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Preface 

The important purpose of the study for the hypergeometric functions is to find the 

relation with Lie algebra. It is known that the contiguity relation for some hypergeometric 

functions associated with Grassmann manifold gives the representation of Lie algebra. For 

example, the contiguity relation for the Gauss hypergeometric functions, associated with 

Grassmannian G2,4, gives a representation of gl(4). 

Hopf algebra Uq(gl(n)) is the quantum analogue of the universal enveloping algebra 

of glen). E. Horikawa [H] showed that the contiguity relation for the q-hypergeometric 

function 2CPl, that is q-analogue of Gauss hypergeometric function, gives the representation 

of Uq (gl(4)). 

From the different viewpoint, M. Noumi [N] showed the relation between Uq(gl(n)) 

and a q-hypergeometric function CPD, which is a q-analogue of the hypergeometric function 

(Lauricella's) FD • 

In the classical case, the hypergeometric function associated with Grassmannian Gk,n 

is the solution of the system of differential equations defined by the representation of Lie 

algebra glen). And the hypergeometric function FD associates with Grassmannian G2,n' 

So Noumi defined the system of q-difference equations by the representation of Uq(gl(n)) 

on the quantum Grassmannian which is a quantum analogue of the space G2,n' He realized 

cP D as a solution of this system and showed that the contiguity relation for cP D gives the 

representation of Uq(gl(n)). 

Then, in this paper, I tried to give the· definition of several q-hypergeometric functions 

as a solution of the q-difference system defined by the representation of Uq(gl(n)), relying , 
on Noumi's work. 

I have great thanks for Professors Masatoshi Noumi and Takeshi Sasaki. They have 

adviced me in many times and give me variable suggestions. 

I am also grateful to Professors Etsuro Date and Masato Wakayama for their helpful 

discussions . 

. I also want to express my appreciation to Professor Hironobu Kimura. His lecture 

gave me an opportunity of the study of the chapter 3. 

And many thanks are due to many people who have helped me. 



Chapter o. Introduction 

0.0. Contents of the Dissertation 

In the classical case, the hypergeometric function F3,6, associated with the G3 ,6, is 

investigated from several viewpoints and various properties have been known (See [MSY]). 

So, at first, we started to consider a quantum Grassmannian that is a q-analogue of the 

space G3 ,6 in chapter 1. Then, by the representation of Uq(gl(6» on it, we defined the 

q-hypergeometric sytem of type (3,6), and got two types of q-hypergeometric functions as 

the solutions of this system. Furthermore, we showed that the contiguity relation for these 

functions gives the representation of Uq(gl(6». 

We next tried to give the generalized q-hypergeometric systems of type (k, n), in chap­

ter 2. By the slightly different way from the case of chapter 1, we defined q-hypergeometric 

systems and realized the q-hypergeometric function IPk,n as a solution of this system. And 

we showed that the contiguity relation for IPk,n gives a representation of Uq(gl(n». 

Finally, we considered the q-confluent hypergeometric functions including q-Kummer 

and q-Bessel functions in chapter 3. 

In what follows, we fix a complex number q with 0 < Iql < 1. 

0.1. Notation of Uq(gl(n» 

We recall the definition of Uq(gl(n» briefly. Refer to [N, NUW). The quantum ana­

logue of U(gl(n», denoted by Uq(gl(n», is the algebra generated by ej, f; (1 :s; j :s; n -1) 
and q±€j (1 :s; ; :s; n). We use the notation qh = qa1€1 ••• qan€n for any linear combination 

h = al€l + ... + an€n with integral coefficients. Then the relations for the generators are 

given by 

°-1 q - , 

qhejq-h = q(h,€j-€j+l)ej, qh f;q-h = q(h,-€j+€j+l) f; (1:S; j :s; n - 1), 
q€i -€i+l _ q-€i +€i+l 

edj - f;ei = Di,j q _ q-l (1 :s; i,j < n - 1) 

eiej = ejei, filj = f;fi (Ii - il ~ 2), 

ei2ej - (q + q-l)eiejei + ej ei2 = 0 (Ii - il = 1), 

fi2 f; - (q + q-l)fdjfi + f;fi2 = 0 (Ii - il = 1), 

(0.1.1) 

where ( , ) stands for the canonical symmetric bilinear form such that (€i' €j) = Di,j. This 

algebra has the structure of Hopf algebra with the following convention of the coproduct Ll, 
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the counit c, and the antipode S: 

l:1(qh) 

1:1 (ej) 

l:1(fj) 

qh 0 qh, 

ej 01 + q€j-€j+l 0 ej, 

I; 0 q-€j+€j+l + 10 1;, 

c(qh) = 1, c(ej) = c(fj) = 0, 

S(qh) = q-h, S(ej) = -q-€j+€j+lej, S(fj) = -I;q€;-€j+l, 

for 1 :::; j :::; n - 1. 

(0.1.2) 

In the classical case, the root vectors Eij of Lie algebra gl(n) are given inductively as 

follows: 

E [E E ] ( ,<vk<') ij = ik, kj z> >J. 

Here [X, Y] = XY - YX. 

Then we define the elements Eij E Uq(gl(n)), which can be seen as the analogues of 

the root vectors Eij of gl (n), by the following formulas: 

(0.1.3) 
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Chapter 1. A quantum analogue of the hypergeometric system E3,6 

1.0. Introduction of this chapter 

In this chapter, we will discuss a quantum analogue of Ga,6 and the associated hyper­

geometric functions, relying on Noumi's work. 

In the first section, we recall the definition of the hypergeometric system of differential 

equations of type (k, n) and the hypergeometric function Fa,6. Furthermore we give a short 

preview of this chapter. 

In the second section, we define a noncommutative algebra generated by quantum ana­

logues of the Pliicker coordinates of the Ga,6 and compute the representation of Uq (gl(6)) 

on it. Furthermore we define a localization of this noncommutative algebra and two types 

of decomposition of it. 

In the third section, we translate the action of Uq (gl(6)) on the above localization 

to that on the commutative algebra. By defining two isomorphisms of vector spaces, 

associated with the decompositions, between the localization and commutative algebras, 

we exhibit the action of Uq(gl(6)) in terms of usual q-difference operators. 

In the fourth section, we define the Casimir operators and, in the fifth section, consider 

the q-hypergeometric functions of type (3, 6), denoted by 'Pi and 'P~. One of the functions 

is defined by the series 

'Pi = 'Pi (Xl, X2, Xa, X4) 

(q-2>.:s; q2)a+c(q-2>'6; q2)b+d(q2>'2+2; q2)a+b(q2>'3+2; q2)c+d 

a'b~~O (q2>'2+2>'3+2>'4+6 ; q2)a+b+c+d(q2; q2)a(q2; q2)b(q2; q2)c(q2; q2)d 

X q2bcx~x~x~x~. 

(1.5.3) 

In the last section, we compute the contiguity relations and, in view of these relations, 

propose to define the q-hypergeometric system of type (3,6; I) and (3,6; ll). Furthermore 

we define another system of q-difference equations, which has q-hypergeometric functions 

as solutions. Refer to Proposition 1.6.6. 

1.1. Preliminaries of this chapter 

In this section, we give a short review of the hypergeometric system of differential 

equations associated with the Grassmannian Gk,n (k :::; n) and a preview of this chapter. 
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Let us denote by M(k, n) the space of all k x n matrices of the form 

( 

tll tl2 . . . tIn) 

T = t21 ~~~ : : : t2n . 

tkl tk2 ... tkn 

The hyper geometric system of differential equations of type (k, n), denoted by Ek,n, is the 

following system of differential equations defined on the space M(k, n): 

if!(gT) = det(g)-lif!(T) (g E GL(k)) 

if!(Tdiag(cll ... , cn)) = ~(T)Ct'\l ... Cn An 

82 82 

8 8 if!(T) = 8 8 if!(T) (1 ~ r < s ~ k, 1 ~ i < j ~ n), 
tri tsj tsi trj 

(1.1.1) 

(1.1.2) 

(1.1.3) 

where A = (All A2"'" An) is a set of complex numbers. For the conditions (1.1.1) and 

(1.1.2) to be compatible, it is necessary to assume Al + .. '+An = -k. Because, for c E ex 
and identity matrices Ik(E GL(k)) and In(E GL(n)), (ch)T = T(c1n). 

Multivalued holomorphic solutions if!(T) of the system (1.1.1)-(1.1.3), defined on a 

Zariski open set of the space M(k, n), are called the hypergeometric functions of type 

(k,n). 

Now let T be a general k x n matrix. We can decompose T as follows: 

T 

where 

(

tn tl2 . . . tlk) (1 1 t21 t22 .. . t2k 

tkl ;~~ : : : tkk . 1 

1 1 

Xrj=(-1t+leij- I erj for r=2,···,k j=k+1,···,n. 

eili2 ... ik = 2: (-l)'(w)tW(I)h t w(2)i2 ••• tw(k)ik for 1 ~ i l , ... , ik < n, 
WESk 

erj = el. .. r ... kj· 

(1.1.4) 

Here Sk is the permutation group of k letters and, for each w E Sk, l(w) denotes the 

number of inversions in w. Note that {eili2 ... ik} are the Plucker coordinates of the Gk,n, 
and satisfy the PlUcker relations as follows: 

k+l 

2:(-1)i-IeOl"'Ok_lJ3ie.Bi = 0 
i=l 

4 
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for 1 :::; al,"" ak-l :::; n, 1:::; {3l < {32 < ... < (3k+l :::; n and where e{3i = erhooo{3iooof3lc+l' 

The relative invariances (1.1.1), (1.1.2) imply that <I>(T) can be written in the form 

for some function G(X2k+b .. . , Xkn)' 

Furthermore, because of invariances (1.1.1), (1.1.2) again, G(X2k+1, ... , Xkn) takes the 

form 

where 
-1 Zrj = Xrk+l Xrj 

(1.1.6) 

for 2 :::; r :::; k, k + 2 :::; j :::; n. In the coordinates Z = (Z2k+2, Z2k+3,"" Zkn), it is known 

that a solution of the equation (1.1.3), holomorphic around the origin Z = 0, is given as 

follows: 

(1.1.7) 

where 'Y = A2 + ... + Ak+l + k, and (a)n = a(a + 1) ... (a + n - 1). Here, for the matrix 

A = (ajh::;r::;k,k+2::;j::;n, we use the notations 

IAjl = aJ + aJ + ... + aJ, IArl = ak+2 + ak+3 + ... + a~, IAI = La; (1.1.8) 
r,j 

and 

ZA = II zjaj . (1.1.9) 
r,j 

The hypergeometric. function Fn associated with G2,n has been generalized to the hy­

pergeometric function Fk,n associated with the Gk,n, and it is known that the contiguity 

relation for Fk,n is described in terms of the Lie algebra glen). Refer to [G, S]. Therefore 

the contiguity relation for the function F3,6, defined by the series 

(1.1.10) 

is descrived in terms of the Lie algebra gl(6). 
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Now let us set 

Then {Eijh~i,j~n generate a Lie algebra isomorphic to gl(n) and define, as differential 

operators, a U(gl(n))-module structure on the polynomial algebra C[tll' t12,'" ,tkn] of 

variables (trjh~r~k,l~j~n' It holds a remarkable identity 

(1.1.11) 

for each i =? j. Then the function 

is a solution of the system of equation (1.1.6) and 

(1.1.12) 

We define in the next section a noncommutative algebra as a quantum analogue of the 

space G3 ,6, which has a structure ofleft Uq (gl(6))-module. Furthermore we give two kinds 

ofleft Uq (gl(6))-module structure on the commutative algebra C[X24' X25, X26, X34, X35, X36] 

of polynomials in 6 variables. 

In view of the identity (1.1.12), we look for the analogous elements in Uq(gl(n))j they 

are the central elements of the subalgebra of Uq(gl(6)), isomorphic to Uq(gl(2)), defined 

by 

(1.1.13) 

for 1 ~ i =? j ~ 6. In this chapter, we call such elements the Casimir elements. When we 

need to regard them, as the operators, we also call them the Casimir operators. 

1.2. The algebra Uq (gl(6)), Quantum Grassmannians, and localization 

We first in this section define the noncommutative algebra, which is the quantum 

analogue of the coordinate ring A(M(k, n)). 
Let Aq(M(k, n)) denote the algebra defined as follows: 

generators: (1 ~ r ~ k, 1 ~ j ~ n) 
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relations: ab = qba, ac = qca, bd = qdb, cd = qdc, 

be = cb, ad - da = (q - q-1)bc, 
(1.2.1) 

(~ b) = (tri 
d tsi 

trj ) 
tsj 

(l~r<S~3) 
l~i<j~6 . 

The commutation relations as (1.2.1) are called by the Matq (2)-relations. 

