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Abstract

We study two symmetries of asymmetric orbifold models. One is a symmetry between
untwisted and twisted string states and the other is space-time supersymmetry. In both
the cases, careful analysis of massless states is required for a special class of asymmetric
orbifold models. Twist-untwist intertwining currents which convert untwisted states to
twisted ones and vice versa may appear in twisted sectors for the models and “enhance”
the symmetries. Gauge symmetries of the models are analyzed and lists for them are
given. We also investigate supersymmetry of Fg x Eg heterotic string compactified on
asymmetric orbifolds. It is pointed out that unexpected supercurrents may emerge in a
special type of asymmetric orbifolds and enlarge the space-time supersymmetry. Finally

we give an example of N=1 space-time supersymmetric models.
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1 Introduction

String theory was originally introduced to explain the enormous proliferation of hadrons
in strong interaction physics. The theory includes some attractive ideas, and duality is
the most remarkable one. This requires that the whole sum of scattering amplitudes in
the s-channel is given by the same analytic function as that in the t-channel. In 1968,
Veneziano[1] found that such an amplitude is written by Beta functions. In those days,
this theory did not yet have string pictures and developed as the dual resonance model
describing strong interactions. Nambu and Susskind[2][3] noticed that the dual resonance
model is equivalent to the string theory which treats one-dimensional objects instead of
point particles. A string propagating in space-time sweeps out a two-dimensional surface
known as a world sheet, which is a generalization of a world line in the case of the point
particle. The world sheet is parametrized by two parameters, 7 and o, and so string
coordinates X*(7,0) give a map from the world sheet to space-time. The action is given
by the area of the world sheet with an appropriate coefficient[2][4].

The development of the string theory as a candidate for a unified theory was made
after 1972. In this year, Neveu and Scherk [5] discovered that the dual resonance model
has spin 1 massless gauge bosons in infinite limit of the string tension. Soon the existence
of spin 2 graviton was shown by Yoneya, Scherk and Schwarz[6]. Since then, the string
theory has been regarded as a hopeful candidate for a unified theory of all interactions
including gravity. Of course, the string theory has some difficulties. Goddard, Goldstone,
Rebbi and Thorn[7] pointed out that the critical dimension of the bosonic string theory
is 26 in view of quantum anomaly. In order to realize our four-dimensional space-time,
the extra 22-dimensional space has to be curled up to such a scale as we can never
observe (~ 107%3¢cm).

In our world, matter is constructed with fermionic particles. We should make the
string theory to possess fermionic degrees of freedom. Such a string theory is called
a superstring theory. Supersymmetry is a symmetry between fermions and bosons, by
which the action is invariant under the exchange of these two types of particles. The
supersymmetry has good properties in several respects. It cancels a lot of divergent

Feynman graphs. Moreover, it might solve the gauge hierarchy and cosmological constant



problems. Historically, fermionic strings were constructed by Ramond [8], and soon the
bosonic partners were given by Neveu and Schwarz[9]. However, this theory has no
supersymmetry and has an undesirable particle, called tachyon. To make this model
consistent, GSO projection{10] had to be introduced.

The discovery of the anomaly cancellation by Green and Schwarz was done in 1984.
They showed that the type I superstring theory is anomaly-free and finite when it has
SO(32) un compactified internal symmetry. They also pointed out that the same situ-
ation will appear when the superstring theory has Eg x Ejg internal symmetry. Using
this fact, Gross, Harvey, Martinec and Rohm proposed a “heterotic string”[11] pos-
sessing left-right asymmetric degrees of freedom. Since the critical dimension of su-
perstring is 10, the extra 6-dimensional space has to be compactified. Various methods
have been proposed; toroidal compactification, orbifold compactification[12], Calabi-Yau
compactification[13], Gepner [14] and Kazama-Suzuki construction[15] and so on. These
methods have some advantages and are related with each other. For example, orbifolds

are thought to be a singular limit of some Calabi-Yau manifold.

Heterotic string theory may be one of the most promising theories to describe our
real world. Various methods have been proposed for the compactification to realize our
4-dimensional space-time. Orbifold compactification is one of them. Toroidal orbifold is
a generalization of a torus and is given as a quotient space of the torus with its isome-
tries. A lot of classifications have been proposed by many groups[16] and some “realistic”
models which preserve N=1 space-time supersymmetry and possess “standard-like” or
“GUTs-like” gauge group and three generations have been obtained. They offered many
consistent candidates and information about the structure of classical string vacua. How-
ever, we have not yet found a clue to the solution of the problem which the true vacuum
is and why the six extra dimensions are compactified. For the present, all we can do
is to construct 4d string theories consistently and to analyze the vacuum structures
thoroughly.

Asymmetric orbifold models[17] seem to be an intriguing theory. In fact, we do not
see the inevitability for treating the left- and right-moving string coordinates symmetri-

cally in spite of the left-right asymmetric nature of the heterotic string theory. However,



classification of asymmetric orbifold models have not been achieved sufficiently, probably
because of a great number of their possibilities. We need some rules of model building.
In this paper, we will investigate gauge symmetry and space-time supersymmetry of
asymmetric orbifold models. The gauge symmetry is analyzed for bosonic string theories
and the supersymmetry is for E3 x Eg heterotic string theories.
Throughout this paper, we will impose the following two conditions for Z y-orbifold

models.

(i) Momenta in the internal space are on a Lorentzian even self-dual lattice associated

with semi-simple simply-laced Lie algebra G.

(i) Zn-twists 6 act as an automorphism of the lattice and the action of ' (I =

1,...;N — 1) does not have any fixed directions.

The condition (i) ensures the invariance of the one-loop partition function.

As we stated before, lists of the orbifold models which have “standard-like” or
“GUTs-like” gauge symmetry and preserve N=1 space-time supersymmetry already
exist[18]. However, for a special class of asymmetric orbifold models, we found un-
expected phenomena to occur and the classification of this class of orbifold models have
not yet been completed. In previous papers [19], we investigated the classical vacuum
configurations of such asymmetric orbifold models. The models consist of left-moving
string coordinates on tori and right-moving ones on orbifolds. We will call this class
of orbifold models “chiral” asymmetric orbifold models. In the case of bosonic string
compactification, modular invariance severely restricts the allowed models. We ana-
lyzed their gauge symmetry and found that extra conserved currents which concern the
gauge symmetry appear from the twisted sectors and hence the symmetry of the total
Hilbert space becomes larger than we expected. It is noteworthy that the “symmetry en-
hancement” occurs accidentally for specific dimensions of the orbifolds. The conserved
currents are called “twist-untwist intertwining currents”[20], which convert untwisted
string states to twisted ones and vice versa. Moreover we analyzed the supersymmetry

of Es x Eg heterotic string theory compactified on asymmetric orbifolds, whose left-



moving bosonic string coordinates are on tori and right-moving superstring coordinates
are on orbifolds. Orbifolds are defined by dividing tori with discrete rotations {#}. In

the complex basis, the rotations are generated by
0 = exp[2mi(v'J'? 4+ v?J* + 03 J%)], (1.1)

where J* are the SO(6) Cartan generators and v* satisfy Nv* € Z. In symmetric orbifold
models, the condition for the preservation of N=1 space-time supersymmetry is given
by

+o' 0 +0° =0, (1.2)

for some choice of signs[12]. Then the supersymmetry will be broken and the Zy-
invariant part will survive if they are symmetric orbifold models. However, we have to
emphasize that this condition holds for symmetric orbifold models but not for asymmet-
ric ones. In the asymmetric case, unexpected supercurrents may appear in the twisted
sectors and play a role of twist-untwist intertwining currents to “enhance” the supersym-
metry of the total Hilbert space. We found that these models preserve more than N=1
supersymmetry in the chiral asymmetric case. This implies that the condition for the
conservation of N=1 supersymmetry (1.2) is too restrictive for the asymmetric orbifold
models.

The classification of the “enhanced” models for the chiral asymmetric orbifolds was
completed under the restrictions (i) and (i1){19]. However, classification for general
asymmetric orbifolds has not yet been completed. We attempt to construct unexpected,
consistent asymmetric orbifold models with N=1 space-time supersymmetry by using the
“enhancement” mechanism, because such models have hitherto been ruled out by the
reason that they do not satisfy the condition (1.2). We will consider left-right asymmetric
orbifold models[17] with different left-right twists 0L, g and show an example which
preserves N=1 supersymmetry without satisfying the condition (1.2)[21].

The outline of this paper is as follows. In sect.2 we provide a review of symmetric
orbifold models. The notations of this section are used throughout this paper. The
classifications of lattices and automorphisms satisfying the conditions (i) and (ii) are
given near the end of this section. Sect.3 is devoted to explaining the results of ref.[19].

We describe chiral asymmetric orbifold models and point out that twist-untwist inter-
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twining currents may appear in those models and “enhance” the symmetry. The list
of such models are given in table 2-6. In sect.4 we consider Eg X Eg heterotic string
compactified on asymmetric orbifolds. As was pointed out in ref.[19], the symmetry “en-
hancement” may occur in the case of supersymmetry. We show four chiral asymmetric
orbifold models. Finally, we give a “realistic” superstring theory with N=1 space-time

supersymmetry by using the fact that Fg-lattice allows two different twists.



2 Orbifold compactification of bosonic strings

In this section, we review closed bosonic strings on a torus and a symmetric orbifold.
The bosonic string theory is formulated in 26-dimensions. For simplicity of the quan-
tization, we will take the light-cone gauge. Then the string coordinates are given
by Xi(r,0),(: = 1,...,24). We will consider the models whose D-dimensional space
(D < 24) is compactified on a torus and a orbifold. In order to realize our 4-dimensional
world, we should set D =22 so that the transverse two dimensional directions remain

uncompactified. Here, for the sake of applications, we weakly restrict D to be even.

