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INTRODUCTION

A Whittaker mode! belonging to an admissible representation is a realization of the
representation in an induced representation related to a maximal unipotent subgroup. To
make it help studying automorphic L-functions, the explicit formula has been studied in
each places. In the case of a quasi-split algebraic group over a p-adic field, Casselman
and Shalika gave an explicit formula of class-1 Whittaker functions [3]. At real places,
it was Stade that gave an integral expression of Whittaker functions of the general linear
group GL(n,R) in a recursive way [22].

A remarkable method of deriving the differential equations 1s the usage of the Schmid
operator. This was first appeared in the paper of Schmid [21], who used it to characterize
discrete series of real semisimple Lie groups. Then, using the fact that the discrete series
representation is isomorphic to the kernel of the Schmid operator (the differential operator
of gradient type in his paper), Yamashita realize the discrete series both in principal
series representations and in generalized Gelfand-Graev representations [30, 31]. We
remark that some highest weight modules also have such characterization {5].

In [17], Miyazaki and Oda regard the Schmid operator as the sum of shift operators;
each of them causes a shift between two K-types, irreducible representations of a
maximal compact subgroup K. Then, they derived the differential equations of principal
series Whittaker functions on Sp(2; R). Further, they regard the meaning of the kernel
of the Schmid operator as shift operators making the /'-type cross through the “wall”,
and succeeded to obtain the differential equations of Whittaker functions of generalized
principal series representations on Sp(2; R).

In this paper, we deal admissible representations of SU (2, 2), the special unitary group
of signature (2,2). Our conclusion is that the analogous results hold on SU(2,2). We
obtain the differential equations belonging to admissible representations and explicit
integral expressions under some parity condition in some cases.

Here is a precise description of the main result of this paper.

Let 7 be an irreducible admissible representation of G = SU(2, 2). Let n) be a unitary
character of a maximal unipotent subgroup /N of G. The space of intertwining operators

Hom(g,K)(Hf, C,?O(N\G))

1s called the space of the (algebraic) Whittaker vectors defined by the representation
7, where K is a maximal compact subgroup of G. Let (7,V;) be an irreducible
representation of /& and assume that the contragredient representation (7*,V*) of 7
appears in 7|, with multiplicity one; in this case 7* is called a K'-type of m. We fix an
injection +,. of V* to H,ﬁ". Then, by irreducibility of 7, the mapping +,- gives rise to a
natural injection

Hom g i) (H, C®(N\G)) = Hom g (V;", CP(N\G)).

Given an element ¢ in Homy(V}, Co°(N\G)), we define the V;-valued function
b, € O (N\G/K) (§3.1) by

ol )(g) = <v'd:(g) > (v eV, ge(G).
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Here <, > is the pairing of V! and V;. Thus, given a Whittaker vector @, we get the
function @, , called the Whittaker function of = with K -type 7*.

We next derive the differential equations for Whittaker functions by utilizing the
Schmid operator V, which is a mapping from Cpo (N\G/K) to Cp5aad(N\G/K)
(83.3). Let (7', V,+) be an irreducible representation of K that appears in 7 ® Ad as
an irreducible constituent and P’ the projector to V.. By composition, we get a shift
operator from C25, (N\G/K) to C°,(N\G/K). For any v'* € V3, we have

<V P oV, (g)>=c(T, tre, 7', t(ry ) (bery- (V")) (g), (9 € G)

where +(,). is an injection of V% and ¢ = ¢(7, tr-, 7', 4(7)+) is a constant. If ()" is not a
K -type of 7, ¢ is understood to be zero.

Using the shift operator repeatedly, if necessary, we can construct a differential
operator on Cp° (N\G/K). Its radial part, the restriction to the maximal R-split torus,
defines a differential equation for ®, .. The Casimir operator acting on ®, . as a constant
multiplication, another differential equation can be obtained from considering the radial
part. Appropriate choice of these operators makes a holonomic system. If the rank of
the system agrees with the dimension formula, we obtain the theorem. This is done case
by case for the representation of G (Theorems 6.1, 6.2 and 5.4).

Further in discrete series and principal P;-series representations, the rapidly decreas-
ing solution of the derived differential equations can be expressed using an Laplace
transformation (Theorems 4.6 and 5.5).

This paper consists of two parts. In Part I, basic notations are prepared here with
three sections to prove main theorems described in Part [I. In Section 1, we review
the fundamental facts about the Lie group G = SU(2,2) and the Lie algebra. We
fix the notation of both restricted and absolute root systems. In Section 2 we discuss
the representations of G and of the maximal compact subgroup K. According to
Langlands’ classification, all the admissible representations of the real semi-simple Lie
groups appear in the standard representations as a quotient. It is known that the cuspidal
parabolic subgroups of G are P,,, P; and ( itself up to conjugacy. Thus we precisely
denote the parabolic induction from them and calculate the multiplicity of K -types.

In Section 3, we introduce the Schmid operator and state the relation between the
operator and the Whittaker model of a given admissible representation. We also calculate
the radial part of the Schmid operator, shift operators coming from the Schmid operator
and the Casimir operator. The necessary and sufficient condition for existence of a
Whittaker model is that the representation is large in the sense of Vogan [26]. Also
according to [13], the dimension of the Whittaker vectors, the intertwining operators
between the representation and the Whittaker model, is at most the order of the little
Weyl group. To be exact, their dimensions are, in general, 8, 4 and 4 in the case of
P,,-series, P;-series and discrete series, respectively.

Part II contains three sections. In this part, we did the case study; we state our main
results according to each series representation. In Section 4, we consider the discrete
series. The representation we consider should be large; this is interpreted by the words
of Harish-Chandra parameter in this case, i.e., the parameter should be in the cones of
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type II or of type V, following Yamashita's notation. Thus we take the minimal K -type,
which is of multiplicity one, and then investigate the radial part of the Schmid operator;
they become the differential equations of rank 4. Furthermore in this case, using the
Laplace transformation we find the integral expression of rapidly decreasing Whittaker
functions under some parity condition as carried out in the case of Sp(2; R) [20].

In Section 5, we consider the P,-series representations. We assume they are
irreducible, then they are known to be necessarily large. To derive the differential
equations of P;-series Whittaker functions, we need the help of the Casimir operator
as well as the Schmid operator. In this case, the notion of the corner K-type has an
advantage; it is smaller than minimal K -types, that is, the Whittaker functions with the
corner K-type is simpler than those with a minimal K -type, which can be seen in the
deduced integral expression.

In Section 6, we consider FP,,-series. It is a most general representation and
has no characterization using the kernel of a single operator. Instead, we consider the
composition of the Schmid operator. Then using an “eigenvalue” we make an differential
equation satisfied by the Whittaker function. With the help of the Casimir operator, the
system becomes holonomic of rank 8 when the dimension of K-types is one and two,
which agrees with the dimension formula.

For further application, we hope that these explicit integral formula could be used to
calculate the [-factor of an automorphic L-function as is seen in the case of SU(2, 1) [12]
and in the case of Bessel models of Sp(2; R) [16]. We also remark that these Whittaker
functions are typical examples of “generalized spherical functions” determined by the
spherical subgroups developed by Brion and Kramer [2, 14]. Particularly in the case of
symmetric pair of real semisimple Lie groups such as, SU(2,2), Sp(2,R) and rank 1
groups, many works has been carried out using the Schmid operator [24, 25, 9].
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calculation of D-modules, Professor Harutaka Koseki for pointing out his errors.
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PART 1
General Results on the Representations of SU(2, 2)



2 L. GENERAL RESULTS ON THE REPRESENTATIONS OF SU(2,2)

1. THE STRUCTURE OF SU(2,2) AND 1TS LIE ALGEBRA

In this section, we fix several notations for the group SU (2, 2), its subgroups and the
corresponding Lie algebras.

1.1. SU(2,2) and its Lie algebra. Let G be the special unitary group of
signature (2, 2) defined by

G =SU(2,2) = {g € SLo(C) | ‘Thap g = L2}

where I, = diag(1, 1, -1, —1). We denote by ‘g, g, and 1,, the transpose of the matrix
g, the complex conjugation of g and the identity matrix of size two, respectively. This
group (5 is semisimple, of hermitian type and of real rank two.

A maximal compact subgroup K of G is given by the following:

K =S(U2) x U(2) = {(u v)

Hereafter we use the convention that blank entries in matrices are zero. Note that G/K
is a hermitian upper-half plane.
The Lie algebra g of G is expressed as follows:

_ (X X
9= {X = (Tn X; )
It is of real dimension 15. We write its complexification by ge = 5l4(C).

The Lie algebra of K is:

o - JY]
(e[ )
- X1z

= AX:: -
o= =, ™)

Then we have a Cartan decomposition: g = €+ p. We also denote the complexification
of € and p by ¢ and pe whose dimensions are 7 and 8, respectively.
Next we describe a restricted root system of g. Put

1

u, v € U(2), det(u) det(v) = 1} :

tyi = —X-L' (Z = 1, 2), )(12 € ]V[Q(C), tr (){1 + X2) = 0} .

t)(i = —)(2' ('L = 1,2), tr X = O} .

We set

X € 1\/12((3)} .

le 1

We fix a maximal abelian subalgebra contained in p, a = {H|, H,}g. The Lie group

A,, = exp(a,,) is the identity component of a maximal R-split torus in . We identify
Am with R% ) by,

A, = {a. = (ay,ay) = (¢’,e") = exp(sH| + tHy) ‘ 5, t€ R} .
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Choose a basis {A;, Aq} of the dual space a* of a such that \;(H;) = §;;. Then we can
describe the restricted root system of g associated to a as

A= A(g, Cl) = {:E/\l + /\2, :t?/\]_, j:2)\2}

It is of type C,. We take a positive root system A, = {A; & Az, 2A;, 2X2}, and a
fundamental root system Agng = {A1 — A2, 2A2}. We set,

HIZ = dld‘g( v _17 Y _17070)7 H34 = dlag(ovoa VL, =V _1)7

1 ‘—1 0 '0
— 0 0 — 1 —1
Er=v-1|5 —1  B=v-lig 0 ’
0 0 1 -1
1| -1 [ 1' -1
-1 |1 V-1 1 -1
Es =3 1| 5773 1 -1 ]
\ -1 1 \ 1 -1
/ 1 1 [ 1 1
e o1t 1 B - v-1{ 1 —1
5T g 1 1| 87 1 1
1 ~1 \ -1 1

Also fix a basis of &¢:

o= (A4) () = () () o

where h = (1 _1), er = (0 1), e = (1 O) are 2 x 2 matrices. Using this

notation, one has g = ¢(a) + »_ g where,
AEA

c(a) = the centralizer of a = { H,, Ha, Hi2 + Hjs}r,
gor, = {E1}r, 92x, = {E2}R, On+x = {E3, Eulr,
On-re = {Es, Eslr, 8-p="'8,={'X|X €g,}.
The Weyl group W with respect to (g, a) is the semi-direct product of the symmetric

group of degree 2 and two copies of Z/2Z, thus its order is 8.
Take a compact Cartan subalgebra t defined by

t=RvV—-1h'+RV—10% + Ry —-11,.,

and let t¢ be its complexification. Then the absolute root system, of type Aj, is expressed
as,

A = Alge, te) = { [£2,0;0],[0, £2;0], [£1, £1;£2] }.
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where 3 = [r, s; u| means r = #(h'), s = B(h?) and u = B(I,,). Let
A* ={]2,0;0],[0,2;0],[£1,£1;2] }.

We write the set of compact positive roots by A = {]2,0;0],]0,2;0] } and we fix it
hereafter. The Weyl group W = W (gc, tc) is generated by sy, s, 53 where,

sifr, s;u] = [—7, 554,
(2) solrysiul = [(r — s+ u)/2, (=1 + s+ u)/2; 7 + 5],
s3(r, s;u] = [r, —s;u).

We identify W and the symmetric group &, of degree 4 by the map: s; — (7,5 + 1).
The compact Weyl group is given by W, = < s, s3 >, also identified canonically with
the subgroup G, x G,.

1.2. Cuspidal parabolic subgroups of SU(2,2). It is known that SU(2,2)
has three non-isomorphic cuspidal parabolic subgroups; one is maximal, one is minimal
and the other is G itself. So, in this subsection, we consider a minimal parabolic
subgroup F,, and a Jacobi parabolic subgroup P, of G with Langlands decomposition
P = M, AnNp,and P; = M;A4,;N,, respectively.

Let A, = exp a, is a split component of P, (* means either “*m” or “J"") with

(3) a ZGQ):{HI,HQ}]R,
(4) a; = agar,} = {Hilr-
Their unipotent radicals N, = exp(n,) can be described as follows:
(5) no=gox, T8, F0+n T ={E|j=1...,6}
(6) n; = goy, +Bxn+a 00— ={E;|i=13,...,6}&
The maximal unipotent subgroup N,,, = expn,, is expressed as,
1 clx ' 1 1 S
Np=expn, = ¢ £~ T 1 k| aeC,t'S=S
I
where,
1 1
. 1 1 1
V2 |-vV-1 v—1
-v~-1 V-1
By definition, the Levi parts are M, = Zy(a,) exp m, with Lie algebras:
@) m =Rv -1/, Iy = diag(1, -1, 1, —1),

(8) my = { Hy, By, V=11, Hoy = LN Iyy — ' + 1)},
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and therefore,

(9 M = {exp(8l5) - ¥/ |9 €R, j=0,1}, ~=diag(l,-1,1,-1),

GER,Q,,BEC,

(10) My = { exp(6p) - a2 = |82 =1

(=:T-Gp) ~CW x SU(1,1).

1.3. Iwasawa decomposition of absolute root vectors.
Let Xij = {6ip5jq}pq and H,;j =V —l(Xi,‘ - ij). Put,

(1) p+={Xij|i:1,2,j:3,4}C, p_:{Xijli:3,4,j:1,2}C.

Then the Lie algebra g¢ is decomposed as gc = py + bc + p_ = n¢c + ac + &¢. Thus
we obtain the following formulae by direct calculation.

)(13:%(\/_———E1+H1+ (122+h1“h2))
=1 (V=1E + H, — V—1Hy)
X4 =4 (~Es+ Es + V=1(Es — Es) — 2%),
Xos = § (B3 + Bs + V=1(Es + Es) + 2¢L ),
X = § (V=1Ey + Hy + }(Iop — h' + h?))
= 1 (V1B + Hy - V=THa),
Xa1 = § (—V=1E1 + Hy — LI + h' — h?))
=§< 1E1+H1+\/_H13)
X =4 (Bs+ Bs — V=1(Eq + E5) - 2} ),
Xur =4 (=Es+ Bs — V=1(E4 — Es) +2¢%)
X42=%( \/—E2+H2—‘(122“h1+h2))
= 1 (~VZIE, + Hy + V=1Hy).
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In this section, We recall the parametrization of the irreducible representations of K.
We also treat the induced representations from the cuspidal parabolic subgroups of G.
According to the Langlands’ classification, the irreducible admissible representations of
real semisimple Lie groups appears in such representations as a quotient. In addition,
we determine the multiplicity of a K -type in a given principal series representation and
realize A-types in the representation space by using their matrix coefficients. The tensor
products between K -types and the adjoint representation are also given here, to define
the Schmid operator mainly. Furthermore, we construct certain operators in U(gc) and
M,(U(gc)) closely related to the shift operators considered in §3.3.