The algebra Aq(M(k, n)) has a structure of a left Uq(gl(n))-module; it is determined 

by assuming the Uq(gl(n))-symmetry in the sense that 

(a) a.l = c(a)1 for all a E Uq(gl(n)); 

(b) if a E Uq(gl(n)) a;d ~(a) = L a~ ® a~', then 
i 

a.(cp'I/J) = La~.cp a~'.'I/J for all cp,'I/J E Aq(M(k,n)) 
i 

and by the action of the generators of Uq(gl(n)) on trj of Aq(M(k, n)) given by the formula 

qh t . - q(h,f.j)t· e t - ~ t . rJ - rJ' k· rj - Uk+1,j rk, (1.2.2) 

In this chapter, we consider the algebra Aq(M(3, 6)) which has a left Uq(gl(6))-module 

structure. 

Since we can regard the ordinary Grassmann manifold as the space whose coordinate 

ring is the algebra generated by the Plucker coordinates, we define the quantum Grass­

mannian by giving the quantum analogue of the PlUcker coordinates. 

We denote the sub algebra in Aq(M(3, 6)) generated by the quantum minor determi­

nants 

~ijk = L (_q)'(W)tW(1)i tw(2)jtw(3)k 
WE S3 

(1 ~ i,j,k ~ 6) 

by A. In the classical case, the Plucker coordinates satisfy the PlUcker relations (1.1.5). 

Simiraly, these minors satisfy the PlUcker relations as follows: 

4 

L( _q)i-l~ala2{3i~t§i = 0 
i=l 

for 1 ~ al, a2 ~ 6 and 1 ~ (31 < (32 < (33 < (34 ~ 6, where ~t§i = ~(31 ... t§i ... {34' 

(1.2.3) 

The sub algebra A is then a left Uq(gl(6))-submodule of Aq(M(3, 6)); the action of 

Uq(gl(6)) on the quantum minors is determined by 

qh'~ijk 

e"~ijk 

h'~ijk 

q(h,f.i+f.j+f.k) c .. 
'otJk, 

dl+1,i~'jk + dl+1,jq(f. I -f.1+1 ,ei) ~ilk + dl+1,kq(f. I -f.l+l ,ei+ej) ~ijl' 

dl,iq-(f. I -f.1+1 ,ej+ek) ~l+ljk + dl,jq-(f. I -EI+1 ,ej) ~il+lk + dl,k~ijl+l' 

7 
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In order to give the decomposition of the matrix T = (trj h5r53, 15j56 of generators 

for Aq(M(3,6)), we introduce some localization of A. In the decomposition (1.1.4), the 

623 -1 in the diagonal matrix has played a special role. A first step is to invert the principal 

minor e123. By the Plucker relations (1.2.3), the localization A[623 -1] has the monomial 

basis 

(1.2.5) 

where aij E N, J-£ E Z and eij = e1 ... i"'3j' Here note that we have fixed an ordering of 

the variables eij' called a normal ordering. By the Plucker relations (1.2.3) again, the 

commutation relations among eijk and eij are generated by the following relations: 

(1.2.6) 

and 

ei~it ei;h =ei;h ei~jl ' ei;jl ei~h - et1h ei;it = (q - q-1 )ei~jl ei;h ' (1.2.7) 

for 1 ::; i1 < i2 ::; 3, 4::; i1 < i2 ::; 6. 

In order to get variables analogous to X2j and X3j in (1.1.4), we next adjoin the inverses 

of the quantum minors ei4' ei5' ei6' The localized algebra is A[623 -1, ei4 -1, ei5 -1, ei6 -1] 

and, by the commutation relations, it has the monomial base of type (1.2.7) with a2j, a3j E 

Nand a1j"), E Z. 

With this localization and the commutation relations the matrix T = (trj) 15r53, 15j56 

of generators for Aq(M(3, 6)) can be decomposed as follows: 

T 
(

tn t12 h3) (1 0 0 1 1 1) 
t21 t22 t23 0 1 0 U24 U25 U26 
t31 t32 t33 0 0 1 U34 U3S U36 (1.2.8) 

d· (1 1 1 -2e -le -2e -le -2e -le ) 
X lag , , ,-q ,>123 '>i4' -q ,>123 '>is' -q ,>123 '>i6' 

where 

U2j = -fi/e2j and U3j = qei/e3j' (1.2.9) 

Since Aq(M(3, 6)) is the algebra with Uq(gl(6))-symmetry, we can extend the action 

of Uq(gl(6)) on A to the action on A[623 -l, ei4 -l, eis -l, ei6 -1]. For an element a of 

Uq(gl(6)), we denote its action on A[623 -l, ei4 -1, eis -l, ei6 -1] by 

pea) A[e -1 e -1 e -1 e -1] A[e -1 e -1 e -1 e -1] 
,>123 ''>i4 ''>i5 ,'>i6 -t ,>123 ''>i4 ''>i5 ''>i6 . (1.2.10) 
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The algebra A[623-1'~i4-1'~i5-l,~i6-1], as a vector space, has several kinds of decom­

position. But the commutation relations among Urj are not so simple. So, in order to 

check the action of Uq (gl(6)) on A[623 -\ ~i4 -1, ~i5 -l, ~i6 -1] explicitly, we here treat the 

following two decompositions. 

(I) A[623-\~i4-\~i5-l,~i6-1]= EB R2~i/6~i5A.5~i/4~123J.'R3 (1.2.11) 
J.',AjEZ 

Rr is the noncommutative algebra generated by Urj (r = 2,3 j = 4,5,6) 

(II) A[C -1 C -1 C -1 C -1] ffi C A6 C A.5 C A4 C J.'R (1 2 12) 1,,123 ,l"i4 ,l"i5 ,l"i6 = W l"i6 l"i5 l"i4 1,,123 ... 
J.',AjEZ 

R is the noncommutative algebra generated by Urj (j = 4, 5,6) 

1.3. Translation of the action of U q (gl(6)) 

The action ofUq (gl(6)) on the noncommutative algebra A[623 -1, ~i4 -1, ~i5 -1, ~i6 -1] is 

translated to that on the commutative algebra C[X24' X25, X26, X34, X35, X36] of polynomials 

in terms of usual q-difference operators in this section. 

To do this we define a vector space 

9 EB 9P.,A4,A5,A6' (1.3.1) 

P.,A4,A5,A6EZ 

where 9P.,A4,A5,A6 = C[X24,"', X36] for all j-L, A4, A5, A6 E Z and the two isomorphisms of 

vector spaces 

WI: 9 --+ A[623-1'~i4-l,~i5-l,~i6-1], 

wIT : 9 --+ A[623 -l, ~i4 -1, ~i5 -l, ~i6 -1], 

(1.3.2) 

(1.3.3) 

as follows. Let us fix the monomial bases of A[623 -l, ~i4 -l, ~i5 -l, ~i6 -1] in two ways, 

referring to the decompositions (1.2.11) and (1.2.12): 

I 

II 

U24V24U25V25U26V26~i6 A6~i5 A5 ~i4 A4~123J.'U36V36U35V35U34V34 (Vrj E N) 

ei6 A6ei5 A5ei4 A4623J.'U26V26U36V36U25V25U35V35 U24 v24 U34 v34 (Vrj EN), 
(1.3.4) 

where U2j = -eij -le2j and U3j = q~ij -le3j . Then the isomorphism wI is determined as 

the direct sum of linear mappings 
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such that 

and the isomorphism wIT as the direct sum of linear mappings 

such that 

Through the isomorphisms wI and wIT thus defined, we obtain two kinds of left Uq (gl(6))­
module structure on the vector space g. More precisely, for an element a of Uq (gl(6)) of 

weight "', Le., qhaq-h = q(h,K.} a, its action on g induces a family of operators 

(1.3.5) 

where J-L' = J-L + "'1 + "'2 + "'3 and A} = Aj + "'j (j = 4,5,6) for", = "'1f1 + ... + "'6f 6 

("'j E Z), and * = I or II. The explicit formulas of the operators will now be given. They 

are rationally written by q-difference operators with coefficients in C[X24' ••• ,X36]. 

Here we denote the q-shift operator for Xrj by Tq,xrj' that is, 

T q,Xrj!(X24, ••• ,Xrj,··· ,X36) (1.3.6) 

F e a Ie rp IT Vrj V25 IT Vrj or x mp ,.Lq,X25 Xrj = q Xrj. 

r,j r,j 

Remark 1.3.1. Generally, the q-shift operator for a variable x is denoted by Tq,x or q8",. 

In this chapter, we use the first notation Tq,x. But, in the chapter 2 and the chapter 3, we 

use the second notation q9",. 

For each 6-tuple A = (Ab A2, ... , A6) of complex numbers with ~ Aj = -3, let :F>. be 

the vector space of polynomials G = G(X24, ••• ,X36) such that 

(1.3.7) 

Then, for each element a E Uq(gl(6)) of weight "', the operators 

(1.3.8) 
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define mappings 

Here we have the explicit formulas of the operators 

where * = I or II. 

pHq€j) 

pHej) 

p:\(h) 

FA -+ FA (1 ~ j ~ 6), 

FA -+ F A+ oj (1 ~ j ~ 5), 

FA -+ FA-oj (1 ~ j ~ 5), 

We set for simplicity O:j = f.j - f.j+1. For instance, for the case (I) put 

then we see 

pl(qej ) = qAj (1 ~ j ~ 6), 

(q - q-1)pl(ed = X24(q-2A4T24T34 - 1) + X25q-2A4T24T34(q-2A5T25T35 -1) 

+ X26q-2A4-2A5T24T34T25T35 (q- 2A6T26T36 - 1), 

(q - q-1)pl(e2) = q-A
1-

A
3-

3 [_1_{(X36 - x35)(1- q-2A6T26T36) 
X24 

+ (X35 - x34)(1 - q-2A6-2A5T26T36T25T35) + x34}(1 - T24) 

+ _1_{(x36 - x35)(1 - q-2A6T26T36) + x35}(1 - T25 )T24 
X25 

+ _1-x36T24T25(1- T26)] , 
X26 

(q - q-1)pl(e3) = q-A1-A2+A3-A4+1_1_(T34 - 1), 
X34 

(q - q-1)pl(ej)u=4,5) = qAj+1T2j+1-1 - q-Aj+1T3j+1 
. X2j A ·+1 (1 rp -1) X3j -A ·+1 (rp 1) + --q J - .L2j+1 + --q 3 .L3j+1 - , 

X2j+1 X3j+1 

( -1) 1(1 ) _ -1-A1-A2 { 1 rp -lrp -1(1 rp -1) q - q PA 1 - -q -.L25 .L26 - .L24 
X24 

+ _1-T26 -1(1 - T25 -1) + ~(1 - T26 -I)} , 
X25 X26 

(q - q-1)pl(h) = q2+A3-A4-A5-A6 X [X26 (1- T36 ) 
X36 

(1.3.9) 

(1.3.10) 

+ ~{X25q2A6T26 - lT36 -1 + x~6(1 - q2A6T26-1T36 -1)}T36(1 - T35) 
X35 
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1 2~ +2~ -1 -1 -1 -1 + -{X24q 6 5T26 T36 T25 T35 ) 
X34 

+ X25q2~6T26 -lT36 -1(1 - q2~5T25 -lT35 -1) 

+ X26(1 - q2~6T26 -lT36 -1)}T36T35(1- T 34)] , 

(q _ q-1)p~(j3) = q-2-~3-P.X 
[X36(q- 2A6T36 - T26 -1)T25-

1 

+ X35(q-2~5T35 - T 25 -1)q-2~6T36 + X34(q2p. _'q-2~6-2~5T36T35) 

+ X24 {X36(q-2~6T36 _ T 26 -1) - X35q-2~6T36}(1 _ T 25 -1) 
X25 

_ X24 (1 _ T
26 

-1)] , 
X26 X 36 

(q - q-1)p~(jj)(j=4,5) = (q~jT3j-1 - q-~jT2j) 

+ X3j+1 qAj (1 _ T3j-1) + X2j+1 q-~j (T2j - 1). 
X3j X2j 

We should remark here that the coefficients belong to the polynomial ring, because Xrj 

in the denominators cancells with the operator (1 - Trj) or (1 - T r j-1) as difference 

operators, as often as it appears. We have already seen the formula for qf.l. The actions 

of e1 E Uq (gl(6)), for instance, on U2j and U3j is determined by 

So, the second formula is seen by the computation 

(q - q-1)p(e1)R2(v24, V25, V26)6,p.R3 (V36, V35, V34) 

6 

= L q2V24+·+2v2j-l (q2P.2 j - 1)R2('" ,V2j + 1, .. ·)6,p.R2(V36, V35, V34) 

j=4 

- q2V24+2v25+2V26 R 2 (V24, V25, V26) 

6 

x L q-2~4-···-2~j-l (1 - q-2~j )u2j6,p.R3(V36, V35, V34) 

j=4 

+ q2V24+2v21l+2V26-~4-~5-~6 R2(V24, V25, V26)e~,p. 

6 

x L q2V34+··+2v3j-l (q
2V3j - 1)U2jR3 (V36, V35, V34) 

j=4 

+ q2V24+2v25+2v26-~4-~5-~6 R 2 (V24, V25, V26)e~,p. 