2.1 TOROIDAL COMPACTIFICATION

We will consider a string theory compactified on a D-dimensional torus T?. The torus
is defined by identifying points in the D-dimensional space, X* ~ X' + 7w’, where {w'}
are vectors on a D-dimensional lattice A and represent the winding number of the strings
around the torus. Thus, the torus is obtained by dividing the Euclidean D-dimensional
space by wA:

TP = RP/zA. (2.1)

We will start with the action of the internal part,
S1X] = [ar "da;—{naﬁaaxfaﬂxf + ePBIA, X 9X7), (2.2)
0 n

where 7 and o are the world sheet coordinates and 5*? is a flat metric on the world
sheet and € = —¢!® = 1. BY (i,j = 1,...,D) is a constant antisymmetric back-
ground field introduced by Narain, Sarmadi and Witten[22] to explain Narain torus
compactification[23]. Note that the second term is a total derivative which does not
affect the Hamiltonian H or equations of motion.

On tori, the string coordinates X*(r, o) obey the following boundary conditions,
X (r,0 +7) = X'(1,0) + mw'. (2.3)
Thus, solutions to the equations of motion are given by the form,

X'(r,0)=12'+ (p' — B'w)r + w'o + -;—Z— {a'Lne_Z'"(T"'”) + a’Rne_zm(T_”)} , (2.4)
n#On
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where p' are the canonical momenta conjugate to the center-of-mass coordinates z‘. The

existence of the anti-symmetric background field B* affects the canonical momentum

conjugate to X*(r,0) as follows:

I = = (8,.X(r,0) + B93,X¥(r,0)).. (2.5)

Note that the canonical momenta p* take discrete values according to the periodicity of

z'. We assume the following commutation relations introduced by Sakamoto[24],

[«",p] = i67,
@w] = i
o\ @] = —igs,
[aim,aini M9 ino = [a%m,a%n] , (2.6)

where Q' are the canonical “coordinates” conjugate to w* and all other commutation
relations of operators vanish. Under these assumptions, we can get correct commutation
relations of vertex operators without putting cocycle factors by hand.

We can separate the string coordinates into left- and right-moving ones:
Xi(r,0) = 5(Xi(r+0)+Xi(r —0)),
] ] : : 1 in{t+o
Xi(tr+0) = zp+2pi(r+0)+ zzga']me Zin(r+e)
n#0

: : : . I ~2in(r—-0
Xp(r—0) = zxh+2pg(r—0)+ zzgahne Zin( ), (2.7)
n#0

where we have put the relations between z*, p, Q*, w' and zi, z%, p! , piy as follows:

g = (1+B)id — @,
Py = -;—p’+%(1 B)“w,
Ph = ot =50+ BYw, (28)
or equivalently,
2t = (L + k),



i 1 g5 1 ij g
Q" = F(1+B)7e; — (1~ B) zp,
P = (1+B)7p},+(1 - B)pk,

w' = p} - ph
Then the commutation relations are rewritten into the forms

= 7 = [chrk|,

hoei] = 8% = o],
[zh,2k] = ir(1- B)Y,
. j _ .. . . j
[asz’aLn] - méu&m"'nyo - [akrrnaRn]’
i J _
[aLm,QRn] = 0.

(2.10)

From the eq.(2.9), the left- and right-moving momenta (p},p%) have to lie on a

(D + D)-dimensional Lorenzian even self-dual lattice I'?P[25], which we will explain at

the last of this section. Note that this choice of lattices guarantees modular invariance

of the one-loop partition function.

The mass formulae are then given by

2

1 12 1 .

-mi = =3 ()’ + 352 (1)’ + Np—1,
8 2z:l 2a,=1

1 2 1 D T \2 1 2 a \2

MR = 52(;03) +§Z(PR) + Nr —1,

(2.11)

where p* (@ = 1,2) are uncompactified external space-time momenta in the light-cone

gauge and —1 is due to the contribution from the oscillators to the zero-point energy

and Ny and Ng are the number operators defined by

D oo

Ny, = ZZ LnaLn+ZZaL— QL
i=1 n=1 a=1n=1
D oo

Nr = ZZ QR am*‘ZZ‘)‘R nOFRn-

a=1n=1

Let us calculate the one-loop partition function defined by

Z(r) = Trg"tg"®, g =€,

(2.12)

(2.13)

(2.14)



where 7 is the modular parameter and Hy(HR) is the left-(right-) Hamiltonian. A one-
loop diagram is a 2-dimensional torus. The modular parameter 7 characterizes this
torus. Using the zero mode of Virasoro operators, we can rewrite the partition function
into the form

Z(r) = Trgho-figh=5, =, (2.15)

where D is a dimension of the torus in which the strings are embedded and the trace is

taken over the Hilbert space. In the torus models, Virasoro operators are given by
D 1 . . X .
Lo = 3 {5(rL)"+ X oi-naln},
=1 n=1
- D1, 5. & :
Lo = 3 A5(PR)* + 2. @h-nokal: (2.16)
i=1 n=1
Substituting them into eq.(2.15), we get
1

Z(7) S L iR (2.17)

= D
I’?(T)I (pi,p'ﬁ)er‘D'D

where 7(7) is the Dedekind n-function defined by

n(r) = g/ ﬁ (1-q. (2.18)

String theory has a global symmetry called modular invariance. This symmetry re-
flects the invariance of the complex structure of the world sheet torus under the following

transformation,

ar + b
cr+d’

This transformation is called modular transformation and makes a group isomorphic to

T — a,byec,d€Z, ad-bc=1. (2.19)

SL(2,Z)/Z,. The modular transformation is generated by the following two transfor-
mations,

T : T—-T1+4+1,

S T-o-1/T (2.20)

It is easy to check the invariance of the partition function under these transformations

for each model. We may use the following formulae:

n(r+1) = 7/y(r),
n(=1/1) = V=irg(r), (2:21)



and the fact that PP is an even and self-dual lattice. Invariance under the T-transformation
1s trivial. Note that the momentum sum is transformed under the S-transformation as

follows:

. . . ) - \XDJ2(s=\D/]2
Y e e - (27 l2(i7)P/
vol (TDD)

(p',.pg)€T PP

TP =i (PR)? (2.22)
(pY, i )€rD.D»
where we used the Poisson resummation formula to derive the right-hand side. Since
the lattice I'?'P is even, (pf p)? =even, and self-dual, vol(FD’D) = 1, the partition
function is, together with the oscillator part and zero-point energy, invariant under the

S-transformation.

2.2 SYMMETRIC ORBIFOLD MODELS

An orbifold OP is defined as a quotient space of the Euclidean D-dimensional space R”
with a space group S specified by discrete rotations {6} and discrete translations {w};
S = {#,w}. This implies that an orbifold is defined by dividing a torus TP with its

isometries called point group P,

TD
P
In this paper, we will consider Z y-orbifold models, 8V = 1, with [f, B] = 0 and det(1 —

o°P (2.23)

) # 0 for simplicity. If it is not the case, the Zy-transformation properties of the zero
mode of the string coordinate are nontrivial and some topological effects may appear.
There are two types of strings on orbifolds. One is in the untwisted sector and follows

the boundary condition of the form,
Xi(r,o+7)=X'(r,0)+ 7', i=1,..,D. (2.24)
The others are in twisted sectors and the boundary conditions take the form,
Xi(r,0 4+ 7)) =0"X(r,0)+mw', i=1,..,D. (2.25)
Then the string coordinates are expanded in the untwisted sector as
Xi(r,0) =2' + (p — BYw))r + w'o + X!, (7,0), (2.26)
and in the twisted sectors as
Xi(r,0) = mjﬁx + X, (1,0), (2.27)

10



where wiﬁx satisfy the fixed point equation,
a:"fix = Hijx’f'ix + 7w, (2.28)
and X!, (7,0) denotes the oscillator part of the string coordinates satisfying
X (r,0+7)=0"X] (1,0). (2.29)

It is convenient to introduce a complex basis which makes # diagonal. The orthogonal

matrix 8 can always be diagonalized by a unitary matrix M,
MM =040y, MM =1, (2.30)

and
T

. 0
Odiag = ) , (2.31)
O w™P
where 0 < r; < N — 1 (r; € Z) and w = €*"/N, The set of eigenvalues {w™} is identical
to the set {w™"'} because § is an orthogonal matrix. Thus, we may write the eigenvalues
of 8 as

{w" and w™, i=1,..,D/2}. (2.32)

Then the string coordinates transform as M1 X’. We can rewrite the coordinates into

X (r,0)and X} _ (7,0), (i =1,..., D/2) such as they follow the boundary conditions,

new

X (ryo+7) = wiX: (r,0)+ (torus shift),

new new

X (r,o4+7) = wTX:  (7,0)+ (torus shift), (2.33)

new new

Hereafter, we use these new coordinates and omit the index new. We will introduce
a description developed in 2d conformal field theory (CFT)[26]. In the new basis, the

string coordinates on orbifolds are expanded of the form,

1

Xi(z) = zb —iplinz+i Z — {Mij’yijz'"f — M*‘j'yf;‘;z"f} ,
n;€Z-r;/N>0 N
1 _ i ) = . 1] = —-n; *tj 3t =n,
Xp(z) = g —tprlnz 41 > ——{M"y,’ljz P M E ’}, (2.34)

n;€Z+r;/N>0 n;

11



with pi = ph = 0 for the twisted sectors. Then the quantization condition for the

oscillators are given by

i) = mib96m,n, formi€Z— TN >0andn; € Z — %’J_ >0,
[’_Y:rm’")’f;j] = mi66m,n; form; €Z+ % >0andn; € Z + % > 0,

The mass formulae for §'-twisted sector (I=0, for untwisted sector) are given by

1 12
g(mi)? = §Z(pL) B0+ = E 2+ N+ EP —1,
=1 a_l
Loy _ 1§ M 4
g(m&)" = §Z(pR) S0+ 5 Z 2+ NQ +ED -1, (2.36)

where N, S) and N }({) are the number operators and Eé” is the contribution from twisted

oscillators to the zero-point energy, and they are given by

D
N =Y X v;tv;.+ZZaL_ ol (2.37)

1=1 n;€Z—r;/N>0 a=1n=1
D
1 1 1 a a
N =YY AL+ Z Z R OFiny (2.38)
i=1 n.eZ+n/N>0 a=1n=1

EY = 224“)( =™, (O =1 mod1, 0<¢ <1, (239)

=1

where C,-(l) = r;/N. In the symmetric orbifold models, the eigenvalues of the zero mode

of the Virasoro operators in #'-twisted sector are given by

12 .
Ly = (L) 60+ N + B,
=1
7 (1) 1T& 0 | o0
LO = §Z(pR) 5[’0+NR +E0 . (240)

=1

Note that the energy of the ground states is zero in the untwisted sector. However, in
the twisted sectors the energy is non-zero.
To construct the models explicitly we have to select the momentum lattice. We

choose the Lorentzian even self-dual lattice I'?'P introduced in the torus models. Let

12



us consider the one-loop partition function here. Because of the nontrivial boundary
conditions of the orbifold models, modular invariance of the partition function is not
manifest. Modular invariance may give constraints on the models.

