step are shown in Fig.2.4. Thus, we can visualize a

configuration of sizes of mass in one-dimensional space.

Fig.2.4 The ridges of the drainage basins.

This basic model, so called the basic Scheidegger's river model,

was originally proposed by a hydrologist, A. E. Scheidegger, in 1967
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in the interest of studying river networks. In 1986 it was reinvented
as a model of random aggregating particle system by physicists in
order to explore a basic step toward a statistical physics for systems
far-from-equilibrium [H. Takayasu and I Nishikawa (1986)].

The model can be extended to include the case that the dynamical
variables have both positive and negative values instead of
considering only positive quantity such as mass. We can interpret
this extension as each particle having a positive or negative "charge",
and such charges are added algebraically when two particles
aggregate [H. Takayasu (1989)].

Let m (j,t) be the charge of a particle on site j at the z-th time step.
The aggregation process can be represented by the following

stochastic equation for m(j,¢) :

m G, t+1)=) Wi (t) m (ke)+I (, )
k

,

(2.1.1)

where I(j,t) denotes the charge of a particle injected at the j-th site
at time ¢, and W,k () is a random variable which is equal to 1 when
the particle on the k-th site jumps on the j-th site and is equal to
zero otherwise. Since one particle cannot go to two different sites in a
single time step, Wji (¢) must be normalized: D, Wi (¢)=1. In the
following analysis we shall consider two simple cases:

(A) W (¢)=1 with probability 1/2, W;_; (¢)=1 with probability

1/2, and Wi (¢ }=0 fork #/,j -1.
(B) Wjx (t)=1 with probability 1/N, where N is the total number

of sites, which will tend to infinity in our analysis.
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Under a periodic boundary condition case (A) can be regarded as an
aggregating Brownian particles' model, which is evident if we
observe from a coordinate moving with a constant velocity of 1/2.
Case (B) corresponds to the mean-field limit. We study the statistical
steady state properties in cases (A) and (B) under following three
different types of injection:

(I) Independent random positive and negative injection(including

the case of the basic model).

(II) Random pair creation injection.

(III) Positive and negative fractal injection.
Also, we study the relaxation process in cases (A) and (B) with no
injection. In the random injection case, we inject randomly charged
particles independently at every site at every time step. In the pair
creation case, we inject pairs of particles with positive and negative
charges simultaneously, but randomly, on pairs of adjacent sites [For
example, a pair injection onto the j-th and (+1)-th sites is given by
I(, t)=-1( +1, t).]. This special case is particularly interesting since it
sheds light on the problem of the critical dimension of the model (see
section 2.7). For pair injection, each time step is completed when all
sites have, on average, two injected positive and negative particles.
In positive and negative fractal injection case, we study the cases of
weighted input (symmetric power-law input) and spatially fractal
input.

In the following sections we will see that the distribution of the
charge m in the statistically steady state has a power-law tail
depending both on the type of the injection and on the spatial

dimension. Especially, from the study of fractal injection, we will find
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that the exponent of power-law distribution in statistically steady
state can take continuous values depending both on the input
exponent and the dimensionality of the input subspace (see section
2.3.3). And for non-injected closed system, the total number of
particles decays following a power law with respect to time.

The time evolution of the charge distribution can be analyzed by

introducing an r-body characteristic function (see Appendix (1)),

Z, (o, t) = <exp [iQi m,t)]>

7=l , (2.1.2)

where < --- > denotes the average over all realizations of {Wj (¢)}

and {/ (,t)}.

2.1.2  Basic equations in one-dimension with random
positive and negative injection

We have the following evolution equation, for Z,(p,¢t) from

Eq.(2.1.1),

Z (o, t+1) =<exp { igi Z Wim (k, t)'H'Qi I (,t)p
Jj=1k j=1 . (2.1.3)

Let wus consider the total mass of successive r  sites,
M t)=mk +1, t)+mk +2, t)+--+mk +rt), on one-dimensional
lattice. As we follow the time evolution, the difference between

M,(t) and M,(t +1) is due to the behavior of two particles, m(k , t)



2. Scheidegger's river model 2-8

and mi(k +r,t) at both edges of the r successive sites. We can
consider three different possibilities for the movement of particles at
the edges; either m(k,t) or m(k +r,t) move into the r successive
sites at ¢+ with probability 1/4 respectively, both particles move
into the r successive sites at ¢+/ with probability 1/4, and both
particles do not move into the ~ successive sites at f+] with
possibility 1/4. Now part of the average , < --- >, in Eq.(2.1.3) can be
written explicitly as follows [H. Takayasu, I. Nishikawa, and H. Tasaki
(1988)1;

Sk T ; k +r
Zio vy = PR Sl GO 1> R Gy
4 ok
k+r-1
+<exp {io Y, m,t)}>
j=k
k +r
+<exp lio D, m(,t)}>
j=k+1
k4r-1
+<exp {io >, m (,t)}>]
J=k+1
(2.1.4)
Using the translational invariance, we have
Zo, t+1) =L g , , 1(o,
r(Q t+1) 4 P (Q) [Zr+1(0 t)+ 2Z, (Q t) + Z 1(0 t)] ’ (2.1.5)

where @ (o) =<exp {iol (, t) }> is the characteristic function for the

injection process, which can be expanded as

Do) =1+i<l(t)>o-<I(, t)’>? 2+ ... (2.1.6)
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Eq.(2.1.5) gives a set of linear equations with r =1, 2, ", N-I. By
definition of the r-body characteristic function, Z,.(p, ¢), in Eq.(2.1.2),

one of the boundary conditions becomes
Zolo, ) =1 . (2.1.7)

For r=N, Zy(o,t) is the characteristic function for the total charge of

the system, so that the other boundary condition is,

Zn(o,t) = @ (0™ Zn (0, 0) (2.1.8)

Egs.(2.1.7) and (2.1.8) are valid for all cases we are going to consider.

2.1.3 Basic equations in one-dimension with pair-creation
injection
In the case of pair-creation injection, positive and negative
injections cancel for j=2 to r-1 in Eq.(2.1.4). Therefore, the injections
which are effective to the r-body are those two particles at the edges
of the r successive sites. Then we have the following evolution

equation for r=1,2," "

Zo(o, £ +1) = i— ® (0°1Z41(0, ) +2Z, (0, t) + Zr 1(0, )] (2.1.9)
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2.1.4 Basic equations in one-dimension with fractal
injection

We address here the most general case of "fractal input". By the
term fractal input we mean that the injection of particles does not
take place on entire space of d=1 but only on a subspace of
dimension ds< 1 . For example, in one-dimensional aggregation we
can have input on subspace realized on a Cantor set, or any other
fractal set with dimension less than 1. Introducing the fractal input
we should be careful not to break the translational invariance which
is essential in our analysis. To keep the system uniform in the
statistical sense we shift the fractal subspace randomly at each time
step. In this way we recover the statistical uniformity of the system
although the injection at each time step is not uniform. Under these
assumptions for input, the evolution equation for the r-body

characteristic function takes the form,

Z, (o t+1) =L " (Z,.1(0.t) +2Z,(0.t) +Z, 10,
(o, t+1) 4 (0 { 1o, ) + (o,2) + 1o t)}’ (2.1.10)

since the number of newly injected particles on r-body is denoted by
cr?f , where ¢ is a constant. In the case that the input on each site

follows a power-law distribution of the form

p(I)=p (-1)=|II"F, o0<ps2 2.1.11)

the characteristic function of the injection for small values of o is

approximately given by
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(I,(Q):exp{-%wyi}ﬂ-%clol”- 00 (2.1.12)

and is always real due to the symmetric nature of the input,

Eq.(2.1.11).

2.1.5 Basic equations in the mean-field case
The evolution equation for the mean-field case of random positive

and negative injection can be written as

N
Zi(o, t+1) = @ (o) D, a,Z1(o, t)
r=0 s (2.1.13)

erm (M3 (-3

where

since the probability that arbitrary r sites hop into a site in one time
step can be calculated as @r. This equation is, in a sense, valid also
for pair creation injection and fractal injection, but not rigorously
since the cases of pair input and fractal input are not well defined on
a lattice in which all sites can be regarded as nearest neighbors. In
the limit N — oo the right-hand side of Eq.(2.1.13) converges to an

exponential function, namely

Z1(o, t+1) = @ (9)-exp {Z1(o,t) -1} (2.1.15)
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2.2  Solution for no injection case

To clarify the contribution of random injection in forming a
statistically steady state, let us first discuss the system without
injection as a comparison [H. Takayasu, M. Takayasu, A. Provata, and

G. Huber (1991)].

2.2.1 In one-dimensional system
The evolution equation for Z , (p,t) is given by Eq.(2.1.5) with
@ (o) = <exp {ip0}> =1,

Z, (o, t+1) =£11—{Zr+1(9v t)+2Z,(o,t)+Z,1(o, )} . (2.2.1)

This equation can be considered a diffusion equation in (r, ) space.

Due to the linearity of Eq.(2.2.1), the solution is given as

{+r

Z ’ t)= G ¢ 'Z ' s 0
r (Q ) . '=§+r r,r ( ) r (Q ) , (222)
where G, ,(t) is the Green function for Eq.(2.2.1),
Grr (6 =1—( 2 )
4t \ter-r'J (2.2.3)

and Zr(o,t) for negative r is defined as
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Z,(0,t)=2-Z ,(0,t) | (2.2.4)
which ensures the boundary condition Eq.(2.1.7). Grr (£) gives the
probability that a random walker starting at (r ',0) reaches (r, t). For
large ¢, Eq.(2.2.3) can be approximated by a Gaussian function:

)2

Grlt)=doexp (-7 .
Vot © t : (2.2.5)

il

where the symbol means equivalence up to first order.
Substituting Eq.(2.2.5) into Eq.(2.2.2), and taking the continuum limit

for r, we get

* N2
Zootyz| ar o oep (2T 2, 0,0)
0 Vnt t
o0 |2
| ey (Y V27, 00,0)]
) r mexp ; (o]

e \ 2
=1-rif dr'zt—’exp{-’T}[l—Zr-(Q,O)] ,
0

(2.2.6)

where we have expanded the exponential function to first order in

r/ﬁ.

Let us solve the decay of the particles number with the initial

condition that every site is occupied by a particle having a wunit

charge. The initial condition is given by Z,(g,0)=e¢e'¢". The



2. Scheidegger's river model 2-14

evolution of the charge distribution is obtained by Fourier inversion

of Eq.(2.2.6),
prim, t) =$fdge"9’"lr(g, t)

1- 2r )5(m)+2r Zme m?/t .
( Var ¢ (2.2.7)

Here p,(m,t) denotes the probability that the sum of the charges on
the r successive sites is m, at time step ¢. From Eq.(2.2.7) we know
that the charge distribution for large m decays following a Gaussian

function and that the particles number decreases for large ¢ as

N-p(m;tO,t)«;Iy—, t o0
nt

) (2.2.8)

where the symbol « means proportional up to first order. This result
is consistent with J. T. Spouge (1988), C. R Doering and D. ben-

Avraham (1988) where the same problem is treated by different

methods.

2.2.2 In the mean-field system

Next, we consider the mean-field case(B). For large ¢ we can
assume that Z(p,t)=1 because the existence probability for
particles should vanish as f—. From Eq.(2.1.15), with ®(0) =1 we

have the following evolution equation:
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Z1(o,t+1)-Z (0, t)=L[Z (0, 8) - 1P +--.

[\

(2.2.9)

By taking the continuum limit with respect to ¢, we obtain Z 1{o, ¢),

2[1-2Z1(p,0)]
t[1-Z1(0,0)]1+2 (2.2.10)

ZI(Q9t)El’

The decay in the particle number can be calculated in the same way

and we get

1
m#0,t) < — , t—>o0
P ) t - , 2.2.11)

for the same initial conditions as in the one-dimensional case. Notice
that in one-dimensional case, Eq.(2.2.8), the decay is slower than in

the mean-field case, Eq.(2.2.11), due to the effect of spatial

restriction.
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2.3 The steady state charge distribution in the presence of

injection

In this section we study the steady state charge distribution
realized by three different types of continuous and statistically
homogeneous injection; random positive and negative injection, pair-
creation injection, and fractal input. Throughout the whole section
the system size N is assumed to be infinite [H. Takayasu, M.

Takayasu, A. Provata, and G. Huber (1991)].

2.3.1 Solutions for one-dimension with random positive
and negative injection
Let us discuss the case of basic model that every site has exactly
I =1 injection at every time step. We will find it to be convenient to
redefine the characteristic function by Laplacian transformation of

distribution function instead of Fourier transformation;

Zo, t)=<exp |- S m(j,t)]>
¢ ? QEI v , @.3.1)

Do) =<exp [ -ol ¢,¢)] >

=1-<U>o+<I®>p?2-... 2.3.2)

Notwithstanding the redifinitions, the basic equations for evolution
introduced in the previous sections still hold without any change in

their appearence.
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The charge distribution in the one-dimensional case with random
positive and negative injection can be obtained from the steady state

solution of Eq.(2.1.5). We have the following set of linear equations

for Z, (o), r =1, 2, 3, ... , with the boundary condition Eq.(2.1.7):

Zr(@)+[2-40(0)"1Z,(0)+Z,4(0)=0 (2.3.3)

Dividing both sides of Eq.(2.3.3) by Z,(¢), we get a recurrence relation
for Z,(0)/Z,.1(0),

Zr(Q) - i
Z,1(0) 40 (0)"-2-Z,,10)/Z,(0) | (2.3.4)

Therefore, Z 1(0) is given by the following continued fraction:

Z (o) = 1
40 (o) '-2- —
49 (g) “-2- 13
40 (o) 7-2---- (2.3.5)

Since we are thinking of the special case that every site has unit
mass injection at every time step, @ (g) can be expressed exactly in

the form @ (g) = exp ( -9). Then Eq.(2.3.5) can be written as

Z (o) = 1
4¢ ©-2 - 1
4e20.2 .1
ded0-2- (2.3.5)
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Rough estimate of Eq.(2.3.5") is easily obtained by using the theory of
continued fraction CAM as we show in Appendix (2). The rigorous

discussion is as follows [G. Huber (1991)]: As a first step in expanding

Z 1(9), we linearize the individual terms in Eq.(2.3.5') around ¢ =0,

Zi (o) = 1

2+12¢ ---- | (2.3.6)

Bessel function (of real order) can likewise be expanded in linearly

increasing terms*l, making possible the closed-form solution

J1+ 172 0(1/20)
Z)(g) = Ttialli20)
1te J 2 o(1/20) (2.3.7)

Since the limit of large mass m —<° is equivalent to the limit o —0,
we are interested in the asymptotics of J1+x(x )/ x(x ) as x —°. One of

the Lommel recurrences [G. N. Watson (1944)] states

Jl+x(X)=1_JLx )
J ) J )

) (2.3.8)

and the method of stationary phase [N. Bleistein and R. A.
Handelsman (1986)] allows a formal expansion of the right-hand

side#2 |

#1 This is due to the exact correspondence between the Bessel-function
recurrence relation, Jn 4+ 1(x) - (2n/x)Jx (x) + Jn-1{x) = 0, and Eq.(2.3.3).

#2 Asymptotic expansions of Jx (¥) and J'x (¥) were first discovered by Cauchy
and Meissel [G. N. Watson (1944)].