6 

x L q2V34+",+2v3j-l (q
2V3j - 1)u2jR 3 (V36, V35, V34) 

j=4 

12 



= (q2V24+2v34-2A4 - 1)R2 (V24 + 1, V25, V26)6,p.R3 (V36, V35, V34) 

+ q2V24+2v34-2A4 (q2V25+2v35-2A5 - 1)R2(V24, V25 + 1, V26)6,p.R3(V36, V35, V34) 

+ q2V24+2v34+2v25+2v3/S-2A4-2A/S (q2V26+2v36-2A6 _ 1) 

R 2(V24, V25, V26 + 1)6,p.R 3(V36' V35, V34), 

Namely, we have 

(q - q-1)p~(e1)(x24V24, .. X36 V36 ) 

= (q - q-1 )WAI +A2+A3+2,A4 ,A/S,A6 -1 0 p( e1) 0 WA1 +A2+A3+2,A4 ,A/S ,A6 (X24
V24 

, , , X36
V36

) 

= (q - q-1)WAl+A2+A3+2,A4,A5,A6 -10 p(et)R2(V24' V25, V26)6,Al+A2+A3+2R3(V36, V35, V34) 

- (q2V24+2V34-2A4 _ 1)x V24+1 X V36 
- 24 '" 36 

+ q2V24+2v34-2A4 (q2V2/S+2V35-2A5 _ 1)X24V24 X25 v25 + 1 ,",' X36 v36 

+ q2V24+2v34-2A4 (q2V2/S+2v35-2A/S _ 1)X24V24 X25 v25 + 1 , "X36v36 

+ q 2V24+2v34+2v25+2v35-2A4-2A5 (q2V26+2v36-2A6 _ 1)x V24 X V26+ 1 X V36 
" 24 '" 26 ," 36 , 

which shows the second formula, The remaining formulas can be shown similarly, 

We second consider the case (II), Set 

then we see 

(1 ~ j ~ 6), 

(q - q-1)p~(et) = qA4+A5X26(q-A6T262T362 _ qA6) 

+ qA4-A6x2ST262T36(q-A5T2S2T3S2 _ qA5) 

" + q-A5-A6X24T262T36T2S2T3S(q-A4T242T342 _ qA4), 

(q - q-1)p~(e2) = q-1 {X36 T26 -1(1 - T26 2) X3S T26 -lT2S -lT36 (1 - T2S2) 
X26 X25 

+ X34 T26 -lT25 -lT24 -lT36T35(1- T242)} , 
X24 

(q - q-1)p~(e3) = q-Al+A3-A4+2~(T342 - 1), 
X34 

(q - q-1)p~(ej)(j=4,5) = qAj+1 - q-Aj+1T3j+12T2j+1 2 

_ q-Aj+1 { X2j T 3j+l(1 -"T2j+1 2 ) + X3j T 2j(1 - T3j +12)} , 
X2j+1 X3j+1 
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(q - q-1)p~(h) = -q {~T25-2T24-2T34-1T35-1T36-1(1- T 26 - 2 ) 
X26 

1 -2 -1 -1 -2 + -T24 T35 T34 (1 - T 25 ) 
X25 

+ _1-T34 - 1(1- T24-2)} , 
X24 

(q - q-1)p~(h) = q {X26T24T25T34 -1T35 -1T36 -1(1 - T36 2 ) 
X36 

X25 -1 -1( 2) X24 -1( 2)} + -T24T 34 T35 1 - T35 + -T34 1 - T34 , 
X35 X34 

(q _ q-1)p~(h) = q-2-p.->"3 x 

{X36T26(1 - q-2>"6T262T362) 

+ q-2>"6X35T26T25T362 (1 - q-2>"I5T252T352) 

- q2p.X 34T 26T 25T 24(1 - q-2P.-2>"6-2>"I5T362T352) 

-1-2>"6-2>"15 X24 X35,." ,." ,." 2,." (1 ,." 2) 
- q .L 26.L 25.L 36 .L 35 - .L 25 

X25 

-1-2>"6-2>"15 X24 X 36,." ,." 2,." ,." (1 ,." 2) 
- q .L 26.L 25 .L 36.L 35 - .L 26 

X26 

-1-2>"6 X25 X 36,." ,." (1 ,." 2)(1 -2>"15"" 2,." 2)} -q .L26.L36 - .L26 - q .L25 .L35 , 
X26 

(q - q-1)p~(fj)(j=4,5) = q>..jT3j -2T2j -2 - q->..j 

+ q>"; {X2
j
+1 T3 "+1T3" -2 (1 _ T2 "-2) + X3j+1 T2 "-1 (1 _ T3 "-2)} . 

X2j J J J X3j J J 

Thus we have translated the action of Uq(gl(6)) on the commutative algebra EIh F>... 

1.4. Casimir operators 

In this section we introduce the Casimir operators, instead of Laplacian in the classical 

case, and compute their action on the algebra m>.. F>... The Casimir elements are defined 
by 

(1.4.1) 

for 1 ::; j ::; 5. They are central elements of the subalgebra C[q±ej , q±e;+l , ej, Ii] of 

Uq(gl(6)), isomorphic to Uq(gl(2)). 

Here recall the homogeneity condition (1.3.7); to take care of this, we introduce new 

coordinates by 
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and the new unknown cp by 

G -A2-1 -A3-1 ( ) = X24 X34 cp Zll Z2, Z3, Z4 . (1.4.2) 

Then, relative to these coordinates, we can compute the actions of the Casimir oper­

ators by using the concrete forms of the actions of q±ej , ej, and f;, which have been given 

in the previous section. 

Proposition 1.4.1. For the case (I), define the q-difference operators by 

T35 = Tq2,%3 = T3, 
rp _ - 2A3-2rp -1T. -1 
.1..34 - q .1..3 4 , (1.4.3) 

Then we have 

( -1)2 1(0 ) _ -2A2-A4+A5-1(1 -l)T -2rp -1 q - q PA 4 - q - Zl 1.1..2 X 

{(I - q2A2+2A3+2A4+4T)(1 - T1) - q2Z1 {1 - q2A2+2T1T2)(1 - q-2A5T1T3n 

+ q-2A2-A4-A5-3(1 _ Z3 -1 )T1- 1 X 

{T2 -1(1 - q2A2+2A3+2A4+4T)(1 - T3) 

- q2A2+2A4+2A5+4z3(1 _ q2A3+2T3T4)(1 - q-2A5T1T3n 

+ -2A2-A4-A5-1 ( 1 1 ) T -1 q --- 1 X 
Z3 Zl 

{ZlT2 -1(1 - q2A2+2T1T2)(1 - T3) 

- q2A2+2A4+2A5+2z3(1 - q2A3+2T3T4)(1 - T1n, 

(q - q-1)2pi(C5) = qA5+A6+1 (~ - ~) T2 -lX 
Z2 Zl 

{ZlT3 -1(1 - q-2A5T1T3)(1 - T2) - q-2A
5 z2(1 - q-2A6T2T4)(1 - T1n 

+ qA~-A6+1 (~ _ ~) T2 -1 X 
Z4 Z3 

{z3(1 - q-2A5T1T3)(1 - T4) - q2A6 Z4T2 -1(1 - q-2A6T2T4) (1 - T3n 

+ qA5+A6+1 (_1 ___ 1_) x 
Z2 Z3 ZlZ4 

{q-2A5-2A6-2z2z3(1 - T1)(1 - T4) - ZlZ4T2 -lT3 -1(1 - T2)(1 - T3n. 

For the case (ll), define the difference operators by 

T35 = Tq,%3 = T3, 
rp _ -A3-1rp -1T. -1 
.1..34 - q .1..3 4 , (1.4.4) 
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Then we have 

(q_q-1)2p~(C4) =q-A4-A5- 1 (T3 - :1) T3 X 

{(I - q2A2+2A3+2A4+4T2)(1 - T12) 

- q2A3+2A4+2Ai5+4T3T42z1(1 _ q2A2+2T12T22)(1 _ q-2Ai5T12T32)} 

+ -A2-A4-A5-2 (T rrt 1 ) q 1-L2 - - X 
Z3 

{T1- 1T2 -1(1 - q2A2+2A3+2A4+4T2)(1 - T3 2) 

- qA2+2A4+2Ai5+3z3(1 _ q2A3+2T32T42)(1 _ q-2Ai5T12T32)} 

+ q-A2+2A3+A4-Ai5-1 (~T3 - ~T1T2) T3 X 
Z3 z1 

{Z1T1-1T2 - 1T3T42(1- q2A2+2T12T22)(1 - T3 2) 

_qA2-2A3z3(1 _q2A3+2T32T42)(1 -T1
2)}, 

(q _ q-1)2p~(C5) = qAi5-A6+1 (~ _ ~T4 -1) T1- 2T3 -2X 
Z2 Z1 

{z1T4(1- q-2A5T12T32)(1- Ti) - q2A6z2(1- q-2A6T22T42)(1- T12)} 

+ qA5-A6+1 (~ _ ~T1-1) T32X 
Z4 Z3 

{Z3T1-1(1 - q-2A5T12T32)(1 - T4 2) - q2A6 z4(1 - q-2A6T22T42)(1 - T32)} 

+ A5-A6+2 (1 1 T -1rrt -1) T -2rrt -2 q -- - - 1.L4 1.L3 X 
Z2 Z3 Z1 Z4 

{q-1 z2z3(1- T12)(1- T4 2) - z1z4T1T4(1- T12)(1- T32)}. 

Note that we translated all actions of the elements of Uq(gl(6)) in terms of q-difference 

operators. Therefore, we can extend the action of Uq(gl(6)) to the space of formal power 

series. 

1.5. q-hypergeometric functions of type (3,6) 

In this section we define two kinds of functions, which are both q-analogue of F3,6. 

Let us consider the following system of defi'erence equations: 

(q - q-1)2pHCj)G = 0 
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for * =1 or ll. We define functions that are solutions of this system, assuming that '\2 + 

,\3+,\4+3#0,-1,-2, .... Put 

cp~ = cp~(XbX2,X3,X4) 
00 (q-2>'5 j q2)a+c(q-2>'6 j q2)b+d(q2>'2+2j q2)a+b(q2>'3+2j q2)c+d 

a'b~=O (q2>'2+2>'3+2>'4+6 j q2)a+b+c+d(q2 j q2)a(q2j q2)b(q2 j q2)c(q2j q2)d' 
(1.5.3) 

X q2bcx ax bx cx d 
I 2 3 4' 

where 
Xl = q2Zb 

X _q2>'2+2>'4+2>'5+4Z 
3 - 3, 

(1.5.4) 

and 

cP~ = CP~(Xb X2, X3, X4) 

00 (q-2>'5j q2)a+c(q-2>'6j q2)b+d(q2>'2+2j q2)a+b(q2A3+2j q2)c+d 

a'b~=O (q2A2+2A3+2>'4+6j q2)a+b+c+d(q2 j q2)a(q2j q2)b(q2j q2)c(q2; q2)d (1.5.5) 

X qc(a+b)+d(2a+b)xax bx cx d 
I 2 3 4' 

where 

(1.5.6) 

Here (a, q)n = (1 - a)(l - aq) ... (1 - aqn-l). 

Then we can see the next proposition by a simple but a little longer direct computation. 

Proposition 1.5.1. The functions 

satisfy the q-difference equations (1.5.h) and (1.5.2*) for * =1 and ll, respectively. 

Definition 1.5.2. We call the functions cP~ and cP~ defined above the q-hypergeometric 

series of type (3,6j1) and type (3,6;ll), respectively. 

Remark 1.5.3. When q tends to 1, (1- qO)/(l - q) converges to a. Hence, both of cP~ 

and cP~ converge to the function F3,6 in (1.1.10), when q tends to 1. 

1.6. Contiguity relations and q-hypergeometric systems of type (3,6) 
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Define the operators 7rl (a) and 7rf (a) as follows: 

pi (a)Gi = X24 -A~-lX34 -A~-l7rl (a)rpL 

p~(a)G~ = X24 -A~-lX34 -A~-l7r~(a)rp~, 
(1.6.1) 

where a is an element of Uq(gl(6)) of weight /l, and A' = (Aj) = A + /l,. Then we have 

Proposition 1.6.1. The following is the list of contiguity relations for the q-hypergeometric 

series rpl: 

7rl(q€i)rpl 

7rl( el)rpl 

7rl (e2)rpi 

7rl(e3)rpi 

7rl (e4)rpi 

7rl(e5)rpi 

7rl (h)rpi 

7rl (h)rpi 

7rl (!3)rpl 

7rl(f4)rpi 

7rl(f5)lPi 

qAirpl (1 ~ j ~ 6), 

-q-JL[JL]rpl+01 ' 

q>'4-A5->'6-1[A2 + 1]rpl+02' 

_ qA3+>'IS+>'6+3[A3 + 1]rpl+03' 

2A2+>'4-JL [A4 + 1][A5] I 
q [JL + 1] rpA+04' 

[A6]rpl+olS ' 
JL+l [Al][A2 + 1] I 

-q [JL + 1] rpA-01' 

q-A4+AI5+A6+1[A3 + 1]rpl-02' 

_ -A3->'I5->'6-2[A + 1] I q 4 rp>'-03' 
-2A2-A4+JL-2[ ] I q JL rp>'-04' 

[A5]rpl-05· 

The contiguity relations for the q-hypergeometric series rp~ are given as follows: 

7rf(q€i)rp~ - qAirp~ (1 ::; j ~ 6), 

7r~(el)rp~ -qA1+A4+1[JL]rp~+01 , 

7rf(e2)rp~ q-l[A2 + 1]rp~+02' 
7rf(e3)rp~ - q->'1->'4+1 [A + 1]rpIT 3 A+03' 

7rf(e4)rp~ ->'2->'3-2 [A4 + 1][A5] IT 
q [JL + 1] rp>'+04' 

7r~(e5)rp~ - [A6]rp~+05 ' 

7rf(h)rp~ -A1-A4 [Al][A2 + 1] IT - -q [JL + 1] rpA-01' 

7rf(h)rp~ - q[A3 + 1]rp~-02' 
7r~(f3)rp~ - q>'1+>'4[A +1]rpIT 4 >'-03' 
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71'f(4)rpf - q>'2+>'3+2[JL]rpf_a4' 

71'f(fs)rpf ['\s]rpf-al5· 

Here JL = '\2 +'\3 +'\4 + 2, and [a] = (qa _ q-a)/(q _ q-1). 