2.1. Parametrization of irreducible representations of K.

Firstly, we review the parametrization of the finite-dimensional irreducible represen-
tations of SL,(C). Let {f,, f2} be a standard basis of the 2-dimensional vector space
¥ = Vi. Then SL,(C) acts on V' by matrix multiplication. We denote the symmetric
tensor space by V; = S4(V) regarded as a (d + 1)-dimensional vector space with the
basis { f{# |0 < p < d}, where f{¥ = fP* ® f5 (4=P) (symmetric tensor). Here V; = C.
We consider V; as an SLy(C)-module by :

sym?(g) (v ® 12 ® ... ®vg) = gu, ® 912 ® ... @ gug.

It 1s well-known that all the finite-dimensional irreducible (polynomial) representations
of SLy(C) can be obtained in this way. By Weyl’s unitary trick, all irreducible unitary
representations of SU(2) are obtained by restriction. The irreducible representations
of SU(2) x SU(2) x C} are obtained by tensoring irreducible representations of the
simple components.

Let V., = V, ® V; and choose the standard basis of V,, as

{flg‘?):fzgr)@fés)'oﬁpﬁr, 0 <q< s}
Note that dim¢ V,, = (r + 1)(s + 1). Define

\/__19) ® e\/——lltﬂ.

= sym’(g;) ® sym®(gz)
Then {(7r5u), Vos) | 7,8 € Zso, u € Z} gives a complete system of representatives of
the unitary dual of SU(2) x SU(2) x C{!), We remark that the notation [r, s; u] will turn
out to agree with an element of tg.

Let us consider the representations of i'. The group SU(2) x SU(2) x CV) can be
regarded as a covering of /v by the map pr:

V=1
- RPRVASY/ N 0
pr (.(}l).(]21(' ) - ( (3_\/_1()'(}2) :

Since the kernel of pr is {£(1,,1,;1)}, this is actually a two-fold cover. The
representation 7y, ., induces a representation of /A if and only if the restriction of 7.,y
to ker (pr) is trivial, hence we can state the following proposition.

(12) Tir.su} (ql yg2; €

6
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Proposition 2.1. K = {Trssu) | 7S € Lo, u € Z, 7+ 5+ u € 2Z}.

2.2. Infinitesimal representations of K.

In this subsection, we collect explicit formulae for the action of standard generators
of tc. These will be frequently used later, especially in the calculation of shift operators.

Let (7{r5:u]> Vrs) be a representation of K. By definition (cf. (12)),

Y, : . . .
T[m;u](( ! Yz)) =dsym’(Y}) ® idy, + idy, ® dsym®(Y3) (Y1, Ys € sl,(C)),

Tirsw)({2,2) = widy,,.
Using the basis of ¢ defined by (1) in §1.1, we have,
Lemma 2.2. Let T = Ty g and fpg = f{I*). Then,

T(h') fu = (2k = 1) fu, (W) fa = (20— 5) fu,

(13) T(C"U S = (1 = k) fierra, (Ci)fkl (s = 1) fauats
T(el_) Joo = kfe—1y, (ez_)sz Lfe -1,
T(l22) fre = wfu-

Thus, hereafter, we think of [r, s; u] as the element in tg.

2.3. Contragredient representations of K. Let (7}, V) be the contragredient
representation of (74, V). Then, using the action of h!, h? and I, we know that fg;
is a highest weight vector with highest weight [r, s; —u]. Therefore 7* is isomorphic to
T(r,s:~u]> an isomorphism is induced by f3, — f{75~“). Summing up,

Proposition 2.3. The contragredient representation 7" Of Ty ;) IS iSOMOrphic 1o Ty 5. —.,)-
More precisely, let f;, be the dual basis offkl” W e, < fin Fij (Iresul)  — Oki0ij. Then
the correspondence between the bases,

Jiy s (~1)E ( ) ( ) flrgu

determines the unique isomorphism up to a constant multiple.

2.4. Adjoint representation of K. In this subsection, we consider the adjoint
representation of K restricted to pc. Write simply Ad = Ad,.. Since both p, and p_

are K-invariant subspaces, Ad,. decomposes into two representations Ad; = Ad,, and
Ad_ = Ad
p-

Proposition 2.4 ([30, §4.2]). The representation Ad, (resp. Ad_) is irreducible and
equivalent to 71,1, (resp. 11,1;2)) and the K-isomorphism is given by

c v v v ) A1 (1 (11)
by (X, Xig, Xoa, Xig) — (. (go ), 1(0 - ), fn ),

(14)
(resp. 1t (Xay, Xar, Xagy X)) = (fo, £33, — l((;l)’_ (Lnyy



3 I. GENERAL RESULTS ON THE REPRESENTATIONS OF SU(2,2)

We again begin with the case of SL,(C). If we take an SLo(C)-module V;, it has a
decomposition V, @ V| ~ V., & V. | as SL,{C)-module (cf. [30, Lemma 4.1]). Let
PZ be the projectors from V; ® V} to V;., defined by:

P e i) =5, pri e iV - f0 e fV) =0,

(15)
P;(f,m@fl"):, P e fV - Do i) = (r+ DAY

These conditions determine P* uniquely because they give the action on the highest
weight vectors. We have,

Lemma 2.5, Let0 < j <rande=0,1. Then,

BHf @ 1) = £l

(16)
(7 @ f9) = (160 — NI

PROOF. The K-equivariance of the projectors gives correspondences of other weight
vectors. First, considering the weights of each vectors, we can put, fore = 0, 1,

a7 B e M =150, B e s = 8755

() 0)

(
=a,’,
B =0 and [)’fl_)l B9 = r + 1. By applying ey or e_ on both sides of (17), we have,

where ag and /3( are constants. Equations (15) imply that oY) = 1, o

(r—i)al = (r+1- (G +1)ad",
(r =gt +af = (r+1 - j)aj “”

. 0 , 0
i =80+ 50, 80 = -1aY.
These equations imply that agl) = a](_u) =1, ﬂj(-l) =r —jand ﬂ;(‘o) = —jforall j. (7

We see that V., ® py decomposes into four irreducible (¢, ¢]-submodules Vi .+, by
the argument above. We define the projectors

Pr(?,cz} =PYQ@ P2 : V,, @ Py = Vipeyntenr

(18) Hlere2) ¢ €.
Prs :Prl®P32:‘/;3®p-—_)‘/'r+e1,s+ag)

where €|, ¢, are in {+,~}. Here z +¢; means x + 1 if ¢j is + and 2 — Lif ¢; is —.
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Lemma 2.6. Put P(c1<2) = Pr(;“*”) and F(“’EZ) = P Then we have,

PO (fu ® Xy3) = D fu ® Xaz) = (k= P)fios,
(frr ® Xaa) = 7 (fu ® X1) = k(s — ) fioy,
P(__(sz@)Xz): PC )(fkl®X41) klfe10-1,
PO (fu® Xi) = P (fu® Xgg) = (k- r)(s — 1) fu,
P (f® Xi3) = - P 7 (fu ® Xap) = (- D fresrp-1s
(19) P (fu @ Xo) = ~P 7 (fu ® Xa)) = (L ) fu,
PN fu® X)) = PO fu® Xar) = (=) framns
PR fu@X) = P70 (fu® Xa) = (L= ) fesrns
PO (fy® Xi3) = P( P fu ® Xag) = (v — k) fuay
PU (fy @ Xog) = P (fu @ Xa) = kficrinn,
+)(ka® Xa3) = +)(fkl ® Xa1) = (—FK) fe-14,
I f ® X14) = (sz ® X32) = (k= 7) frasr-

PROOF. By Proposition 2.4 and Lemma 2.5, we readily get these equations. [

2.5. Principal P,,-series representations.

To see the definition of the principal P, -series representations of (G, we start with
constructing characters of the minimal parabolic subgroup P, = M, A, V.. Let n be
an integer and let € be a character of the group {£1} , which we also identify with an
element of {:}:1}. Define the unitary character of M,, as follows:

Onc(exp(vV=1601)7) = ¢(~ 1)76‘/:_1"9.
Denoting by p = 3A; + A, we define a (not necessarily unitary) character e#*? of A, by
e““’(a) — elutp)(loga)
for i1 € ag. We extend it to a character of A, /V,, so that the restriction to Ny, is trivial.
We get a character of P, by tensoring these characters.

Now we define an induced representation of GG. Let H? be the space of continuous
functions on G satisfying the equation,

F(pg) = 0ne @ P(p) f(9)

forp € P, and g € G. This space is a pre-Hilbert space endowed with the inner product
(61, 82) = [x ¢1(k)p2(k) dk. Then 7 = ind%} (0n. ® e#*? @ 1) acts on H? by right
translation:

m(9)b(x) = d(xg) (9,2 € G, ¢ € Hy).
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We remark that 7 1s unitary if and only if p is purely imaginary. We also denote the
K -finite vectors by HI.

2.6. Principal Pj-series representations. Let G, = SU(1,1) and K, =~ CV
be its maximal compact subgroup. We regard these groups as subgroups of M. Let
Xm (€Y 18) = e™V~1 be a character of C{1), The weight lattice of g, = Lie(Gy) can be
identified with Z with property:

\/——10’ 1,6—\/——13) \/—_w) — ™ for mc 7.

xm(diag(1, e Y= xm(e

Let D be the discrete series representation with Blattner parameter +&. Namely, the
minimal Ko-type of D} (resp. D;) is xx, (k > 2), (resp. Xk, (k < —2)) and the other
Ky-types are in the form Xk+2;. (TESP. x k—2;),» With non- negatlve integers j. We say
that the suffix + is the signature of D and denote it by sgn(DF). We note that the
contragredient representation of D} is 1somorph1c to Dy .

Let o = (xm, DY) be a discrete serics representation of M ;. Choose v € aj . By the
symbol ¢”, we denote the character defined by e”(a,) = e”{°6%1). Then we can define
Ty = ind,qj (¢ ® e¥T#7 ® 1) acting by right translation on H,, similarly, with p; = 3A;.
We say 7, the principal P;-series representation of SU(2,2).

2.7. Discrete series representations. The discrete series representations of G
is parametrized efficiently by Harish-Chandra, which we describe. N
There are exactly six positive systems of the absolute roots, A+, Al ... A

containing A}, defined by A¥ = = w;A*, where the elements wy € W are given as,
wy =1, wy = Sy, Wi = $283, Wiy = S251, Wy = 525351, Wyl = 52515352

We denote by A ; the noncompact positive roots in AJ.
By definition, the space of the Harish-Chandra parameters =; is given by,

.= {A € t& | Ais A-regular, K -analytically integral and A+-dom1nant}

Put
== {A €2, | Aj-dominant} :

We also put pg,; = 5 Eﬁ€A+ﬁ (resp. px = éZﬂEEJr 3), the half sum of positive
roots (resp. the half sum of compact positive roots.) Then the space =, C tg are
divided into six parts: 2, = Uj<s<v Zs. We note that =; (resp. Zy;) corresponds to the
holomorphic (resp. anti-holomorphic) discrete series. For A € U< <vi s, We denote
the corresponding discrete series by 7, and call this A a Harish-Chandra parameter of
ma. As determined in {30, §10.4], the Gelfand-Kirillov dimensions of the discrete series
representations ma are given as follows:

4 (A€ ZiUEy),
(20) GK-dim(my) =¢ 6 (A e ZpUZy),
) (A < Em (] E.W).
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Therefore the representations belonging to = U Zy is a large representation in the sense
of Vogan [26, Th. 6.2, )], hence has an algebraic Whittaker model. (Harish-Chandra
parameters of discrete series of SU(2,2) are described as in Figure 1.1.)

(0,2;-2) 0,2;0) (0,2;2)

0,0;2) "u

ur
(2,0;-2) (2,0:0) (2,0;2)

FIGURE I.1. Harish-Chandra parameters in g

2.8. The multiplicity of K-types.
For an admissible representation 7 of G, the restriction of 7 to J{ decomposes into the
Hilbert-space sum of irreducible representations of K with finite multiplicities:
Tl = @ [r|x : 7]7.

TG}?

Here [rr|g : 7] is the multiplicity of 7 in 7|, If | : 7] # 0, we call T a I{-type of 7.
To find an multiplicity-one K-type of a given admissible representation, we calculate
the multiplicity explicitly in this subsection in the case of principal series. The minimal
K -type of a discrete series representation is always multiplicity one.
The multiplicity is given by Frobenius reciprocity: (see [10, Theorem 1.14].)

Lemma 2.7. Let 7, = ind$, 4 y.(0nm, ® e ® 1) with 04y, a discrete series represen-
tation of M,,and v € K. Then

(21 M7= > lomlknm.  W)[Tlknm. : w).
we(KNM,)

Particularly in the case of F,,-series representations ,,, we have

[ﬂ'le : T} = [TlM : UM')l]

since K N P,, = M,,.
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We proceed to calculate the multiplicity in the case of P, -series. Let 7y = 7y 5;) With
d = [r, s; ] and let the representation space be Vg = Vi, given as,

= @

This can be regarded as a direct sum of 1-dimensional A -submodules C£{J.
Lemma 2.8. We have,

—2p+20—8+u
22) Td('}’)f;(,g) _ /_'_l(r p+2q e+t)f’g;l)’
(23) Talexp(v/=1815)) [ = ¢ V71 (Brori2a=)0 (0,

PROOF. We see that, by definition,
pr (diag(—v/=T, V=), diag(v—1, —V=1); V=1) = v,
pr(diag(e‘/jg, e V1), diag (eV™, e V10 1) = exp(V—101).
Thus, from the values of 74 at v and exp(\/:THIO), we obtain the lemma. []

Proposition 2.9. Let 7 = ind$; (04, ® ¢**? ® 1) and let 74 be an irreducible represen-
tation of K with parameter d = [r, s, u]. Assume that,

(24) r+s>|nland —2s+u=n+1—¢(—1) (mod 4).
Then,
(25) (ml 7a) = H{2(r + ) = |r ~ 5| = |n| = |lr — s| - mlf} + 1.

PROOF. By Lemma 2.7, it is enough to calculate the multiplicity [Talae : ong). First,
[Tala : o] is equal to the number of indices (p, ¢) which satisfy
rd(m)f;;j) = o(m) 753) (me M).

By comparing Equation (22) in Lemma 2.8 with the definition of o(-y), we get,

26) \/—:I(r—2p+2q—s+u) — e(~1),

or equivalently,

27 r—2+2¢—s+u=1-—¢€(—1) (mod 4).
Similarly, from Equation (23) and the value of o(exp(v/—161p), we have,
(28) 2p—r+2¢—s=n.

Adding equations (27) and (28), we get the necessary condition for the multiplicity to
be positive. This is exactly the assumption (24) in the statement. Now, to determine the
multiplicity, we count the indices (p, q) satisfying (28).