2. Scheidegger's river model 2-19

= 176
Zi(g)=1- 21%01/3_ %94_0(95/3)
I (13) : (2.3.9)

For small o , one can show that Z1 (o) >Zi (¢). Alternatively, Z (o)

can be written as

(4ee-2)!
(4e0- 2) 1 (4e20-2)"
| (4e2e- 2) (ae3e- 2)”
1-... . (2.3.10)

Z1(g) =
1-

Now we "linearize" this form, as before,

~ 1-2
Zy (o) = 1 Z
2- 1- 190
2_ - 0
2---- , (2.3.11)

and expand around ©=0,

- 1/6
Zi(g)=1- 275(1—6/3)—291/3_ o+ 0 (0%3)
ras) : (2.3.12)

Despite differences in second-order coefficient, the expansion agrees
with Eq.(2.3.9) to first order. In this case, we can show Zi (o) <Z (o).

Then we have

1 (00 <Z1(0) <Z1 (o), (2.3.13)
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and thus
Z1(@)=1-cpoB3-cy0+0 () (2.3.14)

where c;= 2a16/3)""/ " (1/3)* and 0.4< c3< 1.

We can generalize the above particular type of injection to
general positive and negative random injection case. Since we know
from the previous results that, to leading order, the asymptotic
behavior of Eq.(2.3.5) is identical to that of Ji+x(x )V :{x) in the limit

x =, so that for|o|<,

- J 1+x(X)
Zy (o) = J1eslr)
tle)= =5 , (2.3.15)

where x =1/{-2i <I >0+ <I*>¢?}. Then, instead of Eq.(2.3.14), Z 1(p) in

the vicinity of ¢=0 is finally given by

Zi(0)=1-c;<I >Pi o3 for <I>20  (5316a)

) 1/3 __
Z1 (@ =1-c;<I?> "2 oRB . for <I>=0 (2.3.16b)

where ¢; is the same constant value as in Eq.(2.3.14). (The same
leading order for Z i(9) can be obtained in the continuum limit of
Eq.(2.3.3).)

Since the characteristic function is the Fourier transform of the

probability density p(m), we obtain the charge distribution by

inversion. In the case of <[>>0 (or <[><(), we have
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Fig.2.5 The steady-state cumulative charge distribution in

one dimension in the case of </>#0. The straight
line shows the theoretical slope -1/3. (The slope of
cumulative distribution is the slope of the original
distribution, p(m), increased by +1.)

pm)=m™B  for m>><I> (or m <<<I>) (2.3.17a)

while in the case of </>=0, we have

172
pm)m>3  for m>> <I?*> . (2.3.17b)

The solution Eq.(2.3.17a) shows a one-sided power-law with the
same exponent as for the constant injection. Eq.(2.3.17b) gives a

symmetric power law. In Fig.2.5 and Fig.2.6, we show the results of
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numerical simulations for the cases </>>0 and </>=0 which support

our exact solutions.
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Fig.2.6  The steady-state cumulative charge distribution
in one-dimension in the case of </ >=0. The
straight line shows the theoretical slope -2/3.

- 2.3.2  Solution for one-dimension with pair-creation
injection
Next we consider the pair-creation injection case. At the steady
state we have the following set of linear equations for Z,(p), r =1, 2, 3,

... , with the boundary condition Eq.(2.7):

Z,al)+[2-40 (0212, (0)+Z,1(0) =0 (2.3.18)
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As we repeat the same process that we did for random injection, we
divide both sides of Eq.(2.3.18) by Z,(9). Then we get a recurrence
relation for Z,(9)/Z,.1(0),

Zr(Q) — 1
Z,ale) 40 (0%-2-Z,4100)Z,r(0) (2.3.19)

It is easy to show that Z (g) is given by the following continued

fraction:
Zy(9) = 3 1
40 (g)%-2- 1
40 (9)°-2 - .
40 ()" -2 ---- | (2.3.20)
Eq.(2.3.20) can be transformed to
Zi (o) = 51!
40 ()" -2-Z1 (0 | (2.3.21)

which is a quadratic equation for Z (p). Solving Eq.(2.3.21), we get
1/2
Zi(@)=1-2<% Tol+- | (2.3.22)

The corresponding charge distribution is

1/2
pm)e<m? for m>> <I?> ) (2.3.23)
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Fig.2.7  The steady-state charge distribution in one-
dimension in the case of pair-creation injection.
The straight line shows the theoretical slope, -1.

This probability density is symmetric and the exponent is the same
as that of a Lorentzian. In Fig.2.7, we show the numerical result for
pair-creation injection. Comparing the result with the mean-field
case which we solve in the following section, we will find that the
exponent in Eq.(2.3.23) is the same as the one for the mean-field
case. This is not against intuition, since from Egs.(2.3.19) and (2.3.21)
it can be shown that the basic equation Eq.(2.3.18) satisfies a mean-

field-like relation; Z 2(0)=Z 1(o)>.
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2.3.3  Solution for one-dimension with fractal injection
The equation which describes the steady state for fractal input is

(from Eq.(2.1.10)) [A. Provata, M. Takayasu, and H. Takayasu (1992)]:

Zr 1@+ {2-2 V2, () + Z.1(0) = 0 (2.3.24)

with the boundary condition @ (o) =<exp {io0}> =1. The quantity
Z1(0)/Zy (¢) must be finite for all values of ¢, including 0=0. In the
continuum limit, Eq. (2.3.24) can be written as
3%z, (0)

2

—L == _2¢r|olfZ, (o) = 0

or , (2.3.25)

where we have used the expansion given by Eq.(2.1.12) for @ (o). To
obtain the solution of Eq.(2.3.25) with the specified boundary
condition we do the following two transformations:

g =rofl+2 (2.3.26a)

Wr(o) =122 (o) (2.3.26b)

Under the transformations Egs.(2.3.26a,b), Eq.(2.3.25) is transformed

into

W (), W)

- d/+2W =0
202 5 +(2-cq¥t)W (g)

q
; (2.3.27)
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with the boundary condition W (0) =~ from Eq.(2.3.26b). Note that
with this new definition of variables, W (q) depends explicitly only
on g, and not on @ and r . The solution of Eq.(2.3.27) can be given in
terms of the modified Bessel Functions [G. N. Watson(1944), M.

Abramowitz and I. Stegun (1965)]. The appropriate solution (the one

which satisfies the boundary condition given above) is

W (q) = ¢732K jiar42)(q) (2.3.28)

For small values of g (i.e. small values of ), Eq.(2.3.28) is
approximated by

Wig)=q%(1-q), g<<1 (2.3.29)

The r -body characteristic function in the same limit takes the form

Zr(@)=1-crloP/@+? | o<<1 (2.3.30)

The validity of Eq.(2.3.30) as a solution of Eq.(2.3.25) can be verified
by directly inserting Eq.(2.3.30) into the left-hand side of Eq.(2.3.25)
and showing that the right hand side is of higher order of o.

To confirm further our analytical estimation of Eq.(2.3.25), we
also solved directly Eq.(2.3.24), numerically. In Fig.2.8 we plot the
values of {1-Z,(0)} as a function of ¢ for parameter values B=1.9
and dr=0.1. On a double logarithmic scale the points fall nicely on a
straight line with a slope of 0.91%£0.01. This result agrees with the

theoretical result S /(dr+2)=0.905. For parameter values $=0.5 and
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dr=0.1, the numerical solution gave an exponent 0.2330.01 whereas
the analytical solution gives B/(d;+2)=0.24. For parameter values
$=0.1 and dr=0.5, the numerical solution gave an exponent
0.032+0.005 whereas the analytical solution gives f/{ds+2)=0.036.
In any case the result of the numerical solution approaches the
analytic solution for smaller and smaller values of ¢ ( ¢ — 0). Other

cases were also checked and the analytical results agree always with

the numerical solution.

0.1 : I 3
c I i
N - 4
) | ]
0.01 - E
0.001 1 !
104 0.001 0.01

Fig.2.8 Numerical solution of Eq.(2.3.24) with parameter
values B=1.9 and dr =0.5. In a double logarithmic
scale the value of (1- Zi(p)) as a function of @ fall
on a straight line which has slope 0.91 +0.01.
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By taking Fourier inverse of Z1(0) we find the form of the charge

probability distribution

p (m) <im [1BIE+2)  for m>>1 (2.3.31)

This is a general result for the steady state distribution for one-
dimensional aggregation with both weighted (power-law) and fractal
input.

In particular, when the input takes place over all space (for the 1-
dimensional case df=1), the result for the charge probability

distribution function is

p(m)=<m[*BB  for m>>1, 0<B<l (2.3.32)

The case of f=1 gives the case for random positive and negative
injection with </>>0 and the case of 3=2 gives the case for random
positive and negative injection with </>=0 both of which have been

rigorously solved in Eq.(2.3.17a,b).

2.3.4 Solutions for the mean-field case

For the mean-field case, the time-independent solution of

Eq.(2.1.15) satisfies,

Zy (o) = @ (o) e21l)-1 (2.3.33)
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In the vicinity of ¢ = 0 we can expand Zj(g) around 1. Neglecting

the higher-order terms of ¢, we get the following solutions,

Zi(@)=1- V2 <1 >3 '1/2|Q|1/2 + o for <I>#0 (2.3.34a)
5 172

Zi(@)=1-<I"> |o|+--- for <I>=0 , (2.3.34b)

Z1(g)=1- const -\o[B2+... for fractal injection (2.3.34c)

The corresponding steady-state charge distribution in the case of

<I[>>0 (or <[><0) becomes

pm)<m32  for m>>Iy ,

(2.3.35a)
and in the case of </>=0,
plm)y=m? for m>><I®, (2.3.35b)
and in the case of fractal injection,
pm)=m [1F2  for m>>1. (2.3.35¢)

Again, we have a one-sided power law in the case of </[>#0, and a

symmetric one in the case of </>=0.



2. Scheidegger's river model 2-30

2.4 Intuitive prospects and other approaches

2.4.1 Geometrical approach

w

Fig.2.9 An example of the space-
time trajectory of a particle. The width
and height are given by w and 4,
respectively.

The results can be
understood intuitively by
contemplating the random
walk process. As it was
mentioned in Section 2.1, in
one-dimensional case the
charge of a particle is equal to
the sum of the charges of the
particles injected over the
corresponding river basin. It is
obvious from the evolution
rule that the basin's left and
right boundaries are formed
by simple random walks (see

Fig.2.9)

Therefore, the area of the basin is roughly given by S=hw, where &

and w denote the basin's height and width. Since the boundaries of

the basin are random walks, w is proportional to A

1/2 and the

distribution of the height & is identical to the distribution of a

Brownian particle's recurrence time [W. Feller (1966)],
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p )y <h3?% (2.4.1)

Hence, the distribution function for the area of the basin,

S=hw <h3? is given by

p(S)=p ) g4
as (2.4.2)

By definition, the charge of a particle having a basin of size S is
given by the sum of § independent random variables {/;}. In the
case of </># 0 the charge m is obviously proportional to S, hence we
have p (m) < m %3, When the average value of I is zero, m becomes
proportional to the variance (</%>S )1/2. Substituting the relation
m =S into Eq.(2.4.2) we get p (m) <m -5/3 In the case of pair-
creation injection, a pair-creation in the area does not contribute to
the charge m, because positive and negative charges cancel. The
contribution to m comes only from the boundaries, namely, m is
given by the sum of 2k random variables [;. The mean value of /; is
automatically zero, so that, m is proportional to (2r)'/2. Substituting
this relation into Eq.(2.4.1), we obtain the charge distribution
p (m) <m 2 These intuitive results agree perfectly with the
analytic results of Egs.(2.3.17a), (2.3.17b) and (2.3.23).

In the case of the fractal input, we are adding particles with mass
following a power-law only on the subspace of dimension ds. In such
a case, the number of sites in the same river will be proportional to

S <h-w 9 . Though the boundaries of the basin are the ordinary
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random walks we have the relation w“hl/z. So the number of

injected particles {/; } that drain into the basin is

S <«<hwé=h 1+df/2_ (2.4.3)

Since the distribution of # follows a power-law (equivalent to the

distribution of recurrence time of two random walks), as we have

shown in Eq.(2.4.2), we have

p§)=p®H) % o« § "1-1/ldr+2)
as

(2.4.4)
The characteristic function for m is then given as
Zr(o)= E p )2 () = § s WU Rexp (- S| ofS)
s=1 s=1 2
=exp (- s2:_|9|/3/<df+2)) | .45

Here we have approximated the summation over § by an integral

JdS. In the neighborhood of o©0=0, Eq.(2.4.5) shows the same
0

singularity as in Eq.(2.3.30), namely |0|?/“*2) which means that the

distribution of m has a power-law tail, Eq.(2.3.31), namely
m -1- B1(dr+2)
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2.4.2 Branching process and phase transition

The time reversed process (the process that the time to flow
backward) of Scheidegger's river model can be regarded as a
branching process. Let us recollect the space-time trajectory given in
Fig 2.3. Every site can be regarded as having its origin (or ancestor)
at the time zero layer, which is located at the top of the figure.
Reversing the time, we can say that a branching process starting
from a bottom site has on average one offspring in order to conserve
the number of sites at every reversed time step . To be precise, a
branch has two offsprings with probability 1/4, one offspring with
probability 1/2, and non with probability 1/4 in one reversed time

step.

Fig.2.10  An example of a branching tree.

Now, let us consider a general simple branching process as shown
in Fig.2.10. A branch has two offsprings with probability p and no

offspring with probability 1-p. For the particular branch shown in
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Fig.2.10, the probability of existence becomes Pé(l'P)7. In the
general case of the probability of existing a branch of size s ; N (s), it
is difficult to count probabilities for all possible shapes. But
fortunately, we do not need to fulfill such a troublesome task since

we know that N (s) satisfies the following relation:

NG+)=p i NGI)N -5
s'=1 . (246)

Here we sum up the probabilities that two offsprings separated from
a same site at a time step become matured branches of size s and

size s-s' after a sufficiently long time. By using generating function;

W)=Y x5Wi(s)
s=10 , (2.4.7)

we obtain from Eq.(2.4.6) the following result:

N (s) o s 32 as, q=log 4p (1-p). (2.4.8)

As we can see, for p <1/2 the exponential factor in Eq.(2.4.8)
becomes dominant, so that N (s) shows an exponential decay and all
branches die out in a finite time steps. For p =1/2, the constant
- value a become zero and N (s) follows a power-law with an exponent
equal to -3/2. For p >1/2, the exponential factor dominates again
and N (s) shows an exponential decay but in this case there exists a

finite value of N (). This picture can be interpreted in terms of the
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second order phase transition like in the percolation problem. In
such a view, N (=) is an order parameter and p 1is a control
parameter and at the threshold, p.= 1/2, a power-law distribution
is observed.

Let us now discuss the critical point in some detail. The mean
number of offsprings is 2p because a branch has two offsprings with
probability p and it dies out with probability 1-p. If p is smaller
than 1/2 the mean number of offsprings become smaller than 1 so
that the number of branches decays exponentially and all of them
die out in a finite time. In the opposite case that p is larger than 1/2
the mean number of offsprings become larger than 1 and the
number of branches grows exponentially. From this point of view,
p =1/21is the only case when the number of branches is constant,
namely, the critical point is the case when the mean number of
offsprings in a time step becomes 1. This corresponds to the case of
Scheidegger's river model which has one offspring on average in a
reversed time step. And the critical exponent, -3/2, is equal to the
exponent of size distribution for mean-field case with non zero mean
injection. This correspondence is due to the fact that in the model of
the branching process we did not take into account the interaction of
neighboring branches, in other words, we neglected the lattice
structure effects.

