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Preface

The important purpose of the study for the hypergeometric functions is to find the
relation with Lie algebra. It is known that the contiguity relation for some hypergeometric
functions associated with Grassmann manifold gives the representation of Lie algebra. For
example, the contiguity relation for the Gauss hypergeometric functions, associated with
Grassmannian G 4, gives a representation of gl(4).

Hopf algebra U,(gl(n)) is the quantum analogue of the universal enveloping algebra
of gl(n). E. Horikawa [H] showed that the contiguity relation for the g-hypergeometric
function 2¢1, that is g-analogue of Gauss hypergeometric function, gives the representation
of Up(gl(4))-

From the different viewpoint, M. Noumi [N] showed the relation between Uy(gl(n))
and a g-hypergeometric function ¢p, which is a g-analogue of the hypergeometric function
(Lauricella’s) Fp.

In the classical case, the hypergeometric function associated with Grassmannian Gy n
is the solution of the system of differential equations defined by the representation of Lie
algebra gl(n). And the hypergeometric function Fp associates with Grassmannian Ga .

So Noumi defined the system of g-difference equations by the representation of Uy(gl(n))
on the quantum Grassmannian which is a quantum analogue of the space G5 ,,. He realized
¢p as a solution of this system and showed that the contiguity relation for pp gives the
representation of Uy(gl(n)). ,

Then, in this paper, I tried to give the definition of several ¢g-hypergeometric functions
as a solution o\f the g-difference system defined by the representation of Uy(gl(n)), relying

on Noumi’s work.

I have great thanks for Professors Masatoshi Noumi and Takeshi Sasaki. They have
adviced me in many times and give me variable suggestions.
I am also grateful to Professors Etsuro Date and Masato Wakayama for their helpful
discussions.
1 also want to express my appreciation to Professor Hironobu Kimura. His lecture
gave me an opportunity of the study of the chapter 3.
And many thanks are due to many people who have helped me.



Chapter 0. Introduction
0.0. Contents of the Dissertation

In the classical case, the hypergeometric function F3g, associated with the Gsg, is
investigated from several viewpoints and various properties have been known (See [MSY]).
So, at first, we started to consider a quantum Grassmannian that is a g-analogue of the
space Gz in chapter 1. Then, by the representation of U,(gl(6)) on it, we defined the
g-hypergeometric sytem of type (3,6), and got two types of g-hypergeometric functions as
the solutions of this system. Furthermore, we showed that the contiguity relation for these
functions gives the representation of U,(gl(6)).

We next tried to give the generalized g-hypergeometric systems of type (k,n), in chap-
ter 2. By the slightly different vway from the case of chapter 1, we defined ¢g-hypergeometric
systems and realized the g-hypergeometric function ¢y ,, as a solution of this system. And
we showed that the contiguity relation for ¢ gives a representation of Uy(gl(n)).

Finally, we considered the g-confluent hypergeometric functions including g-Kummer
and g¢-Bessel functions in chapter 3.

In what follows, we fix a complex number g with 0 < |g| < 1.

0.1. Notation of Uqg(gl(n))

We recall the definition of U,(gl(n)) briefly. Refer to [N, NUW]. The quantum ana-
logue of U(gl(n)), denoted by Uy(gl(n)), is the algebra generated by e;, f; (1 < j <n—1)
and ¢*% (1 < 7 < n). We use the notation gt = g€ ... ¢%¢r for any linear combination
h = aij€e1 + -+ + an€e, with integral coefficients. Then the relations for the generators are

given by

qO =1, qhqh = qh+h y

qhejq—h = q(h’ej—ej‘i'l)ej, th]q—h = q(h’—€j+€j+l)fj (1 S j S n— 1)’
qei—€i+1 _ ‘q—€i+5i+1

eif; — fiei = 0i; pp—

eie; =eje;, [ifi=fifi (i—312>2),

ei’e; — (g + g Veseje; +eje =0 (Ji—jl=1),

Ffi—(a+a Ofififi+ fifi2=0 (li-j]=1),

(0.1.1)

where ( , ) stands for the canonical symmetric bilinear form such that (e;, €;) = 6; ;. This
algebra has the structure of Hopf algebra with the following convention of the coproduct A,
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the counite, and the antipode S:

Ald") = "o,
Ale;) = € @1+¢97 % Qey,
A(fJ) = fj ® q—€j+€j+1 +1® fj, (0.1.2)

e(@") =1, e(e;)=¢(f;) =0,
S(qh) =q" S(e;) = —q_€j+ﬁj+lej’ S(f;) = —f;q9~9,

forl1<j<n-1.

In the classical case, the root vectors E;; of Lie algebra gl(n) are given inductively as
follows:
| Eij = [Eu, Ex;] (57kS9).

Here [X,Y ]| = XY -YX.

Then we define the elements E;; € U,(gl(n)), which can be seen as the analogues of

the root vectors E;; of gl(n), by the following formulas:

A A~

i+ =¢€j,  Ejp=J; 0.13)
Ei; = BBy — ¢ ExjEix (i$VkS ).



Chapter 1. A quantum analogue of the hypergeometric system E3,6
1.0. Introduction of this chapter

In this chapter, we will discuss a quantum analogue of G3 ¢ and the associated hyper-
geometric functions, relying on Noumi’s work.

In the first section, we recall the definition of the hypergeometric system of differential
equations of type (k,n) and the hypergeometric function F3e. Furthermore we give a short
preview of this chapter. _

In the second section, we define a noncommutative algebra generated by quantum ana-
logues of the Pliicker coordinates of the G3 ¢ and compute the representation of U,(gl(6))
on it. Furthermore we define a localization of this noncommutative algebra and two types
of decomposition of it.

In the third section, we translate the action of U,(gl(6)) on the above localization
to that on the commutative algebra. By defining two isomorphisms of vector spaces,
associated with the decompositions, between the localization and commutative algebras,
we exhibit the action of Uy(gl(6)) in terms of usual g-difference operators.

In the fourth section, we define the Casimir operators and, in the fifth section, consider
the g-hypergeometric functions of type (3,6), denoted by ¢} and <p§. One of the functions
is defined by the series

Qalk(xl) X2,23, IL'4)
T (075 0% are(g722; ¢%)p+a(@®* % ¢} arn(02+20%) o1
wioo (RPN, )b cra(0%07)ale? 005 (0% g%)c(g% g%)a

2bc,.a,.b .c.d
Xq .'171:1:23,‘3.’124.

S
>
il

(1.5.3)

In the last section, we compute the contiguity relations and, in view of these relations,
propose to define the g-hypergeometric system of type (3,6;I) and (3,6;II). Furthermore
we define another system of g-difference equations, which has g-hypergeometric functions

as solutions. Refer to Proposition 1.6.6.
1.1. Preliminaries of this chapter

In this section, we give a short review of the hypergeometric system of differential
equations associated with the Grassmannian G (k < n) and a preview of this chapter.
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Let us denote by M (k,n) the space of all k X n matrices of the form
t1n1 tiz ... tin
T = t21 t22 ... ta2n
ey tk2 ... tkn

The hypergeometric system of differential equations of type (k,n), denoted by Ek n, is the
following system of differential equations defined on the space M (k,n):

®(gT) = det(g9) " ®(T) (g9 € GL(k)) (1.1.1)
®(Tdiag(ct, .- .,n)) = B(T)es™ + -+ cp™ (1.1.2)
92 d? .
= — < < < 1.
at,,-at,,,-q’(T) atsiat,,jq’(T) (1<r<s<kl1<i<j<n), (1.1.3)

where A = (A1, A2,...,An) is a set of complex numbers. For the conditions (1.1.1) and
(1.1.2) to be compatible, it is necessary to assume Ay +- - -+ A, = —k. Because, for ¢ € C*
and identity matrices Ix(€ GL(k)) and I,,(€ GL(n)), (cIx)T = T(cl,).

Multivalued holomorphic solutions ®(T') of the system (1.1.1)-(1.1.3), defined on a
Zariski open set of the space M(k,n), are called the hypergeometric functions of type
(kym).

Now let T be a general k x n matrix. We can decompose T' as follows:

t1n tiz ... tik 1 1 1 ‘o 1
T — ta1 o2 ... tog 1 Tok4+1 To2k42 o+ T2n
o ez o.ee Tk 1 Tiky1 ZTkky2 -0 Tkn

x diag(1,1,...,1, _61"'k—1€ik+1’ ceey —61...13—161"),
_ (1.1.4)

where
Tpj = (—1)"+63,7 s for =2,k j=k+1,---,n.
Eirigooir = Z (=1 N yistw@)in ** by Tor 1< d1,... 0k <,
wESk
rj = &1 kje
Here Si is the permutation group of k letters and, for each w € Si, l(w) denotes the
number of inversions in w. Note that {&;,:,..;, } are the Pliicker coordinates of the Gy,
and satisfy the Pliicker relations as follows:
k+1

Z(—l)i_lgar"akqﬁigﬁi =0 (1-1-5)
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for 1 < ayy..yap-1<n, 1< P1 < P2 <+ <fPr1 <nand where {5 =5 4,
The relative invariances (1.1.1), (1.1.2) imply that ®(T") can be written in the form

“Br41”

Ar+ Aot A k-1 A A
B(T) = G(Tak+1, Tak+2y - - - s Ton )€ P TA2THMFE Ly Mgy,

for some function G(Tak+1, .- -, ZTkn)-
Furthermore, because of invariances (1.1.1), (1.1.2) again, G(Z2k+1, - - - , Tkn) takes the

form

—A2—1

G(ZT2k+15 -+ Thn) = T2k+1 co 1 TV (2242 22k43) - - -5 2Rn), (1.1.6)

where

— -1
2rj = Trk+1 Trj

for 2<r <k, k+2<j<n. In the coordinates z = (22k+2, 22k+3; - - - » Zkn), it i8 known
that a solution of the equation (1.1.3), holomorphic around the origin z = 0, is given as

follows:
(1.1.7)

Ny II __k+2( —Aj )IA,lH —2()‘ + 1)jar| 24,
Fen(z;X) = aJ’-ZZ:O | Wi ;g

where ¥ = Ag 4+ + Agy1 + k, and (@)n = (@ + 1)+ (a+ n — 1). Here, for the matrix
A= (a;)ZSTSk,k+2Sj5n, we use the notations

|41 = a2 +ad+---+af, |A|=afyptafatota), |Al=) af  (118)

]

and

=[] =%. (1.1.9)
ri

The hypergeometric function Fp associated with G2, has been generalized to the hy-
pergeometric function F , associated with the Gg n, and it is known that the contiguity
relation for Fy . is described in terms of the Lie algebra gl(n). Refer to [G, S]. Therefore
the contiguity relation for the function Fj g, defined by the series

F3 6l2 )\) § : ( "5)025+035( "\6)a25+asa (’\2 + 1)a25+a26 ()\3 + l)aas'l-ass
) } }
,,>0( 2+ A3+ Ag 4 3)azs+azs+.a35+aae(1)azs(1)aze(1)a35(1)aae (1,1.1())

X 225%%° 20626 235"%° 236 %%,
is descrived in terms of the Lie algebra gl(6).
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Now let us set
k9
Eij =) trig—.
Z‘l Otrj

Then {E;;}1<i j<n generate a Lie algebra isomorphic to gl (n) and define, as differential
operators, a U(gl(n))-module structure on the polynomial algebra C[t11,%12,- "+ ,tkn] of
variables (tr;)1<r<k,1<j<n- It holds a remarkable identity

02 a2
(Eii +1)Ejj — EjiEij = 1S§Sk(tm~t”- — toitrs) ( TR T at,,-) ,  (1.111)
for each 7 # j. Then the function
G(T2k+15 .. yTkn) = Tokg1 2 Tk T T e n(2,A)
is a solution of the system of equation (1.1.6) and
{(Ei; + 1)Ejj — EjiEi;}(G(@ak+1, - - - » Tkn)) = 0. (1.1.12)

We define in the next section a noncommutative algebra as a quantum analogue of the
space G3 6, which has a structure of left Uy(gl(6))-module. Furthermore we give two kinds
of left U,(gl(6))-module structure on the commutative algebra Clz24, T25, T26, T34, T35, T36)
of polynomials in 6 variables.

In view of the identity (1.1.12), we look for the analogous elements in Ug(gl(n)); they
are the central elements of the subalgebra of U,(gl(6)), isomorphic to Uy(gl(2)), defined
by

(- g 1)2Ci; = (¢ — g7 %) (¢ — ¢™%) — (a — ¢ ")’ Eji By (1.1.13)

for 1 < i # j < 6. In this chapter, we call such elements the Casimir elements. When we
need to regard them as the operators, we also call them the Casimir operators.