Assume 7 > s. Then (See Figure 1.2),
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q

(0, 5t (n>0)

(lsﬁ-:’j—tﬂ—-l)

(2, =572 - 2)

(—%*—N
- P

r+s T
2

{n <0)

2p+2q=r+s5+n

FIGURE 1.2
(i). If n > 0 and 27 < r + s + n, then,
(p,g) = (=512,5), (552 + s — 1), (r, =240)

satisfy (28), thus the number of (p, ¢)’sis (r +s —n)/2 + 1.
(ii). If 2s < r + s+ n < 2r, then,

(p,g) = (F=5H2 6), (=242 4 1,5 — 1),..., (TH2,0)

satisfy (28), thus the number of (p, ¢)’sis s + 1.
(iii). If n < 0and r + s + n < 2s, then,

(@) = (0, =522), (1, =572 — 1), ..., (%522, 0)

satisfy (28), thus the number of (p, ¢)'sis (r + s+ n)/2 + 1.
In conclusion, the number of (p, q)’s satisfying (28) is min{s+1, 152:1”-' +1}. Similarly,
in the case r < s, we get the formula: min{r + 1, T—“—;'ﬁl + 1}. Thus, the multiplicity
of 74 in 7|k equals min{s + 1,7 + 1, H—Sglﬂ + 1}, which coincides with the right-hand
side of (25) in the proposition. []

Next, we handle the case of Pj-series. To find the multiplicity of 7 in 7|k, we
prepare several lemmas. First, we see that

Kn MJ - {(e\f—_lﬂ,e\/—_lC) = eXp(BIQ) EXD(CH%) | H,C € R}

Thus the characters of K N M can by parametrized along the following:

w(ll,zg)(e‘/_‘_l”, e\/ZTC) — Vo T(6+1()

Clearly, we have,
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Lemma 2.10. Let 0 = (xm, DE). Then,

, 1 if m=1,sgn(Df)ly > kandly, =k (mod 2),
lolwam, + W) = { 0 1 * 2)tzherwise. )

Since V; decomposes into 1-dimensional K N M ;-modules, we have the following:

Lemma 2.11. Let 7 = Tj, o) € K. Then,

—u—2r <l —2l, <2r —u,

(7| ) : | = 1, u—28 <1y +2l <25+ u,
KoMy - Wi oy = L =2l +u+2r=1,+ 2l —u+2s =0 (mod 4),
0, otherwise.

Summing up, the multiplicity is given by the following.

Proposition 2.12. [7;|x : 7] equals the number of integers l» satisfying the following:
(i) Il =k (mod 2),
(i) sgn(Di)la > k,
(iil) 2l ~u=m+2r=—m+ 2s (mod 4),
(iv) max(m — 2r,—m — 2$) < 2ly — v < min(m + 2r, —m + 2s).

In particular the necessary and sufficient condition for multiplicity one can be described
as follows: (see Figure 1.3 as an example.)

Theorem 2.13. Let m; = ind§ ((xm, DF) ® €*? ® 1). Put 6p = sgn(DF), 6m =
sgn(m), (8o = 0). Then the multiplicity [T ;|k; Tirsw)) = 1 if and only if the parameter
[r, 5; u] satisfies 2k — v = m + 2r (mod 4) and one of the following:
(1). r=0,s > |m|and épu > 2k — dpm.
(i)). 0 <r <s—|m|landu=20p(—r + k) — m.
(iii). 7 + 8 = |m| and épu > —26pd,s + 2k + dpm.
(iv). |r —s| < |m|, 7+ s > |m| and
u = —251)8 + 2(5,,1]{7 +m (lf (SDém > O),
) =26pr — 28,k —m  (if dpdy, < 0).

(V). 7—|m|>s>0andu = 26p(~s+k)+m.
(vi). r > |m|, s = 0and dpu > 2k + dpm.

PROOF. If 7, 4, satisfies one of these conditions, we can easily check that its multiplicity
in 7|k is one.

Let 7, .., be a multiplicity-one K-type. We assume that sgn(Df) > 0 and m > 0 for

clarity. If r < s — m, then Proposition 2.12 says that there is a unique /; which satisfies

ly=k (mod2) and max(m —2r2k—u) <2l —u<m+2r
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By the congruence property, [,s — u attains m + 2r. In order that the only one [, satisfies
the above conditions, itshouldbe m—2r < 2k—u = m+2rorks—u < m—sr < m+2r,
equivalent to

r > 0, or r=0,
2r+u =2k —m, u > 2k —m,

so we have (i) and (ii). Next, if |s — | < m, we see thatm — 2r < 2k —u = —m + 25
or 2k —u < m — 2r = —m + 2s, which is equivalent to
2s +u =2k +m, r+ s =1m,
r+s>m, or u > 2k —m + 2r.
So we have (iii) and (iv). Ifr > s+m,thenwe have —-m—2s < 2k—u = —m+2s, s > 0
or 2k — u < —m — 2s = —m + 2s. This is equivalent to
25+ u=2k+m, or s =0,
s >0, u > 2k +m.

Hence (v) and (vi) follow. (J

FIGURE 1.3. Multiplicity-one K-types of inng ((x_4, Df) @ "7 @ 1).

2.9. K-isotypic components of the principal P,,-series representations.
We prepare the series of subsections for the calculation about P,,-series.

Let 7 = ind$§ (0ne ® e ® 1) and let (14,Vy) (d = [r,5;u]) be an irreducible
representation of K which occurs in 7|, = indgm(an,c ® e#*P @ 1)|k. By definition,
the 74-isotypic component H,(7,) is isomorphic to a [7| : 74]-tuple direct sum of 74. In
this subsection we describe its basis by using matrix coefficients of 7.

To begin with, define the functions aL‘fﬁ,m on K by the following rule:

kD= Y admk) i, (k€ K).

0<i<r, 0<m<s
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If we rewrite the equation:

Ta(zy) £ = Talz)Ta(y) FIP

in terms of matrix coefficients, we get,

(29) a’;i),lm (l'y) = Z a;(i),lm(w) asf;zpu(y)

—HZy —_ -

for all z, y € K. We also remark that

(30) pq lm(14) = Opgim-

Define the action of K on these matrix coefficients by
R’C a’pqlm( ) = pqlm(‘Ek) (k € I<)

We also define the K-module generated by a” im @S Wl(,‘,? = {Rkag?{m | k € K}c. By
Equation (29) with £ € K in place of z, we see that

Win' € D Capm (C LA(K)).
v

We can easily check that the vector aﬁ':?,m has the same properties as of the highest
weight vector f(#). So we have,
Lemma 2.14. Forany0 <[l <r,0<m < s, W'l(,f? is K-isomorphic to V.

Leto =0y € ]\f/fm, and put

(31) L2(K) = {¢ € L}(K) | p(mk) = o(m)p(k) forall m € Mpn,a.e. k € K} .

Through the restriction, the induced representation 7 = ind,G,m (On,e ®e#*? @ 1) can be
realized on L2(K) by right translation.

Lemma 2.15. Assumer + s > |n|andu = 2s +n+ 1 — e(—1) (mod 4). Then,
H Td @ I/Vl{dr);ta;t 1

where | runs over integers satisfying,

(r—s+n)/2<1<r, if n>0,2max(r,s) <r+s+mn,
(32) (r—s+n)/2<I<(r+s+n)/2, if2s5<r+s+n<?2r,
0<Ii<r, if2r<r+s+mn<2s,

0<I<(r+s+mn)/2, ifn <0, 2min(r,8) >r+s+n.
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PROOF. The element a;‘;),,m belongs to L2 (K) if and only if,

@) (kz) = o(k)al? (z)

Opg,im pgim

for any k € M,,. By Lemma 2.8 and Equation (29), we get

d (r—20+2m—s+u) (4
a;q),l'm (71’.) = v -1 aéqum(w)’
ag:jz),zm(exp(\/——l—gfo)ﬂf) = v/ I00@rHIm=s) oD (1),

pg.lm

Ll

Therefore as shown in Proposition 2.9, we see that the sum of the Wl(,‘f) sn ;S

satisfying (32) is contained in the 74-isotypic component of 7. They exhaust H,(74)
since its dimension is [7|g : 74]dim V. O

Corollary 2.16. Let 0 = 0, € M,, and assume that v + s = In| and —2s +u =
n+1—¢e(—1) (mod 4). Then the map defined by

fogral®, (0<p<r 0<g<s), ifn20,
fra a0 (0<p<r,0<qg<s), fn<0

is up to a multiple the unique K -injection into L:(K) ~ H,.

PROOF. By Proposition 2.9, we have [7r|x : 74] = 1 in this case, therefore there is a unique
[ such that W/[((Jl:)ﬂj_ﬂ_, = H,(74). Lemma 2.15 tells for which { this is valid. [

2.10. An operator between one-dimensional K-types. From now on, we
consider the principal series representation m = indgm (on.®e*P®1)asa(U(ge), K)-
module and identify HX with L2(K)* through restriction (cf. (31)). We will construct
certain elements Y of degree 2 in U(gc) such that 7(Y) maps each 1-dimensional
K -types to another in 7| .

Put dy = [0,0;u], dey = [1,1;u £ 2] and dyp = [0,0;u £ 4]. Write 7; = 7y,
for simplicity. We assume n = 0 so that 7 = ind§ (o, ® e ® 1) contains 1-
dimensional K -types. Put o = 0, and assume that u = 1 — e(—1), then [7|x : 7o} = 1,
[Tk : 741] = 2 and [7|x : T42) = 1 (cf. Proposition 2.9). We also write a{f) := ai,{l),go
(cf. Corollary 2.16). Define

(1 _ (0) (-1 _ (0)

Joo = Xoz-ay, goo ' = Xa1-ag,
g = Xu-ag, g =-Xeay,
980 = —Xaq - afy), g = Xy aly,
.flﬁ) = -Xu- (lg(])), 951—1) = —Xs- a(()?))-

Proposition 2.17. The space generated by qf; ) (resp. (Iz(;_ l)) 0<i<1L,0<3<1),as
a K-module, is isomorphic to T\ (resp. 7_).
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PROOF. In fact, this space turns out to be isomorphic to (Ad,,p,) (resp. (Ad_,p_)) if
we restrict to the commutator [€, ¢|. We thus get the result by Proposition 2.4, [J

Lemma 2.18. We have,
900 (1s) = 917’ (1) = 0, g0 (1) = 17 V(1) = 0,
B3 gl = @u+ut6)/d,  gi(l) = (2um-u+6)/4
oo (L) =~ +ut /4, g5 (1) = —(2ue —u+2)/4
PROOEF. Using §1.3,
950 (1a) = 3 (Es + E5 + V—=1(Eq + Eg) + 2e ) ago (k) k=1
Note that X - a[()%)(k) = 0 for any X € n. Thus we conclude that

g (14) = 0.
Similarly, we get ggll)(h) =0.
Next, considering the action of the center of €, we have,
!ho 4)~-(V 1By + Hy + 5(L22 + h' - h2)) ( MNe=14

= J(Hy + $6hp) - afQ) (K)|em1, = (201 + u + 6)/4.
Correspondingly,

050 (1) = —L(Hy + L1h2) - aly) (k) k=1, = —(2p2 + u + 2)/4.

By using exactly the same method, we find the relations for the g,(cl— 2 (14). O

Define,

r r " L !
¢¥ = Xy, '9(()%)) + X3 'Q(Si) — Xy '950) — X3 - ggl)’

(34) (c2) _

g Xaz 95" + X1 - glg ) — Xag - g5 = Xar - gi7V

We can check that the weight of ¢(*?) is d.,. Hence ¢(*?) generates a 1-dimensional
K'-module isomorphic to 744, respectively.

Proposition 2.19. We have,
tf X\ [ Xas

@ _ Xi3 =X | ©_ u ) ( u ) (2)
g — X Xy | %0 = (Ml + 5 +1) {pe+ 5 + 1) ag,
—Xa) \~X14/
t ( X\ [ Xu \
(-2) _ X —Xa2 | (0 _ u ) ( o u ) (-2)
g N - X X1 o0 = (’ul 2 1)k 2 +1)ag




2. ADMISSIBLE REPRESENTATIONS OF G AND THEIR K -TYPES 19

PROOF. We calculate the value at 14:
gP(L) = —¢% - gl (1) + L (Hy + §(lo2 +h' = b)) - g5’ (14)
— 3 (Hy + §(Ia — h' + 1%) - 10 (14) — el - g1y (Lo)
= g (La) + 3 (m +3+ 5w +2-1- 1)) gi (14)
— 3 (p2+ Su+2 = 1-1)) gl (10) = g6 (10)
=—(p +u/2+ 1) (e +u/2+1).
Similarly, we get,
g7 (1) = ~ (1 —w/2 + Dlp2 — u/2 +1).
(£2

Equation al;” (14) = 1 implies the proposition. O

Remark 2.20. We know that [r|x : 74;] = 2, that is, there are two independent
K-injections of 74; into the induced representation Lﬁ(K ) (cf. Lemma 2.15). Set,
b1, f(il ;ﬁ))u f(il ;55112), VESIE f( D g(il)~

By taking the value at 1,4 of the functions above, we get

71=—5Cp+u+2)e; +(2m+ut+6)iig,
g1 = i(2,u1 +u +6)(1—1,1 - %(2“’2 +u+ 2)1'—1’2'

2.11. An operator between two-dimensional K-types.

If there are two K-types of dimension 2 in 7 and if these are “close”, we can construct
an element in M,(U(gc)) which maps one to the other.

Putd =dy = [r,s;u),de) =[r+1,s—~Lu+2 andde, = [r — 1,5+ Lu£2].
For m = indgm(an,6 ® e*t? @ 1), assume that 7 + s = |n|, ~2s +u =n+1 —€(-1)
(mod 4), then 7y is in 7| with multiplicity one. Throughout this subsection we assume
that all 7; appear in 7|k (cf. Proposition 2.9). Then, the injection of 7; into 7| x is unique

up to a scalar. Corollary 2.16 says that apq s (TESP. apq 00) (j =0, £1, £2) are in L2 (K)
if n > 0 (resp. n < 0).

Define
g =g =Xy al® + Xy d%,
g9 = 91{2)1 sl = Xaa aﬁg) - X ag”l $)
gt = (]£+11 o1 =Xz al) — Xgy - a(ros) b

_ 2) (0 - N
g0 =gtV = Xy 0l + Xy - a,

Proposition 2.21. The K-module generated by the vector g9 is isomorphic to T,
(j = £1, £2).

PROOF. Each vector ¢U) has weight d; and is annihilated by ¢! and . O
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Define the other weight vectors as follows:

(1) (0)

9 = + (X3 - a’kl+l + Xoaq - a’kl ) + (XU CGp_y e+ X ap ),
gi) ==kl (X, - am) Xo3 - alc—H )+ %(X% cah o — X aly),
gl(cl V= T;f_Tl(Xfﬂ akl R OTR ”’k l+1) + Til (X42 - a‘ch)l AR T Xaz aSCO-)l,l)’
gi == (X - aff) + X 0l ) + s (Xay - afoh oy + Xaz gl y).

(4)>

In other words, the g;;’’s are defined by the following recurrent relation:

(35) (H _ _t 1 - () L/Q - (J;)
These imply that an isomorphism between {q,C l} and V7 is given by g ,5{ ),

Our main result in this subsection is:
Propesition 2.22. Suppose thatn > 0 (resp.n < 0). Assume v =2s+n+1—¢€(-1)

(mod 4). Write a{) := ak, -, (resp. a( = ag‘fo)o) Then,
2usxy +2+Tr—stu (4
(36) g = a7 Dset,

2pszny +2—TH st u (49
1 Qr_ 1,541

(37) g =
where (6(1),5(—1)) = (1,2) (resp. (6(1),6(—1)) = (2,1)).

