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Abstract 
Main purpose of this paper is to examine the effect of the realistic geometry of dust 

aggregates on the evolution of protoplanetary disks. To begin with, two simple models for 
the grain coagulation process, i.e., ballistic particle-cluster aggregation (BPCA) and bal­
listic cluster-cluster aggregation (BCCA) are presented. These simple models demonstrate 
the remarkable influence of the growth kinetics on the geometry of the aggregates. 

Subsequently, computer simulations of the collisions of gas molecules with fluffy aggre­
gates has been carried out to estimate the drag force in the free molecular regime. The 
correlation between the rate of molecular collision and the efficiency momentum transfer 
is taken into account explicitly in our new computational framework. Quasi Monte Carlo 
method (QMC) made it possible to perform multivariate integrations with sufficient ac­
curacies. We show that the gas drag force on fluffy aggregates can be approximated by 
that on area-equivalent sphere in a wide range of relative velocity of the aggregate to the 
ambient gas. The deviation from this approximation is weakly dependent on S, the rel­
ative velocity of the aggregate normalized by mean thermal velocity of the gas, and the 
size/structure of the aggregate,but less than 25 % for all cases investigated in the present 
work. give rise to the anisotropic drag force for S > > 1. 

Chapter 3 investigates Smoluchowski's coagulation equation that govern the dynamics 
of spatially homogeneous particulate systems undergoing coagulation. First, the physical 
and mathematical basis of the equation is discussed. Among several algorithms to solve 
the coagulation equation, Wetherill's scheme has been selected because it provides us accu­
rate results with modest computational cost. Several test calculations for exactly solvable 
collision kernels have shown the excellent agreement with the analytical formulae. Another 
advantage of this algorithm is the capability to follow "Runaway Growth" or "Gellation" of 
the largest body in the system. Related to this topic, previous analytical results concerning 
the scaling properties of coagulation equation are overviewed. We find that the values of 
several homogenity indices are quite useful to predict the behaviour of the size distribu­
tion qualitatively. Moreover, Monte Carlo simulations have been performed to investigate 
the time development of the size distribution and the geometry of each aggregate simul­
taneously. "Topping" technique is employed to increase the total particle number in the 
system and to reduce the computation time. It is found that the clusters formed by these 
simulations have porous and fluffy structures and their irregular shapes are characterized 
with a fractal dimension. The value of fractal dimension is appoximately 2 independent of 
the detail of the collision kernel 

Combining the results of previous chapters, the growth of fratal dust aggregates is 
examined in this final chapter. For thermal coagulation, the growth speed of fractal ag­
gregates becomes faster than that for compact sphere because the cross section is much 
larger compared with the mass-equivalent spherical particle and the relative velocity term 
is not affected by the geometry. In the case of turbulence-induced coagulation, the increase 
of the cross section is larger than the offset by the decrease of the relative velocity. As a 
result, the growth mode changes from power-law to exponential as a function of the unit 
time. On the other hand, the growth mode for coagulation driven by settling or radial 
drift remain exponential since the enhancement of the cross section is exactly cancelled 
by the decrease of the relative velocity. Comparing the time scale for sedimentation with 

3 



that for coagulation, we find that no mass-concentration to the midplane occurs for fractal 
growth. In addition, the transition of gas drag forces can cause runaway growth even for 
the growth of spherical compact particles. The onset of both phenomenon depends on the 
system size under consideration. 
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1 Introduction 

Planet formation starts as a coagulation process of sub-micron sized interstellar grains or re-condensates 
in the protoplanetary disk. Much of the groundwork for modern research into early solar system was 
laid down by Safronov(1969). Also, Hayashi and co-workers in Kyoto group extensively investigated 
the process of planet formation (Hayashi et al. 1985). The "standard scenario" established by these 
authors consists of two separated stages, i.e., 

• stage 1: Planetesimal formation by gravitational instability (Sekiya 1983) 

• stage 2: Planetesimal accumulation by mutual gravity (Lissauer and Stewart 1993) 

In the former stage, dynamics of the solid matter is mainly controlled by the gas drag force whereas 
it is dominated by gravity in the latter stage. Two major reasons which made "standard scenario" 
popular are summarized as below. 

1. The model doesn't require any specification of sticking mechanism other than gravity. Possi­
bly, this is the most attractive feature of the model because it is rather difficult to join two 
particles, especially of sizes'" millimeter to kilometer. For smaller particles, inter-molecule in­
teractions,such as van der Waals force, can serve as effective bonding, whereas gravity works 
for larger planetesimals. In the intermediate scale, however, the effective force for adhesion is 
comletely absent. 

2. While both small grains and planetesimals can stay on the orbits stably, bodies of intermediate 
size, on which gas drag force and gravity exert to the same extent, rapidly spiral into the central 
star.(see,e.g. Adachi et al. and Weidenschilling 1988) In order to pile up small particles into 
planetesimals gradually, the growth must go through this unstable size. But, "standard scenario" 
avoids this difficulty by "Jumping" from dust to planetesimals with gravitational instability. 

Although the simple picture seems quite appealing, the validity cannot be taken for granted simply 
because it provides an convenient bypass. This separation into two stage may be an artifact as pointed 
out by Weidenshiling and Cuzzi (1993). Most serious problem in the scenario is that even weak turbu­
lence generated by the shear between the dust and gas layer would prevent the dust layer from further 
settling and reaching the critical density for gravitational instability( Weidenschilling and Cuzzi 1993). 
The continuous growth model by gradual coagulation has been proposed as an alternative path for 
planet formation. In both cases, we cannot avoid above-mentioned intricate problems concerning the 
particles of intermediate size. 

Solid small particles have no effective force keep them spherical ,such as self-gravity for planetes­
imals or surface tension for liquid droplets. Indeed, both experimental (Praburam and Goree 1995) 
and theoretical (Ossenkopf 1993) studies suggest that the formation of fluffy aggregates is a general 
phenomenon in a variety of environment of astrophysical interest. Thus, it seems quite plausible that 
fluffy aggregates were produced in the protoplanetary disk. Direct evidence to support this conjecture 
has been obtained from interplanetary dust particles (IDPs) collected from the stratosphere (Brownlee 
1987). A large fraction ofIDPs, classified as chondri tic porous type, are irregularly shaped aggregates 
consisting of smaller individual particles with sizes of", O.lJ.1.m and likely largely unmodified remnants 
of the planetary formation process. In this paper, we employ 'fractal' concept to describe the com­
plex geometry of the realistic dust aggregates. As mentioned earlier, the dynamics of dust particle 
in the early stage is controlled by the interaction with the surrounding gas. Since gas drag force 
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in the free molecular regime crucially depends on the cross section, the geometry of the actual dust 
aggregates is expected to play an important role on the evolution of the disk (Meaking and Donn 1988). 

So far, several works considered the influence of the fractal dust growth on the evolution of pro­
toplanetary disks, but clear consequences have not been established. For example, Weidenschilling 
et al.(1989) reported that settling to midplane needs much longer time for fractal growth compared 
with the spherical growth. But later, the result has been shown to be erroneous due to the coarse 
division in mass coordinates in their numerical code to solve coagulation equation. In addition, fractal 
dimension of the aggregates in their calculation are not determined in a self-consistent way, but given 
by an artificial formula. 

In order to overcome these problems, detailed analysis of the rei avant physical process and math­
ematical formulation will be made in this paper. Chapter 2 is essentially a continuation of this 
introduction, reviewing fundamental characteristics of the coagulation in the protoplanetary disk. A 
new numerical method (Quasi Monte Carlo) to investigate the interaction between fluffy aggregates 
and gas molecules is presented in Chapter 3. Using this method, we derive a gas drag formulae on the 
fluffy aggregates in the free-molecule regime. Chapter 4 describes the numerical algorithm to solve 
Smolchowski's coagulation equation. Further, the interaction between the geometry and the kinetics 
of the aggregates are explored with Monte Carlo simulations. Finally in chapter 5, the time devel­
opment of the spatial and size distribution of fractal dust aggregates is examined. The effect on the 
disk evolution is discussed. Conclusions and future plans are summarized in chapter 6. Some related 
publications are cited in appendices. 
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Figure 1: 
Size distribution of n(a) for the 
MRN model and Leiden Model, 
where n(a) is the number of 
particles between radius a and 
a+da. The normalization was 
done to get unity after an inte­
gration of both distributions over 
a. (Mathis 1988) 

Regarding the realistic geometry of the dust aggregates in the protoplanetary disk, the first problem 
to be considered is the definite size and shape of the constituent particles. In addition, it is preferable 
to know the chemical composition of the constituent particles for studying the coagulation process 
because chemical composition can plays an important role on the kinetic aspect of coagulation through 
sticking probability. These problems will be discussed in the following sections. 

2.1 Size and shape of the constituent particles 

It is likely that most of the grains in the protoplanetary disk have originated from interstellar dust par­
ticles. Then, the size distribution of interstellar dust is a plausible candidate for that of the constituent 
particles in protoplanetary disks. The study for the size distribution of interstellar dust stands in a 
controversial area. There are two different types of models for interstellar grains, Le. Leiden Model 
( Hong and Greeenberg 1980 ) and MRN model ( Mathis et al. 1977,). Both models have been 
constructed to explain the starlight extinction curve through diffuse interstellar space. Figure 1 shows 
the size distribution for each model. While MRN model consider spherical dust particles, some elon­
gated geometry is needed to explain the starlight polarization as assumed in Greenberg model. In this 
paper,however, constituent particles are assumed to be spherical for simplicity. 

Naturally, these size distributions in diffuse interstellar space would be considerably altered inside 
the molecular clouds during a contracting phase by the coagulation and condensation of volatile ma­
terial on dust grains. Recent works (Rossi et. al. 1991, Ossenkopf 1993) have shown that coagulation 
driven by thermal motion and cloud turbulence effectively decrease the number of small particles and 
make the distribution narrower. Thus, we consider the constituent particles of uniform size (0.1 '" 1J.Lm 
) throughout this paper. 

2.2 Chemical composition and sticking probability 

Two colliding particles can stick together, or bounce or fragment upon collision, depending on their 
relative velocity, their sizes and their compositions. It is widely accepted that the sticking occurs as 
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The critical velocity for sticking is indicated as a function of grain radius R for three different materials. The 
curve labelled Brownian denotes the grain velocity expected due to random thermal motion (Choksi et al. 1993). 

a result of low-velocity collision between two small particles. Recently, several attempts to estimate 
the sticking probability between small particles have been reported ( Blum and Munch 1993, Gay and 
Berne 1986). In this section, we briefly review the theoretical study by Choksi et al (1993). 

They derived a critical velocity for sticking as a function of gain size and composition. That is, 

",(5/6 

Vcrtitical ~ 3.86 El/3R5/6pl/2 (1) 

where R is a radius of colliding particle, E denotes the Young's modulus, p and "'( , respectively, mean 
the density and interface energy of the particle. It is obvious from Eq.1 that the smaller particle has 
larger value of Vcr , and the critical velocity also depends on the properties of the particle material. 
The material with higher interface energy and smaller Young's modulus shows larger critical velocity 
(see fig.2). It is noteworthy that the velocity due to random thermal motion is always smaller than 
the critical velocity derived from eq.(1). Therefore, all collisions due to random thermal motion of 
constituent particles lead to perfect sticking. 