1.2. The algebra Uq(gl(6)), Quantum Grassmannians, and localization

We first in this section define the noncommutative algebra, which is the quantum
analogue of the coordinate ring A(M(k,n)).
Let Ag(M(k,n)) denote the algebra defined as follows:

generators: trj (1<r<k,1<j<n)
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relations: ab = gba, ac=gqca, bd=gqdb, cd=qdc,
be=cb, ad—da=(q~q ")be,

c d)  \tg tsj 1<i<j<6)’

The commutation relations as (1.2.1) are called by the Mat,(2)-relations.
The algebra A,(M(k,n)) has a structure of a left Uy(gl(n))-module; it is determined
by assuming the Uy(gl(n))-symmetry in the sense that
(a) a.1=¢e(a)l for all a € Uy(gl(n));
(b) if a € Uygl(n)) and Ala) = > _a} ®al, then
i

(1.2.1)

a.(pp) =Y aj.p af @ for all g, 9 € Ag(M(k,n))

and by the action of the generators of Uy(gl(n)) on t,; of A¢(M(k,n)) given by the formula
gt = q(h’ﬁj)trj, ek-trj = Okt1,5trky  frotrj = Ok jtrk+1. (1.2.2)

In this chapter, we consider the algebra A,(M(3,6)) which has a left Uy(gl(6))-module
structure.

Since we can regard the ordinary Grassmann manifold as the space whose coordinate
ring is the algebra generated by the Pliicker coordinates, we define the quantum Grass-
mannian by giving the quantum analogue of the Pliicker coordinates.

We denote the subalgebra in A4(M(3,6)) generated by the quantum minor determi-
nants

ik = Y (0" tymtu@itoer (1 <475,k <6)
wES3

by A. In the classical case, the Pliicker coordinates satisfy the Pliicker relations (1.1.5).
Simiraly, these minors satisfy the Pliicker relations as follows:

4
> (~0) ayanpibs, =0 (1.2.3)

i=1
for 1 < aj,00 <6and 1< By < P2 <P3<PBy<6, wherely =§5 4.4,
The subalgebra A is then a left U,(gl(6))-submodule of A,(M(3,6)); the action of
U,4(gl(6)) on the quantum minors is determined by

b = ghetaTRg,, .
er.ije = 01,k + B1p1,50% S gy + g pglearrEitelg (1.2.4)
frbijx = Jl,iq_(e'_e""l’€j+sk)£l+1jk + 5l,jq—(€'_ﬂ+1’€j)€il+1k + 61 k€ijts1-
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In order to give the decomposition of the matrix T = (,;)1<r<3,1<;j<6 Of generators
for A,(M(3,6)), we introduce some localization of 4. In the decomposition (1.1.4), the
£103 7! in the diagonal matrix has played a special role. A first step is to invert the principal
minor £193. By the Pliicker relations (1.2.3), the localization Af 123_1] has the monomial

basis
gam a1s €ax4é~a26 6025 a24 Eaae é-aaa 5034 i‘23 (1.2-5) .

where a;; € N, 4 € Z and £;j = 51---2---31" Here note that we have fixed an ordering of
the variables &;;, called a normal ordering. By the Pliicker relations (1.2.3) again, the
commutation relations among &;;x and E;; are generated by the following relations:

€1238;; = q§;;€123 for 1<i<3, 4<j<6, (1.2.6)

and
-1 —
€nitni =1 Saifap  Sinbin = %t
— ~1
§i1j1€i2j2 -‘gizjzé,ljla §i§j1€ﬁjz - £i'1j2§i}j1 = (q —q )filjlgi}jg’ (1-2~7)
for 1< <i3<3, 4<j51<j2L6.

In order to get variables analogous to z2; and z3; in (1.1.4), we next adjoin the inverses
of the quantum minors &;,, £;5, &1 The localized algebra is A[€123™ ", 1,74 €457 €6~ ]
and, by the commutation relations, it has the monomial base of type (1.2.7) with ag;,as; €
N and ay5,p1 € Z.

With this localization and the commutation relations the matrix T' = (¢,5)1<r<3, 1<j<6
of generators for A;(M(3,6)) can be decomposed as follows:

tll t12 t13 1 0 0 1 1 1
T = to1 f22 23 0 1 0 wups uzs ue 19.8
t31 t32 133 0 0 1 wu3g uzs use (1.2.8)
x diag(1,1,1, —q~ 26128 €14, —0 2€128 " Ei50 —q 2 b123 " i6),s
where _
—51_]-15@,- and ug; = qﬁ{jlﬁgj. (1.2.9)

Since A4(M(3,6)) is the algebra with Uy,(gl(6))-symmetry, we can extend the action
of U,(gl(6)) on A to the action on A[€123™ ", &5, €55 €36~ ). For an element a of
U,(g(6)), we denote its action on A[€1237", &1, €55~ " €16~ 1] bY

ﬁ(a) : A[€123_1a£i4-1’Eis—lagis—l] - A[£123—1,£i4—1’€is—1"Eiﬁ_l]' (1210)
8



The algebra A[£123—1,£i4_1, 615"1,616—1], as a vector space, has several kinds of decom-
position. But the commutation relations among u,; are not so simple. So, in order to
check the action of U,(gl(6)) on Al12371, 514_1,515_1, ﬁis"l] explicitly, we here treat the

following two decompositions.

() Albres™ & 65 e = @D Robie™éi5 614 6128  Ra (1.2.11)
u,)\jEZ
R, is the noncommutative algebra generated by u,; (r=2,3j = 4,5,6)
(M) Alfiaa™ 64 €15 e = D Gi6™ 615 614 128" R (1.2.12)

R is the noncommutative algebra generated by u,; (j =4,5,6)

1.3. Translation of the action of Uq(gl(6))

The action of U, (gl(6)) on the noncommutative algebra Alé12z~ 1, '514—1’ 515"1, 616_1] is
translated to that on the commutative algebra Clza4, Tos, T26, T34, L35, L36] of polynomials
in terms of usual g-difference operators in this section.

To do this we define a vector space

g = @ gﬂ:,A4,A5,A6) (1'3'1)

”’sA4 1A5,A6€Z

where G, ;05,06 = ClT2g, -+ ,z3g] for all p, A, Xs, A¢ € Z and the two isomorphisms of

vector spaces

wh: G — A[£123_11€i4—l’gi5_1a£i6—1]7 (13'2)
wII :G - A[£123—1a£i4—11 615—1,516—1], (133)

as follows. Let us fix the monomial bases of A[€123_1,514_1,615_1,516'1] in two ways,
referring to the decompositions (1.2.11) and (1.2.12):

A A A v v v:
I upg"ups" upe™ 16" Eis " Eia 123" 6™ uss ™ uza™*  (vrj € N) (1.3.4)
Aeg. Asg. A v e
I 6300655761 €123 Uag 2 Uge g5 ugs " uge * u3e™™  (vrj EN),
where ug; = —ﬁij_lfij and ug; = qfij"lﬁgj. Then the isomorphism w' is determined as

the direct sum of linear mappings
I : . Xeg. Nsg, Mg BR
W agdshe | ClT24, -+, T36] = Rabye 615" €14 E128" R

9



such that

I v v v 17 v v
w[l,/\4,A5,Ae(m24 24.’1725 253’26 26$34 34.’1735 351736 ae)
_ v v v A A A v v v
= ug4"* ug5 " Uug6"* €16 €5 E1a "t E123" Uze O uzs P Uz ",

and the isomorphism w" as the direct sum of linear mappings
I . . X, Ase Mg B
Wy Aahs e © ClT2as 0+ Tas] = €16 815 81g” €128" B
such that
i
W ag xs 0 (£24774 T25" 25 L6 T34 T35 36 )

A A A v: v v v v v
= &3670615" 0 €1y €123 U26 P U362 U5 P Uuzs PP U2e M Ugs .

Through the isomorphisms w! and w" thus defined, we obtain two kinds of left Uy(gl(6))-
module structure on the vector space G. More precisely, for an element a of U,(gl(6)) of
weight &, i.e., g"ag~ = ¢(**)q, its action on G induces a family of operators

~% ok -1 _ 4 * .
Prrershe (@) = Warat ar ar~ © P(@) 0 Wk xy asne F Tudadsre = Gurapagayy  (1.3.5)

where p/ = p+ K1 + K2 + k3 and A} = Aj + K; (j = 4,5,6) for kK = K1€1 + -+ + Kg€e
(k; € Z), and * = I or II. The explicit formulas of the operators will now be given. They

are rationally written by g-difference operators with coefficients in C[zas, ... , 36

Here we denote the g-shift operator for z,; by T z,,, that is,
Tq,,,”.f(.’L‘zz;, ceoyTpjyees ,11:36) = f(:l:24, ey QTyrgyees ,(Bgs). (1.3.6)

For example, Tg s, H:crj”'i = ¢¥* H:z:rj"”'.

g g

Remark 1.3.1. Generally, the g-shift operator for a variable z is denoted by Ty . or q%=.
In this chapter, we use the first notation Ty ;. But, in the chapter 2 and the chapter 3, we

use the second notation ¢%=.

For each 6-tuple A = (A1, Az, ..., As) of complex numbers with } A; = —3, let F) be
the vector space of polynomials G = G(z24,...,Z36) such that

Tow24Ta,225Tq,006 G = g7@, T34 Ta,205 Tg,236 G = g G (1.3.7)
Then, for each element a € U,(gl(6)) of weight x, the operators

-1 s
plk(a) = Par4+a2+A342,04,)5,6 (a)’ pg(a) = pIAI1+A2+)\3+2,A4,)\5,Ae (a) (13'8)
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define mappings
pr(a), PN (a) : Fa = Fase. (1.3.9)

Here we have the explicit formulas of the operators

pr(@¥) : Fa—Fr (1L5<L6),
pa(es) 1 Fa—=Fate; (125<5), (1.3.10)
pf\(fJ) o Fa— -7:/\—aj (1 <Jj< 5),

where x = I or IL
We set for simplicity a; = €; — €;41. For instance, for the case (I) put
Trj = qzyzrj;

then we see

@) =g (1<j<6), |
(g— g )pi(er) = T24(q 2Ty Tag — 1) + Lo5q M ToyTsa(q 2 TosTas — 1)
+ Togq~ 22 Ty T34 Tos T35 (g 22 Toe T3 — 1),

_ aixa—3 | 1 _
(g— a7 1)o\(e2) =g 28 [554—{(“6 ~ m35)(1 — ¢~ Tp6T6)
+ (235 — T34) (1 — g~ 202 Ty Tag TosTss) + T34 }(1 — Ths)

1 _
+ ;62—5{(5536 — z35)(1 — g~ 20 Ty6Ts6) + x35}(1 — To5) Toa
1
+ —x36T24T05(1 — Tzs)} )
T26

_ oy _ 1
(g — g7 V)ph(e3) = g M rethemhetl— (T, — 1),

T34
(g — a7 V)P (e) (i=a5) = i Tojen ™t — g M Ty
- x . . a— z ] — 3
+ ‘m—.zg—q*’“(l = Tojr ™) + ——1-q 4 (Tj41 — 1),
2j+1 Z3j+1

- T 1 _ _ _
(g—gq 1)PE\(fl) = —q l"Mh {;—;Tzs 161 (1 — Tag 1)
1 -1 -1 1 -1
+ pro Tos™ (1 —Tos7 ") + ;;;(1 —T%™ )¢,
_ , e z
(g — g H)ph(f2) = g2 Hre—RaRee [;Z—:(l — T36)

1 - - : - -
+ x—ss{xzsqz)‘sts 173671 + m26(1 — ¢**Ta ™ ' T36 ™)} T36(1 — Ts5)

11



1 _ _ _ -
+-$3—4{$24q2)‘6+2)‘5T26 156 ™1 Ths 1 T35~ Y)

+ Z95q? 0 Toe ™ Ta (1 — g5 ' Tas ™)
+ Ta6(1 — 29 To6 ™ T36 1) }T36T35(1 — Ts4)]
(@— g DAfs) =g 2N Ex
[z36(q™%* T36 — Toe ™ )Tas ™
+ 235(q" 2 Tas — Tos ™ 1) g0 Tag + T34 (g — g™ 220~ 2A5 T36T55)

. A _ _ -
* ﬁ{xse(q 2o Ths — Toe™") — 235q™ > Tas}(1 = Tos ")

B (1"T26—1) ,
Z26T36

(@ = )O\(Fi) =1, = (@ T3 — g N Ty5)

T34 , - o4 )\
+ i?j__]‘_qAJ (1 —_ T3j 1) + _E.'_lq Aj (sz _ 1).
T34 T2j

We should remark here that the coefficients belong to the polynomial ring, because z,;
in the denominators cancells with the operator (1 — Tr;) or (1 — Tr; ') as difference
operators, as often as it appears. We have already seen the formula for ¢*. The actions
of ey € Uy(gl(6)), for instance, on uy; and us; is determined by

Pleryuzi™ = (¢ —Duz?,  pler)ua™ = (@™ — Duajugy’.