PROOF. It suffices to check the value of each g} (resp. g(J )) at 14 for j = £1,+£2 in the
case n > O (resp. n < 0). We assume that n > 0 for clarity. Using §1.3, we have,

9£1+)1,s—1(14) Xz - fl (14)+X14 a” (14)
= (3Hy + 22 + h' — BD) - alV (1) + (=€) - al”_ (14)

= (31 +3) + j(u+7 — 5))alP (14) — ald) (1)
= 2w +2+71r—s+u)/4

Here we also use the fact that a{° ), (0)_ are in the image of the K -type 7y, ;.1 and that
TS 1 g [ (&N ]
ars(1l4) = 1 by (30).
1

Accordingly, we can check the values: 952_)1,3+1(14), gﬁll?s—l(lél) and ,(]£121)_5+1(14),
which give the proposition. [J

We now discuss the case when 7y is 2-dimensional; thus consider the special case,
do = [0, 1;u] and dy = [1,0;u + 2].
Corollary 2.23. Suppose thatn =1 (resp. n = —1). Assume u = —ne(—1) (mod 4).

Write a( i ;q -5 (resp. aﬁ,q ())0). Then, we have,

(38) 4’{24 Xy Uoo) _ (2u50) +u+1) a(()(l))
X Xig) \alD 4 aly )’
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Xz —Xo3 ‘100 2“6 2) +u—1) Ug()))
(39) -X X (0)
A4 24 am (g
(40) X Xa aoo (2”5 —u—1) a(()%)
X3z Xai am agi) ’
@1 Xs1  —Xa) (aby _ (2pus2) —u +1) a(()o ) .
~Xp Xo ) \a) 4 alz!

where (5(1),6(2)) = (1,2) (resp. (6(1),6(2)) = (2,1)).

21



3. WHITTAKER FUNCTIONS, SHIFT OPERATORS AND THE CASIMIR OPERATOR

3.1. Whittaker functions.

First of all, we define Whittaker functions. throughout this subsection, let G be a real
semisimple Lie group, K its maximal compact subgroup and P a parabolic subgroup
of G. Let (7, H;) be an irreducible admissible representation. For the maximal
unipotent subgroup N of G and its unitary character 7, let C;°(N\G) be a space of the
C°-functions satisfying the relation:

o(ng) =n(n)plg) (n€ N,geG).

Let HE be the (g, K')-module that consists of the K-finite vectors in H,. We call the
elements of Homg x)(HE, C:°(N\G)) the algebraic Whittaker vectors of 7. We also
call the image of a K -finite vector a Whittaker function of 7.

Let (7, V,) be an irreducible representation of K and (7*, V) be its contragredient
representation. Assume that [7|gx :7*] = 1. Fix a K-injection ¢,- : V* — H,. By
composition, there is a canonical K -homomorphism

Ir- : Homg xy(HE, C*(N\G)) — Homg (V;}, CR°(N\G)),

defined by i,.(®,) = @, o +,- for a Whittaker vector ®,. This is injective by virtue
of the irreducibility of w. Let C5.(N\G/K) be the space of V;-valued C*°-functions
satisfying the relation

d(ngk) = n(n)7 1 (k)¢(g) (ne N,ge Gandk € K).

The space Homg (V;*, C5°(N\G)) is identified with C7% (N\G/K)) through the identi-
fication map ¢ — ¢, by the rule:

(42) #(v*)(g) = <v*, b, (g) > (v eV* geq)

where <, > is the pairing of V* and V;. In particular, we write ®,, = (i-(®,)), €
C (N\G/K). We also call ®,, a Whittaker function or, more exactly, a Whittaker
function of m with K -type 7*.

Now any element in C7% (N\G/K) is uniquely determined by its restriction to a
maximal R-split torus A. Therefore, for f € C’,‘;?T(N \G/K), we denote by Rad(f) =
Rad,(f) = fla € C(A) the radial partof f and, givenanoperator D on C75, (N\G/ /),
we define the radial part of D, Rad(D) = Rad, (D) by

Rad(D) Rad(f) = Rad(D(f)).

Actually the differential equations for a Whittaker function shall mean those for its radial
part.

22
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3.2. Dimension of the space of the Whittaker vectors. The dimension of
the space of Whittaker vectors can be found as follows: Let

(43)

namely, F'# is the group of order 8 generated by -y and «v. It is known that F#*G ={g€
Gec | (Ad g)g = g} where Ge is a complex Lie group with Lie algebra gc. Let (m, Hy)
be an admissible G-module. For a € F#, define another G-module (n(®), H{*)) by,

™

(g =n(a""'ga)v, H® =H, (9€G, ve Hy).

s

If 7 has a (g, K )-module structure, so does m{®). Choose {a, - . ., a,} so that {mle)} isa
complete system of mutually infinitesimally non-isomorphic classes of { 7l | a € F#}.

In the case of G = SU(2,2), if 7; = ind% ((xm, D) ® €™ ® 1) in principal
P;-series, then we find that p = 2, i.e., {a1, a2} = {1, a} with WS“) ~ indgl((xm, DI ®
e’*77 @ 1). We have the following:

Theorem 3.1. Assume that 7y is irreducible. Then,
dim Hom(g,;()(H,ﬁ,C,‘;o(Nm\G)) =4.

PROOF. If 7, is irreducible, then it is large in the sense of [26, Th. 6.2, f)]. Thus we have,
from [13, Th. 6.8.1],

dim Homg ) (717, C2° (N \G)) + dim Homg i) (1}, C2 (N \G)) = 8.

On the other hand, the Whittaker models with 7 of 7(®) is isomorphic to those with
n® of 7. But the dimension of the space of algebraic Whittaker vectors is determined
independently of the choice of 7, whence the dimension is 4. [

Remark 3.2. One has ' (E,) = —n(E,), which will also explain the relation (93).

Besides, if 7, = ind% (0, ® €#7° ® 1), then, we have 7, =~ m() | therefore,
Theorem 3.3 ([13, Theorem 5.5]). Let m = indgm(an,6 ® e*TP ® 1). Assume that the
unitary character n) of N is nondegenerate. Then,

dime Homg iy (HY, C°(Nm\G)) = 8.
In the case of discrete series 75, the same method can be applied.

Theorem 3.4.

4 (J=ILV),

dimC(Hom(u.K)(“R‘Cv?o(N’"\G))) = { 0 otherwise.
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PROOF. We see that

Id
®

T[r,s;u](a_l-‘x,a) -~ T[s;r;—u]( \) = Tusz”‘l[r,s;u]()()

and that the Harish-Chandra parameter of wf\“) belongs to =y. Using the same argument
as above and about the largeness (20), we obtain the theorem. [J

We remark that the rapid decreasing solution is unique if exists.

3.3. The Schmid operator.
Let (7, V;) be a finite-dimensional irreducible representation of &', 77 a unitary character
of N. and {X;}3_, an orthonormal basis of p. We define the Schmid operator V by

8
(44 V=V, C(N\G/K)> F r— Z X;F()® X; € Crona (N\G/K).
1=1
It is independent of the choice of an orthonormal basis of p. Besides, V is K -equivanant.
Let us choose as the orthogonal basis of p,

{Xi; + Xji, V-1(Xi; — Xji) Yimr,2,j=34
We define the +-part of the Schmid operator,
VE: O (N\G/K) — Cigaa, (N\G/K)

by
(45) i=1,2, =34
V' F= S Xy5F()® X
1=1,2, j=3,4

for F € C°(N\G/K). Then we can check that (const.)V = V¥ + V™.

Let 7 be an irreducible component of 7 ® Ad and P, be its projection to 7'. Then,
P. oV or their compositions are called shift operators. Let P}, be the canonical
K-injection defined by

<Pi{w"),v® X >=<w", P/(v®X)>
forw* € V4, v € V;, X € pc. Note that Ad is self-dual. Considering
mul: V- ® pc 3 0° Q@ X — 7(X)s,- (v*) € Hy
and a composition mul o P, there is an constant ¢ = ¢(7, t,-; 7', t(s+)-) Such that
muloP;, = ¢ ().

by virtue of irreducibility of 7/. Here we use the convention that if +(-)- is meaningless
(i.e. (t')* is not a K -type of 7), then the constant ¢ is equal to 0.
From this equation, we have, by using (g, K)-homomorphism &,

(46) S @, (mul o P (u)* )0 = ¢ 3 i bgeny- ()0 = ¢ @,
k k
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where {v}} is a basis of V,» and {(v})*}, its dual basis. The left-hand side of (46) turns
out to be equal to P o V@, . This indicates that the shift operators have Whittaker
functions as “eigenfunctions”.

Proposition 3.5, Let (7, H;) be an irreducible admissible representation of a real
semisimple Lie group G and (7,V.) be an irreducible representation of a maximal
compact subgroup K such that (7| : 7| # 0. Let (7', V;1) be an irreducible component
of T ® Ad and K. be its projector to V.. Fix a K-injection t-, (resp. t(zny-) of V-
(resp. Viry+) to Hy. Then there exists a constant c = ¢(7, t,-; 7', L(7)-) such that

PuoVe, =c &y,
Here if 1(+1)- does not exist, c is understood to be zero.

3.4. Radial part of the Schmid operator. Inwhatfollows, we use for notation:

8
0;¢ = (H; - )|a,. = a;'aﬁi (7=12),
L16 = 3059,
(47) L3¢ = L0y = V=1 n(E,))s,

§ = 4NNl Es) + v Tn(Es)) = 1t (%),
1M (0B - v Tn(Ee) = ¢ (2],

where we put ¢ = F/[4,, for a given F € C7% (N\G/K).
Since the character 7 satisfies n|jn o) = 0, 7 is uniquely determined by the value of E,
(o € Agyng). We write for simplicity,

= V~1n(Ey), ns = V=1n(Es), ns = V—1n(Es),
£ =n(Es) + V—1n(Fe) :—\/:—775+7767

(48) & =n(Es) — V-1n(Es) = —v—1ns — 1,
=& = —(n; +md),

where 7;, (j = 2,5, 6) are real numbers since 7 is unitary. We say 7 is nondegenerate if
the 7);’s (j = 2, 5, 6) are all non-zero.
The radial parts of the +-part of the Schmid operator V* are as follows.

Proposition 3.6. Let F' € C.(N\G/K) and let ¢ = F|,,,. Then,

Sl

Rad(VH) = (£, — S r © Ad 4)(Hiz) — 3) (8 ® X1y)

+ (L5 - (T®Ad+)(Hz4)- 1) (¢ ® Xay)
+(5'+(T®A(l Jel (@ Xu)
+ (S — (r®Ad ) (e2)) (¢ ® Xu),
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Rad(V7)é = (L1 + Y521 ® Ad _)(Hi3) — 3)(6 ® Xa)
+(CF + Y (r ® Ad L) (Has) — 1)(6 ® Xao)
+ (8 = (T®@Ad_)(el)) (¢ ® Xa2)
+(8'+ (r®Ad_)(€})) (4 ® Xa1).

PROOF. By definition, we can calculate the actions of E;’s given by

e (8 (Ey)$(a) (1=2),
(Ej ’ F)IA( ) P(/\l —Ha)(loga) (EJ)([S((I) (J = 576))
0 (otherwise).

So, if we rewrite the Schmid operator (44) by using §1.3, we have,

. V*F =L {(H +V=THy) - F ® X3
+(Bs—V—1Es — 2¢.) - F @ Xu3
+(Es+V—-1Es +2") F® X1

+ (—V—=1Ey + Hy + V—1Hy) - F ®X24}
= (L +%EH) FO X+ (S —¢€)) F® Xy
F(S+€e) - F@Xu+ (L5 + Y5 Ha) F® Xa.
Similarly, we get
VF=(L-% Hs) FRXy+(S-¢) Fo®Xy
+(S+el) F® X+ (LT - ’%;I‘H24)‘F®X42~

Noting that X - F = —7(X)F for X € &, we get

(r ® Ad L) (Hy3)(F ® X13) = (= H13+2\/——)F ® X3,
(T®Ad+)(6i)(F®X23) = —€+ F® X3+ F® X3,
(TRAd)(E2 ) F® X)) =—-€ - Fe®Xu—-F® Xy,
(1@ Ad L) (Hu)(F @ Xo) = (- Hz4 +2V-1) F ® X,
(T ® Ad ) (Hp)(F ® Xa1) = (—Hiz — 2V-1) F ® Xy,
(T®Ad ) (e )(F® Xy) = —P+ F® X, +F® X,
(TR Ad_)(el )J(F® Xp) = —eL - F® Xpo — F @ X1,
(T® Ad ) (Hu)(F ® Xg2) = (— H24—2\/— F ® Xy

Our proposition follows using these relations. [0



3. WHITTAKER FUNCTIONS 27

3.5. Radial part of shift operators. Let P (resp. F(:"Q)) be the projectors
1O Tlrter,steaut2) (FESP- Tirte,,ster;u—2)) (Cf. (18)). We define the following shift operators:

D — pt) oyt o pitt) o v,
(49) plwn — P oy o P o v,
glene) = plae) o gt gleve) _ plae) | V™, (e € {£}).
Put

do =1r,s;ul, dyy=[r+1,s-Lux2],

(50) des=[r—1,s+1;u %2 dyz=[r—-1,5s-Lu+t2]

We use the convention 7; = 74,, £ = foy () for given d;. For ¢ € C
write

(51) bo(@)= ¥ @

0<k<r, 0<I<s

 (V\G/K). w

77

Put

.__(+,__

6= EHVgy o =E T g,
(52) b =ECPgy, G, =F gy,

¢3 = £ gy, by =E .
Put also,

(53) Zc 9 (=41, £2, £3).

Throughout this subsection we use the convention that undefined coefficients rk,)((z) are

zero. Then the coefficients cfl) = cf,)( ) are described as follows:

Lemma3.7. Putv, = (—r+s+u)/4,vo = (r — s+ u)/4. Then,

t (Il —35)S Cl(co—)l,l \
54y = |SEHEDE =Bt us (k= D/2)| el
w9 - (- 0)/2) O 1
_ !
(t+1)s Cfc(?l)-H
t (k—r)S C&L—l
(55) C(Z) — (T - k)(['l +y - (k - l)/2 - 1) cgcl)
ki (k+1(Ly +va—(k=0/2=-1)] | |
—(k +1)S8' (0
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t (I —s)S FEcU)u

6 v | DL et (k=021 |d)
Kl (s=D(Lr—w+(k=D/2-1)] | &9 |
—(+ DS Cgc[fl)+l
" (k —1)S C%I
(57) c(“2) — (k - T)(‘C;- — o+ (k - ])/2) Cri
ki —(k+1)(£1+3l/1—?L+(k—5)/2) Cfc[:‘)»ll—l !
—(k+1)8 0V
k+1.1
¢ (k= 7)(s — S il
(58) C(3)_ (k—T)(l-l—l)([:l—(k—-l+3)/2+l/1-S) CS:I)+1
e b+ D(s = DLy —(k=1+1)/2 + ) Ciﬂlu ’
(k+ 1)+ 1S f’iolx I'H
0
t (k—7)(s —1)S ﬁ%“)
(59) =3 = (r=k)(U+ (L5 + (k—1-1)/2—1p) Crl+1
e " lWk+D(I—-s)(Ly+(k—1-3)/2—v,—T) Cgu
(k+1)({+1)S A0
k+1,0+1

PROOF. We write cii(a) := c{>)(a). Using K -equivariance of P, P and the fact
that [n, n| acts trivially on ¢;’s, Proposition 3.6 says that

(60) ¢j(a) = 8(61,62)¢0(a) — Z plener) o V+(Ck1(a)f,£?))
k.l
{ = 7 (Hu) = 3)eu(@) P © Xia)

+ (€7 = Y52 3(Ha) = 1)eu(@) P2 (£ @ Xo)

+ (S + 7i(eh))er(a) P (£ @ Xo)
+ (S - Tj(e—))ckt(a)P(fl’EZ)(f(o) ® XM)}»

6 ¢ (a) =E“g Z P o v (eula) £
Z{( T—J(H“) - 3)%( P (D @ X))
kd

(‘C + ET—}(H24) - 1)‘&1( )P (D @ Xin)
+(S = 7-5(e")eu(@P (D @ Xi)

+ (8" + T—j(ei))cm(a)ﬁ“m(sz ® Xlu)},
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forj =1, 2 3 We transform these equations case by case, by using Lemma 2.6.