The contact between two fluffy aggregates is governed locally by the touching constituent particles, 
but the kinetic energy by the whole aggregates. Consequently, the critical velOCity will scale with 
N- 1/ 2 x R-5/6 where N is the number of constituent particles in the cluster. It implies that PCA 
has much higher sticking probability than CCA. When the relative velocity exceeds the critical one, 
the growth enter the stage where the restructuring ,bouncing and fragmentation of the clusters must 
be taken into account (Meakin and Julien 1988, Donn 1990, Dominik and Tielens 1995). However, we 
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shall assume perfect sticking throughout this paper. 

2.3 Simple models of fractal aggregates 

First, the trajectory of the dust particles in the protoplanetary disk is considered. Weidenschiling 
(1977) derived the formulae to calculate the "reaction time" for a dust particle with mass m and cross 
section A moving through the ambient gas with the density of Pg. 

3m 
tf=--

4Apgc 
(2) 

where c denotes the sound speed of the gas. With typical physical conditions in a protoplanetary 
disk, tf ranges from about 0.1 sec to several hours. Multiplying tf by the velocity of the particle, we 
can roughly estimate the length of the inertia motion. A dust particles has a ballistic trajectory if 
this distance is longer than the size. On the basis of above discussion, we present two fundamental 
models of collisional coagulation, i.e. BPCA (Ballistic Particle Cluster Aggregation) and BCCA 
(Ballistic Cluster Cluster Aggregation). BPCA is made by the collisions of a target cluster with single 
"background" particle. On the other hand, BCCA is a complete hierarchical model where the clusters 
are formed out of collisions between two clusters having the same number of constituent particles (see 
Fig.3). An incident cluster (a single particle in case of BPCA) is fired at the target cluster from a 
random direction with a random impact parameter. The pair is rigidly fixed at their first contact 
point. We refer to the previous work for the details of their generation processes and the resulting 
structures(see, e.g. Mukai et al. 1992). BPCA and BCCA corresponds to the extreme growth kinetics, 
respectively. That is, only a biggest cluster in the system grows in BPCA while only smallest clusters 
do in BCCA. In the early stage of coagulation, the random thermal motion is dominant. Consequently, 
smaller clusters with higher mobility are expected to yield quite fluffy aggregates like BCCA (Meakin 
and Donn 1988). As the growth proceeds, other mechanisms become important through gas-grain 
interactions. Due to the differences of the gas drag force on the aggregates, settling to midplane of the 
disk or radial inward drift produce the relative velocity between the different-sized particles. Then, if 
an aggregate acquires higher relative velocity due to an increase of its mass, the growth rate increases 
as a result of high relative velocity. What kind of aggregates are resulted from these environments? 
This problem will be examined in chapter 4 in detail. 
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Figure 3: BPCA and BCCA with 1024 constituent particles 
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3 Free-molecule gas drag on fluffy aggregates 

As mentioned in introduction, dynamical behaviour of solid matter is controled by the gas drag force 
as long as the size is less than kilometer. Therefore, it is indispensable to know the drag force on fluffy 
aggregates to investigate the early stage of disk evolution. Analytical gas drag formulae in the free 
molecule region, available only for some simple shape with convex geometry (Dahneke 1973), yield 
a well known result that the drag force is proportional to the projected area of the target. Thus, 
most of previous literatures (e.g. Weidenschilling and Cuzzi 1993) have simply assumed that the drag 
force on fluffy aggregate is proportional to the projected area as well. The verification of this intuitive 
conjecture is the main issue in this section. Also, we frequently encounter the astrophysical situation 
where the mean free path of the gas molecules is comparable to the size of an aggregate and the 
relative velocity between the dust and the gas is much smaller than the mean thermal velocity of the 
gas. For a spherical particle having the diameter D and the relative velocity U to the surrounding 
gas, the drag force F in the transition regime is expressed by (e.g. Ying & Peters 1991) 

F = 37r'f/DU 
C(D) 

C(D) = 1 + Kn[a + (3exp(-'Y/Kn](Kn = A/D) 

(3) 

(4) 

where A is the mean free path and 'f/ is the viscosity of the gas. Although the values for the quantities 
a, {3 and 'Y have been determined mainly from experiments (Table 1), Takata et al.(1993) has given 
theoretical basis of this formula, solving Boltzmann equation numerically. 

Dahneke (1973) proposed "adjusted sphere" generalization of eq.(4) for nonspherical particles. In 
spite of its simplicity, the interpolation method has been proved to satisfactorily predict the drag force 
on plate(Chen et al. 1988) , cylinders or chains (Pich 1969). In order to recover the correct limiting 
behavior, eq.( 4) is modified as follows. 

(5) 

where Dm denotes the diameter of the sphere of same mass as the nonspherical particle and kc is 
the dynamic shape factor in continuum regime defined as the ratio of the drag forces between the 
aggregates and a sphere having the same mass and velocity. Moreover, Da is "adjusted diameter" of 
an adjusted sphere whose free-molecule limit of C(Da) is equal to that of the specified nonspherical 
particle. In short, the formula provides the smooth connection over the intermediate Kn range with 
reproducing correct limiting behavior (Rogak et al. 1993). While the values of kc for fractal aggregates 
have been obtained in numerous works (see e.g., Rogak and Flagan 1992), the number of studies for 

Table 1: 
Coefficients for slip correction factor 

Author 
Seinfeld (1986) 
Allen and Raabe (1985) 
Hutchins et al. (1995) 

1.257 
1.142 

{3 
0.4 
0.558 

1.2310 ± 0.0022 0.4695 ± 0.0037 
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free molecular drag is rather limited. 

Meakin et al. (1989) investigated the drag force on fractal aggregates in Epstein regime where a 
relative velocity of aggregate to the ambient gas is much smaller than the mean thermal velocity of 
the gas. On the other hand, our previous work (Nakamura et al. 1994) treated the aggregate moving 
much faster than the mean thermal velocity. Both are based on the assumption that the gas drag 
force can be expressed as the product of following two independent factors, i.e., 

• the number of molecular collisions per unit time 

• the mean momentum transfer per collision 

While the former is supposed to be proportional to the relative velocity and the projected area of 
the aggregate, .the latter depends on the surface structure of the aggregate and also the model for the 
molecular-particle interaction. It is difficult to estimate these factors for fluffy aggregates because 

• a certain fraction of the surface of the aggregate is shielded from the impinging molecules 

• a molecule may experience multiple reflection on the surface 

Since these effects make an analytical evaluation infeasible, the previous researchers resorted to 
Monte-Carlo simulations. They made independent estimate of the two factors and simply combined 
them, neglecting a possible correlation between them. Although each result quantitatively confirmed 
the conjecture that the gas drag force on fractal aggregates can be estimated by that on a sphere of 
equivalent geometrical cross section, the validity of the basic assumption that the drag force can be 
separated into two factors is still an open question. Another important restriction of these works is 
the extreme range of the relative velocity between the gas and the aggregate. Naturally, the gas drag 
formula, which can be applied to whole range of the relative velocity, is strongly desired. 

We present a new model to simulate the relevant physical processes as similar as possible in the 
numerical scheme. It involves the concurrent evaluation of the rate of molecular collisions on a surface 
element and the resulting momentum transfer by one collision and covers the entire range of the 
relative velocity to the gas. 

3.1 Computational procedures 

First, the velocity distribution of gas molecules is assumed to be Maxwell-Boltzmann distribution at 
a virtual sphere enclosing the target aggregate. Since we concern a free molecular limit here, the 
presence of the aggregate does not modify the velocity distribution of molecules. Next, we make the 
assumption how an incident molecule is reflected at the surface of the aggregate. Meakin et al. (1989) 
have investigated three cases of reflection, i.e., specular collisions, cosine law diffuse collisions and 
random diffuse collisions. In this section, only specular reflection model is considered for simplicity. 
But, extension of the model to treat other reflection models is rather straightforward. 

Based on the above assumptions, the drag force is estimated by the following procedure. We take 
a Cartesian coordinate system moving together with the target aggregate. During the collision, the 
origin of the coordinate is fixed at the center of mass of the aggregate since the mass of the target 
aggregate is much larger than that of an incident molecule. Incident molecules are successively fired 
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to the virtual sphere enclosing the target aggregate. Taking into account multiple reflections of a gas 
molecule on the rough surface of the aggregate, we follow the trajectories of incident gas molecules. 
Since all reflections are supposed to be specular, the momentum transfer can be calculated for each 
collision. 

The contribution of one molecule to the drag force is estimated by calculating f, the momentum 
variation of an incident molecule along the moving direction of aggregate multiplied by the relative 
velocity. Total drag force is obtained by taking EN, the arithmetic mean of f 

1 N 

EN = N Lf(xl) 
k=l 

(6) 

where N is the number of incident molecules. In order to specify one incident molecule, we need five 
variables, i.e., two coordinates for the impact parameter and three velocity components of the incident 
gas molecule. The latter components are given by the summation of the velocity of the aggregate 
with respect to the coordinate system and the velocity of the molecule in coordinate system. This 
procedure corresponds to multivariate integration of an irregular function. Next problem is how to 
pick up efficient sampling points (xl sequence), i.e., specify the velocity and impact parameter of an 
incident molecule to evaluate the integrand. We will pursue this problem in the following subsection. 

3.2 Search for optimal sampling points 

It is widely known that Monte Carlo method with standard pseudo-random sequences (MC) has a 
great advantage in multivariate integration of complex functions compared with standard numerical 
integration methods, such as a trapezoidal rule. The merit is mainly derived from the property that 
the error bound for MC is independent of the dimension of the integrand while the error bound for 
standard procedures increases exponentially with the dimension. However, the error bound for MC is 
not upper limit. We must be content with weaker guarantee that the error is probably no more than 
a /..(N. Here a is the variance of the result and N denotes the number of sampling points (Traub and 
Wazniakowski 1994). Popularity of MC doesn't mean that it is optimal selection. In practice, the rate 
of convergence of MC is rather slow. Theorem of large number indicates that the accuracy increases 
only as the square root of N. 

Alternatively, the Quasi Monte Carlo method (QMC) has been proposed as an efficient method 
to calculate the multivariate integration (Niederreider 1978). Instead of ordinary pseudo random 
sequences, QMC adopt quasi-random sequences as sampling points. Quasi random sequences generate 
the sample points "maximally avoiding" of each other for efficient uniform sampling of n-dimensional 
space. It should be noted that the term "random" is somewhat misnomer since they are produced in a 
perfect deterministic way. Several previous works (Sarkar & Prasad 1987 j Bratley & Fox 1988) have 
shown QMC gives much faster convergence than MC. In addition, QMC has a rigorous error bound 
if the integrands are functions of bounded variation in the sense of Hardy and Klause (Niederreider 
1978). Unfortunately, this estimation of the error bound is irrelevant to our case because the scattering 
functions of incident molecules are not of bounded variation. Then, a practical way is necessary to 
sidestep the intricate estimate of the error bound even with QMC. Following Fox(1986), we check 
the stability of the temporal estimate EN. A calculation is terminated when the estimated relative 
error IE2N - ENI/E2N becomes less than a certain tolerance (we call it "convergence criterion") 
and N is larger than a certain threshold. To avoid an accidental false convergence, we also check 
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IE2N - EN/21/ E2N· Obviously, this procedure still leaves some uncertainty about the accuracy, but 
that is unavoidable.Among several variations of QMC (Fox 1986), we have employed an improved 
Sobol's method implemented by Press et al.(1991) because it turned out to be most efficient and 
accurate in most applications including numerical multivariate integration. 