In Zy-orbifold models, the one-loop partition function in the operator formalism will

be of the form,

2 = LS 2(4,9m1)
- Nlm_o g’g7 )

D

L _[.-2
Z(¢g',g™7) = Tr [gﬁ‘)ql“’ 24qL° 24} (2.41)

’
gl —sector

where g is a generator of Zy and g is a twist operator in the g'-sector. Then the

partition function of the g'-sector is written in terms of the projection operator P as

Z(T)gl—-sector = Tr [’PqLO_%qIIO—% gl—seCtOl' ?
1 N-1

where the trace is taken over the Hilbert space of the g'-sector. The projection operator
in the untwisted sector is well known. However, in the twisted sectors, it is not obvi-
ous. We can determine the projection operators in the twisted sectors by means of the
requirement of modular invariance. In general, a modular invariant one-loop partition

function satisfies the relations:
Z(g g™ +1) = Z(g,g"™7),
Z(g', g™ -1/1) = Z(g™™.g%7). (2.43)

Using these relations as a guiding principle, we can construct a modular invariant par-

tition function.

2.3 LATTICES AND AUTOMORPHISMS

We will consider the models whose left- and right-moving momenta (p},p%) lie on a
(D + D)-dimensional Lorenzian even self-dual lattice T5'? associated with a semi-simple

simply-laced Lie algebra G

re’” = {(pL,PR)| PPk € Aw(G) and  pj —pk € AR(G)}, (2.44)

13



where Aw(G) (Ar(G)) is the weight (root) lattice of G and the root vectors are nor-
malized so that their squared length is two. On this lattice, the inner product of the
P = (p%,p%) and P’ = (p}, p}y) are calculated with Lorentzian signature [(—H)D, (—-1)D];
ie. P-P' =YD (pipf — papli) and P- P € Z for all P, P' € T2'P. All lattice vec-
tors have even (length)?. This implies that this lattice is even integral. Furthermore
this lattice is self-dual, i.e. T2”" = I'2"?, in other words, vol (Fg’D) = 1. Then these
choices of the lattices limit the twists {8} because they have to be automorphisms of
the lattices.

The automorphisms of Lie algebras are well known[27]. Let ® be a root system of
the semi-simple simply-laced Lie algebra G. The automorphisms of & make a group

Aut®d. It is known that Aut® is a semi-direct product of two groups [27][28],

Autd = W xAut(®,A),
W N Aut(®,A) = {1}, (2.45)

where W is the Weyl group of ® and A is a fixed basis of ®. Aut(®P,A) is defined as
Aut(®,A) = {p € Aut® | p(A) = A}, (2.46)

and corresponds to the symmetries of the Dynkin diagram of G. This symmetry is called
outer automorphisms of ®.

In this paper, we restrict our consideration to the models whose automorphisms
¢',(I=1,...,N —1) are inner ones and do not have any fixed directions. For the semi-
simple simply-laced Lie algebras, i.e. SU(n+1),S50(2n), Eg, E7, Es and direct products
of them, the allowed automorphisms are classified by Myhill[29).

SU(n+1) : [2(n:1)]—>[n+1]—>[§] for n+1 = prime

2] for n 4 1 5 prime
S0(2n) : PN -2V =52 for n=2"p, n>4
2] for n=p,(p:odd)
SO(8) : [12] — [6] — [4] — [3] — [2]
8] — (4] — [2]

Es : [18] = [9] — [6] = [3] - [2]

14



E7 H [2]

Es : [30] — [15] — [10] — [6] — [5] — [3] — [2]
[24] — [12] — [8] — [6] — [4] — [3] — [2]
[20] — [10] — [5] — [4] — [2], (2.47)

where the numbers denote the order of the automorphisms and A denotes an outer auto-

morphism. Suppose that A is a matrix which generates the highest order automorphisms

in the above rows of numbers, lower ones are induced from its powers. For example,

order 18 outer automorphism of Eg is generated by a matrix,

0
-1
-2
-2
-1
-1

A=

— e e e OO

where we adopted a basis of simple root.

the following matrices,

A A?
Eg: [18] — 99 —

0 0 1 -1
1 0 1 =2
1 -1 2 -2
0 0 1 -1 (2.48)
0 0 0 -1
0 0 1 -1

Then the automorphisms of Eg are given by

AAS A6 49
[6] — [3] — [2] (2.49)

OUTER INNER OUTER INNER OUTER.
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3 Asymmetric orbifold models

In this section, we will describe left-right asymmetric orbifold models with different

left-right twists 6, 8. In this case, the twists act on the string coordinates as follows:
g: (Xr,Xgr) — (0.XL,0rXR), (3.1)

where ¢ is an element of Zy. In the complex basis, these twists are specified by eigen-
values of 0L g, v} and vk, (i = 1,...,D/2). We will consider the momentum lattice.
We consider the following the Lorentzian even self-dual lattice I'g"”[25] associated with

semi-simple simply-laced Lie algebras G with rank D,
e’ = {(py, PR)| PL PR € Aw(G) and pp —pk € AR(G)}, (32)
Then the action of Zx on the momenta is
g9:  (pL,PR) — (87PL, 6RPR)- (33)
Since Zn-transformation has to act as an automorphism of the momentum lattice;
(0p},09p%) € TeP forall (pl,ph) € Te’. (3.4)

Variety of models can be considered. Here we restrict ourselves to the models whose

twists ' (I = 1,..., N — 1) have the origin as the only fixed point.

3.1 CHIRAL ASYMMETRIC ORBIFOLD MODELS

There are a lot of candidates for asymmetric twists. The following Z y-twists will be the

simplest ones.

g: (Xp,Xgr) — (X,0XR), (3.5)

We will call this class of orbifold models “chiral” type. We found that these models
have particular properties[19]. As we discussed in the previous section, the conformal
weight of the ground state in the twisted sectors is positive, while that in the untwisted
sector is zero. Thus, in these chiral asymmetric models, there is a possibility that (0, 1)
states may appear in the twisted sectors. In general, the states with conformal weight

(1, 0) and (0, 1) correspond to conserved currents and they ensure the existence of some
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symmetries. In this case, the appearance of the (0, 1) states will imply a symmetry
between untwisted and twisted sectors. These currents convert untwisted string states
into twisted ones and vice versa. Therefore we will call these currents “twist-untwist
intertwining currents”. Because of the existence of these extra currents, the symmetry
of the total Hilbert space will become greater than that of each (untwisted and twisted)
sectors. It should be emphasized that these (1, 0) or (0, 1) currents cannot appear in the
symmetric orbifold models because the left- and right-conformal weights of the ground
states in the twisted sectors are both positive and equal.

Let us first consider the untwisted sector. Since the boundary condition of the string
coordinates is the same as in the torus case, the left- and right-moving string coordinates
will be expanded as

Xi(z) = =% —ipylnz+1 > la"an'",
nez "

Xp(2) = zh —iphlnz +i X:Z %—a%ni_". (3.6)
ne€

We will introduce a twist operator g(o) which induce a Zy- transformation, i.e.
9: 90 (Xi(2), Xi(2)) 90 = (XE(2),07X3(2)) - (3.7)

Using the same notations with the symmetric orbifold models, the operator g() is given

by

K i i i d
9oy = wrr  >° |pp,Pr >< pL,07pkl,
(py,p)ETDD

D oo
Ti_it i

i=1 n=1

where 7%, = Mtial,, (n € Z,n > 0) and w = €*™/N, Then the one-loop partition

function in the untwisted sector is given by .

1 N-1
ZO(r) = ¥ > Z(1,9™;7), (3.9)
where
-8 _L-£ T
Z(l,g™;1) = Tr [gfg)qlm 2 G 24] , q=em (3.10)



LO = Z{ + Z aL—- aLn})
L = Z{-Q-(p?zf 3 ah_nh ). (3.11)
i=1 n=1
For the model building, we must be careful in that the Zy-transformation (3.5) should

act as an automorphism of the momentum lattice 57 i.e.
(P, 07pk) €Tg™ forall (py,ph). (3.12)

This implies that the Zy-transformation must not change the conjugacy class and we
have to exclude the outer automorphisms, which change the conjugacy class.
Let us consider the g/-twisted sector. In this case, the string coordinates will obey

the following boundary conditions,

X;(e*™z) = Xi(z)+ (torus shift),
Xi(e™z) = 69X%(%) + (torus shift). (3.13)

Thus the string coordinates will be expanded as follows:

. ) . 1 .
Xi(2) = =z —ipplnz+i)  —oj,z7", (3.14)
neZ "
. . 1 o
Xi(z) = zh+i 3 {M'wn " MRty (3.15)
nJ€Z+r,/N>0

In these models, the mass formulae for g'-sector (I=0 for the untwisted sector) are given

by the form,
1o 13 2 Ly o
gme)” = 5 2.(PL) +5Z(pL) + Np—1, (3.16)
=1 a=1
1 18
sm) = S ()60 + 5 Z + N+ ED 1, (3.17)

1

-.
i

where Ny, and N are the number operators defined in eqs.(2.12) and (2.38), and E(l)

is the contribution from twisted oscillators to the zero-point energy and is given by

Bpy = QZC“’( =¢), =1 mod1l, 0<(<1 (318

=1
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Then the partition function in the ¢'-twisted sector will be given by
1 N-1
ZO(r) = ¥ 3 Z(g'g™7), 1=1,2,..,N—1, (3.19)
m=0

where

-2 _[,-L
Z(g',g™57) = Tr [gyg"o 5 g4 ] (3.20)

g'—sector
As in the symmetric orbifold case, we can construct a modular invariant partition func-
tion by making use of the relation eq.(2.43).