Thus, we can regard the state of Scheidegger's river model being
at a critical condition, and the stochastic process of model itself
realizes a criticality. Namely, Scheidegger's river model is a self-

organizing model that realizes a critical point without any tuning.
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2.4.3 View from stable distributions
Starting from the beginning
of this chapter we were once

and again focusing on the

properties of "the sum of a

random number of random

variables; m = 9, I (f, H". From
g, t>

the mathematical point of view,

for "the sum of a fixed number

of random variables" the

central limit theorem can be
t applied and we have a Gaussian
distribution if "the fixed

number” is sufficiently large.
Fig.2.11  The ridges of river
basins for two sections which
congist of 71 and 72 numbers of
successive sites.

However, when the number of variables is not fixed but follows a
power law distribution, as in Egs.(2.4.2) and (2.4.4), the central limit
theorem does not hold. Instead, the sum converges to a power-law
distribution [Egs.(2.3.17ab), (2.3.23), (2.3.31) and (2.3.35ab) belong
to so called stable distributions (see Appendix (3))].

Let us consider two sections(sectionl and section2) consisting of
r 1 and r , numbers of successive particles at time step ¢. Fig.2.11
shows the ridges of river basins which flow into sectionl and

section2 at time step f. For convenience, let us call the areas of the
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river basins which contribute to form the total charge of sectionl and
section2 as areal and area2 respectively. All injection falling into the
areal and area2, partitioned by the ridges, flow into sectionl and
section2 at time step ¢. Let the total charge of r successive sites be
m,. If we assume that m, is a variable following a stable
distribution, we have the relation;
Mr+r, £ mr, + M, , (2.4.9)
where £ denotes that variables on both sides obey the same
distribution function. Also, the distributions for the charge of r-body
and 1-body are easily shown to satisfy the following relations by

using the same arguments of random walk trajectories as we

discussed in section 2.4.1.

m,ir3m, Jor <I># 0random injection (2.4.10a)
d 3,172 B L

mr=(r3) " "m;, for <I>=0random injection (2.4.10b)
d n1/2 . . ., .

m,=(r?) "my, for pair-creation injection (2.4.10c)

m,Lr2*m, | for fractal injection (2.4.10d)

From the properties of stable distribution, we know that a variable,
m, satisfying both Eqs.(2.4.9) and (2.4.10a) follows a stable
distribution with a characteristic exponent equal to 1/3. In that

sense we know that the cumulative charge distribution for </>=#0
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random injection has a power-law tail with an exponent equal to
-1/3 for large m. In a similar way, we can uniquely determine the
charge distribution' for each of the cases; a both-sided stable
distribution with the characteristic exponent equal to 2/3 for the
random injection case with </>=0, a both-sided stable distribution
with the characteristic exponent equal to 1 for the pair-creation
injection case, and a one-sided stable distribution with the
characteristic exponent equal to 1/(df+2) for the fractal injection

case. (see Fig.A2 in Appendix(3)).
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2.5 Uniqueness and Stability

In the preceding section we have seen that there exists a
statistically invariant steady-state which is realized by injection.
Here we show that the steady-state is uniquely determined for a
given type of injection, independent of the initial conditions [H.
Takayasu, A. Provata, M. Takayasu (1990)]. Let us introduce a
perturbation Z,(0,t) around the steady-state Z(0):

Z(o.t)=2,(0) +Z, (0,t) 2.5.1)

Due to the linearity of Egs.(2.1.5), (2.1.9), (2.1.10) the equation for

the perturbation Z,(g¢,t) in the one-dimensional case is given by

Er , 1 =1 # ~r+ ’ 2~r ’ ~r- ’
(0.1+1) = - D (" [Zr 1o 1) + 2Z; (0. 1) + Zr 1, )] . (25.2)

where pu=r is for random positive and negative injection, u=2 is for
pair-creation injection, and p=cr¥ is for fractal injection. The
boundary conditions are 20 (0,t)=0 and 2, (0,¢)=0.

Taking the absolute value of both sides of Eq.(2.5.2) and replacing
the right hand side by the maximum of {Er'(p,t)l; r'=r-1,0,r+1},

we obtain the following relation :

IZ, (o, t)l = |<I>(Q)P1-max { IZ, (o, t -1)| ; r'=r-1,0,r+1} (2.5.3)
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Iterating [Eq.(2.5.3) ¢ times and using the inequality |®(0)| <1, which

is valid for any characteristic function, we get for r #0

Er (o, t)ls @ (0)¢|" -max { Er-(Q,O) s r'=1,2,.-.} (2.5.4)
Therefore, for any ¢ which satisfies |<15(Q)|<1 the perturbation goes to
zero exponentially with time. This is true for any initial condition and
it means that the steady state is unique and stable. The stability for
the case |<15 (Q)l =1 is not trivial, but as we show in Appendix (4), even
in this case the system relaxes to a unique steady state for any
initial perturbation.

In the mean-field case the equation for the perturbation is

derived by subtracting Eq.(2.3.33) from Eq.(2.1.15), namely:

o~ _P0) [ 20+ Zit0. 1) o 21 (0)
Zl(g,t+l)——e—[e‘ re-tl-e 9], (2.5.5)

Taking the absolute values on both sides of Eq.(2.5.3) and using the

general inequality
e*-eX|selx-y| for K, I (2.5.6)
we find that

\21(9, t )| <lo @) - 151(0 , O)I ) (2.5.7)
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Again, for |¢(Q)‘<1 it is trivial that the perturbation vanishes as
t— e, so that the steady-state solution Zi(¢) is unique and stable.
Discussion in Appendix (4) is also applicable to this case, therefore

uniqueness and stability hold for any type of injection.
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2.6 Relaxation

In the preceding section, we have seen that the steady state,
realized by injection, is unique and stable. In the current section we
shall analyze the relaxation to the steady state [H. Takayasu, A.
Provata, and M. Takayasu (1990)].

2.6.1 Relaxation in one-dimension with positive and
negative random injection
In the continuum space and time limit (for small @), the evolution
equation for the perturbation in the case of independent random
injection in one-dimension (Eq.(2.5.2) with p=r), takes the form of

the following partial-differential equation:

aZr (Qr t ) = azzr (Qr t)

D —err(g,t), 0—0
ot ar . 2.6.1)

Here D = 1/(4At), and R=(i<I>+<I?% 0?/2)]At where At denotes
the time step. By performing Fourier transformation with respect to ¢
(and using the boundary conditions Zolg,t) =0 and Z(g,2) =0),

Eq.(2.6.1) can be solved in terms of Airy functions, 4; (x ), as:

(e )

Z (o.t)= 3 e™E (r)
k=1 , (2.6.2

where

1/3
Mc=lay (2DR?)
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and
E «(r) = A (R/2D )+ a))

and 4, denotes the k-th zero of Airy function, @1=-2.33--:, @=-4.08-,

etc.. Since A; is the smallest of {A;}, we have the following time

dependence for ¢ — ° in the case of </>#0:

Zi(o,t) =f1(0)exp {- bi<l >*exp (-xif3) 0?3 )} , (2.6.3)

where b1 =la,2°23/At, and f1( @) is independent of ¢. In this type of
process the relaxation is faster for larger values of ¢ and slower for
smaller values of ¢. The relaxation form of the corresponding mass
distribution function can be obtained by performing reverse Fourier
transformation of Eq.(2.6.3). Analytical expression of the reverse
Fourier transformation can be obtained by applying the theory of
stable distributions. [Note that the time-dependent factor on the
right-hand side of Eq.(2.6.3) has the same form as the characteristic
function of the stable distribution, p (x, 2/3, -2/3 ) (see the notation
in Appendix (4))]. The time evolution of the perturbation is

described by the following form:

ﬁ(m,t)zfdm 'p(m-m',0)g (m' t)
, (2.6.4)

Here the Green function g (m,t) is given by

g(m, t) =L e16/@uiy, o 1/6{_12_)
X 27x%1 (2.6.5)
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where x =biI>/m[’3t and Wu,v is the Whittaker function. The

asymptotic behavior of Eq.(2.6.5) is estimated as

byl e 3 )

g(m,t)«exp( >
m

(2.6.6)

This decay is faster than Gaussian and its characteristic time is
proportional to m2/3kIsP/3,

In the case of </ >=0, Eq.(2.6.3) for ¢— 0 is replaced by

~ 2/3
Zi(o,t) =f2(0)exp {- ba<I®>" 0% B}, t o = 2.6.7)

b

where b2=|a2|2‘4/3/At, and f2( o) is independent of ¢. The Fourier
inversion of Eq.(2.6.7) has the form of Eq.(2.6.4) where the Green
function is given by a symmetric stable distribution with the
characteristic exponent 4/3. For large |m|the asymptotic behavior is

estimated as

-1/2 -2/3
glm,t) = <[?> 3 for t>>m 43<1%> ) (2.6.8)

This power-law decay is slow enough to be confirmed numerically
as shown in Fig.2.12. The points scatter at large ¢ but they are in
good agreement with the theoretical slope.

The reason for these two different types of decay, Eq.(2.6.6) and
Eq.(2.6.8), will be discussed at the end of this section.
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Fig.2.12  The relaxation function in the case of <[>=0
plotted on a log-log scale. The straight line
shows the theoretical slope, -3/4.

2.6.2 Relaxation in one-dimension with pair-creation
injection
In the case of pair-creation injection, the perturbation equation
in the continuum limit is derived from Eq.(2.1.9) in the vicinity of

o— 0:

~ 2
oZ, (o, ¢ 3Z, (o, ¢t =
at 4At ar (269)

b
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where b3=<I?>/At | The solution of Eq.(2.6.9) is given by

~ _ 2 ~
Z,(0,1) =% b3 Q1t2)fdr‘z"(g’0)
(mt [AL) /

I

X 1exp

] (r-r')z) e ( (r+r')2)}
t /At t /At . (2.6.10)

Reverse Fourier transformation of Eq.(2.6.10) can be put into the
form of Eq.(2.6.4), and the corresponding Green function is shown to
have the following long-time behavior

12 4

1
gm,t)ec<I®> 't

for t>>m 2<% ] (2.6.11)

In this case, we again have a power-law decay but with a different
exponent than in the case of random positive and negative injection

with </ >=0.

2.6.3 Relaxation in one-dimension with fractal injection
In the case of fractal injection [A. Provata, M. Takayasu, and H.
Takayasu (1992)] , the perturbation equation in the continuum limit

is written as

8z, (0.t) _ o 3Zr (o)

D - 2xrdf|9|/32,(g,t)
o or , (2.6.12)




2. Scheidegger's river model 2-47

where x is a constant and, again, the expansion Eq.(2.1.12) was used
for @ (o), and D = (Ax)%/(44t) is a constant. This is the well-known
problem of the time-dependent Schrddinger's equation for a particle
moving in a potential of the form V (r)=r%, By separation of
variables, Z,(0.t)=Z,(0)T(t), the time-dependent part of
Eq.(2.6.12) can be shown to satisfy

s

T(t) e AN (2.6.13a)
and the time-independent part satisfies

D - {20r%| 0P - A@)}Z (o) = 0

62Er (0)
2
ar , (2.6.13b)
where A(p) can only be a function of o.
With the change of variables as in Eq.(2.3.26a), Eq.(2.3.26b) reads

. 5
T2a)  (24)0p- Alp)o 2 14r+21Z (0,q) = 0

dq } (2.6.14)

Note that the above equation can be interpreted as the time-
independent Schrodinger problem for a particle which moves in a
potential V (g) < 2x|ofg?% and has energy E (o) = A(g)o 28 /(ds+2).
Using such quantum mechanical picture of particle's motion, we can

obtain [A. Provata, M. Takayasu, and H. Takayasu (1992)];

21(9, t) =< exp {- const |oPB/@+dt} o <<1 ) (2.6.15)
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Finally to find the behavior of the perturbation of the charge
probability distribution with time, we just need to perform Fourier
reverse transformation of Eq.(2.6.15),

glm,t) ot G¥DR6 - p55y, (2.6.16)

So in the case of power-lvaw and fractal input, as expected,
perturbations of the power-law steady state decay following a
power-law in time, with an exponent that depends both on the
power exponent of the input and on the fractal dimension of the
input subspace. In the special case of =2 and dr=1, which
corresponds to the case of positive and negative random injection
with <I>=0, the exponent 3/4 given by Eq.(2.6.16) agrees with the
result given by Eq.(2.6.8). Thus, we can confirm that Eq.(2.6.16) is a

natural extension of the previous results.

2.6.4 Relaxation in the mean-field case
In the mean-field case, the equation for small perturbations is

given by a linearized version of Eq.(2.5.5):

Zi(o,t+1) = ® (0)e 2e)1Z (g, 1) (2.6.17)

Substituting the steady-state solutions, Eqs.(2.3.34a), (2,3,34b) and
(2.3.34c), into Eq.(2.6.17), we have the following solutions for
small ¢:

In the case of </>=#0,
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Z1(0,t)=Z1(0,0) exp { - Y2 <I >3 12| o1/2 ¢ } . (2.6.18a)

In the case of </>=0,
- ~ -1/2
Zi(o.t) =Z1(0,0) exp £ -<I®" o[t}

In the case of fractal injection,

Zl(g,t) 521(9, 0) exp { - const o Blot} )

(2.6.18b)

(2.6.18¢)

Corresponding temporal behaviors of the distribution functions are

also given in the form of Eq.(2.6.4). The asymptotic behavior of the

corresponding Green functions in the continuum limit
as:

In the case of <[ >#0,

glm,t) <exp (-M), f — o
2m
In the case of <I>=0,
glm,t) = < , 15> m <12
In the case of fractal injection,
glm,t) =t B t>>m [BI2

are obtained

(2.6.19a)

(2.6.19b)

(2.6.19¢)
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We again have a fast decay (Gaussian decay) in the case of biased
injection and a slow decay in the case of zero-mean injection. For
fractal input, we have power-law long time decay with an exponent

depending on f.

2.6.5 Summary
The results are summarized in Table 2.1 together with the

corresponding steady-state distributions.

Table 2.1 Summary of the size distributions, p(m), and the
form of relaxation, g(m, t) for one-dimensional
case(1D) and the mean-field case(MF).