Now we consider the action of the elements E ij • Eij E Uq(gl(6)) (i =1= j) 
The element Eij is of weight D:ij = €i - €j. When being considered as q-difference 

operators, they define endomorphisms 

(1.6.2) 

for * =1 and ll. 
Their actions on q-hypergeometric series are symmarized in the following list. 

Proposition 1.6.2. The following is the list of contiguity relations appending those in 

Proposition 1.6.1 for the q-hypergeometric series rp~: 

I" I ->'2+>'4->'15->'6-1l-1[ ] I 71'>. (E13 )1,0>. - -q JL 1,0 >'+a13 ' 

I" 1 _q>'2->'4+>'I5+>'6+1l+2 ['\1]['\3 + 1] 1,01 71'>. (E31 )rp>. [JL + 1] >'+a31 , 
I" 1 -2>'2->'3-1[ ] 1 71'>. (E14 )1,0>. - q JL 1,0 >'+a14 ' 

I" 1 
71'>. (E41 )1,0>. 

2>'2+>'3+1 ['\1]['\4 + 1] 1 
q [JL + 1] rp>.+a41 , 

I" 1 -1l->'3+1[,\] 1 71'>. (E1S )1,0>. - . q s rp>'+all5' 
I" 1 1l+>'3 -1 [,\] 1 71'>. (Es1 )1,0>. - q 1 rp>.+a51 ' 
I" 1 -1l->'3->'5+1[,\] 1 71'>. (E16 )rp>. - q 6 rp>'+a16 ' 
I" 1 ql'+>'3+>'15-1[,\ ]1,01 71'>. (E61 )1,0>. - 1 >'+a61 , 
I" 1 >'4 + 1 [,\ 1] 1 71'>. (E24) 1,0>. - -q 2 + rp>'+a24 ' 
I" 1 

71'>. (E42 )1,0>. ->'4-2[,\ + 1] 1 -q 4 rp>'+a42 ' 

I" 1 >'2->'3+2 ['\2 + 1]['\s] 1 
71'>. (E2S )1,0>. - -q [JL + 1] rp>'+a215' 

I" 1 _q->'2+>'4-1 [JL]rpl 71'>. (ES2 )1,0>. - >'+aI52 ' 

I" 1 >'2->'3->'5+2 ['\2 + 1]['\6] 1 
71'>. (E26 )1,0>. - -q [JL+1] rp>'+a26 , 

I" 1 _q->'2+>'3+>'15 -1 [JL]rpl 71'>. (E62 )1,0>. - >'+a62 ' 
I" I >'2->'4+>'15+>'6+2 ['\3 + 1]['\s] I 

71'>. (E3S)1,0>. - -q , [JL+1] rp>'+a315' 

I" 1 ->'2+>'4->'5->'6-3[ ] 1 71'>. (ES3)1,0>. - -q JL rp>'+aI53' 
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For the q-hypergeometric series Cp~, we have 

II A II _q>'1->'2+>'4 [J.t]cpII 11">. (E13)CP>. - >'+013 ' 

II A II 
11">. (E31 )cp>. 

->'1+>'2->'4+1 ['\1]['\3 + 1] II 
-q [J.t+1] CP>'+031, 

II A II 
11">. (E14 )CP>. ->'2->'3[ ] II -q J.t cp >'+014 ' 

II A II 
11">. (E4dcp>. 

>'2+>'3 ['\1]['\4 + 1] II 
-q [J.t+1] CP>'+041, 

II A II 
11">. (E15 )CP>. _q-2p'+>'4+2 [,\ ]cpII 5 >'+OlS' 

II A II 
11">. (E5dcp>. 2~->'4-2[,\] II -q 1 CP>'+OSl' 

II A II _q-2~+>'4->'/I+2[,\ ]cpII 11">. (E16 )cp>. - 6 >'+016' 
II A II 

11">. (E6dcp>. _q2~->'4+>'/I-2[,\ ]cpII 
1 >'+061' 

II A II 
11">. (E24 )cp>. q->'1->'3->'4[,\ + l]cpII 

2 >'+024' 
II A II q>'1+>'3+>'4+1[,\ + l]cpII 11">. (E42 )cp>. - 4 >'+042' 

II A II 
11">. (E25 )cp>. 

->'1->'3->'4-~-1 ['\2 + 1]['\5] II 
q [J.t+1] CP>'+02/1' 

II A II q>'l +>'3 +>'4 +~ [J.t]cpII 11">. (E52 )CP>. >'+052 , 

II A II ->'1->'3->'4->'5-~-1 ['\2 + 1]['\6] II 
11">. (E26 )cp>. - q. [J.t + 1] CP>'+026' 

II A II _q>'l +>'3+>'4+>'5+~[J.t]cpII 11">. (E62 )CP>. - >'+062 ' 

II A II ->'1->'4-~ ['\3 + 1]['\5] II 
11">. (E35)CP>. - q [J.t+1] CP>'+035, 

II A II q>'l +>'4+~-1[J.t]cpII 11">. (E53)CP>. . - >'+0/13 ' 

II A II 
11">. (E36)CP>. 

->'1->'4->'5-~ ['\3 + 1]['\6] II 
q [J.t + 1] cP >'+036 ' 

II A II q>'l +>'4+>'5+~-1 [J.t]cpII 11">. (E63)cp>. - >'+063 ' 

II A II 
11">. (E46 )CP>. 

>'4->'5-~ ['\4 + 1]['\6] II 
q [J.t +1] cP >'+046 ' 

II A II q->'4 +>'/I+~ [J.t]cpII 11">. (E64 )CP>. >'+064 . 
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We can now rewrite these relations in a much simpler form; namely, referring to these 

relations, define the elements oCUq(gl(6)) by 

(1.1.13) 

for 1 :::; i =1= j :::; 6. Then we can define a quantum analogue of the classical hypergeometric 

system E3,6 as follows. 

Definition 1.6.3. We call the following system the q-hypergeometric system of type 

(3,6; *): 

T. T. T. - -~3-1 
q,X34 q,X31S q,X36 U - q u, (1.6.3) 

(1 :::; i =1= j :::; 6), 

where * =I or IT. A direct computation by use of the contiguity relations above shows 

Theorem 1.6.4. The functions G~ is a solution of the q-hypergeometric system of type 

(3,6; *) for * =I or IT. 

Finally we define the q-difference equation as follows. 

Proposition 1.6.5. For J = (jl,h,j3,j4) (h < j4, jk =1= jz if k =1= 1), we have 

* (EA . . EA . . _ a(J'~)EA . . EA . . ) * - 0 
7l'~ 3132 3334 q 3134 3332 cp~ -

for each * =I or IT, where 

a(J,)..) 

-1 
)..12 +)..ja 

-)..il -)..il 
-)..il - )..j4 

Aja + )..j4 

- Aj1 + Aj3 + J. 
)..12 - Aj4 - 1 

(j1!j3 < j2 < j4 or h < j4 < j1!ia) 
(jl < h < ia < j4 ) 
(j3 < h < jl < j4 ) 
(h < jl < j4 < ia ) 
(h < ia < j4 < jd 
(h < jl, j3 < j4 ) 
(jl < j2 < j4 < ia or ia < i2 < j4 < j!). 

We can compute these equations by the contiguity relations. Let us notice that a(J, A) 
does not depend on the type of the monomial basis I and IT. 
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Chapter 2. q-Hypergeometric functions associated with the quantum Grass­

mannians 

2.0. Introduction of this chapter 

In the previous chapter, we discussed about q-hypergeometric system of type (3,6). 

In this chapter, we will discuss a quantum analogue of Gk,n, and associated generalized 

q-hypergeometric system and q-hypergemetric functions which is q-analogue of hypergeo­

metric function associated with Gk,n' 

In the first section, we consider the quantum analogue of the space Gk,n and quantum 

minor of degree k. 

In the second section, we give the short review of the classical case. 

In the third section, we define the localization, which has a Uq(gl(n))-submodule 

structure of the noncommutative algebra . 

In the fourth section, we define the action of Uq(gl(n)) on the commutative polynomial 

ring. Furthermore, we exibit the action in terms of q-difference operators. 

In the fifth section, we define the Casimir operator and, as the solution of the system 

of q-difference equations, realize the q-hypergeometric function defined by the series 

n n (-Aj.) nk (Ar +1.) 
(
" ) _ ~ j=k+2 q ,q IAjl r=2 q ,q IArl A 

<Pk n 1\, q, Z - L...J () n () Z • 
, a>:'>O q'Y; q IAI r,j q; q aj 

J-

(2.5.7) 

In the last section, we compute the contiguity relation for q-hypergeometric function. 

The contents of this chapter is a joint research of M. Noumi and the author. 

2.1. Quantum Grassmannians 

In this section, we introduce the quantum Grassmannians which is a quantum analogue 

of the space Gk,n' 

In the previous chapter, we defined the noncommutative algebra Aq(M(k, n)), which 

is the quantum analogue of the coordinate ring A(M(k, n)). 
Now we define the quantum minor determinants ejl ... j" by 

ejl ... j" = ~ (-q)'(w)tw(l)jl tw(2)h ... tW(k)jk 
weB" 
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Here Sk is the permutation group of k letters and, for each w E Sk, lew) denotes the 

number of inversions in w. 

We denote the subalgebra in Aq(M(k, n)) generated by the quantum minors {€iI ... j/,} 

by A. Then, for the definition, we can calculate the properties of the quantum minors as 

follows: 

Proposition 2.1.1. For i1 :::; j2 :::; ... :::; jk and w E Sk, 

c. . _ (_q)-l(w)c. . 
"'3l .. ·3k - "'3w(l) .. ·3w(k)· (2.1.2) 

Especially, if ja = j{3 for 1 ::; a =1= (3 ::; k, 

(2.1.3) 

Proof. For ja > ja+I, we can easily compute that 

and, for ja = ja+I, 

Furthermore, these minors satisfy the Pllicker relations as follows: 

Proposition 2.1.2(Pliicker relations). For 1 :::; iI, ... , ik-l ::; nand 1 :::; jo ::; ... ::; 

jk:::; n, 
k 

I: (-q)m€il ... ik_13m €jo ... /;. .... jk = 0 
m=O 

where l(J1; J2 ) = #{(ja,j{3); ja E J1 ,j{3 E J2 ,ja > j.e}. 

Proof. See [NYM]. 

(2.1.4) 

Here, similarly as the previous chapter, we denote the noncommutative algebra, which 

is generated by the quantum minors of degree k, by A. 

2.2. Classical case (hypergeometric functions associated with the Grassmanni­

ans) 

In this section, we discuss again the hypergeometric system of differential equations 

associated with the Grassmannian Gk,n (k :::; n) i!l order to refer on the making of the 

q-hypergeometric function associated with the quantum Grassmannian. 
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Let us consider the k x n matrices 

( 

tll t12 

T = t21 ~~~ 
tkl tk2 

... tln) 
::: t2n EM(k,n). 

... tkn 

(2.2.1) 

The hypergeometric system of differential equations of type Gk,n 

system on the space M (k, n): 
is the following 

<P(gT) = det(g)-l<p(T) (g E GL(k)) 

<P(Tdiag( Cl, ... , cn )) = <P(T)Cl Al ••• Cn An 

8
2 

<P(T) = 8
2 

<P(T) (1 ~ r < s ~ k, 1 ~ i < j ~ n), 
8tri8tsj 8tsi8trj 

(2.2.2) 

(2.2.3) 

(2.2.4) 

where A = (All A2, ... ,An) is a set of complex numbers. For the conditions (2.2.2) and 

(2.2.3) to be compatible, it is necessary to assume Al + ... + An = -k. 

Malutivalued holomorphic solutions <P(T) of the system (2.2.2) - (2.2.4) are called the 

hypergeometric functions of type (k, n). 