So, the second formula is seen by the computation
(¢ — g~ Y)p(e1) Ra(vas, vos, vas)én, Ra(vss, Vas, Va4)
6
= gPeet i Baici (g — 1)Ry(...,ve5 + 1, )€ uR2(vs6, Vs, V34)

i=4

2y 2v 2v
— q?v2at2vs+2va6 Ry (154, Vo5, Vog)

6
X Z g~ 2B (1 - 72N Jugié uRa(vss, Vas, V34)
j=4

2 2 2ua6—Ag—As—A
+q v24+2v25+2026 —Ag—As 6R2(V24,V25,l/26)§)‘,u

6
2 e 2u9. 2v3;
x 7 qPsat a1 (g2 — 1)y, Ry (ve, Vs Vas)
j=4
et 2025 +2026—As—As—A
+q va4+2v25+2v26 4 3 6R2(V24, V257V26)£A1“
6
2 oo QUi 2v3;
% Zq v3gt-+203; 1(g* — ].)U2jR3(V36,V35, V34)
j=4

12



= (24t 224=2M 1) Ry(vog + 1, V25, v26)Ex uR3(Vae, V35, Vas)

+ g?vaat2vea=2he (g 2vast2as—2As _ 1) R (uay, Va5 + 1, Vog)én,uRa(V3e, V35, V34)

+ q2V24+2V34+2V25+2V35—2>\4—2)\5 (q2V26+2V36—2)\6 - 1)
Rz (vaa, vas, vas + 1)6a, uR3(v3s, V35, V34).

Namely, we have

(g — g b)ph(e1)(zaa™ . .. T36™°)
= (g — ¢ )War+ratAa+ 200,08, 00 O P(E1) © WA +Az+Aa+2, 00,08, 06 (T24"24 . . . T3672°)

= (¢ — ¢ )Writratra 2 ra s 00 © A1) Ra(Vaa, Va5, V26)6r A +2a+2a+2R3(V36, V35, V34)
— (q2u24+2u34—2>\4 _ 1)3;24”24'*'1 ces 1136”36

2 -2 - '
+q Vo4 +2U38—2X4 (q2V25+2V35 2X5 _ 1):1:24”24:1:25"25‘*'1 . $36V36

2v. 2v34—2A 2v. 2u35—2A v v 1 v
+q 24+2v34 4(q 25+2U35 5_1)3324 24 o 25+1 36

..T36

2 2v. 2 2v35—2A4—2A 2v: 2v36—2A v v 1
+q v24+2v34+2125+2v35 : 4 5((1 26+2V3¢ 6 _. 1).’1:24 24 Zog 26+1

which shows the second formula. The remaining formulas can be shown similarly.
We second consider the case (II). Set

Tvj =T,

yErj?

then we see

Pag)=¢¥ (1<j<6),
(@ — q )P (er) = g+ ma6(q 7 Ta6 Tae” — ¢°)
| + o x5 To  Ta (g~ 2 Tas° Tas” — ¢7°)
.+ q—'\s"'\6$24T262T36T252T35 (@ T24’ T34 — ™),

1= _ z _
(g—a )pi(e2) =4 1{ =BTy 1(1_T262) 35Tz 15~ Ta6(1 — Tas?)

z _ -
+ i4Tze DY LY 1T36T35(1—Tz42)},

— _ _ 1
(g — g7 V)P(es) = g~ MH2s '\""'233—34(51"342 -1),
(g— q—l)PI,\I(ej)(j=4,5) = gt - g MtITy '+12T25+12

— gt {xz Tajr1(1 — Toj41°) + 2 T2;(1 — Taj41 )}
o+ Z3j+

+1

13



(¢ — ¢~ HPN(f1) = —q {——Tzs 2Ty "2 sy~ s ™ 1 36 ™ (1 — Tos™2)
+ -—T24— 2Ty~ 1Ty~ H(1 — Tos %)
Tos5
1
4+ —Ta M1 - T24_2)} ,
Z24
z e —1ee —
(g - g Hpa(f2) =4 {—2—6T24T25T34 1755 a6~ (1 — Ts6?)
+ $—25-T24T34_1T35 11 - Tys%) + -EﬁT 1 - T342)}

(q— g )PA(fa) =g # e x
{z36T26(1 - g~ Tp6°T67)
+ g~ 220255 TosTos Tag? (1 — ¢~ 22 Ta5°Ts5)
— @334 ToTosTaa(1 — g2~ P02 562 T %)

—1—22a—22s T24T35
—q 1—-2Xg—2As —5;5-—T26T25T362T35(1 - T252)
1 ONa T2473
—q 1-2X6—2A5 —2——6-T26T252T36T35(1 - T262)
Z26
—1—9)s L2536 -
—q 1-2X¢ ";;"T26T36(1 — T262)(1 —q 2A5T252T352)} ’

(@ — a7 V)PX(Fi) (=45 = T2y — g

| T oy, T - _
+Q'\’{ ;;flTsﬂlng 21-Ty™ %)+ 31:1 2 (1 — T 2)}-
j j

Thus we have translated the action of U,(gl(6)) on the commutative algebra €, Fa.
1.4. Casimir operators

In this section we introduce the Casimir operators, instead of Laplacian in the classical
case, and compute their action on the algebra @, Fa. The Casimir elements are defined
by

(g—q1)2C; = (¢ — g717%) (@ — ¢ ~+) — (g — 07 1) fies) (1.4.1)

for 1 < j < 5. They are central elements of the subalgebra C[g%%,q*%/+1,¢e;, f;] of
U,(gl(6)), isomorphic to U,(gl(2)). -

Here recall the homogeneity condition (1.3.7); to take care of this, we introduce new
coordinates by : :
DB L T Tm T

’ 2 — ) )
T4 Z24 T34 T34

14



and the new unknown ¢ by

G —Az2—1_—A3-1

= 2572 T340 (21, 22, 23, 24). (1.4.2)

Then, relative to these coordinates, we can compute the actions of the Casimir oper-
ators by using the concrete forms of the actions of g*¢i, e;, and f;, which have been given
in the previous section.

Proposition 1.4.1. For the case (I), define the g-difference operators by

Tos =Tgap =T1, Toe=Tgrz =Ty T35 =Tg, =Ts,
T =T,y = T4, Toa= g~ AT TITY Y, Ty = qm P2, (1.4.3)
T = T1T2T3Ty.

Then we have
(0= a"DAC) = 72 (1= )L
{a- gttt (1 _ Ty) — g2 (1 — 2T T (1 — g~ T4 1)}
g~ Xe2s—3(] 23~ V)T x
(T~ - gPratPra+2htay (1 Ty

— gPhetPuatRhetd () _ 22T (1 — g2 T)}

+ q—2A2~A4—A5—1 _1__ _ _l Tl—l><
23 ral

{z]_Tz_l(l _ q2)\2+2T1T2)(1 _ TS)
_ gPhet2Ma 2042, (1 _ Pt ) (1 - 1Y)},

_ 1 1 —
(= g~1)2pL (Cs) = oo+t (— _ —) Ty
22 Z1

{51757 Y1 = 2T T) (1 — T2) — ¢~ 25(1 — ¢~ 22 T2 Ty)(1 — Th)}
+ q)\§—)\6+1 (l _ l) T2_1X

24 23
{Zs(l hae q'z'\5T1T3)(1 - T4) - q2A6Z4T2_1(1 - q_2’\6T2T4)(1 - T3)}
R erewery O SN UA
2223 2124

(g~ 22251 —= T1)(1 — Ty) — 212 T~ T3 (1 = T2) (1 — Ta)}-
For the case (I), define the difference operators by

Tos =Tgz =T1, Tog=Tyqz =T, Ts5=7T4z =713
Tag =Tqz =Ts, Tog= g NI I, Tay =g I TIT Y, (L44)
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Then we have

21
{(1 _ q2A2+2)\3+2A4+4T2)(1 _ T12)

_ q2A3+2A4+2A5+4T3T42z1(1 _ q2A2+2T12T22)(1 _ q—2A5T12T32)}

1
+ q—Az—)\4—A5—-2 (T]_T _ 2_3_) X

{n'n - PP tRhtaT?) (1 - Ty

_ qA2+2A4+2A5+3z3(1 _ q2A3+2T32T42)(1 _ q—2A5T12T32)}

(q—q )P (Cy) = g~ H7281 (T —~ -}-) Tsx

B AR, (—1—T3 - —-1—T1T2) T3x
X 21
{z1T1'1T2‘1T3T42(1 - q2>‘2+2T12T22)(1 - T32)
_ qA2—2A3z3(1 _ q2A3+2T32T42)(1 _ T12)},
_ _ 1 1, _ —2r —
(g— a7 1)2pR(Cs) = g~ 2et! (— —- =T, 1) Ty~ 2T372x
2 2

{Z1T4(1 h q—z'\5T12T32)(1 - T22) - q2)‘822(1 - q“2'\6T22T42)(1 - T12)}

+ qu—/\e-l-l (_1_ _ _1_T1—1> T:;-2x

Z4 Z3
{217 (1 - g~ T2 T32) (1 — Ty2) — g0 24 (1 — g~ o T2, (1 — T%)}
+q)\5—A6+2 < 1 _ 1 T1—1T4—1) T1—2T3—2x
2223 2124

{q_1Z223(1 - T12)(1 - T42) - ,_212.'4T1T4(1 - T12)(1 - T32)}.

Note that we translated all actions of the elements of Uy(gl(6)) in terms of g-difference
operators. Therefore, we can extend the action of Uy(gl(6)) to the space of formal power
series.

1.5. g-hypergeometric functions of type (3,6)

In this section we define two kinds of functions, which are both g-analogue of F3g.
Let us consider the following system of defference equations:

T‘I1324Tqym25Tq’z26G = q_'AT"lG, Tq,$34Tq,235Tq,masG = q“'AS"lG, (1'5'1*)

(@-qR(C)G=0 (1<j<5), (1.5.2%)
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for * =I or II. We define functions that are solutions of this system, assuming that Ay +
A3+ +3#0,-1,-2,.... Put

SOIA = (pf\(mla T2,Z3, $4)

_ i (@723 0% ate(d™22%3 4%)o+a(@®2720%)a 10 (629121 4)cta (153
otoazg (@Rt Bt g2) 0 e ra(9®; 0%)a (9% 6%)6(0% 6%)e(0%: 4%)a” O
X qzbc:z;‘{a:gxgmg,
where
1 =gz, T =q* Py, 54
T3 = q2A2+2A4+2A5+4z3, T4 = q2A2+2)\4+2A5+2)\6+4z4, ( e )
and
<P§ = <Pl§(-’171,-’132,$3,$4)
i (@72%; 0% ate(@22%; 02 64a(6®2 1% 6%) 0160222125 6%) e (155)
b0 (q2A2+2/\3+2A4+6; qz)a+b+c+d(q2; q2)a(q2; qZ)b(qz; qz)c(qz; qz)d .0,
% qc(a+b)+d(2a+b) a?‘l‘xgxgmg,
where
Ty = RIS, By = RARMARASA DAt
By = @FRMARAAS 22N DA, (1.5.6)

Here (o, ¢)n = (1 —a)(1 —ag) -+ (1 — ag™ ).
Then we can see the next proposition by a simple but a little longer direct computation.

Proposition 1.5.1. The functions

Az—-1 —Az~-1 1 Az—1
2 4 3 2

H_ . - ~Aa—1 I
P G\ =24 4

1 -
G = T24 z3 z3 Y

satisfy the g-difference equations (1.5.1%) and (1.5.2%) for * =I and II, respectively.

Definition 1.5.2. We call the functions cp}\ and golg defined above the g-hypergeometric
series of type (3,6;I) and type (3,6;I), respectively.

Remark 1.5.3. When ¢ tends to 1, (1 — ¢*)/(1 — q) converges to a. Hence, both of ¢}
and (,aE converge to the function F3¢ in (1.1.10), when ¢ tends to 1.

