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Chapter 0

Introduction

In this paper, we study twisted (co)homology groups associated with hypergeometric
functions using iterations of integrations. Hypergeometric functions have multiple in-
tegral representations and can be regarded as pairings of twisted cycles and twisted
cocycles.

We can derive various properties and formulae of hypergeometric functions by apply-
ing the theory of twisted (co)homology groups. For instance, we can interpret quadratic
relations of hypergeometric functions as quadratic forms of intersection matrices of
twisted (co)cycles as shown in [3].

The origin of the general theory of twisted cohomology group is Deligne’s works in
1970’s. However, there was not a systematic method of explicit computation of intersec-
tion matrices until quite recently. As to explicit computation of intersection numbers
of (co)cycles, we have a long wait for recent results motivated by a study of period
mappings. In [3], K. Cho and K. Matsumoto gave a method of evaluating intersection
numbers for twisted cohomology groups associated with configuration spaces on the
1-dimensional projective space. In [15], K. Matsumoto developed a method to eval-
uate intersection numbers for twisted cohomology groups associated with hyperplane
arrangements in general position. In [12], M. Kita and M. Yoshida derived a formula of
intersection numbers for twisted homology groups associated with hyperplane arrange-
ments in general position. For these methods and formulae, we refer to the book [?] of K.
Aomoto and M. Kita on the modern theory of hypergeometric functions. However, these
methods and formulae are hard to apply for degenerate arrangements unless we give
a procedure of blowing up a given devisor to a normally crossing devisor. Moreover,
in order to perform a computation of intersection numbers, we need some geometric
insights.

In this paper, we study twisted (co)homology groups with locally constant sheaves
of which ranks are more than one and apply them to study hypergeometric functions
associated with degenerate arrangements; we study monodromy groups and intersection
numbers for hypergeometric functions associated with degenerate arrangements such as
»Fp—1 and the Selberg type integrals. We regard a multiple integral representation
of a hypergeometric function as an iteration of integration, that is, a single integral
representation. We regard the single integral representation as a pairing of cycles and
cocycles with a locally constant sheaves of which rank is more than one. For example,
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consider the following two integral representations.

Y5 (2 — t)Ms3(t — 5)M2(1 — s)Mdsdt

0<s<t<z
= / (e = )M f(s)dt,  f(s) = /t M (t — s)*2(1 — s)Mds.
0 0

We identify the integral of the left hand side with a pairing of cycles and cocycles with
a locally constant sheaf of rank 1 generated by t*s(z — t)Ms%(t — 5)*2(1 — s)™ and
the integral of the right hand side with a pairing of cycles and cocycles with a locally
constant sheaf of rank 2 generated by %5 (x — t)M f(s).

We remark that an integral whose kernel is written by the Gauss hypergeometric
function was treated in Takano [24] to compute the monodromy group of Appell’s Fy. We
also note that n-folds integrals of Selberg type have single integral representations whose
kernels are written by (n—1)-folds integrals of Selberg type. K. Aomoto utilized this fact
to study Gauss-Manin connections of Selberg type integrals ([1]). These are successful
cases of an application of iterated integral representations and we are going to give
more general and systematic discussions to study monodromy groups and intersection
matrices.

The chapter 1 and 3 are based on [20]. In chapter 1, we explain a theory of twisted
(co)homology groups with a locally constant sheaf of which rank is more than 1. A note-
worthy fact is that a certain quadratic form give a duality of locally constant sheaves.
We give a definition of intersection numbers for twisted (co)cycles with a locally con-
stant sheaf by utilizing the quadratic form. By the definition, two intersection numbers
defined by multiple integral representations and intersection numbers defined by single
integral representations agree.

The chapter 2 is based on [18]. In chapter 2, we construct an explicit basis of twisted
homology groups H; (T, Ker V*) on a 1-dimensional space T'= C\ {z1,...,x,} and, as
an application, we compute monodromy matrices of hypergeometric functions ,F},_;.

In chapter 3, we explain a method to evaluate intersection numbers of twisted cycles
for hypergeometric functions 3F, and for 2-dimensional Selberg-type integrals. The
intersection matrix for oF} or the 1-dimensional Selberg-type integral determines a
quadratic form which gives a dual pairing of locally constant sheaves associated with
these functions, which yields 3F5, or the 2-dimensional Selberg-type integral. Therefore,
we can evaluate intersection numbers for 3F5 or 2-dimensional Selberg-type integral by
utilizing the intersection matrix for o F} or the 1-dimensional Selberg-type integral.

The chapter 4 is based on [18]. In chapter 4, we study intersection numbers of
a twisted cohomology group H'(T,Ker V.) for a Selberg-type arrangement and get a
recursion formula of intersection numbers on the dimension n, which is derived by a
recursive structure of intersection matrices and dual pairings among locally constant
sheaves of which rank is more than one. Using a computer algebra system, we can also
get explicit intersection numbers for small dimensions.

In appendix, we discuss an algorithm and an implementation for a computation of
fnbc basis defined by M. J. Falk and H. Terao ([7]). The fnbc basis is a basis of
a twisted cohomology group for a degenerate arrangement. The implementation was
useful for studying examples in this paper.



Chapter 1

Theory of twisted (co)homology
groups

1.1 The dual of a locally constant sheaf

Let T be a complex manifold of dimension r. For a given locally constant sheaf V' of
rank m on T, the dual of V is defined by Homc(V,C). The dual is again a locally
constant sheaf of rank m. We are given a locally constant sheaf as a kernel sheaf of
a connection. In order to compute the intersection number for cycles appearing in the
special function theory, we need an explicit presentation of the dual locally constant
sheaf as a kernel sheaf of a connection. Let us see examples of the explicit presentation.