Now we can decompose a general k x n matrix T as follows: 

T 

where 
1 

1 
T' 

(

tll h2 ... tlk) 
t21 ~~~ : : : t2k x T', 
tkl tk2 ... tkk 

(-1)lel ... k -leik+l 
(-1)2el ... k -le2k+1 

(_1)16"'k -lein 
(_1)26 ... k -le2n 

1 (-1)kel"'k -lekk+1 (_1)k6"'k -lekn 

(2.2.5) 

(2.2.6) 

erj = 6 ... ;: ... kj for r = 1, ... , k j = k + 1, ... , n, and {ejd2 ... jk} are defined as (2.1.5) 

in Remark 2.1.3. Furthermore, T' can be decomposed as follows: 

1 
1 

x 

k-l ~ ____________ ~A~ ______________ _ 

x diag(l, ( -l)leik+l -le2k+1l'" ,( -l)k-leik+l-lekk+l', 
n-k 

" 
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where zj = erjeiktl for r = 2, ... ,k and j = k + 2, ... ,n. Therefore 4>(T) can be written 
erk+l ij 

in the form 

(2.2.8) 

for some function F(Z~+2"'" z~) in the (k -1) x (n - k -1) variables (Z~+2' Z~+3"'" z~). 

Remark 2.2.1. For the condition (2.2.2) and (2.2.3), the decomposition (2.2.5) means that 

cp(T) can be written as the function of the k x (n - k) +2 variables (6 ... k ±l, eik , ... , ek
A 

) +1 n 

as follows: 

(2.2.9) 

Furthermore, because of invariances (2.2.2) and (2.2.3) again, the decomposition (2.2.6) 

and (2.2.7) mean that the function G(6 ... k ±l, ... , ekn ) has the homogeneities: 

k 

"" a (±l ) (±l ) . L...Jerj ae
A

• G 6 ... k , ... ,ekn = AjG 6 .. ·k , ... ,ekn for k ~ J ~ n, 
r=l rJ 

(2.2.10) 

:t erj a:
A

• G(6 ... k ±1, ... , ekn ) = (-Ar-l)G(6 ... k ±l, ... , ekn ) for 1 ~ r ~ k. (2.2.11) 
j=k+l rJ 

In these coordinates z = (Z~+2' Z~+3"" ,z~), it is known that a solution of the equa­

tion (2.2.4), holomorphic around the origin z = 0, is given as follows: 

(2.2.12) 

where "( = A2 + ... + Ak+l + k. Here, for the matrix A = (ajh:::;r:::;k,k+2:::;j:::;n, we use the 

notations 

IAjl = a; + al + ... + aJ, IArl = ak+2 + ak+3 + ... + a~, IAI = ~aj (2.2.13) 
r,j 

and 

ZA - llzr:aj 
- J '. (2.2.14) 

r,j 
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Remark 2.2.2. The hypergeometric function F2 ,n associated with G2 ,n is known as the 

Lauricella's hypergeometric series Fn in n - 3 variables. Especially, F2,4 is known as 

Gauss hypergeometric series 2Fl. 

Now let us set 
k a 

Eij = Ltr i -a .' 
r=l tr3 

(2.2.15) 

Then {Eijh~i,j~n generate a Lie algebra isomorphic to gl(n) and, for 3 v(Aji,j) E C, we 

have 

Ei,jFk,n(Zj A) -= V(Aj i,j)Fk,n(zj A~) 

where A~ = (AI, ... , Ai + 1, ... , Aj -1, ... , An) for 1 :5 i, j :5 n. In that sense, the contiguity 

relations for the hypergeometric function Fk,n give a representation ofU(gl(n)) which is the 

universal enveloping algebra of Lie algebra gl(n). Furthermore, as differential operators, 

{Eij} define a U(gl(n))-module structure on the polynomial algebra C[tll' h2,"" tkn] of 

k x n variables (trjh~r~k,l~j~n' Remember that it holds an identity 

for each i i= j. 
Then the function 

G A (6 ... k ±l ,eik+l' .•. '{~n) 
k n 

-F'; (z A)C "Y+AI-Ak+1- l c. "Y-lIIc. -Ar- l II c. Aj - k,n , ",l .. ·k "'lk+l ",rk+l "'lj , 
r=2 j=k+2 

is a solution of the system of differential equations (2.2.10), (2.2.11), and 

{(Eii + I)Ejj - EjiEij}G(6 ... k±\eik+l'··· ,ekn ) = o. 

Remark 2.2.3. By the condition (2.2.2) and deconposition (2.2.5), we have 

Therefore the function G(el ... k ±l, •.. , ekn ) can be written as follows: 

(1.1.11) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

1 1 1 2 2 Ie 

G(C ±l c) ""'(v)c~n c~n-l ••• C~k+l c~n c~n-l ••. C~k+l c -Ivl-l 
",l· .. k , •.. ''''kn = .l...J .... '''In '''In-l "'lk+l "'2n "'2n-l "'kk+l ",l· .. k 

vE(Z~o)k(n-k) 

(2.2.19) 
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where Ivl = Er,j vj for the k x (n - k) matrix v = (Vjh~r~k,k+1~i~n' 

2.3. The representation of the algebra Uq(gl(n» and a localization of A 

In this section, we define the action of Uq(gl(n)) on the noncommutative algebra 

Aq(M(k, n)). Furthermore, we define a localization of the noncommutative algebra A 
generated by quantum minors of degree k. 

The algebra Aq(M(k, n)) has a structure of a left Uq(gl(n))-modulej it is determined 

by assuming the Uq(gl(n))-symmetry. 
Furthermore, the subalgebra A is a left Uq(gl(n))-submodule of Aq(M(k, n)). The 

actions of the generators of Uq(gl(n)) are determined by 

e, . (:. . 
'>31···3k 

m=l 

k 

=L 
m=l 

(2.3.1) 

Here we introduce a localization of A. In the decomposition (2.2.5), the e1 ... k-
1 has 

played a special role. Herefore, we invert the principal minor 6 ... k. 

Theorem 2.3.1. The localization A[6 ... k -1] is the algebra generated by e1 ... k ±1 and 

erj(l :5 r :5 k, k + 1 :5 j :5 n). 

Proof. Take any index set {rb ... ,rk-s,jb ... ,is} such as 1 :5 r1 < ... < rk-s :5 k and 

k + 1 :5 i1 < ... < is :5 n. Then by the PlUcker relations (2.1.4), we have a form 

k 

erl ... rk-sjl ... j.6 ... k = - L( -q)i-kerl ... rk~.jl ... j._lieij.· 
i=l 

In the right hand side, the number ofindeces which are larger than k+1 in the first factors 

are r - 1. By using this method inductively, we can see that erl ... rk-sil ... j.er.:k lies in the 

algebra generated by et\ and erj(l :5 r :5 k, k + 1 :5 i ::; n). 

Furthermore, by the property (2.1.3) and the PlUcker relations (2.1.4), the commuta­

tion relations among et\ and erj are generated by the following relations: 

(2.3.2) 
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and 
€fj€sj = q-l€Sj€fj, €ri€fj = q€fj€fi, 

€ri€sj =€sj€fi, €si€fj - €fj€si = (q - q-l)€fi6j, 

for 1 :::; r < s :::; k, k + 1 :::; i < j :::; n. 

Remark 2.3.2. We can see that the 2 x 2 matrix 

(
a b) = (6i €sj ) 
c d €fi €fj 

again satisfies the M atq (2)-relations (1.2.1). 

(
1:::;r<s:::;k) 
1:::;i<j:::;n 

Now the algebra A[6 ... k -1] has the monomial basis 

where vJ E z~o and J-L E Z. In the following, we set 

(2.3.3) 

(2.3.4) 

(2.3.5) 

for each matrix v = (vJh:5r:5k ,k+l:5j:5n of nonnegative integers. With this notation, we 

have 

(2.3.6) 
vE(Z;:::o)"(n-k) jp.EZ 

Furthermore, we can see that the algebra A[6 ... k -1] has a structure of a left Uq(gl(n))­
submodule. 

We now consider the homogeneous component of degree -1 of A[6 ... k -1] with the 

respect to the quantum minor €1t ... j,,: 

C CVC -lvl-l 
I" 1,,1···k • (2.3.7) 

vE(Z;:::o)"{n-k) 

where Ivl = 2: vj. It is easy to see that this subspace Mk,n has the Uq(gl(n))-submodule 
r,j 

structure of A[6 ... k -1]. Here, for all a E Uq(gl(n)), we denote its action on Mk,n by 

(2.3.8) 

2.4. Translation of the action of Uq (gl(n» 
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In this section, we translate the action of the Uq(gl(n)) on the noncommutative al­

gebra Mk,n to that on the commutative polynomial ring. Moreover, we give the explicit 

formulas of the action of the generators of Uq(gl(n)) in the terms of the q-difference oper­

ators. 

In order to translate the action of the algebra Uq(gl(n)) on the noncommutative 

algebra Mk,n into the q-shift operators, we consider the commutative polynomial ring 

C[xl, xl+1, •.• , x~] in k x (n - k) variables x = (xjh~r~k,k+l~j~n' Here, for v = (vj), we 
use the notation of multi-indices 

XV = II (2.4.1) 

Here let ¢ : M(k, n - k; Z~o) -+ Z be an arbitrary function of degree at most two 

with values in Z in the form 

(2.4.2) 
r,B,i,j r,j 

for the k x (n - k) matrix v = (vjh~r~k,k+l~j~n' For such a ¢, we define an isomorphism 
of vector space 

by setting 
.1, (XV) _ eve -/V/-lq¢(v) 
'f'¢ - I" I"l .. ·k , (2.4.3) 

for all v E (Z~o)k(n-k). Then we obtain a left Uq(g.l(n))-module structure on the vector 

space C[x]. Namely we have 

(2.4.4) 

for all a E Uq(gl(n)). In the following, we denote by q(}r,J the q-shift operator in the 

variables xj: 

(2.4.5) 

Remark 2.4.1. Let ¢ and ¢o be two functions of degree :5 2. Then it is easy to see the 

two representations p¢ and P¢o are related by the formula 

(2.4.6) 

for all a E Uq(gl(n)), where () = (()r,jh~r~k,k+l~j~n' 
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Now we set 
n k 

¢(V) = L: V[V; - L: (V})2 - L:Vk+l(Vk+l +2). (2.4.7) 
l:::;r<s:::;k,k+l:::;i<j:::;n j=k+2 r=2 

In the following, we simply write p = prp. We give the representation of p by q-difference 

operators as follows: 

p(qEr) = q-1-8r,k+1 ... n (1 ~ r ~ k), 

p(qEj) = ll"'k,j (k+ 1 ~ j ~ n), 

n x~ 
(q - q-l)p(ed = L: -+(1 - q-281';)ql-81,k+l ... n+282,Hl ... n 

x· j=k+2 3 
x2 + ~+l (q281,k+1 _ 1)q3-81,k+l ... n+282,k+l ... n, 

Xk+l 
n X,:+l 

(q _ q-l)p(er) = "" _3_(q28r,; _ 1)q-9r,k+l ... n+28r+l,i+1 ... n 

L...J Xr: 
j=k+2 3 

Xr +l 
+ ~+l (1 - q-28r,k+1 )q2-8r,k+l ... n+28r,k+l ... n (2 ~ r ~ k - 1), 

Xk+l 

1 (q - q-l)p(ek) = -k-(l - q-28k,k+1 )q-l+91 ... k- 1,k+2 ... n, 

Xk+l 
k r 

(q _ q-l)p(ek+d = "" Xk+l (q28r,k+2 _ 1)q3+81 ... r,k+1-81 ... k,k+2 
L...J xr 
r=2 k+2 

xl + ~+l (1 _ q-281,k+2 )ql+281,k+1-91 ... k,k+2, 

X k+2 

k xr: 
(q - q-l)p(ej) = L: X/ (q28r,;+1 - 1)q291 ... r-l,j-81 ... k,i+1 

r=2 i+l 

X~ + +(1- q-281,Hl )q2+291,;-81 ... k,Hl (k + 2 ~ j ~ n - 1), 

X j +l 

n X~ 
(q - q-l)p(h) = L: -i-(q282,; - 1)q1+281,k+l ... ;-82,k+l ... n 

x· j=k+2 3 
Xl + ~+l (1 _ q-282,k+1 )q-1-82,k+1 ... n, 

Xk+l 
n xr: 

(q - q-l )p(fr) = L: r~l (q29r+1,j - 1)q28r,k+l ... j -1-8r+l,k+l ... n 

j=k+2 Xj 
xr + k+l (1 - q-28r+1 ,k+1 )q2+28r,k+1-8r+l,k+l ... n (2 ~ r ::; k - 1), 
x r +l 

k+l 
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k-l 

+ I)-1)P-l I: 
p=l 1 ~ rl < ... < rp < rp+l = k 

k + 1 = jo < jl < ... < jp ~ n 

rl = 1 
otherwise (2.4.8) 

Thus we have translated the action of Uq(gl(n)) on the commutative algebra C[x]. 

2.5. Casimir elements and q-hypergeometric function of type (k,n) 

In this section, we compute the action of the Casimir elements and define the q­

hypergeometric systems of q-difference equations. 

Furthermore we define the q-hypergeometric function of type (k, n) as a solution of 

this system. 

Note that, in the classical case, the hypergeometric function associated with Gk,n is 

a solution of the system of differential equations (2.2.10), (2.2.11) and (2.2.17). 