1.6. Contiguity relations and q-hypergeomefric systems of type (3,6)

17



Define the operators 7} (a) and 7} (a) as follows:

Ap—-1,.  —Ag—1

(@)@,

mx(a)eh,

PIA (G)G& = T4 T34

, , (1.6.1)
PL(@)GE = zgy 221y~

where a is an element of U,(gl(6)) of weight x and A’ = (A;) = A + £. Then we have

Proposition 1.6.1. The following is the list of contiguity relations for the g-hypergeometric

series ¢}:
@)k = ¢¥ey (1<5<6),
ey = —qHlulehias
ek = @D + 1) g,
mi(es)ph = —g* T TReT3Ng 1+ 1]0) 4

I T TS v bV 3 § LT R
ﬂ-A(e‘l)QoA q [” + 1] Prtaqr
mi(es)Ph = [AelOhias:

1 1 _ it [M]A2+1]
ﬂ-z\(fl)(lak q [u + 1] ‘pA—al’
W}\(fz)(PE\ — q—,\4+)\5+)\6+1[/\3 + 1]()0!\_“2’
() = g+ 10N g
ek = PR 0l L,
m(fs)oh = [As]Ph-as

The contiguity relations for the g-hypergeometric series @y are given as follows:

g%l = ¥ (1<5<6),
(e)pd = —g MR .,
()Y = g A2+ 1oxtan
ey = g MM+ 100

)| I —xg—rg—2Aa +1][As] ¢
m(ed)oy = ¢ 77 2W¢A+a4a
ﬂ'g (65)901)‘1 = [)‘6] (pIAI+a5 )

I i — Ca—AL—Ag [Al][A2 + 1] )i
USY (fl)(pA q [u_*_ 1] Pr—ay?
m(f2)ex = as+1Ph

m(fa)ey = Mg+ 1N g,

18



)Py = @[]l
Mo = Dsloroas
Here pt = Ag + A3 + A + 2, and [a] = (¢ —¢7%) /(g — ™).
Now we consider the action of the elements Ej;. Ei; € Uy(gl(6)) (i # 7)

The element E’,-,- is of weight a;; = €; — €. When being considered as g-difference
operators, they define endomorphisms ’

pa(Ey) 1 Fa— Fatay (1.6.2)
for » =I and II.
Their actions on g-hypergeometric series are symmarized in the following list.

Proposition 1.6.2. The following is the list of contiguity relations appending those in
Proposition 1.6.1 for the g-hypergeometric series <p1)‘:

T (Bun)es = —g~ratr=As —Ae—"_l[ﬂ]‘waam,
~ - [A]As + 1]
i (Ea)ph = —gla Mt As ety +2_'[u_+—1]—90§\+a31’
mEr)eh = P22 u)ol o
Lem 1 oageresr AlAa+1] 4
7r)‘(E41)‘P,\ = 4q 2+As+ —[;:'1]—"90,\+a41,
(B = a2 As10% ass
i (Bs)eh = Q"+)‘3*1[)\1]S0&+a51,
™ (El6)‘PIA = q_"_'\a_'\5+1[>\6]¢&+a16,
7";‘ (E61)<p£\ = q#+}‘3+’\5 -1 [’\1]‘p§\+ael y
m(Ba)eh = =M + 0% san.
7[‘}\ (E42)<pIA = —q—)‘4—2[’\4 + 1](pIA+a42,
- - Az +1][As
s (Bas)ph, = —q™ '\3+2'{v_?ﬁ'l(plk+a2m
mMEs2)ps = —a 227 ulo) Loy,
- —A3— [A2 + 1][Ne]
T (Bas)p = —gh2hs '\5+2'_[L+—1]—90}\+azsa
m(Bea)ph = —g 22T lol e
A - [As + 1][As
7!'& (E35)<,0§\ = "'qA2 Aats+Aet2 [u n 1] ]‘pl)\+aass

—A2+A4—)\5—A6—3[

ﬂf\ (E53)(pf\ = —q /‘L]QDIA+O:53,
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7 (Es6) )

Aa—atret+2 A3 T H[Ae] 1

1 [p+1] Trtase’
m (Fes) o Rt 1717 W
~ vy [Aa 16
71& (E46)(p§\ qu As=s [ [N +]]I_:] ] IA+G46,
73 (Bsa) AR 7117 W

For the g-hypergeometric series wg, we have

h(E)pl = =AMl

A _ _ [)\1 Az +1
WAH(E31)(»0£\I = —q ArtAa=Aat [L['*'l] } IA[+0131,
h(Ea)ey = =M ueRa

I/ o _ Aptrs MlAa+1] ¢

E — _pretAsfiilAe T 2
m(Es)py = —g MY g0N, b
mM(Es)ey = =g M2 AN e
i (Be) oy = —g# M2\

T (Eaa)ot = g MR MDG + 10N a0,
i (Ep)py = gt 10N, .,

~ VS VS G )\2+1 A5
WAH(EZS)(»OE = q Ar=Aa=Ae—p 1[ [p,-*-]]l_t] ] IAI+a25’
WE\I (ESZ)(p&I =, q/\1+4\3+/\4 th [:U‘] (p§+a52 )

- ——-————/\2+1’\6
R B s we e
T (Be2) ol = —gtretMFrtulol

Ia v =ad—pr3 U] o
WA(EBS)(PA = q u——[u_-lt_i]_ A-ass?
Y (Esa)py = q}‘1+)‘4+“—1[ﬂ]¢f\[+a53,

A xexe e —n A3+ 1][ A6
WAH(ESG)QDE = q A= Remis ”'[W:_]T[]—l §+aasa
'71')‘11(1’;7(53)‘:0&I = q,\1+A4+A5 el [u](p§+a53 )

£ I aag—plrt1)Re] o
my(Eae)py = g™ "—m‘ Atorae?
7% (Eoa) o} IR 17) 17 S
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We can now rewrite these relations in a much simpler form; namely, referring to these
relations, define the elements of Uy(gl(6)) by

(q—a1)2Cij = (¢ — ¢~ (¢% — q7%) — (¢ — )*EsEij, (1.1.13)

for 1 < i j < 6. Then we can define a quantum analogue of the classical hypergeometric

system Ej3 ¢ as follows.

Definition 1.6.3. We call the following system the g-hypergeometric system of type
(3,6;%): V

— —A2—1 — . =A3—1
Tq,quq,xstq,zzeu_q Ty, Ty,254Tg,z55 Tg,mast = 4 37 u, (1'6'3)

p3(Cijlu=0  (1<i#j<6) (1.6.4%)
where x =I or II. A direct computation by use of the contiguity relations above shows

Theorem 1.6.4. The functions G} is a solution of the g-hypergeometric system of type
(3,6;%) for * =I or I

Finally we define the g-difference equation as follows.

Proposition 1.6.5. For J = (j1, j2, ja, ja) (J2 < Ja, J # Ji if k #1), we have
> (Ejljz Ejsj, = qa(J’A)Eﬁj‘;EjaJ'z)‘P; =0

for each * =I or II, where

! (1,43 < j2 < ja or j2 < ja < j1,73)
Ajz + A (j1<Jj2<J3<ja)
=i = Aj (43 < j2 < Jj1<Ja)
a(J,/\) = ﬁ—)‘jl_’\.’i‘a (j2<j1<j4<j3)
)‘J's+’\j4 (j2<j3 <j4<j1)
=M+ A, +1 (J2 < J1yda < Ja)
(Xj, = Aje =1 (41 <J2<ja<jgsorja<je<ja<ji)

We can compute these equations by the contiguity relations. Let us notice that a(J,A)
does not depend on the type of the monomial basis I and IL
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Chapter 2. g-Hypergeometric functions associated with the quantum Grass-

mannians

2.0. Introduction of this chapter

In the previous chapter, we discussed about g-hypergeometric system of type (3,6).
In this chapter, we will discuss a quantum analogue of G, and associated generalized
g-hypergeometric system and g-hypergemetric functions which is g-analogue of hypergeo-
metric function associated with Gg .

In the first section, we consider the quantum analogue of the space G, and quantum
minor of degree k.

In the second section, we give the short review of the classical case.

In the third section, we define the localization, which has a U,(gl(n))-submodule
structure of the noncommutative algebra .

In the fourth section, we define the action of U,(gl(n)) on the commutative polynomial
ring. Furthermore, we exibit the action in terms of g-difference operators.

In the fifth section, we define the Casimir operator and, as the solution of the system
of g-difference equations, realize the g-hypergeometric function defined by the series

-\ k
[1—kr2(a5 )14, [T (@™ 115 @) 1am) A

(0 9)1a111,,5(65 0)j (2.5.7)

Pen(Xi0:2) = Y

a;.’ZO

In the last section, we compute the contiguity relation for g-hypergeometric function. -

The contents of this chapter is a joint research of M. Noumi and the author.

2.1. Quantum Grassmannians

In this section, we introduce the quantum Grassmannians which is a quantum analogue

of the space Gg .

In the previous chapter, we defined the noncommutative algebra A,(M (k,n)), which
is the quantum analogue of the coordinate ring A(M(k, n)). 4
Now we define the quantum minor determinants &;,.. 5, by

Eirodn = Z ()t to@i oy @S0k S0). (2.1.1)
wWES
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Here Sj is the permutation group of k letters and, for each w € Sk, I(w) denotes the
number of inversions in w.

We denote the subalgebra in A,(M(k,n)) generated by the quantum minors {§;,...;. }
by A. Then, for the definition, we can calculate the properties of the quantum minors as

follows:

Proposition 2.1.1. For j; < j» <...< jr and w € Sk,
fjl"-jk = (_q)—l(W)gjw(l)...ju(k)' (2.1.2)
Especially, if jo = jaforl1 <a# 3Lk,

&1 .Gannigein =0 (2.1.3)

Proof. For j, > jo+1, We can easily compute that

€ir.dadatrr it = (mDEiro doridanirs

and, for jo = ja+1,

€y .dajarige = 0.

Furthermore, these minors satisfy the Pliicker relations as follows:

Proposition 2.1.2(Pliicker relations). For 1 < ¢y,...,04-1 <nand1<j < ... <

ijn,
k

Z(_q)mfil...ik_ljmEjo_“j;‘.__jk = 0 (2.1.4)

m=0
where I(JI;J2) = #{(ja,jﬂ); Ja € Jl,jﬁ € Jo, ja > Jﬂ}
Proof. See [NYM].

Here, similarly as the previous chapter, we denote the noncommutative algebra, which

is generated by the quantum minors of degree k, by A.

2.2. Classical case (hypergeometric functions associated with the Grassmanni-
ans)

In this section, we discuss again the hypergeometric system of differential equations
associated with the Grassmannian Gi, (kK < n) in order to refer on the making of the
g-hypergeometric function associated with the quahtum Grassmannian. '
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Let us consider the & x n matrices

t11 t12 ... tin\
T |t f2 o | o), (2.2.1)
tk1 tk2 ... lkn

The hypergeometric system of differential equations of type Gk, is the following
system on the space M(k,n):
®(gT) = det(g) " ®(T) (g9 € GL(k)) (2.2.2)
®(Tdiag(cy, ... c)) = ®(T)cr™ - - cpn (2.2.3)
2 2
5%787@(11) - f?éir_j
where A = (A1, A2,...,An) is a set of complex numbers. For the conditions (2.2.2) and

®(T) 1<r<s<k1<i<j<n), (2.2.4)

(2.2.3) to be compatible, it is necessary to assume A1 + -+ + A, = —k.
Malutivalued holomorphic solutions ®(7T') of the system (2.2.2) — (2.2.4) are called the
hypergeometric functions of type (k,n).

Now we can decompose a general k x n matrix T as follows:

tin tiz ... twk
o= |t te o Bk (2.2.5)
k1 tk2 ... Tkk
where . .
1 (_1)151"'k_1€ik+1 ce (-—1)1&1...1;;_161"
1 D260 sy e (<1)2xT
T, _ . ( )fl k §2k+1 ( )61 n ’ (2..2.6)
1 (=1 gy - (DR,

€rj = Erpy for r=1,...,k j=k+1,...,n,and {&;.4s...7x } are defined as (2.1.5)
in Remark 2.1.3. Furthermore, T’ can be decomposed as follows:

T = diag(l, (=1)6i5 118041 e+ (—1)k_1§ik+1§fck+1—1)
1 1 1 1 R |
1 1 2245 2Ry - 28
X
1 1 2F, 2f.g ... 2z (2.2.7)
k—1
x diag(1, ("1)1§ik+1_1§§k+1’ ceey (—1)k_1§ik+1_15fck+1’
n—~k

M

,r-

-1 —1p
- El...k §ik+1, ceey —El-"k Ein)’
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where 2] = éj—gliﬂ forr=2,...,kand j = k+2,...,n. Therefore ®(T’) can be written
€rr+18i;
in the form

(D(T) —_—F(Zl%_*_z, z,zc+3, e ,Zﬁ)

k n
D T B T s S YePE “Ar—1 X
X € g A A T kil I &1 IT &,

r=2 i=k+2
(2.2.8)

for some function F(22,,,...,2%) in the (k—1) x (n — k —1) variables (22191224810 20).

Remark 2.2.1. For the condition (2.2.2) and (2.2.3), the decomposition (2.2.5) means that
&(T) can be written as the function of the k x (n— k) +2 variables (€11, Eipprr k)

as follows: \
(I)(T) = G(El---kil, &ik.;.p Eik+2’ tee ’éim)- (2.2.9)

Furthermore, because of invariances (2.2.2) and (2.2.3) again, the decomposition (2.2.6)
and (2.2.7) mean that the function G(£1..x* .. ., &,) has the homogeneities:

k

d .