3.3 Comparisons of the rate of convergence 

We begin with the comparison of the results of our numerical calculations with an exact analytical 
formula for a sphere. In the case of specular reflection, the gas drag force Fn on a spherical particle 
with a radius a is given by Fn = 2Cn7ra2pU2 (Baines et al. 1965). Here, U is a relative velocity of 
the grain to the gas, p denotes mass density of the gas and Cn is a drag coefficient defined as 

1 1 1 (2) 1 1 
. 2J7r{ (8 + 283 ) exp -8 + (1 + 82 - 484 ) J7rerf(8) } (7) 

where S is a ratio of the relative velocity U to the mean thermal velocity of the gas v: This rather 
complicated expression can be simplified for two limiting cases. When S »1, the drag coefficient 
approaches 2 and Fn is proportional to the square of the relative velocity. On the other hand, when 
S «1, the well-known Epstein law is obtained, i.e., Fn = (47r/3)a2pvU. 

Figure 4 shows the results for S = 1, where the absolute values of fractional accuracy are plotted 
as a function of N, the number of incident molecules. The values are averaged for 10 trials. Although 
QMC gives completely deterministic sample points as mentioned in the preceding subsection, we can 
realize different trials with changing assignation of an identical sequence to five variables. Fractional 
accuracy for MC shows N-1/ 2 asymptotics as expected. One can easily find that QMC substantially 
outperform MC with much more rapid convergence. For example, when the estimate of the drag force 
with 0.1 percent accuracy is required, QMC meets this condition with only a few ten thousands points 
,whereas MC requires more than million points. The ratio would be even greater for higher accuracies. 

Subsequently, the rate of convergence for irregularly shaped aggregates is investigated. Since no 
analytical solution is available for this case, we must rely on the temporal estimation of relative error 
defined in the previous subsection. Figure 5 shows the development of the averaged relative error for 
the case of BPCA with eight particles. It should be noted that one can see no distinct differences 
in the structure between BPCA and BCCA at this size. Although the difference is not so significant 
for the case of sphere, we can see QMC converges faster about one order of magnitude if 0.1 percent 
accuracy is required. It can be concluded from these examples that our model with QMC outperforms 
ordinary Monte-Carlo with pseudo-random sequences and provides reliable estimate of the drag force 
with moderate computational costs. Therefore, we adopt QMC for all the calculations in the following 
subsections. 

3.4 Results 

In contrast to the case of a sphere, the fluffy aggregates have large anisotropy in their shape. Thus, 
two directions of the motion are selected to represent extreme cases. One is the direction along the axis 
with maximum momentum of inertia of the aggregate (X direction), and another is that for minimum 
(Z direction). Roughly speaking, these directions give the biggest and smallest projected area of the 
aggregate, respectively. Since the aggregate contains large amount of vacuum, many molecules fired to 
the virtual sphere enclosing the aggregate miss the target. Figure 6 shows the collision probability, i.e. 
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the fraction of impinging molecules which experienced at least one collision. The targets are BPCA 
with 8 constituent particles and two-touching spheres. While the fraction is not dependent on moving 
direction when S « 1, anisotropy becomes clear as S increases. For two-touching spheres, two rep­
resentative directions correspond to the perpendicular motion, in which it translates orthogonally to 
its line of centers, and the parallel motion along its line of centers, respectively. Moreover, the radius 
of the enclosing sphere is twice as that for a constituent sphere. Consequently, collisional probability 
becomes 0.5 for X direction and 0.25 for Z direction in high velocity limit. 

The product of this collision probability and the surface area of an virtual sphere enclosing the 
target aggregate can be interpreted as surface area of the target when S « 1. Further, this quantity 
completely agrees with the projected area of the target measured by Meakin and Donn (1988) and 
Ossenkopf (1993) as the molecular motion approaches one way flow with S increasing. In other words, 
"surface/projected area equivalent sphere" can be defined so that the sphere moving with same ve­
locity experience the same number of collision of molecules as the fluffy aggregates. If the collision 
probability in high velocity limit is averaged for three directions, it is nearly same to that for S< < 1. 
If we adopt this 'mean' collision probability globally, however, the resulting drag forces reflect the vari­
ation of the collision probability depending on the moving direction. In order to eliminate this effect, 
the local collision probability at a certain value of S is adopted to determine 'adjusted sphere diameter'. 

In fig. 7, the ratios of drag force on tow-touching spheres and BCCA to that on area-equivalent 
sphere are indicated. Setting convergence criterion as 1 %, we took an average for ten aggregates for 
each size. Strictly speaking, the ratio qiffers from "mean momentum transfer" defined in our previous 
work. Yet, we can find the similarity between them as the efficiency of momentum transfer normalized 
by that for a sphere. It should be emphasized that the ratio indicates anticorrelation with the collision 
probability. As a result of this cancelation, the variation of the drag force ratio becomes less distinct 
if the actual drag is globally normalized by the collision probability for S«1. It has been revealed 
that the ratio depends on the size and the structure of the aggregate, but less than 25 % for entire 
range of S. Further, one can see that the drag force differs by 30% even when S « 1, though collision 
probability is nearly same. Hence, the actual drag force depends on the moving direction not only for 
S > > 1 where the shape anisotropy appears, but for S < < 1. What is the reason of this variation 
of the drag force ratio? Naturally it is expected that the process irrelevant for spherical target is 
responsible for this variation. In order to confirm this, the distribution of f for two-touching spheres 
is indicated in figs. 8 and 9. Note that we set the mass of an incident molecule and the mean thermal 
velocity to be unity. While the distribution for molecules with only one collision is indistinguishable 
from that for sphere, the distributions for molecules with multiple reflection is altered remarkably. 
When the two-touching spheres are moving in X direction, fraction of "back-scattered" molecules 
with positive value of f becomes larger compared with the sphere. On the other hand, it becomes 
smaller for Z direction as shown in fig.9. 

In their pioneering work, Chan and Dahneke (1981) investigated the free-molecule drag on two­
touching spheres. Multiplying the momentum transfer for each collision by the molecular collision rate 
on a surface element and taking the sum over the entire surface, they obtained the drag force in a wide 
range of the relative velocity. Since they have integrated a molecular collision rate in advance and 
neglected the influence of screening by adjacent sphere on total collision rate, the correlation effect 
is not considered in a rigorous manner. Nontheless, our calculations show an fair good agreement 
with their results. Table 2 exhibits the ratios of the drag force on two-touching spheres to that on 
single constituent sphere in the case of S = 0.1 where the difference between the exact formula (5) and 
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Fraction of incident molecules experienced at least one collision. The horizontal axis represents 5, the velocity 
of the aggregates normalized by mean thermal velocity of the gas. The targets are two-touching spheres(TTS) 
and BPCA with 8 constituent particles. 
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Table 2: 
A ratio of the drag force on two-touching spheres to that on single sphere 

Author Parallel Perpendicular 
Chan and Dahneke 1.5478 ± 0.0047 2.08623 ± 0.00716 

Present work 1.54397 ± 0.00057 2.09002 ± 0.00043 

Epstein law is less than 1 %. Total number of impinged molecules is 52428800 and averaged values 
for 5 trials were taken. 

Figures (10) - (13) show the dependence of the drag force ratio on S for the fractal aggregates. A 
huge number of incoming molecules is necessary even with QMC as S decreases or the structure of the 
target becomes fluffier because the absolute value of the drag force becomes quite small in such cases. 
It is apparent that the ratio considerably changes around S '" 1 in any cases. For BPCA, the values 
for high velocity asymptotic seem to increase with the size for both directions. In contrast, curves for 
BCCA approach a same limiting value, i.e., 8 % enhancement, regardless of the size and the moving 
direction. On the other hand, one can see no evident trend in the low velocity limit. For Z direction, 
the low velocity asymptotic values increases with size for both types of the aggregates, whereas the 
values for X direction remain about 16% enhancement for BPCA and decrease slightly for BCCA if 
the aggregate has more than 128 constituent particles. 

We have previously reported the 'mean momentum transfer', the averaged efficiency of momen­
tum transfer per collision compared with a sphere, is larger by approximately 10 % for BCCA and 
20 % for BPCA in the high velocity limit (Nakamura et al. 1994). Although we have employed the 
aggregates of same size for both simulations, drag force ratio for BPCA and BCCA in a large S limit 
for present calculations is around 11 %, and 8 %,respectively. This discrepancy can be understood as 
the manifestaion of a correlation between the mean momentum transfer and the collision rate which 
has not been considered in our previous work. 

Further, we can compare our results with the estimation by Meakin et al.(1989). They used more 
refined models than BCCA to generate the cluster-cluster aggregates. Moreover, they investigated 
several different models of the interaction between the aggregate and the molecules for S < 1. They 
found that the drag force ratio of cluster-cluster aggregates containing more than several hundreds 
constituent particles is larger by 9 % for the specular reflection model. In this case, another possibility 
arises for this discrepancy, namely, the difference in the structure of the target. At present, it seems 
impossible to distinguish these two possibilities. Ossenkopf (1993) has shown that the ratio of the 
projected area to the mass for BPCA and BCCA is much greater than that for mass-equivalent sphere. 
Taking into account his results, we can deduce that the drag force on fluffy aggregate is much larger 
than that for mass-equivalent sphere. The enhancement mainly comes from the increase of projected 
area. 
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4 Coagulation Equation 

Smoluchowski's "Coagulation Equation" has been widely adopted to describe the evolution of the dust 
particle or planetesimal size distribution. That is 

a 11m 
" [00 , at n(m, t) = 2' 0 K m_m, ,m,n(m ,t)dm - J

o 
Km,m,n(m, t)n(m ,t)dm (8) 

or in discrete form as 

00 
= L Kijnmj - nk L Kkmi (9) 

i+j ::: k i ::: 1 

Here nk denotes the number density of k-mer (the particle with mass k) and Kij is the collision rate 
between i-mer and j-mer. In these equations, the fragmentation resulted from high velocity collisions 
is neglected. In addition, sticking efficiency is assumed to be unity independent of the size of the 
dust aggregates as noted in chapter 2. Although this deterministic approach, represented by a set of 
differential equations, is quite popular, the limitation should be understood correctly. This fomulation 
involves two important appproximations, i.e., the mean-field assumption and the lowest order clusure. 
(see, e.g., Sampson and Ramkrishna 1985,1986). A following section will investigate these problems 
in detail. 

4.1 Validity of coagulation equation 

From the end of 1960's to the beginning of 1970's, the validity of coagulation equation as a model for 
droplet coalescence in a warm cloud has occasioned a lively debate in the field of atmospheric sciences 
(Prupaccher and Klett 1978). Some authors claimed the equation is stochastically incomplete because 
it describe only the average behavior and the fluctuation is neglected. Probably, most important 
contribution to this problem was the paper Bayewitz et al (1974). They employed more fundamental 
description of a random coagulation process with M monomers in a finite system. The so-called Master 
equation is formulated as 

F(m, t) = (10) 

Here, m = {md represents a cluster distribution: ml monomerS,m2 dimers,m3 trimers,··· etc. 
m~ = {ml + 8il + 8jl - 8i+j, I } represents a similar distribution containing an extra i-mer and 
j-mer and one less (i+j)-mer. P(m, t) is the probability that the cluster distribution at time t is m. 
For monodisperse intimal conditions, 

P(m,t) = 1, if m = {M,O,O, ... ,} 

= 0, otherwise 

(11) 

While coagulation equation (9) gives a deterministic description, Master equation provides a more 
realistic picture of stochastic coagulation processes with intrinsic fluctuations. Many authors have 
proved that coagulation equation derives physical validity as the limit of this equation (Tanaka and 
Nakazawa 1994, Lushnikov 1978, Hendriks et al. 1985) Here, we overview the proof following Spouge 
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(1985). 