In view of the equation (2.2.17), we define the analogous elements of Uq(gl(n)) 

(2.5.1) 

for 1 ~ j ~ n -1. They are central elements of the sub algebra of Uq(gl(n)), isomorphic to 

Uq(gl(2)), and called the Casimir elements. 
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In the representations, the actions of the Casimir elements are computed as follows: 

(q - q-l)2p(C1) 

L (q-l+lh,k+l ... ; -lh,i+l ..... -92,k+l ... j +92,j+l ..... xIx; 

k+2:5i<j:5n 

_ ql+91,k+l ... j -91,j+1 ..... -92,k+l ... i +92,i+l ..... x}x;) 

x {_1_(1_ q-291,j)(q292,i - 1) 
x~x~ 

J Z 

n 

__ 1_(1 _ q-291,i)(q292,j - I)} 
x~x~ 

Z J 

+ L (q-1-91,k+1 ..... -92,k+1 ... j+92,j+1···"xk+lX] 

j=k+2 

- ql+91,k+1 ... j-91,j+1 ..... +92 ,k+l ..... X}X~+l) 

X { 1 12 (1 - q-292,k+1 )(1 _ q-291,j) 
XjXk+ 1 

- 1 1 2 (q291,k+1 - l)(q292,j - I)}, 
xk+1xj 

(q - q-l)2p(Cr )(2:5r:5k) 

_ L (q-l+9r,k+l ... i-l -9r,; ..... -9r+l,k+l ... j +9r+1,j+l ..... xi xj+l 

k+2:5i<j:5n 

_ ql+9r,k+l ... j -I-9r,j ..... -9r+1,k+l ... ;+9r+l,i+l ..... xjxi+1) 

X { 1 (q29r,j _ l)(q29r+1,; - 1) 
Xr:X,:+l 

J , 

n 

1 (q29r,; _ l)(q29r+1,j _ I)} 
X~X,:+l 

, J 

+ L (q-l+9r,k+I-9r,k+2 ... n-9r+l,k+l ... j+9r+l,j+l ..... Xk+l xj+l 

~=k+2 

- ql+9r,k+l ... j-I-9r,j ..... +9r+l,k+1 ..... xjx~ti) 

x { 1 (1 _ q-29r+1,k+1 )(q29r,j - 1) 
Xrxr+1 

j k+l 

=( q91 ... k,k+l +9k,k+2 ..... _ q-91 ... k,k+I-9k,k+2 ..... )( q9k,k+l _ q-9k,k+l ) 

_ (q91 ... k,k+1 _ q-91 ... k,k+1 )(q9k,k+1 ..... _ q-8k,k+l ... n) 
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k-l 

- 2:(-l)P-1 
p=l 

p 

x (1 - q-20k,k+l) II (1 - q20r;';i )ql+7J(rd-Ol ... k-l.k+2 ... n-20k.k+2"'ip 

i=l 

X q -2 E:=l (Ori .. ·k-1.ii_l +Ori+1 ... k-1.ii_l +l"'ii-d 

(q - q-I)2p (Ck+ l ) 

- 2: (q-I+Ol ... r.k+l-Or+l ... k k+l-Ol ..... k+2+0.+1 ... k.k+2Xr X S 
. k+l k+2 

2~r<s~k 

k 

q l+Ol ..... k+l-O.+l ... k.k+l-Ol ... r k+2+0r+l ... k.k+2 Xr X S ) 
- • k+2 k+l 

X { r 1 S (1 - q-20 •• k+ 1 )(q20r.k+2 - 1) 
x k+2x k+1 

r 1 S (1 - q-20r•k+1 )(q20 •• k+2 - I)} 
xk+l xk+2 

+ "'"'(q-I+Ol k+l -02 ... k.k+l -Ol· ..... k+2+0.+1 ... k.k+2 xl X S 
L.J . k+l k+2 
s=2 

q l+Ol .... k+l-O.+l ... k.k+l +Ol ... k k+2 Xl X S ) _. • k+2 k+l 

X { lIS (1 - q-20 •• k+1 ) (1 _ q-201.k+2) 

X k+2X k+1 

lIS (q201.k+1 - 1)(q20s.k+2 - I)}, 
Xk+l x k+2 

(q - q-I)2p(Cj)(k+2~j~n_l) 

2: (q-I+Ol ... r-l.i -Or ... k.j-Ol ..... i+l +O.+1 ... k.i+1 Xjxj+l 

2~r<s~k 

_ ql+Ol .... -l.i -Os ... k.i -Ol ... r.i+l +Or+l ... k.i+l xj+l xj) 

X { r 1 S (q20s.i - 1)(q20r.i+1 - 1) - r Is (q20r.i - 1)(q20 •• i+1 - I)} 
Xj+IXj XjXj + 1 

k 

+ 2:(q-I+Ol.i-02 ... k.i -Ol",s.i+l +O.+l ... k.i+l XlXj+1 

s=2 

- ql+Ol .... -l.i -O .... k.i+Ol ... k';+l Xl+I xj) 

X { lIs (q20s.i - 1)(1 - q-201.i+1) - I IS (1 - q-201.i)(q20 •• i+1 - I)}. 
Xj+IXj XjXj + 1 

Now, by fixing the complex parameters .A = (.All"" .An) with .AI + ... +.An = -k, we 
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consider the following system of q-difference equations for G (x). 

p(Cj)G(x) = 0 (1 ::; j ::; n - 1) 

(2.5.2) 

(2.5.3) 

(2.5.4) 

Remark 2.5.1. We can regard these equations as the analogous of the equation (2.10), 

(2.11) and (2.18), respectively. 

Then, in view of the homogeneities (2.5.2) and (2.5.3), we introduce new (k - 1) x 
(n - k - 1) variables z = (zj): 

r 1 
r XjXk+1 

Zj = r 1 
Xk+1x j 

(2.5.5) 

for 2 ::; r ::; k, k + 2 ::; j ::; n, and one can show that the system above has a solution in 

the form 
k n 

G() 1 "Y-1 II r -A -1 II 1Aj (' ) X = Xk+1 Xk+1 r Xj cP Aj Z , (2.5.6) 
r=2 j=k+2 

for'Y = >'2 + >'3 + ... + >'k+1 + k. 
We next define the q-hypergeometric function of type (k, n) as follows: 

nn ( -Aj.) nk (Ar+1. ) 
(
" ) _ ~ j=k+2 q ,q IAjl r=2 q ,q IArl A 

CPk n A, q, Z - L....t () n () Z • 
, a':>O q"Yj q IAI r,j qj q aj 

)-

(2.5.7) 

For the matrices A = (ajh5r5 k,k+25j5n , the notations IArl, IAjl, IAI and zA are defined 
in (2.2.12). 

Then we have 

Proposition 2.5.2. The function 

(2.5.8) 

is a solution of the system of the q-difference equations (2.5.2) - (2.5.4). 

In the following, we simply write CPA = CPk,n(>. jq2,z). 
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Remark 2.5.3. (1- qO)/(l_ q) converges to a when q tends to 1. Therefore, both of <P>.. 

and <Pk,n(Aj q, z) converge to the function Fk,n, when q tends to 1. 

2.6. Contiguity relations and q-hypergeometric systems 

If a is an element of Uq(gl(n» of weight /l" the q-difference operator pea) transform 

G>.. to a constant multiple of G>..+/\:. In this section, we compute the contiguity relations in 

terms of <P >... Furthermore, we define the q-hypergeometric systems. 

We define the operators 7r>.. (a) as follows: 

(2.6.1) 

where a is an element of Uq(gl(n» of weight /l, = /l,lf1 + ... + /l,nfn' A' = (Aj) = (Aj + /l,j) 

and 'Y' = 'Y + /l,2 + ... + Jl,k+1. Furthermore, we set for simplicity aj = fj - fj+1 and 
[a] = (qa - q-a)/(q - q-1). Then we have 

Proposition 2.6.1. For the generators of Uq(gl(n», the contiguity relations for the 

function <P>.. are given as follows: 

7r>.. (qfj)<p >.. - q>"j <P>.. (1 :::; j :::; n), 

7r>..(e1)<p>.. q>"I-2>"2+''Y+1 ['Y - 1 ]¢>"+01 , 

7r>..(er )<p>.. - _q2>"r-2>..r+1+2[Ar + l]<P>,,+or (2 :::; r :::; k - 1), 

7r>..(ek)<p>.. _q->"I-"Y+2>"k+1[Ak + l]<p>"+ok' 

7r>.. (ek+1)<p>.. -"Y+>"k+1-2>"k+2+2 [Ak+2][Ak+1 + 1] 
q ['Y] <P>"+Ok+1' 

7r>..(ej)<p>.. - q2>"j-2>"j+l+2[A' ]<p 1+1 >"+0; (k + 2:::; j :::; n - 1), 

7r>..(il)<p>... 
->"1+2>"2-,+1 [A1][A2 + 1] - q ['Y] <P>"-OI' 

7r>..(Jr)<P>.. - _q-2>"r+2>"r+l +2[A + 1]<p r+1 >"-Or (2:::; r < k - 1), 

7r>.. (ik)<p>.. - _q>"d,-2'\k+1[A + 1]<p k+1 >..-Ok' 

7r>..(Jk+l)<P~ - q,->"k+l +2>"k+2 ['Y - 1]<p >"-Ok+l , 

7r>..(!i)<p>.. - q-2>..;+2>"j+l+2[A ']<p 1 >''-OJ (k + 2 :::; j :::; n - 1). 

The elements Ei,j are of weight ai,; = fi - fh respectively, and their actions on the 

function <P>.. are given as follows. 
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Proposition 2.6.2. The following is the list of contiguity relations for the q-hypergeometric 

function cP >..: 

7r>..(E1,r)CP>. 

7r>. (Er,dCP >. 

7r>. (E1,k+1)CP >. 

7r>. CEk+1,1)cp>. 

7r>. (E1,j)cp >. 

7r>.(Ej ,l)CP>. 

7r>. (Er,s)cp>. 

7r>. (Es,r )cp>. 

7r>. (Er,k+1)CP>. 

7r>. (Ek+1,r)CP >. 

7r>. (Er,j )cp>. 

(-lrq>'1-2>'r+i,+Tl,r+1[,-1]CP>'+0'1,r (2 ~ r ~ k), 

(_ltq->'1+2>'r-'Y-Tl,r+1 [A1][~ + 1] CP'\+O'r, 1 (2 ~ r 5 k), 

(_l)k-lq7"1,k+l h - l]cp>'+O'l,k+1' 

(_1)k-1 -Tl,k+1 [A1][Ak+1 + 1] 
q [,] CP'\+O'l,k+1' 

(_1)k-lq'\k+1-'Y-2>'j+Tl,j+2[Aj]CP'\+0'1,j (k + 2 ~ j ~ n), 

(_1)k-lq-'\k+1 +'Y+2>'j-Tl,j[A1]CP'\+O'j,l (k + 2 ~ j ~ n), 

(_lr- S q2>"r-2'\s+Tr,s+2[Ar + l]CP'\+O'r,s (2 ~ r < s ~ k), 

(_lr- S q-2'\r+2>"s-Tr,s+2[As + 1]CP'\+O's,r (2 ~ r < s ~ k), 

( -1 )k+1-r q->'1-'Y+2'\r+Tr,k+ 1 +1 [Ar + 1]cp '\+O'r,k+l , 

(_l)k+l-r q>'l +'Y-2>'r-Tr,k+1 +1 [Ak+1 + 1 ]CP>'+O'k+l,r' 

(_1)k+1-rq->"1+2>'r+'\k+1-2>.j-2'Y+Tr,j+2 [Ar + 1][Aj] cP 
[,] >'+O'r,j 

(2 ~ r ~ kj k + 2 ~ j ~ n), 

(-1 )k+1-r q>'1-2'\r->'k+1 +2>'j+2'Y-Tr,j [, - 1 ]CP'\+O'j,r 

(2 ~ r ~ kj k + 2 ~ j ~ n), 

7r>. (Ek+1,j )cp>.. 

7r>. (Ej,k+1)CP>. 

7r>. (Ei,j )cp>. 

7r>. (Ej,i)cp>. 

where 

q'\k+1-'Y-2>'j+Tk+l,j+2 [Ak+1 + 1][Aj]cp (k + 2 <_ J' <_ n), 
[,] >'+O'k+l,j 

for 1 ~ i < j ~ n. 

q->'k+1+'Y+2>'j-Tk+1,j[r - l]cp'\+O'j,k+1 (k + 25 j ~ n), 

q2,\;-2>'j+T;,j +2 [Aj]CP>'+O'; ,j (k + 2 ~ i < j ~ n), 

q-2,\;+2>"j-Ti,j+2[Ai]CP'\+O'j,; (k + 2 ~ i < j ~ n), 

7.' . - { - Ai+ 1 - ... - A j -1 (j - i > 1) 
',3 - 0 (j - i = 1) 

Now, refering to these relations, we define the elements of Uq(gl(n)) by 

(q _ q-1)2Cij = (q1+€; _ q-1-€;)(q€j _ q-€j) _ (q _ q-1)2 Ej,iEi,j, (2.6.2) 

for 1 ~ i < j ~ n - 1. Now we call the following system the q-hypergeometric system of 

type (k, n): 

(2.5.2) 
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q()r,k+1ooonG(x) = q-)..r-1G(X) 

p)..(Cij)G(X) = 0 

By the contiguity relations, we have 

(2.5.3) 

(2.6.3) 

Theorem 2.6.3. The function G).. is a solution of the q-hypergeometric system of type 

(k,n). 