We can now expect the form of the twist operator in the [-twisted sector. Let us

construct the partition function with the trace formula in the operator formalism:

D oo
1 i i 1
LO = Z{—Q—(pL)z + Z aL—naLn}’
i=1 n=1

D

T —t =t l

LO = Z Z 7R'n,'7Rn,' + E1(22)’
1=1n,€Z—r;/N>0

gé,) = milo=Lo) (3.21)

Note that the trace of the momenta (p},, pi) is taken over the dual lattice of T2:P defined
by

TP = {(py,pr = 0) € TPP}, (3.22)

and the degeneracy of the ground states in the g'-twisted sector is given by

i \/det(1 — 8

= —pp— 3.23
VOI(Fin;' ) ( )

We can make a modular invariant partition function by using the transformation prop-
erties which it should obey. If we denote by N; the greatest common divisor (N, ) of N
and [, a partition function Z(g',¢g™;7) has to be invariant under the modular transfor-
mation, 7 — 7 4+ N/N,, because 6 = 1. We get a necessary condition for the modular
invariance,
N _
—(Lo— Lo) =0 mod 1. (3.24)
N,
This is called the left-right level-matching condition[17][30] and is the necessary and

sufficient condition for modular invariance. In the chiral asymmetric orbifold models,
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this condition reduces to

N
EE@ = 0 mod 1,
%(p2)2 = 0 mod?2 forall pi eTlpP- (3.25)

3.2 TWIST-UNTWIST INTERTWINING CURRENTS

Solutions to the classical field equations of string theory are described by 2d conformal
field theories (CFT’s)[26]. CFT’s are constructed by the vacuum |0 > and primary
fields ®(w,w), which show the following short distance behavior with the holomorphic

and anti-holomorphic stress-energy tensors,

T(2)®(w,®) = —h—Q(w,w)+ .

(z—_w)2 z—w

T(2)0(w, %) = (—Ef—wé(w,wn-z—j—wawq>(w,w)+(nonsingular), (3.26)

0 ®(w, w) + (nonsingular),

where h and k are conformal weights of ®(w, @) and we take the description (k, A). The

infinitesimal conformal transformation are generated by the Fourier components of T'(2)

and T(z),

dz n o —n—

L, = oy HT(2), T(z)= n:;oo L,z7""2%

7 dZ i1 - 1= o~ 7 ——n-2

L, = py— T(z), T(z)= > L.z , (3.27)
) =

and the L, and L, are called Virasoro operators. In the string theory, we adopt the radial
quantization. Thus we will interpret the dilatation operator Lo+ Lo as the Hamiltonian.
We will define Fourier components of a general holomorphic primary field ¢(z) with

conformal weight h as follows:

d o0
o= § 2 1G0), B(z) = 3 haz R (3.28)

2m

Anti-holomorphic fields may be defined in an analogous way. Let us compute the com-

mutator of the primary field ¢(z) and Lo,

Lo, 6(z)] = ¢ Z2ul(w)e(z)

27

20



dw h 1
W [mﬁﬁ(z) +—— . $(2)

27 —

= hé(z) + 20,¢(z2). (3.29)

Note that this commutator is a total derivative when the conformal weight of ¢(z) is
hs = 1. Since the Ly always commutes with the holomorphic field ¢(z), the following
relation is satisfied for the (1, 0) field,

[Lo, ¢(2)] = total derivative. (3.30)

This implies that ¢(z) is a conserved current. The same discussion will be made for the
anti-holomorphic field ¢(2) and (0, 1) states will become conserved currents for the right
Hamiltonian system.

In the chiral asymmetric orbifold models, we found that such currents appear in
twisted sectors. As we discussed in the previous subsection, the ground states of the
twisted sectors have non-zero and positive energy. In other words, k = E(I) >0,(I =
1,...,N—1). In CFT’s, such ¢'-twisted ground states are constructed by the twist fields
defined by

AD0)]0 >= |AD >, (3.31)

where | 0 > is the ground state of untwisted sector. The twist fields convert the untwisted

sector to twisted sectors. Then the conformal weight of the twist field is given by

Wy = 53 -,
¢V = 1(,.“ mod1, 0< (¥ <1. (3.32)

We are interested in (1, 0) or (0, 1) states in the twisted ones. These states may be
physical because they manifestly satisfy the level-matching condition[30].

L() —_ Eo =0 mod 1, (333)

and correspond to “gauge” symmetric currents in the case of bosonic string theory. In
the case that there exist states with the conformal weight (0, 1) in the twisted sectors,

the following states will represent massless “gauge” bosons,
a7 110 >1 ®|T >, (3.34)
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where a is an uncompactified space-time index and | T' >g is a twisted state with the
conformal weight kr = 1 created from the twisted vacuum |[AY) > and oscillators in the
twisted sectors. Starting with a torus model with gauge symmetry G, we will expect that
the resulting Z y-orbifold model will possess the Zy-invariant gauge symmetry G/Zy.
In fact, this is true for the symmetric orbifold models. However, the above extra (0, 1)
currents appear in the asymmetric orbifold models and unexpected symmetries may be
realized. Here we repeat that these (0, 1) states will never appear in the case of the
symmetric orbifold models. These (0, 1) or (1, 0) states are constructed by (0, 1) or
(1, 0) currents and these currents are called “twist-untwist intertwining currents”. The
twist-untwist intertwining currents convert untwisted string states to twisted ones and
vice versa and “enhance” the gauge symmetry of the total Hilbert space.

Let us consider the condition for the twist-untwist intertwining currents to exist.
In general, the conformal weights of the ground states in the twisted sectors E((,l) =N
depend on the order N and the dimension D of the orbifolds. We have to take care in
the case that N is not prime. The weight h; is given by the formula:

By = L m (1 _ _), 3.35
' p(N) 4 (m§= N N (3.35)

where N; is the minimum positive integer which satisfies (¢')™ = 1 and (V) is the
number of the primitive N;th roots of unity among w™,(m = 1,...,N — 1) , where

/N and m is mutually prime to N. Since we have assumed that the rotation

w=ce
matrices §', (I = 1,..., N — 1) have no fixed direction, w'™, (I = 1,..., N — 1) are not equal
to unity. Therefore we find that each primitive Nth root of unity appears D/yp(N)

times. This implies that the dimension of the orbifolds has to be a multiple of p(N), i.e.
D =0 mod ¢(N). (3.36)

Together with the condition for modular invariance eq.(3.25), we get a condition for the

dimension D, which gives consistent asymmetric orbifold models,

_ (V1) _ _
D =0 mOd_Nlh; forl=1,....N—-1,

> = (1 - -jn\%) : (3.37)

| =
)
Z
=2



Since we are interested in the models which possess (0, 1) states in the twisted sectors,
models are severely restricted. We give a list of such models in table 1. In the second
column, we listed Euler functions. The third column is devoted to a list of allowed
dimensions of orbifolds. In the forth column, a list of the dimensions of orbifold models
which might possess physical (0, 1) states in the twisted sectors. This list is shown up

to N = 30 for our purpose of considering the Lie lattice.

3.3 TORUS-ORBIFOLD EQUIVALENCE

In order to analyze the symmetries of asymmetric orbifold models with twist-untwist
intertwining currents, we will use a trick called “torus-orbifold equivalence”[31]. Any
closed bosonic string theory compactified on a Zy-orbifold is equivalent to a closed
bosonic string theory on a torus if the dimension of the orbifold is equal to the rank of
a gauge symmetry of strings in each of the untwisted and twisted sectors of the orbifold
model. We have discussed such models in this paper.

Let us start with a D-dimensional torus model associated with a semi-simple simply-
laced Lie algebra G. Using the string coordinates Xt (z) and X4(2) (i=1,..., D), we can
construct an affine Kaé-Moody algebra G @ G[32],

Pi(z) = i8.Xi(2),

Vi(a;2) = :exp{ia- Xp(2)} (3.38)
and
Pp(z) = i0:Xp(2),
Vr(e;z2) = :exp{ia- Xgr(2)}:, (3.39)

where « is a root vector of G and its squared length is normalized to two. An orbifold
model is given by modding out the torus with its automorphisms. Since the physical
operators have to be invariant under the Zy-transformation, the remaining symmetry
should become the Zy-invariant subgroup Gy of G. If the rank of Gy equals to D,
we can always construct Zy-invariant operators, Pt (z) and P'%(Z) by taking suitable

linear combinations of Pj(z), Vi(e;z) and Pi(%), Vr(a; z), respectively. In this basis, a
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vertex operator transforms under the Zy- transformation as follows:
gV (ki ks 2)g7" = ek —br R Y (ks 2), (3.40)

for some constant vector (vi,v%). kL(kr) represents eigenvalues of the momentum op-

erator p;(pR) in the new basis. Thus, we can expect that g is given by the form,

9 = pwyexp{i2m(py, - vr — Pr - vr)}, (3.41)

where p(;)is a constant phase with (p(l))N = 1. Under this transformation, the string

coordinates in the new basis transforms as
9(XL(2), Xp(2)g™" = (X[ (2) + 2mv}, Xi(2) — 27vR). (3.42)

This implies that the string coordinate (X}(z), X4(Z)) in the g'-sector obeys the follow-

ing boundary condition:
(X (e¥™z2), Xi(e™ ¥ 2)) = (X} (2) + 2xlvt, Xi(2) — 27lvy) + (torus shift),  (3.43)

and hence the momentum eigenvalues in the g'-sector will be included in the following

lattice,
(P, Pr) € TPP + (v, vR). (3.44)

In the new basis, gé,) in the ¢'-sector will be given by

gl = 2T Lo) (3.45)
where
D 1
L6 = E § +Z ar_n Ln
I=1
_ D 1
Ly = Z 5 ZaR 'n,aRn ) (3.46)
I=1
and
a'zm,a'};n] = 6]6m+n0 - [a Rm» @ Rn] ’
[0/ s 'R = 0. (3.47)
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Comparing eq.(3.41) with eq.(3.45), we can get the form of the phase factor p(,

puy = exp{=il ((v3)* ~ (vR)*)}. (3.48)

This phase factor plays an important role in taking out the physical states. Since g =1,

the shift vector (v}, v%) must satisfy the following conditions,

N ((v)? = (vR)?) = 0 mod?2,
N(vi,vk) € TPD, (3.49)

We require that every physical state should be invariant under the Zy-transformation.
Then the operator g has to act as an identity for the physical states. Thus the allowed
momentum eigenvalues (p}, pft) of the physical states in the g'-sector are restricted to
o o 1 : .
(pL,pR) € TPP +(vy,vR) - with pl v —ph-or—I(vp)"—(vR)") =0 mod 1. (3.50)
The total physical Hilbert space H of the Zy-orbifold model is given as a direct sum of
the physical spaces H;) of all the sectors:

H=Hoy®Hu) D ®Hn-1) (3.51)

The above considerations imply that the total physical Hilbert space of the Zy-orbifold

model is equivalent to that of the torus model associated with the lattice I"?"P,

N-1
7" 71 i i [; 1 i i
I = {(#' 'R € U [DPP +1(0L,0R)] | 9 vr = p-vr— 51 (o))" = (v})*) € 2.