The generating function of P(m, t) , 

satisfies 

'I/J(X, t) = L P(m, t)Xl ml X2 m2,'" xmmM 

(m) 
(12) 

(13) 

Applying the operator xllxi to Eq.(13) and evaluating the result at Xl = X2 = X3 = ... = Xm = 1 
yields 

r.l7fi4 1 M 
M_k = - "" K .. (m·m· - m·6 .. ) - "" K'k(m'mk - m·6·k) dt 2 L.J ~J 1 3 1 IJ L.J t' , , 

i+j=k i = 1 

(14) 

where the upper bar means an expectation. Iterating this procedure, one can generally indicate that 
the evolution of N-order correlation will include N+1-order correlation. To terminate this infinite 
expansion, a closure hypothesis, a relation between N and N+1 correlation, is needed (Sampson and 
Ramkrishna 1986). Coagulation equation is derived from the lowest order closure: 

as M ~ 00 (15) 

Setting Nk = mk/M, one can easily confirm that Master equation (10) becomes equivalent to Co­

agulation equation. From eq.(15), it can be concluded straightforwardly that coagulation equation 
neglects the correlations and fluctuations of cluster number in a real system. Consequently, its utility 
must be severely constrained when the fluctuation play an important role for the evolution of the 
system. From this point of view, the system size should be set as large as possible. 

Up to now, only special types of kernels are known to have analytical solutions ( see table 3). They 
are constant kernel, kernel proportional to the sum of the two colliding mass, and kernel proportional 
to the product. The exact solutions for mono disperse initial condition are summarized in table 3. 
Derivations using generating function method can be found in the appendices of a series of papers 
by van Dongen (1987 II,III). Similarly, their stochastic counterpart have been also obtained. (see e.g. 
Hendriks et al. 1985). Tanaka and Nakazawa (1994) examined the condition under which the solutions 
of Master equations are reduced to that for corresponding coagulation equation. While they consid­
ered not equation itself, but the solution, van Dongen and Ernst (1987 II) investigated the validity 
criteria for coagulation equation with such exactly solvable kernels using van Kampen's f.!-expansion 
method. Both authors found that coagulation equation with the product kernel is valid only if the 
mean cluster size S «M2/3. van Dongen (1987 III) extended the study and obtained a general condi­
tion for non-gelling homogeneous kernels, i.e., S « M. The case for constant kernel has been studied 
with various methods, such as direct spatial simulation (Mulholland and Mountain 1986), higher order 
closure hypothesis (Murthy 1987) or analytic solutions of Master equation (Bayewitz 1974). 

Another problem in the formulation of coagulation equation is the absence of spatial information. 
Namely, it is based on mean-filed assumption that particles are uniformly distributed independent of 

22 



Table 3: 

Kernel / Nk 
Constant (1 + t/2) -1 /2(1 _ f)/C--1 

Sum exp( -t) kk-l k-l 
kr /(1 - f) exp (-k(l - f)) 

Product 1- t/2 ~(~)(k-l) exp (-kt) 

Exact solutions for monodisperse initial condition. Total mass and the time t in the system are normalized to 
be unity. J and Nk denotes the total cluster number and fraction of k-mer, respectively. 

the location in the system. As particles in a given region undergo a series of coagulation, however, 
there is a corresponding decrease in the number of particles in that region available for further co­
agulation.lf the diffusion is not rapid enough to compensate this effect, correlations between particle 
numbers and the spatial inhomogeneity is not completely washed out. Hence, mean-field assumption 
is justified only when the time scale for coagulation is much longer than diffusion time scale (Nicolis 
and Prigogine 1989). Actually, diffusion-limited systems have an upper critical dimension under which 
mean-filed assumption breaks (Ziff et al. 1985, Kang and Redner 1984). Most well-known example is 
the dynamical befavour of one dimensional models, such as diffusion-reaction model (Doering 1990) 
and ballistic aggregation model (Jian and Leyvaz 1993,1994),. Since settling induced coagulation in 
the protoplanetary disk is expected to be one-dimensional process, we should pay a special attention 
to this problem. Wright et al. (1993) and van Dongen (1989) should be referred for recent progress. 
In order to account for the spatial inhomogneity, an diffusion or transport term, such as 8nkvk/8z, 
can be added to coagulation euqation. However, this approach becomes inconsistent with mean-field 
assumption if the spatial gradient becomes so steep. For example, Nakagawa et al. (1981) and Ohtsuki 
and Nakagawa (1988) logarithmically divide the spatial coordinate to give higher resolution near the 
location of concern. It means this approach requires a prediction about resulting spatial homogeneity 
in advance. However, the consistency of the ansatz have not been checked. And even if the ansatz is 
correct, it cannot exclude other completely different distribution. 

In this section, the physical and mathematical basis of coagulation equation have been investigated. 
The system size should be as large as possible, in order that the effect of fluctuations is small (see eq. 
15). In contrast, the smaller system size is preferred for the mean-filed assumption. Further, homo­
geneity of the physical parameters affecting the collision kernel impose the upper limit of the system 
size. Consequently, we should choose the system size very carefully to fulfill these two contradictory 
conditions. This will be the main subject in section 5.4. 

4.2 Scaling properties 

We begin with the introduction of moments Mn(t) of the size distribution, which is an quite important 
tool in our argument. 

00 

Mn = L kn Nk (16) 
k=l 

Thus, the zeroth moment Mo is the total cluster number and the first moment Ml should be constant 
if the mass in a system is conserved. Most of previous analytical studies on coagulation equation is 
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based on two major assumptions, namely the kernel homogeneity and the scaling property of the size 
distribution. The first assumption is represented by 

K 'xK" ai,aj ex a IJ (17) 

(18) 

Moreover, the cluster size distribution normalized by "mean cluster mass" S(t) is assumed to tend 
towards an invariant form ~ 

(19) 

Substituting eqs.(17) and (19) in eq.(9), we obtain two important equations connected with separation 
constant W, i.e., 

- W[x~' (x) + 2~(x)l = lim _2
1

1(I-e)x dy K(y, x - y)~(y)~(x - y) - ~(x) 100 

dy K(x, y)~(y) (20) 
e!O ex ex 

(21) 

While the former determines the static shape of the scaling function, the latter describe the evolution 
of "mean cluster size". Equation (20) has the following invariance properties. Let ~(x) be the solution 
of eq.(20) for some constant w. Then for all a, b > 0, 

~(x) = b~(x/a) (22) 

also satisfies eq.(20) with 
(23) 

Thus, their exists a two-parameter family of scaling function which determines the scale in x and ~ 
axis. To determine the values of parameters a and b, two conditions must be imposed. For non-gelling 
systems, the first condition is the mass conservation. In terms of scaling function, that is 

PI = 10
00 

x~(x)dx = constant (24) 

Throughout this paper, we set PI = 1. A second condition is given by a precise definition of the mean 
mass S. Different definitions corresponds to different values of a and b. Conventionally, S is defined 
as the ratio of consecutive moments, i.e., 

(25) 

U sing these rather simple formed kernel characterized by the exponents J,t, v and ). and the scaling 
assumption, the kinetics of coagulation processes can be described quantitatively (van Dongen and 
Ernst 1985 I, II). 
The most important property is determined by the value of ).. If), < 1, it follows from equation (21) 
that 

S(t) ex tl/(I-,X) (26) 
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It seems natural to expect that>. = 1 becomes the critical point. Hedriks et al. (1983) has proved 
that mean mass evolves as 

>. < 1 Power-low growth 
>. = 1 Exponential growth 
>. > 1 Gelation (Runaway growth) 

Here, what does "Gelation" or "Runaway Growth" mean for third class? It should be noted the latter 
word is a jargon in the field of planetary sciences. In this paper, we will use both words case by case. 
An instructive example of "Gellation" is given by the product kernel as follows. Multiplying Eq. 9 by 
k and summing up from 1 to 00, we can obtain the equations for time development of the moment 

d~ ~ n } dt = L.J Kijninj( { (i + j) - in - jn 
i+i = k 

one can easily derive following results for product kernel 

dM2 = M? 
dt 

With a initial condition that M2(0) = 1, the solution is given by 

1 
M2 = --

1-t 

(27) 

(28) 

(29) 

Since the second moment represents the mean mass in the system, its divergence within finite time 
te (= 1 in this example) indicates the appearance of infinite-sized cluster in the system. This is the 
phenomenon called "gelation". Even with gelation, a different types of scaling relation holds for the 
size distribution near and after te. We refer to Ernst et al. (1985) and Hendriks et al. (1983) for 
further detail. 

In order to investigate the evolution of the system after te, we must specify the sol-gel interaction 
(Ziff and Stell 1980, Ziff 1980). In other words, the mass flux from the sol to the gel phase must be 
modeled on the physical basis. Multiplication of coagulation equation with k and summation over all 
k < < L gives an equation for the mass flux from clusters of size k < L to clusters larger than L: 

L L 00 

J(L, t) = - L kNk = L L iKijNiNj (30) 
k=l i=lj=L-i+l 

In the pre-gell stage (t < t e ), where the mean cluster size is finite and large clusters are relatively 
rare, the mass flux vanished as L-+ 00, i.e., J(oo, t) = O. Consequently, the mass conservation holds 
for only with the sol mass for t < te 

00 

Msol = L kNk = constant (31) 
k=l 

At the gel point, or in generall for all t > te , Nk(t) falls off algebraically, not exponentially, so that 
J(L, t) approaches a finite, non-vanishing limit as L -+ 00. Therefore, there exists a non-vanishing 
mass flux J(L, t) = -M·(t) from the sol to the gel phase and the mass conservation is replaced by 
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Msol + MG = constant (32) 

where MG represents the mass of the gel. Thus, equation (27) after tc should be replaced with 

(33) 

where In(L, t) is 
L 00 

In(L, t) = L L in KjjNiNj (34) 
i=l j=L-i+l 

Namely, the critical point is marked by not only the moment divergence but also the onset of a 
mass flux from the finite-sized cluster (sol) towards the cluster of infinite size (gel). The problem how 
to model this mass transfer will be discussed later in section (5.4). 