Remark 2.6.4. The definition of the elements Cij in (2.6.2) is including the original 

definition of the Casimir elements in (2.5.1). 

Finally we can check that cp).. satisfies Proposition 1.6.5. again, namely, 

Proposition 2.6.5. For J = (jl,h,j3,j4) (h < j4,jk =1= j, if k =1= 1), we have 

where 

a(J,A) 

1l"\(Eo 0 Eo 0 - qa(J,)..)Eo 0 Eo 0 )cp\ - 0 
A 31,32 33,34 31,34 33,32 A - , 

-1 
Ah + Aj3 
-Ail - Ah 
-Aj1 - Aj4 

Aja + Aj4 
-Ail + Aja + 1 
Ah - Aj4 -1 

(jl,j3 < h < j4 or j2 < j4 < jl,ja) 
(i1 < h < ja < j4 ) 
(j3 < h < jl < j4 ) 
(h < jl < j4 < h) 
(h < ja < j4 < jd 
(h < jl,j3 < j4) 
(jl < j2 < i4 < h or h < h < j4 < i1). 

(2.6.4) 

Remark 2.6.6. Note that a(J, A) does not depend on the type (k, n). The q-difference 

equation (2.6.4) will be proved in the paper written by M. Noumi and the author. 
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Chapter 3. q-Kummer and q-Bessel functions associated with the quantum 

Grassmannians 

3.0. Introduction of this chapter 

The contiguity relations for q-confluent functions, including a q-analogue of the K um­

mer functions, has been already discussed by E. Date and E. Horiuchi. Refer to [DH]. 

In this chapter, we will discuss the q-analogues of the confluent hypergeometric func­

tions including Kummer and Bessel functions. 

In the first section, we give the short reviews of the general confluent hypergeometric 

systems. 

In the second section, we define the localization which has a structure of Uq(gl(n))­

module. 

In the third section, we translate the action of Uq(gl(n)) on the noncommutative 

algebra to that on the commutative polynomial ring. 

In the last section, we define the q-confluent hypergeometric system and q-confluent 

hypergeometric functions including q-Kummer function: 

(3.4.18) 

and q-Bessel function: 

(3.4.19) 

as the solution of the system of the q-difference equations. Moreover we compute the 

contiguity relations for these functions. 

3.1. Classical case 

In this section, we introduce the confluent hypergeometric functions roughly. See 

[KHT1], [KHT2], and [KHT3]. 

For a fixed integer n, we set a = (at, a2, ... , a')oiEN as the partition of n, that is, 

al ~ a2 ~ ... ~ at and lal = al + ... + at = n. For example, there are 5 types of partition 

of 4 as follows: 

(1,1,1,1), (2,1,1), (2,2), (3,1), (4). 
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Now we define three types of the maximal commutative subgroup of G = GL(n; e) for 

some patitions of n. 

H(l, ... ,l) = { h = C h, 

hi h2 
hi 

H( ) - h = h3 2,1, ... ,1 -
. hb h3 , ••• , hn E ex 
, h2 E e 

hn 

hi h2 
hi 

H -(2,2,1, ... ,1) -

h3 h4 
h3 

h5 

. hl,h3,h5, ... ,hn E ex 
, h2 , h4 E e h= 

Moreover we set Ho. as the universal covering group of Ho.. 

Then we give the system of differential equations. Let us set T = (trjh~r~2,1~j~n E 

M(2, n). By fixing the partition a of n and for some A = (Ab ... , An) E en, the confluent 

hypergeometric system E(a; A) of differential equations on the coordinate ring A(M(2, n)) 
is the following system : 

Cf.>(gT) = det(g)-.1Cf.>(T) (g E GL(2)), (3.1.1) 

Cf.>(Th) = Cf.>(T)X(h, A) (h E Ho.), (3.1.2) 

82 82 

. 8 8 Cf.>(T) = 8 8 Cf.>(T) (1 ~ i < j ~ n). 
hi t 2j t2i hj 

(3.1.3) 

X: Ho. -+ e is the character ofHo.. For instance, for a(O) := (1, ... ,1), 

(3.1.4) 

For a(l) := (2,1, ... , 1), 

(3.1.5) 
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And for 0:(2) := (2,2, 1, ... , 1), 

X(hj A) = h/'lexp (A2 ~:) h3
A3 exp ( A4 ~:) h5

A5 
... hn An. (3.1.6) 

For the conditions (3.1.1) and (3.1.2) to be compartible, we can easily check that 

Al + ... + An = -2 for 0: = 0:(0), Al + A3 + ... + An = -2 for 0: = 0:(1), and Al + A3 + A5 + 
... + An = -2 for 0: = 0:(2). 

Remark 3.1.1. It has been shown that we can realize the Lauricella's hypergeometric 

function FD as a solution of the system E(o:(O)j A). 

Now we recall that we can decompose a general 2 x n matrix T as follows: 

T ( 
tll t13) X T' 
t21 t23 ' 

(3.1.7) 

where 
T' ( 1 x~ 0 xl . . . x~ ) 

- 0 x~ 1 x~ .. . x~ . (3.1.8) 

Here x} = -63 -16j and xJ = 63 -16j. And {€rj} are the Plucker coordinates of G2,n' 
Furthermore, we have two types of decomposition of T': 

1 x~ 
1 

xl 

(~ O2 ) 

-::t 
T' 

x 4 - _~ T(l) xl X4 

Xl 
n 

1 x~ (3.1.9) 
1 

I x 2 

xr ;t 
2 

(~ :~) T(2) 

1 

- xr 
x 2 

~ 2 

x 2 

~ 2 

where 

T(l) (~ 0 0 1 1 Y~) , 
-

1 -1 Y2 Y5 
(3.1.10) 

and 

T(2) (~ 0 0 Z4 ' Z5 Zn ) 
1 1 0 1 1 . (3.1.11) 
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1 2 1 2 1 2 X4 X2 X4 Xj. 1 2 Xj X2. 
Here Y2 = --2-' Yj = -21" (J ~ 5) and Z4 = x4X2, Zj = --2- (J ~ 5). 

~ ~~ ~ 
For the decomposition (3.1.7), <I>(T) can be written in the form 

(3.1.12) 

for some function G(x) in the coordinates x = (x~, x~, xl, x~, ... , x~, x~) . Furthermore, 

with A2 = 1, in the case of E(a(l)j A), G(x) can be written in the form 

(3.1.13) 

for some function P l (y) of (n - 3) variables Y = (Y2, Ys, ... , Yn). 
Now we define the function p(l) as follows: 

p(l) (a j bs, ... ,bn . ) 
c ,Y (3.1.14) 

Then it is known that <I>(T) = 63 -lG(l)(X)j 

G(1)(x) = (x!)A3+A4+l(x~)-A3-lexp(x~) II (XJ) A; p(l) (A3 + ~j ~~' ~'2 -An j Y) , 
.>S 3 4 3_ 

(3.1.15) 
is a solution of the system E(a(l)j A). 

Similarly, in the case of E(a(2)j A), G(x) can be written in the form 

(3.1.16) 

for some function F2 of (n - 3) variables Z = (.~4' Zs, ... zn) with A2 = A4 = 1. 
We define the function p(2) as follows: 

(3.1.17) 

Then it is known that <I>(T) :- 63 -lG(2) (x)j 

G(2) (x) = (x~)Al+lexp(x~)exp(x~) II (XJ)Aj p(2) (-AS,\' '~'2-An j Z) , 
.>s 1 3_ 

(3.1.18) 

is a solution of the system E(a(2)j A). 
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Remark 3.1.2. Especially, when n = 4, F(l) ( ~; Y2) = IFI (~; Y2) is called as Kummer 

function. Moreover the Bessel function Jv is defined as follows 

(3.1.19) 

So 
(3.1.20) 

In these senses, Kummer and Bessel functions are realized as a solution of the confluent 

hypergeometric system. 

Here we set 
2 a 

Eij = Ltr i -a .' (3.1.21) 
r=1 trJ 

Then {Eij h$i,j::5n generate a Lie algebra isomorphic to glen). And we can verify that 

(3.1.22) 

for each i =1= j. Here, for E(aP); A), it is known that the differential equation (3.1.2) is 

written as follows. 
(Ell + E22)<P(T) = Al <P(T) 

EI2<P(T) = <P{T) (3.1.23.(1)) 

Ejj<P{T) = Aj<P{T) (j;::: 3). 

We can see that F(I) is a solution of the system of the differential equations (3.1.23.(1)), 

and 

{(Eii + 1)Ejj - EjiEij} <P(T) = 0 .. 

Moreover, for E{aP); A), it is known that (3.1.2) is written as follows. 

(Ell + E22)<P{T) = Al <P(T) 

EI2<P(T) = <P(T) 

(E33 + E44)<P{T) = A3<P(T) 

E34<P(T) = <P(T) 

Ejj<P(T) = Aj<p(T) (j;::: 5), 

(3.1.24) 

(3.1.23.(2)) 

Then we can see that F(2) is a solution of the system of the differential equations 

(3.1.23.(2)), and 

{(Eu + 1)Ejj - EjiEij} <p(T) = O. 
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Furthermore, for several Eij , we can compute the contiguity relation for F(I) and 
F(2). 

We have already discussed the q-analogue of the hypergeometric function of type (k,n). 

In this chapter, we will discuss the q-analogues of confluent hypergeometric functions F(I) 

and F(2). 

3.2. Noncommutative localization A[63 -1] 

In this section, we consider the localization A[63 -1] which has a Uq(gl(n))-module 

structure. 

We in this chapter denote the noncommutative algebra, which is generated by the 

quantum minors of degree 2, by A. We here consider the locallization A[e13 -1]. 

Theorem 3.2.1. The localization A[63 -1] is the algebra generated by the quantum 

minors {63±\62,64,." ,6n,62,64, ... 6n}. 

Proof. It is proved similarly as Theorem 2.3.1. 

The commutation relation among these genarators are as follows: 

erierj = qerjeri (r = 1,3; i < j), 6j6j = q6j6j (j = 2,4, ... , n), 

626j = q26j62, (j ~ 4), 6j6i = 6i6j (i > j), 

6i6j - 6j6i = (q - q-l)6j6i (4 ~ i < j ~ n). 

Then, we can give the monomial basis of the localization A[ 63 -1 ], 

C V3n C V34C V32C Vln C V14C V12C P. ",3n ... "'34 ",32 "'In ... ",14 ",12 ",13 

where Vrj E Z;:::o and J-L E Z. 

In the following, we set 

(3.2.1) 

(3.2.2) 

for each matrix v = (vrj )r=I,3jj=2,4 ... ,n of nonnegative integers. With this notation, we 
have 

(3.2.3) 
V,p. 
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We have already defined the action of Uq(gl(n)) on the noncommutative algebra A, 

and we can see that the algebra A[63 -1] has a left Uq(gl(n))-module structure. 

We next define the subspace of A[63 -1] as follows: 

(3.2.4) 
VE(Z~O)2 X (n-2) 

where Ivl = E Vrj. We can see that this subspace 8 2,n has the Uq(gl(n))-submodule 

structure of A[63 -1]. Here, for all a E Uq(gl(n)), we denote its action on 82,n by 

(3.2.5) 

Then we can translate the action of Uq(gl(n)) on the noncommutative algebra 82,n to 

h h t t · I . I' C[ 1 2 1 2 1 2]' h . t at on t e commu a lVe po ynomIa rmg X2, x2' x4' x4"" ,xn , xn m t e next sectIOn. 

3.3. The action of Uq (gl(n» on the polynomial ring 

In this section, we define the action of Uq(gl(n)) on the commutative polynomial ring, 

and give the explicit formulas of the action in the term of the q-difference operators. 