1=0
(3.52)
Note that I'P'P is a Lorentzian even self-dual lattice if PP is so.
With this method, we can easily analyze the symmetries of the orbifold models. In
the chiral asymmetric case, all we have to do is to set v, = 0. Then the above lattice is

reduced to the following one,

N-1
i i i LT
P = {0, pR) e U [FD’D + l(O,UR)] | P~ vR — 51(013)2 €Z}. (3.53)
=0

where the shift vector vi must satisfy

Nvp € A,
Wy ¢ A (I=1,..,N-1). (3.54)
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The shift vector can always be chosen to satisfy the following condition:

where h; is the conformal weight of the ground state of the right-moving strings twisted
by ¢ and is determined by eq.(3.35). We investigate the massless spectrum of these
models. The results are summarized in table 2-6. The Gy denotes the Zy-invariant
subalgebra of G and is the symmetry of each right-moving Hilbert space. Note that the
symmetry of the untwisted left-moving Hilbert space remains to be G. The G’ denotes
the symmetry of the full Hilbert space. The twist-untwist intertwining currents appear
in the twisted sectors and build the physical (0, 1) states in these models. We can
construct an adjoint representation of G’ by the Zy-invariant operators which belong to

. G, together with the intertwining currents.
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4 Heterotic strings on asymmetric orbifolds

Heterotic string consists of a left-moving 26-dimensional bosonic string and a right-
moving 10-dimensional superstring. In order to obtain a 4d string theory, 22 left-moving
and 6 right-moving string coordinates have to be compactified on a compact space such
as torus, orbifold or some manifolds. In this section, we will consider asymmetric orbifold
compactification of 10-dimensional Eg X Ejg heterotic string. It seems natural to study
the asymmetric orbifold models because of the asymmetric nature of the heterotic string
theory. Then the left-moving sixteen bosonic coordinates out of 26 ones are compactified
on a 16-dimensional torus and the momenta of the extra bosons take discrete values
because of the periodicity of the center-of-mass coordinates. They span a Fg x Eg-
lattice T#* P, Since this theory is formulated in 10 dimensions, the extra 6-dimensional
space has to be compactified. We will analyze the supersymmetry of Fs X Eg heterotic

string theory whose extra 6-dimensional space is compactified on asymmetric orbifolds.

4.1 HETEROTIC STRING AND ASYMMETRIC TWISTS

We start by describing the ingredients of the heterotic string in the light-cone gauge.
The heterotic string consists of eight left-moving bosonic fields Xi (o + 7),(: = 1,...,8)
and extra sixteen fields X} (o + 7),(I = 1,...,16). Right-movers include eight bosonic
fields Xj(oc — 7),(¢ = 1,...,8) and Neveu-Schwarz-Ramond (NSR) fermions Ai(o — 7).
We will introduce bosonized fields H*(t = 1,...,4) instead of the NSR fermions, whose
momenta lie on the weight lattice of SO(8). Then the NS sector corresponds to vectorial
weights and the R sector corresponds to spinorial weights of SO(8), respectively.

Orbifolds O are defined as quotient spaces of tori T by the action of discrete rotations
{0}. Now we will consider the following models,

0= ‘z“—R x T, (4.1)
N

where Zy is a discrete group and acts as isometries of the 6-dimensional lattice with
order N; Zy = {6,,1 = 0,...,N — 1} and 6¥ = 1. In order to specify an orbifold,
we will choose a torus T3, and rotations {#}. It is convenient to introduce complex

coordinates Y* = 71§(X2i‘1 +iX%), Y = Z (X% —iX%), (i=1,..,3). In this basis,
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the Zy-rotations are generated by
6 = exp[2mi(v'J'? + 02 T3 4 02 J%9)], (4.2)

where J% are the SO(6) Cartan generators and v' satisfy Nv' € Z and the eigenvalues
can be diagonalized to the form ™', When we divide the left- and right-movers in
the same manner, we obtain symmetric orbifold models. If this is not the case, we will
obtain asymmetric orbifold models.

We will investigate the following asymmetric Z y-transformation denoted by g:

g: (Xi,X%) — (67Xi,6%X%), 4,j=1,..,6,
with 0Mr =1, gMr =
X! - XxI, I=1,..,16,

t

pt = pt 4ot t=1,2,3, (4.3)

where p' are momenta of the bosonized fields H* and then the SO(8) weight lattice is
divided by the shifts v'. The remaining fields X} (i = 7,8) and H* are uncompactified
coordinates in transverse directions. Note that N is the least common multiple of M|,
and Mg and v® is a Zy-shift.

In order to construct the models explicitly, we will restrict ourselves to the defining
tori T$, r such that they are spanned by root or weight vectors associated with semi-
simple simply-laced Lie algebras G with rank 6. Let us consider the (6+6)-dimensional
momentum lattice 1‘2,:6. To ensure modular invariance of the one-loop partition function,

the lattice has to be a Lorentzian even self-dual lattice[25)],
I'g” = {(pL.PR)| PL PR € Aw(G) and  pj, ~ ph € AR(G)}, (4.4)

where Aw(G) (Ar(G)) is the weight (root) lattice of G and the root vectors are nor-
malized such that their squared length is two. G may be given by all the possi-
ble combinations of the following groups allowing the multiplicity with total rank 6:
{SU(2),8U(3),5U(4),SU(5),SU(6),SU(7),SO(8),S0(10),50(12), Es }. Then these
choices of the lattices limit the twists {#} because they have to be automorphisms of
the lattices.We select the models such that the automorphisms are inner ones. More-

over, throughout this paper, we restrict our attention to the Zy-orbifold models whose
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Zn-twists 6' (I = 1,..., N — 1) leave only the origin fixed. These allowed inner auto-
morphisms are classified in ref.[29]. Under these restrictions, we find that there are four

candidates,i.e.,

g (0040 = (5,3 3)
B 0= (55)
Tgm (@) = (7).
LI (&,&,&):(%,%,%). (4.5)

Thus we will consider Zs- Z+- and Zg-asymmetric orbifold models. We will analyze the

space-time supersymmetry of the asymmetric orbifold models with these four twists.

4.2 HETEROTIC STRING ON CHIRAL ASYMMETRIC
ORBIFOLDS

Let us consider the heterotic strings on chiral asymmetric orbifold models whose twists

act as follows:
g: (Xi,Xp) — (Xi,07X%),
X,{ — X,{,

t

P - P+ (4.6)

where 6 is a Zy-rotation matrix and v! a Zy- shift, and they have to satisfy the condi-

tions,

4
O =1, Nv'€Z with N v'=0 mod2. (4.7)

t=1
This transformation implies that the left-moving bosonic string is on a torus and the

right-moving superstring is on an orbifold.

If 10-dimensional heterotic string is compactified on a 6-dimensional torus, the result-
ing 4-dimensional theory possesses N=4 space-time supersymmetry. In orbifold models,
the supersymmetry may be broken by the twists. In the case of symmetric orbifold
models, it is known that for the preservation of 4d N=1 space-time supersymmetry, v*
must satisfy the condition,

+ol 0¥ £ =0, (4.8)
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for some choice of signs[12]. Therefore these four models (4.5) will have N=1, 1, 1
and 0 space-time supersymmetry, respectively, if they are symmetric orbifold models.
However, for asymmetric orbifold models, the above condition for the preservation of
4d N=1 space-time supersymmetry is too restrictive. In ref.[19], we investigated the
supersymmetry of the Fg x Fg heterotic string theories on asymmetric orbifolds of “chi-
ral” type ; Zn : (X1, XRr) — (XL,0XRr) and found that the four models (4.5) possess
N=2, 4, 4 and 4 space-time supersymmetry, respectively. We will show the details of the
supersymmetry “enhancement” in the case of the asymmetric Zg( Eg)-orbifold model.
We will consider the Zg(FEg)-asymmetric orbifold model as an illustrative example.

In this model, the momenta lie on the following 6-dimensional lattice:
T5 = {(PL,PR)| PL>PR € Aw(Es) and py —ph € Ar(Ee)}, (4.9)

where the squared length of the root vectors of Eg is normalized to two. In the complex

basis, the rotation matrices can always be diagonalized as
0 = diaglexp2mi(¢{”, ¢, ¢§V)]. (4.10)

This asymmetric Zg-orbifold model has components

125
M= (2,2 ). 4.11
C (9’9’9 ( )

Note that the gauge sector does not have any effects by the right-moving twists in this
model. Therefore, the “gauge” symmetry is still unbroken,i.e. Fg x Eg x Es. However,
supersymmetry may be broken. In order to see that, we have to analyze the massless
fermionic states.