Case I: ckl We write f; = flcl By Equation (60),

¢1 = Z{_l ([:1 + im(fap + R — h?) — 3) Cit fe+1,0-1
k,l
+ (1= ) (L5 + dn(Top = h* + b?) = 1) o fiu
—US" + m(eL))en fog1 + (L= 8)(S = mi(€2))ert fran z}
= Z{ (Cr+ (u+2+4 @k —r+1)— (2 —s—1))/4—3) s forri
k,l

+(=-8) (L5 +@+2— (k-7 1)+ (2A—-s+1))/4~ 1) i fr
— 18"kt figr — Ur + 1 — K)ew frrri-1
+ (L — 8)Sekt frrrs — UL — S)cw flc+l,l—l}
;{ (Li+vi—(k=0/2+7—5— 1) cu ferii—t — S8 fri-1

+(—8) (L5 +va— (k- 0)/2) et fru + (I = 8)Sew o
E{ (I+1) (L =3 +u— (k=1)/2) ckrer1 — ((+1)S ehus1
k.l

+(=s) (L5 +v—(k=1)/2) cu+ (I - $)Sce-1.} fur

This implies Equation (54).

Case II: c,(,j). We write fi; := f,g) here. By Equation (60),

¢ = Z{(T - k) (EI + ir(Lhp + At — h?) — 3) Crt fre
%
+k (['2_ + (L2 — h' + R?) — 1) et fe—1041
— k(S + molel)ew foia + (K = 7)(S — ma(e)) e fk,l-+—1}
= Z{(T —E)(Ly 4+ — (k=1)/2 = 1) ot frr — kS crt fr-1y

Kl

+k (['27 +vy— (k- l)/2) ¢kt fr-1441 + (K — 1) Scw fk,H-l}
Z{ £[+I/] —(k—/)/Q—l) (:kl_(k+1)8,ck+l,l

k.l
+ (k+ 1) (E.; +uvy—(k—=1)/2 - 1) Chyri— + (b — ‘!')S(rkql_l}fu.

This shows Equation (55).
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Case III: cg). We write fi; := f,g'?) here. By Equation (60),
¢3 = Z{(k - 7')1 (El + iTTS([Q,'Z + hzl - h?) — 3) Cktl fk.l—l

P
+ k(s =1) (E{ + 573(1'2,2 — h' +R?) - 1) Cet fe—14
+ kIS + 73(e}))er Frmrir + (k= ) (5 = (S — 3(e2))cwe sz}

Z{ DI+ (L —24v —s+ (I —k+1)/2) ek
k!

+k+1)(s =) (L +ra+ (= k=1)/2) cesrin
+(k+ 1)+ 1S cprprr + (K —71)(s l)Sclc,t}fklv
Case IV: cfcl_l). In this case, we set fi, = f,ﬁ;”. Then Equation (61) implies,
po1 =2 {(s =) (L1 - fro1(faa + h' = B?) = 3) cxt fu

™
+1 (E;{ — i (Ip— '+ K% - 1) et frr1,0-1

+ (L= 8)(S — T-y(el))ew frrta — US" + T—1(€3))ert Fru- 1}
{ S—l 1—I/1+(k—l)/z—1)Ck[fk1+(l—s)56klfk+1,t

L

+1 (ﬁ+ —vo+ (k- l)/Q) ckt frpr4-1 — 1S'cn fk,l—l}
{ s—D(Ly—vi+(k=D/2-1D e+ (I —s)Sck—14

k.l
=+ (l+1) (£+~—I/2+( —l)/2— 1)(k L+l _(’+1)8('kl+l}fkl~

Therefore Equatlon (56) follows
Case V: ck, . Set fi 1= f,c, , then Equation (61) shows,

P_g = Z{(—k}) ([,1 - ZT_Q(IQ’Q +h! — h2) - 3) Ckl flc—l,H—l

ki
+ (k) - T) ([f; - iT_Q(IQ‘Q - ’Ll + hz) b 1) Crl fk:l
+ (k - T')(S — T_2(6L))Ck[ fk,l+l — k(S’ + T_g(e'i))(}k[ flc—l.,l}
Z{(—k) (Li—vn+(k=0/2—r+5—1)cu fe-1441 — kS"crt fe-14
k!

I

+ (k= 7) (£F —va+ (k= 1)/2) et fiu + (k = 7)Scu fiper }
Z{ ]‘i} + 1 L:l + 31/1 — U+ (:IC - l)/?) Ce+1,0-1 + (k - T‘)S(ﬁk'l_l
k|l

(li - 7“) (E — Uy + (k — l)/2) Crl — (k + I)Sltlk+[‘[}fkl.
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This implies Equation (57).
Case VI: cfc,“S). Set fi = f,ﬁ,‘S’, then Equation (61) shows,

b3 = Z{k(l — 5) ([,1 — 37-3(faa + ht —h?) — 3) Crt fr—14
k.l

+(r= k(L5 = froa(lag = h' + %) = 1) cut frit
+ (k= 7)(s = (S — 7-3(eL))ert fra + KUS + T_3(€%) ) flc—L,l—l}
=Sk + 1)1 = 5) (Li =2 =1 =7+ (k= 1+ 1)/2) ey
k,l

+(r=R)(+1) (LF —ve+ (=1~ 1)/2) east
+ (k+ 1)+ 1)Schyry + (b —7)(5 — l)‘SCk,l}fkl-

and the lemma is proved. [

3.6. Radial part of the Casimir operator. Let Z(gc) be the center of the
universal enveloping algebra of the complexification of the Lie algebra g. We mainly
have an interest in the Casimir operator, a generator of Z(gc); it will give one of the
differential equations in Theorem 5.4, Theorems 6.1 and 6.2. Thus we calculate the
radial part of the Casimir operator {2 and compute the infinitesimal character of the
principal series representations.

By definition, the Casimir operator {2 is of the form 3_; X;Xj, with a basis {X;} of g
and its dual basis { X }. Precisely, it is given by,

1
2

1 T
62 Q=H{+Hj+:I5—5 3 (E;'E; +'E;E;) + Y _(E;'E; + 'E;Ej).
j=1.2 i=3

First, we rewrite {1 in Z (gc) using the Poincaré-Birkoff-Witt basis. Paying attention
to [EJ', tEj] = 4Hj, (] = 1, 2), [Ej, tE—j] = H1+H2, (] - 3, 4) and [Ej, tmj = H1 —HQ,
(j = 5,6), we get

1 _ 6 _
(63) Q= H?+ Hi ~ 6H, —2H, + 51; + 3. E;'E; + 23 B)'E,

j=12 j=3

1. 6
= H} + Hj - 6H, —2H2+§I(§+ S EP+2) E!
j=1,2 =3

6
~ Y E;(E; - 'E;) -2 Ej(E; - 'E)).
i=3

j=1,2

Now we determine the radial part of the Casimir operator. We remember the following
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notation:
(64) S =

Refer to Equation (47).
Lemma 3.8. Let 7 = 7 5. be an irreducible representation of K. Put

¢(a) = Fla,(a) = Z th(a)sz,

0<k<r, 0<I<s

( ) = Rad,(Q)¢(a) = Z Ckz ( ) frls

0<k<r, 0<I<s

(65)

for F € C35(N\G/K). Then,

t 4(7‘ —k+ 1)5 Ck—1
4(s—1+1)S Chi—1
(66) cfff) = Lo+ (u—-2k+20l+7r— 3)77262’\2 + oy Cri
-4l +1)8' Cki+1
—4(k + 1)5' Ck+1,

with,
L() = 3% + 0% - 681 — 2(92 - ngag -+ 885’,
ary = (2k — 1+ 20 — 5)%/2.
PROOF. Using the fact that &) - F' = E3 - F' = E4 - F' = 0 we see that
(H2 + HZ — 6H, — 2H, + 212 + 3 EX+ 22 E2) a) = (Lo + ax)¢(a).
=12

Furthermore, we know that

Ey+'Ey = V=1(Iy3 — h' + h?),
E5— E5=e+—e_+6+— 2_7
Es+'Bs=v—1(el +el + €% +¢2).
Therefore we get
8
(- ¥ Ei(B-'E) - ZZE,-(E]- —'E;))F(a)
j=12 j=

= Z{Ez cr(a)V=11(Ig — h' + h?) fr + 2Es - ca)r(el — el + e’ — ) fu

+ 2F - ck,(a)'r(\,/——l(ei +e! + 62+ + 62_))fkl}
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=Y {V=Tn(Ea)adcu(a)(u — 2k + 7 + 2 = 5) fiu
Py
+ 2n(Es) (a1 /a2)ea(a) (T — k) frwrs — kfo-rg + (s = O fersr = Lfes)

+ 2v/=1n(Es)(ar/az)cn(a)((r — k) fosry + kfomrg + (8 = D fegsr + lfk,,l—l)}
= Z{(u — 2k + 1+ 2l — 8)mpaicn(a) + (al/az)(2(r —k+ 1)€ce_1.(a)
kol

— 2(k + 1)Echprala) + 2(s — |+ 1éckg1(a) = 200 + D)€ ckarr(a)) } fr
This proves the lemma. ([

3.7. Infinitesimal character of principal series representations. We again
rewrite the Casimir operator {2 in the following form:

1 — 8 =
Q:H?+H22+6H1+2H2+§I§+ Z tE,-Ej+2Z‘EjEj.
!

j=1,2
6

(67) = H? + 6H, + I2/2+'E\E, + 2> _'E;E; + Qp,
j=3

where,

Qp = H: + 2Hy + 'EL By
- —H§4 - 2\/ —].H24 + 4X42)(24 - H224 + 2\/ —].H24 + 4X24X42

According to [10, Proposition 8.22], the infinitesimal character of a principal series
representation is, so to speak, the sum of the infinitesimal character of the discrete series
representation of the Levi part and the exponent of the split component. Namely, if
7 = ind% (0. ® e*** @ 1) is a principal Py,-series, X is

On + L, (here we set o,(Ip) = n),

considered as an element of (m + a)¢ via the Harish-Chandra homomorphism and X,
of a principal P;-series m; = indﬁJ((Xm, Df)®etr @1) is

m +sgn(DE)(k — 1) + v

considered as the element of (t + & + a,)¢. Concludingly, we have,
Lemma3.9. Letm = ind$, (0n, ® e"*? ® 1) and ; = ind§, ((xm, D§) ® e ®@ 1).
Then,
y o m?
(68) Xr () = py + po + 5 10,
2

(69) Xr, () = 2 + (K — 1)Y= 10 + f%—
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PROOF. Tracing the Harish-Chandra homomorphism carefully, we have,
1
Xx(Q) = x«(HF + HZ + 6H, + 2H, + 513)
1
= (0 + W)((H1 = 3)° + (Hy ~ 1)* + 6(H, — 3) + 2(Hz — 1) + 5 1¢)
=u(H*+ H)) - 10+ %
On the other hand, the value x,, (€2) is,
X, (§2)
= xr, (Hy = 3)2 + 6(H, — 3) + I3/2 — (Haa ¥ V-1)> F 2V 1(Has T V1))
= (m +sgn(DF) (k- 1)+ v)(H? =9~ H3, - 1+ 12/2)
=124 (k=1)2 =10+ m?/2.

Thus we obtain the lemma. O



PART II
Whittaker Functions of Admissible Representations



36 II. WHITTAKER FUNCTIONS OF ADMISSIBLE REPRESENTATIONS

4. DISCRETE SERIES WHITTAKER FUNCTIONS

4.1. Result of Yamashita. In the case of a large discrete series representation,
the Whittaker model is explicitly determined by means of the kernel of the Schmid
operator, also known as a differential operator of gradient type, which we will introduce
in this subsection.

Let 7) be a unitary character of N = expn and F(y) € C75,
Schmid operator V,, ., and the following projectors

P Vi@pe Vi = @ Vg,
peat

(N\G/K). Using the

we define Df’{d) = Pé‘]) oVyr,.

Let 75 be the discrete series representation of G where A € =, is a Harish-Chandra
parameter. Then d = [r s;u] = A + pg; — 2pg, called the Blatter parameter of
Ta, 18 the highest weight of the minimal A -type of 7y. For a Whittaker vector
® € Homg x (73, C°(N\G)), define @y 4 = Prs e € C25 (N\G/K) by the following:

< v*, @p4(9) >= O(v"){(¢r-(9)) (v eV, g€G).

The algebraic Whittaker function ® A,a for the representation of discrete series is uniquely
determined at the value @ € A, = exp(a,,) by virtue of the Iwasawa decomposition.

Theorem 4.1 ({30]). Let A € =,. Then,
Homg 1) (7, C°(N\G)) = ker(D) ),
where d is the Blattner parameter of .

4.2. Radial A,,-part of the differential operator D, 4. In the following 71
is assumed to be nondegenerate. According to Theorem 3.4, we treat the case of J = II
and V. Moreover, since 7®)(E,) = —n(E,), the Whittaker functions of s (A € Zy)
can be obtained from 7y (A" = wywy'A € =y), by taking the parameters (s, 7, —u, —17)
in the place of (7,s,u,7,). Thus we only treat the case A € Zn. In this case, the
Blattner parameter of 74 is d = A + [0, 0; 2] and the projector P;J) decomposes into four
projectors as follows:

Lemma 4.2.

70 PP =P g P P g P,

PROOF. We find that
AF={[1,-1;2], [1,1; +2], (—1,1;2], [0,2;0], [2,0;0]}
and that
Ara={{l-12], [1,1;£2], (-1,1;2]}.

1,1

Thus the lemma follows. ]
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According to Theorem 4.1, Whittaker functions are characterized by the differential
equations derived by the composition of the Schmid operator and projectors which
appears in the decomposition of Py”‘ Let ® = ®4 4 = 3 ckula)fey. For notation,
we write (@), = ¢¢;. Then, cg,’s satisfy the following system which is equivalent to
DL® = 0:

nd > T

(C~'1+ : D

(P(_’_) o V®), =0,
(Cy V)

(P77 0 V&) (s = (P 0 V&)1 =0,
(Cy : 2)u

(—P(—’—) o V®), + (I + 1)(F("+) oV®)es1 =0,
(€5 : D

(P(ﬂ'_) o V) +(k+ 1)(—P(+") o V@410 =0,
(C3 : 2u

(P 0 V@), — (r — k)P 0 VO)piry =0,
where we simply write V =V, 5. We put
7 bozbg(d)Z(T+S+U)/2, bl———bl(d):(—T+S+U)/2,
TD b = (r—s+ )2 by =by(d) = (= — s +u)/2

for given d = [r, s; u|. Then, using Lemma 3.7 (we note that v; = b;/2 (j =1,2)), the
coefficients {c,} satisfy the following concrete equations:

(= )1+ 1)(L + A(bs — 5 — b +1 = 3))crssn
(Cr l)kl +(k+1)(8—l)(£5 +%(b2 —k+l - 1))Ck+1,1
+ (k + D+ 1)5' Cr+1,4+1 T+ (k — (s —1)Scky =0,
B (T — k)(ﬁ;_—%(bz —k+1+ 1))6;;’“.1
(02 . l)kl ;
=+ (k + 1)8 Ck+1’[+1 -+ (k + 1)(5 - l)Ck+1,[ ES O,
(C{ : 2kt (k + 1)([:1 — %(bo +r—k—1+ 1))Ck+1,[ — (’C — T‘)Sck‘z =0,
_ L+ 1)(Lf = 5(ba —k+1+1))ckin
— (s =DScy+ (k+ 1)(s = l)ck4+14 =0,
(Cr: D (s—D(Li— 501+ b+ 143k — (I + 1S ek = 0.