_p(m) glm,t)
1D, <I>#0 m 413 exp (-t3)
1D, <I>=0 m - 5/3 ¢34

-2 -1
. . m t
1D, pair crec'mon 1B dye2) - 22
1D, Fractal input 2
MF,<I>#0 m 312 exp (-t°)
) . -1
MF,<I>=0 m 2 t
MF, pair creation
MF, Fractal input m - 1-B12 ¢ 2R

The reason for the rapid decay in the biased injection cases,
<I>#0, can be understood intuitively as follows. Assume that we
have perturbed the steady-state distribution by introducing a sharp

peak in the charge distribution around my The number of particles
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of charge m, decreases by aggregation or by injection. Aggregation of
two particles with charges mgand m creates a particle of charge
mo+m . Consequently the aggregation process scatters the
distribution around mg continuously. On the other hand, injection
shifts the charge of the particle from my to my+/. In the case of
positive-mean injection, for example, the injection causes the peak of
the charge distribution to drift continuously towards larger m, and
aggregation also scatters Mg to larger values. Thus the relaxation
observed at a fixed charge 7 is very fast. On the other hand, in the
cases of </>=0 (including pair-creation injection) and symmetric
fractal input, the perturbation diffuses slowly around 7 due to the
injection and scatters nearly symmetrically by aggregation. The peak
of the perturbation does not move on average, and so the decay is

much slower than in the biased-injection case.
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2.7 Critical dimensions of the model

In Sections 2.1, 2.3 and 2.6 we have addressed the question of
critical dimension. It is an open problem to analyze our model in
dimensions greater than 1. Above the critical dimension, the mean-
field model gives the correct exponents for both the steady state and
for the relaxation. It should be noted that in the case of pair-creation,
the exponents for 1 dimension coincide with those for mean field.
This result seems to suggest that the critical dimension is 1 in the
case of pair-creation injection. On the other hand for random
injection (both for </>#0 and for <I>=0), the exponents for one-
dimension are different from the mean-field values, which indicates
that the critical dimension is greater than 1. The result from
simulations on a lattice with random positive injection shows that the
critical dimension for charge distribution is equal to 4. From the
analysis using the statistical properties of random walk trajectories,
we can show that the variance of charge depends on the spatial
dimension up to d < 2, for d 22 the variance becomes function of only
t and does not depends on spatial dimension. In such sense, we can
say that the critical dimension is 2. D. Dhar and R. Ramaswamy
(1989) show that the critical dimension is 2 for the relation between
charge m and its corresponding basin's height # shown in Eq.(2.4.3),
by relating the basic Scheidegger's model to self organized criticality
problems. It is, therefore, likely that the critical dimension is not
universal, but depends on the type of injection and on observed

values. S. P. Obukhov (1989) claimed that the critical dimension is
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not universal but depends on the order of the moment we are

observing.
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2.8 Discussion

In this chapter we analyzed the statistical properties of an
aggregation system, for one-dimensional and mean-field cases using
the equation for the many-body characteristic function. In the case
of no-injection, the particle number decays following a power law.
But there appears a non-trivial statistically-invariant steady state if
we supply particles at a constant rate. The most interesting point
here is that the system converges to a steady state even in the
absence of a sink or particle breakup. It is easy to confirm from
Egs.(2.1.5) and (2.1.15) that the variance of particle charge increases
linearly with time, namely, it diverges in the limit of ¢ — e, Usually
such divergence means that the system does not have a stationary
state, but in this case the charge distribution converges to a power-
law distribution in which the mean value and the variance diverge.
Thus, we call this quasi-steady state as "statistically steady state".

According to the theory of stable distributions, the divergence of
the variance is essential to power law distributions. The central limit
theorem, though, can be generalized to include independent random
variables with divergent variances. The limiting distribution of the
sum of such variables is, if exists, a non-Gaussian stable distribution
with a power-law tail as we mentioned in section 2.4.3. In our model,
the variance is divergent in the statistically steady state, and a
particle's charge is given by a sum of random aggregating variables,
I(j, t), of each time step. We can not directly apply the generalized
central-limit theorem because we know that there exists a weak

spatial correlation among the random variables. However, it seems
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likely that the charge distribution here belongs to the domain of
attraction of a non-Gaussian stable distribution and thus has a
power-law tail.

Our aggregation model does not have any control parameter and
automatically realizes a power-law distribution, typically a sign of
critical behavior. In order to see the criticality from the point of view
of a branching model one just needs to invert the time axis. As a
branching model the system can be described by the values of the
branching probability(see section 2.4.2). For high branching
probability the number of particles increases exponentially and for
low branching probability it decreases exponentially. There exists a
critical value of the branching probability at which the particle
number becomes constant on average. This model is equivalent to
the stochastic cellular automata analyzed by E. Domany and W. Kinzel
(1984), and it is known that phase transitions of this type are similar
to the one in directed percolation. In our aggregation model, the
number of particles is kept constant by injection, therefore, the
corresponding branching probability must be equal to the critical
value to keep the particle number constant.

As we show in Section 2.5, the steady-state power-law
distribution is very robust. It is uniquely determined by the type of
injection and is independent of specific details of injection or initial
conditions. The functional form of the relaxation to the steady state is
also determined by the type of injection.

The voter model [T. M. Liggett (1985), R. Durrett (1988)] is known
to be equivalent to Scheidegger's river model, though the process

proceeds reversely in time. Namely, the voter model is a time-
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reversed version of Scheidegger's river model. In the voter model
the sites of a one-dimensional lattice are occupied by persons who
are either in favor of or opposed to some issue. The voters are simple
minded, and change their opinions very easily by being spoken to by
their neighbors and speak frankly about their opinions to the
neighbors. This is equivalent to a particle system in which a particle
at a certain time changes its state to one of the neighboring particle's
state stochastically. After a long time, the particles having the same
state start forming clusters in one-dimensional lattice, and finally all
particles take the same state. Fig.2.13 shows a space-time pattern of
voter model which shows who is influenced by whom as time goes.
From this pattern, it is clear that the model is a time reversed
version of Scheidegger's model. The clustering process has been

analyzed mathematically [7. M. Liggert (1985), R. Durrest (1988)].

Time

v

Fig.2.13 A space-time configuration of voter model.
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The potential applicability of our model is expected to be very
wide since our model describes very basic process of non-
equilibrium systems. By regarding m (j, ¢) as the height differences
of a dislocation at site j in one-dimension [M. Karder, G. Parisi, and Y.-
C. Zhang (1986)], the aggregation process corresponds to a coalesce
of two dislocations in order to form a bigger dislocation, and the
injection corresponds to a process of creating a new dislocation or
bump (pair creation) on the surface. The steady state of this case can
be regarded as a situation of balancing smoothing and roughening
process of the surface.

Another potential field of application may be turbulence. It is
well known that one-dimensional turbulence governed by Burgers
equation is described by a set of shock waves which behave just like
sticky particles in low viscosity limit [J. M. Burger (1974)]. If we
regard the difference of velocities in two nearest sites as m (j, t), we
can observe the process of aggregating m (j,t) with momentum
conserved. When we apply external forces then the system
converges to a statistically steady state with power-law distribution.
The exponent is equal to the one in the case of one-dimensional
random injection, which is 1/3 in cumulative distribution [H.
Hayakawa, et.al. (1987)].

Other extended versions of our model are introduced in the next

chapter.



Chapter 3

Extended versions of the model
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3.1 Aggregation of exponentially growing particles

Let us consider the situation when the basic Scheidegger's model
which we introduced in the previous chapter has dissipation
proportional to mass(charge) at each time step in addition to the
uniform injection. In such a case the mass distribution holds the
same power-law as the case of nondissipated system and an
exponential decay is observed at large mass due to the dissipation.
For smaller dissipation the exponential decay becomes more gentle,
and for very small dissipation the distribution looks practically the
same as in the case of nondissipated system. What will happen to
the charge distribution when the system has an effect opposite to
dissipation? Namely, we consider a mass growing effect, i.e., the
particle grows proportional to its own mass at each time step. Does
a stationary state still exist? In this section, we discuss the fact that
a steady state exists even in such mass self-growing systems. Now,
let us introduce the details of the model in the case of one-
dimension [M. Takayasu (1992)].

We consider an aggregation process in one-dimensional
discretized space-time with a periodic boundary. In one time step
each particle jumps randomly either to the right or to the left
neighbor. If two particles happen to jump on to the same site
simultaneously, they immediately coalesce into a single particle
with mass equal to the sum of the masses of the incident particles.
Then we inject a unit mass particle onto each site. Up to this part of
operation, all processes are the same as in the basic Scheidegger's
model. But, in addition, at the end of each time step, we multiply

the total mass of each site by 1+ 4 (1>1).
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The space-time configuration of particles' trajectories is exactly
the same as in the basic Scheidegger's model (Fig.2.3) under the
same random evolutions since the space-time pattern depends only
on random walk process. But both the structure of the branches and

the mass self-growing process contribute to the mass of each

particle.
9
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Fig.3.1 Numerical results of the cumulative mass

distribution for different A's.

Fig.3.1 shows the cumulative mass distributions for four
different values of A obtained by numerical simulations using the
same random numbers, on 1000 sites for 4000 time steps. The
distribution has two characteristic ranges. In the small mass range
0<m<2'% the random aggregation process dominates over the

mass self-growing effect and a power-law distribution

p (om) “m‘l/"”which is the same distribution as in the random
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positive and negative injection case (see section 2.3.1), appears to
be independent of A. In the large mass range 2% m , the mass
self-growing effect rules over the system and the distributions
clearly depend on A. Note that the tail of this range is
extraordinarily long (about 10'® for 1=0.01), and exponential
decays caused by finite-size-effect are observed only at the very

end of the tails.
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Fig.3.2  Numerical results of the finite-time-step effect
observed in the cumulative mass distribution in

the case of A=0.01. The large dots are the theoretical
results for the steady state plotted as a comparison.

The dotted line in Fig.3.2 shows the numerical result for the
mass distribution with A =0.01. The data are obtained by taking
average over 10 realizations. It is clear that the functional form of
the distribution does not depend on the number of time steps. In

this figure, we have more manifest appearance of the large mass
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range. If we observe mass in relatively short scale then it may be
regarded as a part of a power-law. However, we can tell that the
tail does not fall on a straight line on the log-log plot, i.e., the tail
does not follow a rigorous power-law.

The theoretical explanation for this tail is given as follows. Let
us estimate the mass of a particle whose trajectory at time ¢ is
characterized by the height (or lifetime), # , and width of the river
basin, w (¢), as shown in Fig.2.9 (see section 2.4). The mass m of

the particle is given by

B

h
Z w L +A)=) w(t)etind+r)
=0 t=0 . (3.1.1)

When h>>1/A>>1, Eq.(3.1.1) can be approximated as

h
mze“z w (t)e *¢
=0 . (3.1.2)

As the summation can be proved to remain finite the mass is

estimated as

me et  h>>1/A (3.1.3)

This implies that the mass self-growing effect becomes prominent
for the particles having height 4 longer than 1/4 .

As for the particles satisfying h <<1/A, we can treat the system
simply as the case of the random aggregating particles with
injection in one-dimension, so that the discussion we made in

section 2.4 can be applied (see section 2.4). Let us give a little
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summary: In such a case, the mass is given by the summation of
w (¢), which equals to the area of the branches in the space-time in
Fig.2.9. The relation between m and & is known from the problems
of random walk. Thinking of the first encounter of the two random
walkers starting from the same point, the area sﬁrrounded by the
two trajectories in the space-time gives the area of the branches
because the edges of the branches can be regarded as random
walkers' trajectories. As the width, w (z), of the branches is nearly
proportional to & '’/?, the mass for a particle with & <1/4 is related

to A as

meh  h<l/a (3.1.4)

The inequality & <1/A corresponds to the small mass range in
Fig.3.2 and h >>1/A corresponds to the large mass range. Namely,
h =1/A gives the threshold of these two characteristic ranges.
Fig.3.3 shows the relation between m and # for numerical data
of A =0.01 simulated on 1000 sites with 4000 time steps. We can
confirm the validity of Eq.(3.1.3) for A >>1/A=100. The maximum
value of % in the figure is 4000 which is restricted by the maximum
number of time steps in the simulation. 10 realizations are plotted
on the figure, yet we have practically no fluctuations. For
h <1/4 =100, evidently the exponential relation between m and A
is broken, which is consistent with our previous discussions. By
plotting the same data in log-log scale, Eq.(3.1.4) has also been

confirmed for small 4.
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100

logm

0 5000

Fig.3.3  Mass m vs. height & in semilogarithmic scale for
one-dimensional case. The slope for large A fits

nicely on the theoretical estimation A/ln2 (A=0.01).

Let us consider the size distribution of k. This distribution is
equivalent to the distribution of two random walkers' first

encounter time and is known to be given as

p Gh)y<h 2 (3.1.5)

Note that the patterns of branching trees are not effected by the
exponential growth, therefore, % is independent of A. Eq.(3.1.5) is
confirmed numerically in Fig.3.4, which is obtained for the same

situation as Fig.3.3. It shows that Eq.(3.1.5) holds in the range
10 < 2 4000,
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log2P(>h)

logoh

Fig.3.4  The cumulative size distribution of h for one-
dimensional case. The slope is close to the
theoretical value -1/2.

The distribution of m is obtained as follows by assuming that 4
is uniquely determined for a given m by a monotonous function,

h (m ). Then we have the following relation:

pom)=p[>h(m)] (3.1.6)

From Egs.(3.1.3),(3.1.5) and (3.1.6), and Egs.(3.1.4),(3.1.5) and

(3.1.6), we get, respectively,

pom =i P nm)?,  h>>1/a, (3.1.7)

P (>m) < m '1/2, h<1/A. (3.1.8)
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Differentiating Eqgs.(3.1.7) and (3.1.8) with respect to m, we obtain

w 1 -3/2, 172
p (m) - (Inm)>'“27"", h>>1/A, (3.1.9)

p(m)e<m-43  h<1l/A. (3.1.10)

In the limit of m — =, Eq.(3.1.9) behaves as p (m) < 1/m , which is
often called a Zipf's law.

The large dots plotted in Fig.3.2 are the theoretical values
obtained from Eqs.(3.1.7) and (3.1.8) with an appropriate choice of
the proportional constants. It shows a good fit with numerical
results.

Now, we discuss the case of mean-field. Let us figure the system
with all sites connected to each other directly so that a particle on
an arbitrary site can jump to any site, even to itself, in one time
step. As in the case of one-dimension, merged particles and injected
unit particle falling on the same site are combined to form a new
particle with mass conserved at every time step. In the case
without the mass self-growing process, the mass distribution is
known to form a stable power-law,p (>m) < m “1/2 like in the case
of one-dimension but with a different exponent (see section 2.3.4).
Then, let us take into account the mass self-growing effect.
Eq.(3.1.3) holds again as we have seen in Fig.3.5. The numerical
results shown in Fig.3.5 are obtained for the same condition as in
Fig.3.3; system size=1000, maximum number of time steps=4000,

A =0.01, and ten realizations are plotted without taking an average.
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Fig.3.5 Mass m vs. height # in the semilogarithmic scale
for the mean-field case.
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Fig.3.6  The cumulative size distribution of & for the mean-field
case. The slope is -1 as is estimated theoretically.
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In the mean-field case we cannot apply the results from the
random walk problem but we can directly derive an equation for
p (>h) (see Fig.3.6). The followings are the processes contributing to
the probability of having a particle with a lifetime longer than #,
p (>h), at time step t. Consider a particle having a lifetime longer
than % -1 at stept-1. Both in the case when it aggregates with
particles having lifetimes smaller than h -1 and when it is not
involved in any aggregation, it produces a particle with lifetime
longer than 2 in the next time step. But if two or more particles
having the lifetime longer than 4 -1 at time¢ -1 combine together
to form a heavy particle at time ¢ , then the probability p (>A,t)

decreases. Therefore, the equation for the probability p (>h,t) is

given as
pGh )= pGh-1,1-1) - p(>h-1,¢-1)%, (3.1.11)

where higher-order terms are neglected. The stationary solution of

Eq.(3.1.11) is obtained by taking continuum limit with respect to A

as
pGh)<h (3.1.12)

From Eqgs.(3.1.3), (3.1.6) and (3.1.12), we obtain the probability

density as

o« L. -2
pm)e ~lnm)<a  h>>1/4, (3.1.13)

p (m ) «< m '3/2, h Sl/)-’ . (3.1.14)



3. Extended versions of the model 3-11

Again we have p (m) < 1/m in the limit of m — o,

Our results for one-dimension and for the mean-field case
indicate that the asymptotic behavior of the mass distribution
converging to 1/m may be universal in the exponentially growing
particle system. The mechanism of having such a universality can
be summarized as follows. Imagine an exponentially growing
variable X ; X «<exp (AY ), where the characterizing variable Y has a
probability distribution in the form of power-law, p (Y ) <Y ® In
the same way as we derive Eqgs.(3.1.9) and (3.1.13), the probability

density for X can be shown to be

X)« Lnx)y*a® L
piE) = o UnX) (3.1.15)

This simple mechanism can be proposed as a model for the
systems having long tails satisfying Zipf's law, X "1, in various fields
of science. Concerning the model introduced in this section,
diffusion and aggregation processes of particles are not so essential
to the universality of p (X )=X 1 but the exponential growth and
the power-law distribution of p (Y ) play an important role. From
the statistical point of view, it is a new result that even in the mass

growing-particle system there exists a statistically stationary state.
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3.2 Non-Gaussian distribution in random transport

dynamics

Non-Gaussian distributions are found to be important in the
study of fluid turbulence [G. K. Batcherlor (1953); A. S. Monin and
A. M. Yaglom (1975)]. They are found in the fluctuation of velocity
field by wusing the latest technique of direct observation of
turbulence [H. K. Park and W. I. Goldburg (1992)] and numerical
integration of Navier-Stokes equation [Z-S. She, E. Jackson and S. A.
Orszag (1988); S. Kida and Y. Murakami (1989)]. In these results the
distribution of velocity difference, 8v(r) = v(x) - v(x+r), shows tails
which are much longer than those of Gaussian but still much
shorter than power-laws. Scalar quantities in turbulence such as
temperature are also known to follow neither Gaussian nor power-
laws [E. D. Sinai and V. Yakhot (1989); A. Pumir, B. Shraiman, and E.
D. Siggia (1989)]. In the followings we introduce a random transport
dynamics which is a stochastic model realizing non-Gaussian
distributions. We will see the steady-state distribution of the model
for extreme limits comparing with Scheidegger's river model.