Subsequently, we divide the non-gelling coagulation equations (>. < 1) into subclasses by the value 
of J1. CLASS I,ll and III corresponds to the case for J1 < 0, J1 = 0, J1 > 0, respectively. Levvraz (1986) 
indicated that Class I kernels give the power-law at the lower end of the size distribution while bell­
shaped size distributions are realized with Class III kernels. The behavior of Class II kernels, which 
are quite important in realistic applications as we will see in the next chapter, are more complex and 
depends on the property of the kernel. But if J1 = 0, 1) = >. = 1 (van Dongen 1987 II), their behavior 
is similar to that for Class I, i.e., power-law size distribution. But the exponent 1" cannot be directly 
related to the homogeneity exponents. The relation between these scaling functions and the exponents 
are listed in table (4). We refer van Dongen and Ernst (1988) for more detail. Figures 14 and 15 show 
the evolution of the size distribution with following two test kernels 

(ij) 1/4 

= C 1/4j3/4 + j-l/4i3/4 
(Class I) 

(Class III) 

(35) 

(36) 

Each plot is drawn when the total cluster number becomes the half of the previous epoch: i.e., 
1/2,1/4,1/8,1/16, times initial particle number. Unless the interval is specified explicitly, all following 
figures in this paper are drawn in the same manner. Although the lower tails of the distribution show 
different behavior, the mean size increase in a similar way because they share the common exponents 
>. (fig.16). In figure 17, the numerical calculations are compared with the prediction based on scaling 
assumptions. One can see the excellent agreement. Also, an experimental evidence of dynamic scal­
ing is reported by Broide and Cohen (1990). However it should be noted that the results obtained 
with scaling property have the status of a conjecture to some extent and cannot rule out completely 
different asymptotic behavior. 

The difference between Classes can be understood as follows. Since the value of exponent J1 is 
positive for Class I kernels. larger aggregates preferentially accrete equally large ones, leaving a poly­
disperse system (power-law) behind. Contrary with Class III kernels (J1 < 0), the system remains 
fairly monodisperse as large aggregates grow first by eliminating small aggregates. This rather in­
tuitive explanation for the difference between Classes has a profound implication in answering the 
question raised at the end of chapter 2. Here, we restate the question: 
"What kind of aggregates are resulted from a certain coagulation process?" 
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Table 4: 

J..t value Small x behavior 
>0 x T (r = 1 +,x) 
=0 x T (r = 2 - p>./w) 

<0 exp( -x-1J.l1) 

Properties of scaling functions. w is a sep­
aration constant and POi = It xOi(?(x)dx 
(van Dongen and Ernst 1985 II) Large x 
behavior can be expressed with (?(x) '" 
x>'exp( -zx) universally (van Dongen and 
Ernst 1987 I). 

Intuitively, it is expected that the bell-shaped size distribution for Class III kernels yield cluster­
cluster aggregates. Since we obtain S(t) '" Ks,s from eqs.17 and 21, one can see that collisions between 
two aggregates of typical size are dominant to change mean cluster size distribution. Naturally, this 
leads to the formation of fluffy aggregates like BCCA. On the other hand, it is somewhat uncertain 
what kirid of aggregates are formed from Class I kernels. One may expect BPCA for power-law size dis­
tribution because only large aggregates at the upper tail of size distribution grow, consuming smaller 
aggregates. But this argument is not true because larger aggregates preferentially collide with equally 
large ones as noted earlier (J..t > 0). It means that large aggregates are formed by piling up smaller 
aggregates (of course not always equal-size) step by step even with Class I kernels. With Class III 
kernels, the whole system evolves with the peak of the bell-shaped size distribution, whereas most of 
the mass is concentrated in the upper-tail of the power-law distribution is for Class I kernels. Hence, 
the collisions between larger and smaller particles than the peak have negligible contribution to change 
the mean mass for CLASS III kernels. From these consideration, we may conclude that filamentary 
aggregates, such as BCCA, are generally produced in coagulation processes unless gelation (runaway 
growth) occurs. This preliminary conlusion will be checked further in section (4.4) by Monte Carlo 
simulations. 

We classified the kernel using the values of J..t and ,x in this section. A classification with l/ values 
will be considered in section 5.4 in conjunction with the system size dependence of the onset of 
gelation. Moreover, Scaling formulation has been extended to coagulation with injection (Hayakawa 
and Hayakawa 1988, Hayakawa 1987) and coagulation with fragmentation processes. (Meakin and 
Ernst 1988, Elminyawi et al. 1991) Finally, we remark that the results based on homogeneous kernels 
assumption' (eq.17) . is also valid for asymptotically homogeneous kernels, -with the-property- Kij fV 

li ->'K IIla--oo a ai,aj· 

4.3 Numerical scheme 

In this section, we present the detail of our code to solve coagulation equation numerically. If the 
mass distribution is linearly divided, the number of necessary bins becomes unacceptably large to 
cover the tremendous wide mass range of interest (FrenKlach and Harris 1987). Several techniques 
have been developed to reconcile the computational cost with the accuracy and numerical stability, 
such as sectional method (Bleck 1970) and J-space transformation method (Berry 1967).Extensive 
comparative studies can be found in Seigneur et al. (1986) and Tohno (1995). The common basic 
idea in these methods is the static division of mass coordinates in logarithmic scale. In contrast 
to these fixed mass-coordinate algorithms, Wetherill and Stewart(1989) has presented the numerical 
scheme with a number of "moving" batches, While usual methods use fixed mass bins to represent the 
actual size distribution, their "Lagrangian-type" approach employs the batches with variable width. 
A crucial attribute of this algorithm is the probabilistic procedure used to simulate abrupt changes 
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in the mass of the largest body. During a time step of length t::..t, the collision number between i-mer 
and j-mer is given by 

Vij = NiNjkijt::..t (37) 

Usually, this number becomes quite large and express the decrease of the number of i-mer and j-mer 
and the increase of the destination batch of (i+j)mer. However, the value of Vij often falls between 0 
and 1 if i-mer and j-mer represent very large bodies. In this case, it is physically reasonable to interpret 
a fractional value of Vij as a collision probability per time step. Thus, the procedure creates a new 
batch containing one body only when mi + mj exceeds the mass of he largest body by a preassigned 
factor fl. and Vij exceeds a random number between 0 and 1. Thus, this algorithm can be regarded 
as a hybrid of the probabilistic (Monte Carlo) and deterministic (coagulation equation) approach. At 
first glance, the formulation of the algorithm may seem to be rather heuristic, not mathematically 
rigorous. However, the algorithm can describe the evolution of mass distribution very accurately, even 
for gelling model as shown below. Consequently, we employ this algorithm with fl = 1.1 to solve the 
coagulation equation throughout this paper. 

As pointed out by Ohtsuki et al.(1990), it is quite important to check the accuracy of numerical 
calculation by the comparison with analytical exact solutions. They have shown that calculations with 
a fixed mass-ratio between neighboring mass coordinates more than V2, can substantially overestimate 
the number of bodies at the tail of mass distribution. Figures 18 f'oJ 21 show the results of our 
simulation. The initial monomer number is 1020 . One can see excellent agreement between the results 
of numerical simulations and the corresponding exact analytic solutions. In particular, calculations 
for product kernel have special meaning to examine the capability of a numerical scheme because it 
provides only one analytical example of gelation (runaway growth). 

4.4 Monte Carlo simulations 

As we found in chapter 2, the kinetics of coagulation process plays an important role to determine the 
geometry of the resulting aggregates. On the other hand, the actual shape of the aggregate controls 
the kinetics through the collision rate depending on the gas drag force. It is likely that the actual ag­
gregation process consists of a combination of two extreme cases, namely BPCA and BCCA. We must 
examine the both aspects in a self-consistent scheme in which a pair of clusters is merged with ballistic 
trajectories according to the collision probability. Recently, two-dimensional coagulation equation has 
been developed to investigate the geometry and the kinetics simultaneously. It can treat not only the 
mass, but another parameter, such as porosity (Ossenkopf 1993) or surface area (Xion et al. 1993), 
as the physical quantity to specify the shape of the aggregates. However, we concern the traditional 
approach, i.e, Monte Carlo method in this section (Sutherland 1967, Sutherland and Goodarz-Nia 
1971). 

In general, Monte Carlo method (MC) is regarded as an approximation to follow the coagulation 
equation. But this view is a complete misunderstanding since MC is based on more fundamental 
representation of actual physical processes including intrinsic fluctuations, Le., Master equation. Ac­
tually, Gillespie (1975) proved that MC with an appropriate algorithm can faithfully follow the time­
development of the system described by Master equation. It is well-known that Gillespie's algorithm 
gives most rigorous procedure among several variations of algorithms for MC calculations (Lapidus 
and Shafrir 1972, Ryan et al. 1975). The algorithm has been originally developed to describe warm 
rain formation (1975), later applied to follow stochastic nature of coupled chemical reactions (1977). 
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See the review by himself for the detail of this scheme (1992). Since the implementation of this scheme 
has not been completed yet unfortunately, we currently employed a much simpler algorithm for MC 
by Meakin (1991). Using the MC simulations, we study the effect of collision kernel on the geometry 
first. Subsequently, we extend our simulations to account for interactive evolution of the geometry 
and kinetics. 

Probably, the paper by Botet et al. (1984) was the first attempt to investigate the effect of the 
dynanlics on the shape of the aggregates using Monte Caro method. They consider the coagulation 
described by the following kernel 

(38) 

Clearly, BPCA (BCCA) correspond to the case where w - 00 (w - -00), since only a largest cluster 
(smallest clusters) in the system can move. Changing the exponent w, they observed sudden transition 
from CCA to PCA at w = 1/2. As we see in section 4.2, this point (,\ = 2w = 1) corresponds to the 
boundary between orderly growth and runaway growth. Their results suggest that the fractal dimen­
sion of the aggregate remains almost same as BCCA (D '" 2) if the growth proceeds orderly. But once 
gelation (runaway) occurs, the dimension shall increase to 3 (BPCA). Subsequently, Meakin and Donn 
(1988) reported the results of similar simulations with various exponent determining mass dependence 
of the velocity,Le. v '" massw . The values of w -1, -1/2, 0 and 1/2 yielded the fractal dimension 1.95, 
1.95, 2, 2.2, respectively. These previous works seem to support our preliminary conclusion presented 
in section 4.2 that fractal dimensions of the aggregates becomes about 2 insensitive to the detail of 
coagulation processes. But these previous works include several problems to be validated. 

Main difficulty in the study by Botet et al. lies in the rather small number of total particles in 
simulations. They obtained only one big cluster containing all particles in the system at the end of the 
simulations. Although they repeated the simulations with same initial condition to reduce the statis­
tical uncertainty, the kinetic aspect of the coagulation process become meaningless at the later stage 
with small total cluster number. This problem is irrelevant to Meakin's work since the total number of 
particles in the system is taken substantially large at expensive computational cost. However, he gave 
no verification whether his code describe the kinetics correctly. As we employ Meakin's algorithm for 
our simulations, the brief description is made to explain why it gives correct time development. 