Each equation (Cf: ¢) was derived from (C’;f q)-
Next, define

(72) h,k'[ = kI (T’ - k)' (S - l)' Ca%mﬂafb‘_k+l_2a2-b2+k_[ Ck,t-
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Then the system satisfied by h;’s is given as follows:

(01 + 2b3 — )iyt — E'(ar/az) herrir + E(ar/a2)*hiy

(Hi'_ 1)k[ - (32 - 27)2(1% + 2b2 — 2k + 2[)(011/&2)2}2*_“'[ =0

O0<k<r—1,0<1<s—1),
Oahi it + &' (a1/a2)?hesrirr + 2(0+ 1) (a1 /a2)*hisry =0

(0<k<r—-1,0<i<s—1),
(HZ_ 1)Ic 1 82h/k’0 + f’(al/ag)ghk+1,o =0 (0 <k<r-— 1),
(Hy : 2)w (01— 2r + 2k 4+ 2)hprg + &by =0 (0<k<r—1),
Bahi s — E(a1/an) hiy + 2(r — k)(a1/a2)*hasry = 0

(Hy : Du

(Hs: Du 0<k<r—10<i<s—1),
(Hy: D Ozhegpr — E(ar/ag)?hyy =0 (0<i<s—1),
(H:; 2)kl (81 - zl)hk_;,u - f’hk+1,1+1 =0 (0 S l S S — 1)

Each (HF: ) was a direct consequence of corresponding (C: ¢). Concludingly,
we obtain the differential equations satisfied by the Whittaker functions.

Proposition 4.3. Let ®pq = Y4, ki Sy} and let hyy be as in (72). Then hyy satisfies
the following:
(1) (81 + 2bs — 2)hye 1
- (261 + 82 e 27]20,% + 2b'; - 2) (al/ag)r"th,, =0
(05k§7‘—~1,0§l§8—~1),
(1) Oohigps + (a1/a2)* (01 + 2)heyra =0
0<k<r-1,0<1i<s-1),

i) (8 — 2r + 2k + 2)hisry + Ehey = 0 O<k<r—1),
(iv) (01 = 20)hgy14 — Ehpyrg1 =0 (0<i<s—1),
(V) Oahgg + €' (a1/an)’hyq1 9 =0 (0<k<r-1),
(vi) Byhy i — E(a1/az2)?hey =0 (0<Ii<s~1).

PROOF. Equation (i) can be obtained from Equations (H{ : 1), (Hy : 1) and
(H3 : 1)g. Equation (ii) is from Equations (H; : 2) and (H3 : 1)x. Equations from
(iii) to (vi) had no change. [

Equations (iii) and (iv) in Proposition 4.3 show that A, o determines the system {/4,}.
From the proposition above, we see that from (iii) and (V),

(73) (6162 - Tlo(al/a‘z)z)hr,o =0,
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and from (i), (ii1) and (iv),
(74) (61 + 203 — 2)312h,.’0

+ (2(91 -+ 62 - 2772(1,% + Qb'; — 2)(0,1/02)27’]0hr’0 =0.
Operating 0, to (74), we obtain the following with (73):

Corollary 4.4.
(75) (6182 — 10(a1/a2)*)hro = 0,
(76) (81 + 82)? + (2b3 — 2)(D1 + Ba) — 2120305 ) hp = 0.

Equation (74) can be recovered from (76) by operating J;. Also we can check that
this system becomes holonomic (See Appendix).

4.3. Integral expression of discrete series Whittaker functions. To get
an integral representation, first we consider,

o0 2 d

for ¢ € C™(Rs(). Then W formally satisfies the differential equation (75). Suppose W
satisfy (76), then ¢ should be the solution of the following differential equation,

d*¢

d¢
Putting v = /u and ¢(u) = v~%+1/24)(v), the equation (78) becomes,
d*y 1 1/4 — (by — 1)?
3@*(‘1'(4”2“ Y A

If n, > 0 (i.e. Im(n(E,)) < 0), then we can find the unique rapidly-decreasing solution,

P (v) = Wops—1(2y/v)

where Wy (z) is the (classical) Whittaker function. Returning to the equation (77), we
can confirm the absolute convergence of the integral in this case. Concluding,

Theorem 4.5 (Oda). Let A = [r, s;u — 2] € Zy. Assume that
—1p = Im(n(E)) <0

for a nondegenerate character ) on N. Then there exists a rapidly decreasing Whittaker
function ®, 4 characterized by the following h,.o:

00 . 4dnemga’ t2 dt
___ —b3+1/2 ¢ 2Tha; atd
(79) hr,o(ahaz) C](; t WO.bs—l( )eXP( 72 167)2(1,% £

where 1, = —Im(n(E,)), C is a constant multiple.

PROOF. The situation is completely similar to [20, Theorem (9.1)]. So we omitit. [
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From this theorem, 7%, (A € Zy) has no rapidly decreasing solution in its 4-
dimensional space of Whittaker vectors, which agree with the Shalika’s multiplicity-one

result.

Now draw out the Ay ’s formula from that of h, . By using Proposition 4.3, we have,

Theorem 4.6. Let A = [r,s;u — 2] € Zy.  Assume that Im(n(E3)) < 0 for a
nondegenerate character 1. Consider the rapidly decreasing Whittaker function
®p4(9) = Tkuces(9)fey and define {hy;} by means of (12). Then they can be

expressed as follows:
‘ ! o |
(80) hk,l = CZ(—l)l(k _ T‘;l _ ’L) (z) (él)r—k—l-'-lfz(—877~2a%)r_k+"
i=0

0 : 4ngmea’ t2 dt
—bg+2(k—i—r)+1/2p)/ oGy ar
8 /0 t 0201 (£) exp ( t2 16103 ) ¢

Here C' is a constant multiple independent of j and k, the binomial (8) = 1and

plp+1)---(p+q-1) (¢>0),
(;g) =<1 (g =0),
0 (—g+1<p<0,q#0),

for a non-positive integer p and a non-negative integer q.

PROOF. One can directly check that this formula satisfies the recursive condition in

Proposition 4.3. Its initial condition is exactly (79) in Theorem 4.5. O
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Generally speaking, there is no rule characterizing the P,-series Whittaker functions;
the Whittaker model is just a subspace of the kernel of appropriately selected shift
operators. In the case of SU(2,2), however, we will eventually see that the Whittaker
model with the corner K-type is characterized by such a kernel with the help of the
Casimir operator.

We begin with introducing the notion of the corner K -type; analogous to the minimal
K -type of discrete series representations.

5.1. Corner K-types of Pj-series representations. As in §2.0, let m; =
ind$ - ((Xms Di)®e’*?’ ®1) be a principal P,-series representation. The corner K-type
7} is characterized by the following property:

(i). dim 7} is minimum in 7|g.
(if). 72|, has the minimal Ko-type of Dj.
(iii). If m # 0, there exists a non-compact root § with respect to (gc, be) such that
Tars € K and [7|g : 7)15] = 0.
We remark that the cormer K-type is not necessarily minimal. Choose 7 so as that its
contragredient representation 7* becomes the corner K -type of 7, determined uniquely

as in Table II.1.
In the following we write 7 = 7y, & =7 ) for simplicity. Consider the Whittaker
J

function @, .. Then,

Proposition 5.1.  (i). Ifsgn(D{) > 0, we have, for j = 1,2,

(81) glentm.—sentmlg, . =0 (m#0),

(82) D¢, =0 (m=0).
(ii). If sgn(D¥) < 0, we have, for j = —1, -2,

(83) gy, =0 (m#0),

(84) D*"®, - =0  (m=0)

PROOF. We can check these equations from Proposition 2.12 and Table IL.1. [

5.2. Differential equations for Whittaker functions. We can take the radial
part of the equations in § 5.1 using Lemma 3.7.

Proposition 5.2. Let @, (a) = L csc{)(a)f,g) for j = x1, £2 and let ®, +(a) =
cé%’i) (a) f(gg’i). Then we have,

(). sgn(DE) > 0, m = 0 case:

2
(85) ((31 —k —2)(02 — azm — k) —mo (%) ) Cf)%’ﬂ =

2

41
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(id).

(1i).

(iv).

v).

(vi).
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sgn(DE) | m the parameter of 7
+1| di = [0, m; —2k+m]
+ — 1 d, = [-m,0; -2k —m]
0 dF = [0,0, —2A]
—lld-y = [0,—-m;2k+ m]
- +d_y = [m,0;2k —m]
0 & = [0,0;2k]

TABLE II.1. Corner K-types 7* of ind}G,J ((Xm, DE) ®@ e 77 @ 1)

sgn(DE) > 0, m > 0 case:
86) (1)@ — ok~ k+ el + G+ 1) (2) b =
@7 (m )( )5c“’ (j+1)(61—m—k—1+j)c(()’j+1:0.
sgn(DE) > 0, m < 0 case:
(m+ )@ — k== 27 + G+ 1) (2) gy =0
(m+3) (%) € + G+ 1)(02 — adm —m — k=1 =) = 0.

sgn(DE) < 0, m = 0 case:

2
(0= k=20 a0 = (2)) e =0

2

sgn(D¥) < 0, m > 0 case:
(m = 3)(02 + adm — b+ )5 + G+ 1) (2) geito =0,
(m=3) (5) €6o” + G+ D@ —m =k = 1+9) 70 =
sgn(DF) < 0, m < 0 case:
(m+3)(0 — k=3 =250+ G+ D () el =0

L fa
(m+7) (a_:) EC Uy G+ 10 +agp—m—k—1- )(I()Jlﬂ 0.
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[0, m; 2k — m)]

FIGURE IL.4. The corner K-type in the plane: r + s = m > 0 consisting
of K -types of indgj (X, D) @ /77 @ 1)

From the Casimir operator, we get another proposition by Lemma 3.8.

Proposition 5.3. Let ®,..(a) = Ty SNa)f9, and so &, x(a) = =) (0) 500
Then,

(i). sgn(D¥) > 0, m > 0 case:
(88) (8% + 03 — 601 — 20, — ajn; + 2mo(ar/az)’” +2(j — k)20
+ (27 = m)?/2)ely) + 2(m — j + 1)€(ar/az)ch; -
— 20 + D arfag)eldyy = (R + (k= 1)? = 10+ m?/2)cly.

When m = 0, c(()%"L) also satisfies (88).
(ii). sgn(DE) > 0, m < 0 case:

(89) (8} + 8% — 60 — 20, — ajn; + 2m0(a1/a2)” — 2(m + k + 5)7a3
+ (25 +m)?/2)cg) +2(1 — m ~ j)é(ar/ar)2 g
— 23 + 1) (a1 /a2)d? o = (V¥ + (k — 1) — 10 + m?/2)cg.
(iii). sgn(DF) < 0, m > 0 case:
(90) (8% + 85 — 60, — 20, + ajn(En)” + 2mo(ar/a2)* + 2(k — j)m203
+ (25 = m)?/2) el + 2m — j + 1)E(ar/az) Ty
—2(j + D)€' (ar/a2) T = (V2 + (k — 1)? — 10 + m?/2)clg .

Whenm = 0, c((]%‘_) also satisfies (90).
(iv). sgn(D) < 0, m < 0 case:

o (af + 02 — 60, — 205 + ajn(E2)? + 2np(ar/a2)® + 2(m + k + )7
+ (m+2§)2/2)cl; ) + 21— m = j)é(ar/ar)el Y
— 205 + D€ (@ /ar) b3 = (7 + (k = 1) = 10+ m?/2)cf; .
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From these propositions, we find that
92) (& m) = (g =m)s (o7 m) = (g =),
(93) () m) = (g™ =m), (e ) = (i), ~m2).
Therefore it is sufficient to treat the typical case: sgn(Dj) > 0, m > 0.
Theorem 5.4. Let m; = ind$ ((xm, D) ® €77 ® 1). Assume that
sgn(DE) > 0, m > 0.

For T = Tjom;m-2k), consider the Whittaker function ®,, . = S_‘,J g;) fOJ') Put
(1)

coy (@) = exp(ayme/2)a]
Then, hg-l) (1 =0,...,m) satisfy the following:
(94) (6182 (0,1/0,2) T]Q) h (L _ = 0
(95) (32+32+2(m+k—2j——1)(31+32)+2772a s
+(m+k—2j-1)2—v)h =0.

m+k+2-7 k ip, 1)( )

These two differential equations become a holonomic system of rank 4.

PROOF. When m = 0, they are a direct consequence of Equations (85) and (88). When
m > 0, Equation (95) is a consequence of (88), while Equation (94) is obtained from
Equations (86) and (87). See Appendix A for a proof of holonomicity. []

5.3. Integral expression of Whittaker functions. In this subsection, we
obtain an integral expression of the rapidly decreasing solution of differential equations
in Theorem 5.4.

As in §4.3, using a general solution of Equation (94) one has,

/ P(t) exp ( t 402) t
for ¢ € C*(Rs¢). We find the formal relation

t o\ dt
(0, + )W f 20,0(t) exp (——— — ——2) -
which tells us, with (95), that
(4{3;2 +4(m+k—-2j - 10 +mt+(m+k—2j - 1)? - 1/?‘) $=0,
with 3, = t(d/dt). Putv = /I and ¢(t) = v~ ("FE-2=D=1/24(v) to get

d* 1 1/4 — v?
(96) du'f + ( 4(_4.,,2) + L;Q—V) Y =0.
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This turns out to be the Whittaker’s differential equation if 7 < (0. We denote by
Wo.,(2y/=19v) the rapidly decreasing solution of (96).

Theorem 5.5. Let m; = inng((Xm, DE) ® e"*P1 @ 1) be an irreducible generalized

principal series representation of G. Let ®,, ., =3 cﬁj’ fi(f) be a rapidly decreasing

Whittaker function of 7 with the corner K-type T given by Table 11.1. Then,
(). sgn(DF) > 0, m > 0 case: if g < 0,

O cf(a) = Ci(8pp)Igemet g I g5
0 47’]27)0(1,2 t2 dt
920 (8 exp | — ! =] =,
% -/0 ow(t) exp t2 * 16ma3 ) t
(ii). sgn(DE) > 0, m < 0 case: if gy < 0,
(98) 05'2) (a) = Ca(8np)™ 7 (—€) emes/2qfH2+i g+ m+7
RPN 47727]0&2 t2 dt
% t 27—m k+1/2v‘/ Dt . 1+ . .
J wolt)exp (-5 o)
(iii). sgn(Di) < 0, m > 0 case: if g, > 0,
99 dgP(a) = Co(—Bmp) I e oA e o
© . 4 a? t2 dt
2—m—k+1/2 ; 2Tl il
[T Waultyexp (2202 - 2 2
(iv). sgn(Dy¥) < 0, m < 0 case: ifn, > 0,
(100)  cf;"(a) = Cy(8m) ™~ Igle ™3 a2 af
0 4nymea’ 12 dt
x ¢ 2j—-m k+1/2W (1 1 =
/0 0s(t) exp t2 16m9a2 ] t

Here, Cy,, Cyo are constant multiples determined independently of the choice of j.