Recently, H. Takayasu and Y-h. Taguchi (1993) introduced a
random transport dynamics model in which a finite portion of a
scalar quantity on a site is transported to its neighbor and the rest
of the portion remains on the same site in a time step. Namely, we
can view this model in terms of particles as a breaking up process.
In such model they found both numerically and theoretically that
the fluctuation of a scalar quantity("charge" or "mass" in
Scheidegger's river model) is generally not Gaussian, and the tail of
its distribution is between Gaussian and a power-law. Gaussian and

power-law distributions appear only in extreme situations.
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Let us define the model more precisely for a one-dimensional
system. Consider the situation that the charge, m(j,¢), is distributed
on a one-dimensional lattice. A portion of m(j,¢) is transported
randomly to the neighboring sites at a time step as described by

the following stochastic equation:

m@, t+1)=m(j, t)-8 G, t )m(, t)+), Wix(t)8 (k, t)m(k, t)
k , (3.2.1)

where 6 (j, ¢) is a random number in the range 0<6 (j, £ )<1, W, (¢)
is also a random number which takes either 1 or 0, and £ denotes
the location of neighboring sites. W;x{z)=1 means that there exists
transport from k toj at time step ¢£. In order to conserve the total
quantity, =2,m(,t), we require that W;x(¢) equals to 1 with
only one j for each k, namely, in a time step a site can distribute a
portion of its charge to only one of the nearest neighbors. Here, we
allow the possibility of W;;(¢)=1, which means no transport.
Comparing Eq.(3.2.1) and Eq.(2.2.1), we notice that in the case
that 6 (,t)=1 Eq.(3.2.1) become the same as Eq.(2.1.1) in
Scheidegger's river model with I (j, #)=0, no injection case, in which
all particle coalesce to form a particle in the limit of ¢ =< . But in
the later part of this section, we will find an interesting fact that
the steady state distribution in the limit of 6 (j, t)—1. follows a
power-law which is absolutely different from the case of 6 (j, ¢)=1.
In the limit 6 (/, )0, the model can be represented by the
formalism of a motion of continuum in a random velocity field,

v{j, t), where v(j, t) is expressed as follows:

- =00, )
by o) Y (3.2.2a)
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LmG, )+ 2w, m, ) =0
ot 9 (3.2.2b)

where the direction of v(j, ¢) is determined by W;(¢) and its
magnitude, A¢ , is the time step. Then Eq.(3.2.1) can be viewed as a
discretized version of the following equation for passive scalar

diffusion in a random velocity field v{j, ¢),

im(j, t)+ vy, t)m(,t)) =0
o , (3.2.3)

As is well-known Eq.(3.2.3) becomes an ordinary diffusion equation
if the autocorrelation of v(j, t) or W;i(¢) vanishes quickly.

Considering the above two extreme limits, Eq.(3.2.1) generally
represents both diffusion and aggregation effects for 0<6 (j, ¢ )<1 . In
the following analysis, to avoid unessential complexity, we assume
that all 0 (j, t) take a constant value 6 (0<6@<l1), and observe how
the system changes for different values of 6.

We start our study with a mean-field version of Eq.(3.2.1) to
estimate theoretically the effect of the finite portion transports. We
consider the situation that a site is interacting with a mean-field
site and transports to or from the mean-field site occur with
probability 1/2, independently. In such case the stochastic
Eq.(3.2.1) becomes

m(t +At)=m(¢t)  with probability 1/4,
m(t +At)=(1-6 )m(¢t)  with probability 1/4,
m(t +At)=m (t )+ 0m ypr with probability 1/4,

m(t +At)=(1-0 )m(t )+6my  with probability 1/4, (3.2.4)
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where Mmpyr is the value at the mean-field site which is defined as
an independent random number having the same distribution as

m(¢t). By introducing the characteristic function

Z(Q,I)Ef e "p(m,t) dm

[>=]

2
=l+ig<m > - & cm2>+...
21 , (3.2.5)

where p(m,t) is the probability density for m at time ¢, Eq.(3.2.4)

becomes

; _L Z (-
(0.t +At) 4{2 (0, t)+Z(o-6p,t )){1 +Z (6o, t )} ’ (3.2.6)

Substituting Eq.(3.2.5) into Eq.(3.2.6), a set of equations for the
moment functions <m™ are obtained, and it can be easily shown
that a non-trivial steady state exists when <m>#0,ie. Q@ #0. In the
case <m >=0 we will see later that the only steady state solution is
p(m)=35(m), that is, no fluctuation remains.

The steady state solution for <m >#0 is shown in Fig.3.7. It shows
the cumulants for orders up to 7 together with those for one-sided
exponential distribution for comparison. Higher order cumulants
are not zero in all cases and showing a tendency to diverge as the
order goes to infinity, which clearly demonstrates that the steady
state distribution is not Gaussian for which cumulants are zero for
orders greater than or equal to 3.

For smaller m the cumulants are smaller, and in the limit of

6 >0 it can be shown theoretically that the normalized cumulant of

order n, <m”>./<m 2>'é/ %, vanishes for n> 3. Namely, the distribution
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converges to a Gaussian in this limit, which agrees with the well-
known fact that the distribution function satisfying the usual
diffusion equation in the continuum limit is a Gaussian. This result
indicates that the finiteness of 6 is very important for the

appearance of non-Gaussian in our random transport dynamics.
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Fig.3.7 Higher order cumulants <7">c are plotted by

crosses for the mean-field model; 8=0.1, 0.7 and 0.9
from bottom to top. The exponential distribution is
plotted by squares for comparison[H. Takayasu and
Y-h. Taguchi (1993)].

In the special case of 6=1/2, theoretical estimation for the

asymptotic behaviors of the steady-state characteristic function,

Z (o), is given as

Z (g) <023 (3.2.7)
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in the vicinity of ¢ »° . This power law decay is very different from
the case of a Gaussian distribution where the characteristic function
decays faster than any power of o©. In the case of exponential
distribution the characteristic function is given by 1/(1+i o)
(asymmetric case) or 1/(1+ 0% (symmetric case), which also shows
a power-law decay aso—°. In this sense the distribution is far
from Gaussian, but is similar (but not identical) to the exponential

distribution.
P(>m)
10 ———
1
0.1t
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0.001 }

GO =35~ 15 2 25 3 35

Fig.3.8 Semi-log plot of the steady state cumulative

distribution, P (>m) =J P (m') dm', in one-
m

dimension with <m>>0. The values 6 are 0.3
(thin line), 0.5 (bold line), and 0.9 (dotted line).
Averages are taken over 10 realization

[H. Takayasu and Y-h. Taguchi (1993)].

Fig.3.8 shows the results of numerical simulations on one-
dimensional lattice. The steady-state cumulative distributions for
6=0.1, 0.5 and 0.9 are shown in semi-log scale. The steady-state is

expected to be independent of the initial condition. For 6=0.1 the
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tail of the distribution decays quickly like a Gaussian, and for larger

0 the tail becomes larger as estimated by the mean-field analysis.

P(>m)

l‘.
0.1
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0.001;
000 i 6T 6T 1 10 100
m

Fig.3.9 Log-log plot of the steady state cumulative distribution

in one-dimension with <m >> (0. The values 0 are 0.9
(thin line), 0.99 (bold line), and 0.999 (dotted line). The
slope of the straight line is -1/3 {H. Takayasu and

Y-h. Taguchi (1993)].

To see the asymptotic behavior in 6§ -1 we plot the cases of
=09, 0.99 and 0.999 in log-log scale in Fig.3.9. The steady-state
distribution gradually approaches a power-law P (>m) <m-1/3,
which is the same as the exact solution of one-dimensional
Scheidegger's river model in the presence of positive injection (see
section 2.3). In our simulation we have no injection, however, in
the case @ is close to but not equal to 1, the small portion left
behind at every transport, (1-0)m(j, t), may play the role of

injection while the dominant effect is the aggregation process, then
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the system can realize a nearly power-law steady state. Namely,
the limit of 8 -1 corresponds to the presence of positive injection
since the breaking up process gives the same effect as injection of
small particles.

Next, we consider the case of <m >=0,i.e. @ = 0. The second order
terms of g@in the mean field equation, Eq.(3.2.5), give the following

equation for the variance of m,

<m?(t +4t)> = (1- 6+ 69)<m2(t)> (3.3.8)

It follows immediately from this equation that the variance decays
exponentially to zero for 0<6<1, which shows that the only steady
state is the trivial state, P (m)=8(m), as we mentioned previously.

The system becomes non-trivial if we apply random external
fluctuations. Namely, we add a new term,[ (j, ¢), in Eq.(3.2.1) or
[ (), in Eq.(3.2.4), which are random variables having zero mean,
<l >=0. Accordingly a new term, </ %>, is now added to Eq.(3.3.8) and
the variance converges exponentially to a finite value. The same
argument holds for every moment of m, <m™, so that we have a
non-trivial stable steady distribution p(m).

Numerical results are shown in Fig.3.10. Here the transport is
long-ranged(a site is directly connected to the other sites), i.e., the
probability of W;x (t)=1 is independent of j for each k. For small 8
the distribution is close to a Gaussian as shown in the case of 6=0.3
in Fig.3.10. For larger 6 the tails become larger as seen in the case
of #=0.8, and as 6 —1 the distribution converges to Lorentzian tails,
P (m) =< n| 2 (see the case of 8=0.99), which is the same as one
obtained in Scheidegger's river model with pair-creation injection

(the exact equivalence between this model in the case of <m>=0
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with injection and Scheidegger's river model with pair-creation
injection is established in the particular case 6=1). Here, we
confirm that the the result of 6 -1 converges to the result of 6=1.
This result is not like the case of <m >#0 without injection because

in such a case the results of 6 =1 and 8 -1 are different.
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Fig.3.10  Semi-log plot of the steady-state probability
density P(m) in the long-ranged transport with
<m>=0. Random perturbations in the range of [-1,1]
are added constantly (the sum of perturbations are
controlled 10 keep zero). The parameters are 6=0.3
(dotted line), 6=0.8 (bold line) and 6=0.99 (thin line).

The smooth curves show the Lorentzian tails,
P (m) <= m? [H. Takayasu and Y-h. Taguchi (1993)].

For one-dimensional case of <m>=0 with no injection the
variance converges quickly to zero as predicted by the mean-field
analysis in Eq.(3.2.8), however, when we add injection of </>=0 the
variance <m(t)?> does not converge to a finite value but shows a
tendency to diverge. This strange behavior may be caused by the

peculiarity of one-dimension like it happens in the segregation
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phenomenon [L. W. Anacker and R. Kopelman (1987); K.
Lindenberg, B. J. West, and R. Kopelman (1988)], but the details are
yet to be clarified.

It is confirmed numerically that in both cases, the mean-field
and one-dimension, satisfying <wm>=0, the distribution of m
converges if it is normalized by the square root of the variance,
<mt )2>1/2. The functional form of the normalized distribution is
very similar to that in Fig.3.10, namely, it is close to a Gaussian for
small 6, the tails become larger for larger 6, and for 6 very close
to 1 the tails nearly follow power-laws.

Let us summarize the essence of the model of random
transports. We observe the behavior in one-dimension with nearest
neighbor transports for <m>#0. In the limit 6 -0 Gaussian
distribution is obtained. In the other limit 6 -1 a power-law tail is
observed. And in the case #=1, the model become equivalent to
Scheidegger's river model with no injection. For 0<68 <1, neither a
Gaussian nor a power-law distribution is obtained.

For the cases <m >=0 with</>=0 injection we have no steady-
state in one-dimension. But from the numerical simulations it is
confirmed that it exists in the case of </>=0if we assume a long-
ranged transport. The result in the limit of 6 —»1 gives a distribution
of m with power-law tails with exponent equivalent to that in

Scheidegger's river model with pair-creation injection.
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3.3  Scheidegger's model of mass-dependent random walk

Recently, T. Nagatani (1992) extended the basic Scheidegger's
river model assuming that a heavier particle moves slower than a
lighter particle. In such a system the mass distributions are
obtained numerically and dynamic scaling behavior of the mass
distribution is estimated.

The model is described as follows: Let a massive particle on one-
dimensional lattice move to the right neighbor or left neighbor
randomly with probability p/2, respectively, and it remains on its
own site with probability 1-p. In order to take into account that a
heavy particle move slowly, we set the probability p , which can be
considered as mobility, as p = m? (y>0). In a time step particles
move randomly following the above probabilities and merge when
two or more particles encounter at the same site. Beside, a unit
mass is added to each site at each time step. It is clear that y=0
corresponds to the basic Scheidegger's river model.

The stochastic process of aggregation of this model can be
expressed by the same equation as that of the basic Scheidegger's

river model in Eq.(2.1.1):

m(j, t+1)=) Wi(Om(k, t) + I(j, t)
k , (3.3.1)

where I(j,¢) denotes the charge of a particle injected at the j-th site
at time ¢, and Wyt (£)is a random variable which is equal to 1 when
the particle on the k-th site jumps on the j-th site and is equal to
zero otherwise. Since one particle cannot go to two different sites in

a single time step, Wyt (¢) must be normalized: J,; Wit (t)=1, But
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Wik (t) takes different weights of probabilities than in

Scheidegger's river model, such as,

W;;j(t)=1 with probability 1-p,
W;j-1(t)=1 with probability p/2
W;j+1()=1 with probability p/2
Wik (t)=0 fork # -1,/,j +1.

The computer simulations are performed on a triangular lattice
with the periodic boundary condition. Fig.3.11 shows examples of
space-time trajectories obtained for ¥=0.5 and 1.0. Comparing
these figures with that of the basic Scheidegger's river model in
Fig.2.3, we find that as 7 takes larger value, trajectories of particles

are apt to going straight downward.
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Examples of space-time trajectories for ¥=0.5 on the
left and ¥=1.0 on the right [T. Nagatani (1992)].
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Fig.3.12 A log-log plot

of the cumulative mass distribution
for 7=0, 0.3, 0.5 and 1.0, and the slopes are 0.33, 0.26, 0.17,
0.04%0.02, respectively [T. Nagatani(1992)].