In this scheme, simulations start from a list of N single-particle. A pair of clusters (i-mer and 
j-mer) is selected at random. When a random number x (0 < x < 1) is larger than Kij/ K max , where 
Kmax is the largest value of Kij for any pairs of clusters in the system, two clusters are returned to 
the list. When x < Kij/Kmax , the two clusters are combined with the same procedure as BCCA. If 
two clusters miss each other (only for fluffy aggregates), they are returned to the list. It follows that 
abundant clusters with larger collision probability is preferentially selected in this procedure. How 
can we introduce the time dependence? Substituting n = 0 in eq.27, we get 

dNtotal = -! ~~ K"n'n' 
dt 2 ~~ 'J' J 

I 3 

Setting dNtotal = 1, the time for a next collision is expected to be 

00 00 

2/ L L Kijninj 
j 
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On the other hand, the probability for for creating one new cluster with one trial is given by 

00 00 K 
LL--iL~~ 

. . K ma:c Ntotal Ntotal 
I J 

(41) 

with the procedure described above. The inverse of this quantity is the expected number of trial to 
produce one cluster, in other words to decrease total cluster number by 1. Therefore, our procedure co­
incides with eq.39 completely if the time increment for each trialis set equal to b.t = 2/(KmaxN2total). 

irrespective of whether or not they are actually combined. Again, we tested the code by the com­
parison with exact solutions. Although it is preferable to use exact solutions of Master equation, 
we content ourselves here with the solutions of coagulation equation. (figs.22 and 23). From these 
figures, we can confirm that our code with Meakin's scheme can describe the kinetics of coagulation 
accurately. However, practical computational problems, such as long CPU time and huge memory 
requirement,arise if we consider large number of particles in the system. Recently, Liffman (1993) 
proposed a new MC scheme which can trace the evolution of cluster size distribution correctly. Since 
the "Topping up" technique used in his calculations is quite effective to reduce the computational 
cost, we incorporate this into Meakin's scheme. 

First, a subsystem containing 104 '" 105 randomly distributed test particles is considered (see 
Fig.24). If coagulation is continued for a long time, the number of clusters in the subsystem will 
decrease to a point where the results will become statistically unreliable. In order to prevent this 
statistical fatigue, we simply double the number of clusters in the subsystem, which is equivalent to 
adding an exact copy of the subsystem to itself. This procedure is based on an assumption that the 
behavior of the subsystem is an indicator of that for whole system This assumption must be tested 
since the fluctuation in the subsystem may be amplified by this procedure. In figure (28), the size 
distributions for thermal coagulation, with and without topping technique, are compared. In addi­
tion, we checked the results of calculations with topping technique by the comparison with analytic 
solutions (figs. 25 and 26 ). Note the wide mass range in comparison with the calculations without 

32 



/ 
.. ' ...... 

topping (figs. 22 and 23 ). 

Figure 24: Schematic for "Topping" technique. 
The Me code can only examine a reasonably sized 
system containing 104 '" lOS particles at a time. 
Thus, we consider a subsystem (upper left box) of 
the total system and assume that the behavior of 
the subsystem duplicates the system as a whole. It 
is important that a robust number of clusters be res­
ident in the subsystem, since the errors in the sim­
ulations goes like the square root of the total cluster 
number. As clustering proceeds, the total number of 
clusters within the subsystem must decrease (upper 
right box). When the number of clusters becomes 
too small, the system is "topped up": i.e., we add the 
subsystem to the duplication of itself (lower boxes). 

In summary, our code based on Meakin's scheme with "topping" technique can accurately follow 
the evolution of the system containing vast number of particles (up to ,..., 107). Using this code and 
test kernels with Kij = (i + j)W, we have examined the effect of the kinetics on the shape of the 
aggregates. These are rather simple cases because the collision kernels are determined in advance. 
In other words, preassigned collision kernels are not affected by the geometry of resulting aggregates. 
Figure 30 shows the relation between the maximum radius and mass for sum kernel (w = 1). Every 
symbol denotes the number of constituent particles and the maximum radius for individual aggregate. 
The fractal dimension is computed by the curve fitting on this figure. We obtained similar values for 
different exponents w (fig. 27). 

Next, we investigate more realistic and complicated situations where the kernels are influenced by 
the geometry of aggregates. In this interactive model, the collision rate is computed from the actual 
cross section and the "relative velocity. Because of the variation in the shape, the cross section term 
in the collision rate is not uniquely determined even for the aggregates of same mass. Memorizing 
maximum radius of every aggregates, however, we can easily calculate the cross section term. On the 
other hand, it is generally difficult to calculate the relative velocity term because we need to estimate 
more complicated properties of the aggregates, e.g., the ratio of mass to projected area for settling 
or turbulence induced relative motion. At present, the cross section estimate for all aggregates is too 
time-consuming to incorporate into the simulation. Therefore, we consider only one simple case in 
this section, i.e., the coagulation driven by the thermal motion of the aggregates. In this case. the 
relative velocity term between i-mer and j-mer is ,..., J1/i + 1fj irrespective of the geometry of the 
aggregates. Figure 31 shows the relation between the maximum radius and the number of constituent 
particles in the aggregates. When the system is "topped up", we plot the every aggregates on this 
figure. Different symbols represent the different stages of the coagulation. A least square fitting yields 
the relation 

Rmax = 0.765No.543 (42) 

Again, we found fractal aggregates with D ,..., 2. Several examples of the aggregates generated in 
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thermal coagulation are displayed in Fig.32. Apparently, they are quite similar to BCCA. 

In conclusion, we have confirmed our prediction in section 4.2 with Monte Carlo simulations. 
That is, all orderly growth (even with power-law size distribution) lead to the formation of fluffy 
aggregates uniformly having fractal dimension'" 2. If this observation holds for generally, it is no 
longer necessary to follow the structure of each cluster with MC. The coagulation equation, modified 
to account for the fractal geometry, provides more rapid and wide-ranged computations. In order to 
check the consistency between two methods, we compare the results of MC and modified coagulation 
equation in fig.(29). The discrepancy at lower size{k = 1,2,3 ... ) can be attributed to the deviation 
of eq.(42) from the actual maximum radii for small aggregates. While the relation (42) is valid only 
for large aggregates in fractal limit, Rma:c for monomer should be 0.5 and 1 for dimer, trivially. In 
chapter 2, the effect of the kinetics on the geometry is studied using extreme simple models, namely 
BPCA and BCCA. On the other hand in the following chapter, we investigate how the geometry, 
characterized by a fixed fractal dimension, change the kinetics. However, these simplified strategy will 
fail if there exists complicated feedback between two aspects as suggested by Ball et al (1987). We 
plan to study the problem with rigorous Gillespie's code in near future. 

35 



1210000 -.. 5000 

-- Monte Carlo 

-- Coa,su1ation Eq. 
100 

10 

10 100 1000 10000 

_ ( number of COlIStitulDu ) 

Figure 29: Comparison between Monte Carlo and Coagulation equation for thermal coagulation 

5 Coagulation of fractal aggregates in the protoplanetary disk 

There are various sources which yield a relative velocity between the dust particles in a protoplanetary 
disk. For very small grains, the thermal motion of grains dominates their relative velocities. As the 
size grows, other effects, such as settling, radial drift and turbulent motion become important through 
the gas interaction (fig.33). The relative importance varies locally and temporally dependent on the 
position in the disk and on the size of the particle (see figs.34 and 35). As we found in the previous 
chapter, fractal dimension of the aggregates can be approximated by 2 for any kinds of coagulation 
processes useless a runaway body forms. Once we determine the fractal dimension of the aggregates, 
collision kernel can be modified in a simple manner to account for the geometry. The cross section term 
is calculated by simply replacing (i1/3 + jl/3)2 with (il/D + jI/D{ In this section, we set the fractal 
dimension as 2. Moreover, we can calculate the velocity term based on the "area-equivalent sphere 
approximation" validated in section 3.4 if we know the cross section of fractal aggregates. Several 
authors (Ossenkopf 1993, Meakin and Donn 1988 Mukai et al. 1992) have formulated the relation 
between the ratio of the mass to the projected-area m/ A. Among them, we employed Ossenkopf's 
formula to calculate the values of m/ A for fractal aggregates. This is derived from the fitting for 
BCCA which we regard as representative of fractal aggregates with D '" 2. When the number of 
constituent particles N is less than 30 

m/A = 1/(15.2N-1/ 3 exp (-2.86/No.096 )) (43) 

and for N ~ 30 
m/A = 1/(0.692N-o.05 (1 + 0.301/ log N)) (44) 

Though this formula gives much less mass dependence of the cross section compared with sphere 
(N1/ 3), the exponent is not zero, but 0.05 in the limit N - 00. Theoretically, this weak dependence 
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may be criticized because the ratio should approach 1 for the aggregates characterized by the fractal 
dimension less than 2, such as BCCA (Meakin 1991). It should be noted even the largest clusters used 
for fitting in Ossenkopf's calculation include at most about 16000 constituent particles. Plugging this 
formula and modified cross section in the kernel, we will investigate the effect of the fractal geometry 
on the kinetics in the following sections. 

5.1 Thermal coagulation 

The "reaction time" tj defined in chapter 2 can be interpreted in a different way" i.e., "thermalization 
time" for the dust particle. Comparing this time scale with that for dust-dust collision, Hayashi 
and Nakagawa ( 1975 ) found that the velocity distribution of grains becomes almost Maxwellian 
distribution due to the collisions by gas molecules under the condition of a typical protoplanetary 
disk. Thus, the collision kernel for thermal coagulation is 

(45) 

Figures 36 and 37 show the evolution of the size distribution for spherical and fractal growth, 
respectively. According to the arguments in section 4.2, we find J.L = -1/2 < 1, 11 = 2/ D and 
A = 2/ D - 1/2 < 1 ( D = fractal dimension) for these cases. Actually, bell-shaped size distributions 
are realized for both cases as we expected. Lai et al. (1972) investigated the coagulation of spherical 
aerosol particle in the free-molecule limit. They proposed the concept of self-preserving spectrum orig­
inally introduced for the coagulation in continuum regime. This is a variation of the scaling function 
<I> (x) in which the mean cluster size is defined as S = M 1/ Mo. Since the mass range in their numerical 
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calculations was not wide enough, they derived the self-preserving spectrum by the comparison of 
eq.(20) with their numerical calculations. Vemury et al. (1994) recently calculated the same problem 
with Discrete-Sectional method. In this method, the smaller particles are treated as discrete enti­
ties, while the large ones are grouped in sections. Thus, the self-preserving spectrum can be obtained 
accurately with direct numerical calculations. Their results are compared with our calculation in fig.39. 

What effects are caused by the variation of the dust geometry? First, fractal growth proceeds more 
rapidly than compact growth due to the enhancement of the cross section (fig.38). The asymptotic be­
haviors can be fitted by scaling assumptions, i.e.,'\ = 2/ D-1/2 and S(t) ex t1/(1-,X). Also, we observed 
a wider self-preserving spectrum for fractal growth. This results qualitatively agrees with the previous 
studies (Wu and Friedlander 1993, Mulholland et al. 1988). For example, Williams(1990) investigated 
the effect of fractal particle structure on aerosol coagulation using moment analysis. He also found 
the trend of broader size distribution as fractal dimension decreases. Matsoukas and Frielander(1991) 
experimentally studied the dynamics of the metal oxide aggregates in the free-molecule regime. They 
also found the self-preserving size distributions for the metal oxide aggregates becomes wider than for 
compact spheres. 

5.2 Turbulent coagulation 

Most of previous research on turbulent disk have employed so-called alpha model in which turbulent 
viscosity Vturb is parametrized as 

(46) 

where H is the thickness of the disk, c is the sound velocity and Q! is a parameter less than unity 
representing the strength of the turbulence (Mizuno 1989). The equation (46) assumed that the size 
of largest eddies and r.m.s. velocity fluctuation are considered to be Hand Q!C, respectively. There 
is a diversity of opinion as to the appropriate value of Q!. It ranges from 10-4 to 1 depending on the 
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Physical quantities Values Unit in MKS 
Hydrogen mass 1.66 x 10 .~( kg 
Bolzman Constant 1.38 x 10-23 J/T 
Molecular Cross section a 2 x 10-19 m2 

1 AU 1.5 X lOll (m) 
Half Thickness,H 0.042 AU 
Temperature, T 225 K 
Gas density,pg 5.7 x 10-6 kg/m3 

Mean molecular weight f-t 2.4x Hydrogen mass kg/mol 
Mass fraction of dust particles 0.0034 
Sound speed c (= J8kt/1rf-t) 1410 m/s 
Mean free path f (=f-t/(apg) 0.0035 m 
Viscosity .,,( = cf pg/3) 9.36 x 10-6 Pa*s 
Reynolds number (= acH Pg /." ) 5.41 x 1010 

Table 5: Disk parameters adopted 

mechanisms to drive turbulence (Mizuno 1989). 