Zgﬁ-——a ENG(EI---kila coy€p) = NGt 6g,) for B <G <m, (2.2.10)
7j

r=1

> §,~.,-—Q—G(£1...ki1,...,§,;n) = (=Ar=1)G(1.xF .. &) for 1 <r <k (2.2.11)

In these coordinates z = (z,% 2 z,% 430 ,2E), it is known that a solution of the equa-
tion (2.2.4), holomorphic around the origin 2 = 0, is given as follows:

IT5—pra (=214, Taea O + Djary A
('Y)lAl Hr,j(l)a;‘ ’

Fin(z)) =Y (2.2.12)

a;TZO

where ¥ = Ag + + -+ + Ag41 + k. Here, for the matrix A = (a’]?)gs,.sk,k+25jsn, we use the

notations

|Aj|=a§+a‘;.+...+a;?, |AT| = af g + af g+ +af, |A|=Za; (2.2.13)

rj

and
24 = H z;“;i. ' (2.2.14)
rJ
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Remark 2.2.2. The hypergeometric function F;, associated with G, is known as the
Lauricella’s hypergeometric series Fp in n — 3 variables. Especially, F5 4 is known as
Gauss hypergeometric series 2 Fj.

Now let us set
t (2.2.15)
; ri atm

Then {E;;}1<i j<n generate a Lie algebra isomorphic to gi(n) and, for Iv();4, ) € C, we
have

Ei,ij,n(z; A) = v(Ad, j)Fk,n(z; )\;)
where A' Ay ooy Mi+1,000,25—1,...,A,) for 1 < 4,5 < n. In that sense, the contiguity
relations for the hypergeometrlc function F, ., give a representation of U(gl(n)) which is the
universal enveloping algebra of Lie algebra gl(n). Furthermore, as differential operators,
{Ei;} define a U(gl(n))-module structure on the polynomial algebra C[t11,¢12,...,tks] of
k x n variables (t,j)1<r<k,1<j<n. Remember that it holds an identity |

62 82
(Ei; +1)E;; — E; By = (trits; — tsitrs) ( - ) , (1.1.11)
* 3 7 ISESk reed "7\ OtpiOts;  OtsiOtr;

for each i # j.
Then the function

' G,\(El---kilaﬁikﬂ’ s i)

Y+A1—Ag41—1 v-1 5 —Ar—1 = Aj (2'2'16)
= Fk,n(z, A)§1...k + fik+1 H Eikt1 T H eij 7
r=2 j=k42
is a solution of the system of differential equations (2.2.10), (2.2.11), and
{(Eii + I)Ejj —_ Ej,'Eij}G(fl...k:bl, gik-}-l’ - ’€I?m) =0. (2.2.17)
Remark 2.2.3. By the condition (2.2.2) and deconposition (2.2.5), we have
®(T) = &1~ 0(T"). (2.2.18)
Therefore the function G(&;...%%,. .. +&;,,) can be written as follows:
1 1 vl i —lpl—
BTG = DS eErEn T - 51;;1‘152 R
ue(zzo)k(n—k) )
(2.2.19)
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where |v| = 3__ v for the k X (n — k) matrix v = (V])1<r<k,k+1<ign-

2.3. The representation of the algebra Uq(gl(n)) and a localization of A

In this section, we define the action of Uy(gi(n)) on the noncommutative algebra
Aq(M(k,n)). Furthermore, we define a localization of the noncommutative algebra A
generated by quantum minors of degree k.

The algebra A,(M(k,n)) has a structure of a left U,(gl(n))-module; it is determined
by assuming the Uy(gl(n))-symmetry.

Furthermore, the subalgebra A is a left Uy(gl(n))-submodule of A,(M(k,n)). The
actions of the generators of U,(g{(n)) are determined by

h — hi€iy +reotes, Y .
q '£j1...jk = q( i1t J")ij...gk,
k .
—_ €] —E€ 165y FooetEy . .
€l 'Ejl-"jk - z 6I+1’jmq( PR Im I)Ejl...‘]m—l...]k’
m=1 (2.3.1)
k
— X —€1-t+e € +eetey .. .
fl ' 5.11.7’0 - Z al’qu( TS m Jk)€_11..-,1m+1...]k'
m=1

Here we introduce a localization of 4. In the decomposition (2.2.5), the &;.., " has
played a special role. Herefore, we invert the principal minor &;...k.

Theorem 2.3.1. The localization \A[¢;..;~!] is the algebra generated by &;..,*! and
&i(1<r<kk+1<j<n).

Proof. Take any index set {ry,...,Tk—s,J1,-..,Js} sSuchas 1 <r; <... < rp—s < k and
k+1<3j1 <...<js £n. Then by the Pliicker relations (2.1.4), we have a form

k
— i~k
grl...rk_sjl...jsfl---k - = 2:(—q)‘l g"l---"k—'ajl"'jO—’-iEEja.

i=1
In the right hand side, the number of indeces which are larger than ¥+ 1 in the first factors

are r — 1. By using this method inductively, we can see that &, .. r._,4.... E{_}c lies in the
algebra generated by Elﬂk and &;(1<r <k k+1<j<n).

Furthermore, by the property (2.1.3) and the Pliicker relations (2.1.4), the commuta-
tion relations among 5{“  and &z; are generated by the following relations:

16875 = q€pi€1x for 1<r <k, k+1<j<n, (2.3.2)
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and 1
Eri€s5 = a4 €364, Erilrj = q€ri€riy

€ris5 =€a5i Esis; — Eriai = (0 — a7 1)ériksj, (2.3.3)
for 1<r<s<k, k+1<i<j<n.

Remark 2.3.2. We can see that the 2 x 2 matrix
(a b) — (Eéi E.aj)
c d Eri Erj
again satisfies the Mat,(2)-relations (1.2.1).

Now the algebra A[€;...; '] has the monomial basis

T Vlt+1 v2 Vh oy "I,:+1 u
Einbin 1 Einr1Sonon_1 " CipprSlk (2.3.4)

where V;-' € Z>o and p € Z. In the following, we set
1 1 1 2 2 k
Vo gUngVn-1 | gVkit gVngtnor | eVR

for each matrix ¥ = (V})i1<r<k,k+1<j<n Of nonnegative integers. With this notation, we

have

Alér.x7 = & CE €47 (2.3.6)

VE(Z o)k (n=F);ueZ

Furthermore, we can see that the algebra A[€;.... '] has a structure of a left Ug(gl(n))-

submodule.

We now consider the homogeneous component of degree —1 of .A[El...k"l] with the

respect to the quantum minor §j, ...j.:

Min= € ce&. M (2.3.7)
VE(Zzo)k(""k)

where |v| = Z vi. It is easy to see that this subspace Mg, has the Uq(gl(n))-submodule
rJ

structure of A[€1...."!]. Here, for all a € Ug(gl(n)), we denote its action on My, by

pla) : Mgn = Mgn. (2.3.8)

2.4. Translation of the action of Uq(gl(n)) |
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In this section, we translate the action of the U,(g{(n)) on the noncommutative al-
gebra My , to that on the commutative polynomial ring. Moreover, we give the explicit
formulas of the action of the generators of Uy(gl(n)) in the terms of the g-difference oper-

-ators.

In order to translate the action of the algebra U,(gl(n)) on the noncommutative
algebra My ,, into the g-shift operators, we consider the commutative polynomial ring

Clz}, Thy1- - -1 Zh] in k X (n — k) variables £ = (])1<r<k k+1<j<n. Here, for v = (1), we
use the notation of multi-indices
z¥ = H a:’;";. (2.4.1)

1<r<kk+1<j<n

Here let ¢ : M(k,n — k;Z>o) — Z be an arbitrary function of degree at most two

with values in Z in the form
$W) = areigivi+ D Brivi +c, (2.4.2)
r,8,t,J rJ

for the k X (n — k) matrix v = (u})lSrSk,kHstn. For such a ¢, we define an isomorphism

of vector space
Yg : Clz] = Mg

by setting
Yo(z”) = €€ M 1g# ), (2.4.3)

for all v € (Zy0)*™=*). Then we obtain a left Uy(gl(n))-module structure on the vector

space C[z]. Namely we have
pg(a) =1~ o p(a) o Py (2.4.4)

for all a € Uy(gl(n)). In the following, we denote by ¢~ the g-shift operator in the

variables :1:’]"

@riz? = ¢¥iz”. (2.4.5)

Remark 2.4.1. Let ¢ and ¢¢ be two functions of degree < 2. Then it is easy to see the
two representations pg and pg, are related by the formula

ps(a) = g~ (#=¢)0) o 4o(@) 0 g(#79)O) (2.4.6)
for all a € Uq(gl(n)), where 0 = (gf,j)lsf‘ﬁk,k+1ﬁj£"'
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Now we set

n -k
$(v) = > vivs = > (W) =) Vi (Ve +2)- (2.4.7)

1<r<s<k,k+1<i<j<n j=k+2 r=2
In the following, we simply write p = ps. We give the representation of p by g-difference
operators as follows:

p(qer) — q—l"er,k+1---n (1 <r< k),
p(g9) ="+ (k+1<35<n),

n

(q _ q—l)p(el) = Z ﬁ(l _ q—291,j)q1—91.k+1...n+292,j+1...n

]=k+2 2

8
(X

2
n 37]{:-{-1 (ngl'k+1 _ 1)q3—91,k+1...n+292,k+1...n,
Th+1
n xr:+1 . ‘
(q . q'l)p(er) — Z ;r (qzo,,, _ 1)q"9""°+1"'"+29"+1'J+1"'”
j=k+2 7

$r+1
+ f-*l-l (1 . q—29r,k+1)q2—9r,k+1...n+29,-,k+1...n (2 S r S k— 1),

] —29k -+ —1+9 wvik—=1,k+2:n
( q ok 1)q ! b I

_ 1
(g— g Vplex) = -
k+1

k

xr
(g — a7 )plersr) = Y —FH(grksr — 1)gtHorrkn O ki
r=2 " k+2

1

T

k+1 ~2601, k- 1426 —6;...
_|___1__.(1_q 1,k+2)q L4101k k42

Tit2
k

r
(2= a7Vple) = 3 2= (qP0rs+t — 1)gPturr-i—fikina
r=2 xj'*'l
1

s
+ ml] (1 _ q_291'j+1)q2+291’j—01""°'j+1 (k +2 SJ S n — 1),

i+l

n

T; . —
(@-a o) = 3o (g - 1)g s
gkt

1
T
k+1 —26 ~1-6
+ _2_.(1 —q 2.k+1)q 2,kt1eeen

Tr+1
n r

w 3 o : —
(@—aVo(fr) = Y (@i — 1)gPrketoimt=Orrtision
j=k+2 "3
T
n Thi1 (1 _ q-—29r+1,k+1)q2+26r,k+1—0r+1,k+1...n (2 S r S k- 1),

r+1
Tr+1
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(q _ q_l)P(fk) — $2+1q2—91---k.k+1-_un+29k,k+1 (1 - q2+291---k,k+1+29k,k+2---n)

k-1 L2, .. TPl
( 1)p~1 Zjo L1 Zjp
+ - zhiph2 ... w’:p
p=1 1S < <rp<rpp=k 2 I

k+l=jo<ji<---<jp<m

14
x H(l _ q29,~‘.,j‘. )q2+77(r1)—291"'k-1a’°+2"'"_29k-k+2"‘jp

=1
P
% q—2 Ei=1(9r,~---k-—1.ji_1 +9r,-+1--~k—1,j,-_1+1;.-j,--1)

k

mr
(q _ q_l)P(fk.+1) — Z mf'i'z (1 _ q—29r'k+1)q—-1—91...k'k+1+29,.+1...k_k+2
r=2 “k+1

1
T
k42 /s 26 1-6;... 26;...
+_1__(q 1,k+1_1)q 1---k,k+11+2601 k,k+2,

Try1
k

_ Ziie ) - ) .
(9= g7pf3) = 3 —T=(g"s — 1)gormi¥orstbin
r=2 J

1
I, N ‘ X .
+ .7-{'1 (1 _ q—291'3)q2 010k, i 4201k, 541 (k+ 2 S g S n— 1),
Tj
Where 07‘1"""2,j1"'j2 = ZTISTSTZ;jlstj2 0,-,3' and

—-1- 291,j1 ry = 1

n(r1) = { 1+ 20y, x+1 otherwise (2.4.8)

Thus we have translated the action of U,(gl(n)) on the commutative algebra C[z].

2.5. Casimir elements and g-hypergeometric function of type (k,n)

In this section, we compute the action of the Casimir elements and define the g-
hypergeometric systems of g-difference equations.