Fig.3.12 shows the cumulative mass distributions for 7=0, 0.3,

0.5 and 1.0 on log-log scale. It is clear from the figure that the mass

distribution can be expressed in the form

P (>m) <mBl)

(3.3.2)

In the case of V=0 we can confirm that the slope is the same as the

basic Scheidegger's model, 1/3. As the value of ¥ becomes greater

the absolute value

of

the slope

converging to a slope equal to zero.

becomes

smaller

gradually
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Fig.3.13 A log-log plot of the area of the drainage basin,
S, vs. height, &, for ¥ =0, 0.3, 0.6, and 1.2
[T. Nagatani (1992)].

Let us consider a space-time trajectory forming a particle (see
Fig.2.9). Like in the case of the basic Scheidegger's model, mass of
the particle is again proportional to the area of its drainage basin in
the space-time (see section 2.4.1 for more details). What is different
from the basic Scheidegger's model is that the area of the drainage
basin, S, can not be estimated by using the theory of random walks.

In such a case let us assume the following relation between the

area S and the height A.

S < h*7 (3.3.3)
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This is a natural extension since it includes the case of the basic

Scheidegger's river model, in which z(0)=3/2 [H. Kondoh, M.
Matsushita, and Y. Fukuda (1987); H. Takayasu, I. Nishikawa, and H.

Tasaki (1988)]. Eq.(3.3.3) can be regarded as a dynamic scaling

because it can be recognized as an equation evaluating the mean
mass of particles after & time steps.

The assumption (3.3.3) is confirmed numerically for v= 0, 0.3,
0.6, and 1.2 in Fig.3.13. The exponent z(y) changes continuously

from 1.50 (the value for the basic Scheidegger's river model) to 1.0
(the value for a linear river) with increasing 7.

1
(1) Voa o Y=O.6 * h=250
.“‘%“09‘:'9‘&0 ° h=500
TS e, + h=1000
P(>S) o %0 Wite, . 4=2000
10-1 — ‘.. °o° u .°.°
102 I IR
10 102 S 103 104
Fig.3.14

A log-log plot of cumulative mass distribution P (>S)

depending on the number of time steps 4, h=250, 500,
1000, and 2000 for 7 =0.6 [T. Nagatani (1992)].
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In Fig.3.14 we plot mass distributions obtained for different

number of time steps. We observe the tail of the curve extends

according to the time steps. The mass at which the rapid decay is
observed (at the larger mass range) is estimated from Eq.(3.3.3) to
be proportional to #*‘7)

Therefore, we propose a dynamic scaling
relation as follows.

Ps (k) = S P (s/m1))

(3.3.4)
where Pg (h) denotes the mass distribution depending on the time

step A. From the numerical simulations Eq.(3.3.4) is confirmed for
four different values of ¥, The scaling function f(x) is approximately

a constant for x<<l and decays faster than power-law for x =1,

Fig.3.15 shows a log-log plot of SPYP ¢ (h) vs. S/h*7) for 7=0.6.

1 —.oge @ 0A0 90A000A0q0A 0 g0a0l0A o.ou,.o‘
=0.6 .o"'.o
= V1 =250
1o « h =500 5
q, 107 . h=1000
Z oh=2000 ‘°
S 2
“2 $
102 —
| | I | °

10-3 10-2 101 1
p117g
Fig.3.15

A log-log plot of the scaled cumulative mass
distribution S°‘17P>s (h) vs. h L8 for ¥=0.6
[T, Nagatani (1992)].
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Since the total mass of particles in the system is proportional to

the whole space-time, it is proportional to the time-step A.

I Ps(h)SdS =< h
1 (3.3.5)

Calculating the total mass by using the scaling relation as in

Eq.(3.3.4), we get

oa

f Ps(h)SdS = h 1-ET) j x PO (x)dx
1 n’ ; (3.3.6)

Comparing Eqgs.(3.3.5) and (3.3.6), the following relation between

exponents is derived.
[1-8 (lz(p) =1 (3.3.7)

The exponents f3(y) and z(y) for different 7 are shown in Table 3.1
We find that the relation (3.3.7) holds nicely.

Table 3.1 Exponents g (y) and z(y) for different 7.
The errors for the exponents S (y) and z(y)
are about +0.02 [T. Nagatani (1992)].

14 0.0 0.3 0.6 1.2

B 0.33 0.26 0.17 0.02
z 1.50 1.29 1.17 1.01




Chapter 4

Spatial correlation
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4.1 Subtle spatial correlation in Scheidegger's river

model

In chapter 2, we have seen that the exponents of the steady state
distributions of Scheidegger's model are different in the one-
dimensional cases and in the mean-field cases (except for the case
of pair-creation injection). This difference indicates the importance
of spatial restriction in the one-dimensional case. In this section we
investigate the nature of spatial fluctuations observed in one-
dimensional Scheidegger's model in order to clarify the spatial
correlation in the system.

As we mentioned in chapter 2, the mass(charge) distribution of
the basic model in one-dimensional space is equal to the
distribution of the river size in (1+1)-dimensional space-time, while
a river size is defined as the area of a drainage basin. Let us
recollect Fig.2.4, which shows the ridges of the drainage basins.
From the figure we find that two big drainage basins are less likely
to exist adjacently than a big basin next to a small one. This gives
an intuitive perception that the system has some kind of spatial
correlation by which reducing the probability of two big basins
come closer.

Let us see that if we can find anything about correlation from
our previous analysis using the characteristic function. From the
steady-state equation, Eq.(2.3.3), we can show that Z(¢) can be

expanded in the vicinity of 0=0 as

Z (o) =1-cr|of+-- | (4.1.1)
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R/q s

1 2 3 4 5 6

Fig.4.1 R/S diagram in log-log scale of base 2. The
abscissa r gives the length of intervals. The
slope of the straight line is 0.5.

where c¢; is a constant and B is either 1/3, 1/2, 2/3, or 1
depending on the spatial dimension and injection type. If the
distribution is spatially independent, Z,(¢) should be equal to
[Z1(0)]", however, it is easy to prove that these two expressions are
identical only up to order ©f, and there is a nonvanishing term of

order 0% as [M. Takayasu (1992)]

r. _rr-1) .2 2, .
Z(9) - Z (o) 5 (cPe%+...20 4.1.2)

Therefore, we can conclude that there really exists spatial
correlation. However, it is not easy to detect this correlation
numerically because it is in higher order in o.

R/S analysis [J. Feder (1988)] is one of the powerful method to
find out correlation in singular fluctuations. In this method, we
observe two quantities, R and § : R is the difference between the

maximum and minimum of accumulated values in an interval, and
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S is the variance in the same interval. So-called R/S diagram is
obtained by plotting logarithm of the ratio R/S as a function of
logarithm of the interval's length. In Fig.4.1 the R/S diagram of our
model is shown. The points are clearly on a straight line of gradient
0.5, namely, R/S = rH where the Hurst exponent, H, is equal to
H=0.5 which is identical to the value for the Brownian motion[B. B.
Mandelbrot (1982)]. Hence H=0.5 means that the fluctuation has no
dependency, which shows that the subtle correlation has been
completely overlooked by this method.

The first reason that makes difficulties in analyzing the
correlations is that it is a weak correlation which appear in higher
order in ¢ as we saw in Eq.(4.1.2). The other reason is that the
mass distribution follows a power-law for which the moments of
the mass distribution diverge. In such a case, it is impossible to
calculate the correlation function defined by the second order
moments such as <m (0, t)m(j, t)>. Nevertheless, we can avoid this
divergence by modifying the definition of the correlation function
by introducing fractional moments. We show the details in the
following sections.

The correlation function of the system is related to the power-
spectrum by Wiener-Khinchin's theorem. However, in our model,
due to the divergence of correlation function we cannot observe the
correlation by power-spectrum as well. Namely, the power-
spectrum of the mass configuration looks the same as in the case of
white noise because a site having the largest mass acts as a delta
function, and the Fourier transformation gives the same
contribution at all wave numbers. Let us see how the multifractal

analysis work for this problem in the next section.
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4.2  Multifractal analysis

The term "Multifractality” was introduced in order to classify
the fractal systems whose structures are characterized not only by
a single singularity but also by an infinite number of singularities
of infinitely many types. If we pay attention to a set of points on
the structure corresponding to a given type of singularity, it
typically forms a fractal subset whose dimension depends on the
type of singularity.

The notion of multifractality was first introduced by B. B.
Mandelbrot (1974) in connection with turbulence. Then it was
developed and systematized by H. G. H. Hentschel and 1. Procaccia
(1983), and R. Benzi et.al (1984). Subsequently, it was discovered in
percolation [L. de Arcangelis et.al (1985)], growth phenomena [P.
Meakin et.al (1985)], dynamical system [T. C. Halsey et.al (1986)],
and so on.

Now, we apply the idea of multifractality to our one-dimensional
basic model. Let us divide the lattice (here, we are considering a
finite size lattice) into intervals of length r and let p,(r) denote the
normalized mass(charge) in the i-th interval, that is, the mass in the
interval divided by the total mass of the whole finite system. Then
in the limit r -0, we assume that the strength of the local
singularity of i-th interval is characterized by introducing an

exponent «; as follows;

pilr) =< ra ) (4.2.1)

Namely, «a; denotes the local mass exponent. We consider the

situation that ¢«; differs from one interval to another. In general,
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the number of intervals taking the exponent between a and a +da

, N (a)da, is expected to be scaled with r as

N (a)da=r /' @n (@)da (4.2.2)

where n (a) denotes a constant value depending only on «a, and
f(a) is the fractal dimension of subset of intervals characterized by
the local exponent «; equal to «a. The function f(a) is the key in
the study of multifractalities.

We need a little preparation before introducing the method to
get the function f(a). Let us introduce a fractal dimension called
the information dimension, D;, which is defined by the information

entropy, [ (r), as;

D; = lim L
r-0log (1/r) , (4.2.3)
where,
I[(r)=-Y pir)iog pir)
i , (4.2.4)
and

2pir =1

The definition of the information entropy can be extended by

considering higher order moments, such as

Lir)=s 1—log 3 pi(r)?
1-q i ) (4.2.5)
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The corresponding generalized ¢-th order dimension (we introduce
D; as a "dimension" although at the end of this section we show that
it does not really have the physical Sense of "dimension") defined

as

r—)Olog (1/r) . (4.2.6)

I,(r ) is often called the g-th order Rényi information[A. Rényi
(1970), H. G. H. Hentshcel and I. Procaccia (1983)] and we can easily
show that I;(r) coincides with the usual information entropy
defined by Eq.(4.2.4).

From Eqgs.(4.2.1) and (4.2.2), we can replace the sum in
logarithm in Eq.(4.2.5) by the following integral;

Zpi(r)q ZJ da n(a) r 7 (@+qa
i (4.2.7)

In the limit 7 —0, the integral will be dominated by the value of

a which minimizes the exponent. This leads to the conditions

i _,
da 7, d’a , (4.2.8)

where a; is the value of a for which ga-f (a) is minimal. So that,

Eq.(4.2.7) is estimated as

Zp,-(r)q = n(aq) r -f(aq)+qa,
: (4.2.9)
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Therefore, we are able to relate the problem of obtaining the
function f (a) to the problem of observing 2 pir)? by the following

!

relations:

D,= ql—l {geyof (ap)}

, (4.2.10a)

flag) = qaq-(q-1)Dg | (4.2.10b)
a; =4 {(g-1)D,}

" dg 7 (4.2.10¢)

f(ag) is called f-a spectrum. In the case that g=1, ga,-f (a;) should
be zero otherwise the conservation of probability, 2.piN=1 will
break up. So that, at g=1, f-a spectrum is tangent to the line
f(ag)=q az. From Eq.(4.2.10a), the maximum of f-a spectrum is
always given at ¢=0. And for an ideal fractal with perfect self-
similarity, f-a spectrum becomes a single point since the local
singularities on whole space are characterized by one exponent .
We made numerical simulations of our model on 2% sites and
adopted the data at the 5000th time step to f-a spectrum.
Statistical average was taken over 10 realizations. In Fig.4.2 we
plotted r vs Qs[Z,’p,-(r)"]”“"” for several different ¢ 's, so that
we can estimate the value D; from the slope if we can define the
linear part of such plots. Nevertheless, except for the models which
are rigorously defined as multifractals, most of the stochastic
models and the real systems do not show perfect linearity in such
plots. Indeed, as we see in Fig.4.2 points do not fall on straight lines.

In such a case, we discuss the following two methods to estimate Dj.
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(e}
e
1 2 3 4 5 8 7 8

. 1/(g-1)
Fig.4.2 Q=Ixpir) 17" vs. r in log-log scale of base 2.
q=>5,2,05, 0.2, -0.3 and -1.5, from top to bottom.
The slope of each line gives [ga-f (a))/{g-1).

The first method is to approximate the r vs Q=LY p,(r)7"aD
plot by its local slopes, so that we define D; as a function of r. This
approach seems to be a little forceful since the theoretical supports
of multifractal analysis are defined only in the vicinity of r —0. But
once we face a digital experimental data we will have a difficulty in
adopting a slope for r =0. From the study of such locally defined Dy,
a strange result has been found by H. Takayasu and T. Suzuki
(1991). They show that white noise can be characterized by an r-
dependent parabolic f-a spectrum due to the finite size of the
system. And for white power-law fluctuations an r-independent
parabolic f-a spectrum is observed nearly for two decays of r. Also
the f-a spectrum is tangent to a linef{(ag)=g a; since D, p;(r)=1is

kept by the finiteness of the system. It is a remarkable fact that an
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r-independent parabolic f-a spectrum is observed not only in a
multiscaled system but also in a non-correlated monofractal
system.

In order to avoid treating the finite size effect, there is another
method to analyze D,. Finite size effect becomes more effective for
bigger r , therefore, we adopt a slope near r=0 for the value of Dy
for an arbitrary ¢g. This corresponds to the estimation of Dj; in the
vicinity of r=0 which can be regarded as an asymptotic result in
continuous limit of the one-dimensional lattice. Let us apply this

analysis to our data.

1 DBE, Fig.4.3 f(a)-a diagram.
Numerical results (square)

and theoretical value for

el independent case (circle).

1 2 3 4
02

Analyzing Fig.4.2, we can say that for 4<0.2 the estimated values
of Dy change continuously with ¢g. On the contrary, for ¢>0.5, Dy
seems to have a constant value independent of g. It is likely that
there exists a critical value for g between 0.2 and 0.5. The
corresponding f-a spectrum is obtained from Egs.(4.2.10b) and

(4.2.10c), and is shown in Fig.4.3. All the points are located around
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a single point f=1, a=3. This result is natural since we know that
the mass distribution in the model is rigorously characterized by a
power-law exponent, not by multi-exponents. As we are estimating
the results for continuous limit of a system following power-law,
the conservation of the mass probability function is broken since
Zi pi(r) > . Consequently, the appearance of f~a spectrum is very
different from the parabolic f-a spectra which are tangent to the
line f(ay)=q a4. Next, we show that the single point f-a spectrum
which we obtained from our model is comprehensible if we neglect
any spatial correlations by using the notion of stable distribution
[M. Takayasu and H. Takayasu (1989)].

As we mentioned in section 2.4.3 and Appendix (3), independent
random variables which obey power-law distributions can be best
approximated by stable distributions. Since we are considering the
basic version of the model in which every site take only positive
quantity(mass), we can assume that the size distribution for each
site follows an independent one-sided stable distribution with the
characteristic exponent, = 1/3. From the basic property of stable
distribution (see Appendix (3)) we have the following relation
between the mass of a site, m (1), and that of a sum of r sites,

m(r):

m (r)Lr Um (1) , (4.2.11)

Where 4 indicates that the distributions on both sides are identical.