PROOF. Nondegeneracy of 7 says that 75y is negative. So the parity condition of 7, tells
the convergence of integrals in the right-hand side. Once it converges, it clearly satisfies
equations (94) and (95). Keeping in mind the convention for other cases, we can readily
deduce the other equations. []J

Remark 5.6. These expressions are very similar to those in the case of Sp(2; R) ([18,
Theorems (9.1), (9.2)]).
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In contrast to the preceding two sections, principal P,,-series Whittaker functions have
no single differential operators which make them vanish. That has been an obstacle to
derive the differential equations of Whittaker functions with higher dimensional {\'-types
as well as an integral expression of them.

Nevertheless, once we restrict ourselves to the case of smaller K-types - their
dimensions are one and two —, we can obtain the differential equations, which we will
explain.

6.1. Differential equations for Whittaker functions. The next theorem de-
scribes the Whittaker functions of principal P,-series representations with the one-
dimensional K-types.

Theorem 6.1. Suppose m = ind()gm(og,E ® eFt? @ 1) be irreducible. Let T = Tjo,0;]
be an irreducible representation of K satisfying u = 1 — ¢(—1) (mod 4). Choose a
nondegenerate character 7 of N. Let ., € C(N\G/K) be a Whittaker function

of ™ with K-type T*. Then, for a = (a1,a2) € A, I(a) = a2y ' @, . (a) satisfies the
differential equations:

(101)

) ar\ 2 )
{8 + 0 — 1ol + uma3 + 2m (5) }r = Gt + 1,
2

2 2
(102) {(a? -~ (% + 1) ) (83 - (% + 1) — nla} +un2a§)

2

2
— 210 (a—l) (01 +1)(3—1)~u (E + 2) Mo (_‘ﬂ) + unprneal
a 2 as

| + 15 (%)4}1 = (;ﬁ - (%+ 1)2> (ui - (%+ 1>2) 1

where we put 0; = ajgi—jforj =1,2.
In the case of the two-dimensional K -types, we obtain the following.

Theorem 6.2. Let |n| = 1, 7 = ind} (0., ® e#™? ® 1) be irreducible and n be
nondegenerate. Assume that the contragredient representation 7* of T = T[ s;u) appears
in 7| with multiplicity one. Let ., € C35(N\G/K) be the Whittaker function of 7
with K -type *. For the standard basis { fu'} of Vy and a = (a,,0,) € Ay, put,

I(@) = a7 ' ®rr(a) = D bula)fu

0<k<r, 0<I<s

(i). Ifr =0, s = 1, then byy, bq, satisfy the equations:

(103) 'P2 -+ (U - ].)T)Q(Lg f,(aq/(lfz) (a[ + 82 + 7];3611:‘22 - 1) b()()
E(ar/az) (O + B2 + a3 + 1) Py bot

46
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2 (P} (=1, uz=e(~1) (mod 1)),
bon

% ZOO (n=-1,u= —¢(-1) (mod 4)).
01

Lo + (u — 1)nua} —2¢'(a1/az) boo _ /2, 2\ (boo
(109 ( 26 (a1 /o) Eo+(u+1)ﬂ2a§) (b01)_(ﬂl+“2) (b)

(ii). Ifr =1, s = 0, then boo, bip satisfy the equations:

(105) P, —&'(a1/az) (01 + B2 — maad + 1)
—€&(a1/a2) (81 + 82 — a3 + 1) Py + (u — 1)7203
12 (20) (=1, u=—¢(~1) (mod 4)),
v (boo) - blO
bio 13 600 (n=—1,u=¢(-1) (mod 4)).

bo

Lo + (u + 1)m,02 —2&'(a1/as) boo _ /2, 2\ (boo
(106) ( ooy 2 1)772&%) (bw) = (1 + 3) (bm)'

Here we write,

2 ar\? 2 2 4 a\?
P1=81+no -, ’P2=02—772&2+770 —1 .,
9 y
7 2 2 2 4 a\?
2
Remark 6.3. As a matter of fact, the above differential equations are essentially the

same as those in [17, Theorems (10.1) and (11.3)]. We recover those equations by
putting 7, 7o, u in place of —4mwes, —47w2cZ, 21, respectively.

To see that the system of differential equations in Theorems 6.1 and 6.2 becomes
holonomic, we must compute the corresponding characteristic variety. See Appendix A
in detail.

Remark 6.4. Our calculation is valid without the assumption that 7 is irreducible.
However, the injectivity of Z;. fails. In this case we might consider some subquotient
representation of m whose K-types occur in 7|, with multiplicity one.
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6.2. Radial part of shift operators (one-dimensional K-type case). We
handle the representation T = indgm (00, ® e**? ® 1) admitting a 1-dimensional K -type
To = Tjp o, With —u =1 —¢(=1) (mod 4).

In this case we consider 7 ® Ad; ® Ad.. Then, in each contragredient representation
of them, the unique 1-dimensional irreducible constituent occurs in 7| with multiplicity
one. Define the operators D and Déovn (cf. (49).) Since dim 7 = 1, they become,

up  _ pl=—) + +
D - Pl.l e v7'®Ad+ © VT ’
down B{=-) — -
D :Pl,l oV gad_ V..

Then, we find that the composition D" o D’ will give one of the differential equations
in Theorem 6.1.
Now we calculate the radial parts of these operators. We write

d() = [0,0,U],
dy =[1,1;u — 2],
(107) d = [1,Lu+2,
ds = [0,0;u — 4].
dy = [0,0;u + 4],

For given d;, we write simply 7; = 74, fz(,z) = f;g").

Lemma 6.5. Put ¢y(a) = Fola, (a) = O (a) £y for Fy € C

70

61(a) = Fi|a. (a) = Rad(V*)do(a) = 3 < (a)fy,

0<k,I<1
2(a) = Fola,. (a) = Rad(P{7™) 0 V*)gi(a) = D (a) 55,
63(a) = Fy|a,.(a) = Rad(V7)do(a) = 3 ()£,

(N\G/K) and put also

0<k <1
#4(a) = Fil1,,(a) = Rad(Piy™) 0 V)5 (@) = c!¥(a) fio-
Then the image of the shift operators can be described as follows:
1) _ ol (0) _ —
=8¢\, ) = Ly —u/d
08 W = (L7 - u/)c"
= (L + u/4)c?, c11 = -8
(3) =80 cg) = (£, — u/4)c(0)
(109) N
c(m) = (—LF +u/2)c9, c(l', = -8c0,

(110) = (=L, +2 - u/d)cl) + (L5 +u/4)c\y) + el — Setw)
(111) W = (=L, +2+u/4)y + (£F - uf4)cf)) + ey — Sclq.

PROOF. Equations (1 10) and (l 1 1) are no other than specializations of Lemma 3.7.
First we consider c ) and c Using Propositions 2.4, 3.6 and Lemma 2.2,

¢1(a) = (El - 3@7'1(1'113) - 3) 14 (Fola) ® Xia)
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+ (L; — @TL(H%) — 1) 1+ (Foa) @ Xa4)
+ (8 + ilel) 1+ (Fo(a) ® Xan) + (S = 7€) 04 (Fola) ® Xua)
= (L',1 +ir (L + kR - R - 3) ®(a) f{y)
— (L7 + tri(ba — P+ 1) = 1) ¢9(a) fi))
(84 mel) @A) - (5 - () @AY
= (L +u/4) V(@) Fly) = (£5 +u/4) V(@) f§)) + 5V (a) fig — SV (@) 11y

We get (108) by comparing the definition of C,E;) with the last equation. In a similar
manner,

ba(a) = (L1 + i3 (Hiz) — 3) 1 (Fo(a) ® Xa1)
+ (L3 + Y rs(Has) = 1) 1 (Fo(a) ® Xa)
+ (8 = ma(el)) - (Fo(a) ® Xa2) + (S’ + m3(e})) - (Fola) ® Xan)
= (L1 = Lrs(Lop + B} = B?) = 3) O(a) f)
— (£F - ims(lon — W' + h?) ~1) (a) £y
— (5~ ms(el)) (@) + (8 +73(e2)) Vo) oo
= (L1 - u/4) V(@) — (L5 — u/4) O (a) £ + SV (@) &) — SV (@) f1Y.
The last equation implies (109). O
Proposition 6.6. Let F € C°, (N\G/K) and put ¢ = F|a,, € C°(Am). Then,

(112) Rad g (D) ¢ = 2{(L1 + u/d - 1)(L5 +u/d) - ss'} ¢,
(113) Radg, (D"")¢ = 2 {(£1 — u/d — 1)(£f —u/4) - 55'} 6.

This is the direct consequence of Lemma 6.5. We can also check directly that they
commute with the Casimir operator, namely:
Proposition 6.7. Let F € C, (N\G/K) and ¢ = F|4. Then,

Ra.ddo (D"P) o] Raddo(Q)¢ = Radm2 (Q) o Rfdddﬂ('Dup)qS,
Raddo (DdOwn) o RaddD(Q)qS = Radd4 (Q) o] Raddo ('deun)gb_
6.3. Radial part of shift operators (two-dimensional K-type case).
Next, we consider the case: dim7 = 2 and [r|gx : 7*] = 1, precisely, [n| =

and (r,s) € {(0,1),(1,0)}. In this case, 7 ® Ad has the unique irreducible constituent,
whose contragredient is a multiplicity-one A -type of 7. So we use the shift operators,

E£&F) and EFF (cf. (49)).
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For suitable choice of +, the composition g5 o 3D win yield the differential
equation.

We shall see in §6.4 that these shift operators characterize Whittaker functions of 7 as
their eigenfunctions through the calculation essentially done in §§2.10 and 2.11.
We rewrite Lemma 3.7 as follows:

Corollary 6.8. (i). Letr =0and s = 1. Then,

TV G W - O VE R et
6[1100 u+2) S L+ (u _ 5)/4 ‘[O‘I;u} )

(115) chy 7 L, —(u+5)/4 -8 ) (Cgoo,l;u])
C[lloou 2 -8 £2+ ~(u+1)/4 Cg)l,l;u] -

(i1). Letr = 1and s = 0. Then,

(116) oo Ly +(u—>5)/4 -5 chi
c[01u+2] -8 Eé‘ (u_ 1)/4 l(Ju]

(117 q[)%lu 2 (L —(u+1)/4 S’ C([)t)()u]
[Olu 2) S L —(u+5)/4 [10uJ '
We see from this Corollary, that Equation (115) (resp. (117)) can be recovered
from (114) (resp. (116)) with the following rule:

0] 0 i {0y 0 g (=1)
(Cgo)» CEn)a Cgo): c(1o)a ) « (—C((n ) Cgo), C(m ) C((m ), —U),

0 0 2
(resp. (Coo ) 010» C((m), C01 ;U) (= C(o), C((Jo), Co1 &2 C(()o ), —u)).

(118)

In addition, one can check the following directly:
Proposition 6.9. Let Rady = Rad,, be the radial part. Then we have,
Radg, (E7)) 0 Radg, () = Radg, (Q) o Radg(E7),
Rady, (£07) 0 Radg, (2) = Radg,(Q) o Rad,,o(s )
Radg,(€77") o Radg, () = Rady_,(Q) o Rady, (£
Radg, (£ 0 Rady, (Q) = Rada_, () o Radg, (€

6.4. Proof of Theorem 6.1.

Throughout the following subsections, we use for notation 7;, ,E{ e kl) for a given d;,
as 1n the previous subsection.

For do = [0,0;u], put & = @,, = 3 f. We show Equation (101) firstly.
Lemma 3.9 says that the Casimir operator acts on Whittaker vectors by a constant
multiple. Putting 7 = 0, s = 0 in Lemma 3.8, we have

(Lo + ungal)® = (p? + 42 — 10)d.
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The translation from ®(a) to I(a) = afsaglcé%)(a) yields (101).
Next, we verify Equation (102). Putd, = [1,1;u + 2} and d, = [0, 0; u + 4]. Write,

+F — up (2)
Ve = Z Cszk ) DY ® = cyofoo »
0<k<1, 0<I< L
- & mop(1)
V o] D @ = Z Ck‘l kil -
0<k<L, 0<I<]

Considering (45), (14) and Lemma 2.6, we have the following equations:
Ve = (Xap - ) fl5) — (Xaz - ) S5+ (Xon - ) Flo) = (Xar - b)) 10,
D ® = (— Xy - chg — X1 - ¢ + Xag - o + Xa2 - C11)f00 ,
V™o DPE = (Xug - cho)fls) + (Xis - ) i) — (Xaa - o) Fis) — (Xas - o) 1
DI o DV @ = (—Xoz - Cop — Xoa + Cgy + X1z - ¢lp + Xia- c’l"l)fég).
Concluding, we obtain,

t[—Xg X\ t[—Xa X3z

Xog X3 —Xa1 | | —Xa2 down i
119 . d = D% DYr o,
(119) — X3 | | = X2 Xyo X3 °

X4 — X3 X320 —Xa

We know from Proposition 2.19 that the left-hand side of (119) has ® as an eigenfunction
with eigenvalue (u; — % — 1)(pp — % — 1) (g1 + % +1)(p2 + 3 + 1). On the other hand,
using Proposition 6.6, we have,

I' = a7%a;" Radg, (D")cly) = 2{(L1+ %+
ar ey Radg, (D" o D)y = 2{(L1 — ¥ = $)(L ~ 5 - 3) - ss'ir.
Therefore the radial part of D" o D' is,

a1—3a2—1 Radd2 (denwu) o Raddo ('D“I))CE)%)

1 u U a\?

~H{-(0)) (2 (5 +) +mt) - (2]
2
X {(81+E+1) (62'*-2’*“1—1')201%) —7’]0(?—1—) }I
2 2 ay

1 u 2 u 2 -

R{CHOS R

2 ) 4
() a0 ) e (2) 1

2

In conclusion, Equation (119) and the last equation imply Equation (102). O
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Remark 6.10. We also obtain these equations by the method used in (17, §10]. See also
[11]. (cf. [17, Remark (12.1)].)

6.5. Proof of Theorem 6.2.
Assume |n| = 1. Put

dil = [O, 1; iu], dig = [1, O, :L‘(U -+ 2)], dig = [1, 0; :tu], dj:4 = [0, 1; :4:(7.1, + 2)]

Then, {7)g : 7] = 1if u = ne(—1) and [r|x : 7] = 1 if u = —ne(—1). We identify
7_; with 77 through the map in Proposition 2.3.