At first, we consider the commutative polynomial ring C[x] in 2 x (n - 2) variables 

x = (x~, x~, xl, x~, •. . x~, x~). Here, for v = (Vr j)r=1,3jj=2,4, ... n, we set the notation 

x v __ X21V32X1V34 x1V3nx2V12x2V14 2 Vln 
4 ••• n 2 4 ••• Xn . (3.3.1) 

Let ¢ : M(2, n - 2; Z~o) -t Z be an arbitrary function of degree at most two in the 

form 

¢(v) = a 001/ °V 0+f3 01/ o+c r,B,l" r,l B" r" r" , (3.3.2) 
r,B=1,3ji,j=2,4,000,n 

. for the 2 x (n- 2) matrix v = (vr,j)r=1,3jj=2,4,000,n' For such a ¢, we define the isomorphism 

of vector space 

774> : C[x] -t 82,n 

by setting 

(3.3.3) 

for all matrix v E M(2, (n - 2); Z~o). Then we obtain a left Uq(gl(n))-module structure 

on the vector space C [x], namely 

(3.3.4) 
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for all a E Uq(gl(n)). 
In the following, we denote by q8 r ,i the q-shift operator in the variables xi, that is, 

With this notation, for example, when </lev) = 0, 

PO(qEl) = q-I-81,2-81,4oo .n, 

PO(qE3) = q-I-82,2-82,2 ... n, 

PO(qEj) = q81,j+82,j (j = 2,4, ... n), 

1 (q - q-l )po( el) = -(1 _ q281,2)q-81,2-82,2+82,4oo.n+l, 
Xl 

(3.3.5) 

n X2X~ 
(q _ q-I)Po(h) = "" ~(q282,j _1)q2(81,2+81,4oo.j-d+81,joo.n+2(82,2+82,Hloo.n)+2 

L.J X. 
j=4 J 

- x~(1- q2(81.2+81,4oo.n+82,2)+2)q-81,2-81,4oo.n-82,4°o.n-2, 

(q - q-I)PO(e2) = x~(l _ q2(81,2+81.4.oon+82,4°o.n)+2)q82,2+81,4°o.n+1 

n XIX~ 
_ "" ~(q281,j _1)q-81,2-81,joo.n+82,2-82,4oo.j-2, 

L.J X. 
j=4 J 

(q _ q-l)po(fz) = ~(q282'2 _1)q-81,2-81,4oo.n-382,2-82,4oo.n, 
X 2 

(q - q-I)PO(e3) = -~(1- q282,4)q81,2+81,:;oo.n-82,2-82.\ 
X4 

on the polynomial ring. 

3.4. The q-hypergeometric system and q-confluent hypergeometric functions 
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In this section, we define q-hypergeometric systems and realize q-Kummer and q-Bessel 

function as the solution of this system. Moreover we compute the contiguity relations. 

At first we compute the actions of the Casimir elements 

(2.5.1) 

Now we set 
n-l 

<Po(v) = L VJ(V}+l + ... + v~) + 2vi(vl + ... + v~) - (v~ + l)(vl + ... + v~ + 1). (3.4.1) 
j=4 

In the representations, for <P = <Po, we have the actions of the Casimir operators as 

follows: 

n 
+ L q-(h,4+92,2-92,:S ... j+92,Hl ... n 

j=5 

X {xiX; (1 _ q291,i) (1 _ q292 ,4) _ (1 _ q291,4) (1 _ q292 ,i)} 
x}x~ 

(q - q-l)2pcpo(Cj)r~.4 = q1+91,i-91,Hl-92,i+92,Hl 

X {- X~+lxi (1 _ q291,i)(1 _ q292,Hl) + (1- q291,Hl)(1 _ q292 •i )} 
xj+1xj 

+ q-1-91.;-91,Hl-92,i-92,Hl 

x {- X~Xi+l (1 _ q291,i+l )(1 _ q292 ,j) + (1 _ q291';)(1 _ q292,Hl )} 
XjXj+1 
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Here we define the q-hypergeometric function cp(1) as follows: 

in the coordinates Y = (Y2, Ys,···, Yn). 

Furthermore we define the q-hypergeometric function cp(2) as 

(2) ({3s, ... ,(3n ) (1) (OJ{3s, ... ,(3n ) cp 'Y' qj Z4, ZS, ••• ,Zn = cp 'Y' qj Z4, Zs,· •• ,Zn (3.4.3) 

Remark 3.4.1. We can easily check that we have the formal limit 

lim cp(1) , , ... , q' (q _ 1)y Y ... Y = p(1) ,s, ... , n. Y 
( 

qa. qbll qbn 
) ( a' b b) 

qt1 qC' , 2, s, ,n c' (3.4.4) 

and 

lim cp(2) (qb
ll
, .. ~ ,qb

n 
,qj (1 _ q)2Z4' (1 _ q)zs, .. . , (1 _ q)zn) = p(2) (bs, ... , bn j Z) 

qt1 q c 
(3.4.5) 

We now introduce the L-operators defined by the following formulas (Refer to [J, 
NUW)): 

and 

L-:-. 
'3 { 

q-€i (i = j) 
-(q - q-1)q-€iEji (i > j) ° (i < j). 

(3.4.6) 

(3.4.7) 

For some A = (Ab ... An), we give two types of the system of q-difference equations 

E((i), A, ¢) i=1,2 on the commutative polynomial ring C[x]. 

E((1), A, ¢) : 
p¢(q€1+€2)G(X) = qAIG(X), 

p¢(q€i)G(X) = qAiG(X) (j = 3,4), 
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(3.4.8) 

(3.4.9) 



E((2), A, ¢) : 

pcp(Cj)G(x) = 0, 

pcp(qf1+f2 )G(X) = q>'lG(X), 

Pcp (qf3+f4 )G(x) = q>'3G(X), 

pcp(qfj)G(X) = q>.jG(x), 

PCP(L21)G(X) = (q - q-l)q->'lG(X) 

PCP(L43)G(x) = (q - q-l)q>'I5+··+>.nG(x) 

pcp(Cj)G(x) = O. 

Here we define the q-analogue of exponential map as follows: 

1 
eq(x) = ((1 - q)Xj q)oo ' 

where (aj q)oo = lim (aj q)n. 
n-too 

(3.4.10) 

(3.4.11) 

(3.4.12) 

(3.4.10) 

(3.4.13) 

Remark 3.4.2. In the classical case, exp(x) is a solution of the differential equation 

:Xu = u. Now we can see the q-exponential map eq(x) as a solution of the q-difference 

equation ~ (~l--q:;) u = u. We use the L-operators above because their actions on the 

polynomial ring C[x] have q-exponential map as the eigen function. 

Now we set 

(3.4.14) 
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and 

¢l(V) = ¢o(V) - vl(vl + 1) - L vj(vj + 1) - vi (vi - 1) 
'>5 3_ 

¢2(V) = ¢o(v) - L v] (v] + 1) - v:(v: - 1). 
j~5 

Then we have the next proposition. 

(3.4.16) 

(3.4.17) 

Proposition 3.4.3. In the case of (2, n), the functions G(l) and G(2) satisfy E((l), A, ¢1) 

and E((2), A, ¢2) respectively. 

Thus we have q-confluent hypergeometric functions as a solution of q-hypergeometric 

system of q-difference equations. 

Generally, q-hypergeometric function 11P1 and the Hahn-Exton q-Bessel function J1J 

are defined as follows: 

(q1J+1j q)oo (0 ) 
J1J (Zj q) = z1J (qj q)oo 11P1 q1J+1 j q, qz2 , 

where (aj q)oo = lim (aj q)n. See [GR, K]. 
n~oo 

Then, in the case of (2,4), we have 

and 

(q2j q2)oo 
Here C = (q2>'3+2j q2)oo • 

(3.4.18) 

(3.4.19) 

(3.4.20) 

(3.4.21) 

In these senses, we have realized q-Kummer and q-Bessel functions as a solution of 

q-confluent hypergeometric system of q-difference equations. 

Then we next compute the contiguity relations for q-hypergeometric functions lP(l) 

and 1P(2). 
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We simply write 

1 " ... , 2 2 (1) ( ) 
( 

q2>'3+2. q-2>'/5 q-2>'n ) 
CP>. = cP q2>'3+2>'4+4; q ,(1 - q )Y2, Y5, ••• ,Yn , (3.4.22) 

and 

(2) (2) q , ... , q 2 2 2 2 2 
( 

-2>'/5 -2>'n ) 
CP>. = cP q2>'3+4 ; q ,(1 - q ) Z4, (1 - q )Z5,"" (1 - q )zn • (3.4.23) 

For cp~1), we can give the contiguity relation by the element of Uq(gl(n)) which has 

eq2(x~) as an eigen function. For such an element a E Uq(gl(n)), we define the operators 

7I"(1;>.)(a) for a E Uq(gl(n)) as follows: 

PtP1 (a)G(1) = (X!)>"3+>"4+1 (x~) ->"3-1eq2 (x~) II (x} )>.' j 71"(1;>.) (a)cp~~) • 
j?5 

(3.4.24) 

Proposition 3.4.4. The following is the list of contiguity relations for the q-hypergeometric 

function cp~): 

( -1)-1 (L+) (1) q - q 71"(1;>.) 24 CP>. 

( -1)-1 (L+) (1) q - q 71"(1;>.) 2j CP>. 
~ (1) 

71"(1;>.) (E34)cp>. 

~ (1) 
71"(1;>.) (E3j )cp>. 

71"(1;>.) (E43)cp~1) 
~ (1) 

7I"(1;>.)(Ej3)CP>. j?5 

q>'1 cpi1) 

q>'j cpi1) (j;::: 3) 
->'1-1 (1) 

q CP>. 

q->'3+>'4+2[A3 + A4 + 1]cpi~01'3 
_q>'4+···+>.n+1[A + A + 1]cp(1) 

3 4 >'+01,4 

q->'3->'j +>'H1 + .. -+>'n [Aj Jcpi~01,j (j;::: 5) 

2>'3+>'/5+.-+>'n-1 [A3 + 1] (1) 
q [A3 + A4 + 2] CP>'+03,l 

>'3-2 [A4 + 1] (1) 
-q [A3 + A4 + 2] CP>'+04,l 

_q2>'3-T3,i+2>'i+1cp(1) (J' >_ 5) 
>'+OJ,1 

q2>'3+>'/5+"+>'n+1[A + 1]cp(1) 
3 >'+03,4 

>'3->'4->'j+>'H1+"+>'n-1 [A3 + 1][Aj] (1) 
q [A3 + A4 + 2] CP>'+03,j 

-2>'3->'/5-"'->'n+1[A + 1] (1) 
q 4 CP>'+04,3 

->'3+>'4+>'j->'H~-"'->'n[A + \ + 1] (1) 
q 3 "4 CP>'+Oj,3 
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(j ;::: 5) 



A (1) 
1l"(1;>') (E4j )cp>. 

A (1) 
1l"(1;>') (Ej4 )cp>. 

->'3+T4,;-2>';-1 [A4 + 1HAj] (1) (j ? 5) 
q [A3 + A4 + 2] CP>'+04,; 

q>'3-T4,;+2>.;+3[A3 + A4 + 1]CP~~0;'4 (j? 5) 

q2>.; -2>'j+1 +Ti,j +2 [A' ]cp(l) 
3+1 >'+Oi,; 

q-2>.;+2>'j+1-Ti,j +2 [A .]cp(l) 
3 >'+O;,i 

(5 ~ i < j) 

(5 ~ i < j). 
Qi,j and 7i,j were defined in the section 2.6. 

Similarly, for cp~2), we can give the contiguity relation by the element of Uq(gl(n)) 

which has eq2 (x~) and eq2 (x~) as the eigen functions. For such an element a E Uq(gl(n)), 

we define the operators 1l"(2;>.) (a) for a E Uq(gl(n)) as follows: 

P4>2 (a)G(2) = (X~)>" 1 +leq2 (x~)eq2 (X~) II (Xl)>"; 1l"(1;>') (a )cpi~). (3.4.25) 
j~5 

Proposition 3.4.5. The following is the list of contiguity relations for the q-hypergeometric 

function cpi2): 

1l"(2;>.) (q€1 +€2 )cpi2) 

1l"(2;>.) (q€3+€4 )cp~) 

1l"(2;>.) (q€; )cp~2) 

( -1)-1 (L-) (2) q - q 1l"(2;>.) 21 CP>. 

( -1)-1 (L-) (2) q - q 1l"{2;>.) 43 CP>. 

(q q-l)-l,.,.. (q-€4L- )cp(2) 
- "(2;>') 41 >. 

(q q-l)-l,.,.. (q-€4L- )cp(2) 
- " (2;>') jl >. 

( -1)-1 (L-) (2) q - q 1l"(2;>.) j3 CP>. 

(q - q-l)-11l"(2;>.)(Lt3q€4)CP~) 

(q - q-l)-11l"(2;>') (Ltq€4)cpi2) 

( -1)-1 (L-) (2) q - q 1l"(2;>.) 4j CP>. 
A (2) 

1l"(2;>.) (Eij )cp>. 
A (2) 

1l"(2;>.) (Eji)cp>. 

q>'1 cp~2) 

q>'3 cp~2) 

q>'; cp~2) (j? 5) 
->'1-1 (2) 

q CP>. 
>'5+ .. +>'n (2) 

q CP>. 

2>.5+ .. +2>'n 1 (2) 
-q [AI + 2] CP>'+01,3 

_q-T4,;+2>'j+1 + .. +2>'n [Aj] cp(2) 
[AI + 2] >'+01,; 

(j ? 5) 

(j ? 5) 

(5 ~ i < j) 

(5 ~ i < j). 

We can show that the contiguity relation for cp~l) gives a representation of an algebra 

which has a subalgebra generated by q€j, ej, /j (j ? 3), isomorphic to Uq(gl(n - 2)). 
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Furthermore, the contiguity relation for cp~2) gives a representation of an algebra which 

has a sub algebra generated by q€j, ej, Ii (j ;::: 5), isomorphic to Uq(gl(n - 4)). 
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