Taking the g-th power on both sides we have

m(r)Lrafm (1)1 4.2.12)
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As p;(r) is proportional to m (r) by definition and the total number
of intervals of size r is proportional to 1/r, the left-hand side of

Eq.(4.2.9) can be estimated as

2 pir)? o ro1¥alE
i . (4.2.13)

Comparing Egs.(4.2.9) and (4.2.13) we get

S (ag) + qay --1+4
B (4.2.14)

We note here that Eq.s(4.2.12)-(4.2.14) are valid only for g < . For
g 23 the gth-order moment of mass distribution <m9> diverges
because of the long tail. Consequently, the left-hand side of
Eq.(4.2.13) does not have a definite value. Namely, for ¢ 28 we
cannot define D, This is consistent with the numerical results
mentioned above and the critical value = 1/3 is in the estimated
range. The numerically observed value Dy,=0 for ¢ larger than the
critical value may be an artificial value caused by the finiteness of
numerical simulation. For example, if an exponentially large mass is
concentrated on a single site, we may observe such behavior since
=IY; piNM9 Y i5 scaled by zero-th order power of r.
Eq.(4.2.14) agrees very nicely with numerically estimated values
of f(ag)+qa; for ¢g<B, and substituting Eq.(4.2.14) into
Eqs.(4.2.10b) and (4.2.10c) we obtain the single point for the f-a

spectrum:

L=3, fla)=1.
B (4.2.15)
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An intuitive explanation of Eq.(4.2.15) can be given as follows: From
Egs.(4.2.1) and (4.2.11) we can directly determine a; as a4 =1/B
since m (r) = p;(r). This result is applicable to any interval, so the
number of elements summed in Eq.(4.2.9) is proportional to 1/r.
Therefore, we have the same result as Eq.(4.2.14). For the general

D-dimensional analysis, we will have a;=1/8 and f(a;) =D .

3

Fig.4.4 D, - g diagram. Numerical results for the basic
Scheidegger's river model(squares) and theoretical
curve for the independent power-law distribution
(solid line).

It is clear from the previous discussion that the property
obtained by multifractal analysis holds when the mass distribution
of each site is an independent power-law, which contradicts the fact
that the correlation among sites really exists. Still more, we have
another contradiction in our analysis. In Fig.4.4 we plotted the Dy-g

diagram obtained for our model with squares and the theoretical
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estimate for the independent case by a solid line. Though we are
analyzing a monofractal system, which is indicated by the single
point f-a spectrum, the diagram shows the existence of many
different generalized dimensions Dy characterizing the system.
From this inconsistency we conclude that the value D; does not
have a physical meaning of dimensions [M. Takayasu and H.

Takayasu (1988); B. B. Mandelbrot (1988)].
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4.3 Generalized correlation function

In the previous section we confirmed that the multifractal
analysis can not detect the delicate spatial correlation in the basic
Scheidegger's model. Therefore, in this section we return to the
correlation function and we make an attempt to generalize the
conventional definition to make it applicable to systems with
diverging moments. Namely, we introduce a correlation function
defined by fractional order cumulants. We will find that the weak
correlation, which could not be observed by conventional methods;
such as R/S analysis, power spectrum, and multifractal analysis, is
observed numerically.

The divergence of the mean value and variance in mass
distribution of Scheidegger's model can be explained in the
following way. Assuming that the size distribution follows a power-

law, m "#-1, the statistical average of m ¢ is written as:

<m?>=y mo (m) <y mehl
m=1 m=1 . (4.3.1)

For a which satisfies a<f the summation remains finite,
however, it diverges otherwise. In this particular model, a should
be smaller than 1/3 in order to avoid the divergence. Now, it is
clear that the conventional correlation function cannot be defined.
To control this divergence, we generalize the definition of

correlation function as follows [M. Takayasu (1992)]:

<m G +8)%m (%> - <m ()*>°

<m (G)%%> - <m ()*>°

Ca(C):

, (4.3.2)
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where Ci(¢) is the conventional correlation function. By this
definition, C,(¢) is observable for a<B=1/3 for the basic
Scheidegger's model in one-dimension.

Fig.4.5a shows the values of Co.01(¢) . Apparently, correlation can
be seen for ¢&=1, 2 and 3. The simulation is done on one-
dimensional sites of size 1000 with 4000 time steps averaged over
10 different realizations. The negative values of correlation agree
with the intuitive explanation that particles with large masses have
less tendency to be located close to each other. The plot in Fig.4.5a
is well approximated by exponential; y(x)= exp(-1.3x).

Fig.4.5b shows the case of a=1. In this case, it is obvious from
our previous discussion that each average in the right hand side of
Eq.(4.3.2) diverges if the system is infinite. In a finite system the
results are a little different as the moments never take an actual
infinite value. Nevertheless Eq.(4.3.2) behaves as having no
correlation, and the obtained points are on the line of Ci(£)=0
within the error bar. It is confirmed that C1(f) calculated from data
made by independent power-law distribution gives identical results
with Fig.4.5b.

In case of negative values of @, the whole system looks entirely
changed as the relative size of m is reversed; small values of m are
emphasized and large values are diminished. In the limit of a—-,
the spatial sequence of {m?} is composed of 1 or 0. m (j, )* takes 1
when neither the particle on the site j-1 nor j at time step ¢-1
jumps to j, and it takes 0 otherwise. The probabilities of two
adjacent sites taking the configurations (0,0), (0,1), (1,0), and (1,1)
are obtained from the evolution rules as 1/2, 1/4, 1/4, and O,

respectively. And the probabilities of a site taking the value 0 is
3/4. Therefore, from Eq.(4.3.2), C..(1) can be calculated as 1/3.
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Fig.4.5a, b, ¢
Co(8) vs. ¢ for the
Scheidegger's Dbasic
model. The error
estimates are on the
order of 10'2, which
are smaller than the
size of the square
points.



4. Spatial correlation 4-17

It is obvious that C ..(5)=0 for & =2, because the configuration at

time step ¢ is fully determined by the jumps between time step ¢-1
and ¢, since a particle can jump at most one site in one time step. As
shown in Fig.4.5¢c the value of C.19(1) is very close to 1/3 and C.1(%)
for £22 is nearly equal to 0, namely the characteristics of & =-> are
realized by a relatively small absolute value, a=-10.

Observing the behavior of Cy(§) for different values of a, it is
confirmed that non-trivial correlations are observable for O<a<1/3.
In this range of «a the correlations always decay very quickly and
practically no correlation can be detected for & 25.

Several authors have calculated non-integer moments in the
study of random walks [G. H. Weiss, S. Havlin, and O. Matan (1989)],
random resister networks [L. de Arcangeles, S. Redner, and A.
Coniglio (1986), P. Meakin, A. Coniglio, H. E. Stanley (1986)], chaos|[P.
Meakin and H. E. Stanley (1988)], and diffusion limited aggregations
[H. G. E. Hentschel and I Procaccia (1983)] in order to discover
multi-scaling relations. A. P. Siebesma and L. Pietronero (1988)
show the relation between multifractal scaling and correlation
function defined by fractional moments in the generalized Cantor
set. Their analysis may be applicable to the mathematically
rigorous multifractal models but it is suspicious whether the
relation they obtained still holds in stochastic systems including our
model. In fact, according to section 4.2, multifractal diagram of our
model is identical to the one of an uncorrelated system, though the
analysis using Eq.(4.3.2) shows correlation among sites.

In conclusion, the generalization of correlation function with
non-integera as in the form Eq.(4.3.2) enables us to observe the
hidden spatial correlations which are subtle but effective enough to

change the exponent of the mass distribution from that of the
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mean-field case. Though we analyzed a very special example, the
method is applicable to any other data. Especially, Eq.(4.3.2) with
non-integera will be powerful for the systems with power-law

fluctuations.
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4.4 Interval distribution of level set

We introduce a new approach to clarify the correlation in order
to investigate a more vivid appearance of the spatial correlation in
Scheidegger's river model. We will apply the new method not only
for the mass configuration on one-dimensional lattice in
Scheidegger's river model but also for the other irreversible
systems having large or possibly infinite variance such as time
series of earthquake magnitude and time series of energy

dissipation rate in atmospheric turbulence [M. Takayasu (1992)].

4.4.1 IDL and its application to non-correlated systems
Distribution of gaps (the intervals between one incident and the
next one) have been studied as a way of characterizing fractal
properties of Cantor-sets and other sets of fractal dimension D <1
[B. B. Mandelbrot (1982)]. It has been shown that the gap-size
distribution for a fractal set follows a power-law, P (r) =< r D-1
where P (r) denotes the probability of finding a gap of size r.
Power-law gap-size distributions are found not only in
mathematical models but also in real systems such as the error
occurrences in data transmission lines [S. M. Sussman (1963)].

The idea of examining gaps is applicable to fluctuations of a
scalar quantity on 1-dimensional space by observing the level sets
of intersections. Brownian trajectory in space-time coordinates is
one of the examples whose gap-size distribution of the level set on
the intersection of x(¢)=c , (where ¢ is a given constant), satisfies
P(r)e<rD-1 yith D=1/2 [W. Feller (1966)]. As for fractional

Brownian motion, the exponent D is known to be expressed as
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D=1-H where H is the Hurst exponent which takes a value between
0 and 1 [B. B. Mandelbrot (1982)].

D. ben-Avraham, M. A. Burschka, and C. R. Doering (1990)
examine the inter-particle distributions (distribution of gaps
between successive particles) in one-dimensional diffusion reaction
model governed by a rule A+A—A. In the case when the process
involves injection of particles at randomly chosen sites the system
reaches a stationary state with indefinitely maintained non-zero
concentration of particles. At the stationary state, the gap-size
distribution shows a distinctive peak at a certain size of gap
depending on the rate of injection and the diffusion coefficient.

In this section, we introduce a systematic way of investigating
spatial or temporal correlations using the interval distribution of
level sets (in short IDL). First, let us introduce the IDL analysis of
one dimensional spatial or temporal data in general. For given
discrete data, we set a threshold height Ec and pay attention only
to the data points which have values higher than Ec (see Fig.4.6).
The set of points chosen this way is called a level set and Ec is
called a level. IDL is the size distribution of distances between
nearest-neighbor elements of a level set like r; shown in Fig.4.6.
We observe IDLs with different Ec and try to scale them on a curve
by considering Ec as a parameter. In that sense, the IDL curves
obtained from different Ec are related to one another.

For the purposes of comparison with real data, we list the IDL of
an uncorrelated white-noise system. The probability of finding an

interval of length r, Probg (r) , can be estimated as follows for

large r ;

Probp,r )=pg (1pg) "t ep r in (1pg)) (4.4.1)
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Fig.4.6 Definition of interval 7 of level Ec on one dimensional data.

where PE. denotes the probability that a chosen site is an element
of the level set at level Ec . Eq.(4.4.1) shows that the IDL follows an

exponential decay. An exponential probability distribution is fixed

uniquely by the mean value of r , < >g  as

=1 r
Prob-g. V) =grsgew Crsg (4.4.1)

By comparing Egs.(4.4.1) and (4.4.1)', we can see that P E is related

to < >g, as follows for <r >g >>1:

_ 1
pr = 1-exp ) (4.4.2)

D. ben-Avraham, M. A. Burschka, and C. R. Doering (1990)
mentioned that in their one dimensional diffusion reaction model

the interparticle distribution function at stationary state becomes
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exponential when the reaction system includes the reverse process:
A+Ac<A. This exponential distribution is explained by the maximum
entropy principal since the system satisfies detailed balance as in
the case of thermal equilibrium. Namely, in such reversible particle

systems, particles are observed to behave independently.

log »(Number of intervals )

Fig.4.7 IDL of white power-law distribution in semi-log plot.

Fig.4.7 shows an IDL of a variable that obeys white power-law
size distribution with exponent equal to -4/3. This corresponds to
the case of non-correlated system with pg = Ec'% in the above
discussions since pg is  proportional to the cumulative size
distribution of Ec. Total number of data points is 1000. We take an
average over 20 realizations with three different Ec ; Ec =100, 400,
and 800, the estimated values of slopes are A= 0.23, 0.14 and 0.11,

respectively, while the slopes calculated from Eq.(4.4.1)' are
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A=0.222, 0.137, and 0.108. We also confirm that Eq.(4.4.2) is

approximately satisfied.

-10 T

EC=

lOggPI"Ob. E, (I")

-26 ,
0 10°
r (sec.)

Fig.4.8 The dots show an IDL of real of real earthquake magnitude.
The line shows corresponding exponential decay.

The dots in Fig.4.8 show an example of an exponential-like IDL
observed in a time series of earthquake magnitudes with Ec =4
which occurred in the Tohoku area in Japan from 1986 to 1989. The
number of data points is 1362. The original time series data were
published by the Japan Metrological Agency. The line shows an
ideal exponential distribution with the same mean interval as the
earthquake data. This result suggests that the time intervals

between earthquakes with magnitudes greater than 4 occur almost
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independently, which is consistent with the widely believed
conjecture that time series of the main shock can be treated as a
Poisson process. Recently, Y. Y. Kagan and D. D. Jackson (1991)
claimed that the main shock occurrence is very close to a stationary
Poisson process but weak clustering is observed, which forms a
fractal set on the time axis with dimension D=0.8 to 0.9.
Nevertheless, we cannot confirm it from our data. From the analysis
of a numerical model of earthquake(a version of self organized
criticality model), J. Lomnitz-Adler, L. Knopoff, and G. Martinez-
Mekler (1992) report that the interval distribution has a clear peak

and is very different from the exponential.

4.4.2 IDL of Scheidegger's river model

log 2 Prob.ec(r)

logar

Fig.4.9 IDL of the basic Scheidegger's model for
E_ =25, 50, 100, 200, and 400.
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Now, let us apply IDL analysis to the subtle correlation in the
basic Scheidegger's model, whose correlation cannot be detected by
the following cases as we have seen in the preceding sections; R/S
analysis, conventional correlation function, power-spectrum, and
multifractal analysis. We are going to show that the IDL analysis is
nevertheless effective in such a case.

IDL for the mass configuration in one-dimensional basic model
shows a curve with a distinctive peak whose position depends on
the level as shown in Fig.4.9. Namely, different level sets have
different characteristic intervals and the appearance of IDL is

obviously different from a non-correlated system shown in Fig.4.7.

4
N
~
o2
Q0
=
0 4 8 12
log 2 E.
Fig.4.10 E, vs. < >k in log-log scale. The slope

is estimated as 0.33-

The mean interval, < >g,, is estimated as < >g, « EX3 from the

simulations(see Fig.4.10). This can be explained as follows: < >g, is



4. Spatial correlation 4-26

proportional to the inverse of pg which is proportional to the
number of sites having mass bigger than E¢ , ie, pe=E: . So we
have

< e < g B (4.4.3)

where B=1/3 for the basic model.