Before analyzing these states, we will consider the one-loop partition function of the
0'-twisted sector twisted by g™ in order to confirm the consistency of this model. As in
the bosonic case, the necessary and sufficient condition for modular invariance are given
by the level-matching. N

—(Eo— Eo) =0 mod1, (4.12)
N

where E, (E,) is an eigenvalue of the left-(right-) Hamiltonian,i.e. energy. For our

purpose, it is sufficient to check the level-matching for the massless states which concern
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the symmetries. The mass formulae for g'-twisted sector (I=0, for untwisted sector) are

given by
1(1)2 16;2 18 Iy2
3 my’)" = 52( PL) +”Z(PL) + N -1, (4.13)
i=1
1 1 & 1
gmR)’ = 53 (k) 0+ 5 z<p+zvt>2+ NP+ By -5, (414)

1

-
Il

where Ny and N are the number operators and E() is the contribution from the

twisted oscillators to the zero-point energy. They are given by

Ny = zj: i QYO +az:1n£: OF Ol (4.15)
VU SR SRS 35 3r ST (4.16)
i=1 n,'EZ+'r'/N>0 a=1n=1
EY = Zc(” M, O=1M modl, 0<¢¥ <. (4.17)
If we solve the condition
Bo=g(m{P =0, Bo=g(mi) =0, (4.13)

we get candidates of the physical massless states. In the untwisted sector, all the
massless fermionic states cannot survive under the generalized GSO projection intro-
duced for the sake of modular invariance. Since the projection operator has a form of
P = exp2mi(Ti_, p'vt) with v* = 0, where A denotes the operators, we find that the

physical massless states in the untwisted sector are obtained as follows:
" = (0,0,0,£1) >§" ®aj 410>, a=1,2, (4.19)

where a is a uncompactified space-time index in the light-cone gauge. These states
correspond to graviton, antisymmetric background field and a scalar field, and
a"L._1|0 >L
b = (0,0,0,£1) >4 ® LE‘%’%?TOZQL % (4.20)
(L) =2 >
correspond to Fg X Fg X Fg Yang-Mills fields. It should be emphasized that there are

no fermionic states in this sector. This fact is coincident with the expectation from the
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condition (4.8) in the case of symmetric orbifold models. In the symmetric case, this
result of non-supersymmetry reflects the symmetry of the total Hilbert space including
the twisted and untwisted sectors. Supersymmetric orbifold models should have their
supermultiplets in each sector. However, in the chiral asymmetric models, unexpected
conserved currents appear in the twisted sectors. We will investigate the massless states
in the twisted sectors as in the untwisted sectors. In this case, the contributions from
the twisted oscillators to the zero-point energy are given by Eg) = &L (I # 3,6) and
Eg) = 1 (I = 3,6). From the mass formulae (4.13) and (4.14) there may exist (0, 1)
physical states in these twisted sectors and hence symmetry “enhancement” may occur.
After analyzing the one-loop partition function, we have found that the following states

are physical and massless in the twisted sectors:

g-sector:
it t g
Yp-1IP :(070’_1’0) >R a
® ai_|0>r, a=1,2 (4.21)
lpt=(_%,_%7_%a_%) >g{ .
o _ lO >L
A I = (0,0,-1,0) >4 (o) = 2 51
¢ 1 1 _1 _1 g ® I (4-22)
P =(-2,—3—3—3) >k aL;1|20 ~L
(p)* =2>
g*-sector:
it t g
Yp_1lp* = (0,0,-1,0) >% a
Ilz 1 (=1, -1 31y 9 ® ap4[0>p, a=1,2 (4.23)
D =\—3"3,732:3) R
¢ 10>
72 l_lpt = (030,_130) >!I?%2 Tzzil)L = 5>L
e 2 ® I (4.24)
P = (-3 -3 -1 >% o110 >z
(L) =2>1
g>-sector:
1 1 31 3 N
Ip* = (—2, 2,—5,5) >% ® af 0>, a=1,2 (4.25)
aiL,—1|0 >L
1 1 31 3 () =2 >L
t__(__ - _Y g L
P=(=3-3-33)> @ ol 10>, (4.26)
I(PL)? =2>1
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g*-sector:

5

g°-sector:

g%-sector:

g7-sector:

g8-sector:

7R_l|p (0 —1$_210) >g
4
Ip _(__7 2) g _%) >%
Ta_ylpt = (0,-1,-2,0) >4
IP‘=(—§,—§, 5,-1y>4
Yaalp' = (=1,-1,-3,0) >4
5
lpt_( 17 %1_31%) >3:z

|p - (_l’ %)_%’ %) >§2
1 3 7 1

t_' — — —— — —

|p ( 2’ 2’ 27 2)
1 3 7 1

t_ — — —— — —

P =(=5—5:=573)

i 7
7};_%Ipt = (_1’—'23 _4’ 0) >?2
3

1

Ipt = (_E’—

Ta_ilp' = (=1,-2,-4,0) >4

7
P = (-3 -3 -5 -3 >4
Tailp' = (=1,-2,-4,0) >4
8
|pt=(_%’_%3_%a%) >32
Ta-slp' = (=1,-2,-4,0) >4
8
lpt = (_%’_%7_%’ %) >‘(1]3

2

7

' 72

7
7_'12') >g?

33

I'N }
} &® a2—110>L’ a=1,2

}

R} ® ot ,[0>r, a=1,2

a'L._1|0 >r
I(pL)? =2 >1
ai_,|0 >r
(L) =2>L

O‘1L>—1|0 >L

® |(§>‘L)2 =2>p
ap_10 >r
|(P£)2 =2>L

a%—1|0 >L, a= 1’2

ai__llO >L
(pL)? =2 >
a£_1|0 >
(p1)? =2>1

® aj_40>1, a=1,2

O‘L 1|0 >r
I(PL)* =2 >t
aL-—l|0 >
I(p2)? =2 >

® aj 40>, a=1,2

O‘L 1'0 >
I(pp)? =2>L
a£_1|0 >r
(P =2>1

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



Here we have to mention that the degeneracy of the ground states in the g'-twisted

n=____.______\’det(1‘ol)={1 I#3,6 (4.37)

VAR(EG) 3 I=3,6

where Vj (k) is the volume of a unit cell of Ag(Es). In order to evaluate the physical

sectors is given by

states, a detailed analysis of the one-loop partition function is required. For Z y-orbifolds

with non-prime N, a further non-trivial projection may appear.

1 8
Z(r)® = §ZZ(g3,gm;7'), (4.38)
m=0
(6) 13 6 m
Z2(r)® = 52 2% 9™ (4.39)
m=0

It is easy to expand these partition functions in powers of ¢ = €?™” and § = e~?"" and
to show that one of the three degeneracy states survive.

In the asymmetric Zg-orbifold model, the shift vector (v',v?%,v%) = (},2,2) does
not satisfy the condition (4.8) and in fact this shift breaks the supersymmetry in the
untwisted sector. However, supercurrents appear from the twisted sectors because the
ground state of the untwisted left-movers has eigenvalue zero with respect to the zero-
mode of the Virasoro operator Ly and (0, 1) conserved currents exist. These currents play
a role of “twist-untwist intertwining currents”. The twist-untwist intertwining currents
convert untwisted sector to twisted ones and vice versa, and possess a conformal weight
(1,0) or (0, 1) [20]. Owing to the existence of the currents, the fermionic currents become
to the supercurrents of the total Hilbert space. Thus, together with the states (4.19)-
(4.36), we can conclude that this model has N=4 supergravity and super Yang-Mills
multiplet and realizes the N=4 supersymmetry.

It is easy to apply the same analysis to the other three models in (4.5). We get one
N=2 supersymmetric model and three N=4 models. These models are interesting in
itself but not realistic. In order to obtain more “realistic” models, we have to seek other

constructions.

4.3 AN EXAMPLE OF N=1 SUSY MODEL

We attempt to construct 4d N=1 space-time supersymmetric models. Let us consider the

Es-model whose left-moving bosonic string is living on a Zs-orbifold and the right-moving
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superstring on a Zg-orbifold. The FEg-lattice has order 3 and 9 inner automorphisms.

Then the twists act as follows.
g: (Xi,Xgr) — (6YX3,03X%), with 63=1, 6%=1,
X[ — Xi,
PP = P+, el (4.40)
In the complex basis, the rotation matrices can always be diagonalized

0, = diaglexp2mi(¢",¢(), ), (4.41)
0r = diaglexp2mi(¢™M, ¢V, M) (4.42)

This left-Z; and right-Zg model has components
= (5550 (=(552) (4.43)
Because of our choice of the twists, we can expect that (0, 1) states appear only from
g>- and ¢%-twisted sectors and supercurrents appear from these sectors.
Let us consider the one-loop partition function of this model. It consists of the
following parts, uncompactified space-time part, boson parts, NSR fermion part and

zero-point energy part,
Z(1) = Z(7)space-timeZ () x§ x5, Z(7) x1 Z(7)Nsrg " g%, (4.44)

where Fro = —1 and Erg = —%. The explicit form of orbifoldized parts in the untwisted

sector is as follows:

N-1
Z(T)(O) = -]1\7 Z Z(1,9™;7), (4.45)
m=1
Z(lvgm;T) = Z(lvgm;T)X};,ijz(l’gm;T)X,{Z(lvgm;T)NSRv (446)
m # 3,6
m 3 | —2sin Wffm) (1) | & | —2sin 7r(',-(m) n(r
Z(1,9™;7)xi xi, = [ ( (m) i) ,.( ) )|, (4.47)
i=1 91(&|T) i=1 H(G™7)
m=3,6
m 1 3 [ —2sin(x¢™)n(r 10yt )2
Z(]_,g ;T)X}“,X;‘l: 5 [ *( (Cm) )7]( )] Z q2(pL), (448)
(@) =l ET) e
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- s [95(017) + 93(0}7) + 93(01r)] . (4.49)

[

Z(1,9™;7)NsR =

4 4
[H 95 (mo'lr) — Hﬂ (moflr) — [T 95(mof|7) — [] 95 (mv|7)

( ( ) t=1 t=1 t=1

(4.50)
The twisted parts can be constructed by using modular transformation properties. As
in the model described in the previous subsection, the level-matching condition eq.(4.12)
is the necessary and sufficient condition for modular invariance. We analyze the level-
matching for the massless states which concern the symmetries. The mass formulae for

the g'-twisted sector (I=0, for untwisted sector) are given by

1 L)+ SIS ()P + N — 1, for1=0,3,6

g(mi))? = (4.51)
1518, (0h)? + N + EY) - for [ #0,3,6

1 6 1

1
gmR) = 5 (PR)0+ 5 Zp + Ivt)? N“)+E,g’2,—- (4.52)

’
=1 tl 2

where N and N are the number operators. E'( ) and E'g()) are the contributions from

twisted oscillators to the the zero-point energy,

1 3

EY = 525‘”(1-55')), D =1tM mod1, 0<eP <1 (4.53)
=1
1 6

EY = 5Zg(’)( ¢, D=1t modl, 0<¢?<1. (4.54)