Let ®, be a Whittaker vector and let <I>,r17j be a Whittaker function of m with A -type
TJ?‘, (7 =1,...,4). Namely, for any v* € VT’;,

(120) <, (DW, (9) > = ®x(err (v°))(9g)-

We write @, ;. (9) = Yy, cfd (g ) By Corollary 2.16, we can take akl Vin place of v*
in (120); then we have,

s (9) = < F) T Prry (9) > = Pultn, (fTVN)(9) = ©x(als ) (9).
Similarly,
(4) = @ (a((]l4))1 =-¢ (agg ) forj = 1, 4,
Cfg{)) - (D (a(IOJ))a ( = (P ((100 ) forj = 2, 3

Since @, is in particular a g-homomorphism, one obtain the following equations from
Corollary 2.23:

(121) (§42 ){_32) (CE)?:) _ (Cps +u+1) (c?g)) ,
A 3L \Cot 4 2
Xo X (e usy —u—1) ()
() () e ()
(123) ( X‘?} —}?{32) (Coo) _ 2#&(1) +u+1) (cg);)
ST e 010 Co1
(124) ( X,é"’ —{}7”) (‘00) _ 2#&(1 —u—1) (c(i,(};)
~Xn o /e Cig
where (5(1),8(2)) = (1,2), (resp. (6(1),8(2)) = (2,1)) if n = 1, (resp. n = ~1). We

actually have obtained shift operators, 1e by (45) and Lemma 2.6, Equations (121)
and (122) (resp. (123) and (124)) turn out to be,

N2 2
(125) M o gthg, . = ((E%(i)) B (u+1) )(D

4
o 2 w+ 1\*
126 (resp. &7 060D, = ((m) (4 ))D)
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Now, we take the radial part of the both sides of the above equations, which will finish
this proof, Corollary 6.8 says that, from (125),

(127)

(n; ~ (u+3)/4 S ) (c; + (u—1)/4 S ) (cg};)

S Ly~ (u+7)/4 S Lo+ (u-5)/4) \ &

_1] _(u+1>2 cho
=3 pd)
By multiplying matrices in the left-hand side, we have, by Equation (127),

u+3) (u—1 ar\?
(8; — 28y — n2ay + (u — 1)mpa3 — ( )4( ) + o ('a—l) )Céh)
a

(128) + £ (a—) (8) + Oy + mpat — 5)6611)
2

u+1\?
Z(Nﬁ(z)—( ) ))c((]})),

£ (ﬂ) (01 + Oy — mpal — 3)08},)

as

_ 2
(129) + (af PP s 7{4(” 5 1o (-Z—l) ) &Y
2

w4 1\?
= (u?m - (—2‘) )C(()ll)~

Keeping in sight of (118), we obtain the differential equations of @, immediately

from (128). Therefore, translating Equations (128) and (129) to those of b =
a73a; '), we obtain equations (103) and (105).
Equations (104) and (106) is a direct consequence derived from the Casimir operator,

Lemmas 3.8 and 3.9. O

and,

Remark 6.11. Put 7 = 7y 4, and T = Tl sutd)-

Ifr =0and s = 0, D ®, , becomes a Whittaker function of 7 with K-type 7'. This
can be shown by seeing that D’ @, ., satisfies the differential equations (101) and (102)
with u + 4 in place of u.

Similarly if r = 0 and s = 1 (resp. 7 = 1 and s = 0), E7)d, - (resp. £H D )
satisfies the differential equations (105) and (106) with a suitable change of parameter.

Remark 6.12. We also obtain another differential equation using the radial part of the

operator £ (=1 6 €57 jnstead. Apparently this equation is dependent; in fact the

operator £7 o g7 4 B0 6 g0h7) differs from the Casimir operator only on
constant terms.
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Appendix: A. HOLONOMICITY OF THE SYSTEM OF DIFFERENTIAL EQUATIONS

In this appendix, we collect the basic results about Grobner basis, characteristic
varieties and holonomicities. It is the theory of Grobner bases that enable us to show
the holonomicity of the differential equations obtained in Part 1I. The general reference
is[19].

In the following, N is non-negative integers. For multi-index © = (zy,...,T,),
B = (b, -..,0.) € N, we use the convention 2# = ' -- -zl |8| = B + - + fn
and D®) = Bl /dxft ... dabn,

A.1. Term order and Grébner basis. Let R, = C[z][D] be a Weyl algebra,
l.e.,

R, = { Z cﬂ(z)D<ﬁ)

[B]< o0

cs(z) € (C[:c]} :
Let m(f) be the total degree of f € R,, and
alfy= Y @)

|8l=m(f)
called the principal symbol of f.
A total order < of N" is said to be a term order if it satisfies the following:

(T-1). fa < B, thena + vy < 3+ v fory € N?,
(T-2). 0=(0,...,0) < a holds for any o € N*\ {0}.

Define <, be a total order of N* x {1,...,r} with the following property:
(T-3). (@, %) <, (6,1%) holds if and only if a < 3,
(T-4). If (@, %) <, (B,J) then (& + v,1) <, (B + 1, ) for any v € N™.
Givenan f = (T4, Ca, D), ... T4, o, D)) € (R,), let

lexp(f) = max%r{(ai’ i) l Cai F 0}

be the leading exponent of f. If, say, lexp(f) = (a, 1), we denote by Ip(f) = i, the
leading point of f.
For a subset NV of (R,,)", we put

E(N)={lexp(f)| fe N} cN*x {1,...,r}.
If N is a left R,-submodule of (R,)", E(N) becomes a monoideal, i.e., (a + N* i) C
E(N) holds for any (ex,7) € E(N).

Definition A.1. Let N be a left R,-submodule of (R,,)". A subset % of N is said to be
a Grobner basis of [V if it satisfies the following:

(1). ¢ generates N over R,
(i1). the monoideal generated by £(%¥) coincides E(N).
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A.2. Characteristic varieties. To describe characteristic varieties, we specify
the term order of N*" x {1,...,r} as follows:

(a0, B,3) <r (&, 8, §) holds if and only if |3| < |5|

or (|8] = 8], i < j)
or (|8 = Iﬂ lLi=17 8 <ix 8
or (8=0,1=], |a <|d])
or (8= B,Z—.} lof = ||, & <iex )

Here <ex (resp. <ix') is a lexicographical order of homogeneous parts of C[z]
(resp. C[z][D]). Then <, satisfies the conditions (T-3) and (T-4).
Let M be a system of differential equations defined by:

ZRJ"UJ‘IO, (izl,...,S)
i=1

for P, = (Pi,..., Py) € (R,)". Let N = 37_, R, P, and choose a Grobner basis & of
N. The characteristic variety char(AM) of M is an algebraic variety in C?" defined by

(130) char(M) = O {(z,¢) € C** | o(P),(z,¢{) = 0 forany P € ¥, }.

v=1

where 4, = {P € ¥ |Ip(P) =v} and o(P) = (¢(P)1,...,0(P)).
Let proj: C** 3 (z,¢) — z € C", then

Sing(M) = proj({(z, () € char(M) | ¢ # 0})

called the singular locus of char(M). M is said to be holonomic if dim¢ char(M) = n.
The following is well-known.

Theorem A.2 ([19, Th. 5.3.4)). Given a system of differential equations M, let 4 be a
Grébner basis defined by M. Put

= #({N" x {1,...,7}}\(monoideal generated by w(E(¥4))))
where

w: N x {1,--- v} = N" x {1,...,7}
(v, B, v) = (B, v).

If m < oo, then M is holonomic on C™\ Sing(M) and the rank of the system M is
equal to m.
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A.3. Proof of holonomicity. Here, we consider the system of differential equa-
tions satisfied by the discrete series, P;-series and P,,-series Whittaker functions and
show their holonomicities using Theorem A.2. To compute Grobner bases, we use the
compute software “Kan” programmed by N. Takayama ([23]).

Let M, be their systems of differential equations defined by

My (73) and (74),
M (94) and (99),
M., (101) and (102).

Let ¢. be a Grobner basis of M,. Considering Equation 130, the characteristic variety
of both M ; and M, is defined by the following:

Char(MJ) = Cha‘r(Md) = {(ah aZsCl)C?) € C4 ‘ Qd,j(a’ C) = 07 (.] = 17 sy 3)}
where
Qa1 = a3C} + 20201 GG + G%QQQ,
a2 = a30,CaCy,
Qa3 = —a3(;.

qa,; S are exactly the principal symbols of the elements of ¥, ¥,.
On the other hand, the characteristic variety of both M., is defined by the following:

Cllar(MTH) = {(ah a?:Clv Cz) € C4 ‘ Qm,j(a, g) = 0’ (] = 11 ey 28)}
where
dm,1 = aga%<§<121

2 2.2 4 ~2
G2 = a2a1C1 + a’?CQ:

_ 8.4
dm3 = 0’2<27
28 44 6 24
Ima = —73020,C; + 2nyazai(y,
_ 6 2.4
0m,5 = —2M082a7Cy,

8 26
Ims = 2MpGa,Cy,
_ 6 6 4 14 ]
Fm,1 = 6m00201G;C1 + 1dmpa,(,
A 12 4.4
mg = Moy g (y,
= 6ngada, (3¢, + 14nealc]
Gm,o = 6Mpa501(C; + 1dmpa,(y,
_ 7 5
Gm,10 = 14770412(1145,
_ 77
dm,11 = ldmoaqa,(y,
_ 2.7 4 2.7 .4 2 7.4 25 3.4
Gm,12 = —2nopia001(y — 2Mopaaaa1(y — Myaza Cy + Sngagald,

+ 4()7]0(1;(“(3,
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dm,13 = — ga?Cl - 4770512@1@(1 4770“2“1(2@ + 5"]0@2(11 25
Gm,14 = 287041705C] + 28nopuzaiCs — 3maal(} — Snaasal(y(]
+ 15n5a5a3¢i¢, — 23nkada?¢d — 420mealcs,
Gm,15 = Maz a1Cl + 2772770&2 TG0 + 2mmoay'al ¢y,
Gm.16 = T150,' 6;C7 — Ldnoptaja (5 — ldnopsaja(y — Tngasal ¢!
+ 35775‘13 } 25
Gm,17 = ~1303 01C] + a3 C3C) + dnfaza( (3¢} + dnfazat (3¢ — 5773612@" A

Gm18 = —31m3a5°a5C] + Tnaay’ aiGeCl — 28noplal(d — 28nopdalld + 3n2alcic

+ 5m50207G3 (Y — 15m5a301C3C1 + 23m5a3a3¢; + 420mea3(s,
Gm,19 = —315020{C} + 15m3a3a3CC,
gm,20 = Tasa]Calf — 35maadaics,
m 21 = 2737085 a3C3C1,
Qm22 = 7770&2611C2 Gt - 35773”3‘1?(3,
gm2s = 015 CY + 4nbazal (3¢ + 4n§a%a?c5 G = 5mpa301Cs,
m24 = 567}0#1% 2 567)0#2%@ + 67) G+ 107100201(2C1
- 30770a2a1 21 + 46n3asalls + 84077002@1

m,2s = —n3a3°aiC! — 2n8mealladCd — 2n8nealadede,

Gm2s = a5 a1C] + 4nsmoay alaCt — unimoai?a(a¢y,
Imar = —205m003°a3 3¢,
Imas = —15 a3’ai(? + ungmeas’al(3C — n8(u/2) a 2 GG
+ 12 (2/2) a3y GGG+ 3l (w/2) a3 (3¢ — M paudal’ (3G,

{gm,;} s are the principal symbols of the elements of ¥,,.
As a complex manifold, these characteristic varieties eventually coincide

char(M,) = char(M) = char(M,,)
={{a1=a; =0} U{((, =a,=0}U{(ai =G =0} U {(¢, = =0}
In particular, they are holonomic and their singular locus is {a; = 0} U {ay = 0}.
Considering the leading exponents of the polynomials above, we have,
E(4:) = {(2,0,2,0), (3,1,1,1), (0,5,0,3)}
E(%,) ={(2,6,2,2), (2,2,2,0), (0,8,0,4), (4,8,4,0), (2,6,0,4),
(2,6,0,6), (1,6,1,4), (4,12,4,0), (1,6,1,6), (1,7,0,5),
(1,7,0,7), (7,1,4,0), (8,0,4,0), (7,0,5,0), (4,0,4,0),
(5,11,6,0), (6,10,6,0), (5,10,7,0), (7,1,5,0), (7,1,4,1),
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(3,11,1,5), (7,1,4,4), (8,0,4,4), (7,0,5,4), (4,16,4,0),
(4,16,5,0), (3,13,1,5), (4,18,5,0)}

Thus we know from above that the rank of char(M,), char(My) and char(M,,) is 4, 4
and 8, respectively.
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Appendix: B. THE STRUCTURE OF Z(gc)

Here we recall the structure of Z(gc), the center of the universal enveloping algebra
of the complexification of the Lie algebra g in detail.

Many techniques have been developed to find the generators of Z (gc). We review
one of them. The general reference of this method is Bourbaki’s book [1].

This algebra Z(gc) is isomorphic to S(gc)*??, the Ad g-invariant elements of the
symmetric algebra of gc as a vector space. First, we consider the generators in a
commutative situation, and then, through symmetrization, construct the true generators
of the center. In fact, it is well-known that, via Harish-Chandra homomorphism, the
center is indeed isomorphic to S(gc)"® as an algebra. These two maps are different,
but have a property that they keep the symbols, which warrants this procedure. We
should mention that there are many efficient ways of directly finding the generators of
the center, namely, usage of Capelli identity, taking the trace of the finite dimensional
representations, and so on.

Let us begin with the symmetric algebra. By the theorem of Todd-Shephard, S(gc)
has three generators of degree 2, 3 and 4, respectively. (cf. [28, Proposition 2.1.3.2}).

Consider the next matrix of degree 4,

Adg

T(11) | T(12)
(131) T= ( T21 T22 )
where
tFy — E3 — V=1(*E4 + Es)
St [ 3 3 4 4
T(ll) _ IO ! El 1El +tE5—E5 — \/—1("E5+E5)
| =B+ By - Vo1(Ey + Ey) ,. !
B4 By JTI(E+ Ey)| R YUE-VolE
—tE, — Es+ -‘1(tE4— E4)
OH, + V—1'E, — V=1E 3= B3ty \
T(l‘Z) _ ! ! ! + tE5 + E5 — vV “_l(tEﬁ — Eﬁ)
o tEy 4+ Fa+—1('Es - F '
+ ?Es +3E5 + \/—(1(?Ee —41)36) 2He + V=1'Ey — V=1
'Fs + Ey — V=1("E4 — E4)
o0H, —/—1'E, + V-1E 3 3 *
Ty _ t 1 ‘ t ‘ +Es + F5 — /= 1("Es — Es)
TEy—E3—-1(E;— E J— ’
k + ‘;55 + ;:75 + \/—(1(‘1456 - 4E)s) 2y — -1y + V- 1By
~tEy + B3+ v —1{(*E4 + Ey)
In + /=1t Il 3 3 4 4
T(‘Z‘Z) . 0 + 1 El + 1E1 + tEs - E5 — -—1(6E6 + EG) \
| Es-Es+ V-U(E.+E
T, + By~ \/:(T(?Ec +41)56) —lo+V-TE + V=15

This matrix 7' = (T};) should be considered as the AL (C)-valued function on g, as
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follows:
T(X) = (1/46(T;;X)).
We can easily check that this matrix has the next property:

(132) T'X)=X
for X € g. This implies
(133) T(Ad(9)X) = ¢T(X)g™".

Consider the characteristic polynomial ®1(t) of T
Or(t) = det(tly — T) = t* + P12 — Mt 4- @V,

Then ®%'"s are all in S(gc)*® because ®,p,-1 = ®7 by (133). For example, we obtain

the Casimir element <1>§? ) Its explicit formula is given by the following lemma.

Lemma B.1.
1
o) = H? + H2 + 515 — "BaBy — 'B\Ey + 2(*EyEs — 'EyEy + ' B3 Bs — B By).

By symmetrizing these @g)‘s, we get the generators of Z(gc). In particular the
symmetrized form L of the Casimir element (D(q? ) is given by

Lemma B.2.

1 1 N
(139) L=Hi+H; + I -5 3 (B/'E;+'E;E;) + }_(B'E; + 'E;Ej).

2 =12 7=3
This coincides Equation (62).
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