The curves for different £, (E, = 25, 50, 100, 200, and 400)
are confirmed to be congruent(see Fig.4.9). As the value of E; is
doubled, the curve in the log-log plot shifts constantly both in
horizontal and vertical directions. These curves can be scaled on a

function as shown in Fig.4.11 by rescaling r and Probg, (r) as

follows;

Probg, (r Y<E:%f (r E;V3) (4.4.4)
8

m»-*q

N

~ 67
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3
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&
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-1/3
log 5 {r (l%) P

Fig.4.11 A scaling plot of IDL for the basic Scheidegger's model.
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The scaling function, f (%), is estimated to be nearly proportional to

€ for &<l and it falls off faster than exponentially, as
f(5) = exp (- &D™), for oL,

Scaling exponents in Eq.(4.4.4) can be obtained theoretically if

we make the following scaling assumption [7. Vicsek (1989)]:

Prob.p, r Y<E;8f (r EGZ) (4.4.5)

From the definition, pe. and Prob.g, (r ) satisfy the following relation;

PE, =j Prob.g, (r )dr <E P
1 . (4.4.6)

Substituting Eq.(4.4.5) into Eq.(4.4.6) and taking into account that

E. >>1, we obtain

z-6=- . (4.4.7)

Also, by Egs.(4.4.5) and (4.4.6) the mean interval, < >E,, is given as

<r >p, = f r %c(r)dr -_-ECZI ¢f (©) dg < EZ
1 ke 1 ) (4.4.8)

Comparing Eq.(4.4.8) with Eq.(4.4.3) and using Eq.(4.4.7), we have z
= = ‘;“ and 6 = 2f3= %for the basic Scheidegger's model, which are

consistent with the scaling exponents in Eq.(4.4.4).
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4.4.3 IDL of turbulence

2500001
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Fig.4.12 A time series of the square of velocity differences
differences observed in the atmospheric turbulence.

IDL for turbulence in the atmospheric boundary layer is
analyzed using data obtained by M. Yamada and K. Ohkitani (1991).
The observation was done on a fine calm day at 2 meters above the
roof of a 15 meters high building. The flow velocity was observed
as signals from a hot wire anemometer at a sampling frequency

500Hz for over 3 minutes. The mean velocity <v(#) > is about 5.4

m/s and the variance ~V<(v (t)-<v (¢ )>> is about 1.45 m/s. The
Taylor's frozen hypothesis is considered to be valid at least for
small-scale motion. The inertial range in the time scale is about 23
to 210 ( in the unit of Ar =1/500 sec.). The time series data of the
square of velocity differences, v (¢ ))2= v @ +A)-v (¢ ))2 , which is
generally believed to be proportional to the energy dissipation rate,

have violently fluctuating amplitudes as shown in Fig.4.12.
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Fig.4.13 IDL of atmospheric turbulence for
E.=3000,5000, and 7000.

We observe the cumulative IDL in order to keep good statistics.
The observed values of v (¢ )’ are in the range of 1x10%~1x10°,
We set the threshold energy dissipation rate Ec as 3000, 4000,
5000, 6000, 7000 and 8000, and for each level 2000 points are
observed(see Fig.4.13).

In Fig.4.14, we try to rescale the curves for different levels on

the curve for Ec=3000 by using the following scale transformation;

1.5
r or ey peee0
0

(4.4.9)
Probg, (>r ) — Probg, (r ) 2f%E9 ’
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where E, =3000, a=0.001, and P=0.00024. The line formed by dots
in Fig.4.14 shows the rescaled measures for these levels in a log-log
plot. We have to mention that the range of E; showing a good fit is
relatively small. For E; >10000 and E; <1000, rescaled measures

do not overlap by the same transformation.

14
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Fig.4.14 A scaling plot of IDL for atmospheric turbulence.

The above results for turbulence can be explained by assuming
the multifractal structure [C. Meneveau and K. R. Sreenivasan
(1987), (1991)]. Let us introduce a simple mathematical model

called binomial multifractal measure.
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n=0 The binomial multifractal

measure is constructed by

n=1 spreading measure over the

halves of every dyadic interval

with the proportions » and I- b,

h=2 where 0<b<1/2 (see Fig.4.15).

After n-times dyadic divisions we

get 2" small partitions with

n measures. The measure on x-th
n=3 = partition is given as
'I Px)=b2*V(1-b)**?, where g(x)

gives the count of 1 which appear
in the form of binary expansion
of x [J. Feder (1988)]. Also P (x)
satisfies >, P )/2*=1_ In such a
n=5 system, the spatial configuration

consists of n+1 different values of

P(x).

Fig.4.15

Binomial multifractal measure.

Let us find some regularities hidden among a table showing the
thresholds, the number of intervals, and its length (see Table 4.I).
In the table we introduce a parameter 1 instead of the threshold
height Ec. This parameter t shows the level presented by the order
of heights such as 1=0 for the highest and t=1 for the second and so
on. In such a representation we find that the results do not depend

on the portion b of the dyadic division. The table shows the number
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of intervals satisfying the conditions of threshold t (rows) and the

length of interval in power of 2 (columns):

Table 4.1: The numbers of intervals for different lengths and thresholds.

20 21 22 e 2”-5 2’!-4 2”-3 2”-2 2”-1 2'1

=0 0 0 0 0O 0 0 0 0 1
=1 2 1 1 1 1 1 1 0
=2 n-2 n-3 4 3 2 1 0 0
r=3 ' ; 6 3 1 0 0 0

In this table the number of intervals of length 2% for r=r' is
obtained by the sum of the number of intervals whose lengths are

2K+1 462" for 1 =1'-1. So that we can derive the

in the range of
following relations inductively, which are confirmed numerically up

to n=30:

Prob.. 24) =N ”;"1'1 } k=1

(4.4.10)

n-t
Prob. 2°) =N @r -3 2" *-11), & =0
k=1 L

,
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where N is a normalization constant. The deviation at k=0 is due to
the finiteness of the system. The line in Fig.4.14 shows the result of
IDL according to Eq.(4.4.10). t is chosen to give the same mean
interval as the turbulence data for Ec¢ =3000 , which is =5 for
n=14. The turbulence and the binomial multifractal measure show
a good fit, which indicates that the temporal structure of energy

dissipation rate is very close to the binomial multifractal measure.
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4.5 Conclusion

We analyzed the spatial correlation of Scheidegger's river model.
The correlation is not easy to detect since the divergence caused by
the singularity of power-law mass distribution disables the
observations. We introduced two methods allowing to treat the
divergence effectively. One is the generalized correlation which is
defined by moments of fractional powers. The other is IDL analysis
which succeeds in giving a clear picture of the spatial correlation.
Nevertheless the model is essentially stochastic, the mass
configuration on the lattice shows a distinct regularity, that is a
particle with size larger than some value occupies a specified
interval.

Concerned not only with our model but also with the other
models involving violent fluctuations, let us discuss in more details
the advantages of IDL analysis comparing to the conventional
methods; R/S analysis, correlation function, power spectrum and f-a
spectrum. In these conventional methods it is necessary to calculate
the second or higher order moments. Sometimes errors are
amplified in calculating such moments so that the results do not
appear clearly; or, as in the case of the Scheidegger's river model,
observing moments becomes meaningless since they are diverging.
On the other hand, it is not necessary to calculate any moment to
get IDL. Namely, we characterize fluctuations by focusing our

attention on the distribution itself (not its moments).
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Appendix (1); Characteristic function

A characteristic function is defined by Laplacian or Fourier

transformation of a distribution function, p(m), such as

‘D(Q)=f p(m) e™edm
0 , (A.1)

for a one-sided distribution (p(m)=0 for m < 0), and

@ (o) =I pim) emedm
- , (A.2)

for a both-sided distribution. In the case that any order of moment
is convergent the characteristic function can be expanded as

follows;

o k
@ (o) = ), am >k 1

k!

k=0 , (A.1)'
for a one-sided distribution, and
oo s k k
o)=Y <m>k Ve
k=0 k! , (A.2)

for a both-sided distribution.
It is convenient to introduce a characteristic function when we

are focusing on the distribution for the sum of independent

variables, {mj}. Let us show how the characteristic function works
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for such a case. Let us consider distributions for two independent
variables, m; and m, following the distribution function, p(m,)
and p(m,), respectively. The distribution for M =m;+m, can be

expressed as follows:

pM) =I dmlj dmy pimy) pmy) 6 (M -m{-mj)
0 0 . (A.3)

By performing Laplacian transformation on both sides of the

equation, we get the following simple relation;

ds2(9) '—'J dmlf dm2 p(ml) p(mz) e—(m1+Inz)g
0 0

=2’ (A4)

where @,(0) denotes an n-body characteristic function; the
characteristic function for the sum of n variables.
In general, the characteristic function @ (g}, by definition,

satisfies one of the following three criteria [E. Lukacs (1970)]:

@ | (o)l for all o, except for ¢=0,
(@) [@ (@}=1 for anl o,

(ii1) |d5(9)|=1 for countably many o, and |d5 (Q)|<1 for the rest.

The second case (ii) corresponds to a completely degenerate
distribution, i.e., the distribution function is represented by a &-

function,
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pi)=26-Ip | (A.5)

The third case corresponds to distributions degenerate at periodic

points, i.e.,

pa) =3 a;6 U -jly-Iy)
j= , (A.6)

where Iy and I; are constants and {4;} satisfy the normalization
condition Zj a;=1 and a;20. All other distributions belong to the

first case (i).
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Appendix (2); Continued fraction CAM

M. Suzuki (1986) proposed a new powerful method for
analyzing critical phenomena which is called the coherent anomaly
method (CAM). This method estimates real exponents by using a
series of systematic mean-field type approximations, which always
gives the classical exponents.

It was successfully applied in two and three dimensional Ising
models by M. Katori and M. Suzuki (1987). This method is
applicable to many other critical phenomena, such as, spin glasses
[M. Suzuki (1988)], self-avoiding random walks [X. Hu and M.
Suzuki (1988)], percolation [M. Takayasu and H. Takayasu (1988)],
diffusion-limited aggregation [H. Takayasu, M. Takayasu, and T.
Nakamura (1988)], contact process [N. Konno and M. Katori (1990)],
and so on.

It is known that values of continued fractions can be estimated
by the CAM theory [M. Suzuki (1988)]. Let us find a solution for the
continued fraction, 21(9), given in Eq.(2.3.6) [M. Takayasu (1988)].
We define the n-th approximation 2;")(0) by terminating Z;(o) a't

the n-th order as follows;

Zi (o) = 1
2440 - —1
2480 ----
i 1
2+4(n-1)o - —1
¢ 2+4np
An(Q)

By (o) (A.7)
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where An(0) and Bn(p) are polynomials of 0. Generally, By(o) is
expected to have a simple zero at 0" such that B.(0f)=0 and

, . ~n) .
B'n(o)#0, Thus, the n-th approximation, Z; (o), takes the classical
singularity as follows;

=)
2" (o)« —L—- 1 (™)

0- o . (A.8)

Qé") converges to a real singular point ¢c of the continued fraction
Zi(g), as the order of approximation increases. The critical
coefficient, x{")(oc("’), which gives a constant (do not depend on o)
for each approximation, is assumed to diverge as Qc(") — oc following
a power-law, such as,

PO ) Jro— —

(0- 00" (A.9)

By applying CAM, the true order of the singularity of Z (o), @, is
estimated as follows from Eq.s(A8) and (A9):

g= 1/)+1’

Z (o) = —1
: (0- 0% (A.10)

From first three approximations (n=1 to n=3), we obtained the
exponent ¢ by this method. The observed points fit very nicely on
a linear line in 1 (of- 00 vs. In " (0 plot (see Fig.Al). The

obtained value is = -0.326, which is fairly close to the exact
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value, 1/3, though the estimation is based on only a few terms in

the continued fraction.

InZ9(
|
|
o
N
. 4 1 o

1n( Y- p.)

Fig.Al In (o/"- oc) vs. In 2 (0{). The plotted points are
the values for n=1, 2, and 3 from right to left. The
slope of the line gives ®=-0.326,
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Appendix (3); Stable distributions

A definition of stable distribution is given as follows [W. Feller
(1966)]:

Let X, X1,X2,---,X, be independent random variables with a

common distribution R. The distribution R is stable if and only if for

Yp=X 1+X 2+--- +X , there exist constants ¢ , and 7» such that

d
Yo=caX+yn, (A.11)

where 4 denotes that the random variables of both sides follow the
same distribution.
Using the characteristic function of a distribution R,

@ (z) = <e 2>, the relation (A.11) is transformed into

@"(z) = B(c 4z )oei? (A.12)

The solution for Eq.(A12) is known to be given as

®(z) = exp {-z|#-e 7012} | (A.13)

where, a is an essential parameter called the characteristic
exponent which characterizes the distribution in the range
0<as<?2 For a2, it gives unphysical result that the probability
density takes negative values [to be rigorous, Eq.(A.13) is not valid
for the case a=1]. & is another parameter for symmetric of the
distribution, which takes a value in the range H <a for 0< a <1, and

ld <2-a for 1<a<2.



Appendices A8

The probability density, p(X; a, 6), which is define by the

reverse Fourier transformation of Eq.(A.13), is given as

rX; a, 6) =%Re[ dz exp { - iXz - z%-¢ i%0/2}
° : (A.14)

The explicit functional form of the integral of Eq.(A.14) follows
Gaussian for a=2, 6=0, and Lorentzian for a=1, 6=0 [Eq.(A.14) is
valid also for the case of a=1, 6=0, the case which we exclude in

defining Eq.(A.13)].

> Gaussian
orentzian

[ One-sided

Fig.A2  The parameter space (@ 6) for stable distributions.
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Typical functional forms of Eq.(A.14) depending on 6 and a are
shown in Fig.A2. For 6=0, the distribution is symmetric, because we
have the relation, p(X; a, 6) = p(-X; a, -6). On the lines of 6=a and
@=-ca, for O<a<l, the distribution is one-sided, that the wvariable
takes only positive or negative values. For all cases, except for
a=2(Gaussian), p(X;a, §) are known to have a power-law tails,
such as p(X;a, 6) =X °°!

The constant ¢ , in Eq.(A11) is known to be given as c ,=nl/

(0 < @< 2), so that we obtain the following relation for y,=0;
d l/a
Y,=n Y. (A.15)

In the case of basic Scheidegger's river model, Eq.(A.15) is
confirmed to hold in the mass distribution with a=1/3. Let us see
Fig.2.11 in section 2.4.3. If we consider the two successive sections
whose lengths are n times different, such as r;=k and rp=nk, the
area of basins flowing into the sections are estimated to be
proportional to k> and (nk)>, respectively, since the height, %, of a
drainage basin is proportional to the square of the length of the

section, namely,

M o< n3my (A.16)
where mj is the area of one particle, and m, is the area of n
particles. So that, the distributions for one particle and n particles

are considered to satisfy

d
my=n3my (A.17)
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Appendix (4); Supplement for stability of steady states

From Eq.(2.5.4), (or Eq.(2.5.7)), we have the following inequality

for the perturbation:
Z (0. )| <|e (of - conse. (A.18)

In case that ® (o) satisfies criteria (i) in Appendix (1), it is trivial
that E(Q,t)l—) 0 for all values of @ as ¢ = > (remember that for
Q=O,|2 (o, t)l=0 by the boundary condition). In case (iii), obviously
E(Q,t)|—)0 as t—>> for all ¢ except for the points
{24j/lo,j=0,%1,%2,--.}, Since a characteristic function is a
continuous function, E(Q,t)l, must vanish for all ¢ in the limit
t—o0,

In case (ii), we can assume that [p>0 without loss of generality.
The uniqueness and stability can be proven easily if we modify the

definition of the characteristic function by Laplacian transformation
(Eq.(A.1)), as

Z(g,t)=<eom>, & (g)=eoh, (A.19)

In the same way as we derived Eqs.(2.5.2) and (2.5.4), we get the

following inequality:
|2 (o, t )’ <e-elt.const. , (A.20)

this shows that IZ(Q, t )| — 0 as t > « for all values of positive o.
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Thus the perturbation lZ(Q, t )|—> 0 vanishes in the limit £ —° in
all cases. In other words, the aggregation system converges to the

power-law steady-state for any initial distribution.
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