Since the right-movers are on the Zg-orbifold, all massless fermionic fields will not survive
under the generalized GSO projection. The remaining physical massless states are as

follows:
p' =(0,0,0,+1) >§" @740 >1, a=1,2. (4.55)

These states correspond to graviton, antisymmetric background field and a scalar field,

and .
ap_1]0 >L

E=2>
£ =(0,0,0,%1) >¥* I(pr) L 4.56
lp" = ( ) >F® al 0>z (4.56)

l(pL)* =2 >
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correspond to SU(3)® x Eg x Es Yang-Mills fields. Here, SU(3)? is a Zj-invariant
subgroup of Fe under the Zjz-twist (4.42). Since there are no superpartners in the
untwisted sector, we will search into the twisted sectors for them. Because of our choice

of the model, the contributions from the twisted oscillators to the zero-point energy are

given by (E), ES))

(1 7

= (3, 37) (I # 3,6), and we find that there are no massless fermionic

states in these sectors since massless states cannot have space-time indices. However,
for the ¢g3- and ¢®-sectors, the orbifold becomes chiral type with (Egg, E',(%I()) =(0,3),(I=

3,6), and the massless states are given as follows:

g3-sector:
1 1 31 3
|pt = (_Ea _55 —'2—’ 5) >!I]Q ®aaL—1|0 >L, a= 1’2 (457)
IRETNPN o
t_(_2 _2 _2 ¢ L) =2>L 4
[(PL)? =2>L
g8-sector:
1 3 7 1
P = (5 ~5—5—5) >k ®afl0 >, a=1,2 (4.59)
LN I e
1 8 P =2>
¢ g PL L
={(——, —=, —=, —— 4.
lp ( 2’ 2a 23 2) >R ® ai_llo > ( 60)
I(pL)? =2>L

The states (4.57) (4.59) are superpartners of graviton, antisymmetric background field
and a scalar field (4.55). (4.58) (4.60) correspond to Yang-Mills fields (4.56). Usually,
the supersymmetry is realized in each sector. In this model, note that each sector does
not have N=1 super Yang-Mills and supergravity multiplets but has some parts. The
existence of the twist-untwist intertwining currents which convert untwisted string states
to twisted ones and vice versa make it possible to possess N=1 space-time supersymmetry

in this model. The twist-untwist intertwining currents are constructed from fields with
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total conformal weight (1, 0) or (0, 1). We will soon discuss such currents that have a
conformal weight (0, 1). By analyzing the massless spectrum explicitly, we can conclude
that this model has N=1 supergravity and super Yang-Mills multiplet and realizes the
N=1 space-time supersymmetry.

In this model, we have to mention that the degeneracy of the ground states in the
g°- and g¢8-twisted sectors as in the chiral model discussed in the previous subsection.
After the detailed analysis, we find that one of the three degeneracy states survive as in

the chiral asymmetric Zg-orbifold model.

4.4 SUPERCURRENTS ON ORBIFOLDS

The supercurrents are constructed from fermion vertex operators[33]. In the covariant
formalism, they are constructed by introducing a spin field e~%/? and five free scalar
fields H? (0=1,...,5) representing the NSR fermions through bosonization. The fermion

vertex operators for the untwisted sector are given by

V.

% — e—¢/2eia,H6ikX’ (4-61)

and for the g'-twisted sector

V_y = e~ #2ilastv D H gikX g (4.62)

-1
2

where e7%/2 is a spin field with conformal dimension 2 for the (8,7) superconformal
ghost system. a, are spinorial vectors of SO(10), a, = (+1,...,£1) with even number
of + signs modulo root vectors and v(!) = (vgl), 0, (1),0 0), vfl) = lv;. The forth
and fifth components correspond to transverse and longitudinal directions in the four
dimensional space-time and k* is a four dimensional momentum. We have replaced
SO(8) by SO(10) in order to follow the covariant formalism. A is a twist field which

creates a twisted vacuum out of the untwisted one and is defined by
A(0)[0 >=|A > . (4.63)

The conformal dimension of the twist field is easily calculated by
Z ¢ - ¢O). (4.64)
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The conformal weight of the currents is contributed additively. For the supercurrents
in the untwisted sector, the spin field contributes by g and the vertex operator with
spinorial weights contributes by g if they exist. As a result, we can get (1, 0) or (0, 1)
conserved fermionic currents. However, in our model, there is no such spinorial fields
because of the physical state condition. As in the untwisted sector, the supercurrents
in the twisted sectors have a conformal weight 2 + (a, + v)2/2 + hy for @'-twisted
sector. It is easy to confirm that the total conformal weight of the currents is 1 when we
substitute the values of p', which we gave in eqs.(4.57), (4.58), (4.59) and (4.60), into
a, = (pl,p2,p3,p4,:l:%) with appropriate sign and v and hy. Then the states (4.55)
are transformed to the states (4.57) (4.59) and the states (4.56) are transformed to the
states (4.58) (4.60) by the supercurrents respectively. If the conformal weight of the
supercurrents is (0, 1) and these currents will play a role of twist-untwist intertwining
currents and the total Hilbert space becomes to possess N=1 space-time supersymmetry.
We will emphasize again that the supercurrents appear from the twisted sectors but not
the untwisted sector and hence the massless fermionic matters are all in the twisted
sectors.

It is convenient to rewrite the fermion vertex operators into the form that 4d space-

time supersymmetry is manifest,

Va(s) = e~*25°%(3),

Ve (s) = e*isish(a), (4.65)
where S are the spin fields given as the exponentials of two free bosons H!? with
conformal dimension § and E(Et) are dimension 2 fields constructed from exponential
of three free bosons H**® and A. The 4d super charges are given by Q, = § dzV2 /,(2),
Qa = §dzV5 /y(2), where o = (£3,£3). & = (£3,F3)

4.5 STANDARD EMBEDDING

Finally we will discuss gauge sector of this left-Z; and right-Zg asymmetric orbifold
model. We consider standard embedding that the gauge twisting group acts on the
gauge sector with the same action as on the six dimensional compactified dimensions.

The gauge twisting group can be realized by a shift V = (V1,..., V&) x (V1 .., V")
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and then standard embedding is given by setting V = (v!,v%,2%0,...,0) x (0,...,0). In
this model, if we assume that the left Zs-twist is embedded in the gauge sector, the
gauge group will reduce to E¢ x SU(3) x Eg. Then the N=1 space-time supersymmetry
is preserved. However, the gauge twists should be the same twists that act to the NSR
fermions. In this case, the gauge group is broken to SO(10) x U(1)? x Eg by the Zg-
twist. Since the gauge twist contributes to the left mass spectrum, pf — pl 4+ V1 in
eq.(4.51), the level matching condition tells us that the gauge breaking effect also breaks

the space-time supersymmetry of this model above the GUT energy scale.
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5 Conclusions

In the first half of this paper, we explained asymmetric Z y-orbifold models with physical
(0, 1) states in the twisted sectors. These states correspond to twist-untwist intertwining
currents which convert untwisted states to twisted ones and vice versa. As we mentioned
in sect.3, the existence of such (0, 1) states restricts the models to asymmetric ones.
Starting with the torus models with gauge symmetry G, we constructed Zy-asymmetric
orbifold models. We investigated the gauge symmetry of the asymmetric orbifold mod-
els and found that the symmetry has become larger than we expected. In the latter
half, we discussed Fg x Fjg heterotic string compactified on asymmetric orbifolds. Mod-
ular invariance and the conditions for the lattice and automorphisms severely restrict
the models. We found four models, i.e. Tsy)y/Zs, Tgs/Z3, Tsyry/Zr, TEs/Zs, to
be allowed. We considered the space-time supersymmetry of these models. Detailed
analysis of massless states tells us that these four models (4.5) have N=1, 1, 1 and 0
space-time supersymmetry, respectively, if they are symmetric orbifold models. How-
ever, for chiral asymmetric orbifold models, Zy : (X, Xgr) — (XL,0XRr), we found
that the four models possess N=2, 4, 4 and 4 space-time supersymmetry, respectively.
They imply that the condition for the preservation of N=1 space-time supersymmetry
+ov! + v? + v3 = 0 for any choice of signs is too restrictive for the asymmetric orbifold
models. Lastly, we gave a new 4d N=1 space-time supersymmetric model compactified
on an asymmetric orbifold associated with the Lie algebra Fs. Here, we also restricted
the models whose Zy-twists §' (I = 1,...,N — 1) act as inner automorphisms and do
not have fixed direction. Under these conditions, Z3- and Zg-twists are allowed for the
E¢-model. We divided the bosonic left-moving string coordinates with the Zs-twist and
the right-moving superstring coordinates with the Zg-twist. The Zo-twist does not sat-
isfy the condition for the preservation of N=1 space-time supersymmetry. In fact this
model has no fermionic massless state in the untwisted sector. However, supercurrents
appear from ¢3- and ¢®-twisted sectors and N=1 space-time supersymmetry is realized
in the total Hilbert space. Then the supercurrent is given by the form of eqs.(4.65) and
plays a role of intertwiner between the untwisted and twisted sectors. It is remarkable

that all massless matter fields appear from the twisted sectors.
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There may be some other examples which possess 4d N=1 supersymmetry in the same
way. It is possible to make the condition (ii) loose because it may be too restrictive. In
this paper, we restricted our consideration to non—embedding'and standard embedding
models. Other approaches, such as non-standard embedding or Wilson-line mechanism,

may give more realistic models.
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6 Appendix

In this appendix we give the shift vectors v} introduced in rewriting the asymmetric
Z n-orbifold models into the equivalent torus models. In the orthonormal basis, the root

lattices Ag of the simple Lie algebras are spanned by

SUn+1) : e—¢ (#34,1<i<n+1,1<j<n+1),
SO(2n) @ *e;te; (1<i<j<n),
Es : xeite; (1£5i<j<5),
:t% (eg —e7—eg+ 2(—1)”“%,-) with éll(l) = even,
Es te;te; (1<i< ;—S 8), )