The energy in the largest eddies cascades through a spectrum of smaller eddies, down to a size where 
they are damped by molecular viscosity. Dimensional arguments imply that the energy dissipation 
rate per unit mass c is 

(47) 

On the other hand, the "inner" scales of the smallest eddies are given by 

Uin :::::: (cv)1/4 - UoutRe-1/4 (48) 

lin :::::: (v3/c)1/4 = loutRe-3/4 (49) 

tin :::::: (v/c)1/2 == t outRe 1/ 2 (50) 

where Re denotes Reynolds number acH/v. On smaller scale, the flow is locally laminar, though 
varying with time. Assuming the Kolmogorov law for the turbulent energy spectrum for eddies with 
length scale between lout and lin, Volk et al. (1980) calculated the turbulence-induced relative velocity 
between the aggregates. The key parameters controlling the interaction between the dust aggregates 
and turbulence are the reaction time t f' the inner time scale of the turbulence tin and the turnover 
time scale of the largest eddies tout. Putting the disk parameters listed in table 5 into eqs.(50) in 
(47), we obtain these two characteristic time scale of turbulence.i.e., Tin"'" 2000 sec and Tout"'" 16 
year. Also, we remark that tf is proportional to the radius when we consider spherical particles with 
uniform material density. 

Draine gave an approximation formula for the relative velocity applicable to the case where the 
reaction time scale is larger than inner and smaller than outer scale of turbulence. The relative velocity, 
depending on the reaction time of larger particle only, is given by 

(51) 
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Figure 43: 
Mean mass evolution for the same epochs as in fig.42 
The dotted line represent the asymptotic behavior 
derived from scaling theory. 

In spite of the simplicity, it agrees with more elaborated calculations by Yolk et al. (1980). When 
tf exceeds Tout, the particles begins to decouple from the turbulent gas motion and the relative velocity 
for equal sized particles becomes Uout(tfTout)-l/2 • For two aggregates with very unequal size, i.e., 
reaction time much larger than, and much smaller than Tout, their relative velocity is almost constant 
and nearly equal to mean square turbulent velocity. We refer to Mizuno et al. (1988) for more de­
tailed explanation. In this section, however, we consider only the case of Tf <: Tout. Using Draine's 
formula, we have calculated the the evolution of the size distribution of spherical particles embedded 
in turbulent disk. The scaling theory predicts that mean mass grows as t6 since the kernel has ho­
mogeneity exponents .A = 1/ = 5/6, /-L = O. Excellent agreement is seen in fig.43 after 10 unit time. 
The self-preserving spectrum seems to have the exponent -1.65 (figs. 42). Since the kernel belongs 
to CLASS II, it is rather difficult to find the relation between the value and homogeneity exponents 

. immediately (see, table A). Mizuno reported the value of 1.31 for upper part of the distribution. 
The discrepancy may be attributed to the difference of initial condition or the kernel approximation 
involved with Draine's formula. 

Now, we turn to the case for T f < Tin where a particle is effectively coupled to all motions of the 
gas, down to the smallest eddies. If we consider the realistic fluffy aggregates, this regime is of direct 
relevance. Since the reaction time scale, proportional to the value of A/m, remains nearly same as that 
for a constituent particles for fractal aggregates, every aggregates in the system stay in the regime as 
long as t f for a constituent particle is smaller than tin and fractal growth continues. A careful analysis 
by Mizuno et al. (1988) has shown 

In (Re) to 

2Rel / 2 Tfl + Tf2 
(52) 

Note that the velocity becomes relatively weak compared with the case for T f > Tin and the relative 
velocity vanishes for equal sized particles. When we consider the fractal growth, the enhancement of 
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the cross section is larger than offset by smaller relative velocity. Consequently, the growth mode is 
transfered to exponential and the mean mass evolution is considerably accelerated 

5.3 Sedimentation and coagulation 

Equation of motion for a particle with mass m and cross section A in a laminar disk can be written as 

(53) 

Here, 6 denotes the correction factor for Epstein law dependent on molecule reflection mode. Be­
sides, it includes the deviation from area-equivalent sphere approximation determined by the structure 
of the aggregates as discussed in section3.4. The location of the particle in the disk is determined 
by the heliocentric distance R and altitude Z from the midplane. Finally, the particles reaches its 
terminal velocity 

Vz = w2Ztf (54) 

Since t f is generally proportional to A/m , collision kernel for settling induced coagulation is 

K ( ·l/D 'l/D)2 1 I mj mj I 
i,j ex z + J - - - -

pgc Ai Aj 
(55) 

First, let us examine the spherical growth. Figure 48 shows the time development of the size 
distribution for settling-induced coagulation. Apparently, it is quite similar to that for sum kernel 
indicated in figure 19. The similarity can be explained by the fact that both kernels belong to the 
same scaling class with ,X = v = 1, f.J. = O. We can predict the effect of fractal geometry in the same 
way as we did in section 5.1 for thermal coagulation. Equation (55) can be approximated as 

Kj' ex A' ~I mj I ex m' (i« j ) (56) 
J J pgc Aj J 

Namely, the values of the exponents (,X = v = 1, f.J. = 0) remains same irrespective of the dimension of 
the particle. 

Secondly, we consider the coagulation with the realistic kernels accounting for both thermal and 
settling motion of the aggregates (see figs 33 and 34). For spherical growth, the radius of a constituent 
particle is taken as 1 f.J.m for the comparison with the calculation by Nakagawa et al. (1981). On the 
other hand, we set the size as 0.1 f.J.m in the case of fractal growth. The unit time is 8.62 and 0.027 
year, respectively. The difference must be borne in mind when we transform the unit time in the 
simulations to the real time scales. Initially, fractal growth proceeds much faster (t2 ) than spherical 
growth (t1.2) due to the larger cross section (fig.53). Both cases gradually move to the exponential 
growth stage where the relative velocity is dominated by settling (,X = 1). But the growth speed for 
fractal aggregates is smaller than that for spherical growth approximately by a factor of 6 ( fig.52 ). 

5.4 System size dependece of pattern formation onset 

Dust settling to the midplane is a important process because the dust particles must concentrate in 
a thin layer to cause gravitational instability. A classical scenario by Safronov (1969) pays attention 
to the behavior of an exceptionally large particle in a system. As the particle falls through a field of 
smaller particles, it grows by sweeping them up. It follows from eq. (53) that the positive feedback 
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Same as fig44, but for fractal growth 
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Evolution of size distribution with settling kernel 
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between settling and growth accelerate this process. He estimated that centimeter-sized particles are 
formed in the midplane after several thousand years at 1 AU. However, we cannot estimate the spa­
tial density of such "exceptionally large" particles or when such a feedback start to work in this picture. 

Solving partial-differential equations for coagulation with settling (see section 4.1), Weidenschilling 
(1980) and Nakagawa et al. (1981) reached basically same conclusion as Safronov. But there exist 
an important quantitative difference between those two approaches. In the Safronov picture, it is 
implicitly assumed that total mass in the system is concentrated in small particles. On the other 
hand, in the settling-induced coagulation processes, total mass is dominated by larger particles at the 
exponential tail of the size distribution. Actually, Berry (1967) has shown that the growth speed for 
the Safronov picture ("continuous model" in terms of atmospheric sciences) is different from that for 
coagulation equation (denoted as "stochastic model" in his paper). Thus, the agreement between the 
results of numerical simulations and the estimate by Safronov might be a casual coincidence. One of 
main objects in this section is to verify this conjecture. 

In order to generate dust layer with higher spatial density, dusty components mustbe separated 
from spatially uniform gas-dust mixture. Since we can regard the separation process as a pattern 
formation in the protoplanetary disk, it seems natural to expect the similarity between our problem 
and the reaction-diffusion systems, to which numerous theoretical and experimental studies of pattern 
formation have been devoted (Nicolis 1993, van Dongen 1988,19891,1990). Generally in the reaction­
diffusion systems, the reaction rate is much smaller than diffusion rate before pattern formation. As 
we noted in section 4.1, this is a sufficient condition for mean-field approaches. Inhomogeneity appears 
when the system cross the critical point (Nicois and Progogine 1989) where 

treaction = tdif fv.llion (57) 

In contrast, the time scale for coagulation (reaction) is much faster than settling (diffusion) time scale 
in the disk, at least in the beginning. But the coagulation time scale will becomes longer and the 
settling time scale shorter as the coagulation process continues. When tcoagv.lation becomes longer than 
tsettling, the particles start to settle down from the system rather than grow at the original position. 
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Thus, the condition for pattern formation can be formulated as 

tcoagulation = tsettling (58) 

in analogy with reaction-diffusion system. Insofar as the theory of planet formation, only a few 
works paid attention to this simple, but profound condition which indicates the critical point for the 
structure formation. Comparing the time scale of coagulation with the settling time scale, Dubrulle 
et al. (1995) the critical size for dust sub-disk formation. However, their arguments includes an 
unrealistic assumption that only one coagulation time scale can represents the whole system. In our 
notation, it corresponds to the coagulation time scale for the mean mass in the system. An simple 
estimate is given by 

t mean = SI S ,...., S1->' for>. < 1 (59) 

,...., constant for >. = 1 

In reality, the growth time scale varies with the size. The coagulation time scale for a dust particle of 
a given size k is defined as 

00 

tk = Nkl( L Kkini) (60) 
i = 1 

where the denominator represents the loss term in coagulation equation. We can calculate the quantity 
numerically for particles of any size in the simulation. On the other hand, settling time scale for a dust 
particle is estimated as a time required to transverse the system with the terminal velocity. Figures 54 
and 55 compares the two time scales for spherical and fractal growth, respectively. The coagulation 
time scales are indicated for the same epochs as figs. 48 and 49. In order to calculate the settling time 
scale, thickness of the system must be specified. Followgin Nakagawa et al. (1981), we took the value 
for J zone located at the highest part of the disk. For spherical case, the growth mode changes from 
power-law to exponential immediately. After the transition, coagulation time scale becomes constant 
as shown by eq.60, except at the upper tail where the particles are most reactive and resulting in 
shorter growth time scale. Since larger particles settle faster, particles containing more than roughly 
109 constituents (,...., 1mm) cannot stay in the system and begin to precipitate (tgrowth > tsettling). As 
the system lies on the top of the disk, settling induced coagulation proceeds fastest here (see eq.54). 
Once larger particles settle down, they will continue settle and grow by sweeping up smaller particles 
in the lower part of the disk. This completely agree with the Safronov's picture. On the other hand, 
fractal growth stays longer at power-law stage, where t mean ,...., S1->., then finally moves to exponential 
stage. From fig. 55, it is found that the time scale for coagulation is not significantly reduced com­
pared with spherical growth, whereas settling time scale becomes much longer. The two lines never 
intersect in the mass range investigated here. Consequently, no settling occurs for fractal growth. 