Furthermore we define the g-hypergeometric function of type (k,n) as a solution of
this system. ..

Note that, in the classical case, the hypergeometric function associated with Gy, is
a solution of the system of differential equations (2.2.10), (2.2.11) and (2.2.17).
In view of the equation (2.2.17), we define the analogous elements of U,(gl(n))

(g-¢7)Cy=(g"F% — q717%9) (g — q79) — (g — a7")?fie5 (2.5.1)

for 1 < j £ n—1. They are central elements of the subalgebra of Uy(gl(n)), isomorphic to
Uy(g1(2)), and called the Casimir elements.
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In the representations, the actions of the Casimir elements are computed as follows:

(g—a7")%0(Ch)
= Z (q—1+91'k+1...,’—91,,‘+1...n—92,k+1...]‘+92'j+1...n$;!.x§

k+2<i<j<n
_ q1+91'k+1...j—91,_,'.'.1...,,—92'k+1...;+92,i+1...n$}x?)

1 _ ) ,
x {—= (1 — g~ %4) (g% - 1)

1
_ 1- q_zel,i)(qzez,j -1)}
n
+ Y (it =tk ossiong] | o2

j=k+2
. q1+91'k+lmj_el'j+1mn+92'k+lmn$}$%+1)

1

(o (1~ g ) (1 = g720)

azjl-:z:i_l_l
1 20, ki1 265,
—-— ket ] 2d —1
P (g )(g )}
(a— ¢ )?p(Cr)(2<r<k)
— Z (q_1+0r,k+1---i—1—er.i-~-n"9r+1,k+1~~j+9r+1.j+1---nx;'x;'*‘l

k+2<i<j<n
— q1+0r.k+1---j—1—9r.j---n—9r+1.k+1---i+9r+1.i+1--~nm;jmfj+1)
1
1 20,5 20,11,
X {2 — 1)@+ 1)
m;wf'*'
[/ ] 7] ;
T ogrgt (g% — 1)(g*r+1i — 1)}

T

n
+ Z (q_1+9r,k+1 =0 k42 =01, k100 j +9r+1.j+1---n$£+1$;+1

j=k+2

_ q1+9r.k+1---j-—1 “BpjontOrt1,kt1.on m;xzii)

1 _ .
X { g (1 — ¢ 2r+aken) (g% 1)

TiTL1

1 - .
- (L= ) (20 - 1),

:1:;_,_1:1:1.
(a—q 1)%p(Ck)

f... +6 —-6;... -6 ] -6
(q 1ok k1106 k42 n_q 1ok k1 =0k, k42 n)(q k,k+1_q k,k+1)

— (P k1 =Bk k1) (o Ok ket Loen _ =Bk kd1om
(g q ) g q )
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Tp+1

_ k-1 cep.
_ § :(_l)p—l § : x]ole x.?p
Tp .k
IL' IU LRI Al
p=1 1STI<"‘<7'p<7'p+1=k J1 J2 Jpk+1

k+1l=jo<ii<--<jpp<n

p

% (1 _ q_zok,k-}-l) H(l _ ngr"ji )q1+"7(7'1)_91'-'k—1,k+2-~~n"‘29k,k+2-'-jp
i=1

% q_2Z?:l(eri'"k_l'ji—l+0ri+l"'k_1’ji—1+1'"-ji"'1)

(@— a7 )?p(Crs1)

§ : (q—1+01---r.k+1—9r+1---k,k+1—91---a.k+2+95+1.-.
2<r<sgk

k42T 8
P2 T h1Tk+2

_ q1+01---s,k+1_os+1---k,k+1—61---r,k+2+9r+1-~-k,k+2x£+2mi+1)

1
X { g (1 — g7 Pett) (¢¥r+2 - 1)

Tr+2Tk+1
1 26
. —20,k 205 k+2 _
(- g (e 1))
k4+1"k+2
k
+ Z(q—1+91,k+1—62~uk,k+1"01‘---s,k+2+95+1--'k.k+2xk+lxz+2
8=2

- q1+91.--s,k+1—9a+1---k,k+1+91--~k,k+2m,1c+2xz+1)

1 - -
X {og——(1—¢ 2okt1)(1 — g~ 20nkt2)
k+2%k+1

- (@ (@ - D),

x11c+1“"k+2
(- q_l)zp(c')(k+2<j<n~—1)

§ : (q—1+91 1,5 =Or ki =010, i1 H0a 1 k1 T :L‘+1

2<r<s<Lk
; q1+91...s—1'j_03"'k'j —91...,.,j+1+9r+1...k'j+1m;+1x;)
1 20,5 20, ; 1 26.. 5 20. :
X {m(q 8, — 1)(q ri+l 1) - F:—c-s.—-(q rg — 1)(q 8,i+1 1)}
I+ 3vi+l
+ Z(q 1+61,= weogitOatie -"+1:1:1.'I:8+1
3=2
— q1+91 8—1,j ,3+61 'j+1$}+1$;)

. —26, 1 —201 . .
X {$1 (g% —1)(1 — g% — ;‘1'53——(1 — g~ #13) (g% 1)},
j+1T J v+l

Now, by fixing the complex parameters A = (Xl, veesAp) with Ag + -+ Ay = —k, we
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consider the following system of g-difference equations for G(z).

q91...k,j G(IE) — qAJ' G(.’B) (252)
gri+inG(z) = ¢~ 16 (x) (2.5.3)
p(C)GE)=0 (1<j<n-—1) (2.5.4)

Remark 2.5.1. We can regard these equations as the analogous of the equation (2.10),
(2.11) and (2.18), respectively.

Then, in view of the homogeneities (2.5.2) and (2.5.3), we introduce new (k — 1) x
(n — k — 1) variables z = (2f):

zhrl

o) = =Lk (2.5.5)
Tr+17Tj |

for 2<r <k, k+2<j<mn, and one can show that the system above has a solution in

the form
n

k
G(x) = Thyr H$Z+1 Al H 23" (X 2), (2.5.6)
r=2 j=k+2

f0r7=)\2+/\3+"'+/\k+1+k.
We next define the g-hypergeometric function of type (k,n) as follows:

T ira(@5 @) 4 Trea (@t 9) ar
Prn(Nigz) = Y~ 2 L1451 1 Lr=2 ATl L4,

(2.5.7)
30 (075 9) 141 I1r ;(4 Dag

For the matrices A = (a})2<r<k, k+2<j<n, the notations |AT|, |A;], |A| and 24 are defined
in (2.2.12).
Then we have .

Proposition 2.5.2. The function

k n
-1 - — A.
Gr=aby " [Izhe™ " 1 257 erm(Xid%2) (2.5.8)
r=2 j=k+2

is a solution of the system of the g-difference equations (2.5.2) — (2.5.4).

In the following, we simply write @) = Qg (A; 72, 2).
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Remark 2.5.3. (1 —¢®)/(1— q) converges to a when ¢ tends to 1. Therefore, both of ¢,
and @ n(A; ¢, 2) converge to the function Fy ,, when g tends to 1.

2.6. Contiguity relations and g-hypergeometric systems

If a is an element of Uy(gl(n)) of weight k, the g-difference operator p(a) transform
G, to a constant multiple of Gx4,. In this section, we compute the contiguity relations in
terms of ¢). Furthermore, we define the g-hypergeometric systems.

We define the operators my(a) as follows:
. r—1 k ' n bV
pA(a)G =3711c+17 H$7c+1—>"_1 H m} Tma(a)ea, (2.6.1)
r=2 i=k+2

where a is an element of Uy(gl(n)) of weight k = Ki€1 4 -+ + Kn€n, N = (A}) = (A; + &;)
and v/ = v+ kg + +++ + Kg+1. Furthermore, we set for simplicity a; = ¢; — €541 and
[a] = (¢® — q¢72)/(q — ¢~ ). Then we have

Proposition 2.6.1. For the generators of Uy(gl(n)), the contiguity relations for the
function ) are given as follows:

m(@¥)ex = g¥ex  (1<j<n),
me)or = @y — Udriay,
mle)or = =@ PPN 4 oata, (2<r<k-1),
mler)pa = —g MM 4L 1105 bag
- - Aet2] Mot +1
"A(ek+1)‘P>\ = q THAR+ 2)‘k+2+2[ +2][[,;j+1 ](p)\+ak+1’
ma(e)pr = (Iz}‘j_z'\j+l+2[/\j+1]€0)\+aj (k+2<j<n-1),
_ _ Al[A2 +1
7T/\(f1)(p)s_ = q M+2A2 7+1[ 1][[’,:] ]‘PA—a1>
m(fr)ex = —q PFPent2y 4 1eaa, 2<r<k-1),
o (fe)ox = | —gM T2 4 1]?A—ak,
TA(fr+1)on = q’y—xk+l+2'\k+2 [v— 1]‘/’)\—ak+1’ .
7T,\(fj)<,0)\ — q—2)‘j+2Aj+1+2[Aj](pA_aj (k +2<j<n-— 1).

The elements E’i,j are of weight o; ; = €; — ¢;, respectively, and their actions on the
function ¢, are given as follows.
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Proposition 2.6.2. The following is the list of contiguity relations for the g-hypergeometric

function @jy:
WA(ELr)(P,\
T (Er,1) e
ﬂ',\(El,k+1)<P,\
72 (Br1,1) 02

™ (El,j)so,\
D) (E ,1)PA
7 (Er,s)pa
A (Es v )
A (B ky1)

™ (Ek+1,r)¢A
T (Er,j )P

™ (Ej,r)‘p)\

A (Ek+1,j)‘PA
TA(Bj e+1) @
mA(Eij)ea
ma(Ej:)pa

where

for1<i<j<n.

(-1)rq,\1—2,\r+7+7-1'r+1[7 - 1](10)\+a1,r (2 Sr< k)’

(_l)rq—z\1+2/\r—7—n,,~+1 [A][Ar +1]
[v]

(_l)k_lqn'k-l-l [7 - 1](10/\+a1,k+1’

A Agt1 + 1]
T¢A+a1,k+1’

Prtar (2<r<k),

(~1)tgmass

(-1 AR oy o, (K425 <),
(—1)f=1g Mt =ms [\ o0 (K42 <5 < n),
(—1)r=2gPAr =Pt t2 N L 1|orta,, (2<7<s5<E),
(=1)"=2g Mt ¥ 2 4 1]y 0 (2<7 <5< K),
(_1)k+1—rq—A1—7+2Ar+'rr,k+1+1[)‘r + 1]()0A+ar,k+1’
(=1)ktirgrtr=2Ae—Trrartl ), L 4 1ortarir,rs

(_1)k+1—'f‘q-—A1+2Ar+Ak+1—2)\_7'—27-{-1',-,]'-{-2 [A" + 1] [AJ]

(]

+ar,j

(2<r<k;k+2<j<n),

(_1)k+l—rq)\1 —=22r = Ax 312X +27—Tp,; [,.', _ 1]‘P,\+aj,,.

Aktk1—=Y—=2Xj+Tk41,;+2 [’\k+1 + 1][’\1]
[7]
q—/\k+1+7+2/\j—7k+1,j [,Y_ 1]‘p>\+a,~,k+1 (k +2< J < n),

g AT Doy e, (K4+2<i<j < n),

q (PA+ak+1,j (k +2 S .7 S n),

q—”‘i+2)‘j_Ti’j+2[)‘i]90>\+aj,i (k+2<i<j<n),
T.‘= _Ai+1_-..—-Aj__1 (j_i>1)
1,J 0 (j—i=1)

Now, refering to these relations, we define the elements of U,(gl(n)) by
(@—a71)%Cij = (@' — ¢ 79) (g% — ¢7%) — (¢ — a7 V)2 By B, (2.6.2)

for 1 <1< j<n-—1. Now we call the following system the g-hypergeometric system of

type (k,n):

q91...k,le($) = q'\’G(iL') (252)
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rr+inG(z) = ¢ MG () (2.5.3)
px(Ci;)G(z) =0 (2.6.3)

By the contiguity relations, we have

Theorem 2.6.3. The function G, is a solution of the g-hypergeometric system of type
(k,n).

Remark 2.6.4. The definition of the elements Ci; in (2.6.2) is including the original
 definition of the Casimir elements in (2.5.1).