1 8 ) 8
3 Z(—l)"(’)e; with ) v(¢) = even,

where we have normalized the squared length of the root vectors to two.
The shift vectors vk for the asymmetric Zy-orbifolds satisfying the conditions (3.53),
(3.54) and (3.55) are given in the usual orthonormal basis:
(a) Asymmetric Z;-orbifolds
vh(Es) = 3(2,0,0,0,0,0,0,0),

vH(SO(32)) = 1(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0),
vh(SO(24)) = 1(1,1,1,1,1,1,0,0,0,0,0,0),
vR(50(16)) = 1(1,1,1,1,0,0,0,0),

Wh(SO(8)) = 1(1,1,0,0),

(b) Asymmetric Z3-orbifolds
vh(Es) = 1(0,2,1,0,~1,1,0,1),
vh(Es) = 1(0,1,2,0,1,0,0,0),
Wh(SU(3)) = 3(1,0,-1),

(c) Asymmetric Z4-orbifold

vi(Es) = 3(0,-1,2,1,0,-1,2,1),

vR(50(32)) = 1(0,-1,2,1,0,-1,2,1,0,-1,2,1,0,—1,2,1),
vh(SO(24)) = 3(0,-1,2,1,0,-1,2,1,0,—-1,2,1),
vh(SO(16)) = 1(0,-1,2,1,0,-1,2,1),
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vh(SO(8)) = 1(0,-1,2,1),
(d) Asymmetric Zs-orbifold
vh(Es) = £(0,-1,3,2,1,0,-1,2),
W(SU)) = 1(2,1,0,-1,-2),
(e) Asymmetric Zg-orbifold
vh(Es) = 3(0,-1,-2,3,2,1,0,1),
(f) Asymmetric Z-orbifolds
vh(SU(T)) = 1(3,2,1,0,-1, -2, -3),
(g) Asymmetric Zo-orbifold
vh(Fe) = 5(0,—1,-2,-3,—4,-2,-2,2),
(h) Asymmetric Z;o-orbifolds
vh(Es) = 1(0,-3,4,1,-2,5,2,1),
(i) Asymmetric Zy;-orbifolds
vh(SU(11)) = (5,4,3,2,1,0,—1, -2, -3, —4, —5),
(j) Asymmetric Z,3-orbifolds
vE(SU(13)) = £(6,5,4,3,2,1,0,-1,-2, -3, -4, —5, —6),
(k) Asymmetric Z;s-orbifolds
vh(Fs) = (0,-1,-2,-3,—4,-5,-6,7),
(1) Asymmetric Z;7-orbifold
vR(SU(17)) = £(8,7,6,5,4,3,2,1,0,—1,-2,-3,—4,—5,—6,—7, —8),
(m) Asymmetric Z;g-orbifold
vR(SU(19))
= 2+(9,8,7,6,5,4,3,2,1,0,—1,-2,-3,—4,-5,—6,—7,-8,-9),
(n) Asymmetric Zyo-orbifold
vi(Es) = 55(0,1,1,2,2,3,4,15),
(o) Asymmetric Zyz-orbifold
vR(SU(23))
= 1(11,10,9,8,7,6,5,4,3,2,1,0, -1, -2, —3, —4, —5, =6, —7, -8, —9, —10, ~11),
(p) Asymmetric Zzo-orbifold
vh(Es) = &(0,-1,-2,-3,—-4,-5,—6,—23).
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Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table Captions

¢ denotes the Euler function. In the third column allowed values of D,
which are consistent with the constraints (3.37), are given. In the fourth
column the dimensions d in which (1, 0) states might appear in twisted

sectors are given.

Gy denotes the Z,-invariant subgroup of G, which is the symmetry in

each sector and G’ denotes the full symmetry of the total Hilbert space.

Go denotes the Zs-invariant subgroup of G, which is the symmetry in

each sector and G’ denotes the full symmetry of the total Hilbert space.

Go denotes the Z4-invariant subgroup of G, which is the symmetry in

each sector and G’ denotes the full symmetry of the total Hilbert space.

Go denotes the Zs-invariant subgroup of G, which is the symmetry in

each sector and G’ denotes the full symmetry of the total Hilbert space.

Go denotes the Zy-invariant subgroup of G, which is the symmetry in

each sector and G’ denotes the full symmetry of the total Hilbert space.
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Table 1.

Zy | o(N) | D d

Z, 1 8Z 8, 16
Z3 2 6Z 6, 12, 18
Z, 2 16Z 16
Zs 4 47 114, 8,12, 16, 20
Zg 2 247 24
Z- 6 6Z 6, 12, 18
Zg 4 327 non
Zy 6 18Z 18
Zo 4 8Z 8, 16, 24
VAR 10 10Z 10, 20
Zi, 4 487 non
Zs 12 127 12
Z14 6 247 24
Zs 8 247 24
Z16 8 64Z non
7.7 16 16Z 16
Z.s 6 7272 non
Z1o 18 182 18
Zy 8 16Z 16
721 12 127 12, 24
Z 2 10 407 non
Zo,s | 22 | 22Z 22
2oy 8 967 non
Z,s | 20 | 20Z 20
Zs 12 | 24Z 24
2,7 18 547 non
Zos 12 487 non
Zyg 28 287 non
Z3g 8 247 24
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Table 2.

Asymmetric Z,-orbifold models with (1,0) twisted states.

G Go G’
D=8
Es S0(16) Es
SO(16) (SO(8))? S0(16)
(SO(8))* (SU(2))° (50(8))*
D =16
(Es)? (50(16))? S0(32)
50(32) (S0O(16))? Es x SO(16)
50(24) x SO(8) (S0(12))? x (SU(2))* | E.x SO(12) x (SU(2))?
Es x SO(16) S0(16) x (SO(8))? S50(24) x SO(8)

(50(16))?
Es x (SO(8))?
SO(16) x (SO(8))?
(SO(8))*

(50(8))*
SO(16) x (SU(2))®
(SO(8))* x (SU(2))®

(SU(2))*°

SO(16) x (SO(8))?
SO(20) x (SU(2))®
SO(12) x SO(8) x (SU(2))®
SO(8) x (SU(2))*?
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Table 3.

Asymmetric Zz-orbifold models with (1,0) twisted states.

G Go G
D=6
Ee (SU(3))? Es
(SU(3))® (U(1))° (SU3))°
D=12
(Ee)? (SU(3))° (Ee)?
Es x (SU(3))? (SU3))® x (U(1))® SU(6) x SO(8) x (U(1))?
(SU(3))° (U1)* (SU(2))® x (U(1))°
Es x (SU(3))? SU(9) x (U(1))* SO(20) x (U(1))?
D=18
(Ee)? (SU(3))° Es x (SU(3))®
(Ee)® x (SU(3))° (SU(3))® x (U(1))° SU(6) x (SU(3))* x (U(1))®
Es x (SU(3))° (SU(3))% x (U(1))*? SU(4) x (SU(3))* x (U(1)"
(SU(3))° (U())s SU(2) x (U1
Eg x Eg x (SU(3))? | SU(9) x (SU(3))® x (U(1))* | SU(12) x (SU(3))* x (U(1))?
Eg x (SU(3))° SU(9) x (U(1))° SU(10) x (U(1))°
(Es)? x SU(3) (SU(9))? x (U(1))? SU(18) x U(1)
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Table 4.
Asymmetric Z4-orbifold models with (1,0) twisted states.

G Go G
D=16
(Es)” (SO(10))* x (SU(4))* (Es)?

S0(32) SU(8) x (SO(8))? x U(1) S0(24) x SO(8)
SO(24) x SO8) | SU(6) x (SU(4))? SU(12) x SU(4) x (U(1))?
xSU(2) x (U(1))*

Eg x SO(16) SO(10) x (SU(4))? (E7)? x (SU(2))?
x(SU(2)* x U(1)
(50(16))* (SU(4))? x (SU(2))® x (U(1))* (50(12))* x (SU(2))*
Eg x (50(8))” S0(10) x SU(4) (Ee)* x (U(1))*
X (SU(2))* x (U(1))°
$0(16) x (SO(8))* | SU(4) x (SU(2))° x (U(1))" | (SU(6))* x (SU(2))* x (U(1))*
(SO(8))* (SU2))* x (UQ1))™* (SUE)* x (U1))*
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Table 5.

Asymmetric Zs-orbifold models with (1,0) twisted states.

G Go G’
D=4
SU(5) (U(1))* SU(5)
D=8
Eg (SU(5))? Es
(SU(5))? (U@1))® (SU(5))?
D =12
Es x SU(5) (SU(5))% x (U(1))* S0(22) x U(1)
(SU(5))° (U(1)* (SU#))* x (U(1))?
D =16
(Es)? (SU(5))* (Es)?
Eg x (SU(5))* | (SU(5))* x (U(1))® | (SO(12))* x (U(1))*
b (g(()f(5))4 (u@))re (SU(2))* x (U(1))®

(Eg)? x SU(5)
Egs x (SU(5))®
(SU(5))°

(SU(5))* x (U(1))*
(SU(5))? x (U(1))*
(U)®

(SU(10))* x (U(1))*
(SU(6))% x (U(1))™°
(SU(2))* x (U(1))"®
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Table 6.
Asymmetric Zy-orbifold models with (1,0) twisted states.

Zy G Go G’
| _Er s s < ey (SU(5))°
"1 sue ) SU(7)
D =12
Uy vy (SUB))? x (U(1))?
(SU(T)? wQ)y= (SU))® x (U(1))®
Zo | D=18
|, (SU@)Y x (U(L)S (SO®))® x (U(1))°
N B |sv@rsuey wor Es
(B | sreyx sue)y < ) 50(32)
B | (SUGE x (SUQ)F x U)F | (SUE))™
Zu, | D=10
SU(11) (U(1)10 SU(11)
D =20
(SU(11))? vQ))® (SU2)) x (U(1))10
Z13 D = 12
SU(13) (1) SU(12) x U(1)
Z15 D = 24
(Es)’ (SU@)™? x (UQ))" (SU(2)
Z.7 | D=16
su(iT) vy (SU®))? x (U(1))?
Z]g .D - 18
SU(19) vy (SUB) x (U1))?
Z20 D - ].6
(Es)? (SU@)* x (U(1))2 (Es)?
Z23 D = 22
SU(23) wa)y= (SU@)Y x (UM
Zy | D=24
(Ea)® vy )™
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