Now let us examine the spherical growth qualitatively. Nakagawa et al. reported that the mass 
transfer starts after 1000 years, whereas in our simulation only the largest batch has longer coagulation 
time than settling time scale even at 800 unit time (,...., 6500 years). what is the reason for this 
discrepancy? Following two possibilities are considered: 

1. if the initial particle number is much larger (1020 in our simulations), the upper tail of the size 
distribution gives much longer coagulation time scale and initiate the settling earlier. 

2. if the thickness of the system size is smaller, the settling time scale can be reduced. This may 
result in faster onset of downward mass transfer. 
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In any case, the important quantity is the system size, which is not explicitly specified in coag­
ulation equation. Traditionally, the upper cut-off of the size distribution is determined arbitrary by 
non-physical requirements, such as computational convenience. The importance of the explicit system 
size was pointed out by Ohtsuki et al. (1990).They have shown that the unphysical tiny fraction at 
the upper tail of the size distribution requires unacceptably smaller time steps and may cause artifi­
cial acceleration of the growth. Similarly, the unphysical upper tail can initiate settling because the 
coagulation time scale for such region can be considerably long. (please extrapolate the time scale 
curves in figs. 54 and 55) And once Safronov scenario begins to work, localized structure cause rapid 
growth/settling as Nelson (1971) pointed out. It can be concluded that we must carefuRy account for 
the system size if we want to find the inhomogeneity onset. 

Next, we will study another example which shows the importance of the explicit system size. When 
the partile grows larger than the mean free path of the gas molecules, the gas drag law changes from 
Epstein to Stokes. Under typical condition of the disk at 1 AU as tabulated in table 5, the Stokes drag 
regime ranges from centimeter( = mean free path) to approximately meter size for spherical compact 
dust particles. Since the Stokes drag is proportional to the radius rather than cross section of the 
particle, the coagulation kernel for spherical growth in this regime is 

(61) 

The exponent). = II = 4/3 implies that this kernel leads to gelation (runaway growth). As we 
explained in section 4.3, our code can trace the evolution of gell mass (runaway body). We have found 
an unexpected bahaviour of the evolution of the mean mass. Figure 56 indicates the results of our 
calculations with this kernel. One can immediately see system size dependence of gelation (runaway) 
onset. The gelation occurs faster as the system size increases. Further, while the gell mass for product 
kernel increases gradually after the critical time (tc = 1 in unit time), that for eq.61 absorb the total 
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mass in the system abruptly. Domilovskii et al. (1978) also claimed that gradient coagulation in a 
turbulent stream is described by eq.(61). On the basis of their MC simulations of random processes 
described by Master equation, they speculated that the critical time for gelation onset tends to zero as 
the system size is increased. Also, the MC simulations by Spouge (1985), based on Gillespi's rigorous 
algorithm, supports the possible occurrence of an instantaneous gelation transition. Wetherill (1990) 
also examined the runaway growth with the kernel proportional to (i + j)4/3, but not mentioned the 
system size dependence. How can we understand these results? 

Once a runaway body forms, simple coagulation equation is insufficient to describe the system 
evolution as we found in section 4.2. There exists mass flux from sol phase to gel phase. Consequently, 
we must take into account of the interaction between Sol (swarm) and Gel (Runaway body) with the 
physical modeling. As Wetherill (1990) did, the interaction can be modeled by adding an extra 
term -KkaNkNa to the r.h.s of coagulation equation. This heuristic model assumes that the gell is 
reactive as well as sol particles. More detailed analysis can be found in Ziff and Stell(1980) and Ziff 
et al. (1985). Present example corresponds to the kinetic F-model in terms of their classification of 
sol-gel interaction. Assuming the kernel is the homogeneous function as eq. 18, this additional term 
becomes 

(62) 

where Ma = kaNa denotes the total gell mass. Despite of the finite total mass in the system, the gel 
is identified with an infinite cluster (ka = 00) in the coagulation equation (remember the divergence 
of M2 moment). One finds from this expression that sol-gel interactions yield a finite, non-vanishing 
contribution to coagulation equation only if v = 1, as is the case for product kernel. If v < 1, the new 
term is zero, implying the original coagulation equation gives proper description of combined sol-gel 
system. For v > 1, the newly introduced interaction term is infinite, implying the instantaneous mass 
transfer from the sol to gel. Van Dongen (1987 I) have refined the above primitive argument and 
indicated that the critical time approaches infinitesimal for the kernel satisfying v > 1. 

MC simulations and our calculations differs from coagulation equation in two respects. First, 
these calculations have been designed to simulate finite stochastic system described by Master equa­
tion, rather than coagulation equation (see eq.15 to remember what an approximation we used to 
transform Master equation to coagulation equation). Thus, the system size is explicitly taken into 
account in the schemes and upper cut-off of the size distribution is naturally derived. Secondly, the 
interaction between sol and gel is included in the simulations with no additional modeling a posteri­
ori. Thus, we conclude that our simulations have faithfully exhibited intrinsic feature of the actual 
physical system, i.e., the stochastic process dependent on the system size. Although we have assumed 
in section 4.4 that the bahaviour of a small subsystem duplicates the whole system to justify the 
"topping" procedure, it is obviously wrong if v> 1. 

Finally, we discuss the implication of the system size dependence for fractal growth. When we 
consider a fractal aggregates, it will enter Stokes regime much faster than a spherical compact particles 
of equivalent mass due to the fluffy structure. Many experimental and theoretical (Meakin et al. 1985, 
Rogak and Flagan 1990, Mountain et al. 1986) works have suggested that the Stokes drag on fractal 
aggregates can be represented by the "effective" radius of the aggregates. If this simple approximation 
can be applied, the exponent A = 2/ D + (1 - 1/ D) is obviously larger than unity. Once runaway 
growth starts, the particle grows by the collision with much smaller particle. This is the environment 
for BPCA and the dimension will increase to 3 rapidly. But A is still larger than unity even for 0=3. 
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Until the relative speed reach the limiting speed/place, the runaway particle keep on growing. To the 
author's knowledge, however, the studies of Stokes drag on fractal aggregates concern the case where 
the constituent particles are also in Stokes regime (Rogak and Flagan 1990). If the constituent is in 
the free molecule regime, (of course the whole aggregate is larger than mean free path) the reliability 
of the above-mentioned simple formula is uncertain. Probably, the study of the molecular flow in 
porous media can be applied to this regime. 
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Figure 56: System size dependence of runaway onset 
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6 Future work 

In this paper, we have attempted to investigate the coagulation of fractal aggregates with analytical 
and numerical calculations. On the other hand, there have been many experiments to study the ag­
gregation processes. In spite of the variation of the chemical composition, such as soot (Samson et 
al. 1987), fumed silica (Schaefer and Hurd 1990) or metal oxides (Matsoukas and Friedlander 1991), 
these experiments verified that the formation of fractal aggregates is a universal phenomenon. Obvi­
ously, this fact has been the most strong motivation to introduce fractal concepts into the scenario 
of planet formation. Further advance of the theoretical approaches should be accompanied with the 
experiments. Actually, some of these experiments conducted in the free-molecule (Matsoukas and 
Friedlander 1991) or transition (Rogak and Flagan 1991.1993) regime may have direct astrophysical 
relevance and applicability. However, even with the small constituent particles, typically in the size 
range 2-10 nm, the aggregates grow to the sizes comparable to (or larger than) the mean free path 
of the gas molecules as coagulation proceeds. If the gas pressure is reduced to increase the mean free 
path, we cannot observe the coagulation process for sufficiently long period due to the rapid precip­
itation of large aggregates. An additional problern arising from gravity is the convective motion of 
the ambient gas which makes a exact estimates of collision rates very difficult (Higuchi and Sugiura 
1993). In order to overcome these problems, a space experiment called CODAG is planned in near 
future (Keller et al.1993). The micro-gravity environment in the space station Columbus allow for low 
collisional velocities and a large Knudsen number of the surrounding gas. This experiment is expected 
to yield valuable information about the biggest unresolved problem in this field: Le., the complexity 
of collisional outcome. We wish that our simulations will be used to, combined with the experimental 
data, give probability distribution for sticking, bouncing, fragmentation and restructuring dependent 
on the size and relative velocity of the collisional pair. The mechanical properties of fluffy aggregates, , 
such as the tensile strength or rigidity, are problems of significant importance relevant to not only dust, 
but also to planetesimal accumulation. A recent spectacular event, splitting of comet Shoemaker-Levy 
9 by Jupiter's tidal force and the subsequent collision, strongly suggest that the cometary nucleus itself 
was the loosely bounded aggregates of sub-micron sized dust (Greenberg et al. 1995). In addition, new 
theory should address to the recent remarkable progress in observation of protoplanetary disk. In a 
wide range of wavelength, the structure and evolution of the protoplanetary disks have been revealed. 
Miyake and Nakagawa (1993,1995) investigated the evolution of T-Tauri stars spectrum based on the 
theory of dust growth in the surrounding disk. 

Why don't we apply the same method to planetesimal accumulation? For example, Ziff (1980) 
mentioned the cosmological implications of the kernels with 11 > 1. Lushnikov (1978 ) also pointed out 
the relevance of gelation to gravitational coagulation. Although the coagulation equation has been a 
quite convenient and powerful approach, the capability is limited if one is interested in the emergence 
of the spatial structure because it includes mean-field assumption. In order to advance further beyond 
the mean-filed approximation, we must develop different methods. According to the suggestion by 
Sampson et aL (1986), the first alternative is numerical simulations of Master equation by statistically 
rigorous algorithm. The second methid to be considered is direct simulations of particle motion fully 
accounting for the movement of each particle in the system. Although the first approach is statistically 
complete and capable of treating considerable number of particles in a system, it shares the problems 
inherent to coagulation equation: Le., no spatial information. The method of compounding moments, 
an extension of Master equation to incorporate spatial variations (van Kampen 1992, van Dongen 
1991), cannot be used when the reaction (coagulation) time scale is faster than transport (diffusion or 
settling) time scale. Then, we should pursue the latter probability ,though computationally intensive. 
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Recent development of computer technology and code refinement enable us to solve a set of differential 
equations for all particles in a system. Using Box-tree-code, Ricahrdson (1995) investigated the dy­
namical behavior of spatially distributed particles with coagulation, bouncing and rotation. However, 
the sticking or bouncing probability is a parameter in his scheme. Sablotny et al. (1995) developed a 
code to simulate realistic aggregation processes with physical energy loss mechanisms upon collision. 
In order to take into account of the interaction of the surrounding gas, Mulholland et al. (1988) and 
Mountain et al. (1986) solved the Langevin equations for every particle in the system. But, the total 
number of particles is still too small to yield statistically reliable result in any scheme. In conclusion, 
three approaches, namely 

The solutions of Coagulation equation 
MC simulations based on Master equation 
Direct Spatial simulations 

must be developed together, complementing the disadvantage each other. In this sense, Wetherill 
scheme is a ideal hybrid of the former two approaches. Cellular automata (CA) models should be also 
pursued to compromise the heavy computational burden with higher spatial resolution (Karapiperis 
1993). We plan to perform CA on one-dimensional lattice to simulate the settling-coagulation in the 
protoplanetary disk in near future. 
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