Finally we can check that ¢, satisfies Proposition 1.6.5. again, namely,

Proposition 2.6.5. For J = (ji, ja, ja, ja) (2 < ja, Jx # Ji if k # 1), we have

WA(EJ’l,J'zEja,JE - qa(J”\)Ejl,j‘zEja,jz)‘Pz\ =0, (2-6°4)
where
(—1 (41,73 < j2 < Ja or j2 < j4 < j1,J3)
Ajz + Ajs (J1 < ja <Ja<ja)
=gy — Ajz (Js <J:2 <n <J'4)
a(J, A) = 4 —’\j1 - )\j4 (Jz < _7.1 < J-4 < J3)
Ajs + Ay (j2 < Js <ja<j1)
—Xjy +Ajg +1 (J2 < 1, J3 < Ja)
(i, —Aj, — 1 (J1<je<ja<]s or js < ja<js<ji)

Remark 2.6.6. Note that a(J,)) does not depend on the type (k,n). The g-difference
equation (2.6.4) will be proved in the paper written by M. Noumi and the author.
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Chapter 3. gq-Kummer and g-Bessel functions associated with the quantum

Grassmannians

3.0. Introduction of this chapter

The contiguity relations for g-confluent functions, including a g-analogue of the Kum-
mer functions, has been already discussed by E. Date and E. Horiuchi. Refer to [DH].

In this chapter, we will discuss the g-analogues of the confluent hypergeometric func-
tions including Kummer and Bessel functions.

In the first section, we give the short reviews of the general confluent hypergeometric
systems.

In the second section, we define the localization which has a structure of U,(gl(n))-
‘module.

In the third section, we translate the action of Ug(gl(n)) on the noncommutative
algebra to that on the commutative polynomial ring.

In the last section, we define the g-confluent hypergeometric system and g¢-confluent

hypergeometric functions including g-Kummer function:

o0
a (a; q)n(_l)nqn(n—l)ﬂ n
; ’z = z ] 3-4-18
11 < ¢l ) 2 (6 Dn(g; Dn ( )

n=0
and g-Bessel function:

(@°* @)oo

Folza) = (4 9) oo

0
191 ( FHD qz2) ; (3.4.19)
as the solution of the system of the g¢-difference equations. Moreover we compute the

contiguity relations for these functions.

3.1. Classical case
In this section, we introduce the confluent hypergeometric functions roughly. See
[KHT1], [KHT2], and [KHT3].

For a fixed integer n, we set o = (04, Qz,...,%)a,eN as the partition of n, that is,
a; > ag > -+ > o and |a| = a1+ - -+0oq = n. For example, there are 5 types of partition

of 4 as follows: .
(1,1,1,1), (2,1,1), (2,2), (3,1), (4).
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Now we define three types of the maximal commutative subgroup of G = GL(n;

some patitions of n.

( (hl
h
Hg,..p=4{h= £ ;hi € C* ¢,
L\ b
( hi h
. o
4 'h]_,h3,...,h e C*
Hea,..,ny = (b= & . ’ hy € 5 ’
L\ o
( hi hq
( hy )
hs h
u _ ) o hayhayhs, ... s by € CX
(2a2v1""v1) - < - h ! h2, h4 E C
5
\ \ hn

Moreover we set H, as the universal covering group of H,.

C) for

Then we give the system of differential equations. Let us set T' = (f,;)1<r<2,1<j<n €
M(2,n). By fixing the partition o of n and for some A = (Ay,...,A,) € C*, the confluent
hypergeometric system E(c; A) of differential equations on the coordinate ring A(M(2,n))

is the following system :

®(gT) = det(g) ™' ®(T) (9 € GL(2)),
®(Th) = &(T)x(h, ) (h € Ha),
82 52 o
50 = G D) (L<i<i<n),

x : Hy, — C is the character of H,. For instance, for o(® := (1,...,1),
x(h; ) = hi* R bt

 For oV :=(2,1,...,1),

x(h; A) = hy*ezp (Az%’l) RN S
1
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And for of? := (2,2,1,...,1),

x(h; A) = hi*ezp (/\2 %3) hs*ezp (/\4%) hgs -« hptn. (3.1.6)
1 3

For the conditions (3.1.1) and (3.1.2) to be compartible, we can easily check that
M+t A =—2fora=c®, A\ +Ag+- -+ A ==2fora=a,and \y + A3+ A5 +
oot Ay = =2 for a = a®.

Remark 3.1.1. It has been shown that we can realize the Lauricella’s hypergeometric
function Fp as a solution of the system E(a(®; X).

Now we recall that we can decompose a general 2 X n matrix T as follows:

i1 tis y '
T = x T, 3.1.7
(t21 t23> ( )
where L g o g )
’ _ xz $4 ) xn
T = <0 AR N wi) (3.1.8)
Here :cjl = —§13'1§3j and ar:]2 = §13"1§1j. And {¢,;} are the Pliicker coordinates of G2,n.
Furthermore, we have two types of decomposition of 1":
1 z}
; | \
)
1 0 Tz
! — :32 4
= (o g)m &
\ x},}
1 zi
(+ \ (3.1.9)
1 x5
s =
1
1 0 3
a (0 x%) ge " oa !
T3
.
K % )
where ' 1 0 0 1 1 1
Ty = 3.1.10
W (0 y2 1 -1 s yn)’ (8.1.10)
and L0 o
24 .25 Zn
Ty = (0 11 0 1 ; ) (3.1.11)
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72 1$g
- Jl (j >5) and 24 = z}23, z; = — %
4% J
For the decomposition (3.1.7), ®(T') can be written in the form

1,.2 1
H _ T4T5 - T4T
€re Ya = — 22 Y; =

®(T) = &137'G(z), (3.1.12)

for some function G(z) in the coordinates z = (z3,%,z},23,...,25,22) . Furthermore,

with A2 = 1, in the case of E(c(1; )), G(z) can be written in the form

G(z) = (z})? e+ (zd) > tezp(ad) [ [ (=)™ Fr(y), (3.1.13)
Jj=5

for some function Fy(y) of (n — 3) variables y = (y2,¥5; .-+ ¥Un)-
Now we define the function F(}) as follows:

YR b5y« sbn — (a')lul b5)u5 “(bn) v, Un
! ( ¢ ,y) u§>:o (D11 (Dva (Vs -+ (v, V"™ < T (8.1.14)

Then it is known that ®(T) = 137G (z);

e- . As+1; =Asyeees—A
G (z) = (@) ()™ 1e-’fﬂlﬂ(ﬂﬂ%)]‘_[(w})*’F(”( } v ";y),

J A3+ A+ 2
i25
(3.1.15)
is a solution of the system E(a(!);\).
Similarly, in the case of E(a(®;)), G(z) can be written in the form
G(z) = (a2 exp(zd)ezp(z]) [ [ (=) Fa(2), (3.1.16)

J25

for some function Fy of (n — 3) variables 2z = (24, 25,...2n) With Ag = Ay = 1.
We define the function F(®) a5 follows:

(2) b5, (b5)V5° (bﬂ)Vn u4 Us ..., Vn
ro (", >_VZ>O<c>|ul<1>w<1>u5 e (L)

Then it is known that ®(T) = £33 ()

. S VR W
6 (@) = e Hesplaesptad [[NFO (%5 07z), B118)

j25
is a solution of the system E(a(®;)).
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Remark 3.1.2. Especially, when n = 4, FQ) Z; yg) =1F (Lcl;y2> is called as Kummer

function. Moreover the Bessel function J, is defined as follows

_ (=n)™m@/2)v*™ _ (¢/2)" -t
o) = m§>:0 mT(v+m+1)  T(v+ 1)"F1 (v+ 1"2) ‘ (31.19)

So .~
FO (i) = (00 T s (24 T0). (51.20)

In these senses, Kummer and Bessel functions are realized as a solution of the confluent
hypergeometric system.

Here we set _
2., 9
Eii=) trim. J.21
1= i 3.121)

Then {E;;}1<i,j<n generate a Lie algebra isomorphic to gi(n). And we can verify that

02 0?
(Bii + 1)E;; — EjEyj = (tiitz; — t2it1j) (3t1iatzj - at2i6t1j) , (3.1.22)

for each ¢ # j. Here, for E(a(%);)), it is known that the differential equation (3.1.2) is

written as follows.
(Ell -+ Egz)(:[)(T) = Alq)(T)

E12®(T) = &(T) L (3.1.23.(1)
E;;@(T) = A;9(T) (= 3).
We can see that F(1) is a solution of the system of the differential equations (3.1.23.(1)),

and
{(Es; +1)E;; — E;; Ei;} ®(T) = 0. . (3.1.24)

Moreover, for E(a(®; ), it is known that (3.1.2) is written as follows.
(E11 + E22)@(T) = M1 ®(T)
E122(T) = 2(T)
(E3z + E4a)®(T) = A39(T) (3.1.23.(2))
E34®(T) = &(T)
E;i®(T) = 49(T) (J 25),
Then we can see that F(?) is a solution of the system of the differential equations

(3;1.23.(2)),' and
{(By +1)E;; — EjiEij} ®(T) =0. (3.1.24)
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Furthermore, for several E;;, we can compute the contiguity relation for F() and
F®,

We have already discussed the g-analogue of the hypergeometric function of type (k,n).
In this chapter, we will discuss the g-analogues of confluent hypergeometric functions FQ)
and F(.

3.2. Noncommutative localization A[§13"1]

In this section, we consider the localization .A[Ela_l] which has a Uy(gl(n))-module
structure.

We in this chapter denote the noncommutative algebra, which is generated by the

quantum minors of degree 2, by A. We here consider the locallization A[§13'1].

Theorem 3.2.1. The localization A[¢137"] is the algebra generated by the quantum

. 1
minors {€13%, €12, €14y -+, E1n,y €32, €34, - - - E3n}

Proof. It is proved similarly as Theorem 2.3.1.

The commutation relation among these genarators are as follows:
E13€12 = ¢ Hrobs,  E1abrj = g€ribia (ry5) # (1,2),(1,3),
Eribri = abrjbri (1 =1,31<]), &iés5 = absi€; (1=2,4,...,m),
12635 = ¢°bajiz, (G2 4), &i5ési = &aiyy (8> J),
€ribaj — E3j€u = (g — g i€ (4<i<j<n).
Then, we can give the monomial basis of the localization Alé1s™1,

Ean”3" « - €344 €322 61 "M ¢ ¢ - £147 4 €12 P 615 (3.2.1)

where v,j € Z>o and p € Z.

In the following, we set

€Y = E3,7%" -+ £34" €30 2610 - €14 61 (3.2.2)

for each matrix v = (Vyj)r=1,3;j=2,4...,n Of nonnegative integers. With this notation, we
have

Aleis™!] = P Ce¥és”. (3.2.3)

v,u
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We have already defined the action of U,(gl(n)) on the noncommutative algebra .A,
and we can see that the algebra A[€;37"] has a left Uy(gl(n))-module structure.

We next define the subspace of A[¢137"] as follows:

San = . Ceeys™ "7, (3.2.4)
VE(Z0)?X(n=2)

where |v| = Y v.;. We can see that this subspace Sz, has the Uy(gl(n))-submodule
structure of A[€13"]. Here, for all a € Uy(gl(n)), we denote its action on Sz, by ‘

5(a) : Sam = Sam. (3.2.5)

Then we can translate the action of Uy(gl(n)) on the noncommutative algebra Sz, to
that on the commutative polynomial ring Clz}, 23, z},z3,...,zL,22] in the next section.

3.3. The action of Uq(gl(n)) on the polynomial ring

In this section, we define the action of Uy(gl(n)) on the commutative polynomial ring,
and give the explicit formulas of the action in the term of the g-difference operators.

At first, we consider the commutative polynomial ring Clz] in 2 X (n — 2) variables

z = (z},22,2},23,...2L,22). Here, for v = (Vrj)r=1,3;j=2,4,..n, We set the notation

P S SINPLCE o SINP ) (3:3.1)
Let ¢ : M(2,n — 2;Z>0) — Z be an arbitrary function of degree at most two in the

form
¢(v) = > Or,s,i,iVr,iVs,j + Br,jVrj + €, (3.3.2)

r8=1,3i,j=2,4,..,n
for the 2 x (n—2) matrix v = (Vr,j)r=1,3;j=2,4,...,n. For such a ¢, we define the isomorphism
of vector space '
Ng : C[.’L‘] — Son

by setting
ne(z’) = €&~ M 1?0, (3.3.3)

for all matrix v € M(2, (n — 2); Z>o). Then we obtain a left U,(gl(n))-module structure

on the vector space C[z], namely

ps(a) = 15™* 0 p(a) o my, (3.34)
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for all a € Uy(gl(n)).

In the following, we denote by ¢~

i the ¢-shift operator in the variables [, that is,

¢drif(el,...,22) = f(2i,...,qal,...,22). (3.3.5)

With this notation, for example, when ¢(v) =0,
pO(qel) = q_1—01.2—01,4...n,

—1—92,2—92'2...,1

po(g®®) = ¢ ’
po(g) = ¢®rittui  (j=2,4,...n),

- 1 L
(q_q 1)/’0(61) = :—E-l'(l—qzalr'*’)q 61,2 92.2+92,4...,,+1,

nzixl ’
(q _ q_l)pO(fl) — E 22] (q202,j _ 1)q2(91,2+91,4...j._1)+91'J‘...n+2(92'2+92,J’+1...n)+2

j=4 J
_ x%(l — q2(01,2+91,4-~~n+92,2)+2)q"“el,2_01,4'~n_92,4---n—2’

(q _ q—l)P0(62) — .’1:%(1 _ q2(91.2+91.4.--n+92,4~~-n)+2)q92,2+91,4~-n+1

", ziz?

3 (201, =01,2=81,j...n+02,2-02,4...; =2

=D (g = 1)gT e st
=4 J

- 1 0, e =30y 5
(q —q 1)p0(f2) — _x_z(q202,2 _ l)q 01,2 91,%..." 30,2 02,4...,,’
2

(2= g poles) = —Z5(1 = g*0e)gatOnemn=nros,
4
(q— q_l)PO(fs) — -'L'Z(l — q2(91,4+92,2+92,4-~n)+2)q—91,2—91,4---n—92,4--~n—1
:131:122
+ 412 (1- q291,2)q01,4~--n+2(92,2+92,4)+02,5n-n+3
Z2

1.2
T4
+ E 4%y (1 _ q291j )q_(01,2+91,j~~-n)+202,2+92,4+92,j+1~--n,

1
iz i

xll . 0 : wz . 0 e .

(g— g Hpo(ej)j>a = 1_1(q91,1+1 — g %t 4 TJ_(q02.J+1 — g 02i1) g0 ~Oid
Ti+1 Ti+1
1 2
— Tir1 . —0. B T5aq . —0. .
(0= g7)po(fi)izs = —T(g™ — g7 )g w0 4 LR (g — gm0,
j i

Thus we can translate the action of Uy(gl(n)) on the noncommutative algebra to that

on the polynomial ring.

3.4. The q-hypergeometric system and g-confluent hypergeometric functions
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In this section, we define ¢g-hypergeometric systems and realize g-Kummer and g-Bessel
function as the solution of this system. Moreover we compute the contiguity relations.

At first we compute the actions of the Casimir elements
(@—97Y)%Cj = (g'F5 — g7 7%9) (¢ — q~9*1) — (g — a71) e (2.5.1)
Now we set

$o(v) = ZV3( Vipi ) 25 (WE ) — (B (Wi 4 g +1). (34.0)

In the representations, for ¢ = ¢p, we have the actions of the Casimir operators as

follows:
n
(0= 07 pau (1) = 3 s =trson=taa
j=4
“’al‘”'«z’ 20 20, ; 20 20, ;
X2z (=)A= ¢™) = (1= ¢722) (1~ ¢719)
2T;
n
(= a71)%pg, (C2) = DY _ g OtsHb2stom
j=4
"’%x g3 20 26 20, ;
< = = g%9) = (1= )1 = )
2

(¢ — q—1)2p¢‘J (Cs) = q—91.4—92,2'—92.5-~-n

[ B 1 )1 - ) - (1 )1 - %)

“’2-’”4

n
+ Z q-—91,4+92.2—92,5---j+92.j+1-un
j=b

TiTs

{ iz 21— g9)(1 - @) — (1 - ¢*)(1 - q””)}

(0= 471204 (Cj) 4 = g1 H01I ~Ors+1 =025 +0a54

x{ Gt 2%’)(1—q292'f+1>+<1—q291'f+1><1—q29“)}
Z3412;
+ q—l-el,j-61,,+1—92,1-92.f+1

1,.2
v {_.’L‘jivj+1 (1 _ q291,j+1)(1 _ q292,j) + (1 _ q291,j)(1 _ q292,j+1)}
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Here we define the g-hypergeometric function o) ag follows:

(P(l) (a; .65”'),' * ,.Bn . q; y>

_ 3 @Bty (Bui o (1) a1y

Y22y ...y
o 001400 (G Due -+ (0, _ n "

in the coordinates y = (y2,Ys5,---,¥n)-
Furthermore we define the g-hypergeometric function 0@ as

(p(2) (,35; 7 ,'Bn 1q3 24,25y .- - azn> = (p(l) (O’ ,35,:)’- ’ ,ﬂn 15245255« . )zn> (343)

Remark 3.4.1. We can easily check that we have the formal limit

a. b bn .
]&iTr?(p(l) (q ,qﬁ,-c.-,q ,q;(q—l)y2,y5’---)yn>=F(1) (aabfn-.-,bn;y) (3.4.4)

q c
and
@ (a0 2 @ [ bs)---5bn
llmQO c aq;(l_Q) 24,(1—Q)Z5,..-,(1_Q)Zn =F y &
qtl q c

(3.4.5)

We now introduce the L-operators defined by the following formulas (Refer to [J,
NUW]):

g% R (i =J)
Ly = (@-qgYEug% (6<)) (3.4.6)
0 (& > J),
and
g _ (@E=])
L; = —(g—q 1) %E; (1> ) (3.4.7)
0 (@ < 4)-

For some A = (A1,...\,), we give two types of the system of g-difference equations
E((i), A, ) i=1,2 on the commutative polynomial ring C|z].

E((l),A, ¢) : €1+€2) Al
pslq .>G<x>=q .G(:z:), 5.48)
ps(¢9)G(x) = ¥G(z) (j =3,4),
ps(L31)G(z) = (¢ — 7 )g MG (a), (3.4.9)
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ps(C;)G(z) =0, (3.4.10)

E((2),\¢) :
ps(a°7)G(z) = M G(x),

pe(a°1)G(z) = ¢ G(z), (3.4.11)
ps(a%)G(z) = ¢ G(x),
ps(L31)G(z) = (¢ — ¢ Vg™ G(z)

_ (3.4.12)
ps(L33)G(z) = (g — ¢ Hg¥ Tt G(x) _
ps(C;)G(z) = 0. (3.4.10)
Here we define the g-analogue of exponehtial map as follows:
eo(z) = ! (3.4.13)
! ((1-9)z;q)oo’ =

where (0 0)oo = lim (@ ¢)n-

Remark 3.4.2. In the classical case, ezp(z) is a solution of the differential equation

= u. Now we can see the g-exponential map e,(z) as a solution of the g-difference

z

1(1—q%)
equation ———=
d z (1-g)

polynomial ring C[z] have g-exponential map as the eigen function.

u = u. We use the L-operators above because their actions on the

Now we set

j25
1) 2A3+2 q )\5 q_2An 0 0 (3-4.14)
X (P ( q2,\3+2)\4+4 yq ’(1 —-4q )y2’y5,-°-ayn) ’
zlx 11:2 1
where y2 = ——4—23, Yj = 1 ; (j >5), and
x5 :1:J
G (z; \) =x§'\l+1eqz (z3)eq2 (z2) 1—‘[(:133)'\J
j>5
—2)s ,
X (p(2) (q q2A3-l,-4q ’q2, (1 - q2)224a (1 - qz)z5’ ceey (1 - qz)zn) 3
(3.4.15)
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1,2
2.1 LT3
where z4 = 2324, 2; = ——. Furthermore,
z

J

$1(v) = go(v) —vi(wE+1) = S 2 +1) - vj (] - 1) (3.4.16)
jz5
and
$2(v) = do(v) = Y _vj(yj +1) - ViV - 1). (3.4.17)
j25

Then we have the next proposition.

Proposition 3.4.3. In the case of (2,n), the functions G) and G® satisfy E((1), A, ¢1)
and E((2), A, ¢2) respectively.

Thus we have g-confluent hypergeometric functions as a solution of g-hypergeometric
system of g-difference equations.

Generally, g-hypergeometric function 14, and the Hahn-Exton ¢-Bessel function J,
are defined as follows:

[o o)
a (a; Q)n(=1)"gnn—D/2 |
1q,2 ) = z", 3.4.18
M(c ! ) ,;, (6 O)n(% Dn ( )

vl 0 ‘
Ju(2iq) = z”%—q)%'-"-ﬂpl ( qu+1;q,qzz) , (3.4.19)
)

where (a;¢)oo = r}ergo (a; @)n. See [GR, K].
Then, in the case of (2,4), we have

oM (Z;q, yz) = 11 (Z;q, yz), (3.4.20)

and
o (;54, z4) = Czg~ M2y 11 (a7 2) % 9). (3.4.21)

I )
Hore O = t@mrn )
In these senses, we have realized ¢-Kummer and g-Bessel functions as a solution of

g-confluent hypergeometric system of g-difference equations.

Then we next compute the contiguity relations for g-hypergeometric functions o
and ¢,
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We simply write

22342, ,—2As —~2Xn
oM = oM <q ’q%,\ﬁziﬁiq ;0% (1 — vz, s, .- - ,yn> , (3.4.22)
and
-2y -2\,
<p§‘2) = (2 (q q’2>\3-iig 1q%, (1 — ¢%)?zy, (1 - )z, ..., (1 - q2)zn) . (3.4.23)

For <pf\1), we can give the contiguity relation by the element of U,(gl(n)) which has
eq2(z3) as an eigen function. For such an element a € U,(gl(n)), we define the operators
7(1;0)(a) for a € Uy(gl(n)) as follows:

Po1 (0)GD = (@))N+¥4F (2F) ¥ e () [T (=) mainy (@) 0. (3.4.24)
Jj25

Proposition 3.4.4. The following is the list of contiguity relations for the g-hypergeometric

function <p§‘1):

ran @t el) = el
ran(@@)ed = el (5> 3)
(@— g ) ranL)ed) = g el
(0= g rapy@a)el) = g 4+ 100l
(a—a Y e Eiel) = =t L+ 16,
(a— a7 mapnETi)el) = gmR At o) (52 5)
T 1 -1 [Aa+1] 1
(q_q 1) 17r(1;/\)(L-2i-3)<PE\) = q2,\3+>‘5+ +An 1[/\3+/\4+2](pf\-4)-a3,1
—1y—1 R N a2 [Mat1]
(@—a ) ranlaex” = T TR g e
(g- g ) mapm e = —gPemmattht, ) (5> 5)
71‘(1;)\)(1?:}34)99&1) — qz,\3+A5+...+,\n+1[/\3 +1]‘P§\112a3,4
- st Xss et An =1 1A3 F 1[N )
W(I;A)(Es_j)(pf\l) = q)\a A=A +Xjp1++Ay 1[E\33+ ,\j[_{_];]‘tof\l-i)-as,j (] 25)
o (Ba)el) = gmPedm AN 1 a)el)
manE)el) s = gD 1), (2 9)
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T(1;2) (E4j)¢&1) = gt —1%¢&2a4,j (4 > 5)
mapy (Bia)el) = TN G A+ 1]<PE\1-|)-a,-,4 (7 = 5)
T ( Eij)¢g1) — qQAj—2)\j+1+Ti.j+2[/\j+1](p§‘]:*)_ai'j (6<i<}y)
W(I;A)(Eji)(Pg‘l) — q—2)\j+21\j+1—7'i.j+2[Aj](p(;_‘)_aj'i (5 <i < j).

a@;,; and 7; ; were defined in the section 2.6.

Similarly, for cpf\z), we can give the contiguity relation by the element of U,(gl(n))

which has ep2(z1) and ep () as the eigen functions. For such an element a € Uq(gl(n)),
we define the operators m(y;x)(a) for a € Uy(gl(n)) as follows:

P4 (@GP = (83X Hep (wheq (23) [T (@)Y i @)el. (3.4.25)
Jjzs

Proposition 3.4.5. The following is the list of contiguity relations for the g-hypergeometric

function <pf\2):

man @)l = el
(@@t )ed) = e
mem(@)el) = e (5 25)
(g— q—l)_lﬂ(z;x)(Lz_l)‘Pf\z) = ‘1—)‘1_1‘»"&2)
(0 mepEa)el) = gt ting)
(@—a ) Mm@ 4 La)ed) = -t [-,\—11:-2-]<P(A2-3a1,3
(g — q—-l)—lﬂ,(z;A)(q—e4L;-1)(pE\2) — _q—r4.j+2Aj+1+---+2An ﬁ%wgaallj (G > 5)
(@— g7 ) e Tn)el = g htnteba 1ol (> 5)
(0- ) ey = &+ e,
e N0 2 1 I e [ v
(0— a7 ) e Tg)ed = —g TR (2 5)
T Eed = @Ry el (B <i<))
W(z;x)(Eji)¢g2) — q—ZAj+2Aj+1—r.-,j+2[)‘j](pf\2_*)_aj’i (5<i<3j).

We can show that the contiguity relation for gqf\l) gives a representation of an algebra
which has a subalgebra generated by ¢%, e;, fj (j > 3), isomorphic to Uy(gl(n — 2)).
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Furthermore, the contiguity relation for gof\z) gives a representation of an algebra which

has a subalgebra generated by g%, e;, fj (j > 5), isomorphic to U,(gl(n — 4)).
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