Example 1.1.1. Let V = d 4+ Q be an integrable connection (V oV = 0) on the
trivial vector bundle O @ C™ (free O-module of rank m) on 7" and V* = d — Q) be the
adjoint integrable connection on the trivial vector bundle. Here, €2 is a matrix valued
holomorphic 1-form on 7. Let us denote by KerV the associated sheaf on T' to the
presheaf

KerV(U)={feOU)2C™|Vf =0},
puw :KerV(U) 3 f— f e Ker V(W)

which we call the kernel sheaf of V. For f € Ker V(U) and ¢g € Ker V*(U) where U is

a domain in 7', we have

d(f,g) = (df,g) + (f,dg)
= —(Qf, 9) + (f,"Q9)
= _(fthg) + (f:th) =0

where (z,y) = >, z;y;, x,y € C™. The inner product (f,g) is constant, then (-, g)
defines an element of Home(Ker V(U), C), i.e.,

(,+) : KerV x KerV* — C

is the sheaf homomorphism. We can prove that the quadratic form defines the sheaf
isomorphism between the dual Home(Ker V, C) and the locally constant sheaf Ker V*.

7
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Example 1.1.2 (twisted Riemann’s period relation [3, Sections 3 and 4]). In
our point of view, the twisted Riemann’s period relation ([3]) is nothing but an explicit
expression of the pairing of two sheaves which are dual each other. Let us figure out
the pairing of two sheaves by an example.

Set
U= ta(l _t),y_a(l —l't)_ﬁ, 0477—@,5,7—5 gZ
LAt @
S T
o — dt _ dt B 1—=x 0t
To\t-1 -1 a-n@—at)
Note (1 m) (U‘Ul)_uwz,%ﬁ(l—x)dﬁ(u 1w1)—u wgand ( + 1=+ 7_t>
Assumel<1/x and define cycles v = [0, 1], =[1,1/z], ~3=[1/z,+00] and pe-

riod matrices

P+ — fw uwi f% uw ,
2 Uw2 f73 UwW9
u*1w1 u*1w1
P = ( 2 3 ) .
-1 ~1
u “wWo u “wWo
Since the integral fy utw, satisfies the Gauss hypergeometric equation [0,(0, £y —

1) -z, £ )0, £B)]f =0, 6, =ai, wehave V. P, =0 and V_P_ = 0 where
Vi=d—-Q, V_=d+ and

(0 0 dx 0 B d(z —1)
Q_(a —’y)?Jr(O a+ﬁ—’y> r—1 "

The sheaf Ker V_ is isomorphic to Homc(Ker V., C) ; the isomorphism is given by the
quadratic form

1
S* ="'t e C? 1.1
(fag) 27T2f ch 95 fag ( )
where I, is the twisted intersection matrix of cocycles wy and wy ([3, Theorem 1));
1 1 1
I, = ((Wow) (whw)) R
(W, w1) (w2, wa) o -5t 3=

The matrix I, does not depend on x because of our choice of bases of the rational coho-
mology group. For given g € Ker V_(U), S*(+, g) is an element of Home(Ker V. (U), C);

S*: KerVy xKerV_ — C

is the sheaf homomorphism and non-degenerate. The correspondence gives the isomor-
phism between Homge(Ker V,C) and Ker V_. Surprisingly, the value of S* can be
expressed by the twisted intersection number defined by [12] of the two cycles by virtue
of the twisted Riemann’s period relation ([3, Theorem 2]):

S*(pi,p;) =reg(y; ®@u) - (p@u )
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where reg(y; ® ) is the regularization of the twisted cycle v; ® u ([12] ) and

-1
= f'” e and p; =" v 1.2
b; (f% ULUQ) p] f’yj U_l(,UQ . ( . )

Note that we have S*(f, ) = S*(f,Qg), f,g € C* and QI ' = 1,'Q, 1,'Q = Q.

1.2 Definitions of the intersection number of twisted
(co)cycles

Consider two integrable connections Vi = d 4 €1, and V_ = d — Q)_ on the triv-
ial vector bundle O ® C™ on T. We assume that Ker V_ is isomorphic to the dual
Home(Ker Vi, C) of Ker V. and the isomorphism is given by the O-bilinear extension
of a non-degenerate bilinear form
S C"xC"—C.
The extension is also denoted by S and the m x m matrix that defines S is also denoted
by S.
For f € Ker V (U) and g € Ker V_(U), we have
dS(f.g) = S(df,g) + S(f.dg)
=—=5(Q4f,9) + 5(f.2-g) = 0.

Then, for any f,g € O ® C™, we have
S(Q4f,9) =S(f,Q-9), (1.3)

which means

Q.8 - 50 =0. (1.4)
Let £P be the sheaf of smooth p-forms on the real differentiable manifold 7" of 2r di-
mension. The bilinear form S can be extended to the sheaf homomorphism

S (EP@C™) x (E170C™) — EPTY
and satisfies the relation
S f g) = (=1)"S(f,-g)
for feEPRC™ and g € E1x C™.
The next lemma is the key lemma to define intersection numbers properly.

Lemma 1.2.1. If Ker V. and Ker V_ are dual by the bilinear form S, then Ker V*,
and Ker V* are dual by the bilinear form S* that is defined by the matrix 1S~!;

Ker V., 2 KerV_
E7 EY

Ker Vi <5 KerV*

where FE is the identity matrix and M <2+ N means that the matrix B gives a non-
degenerate bilinear form M x N £, C and V'’ is the adjoint connection of V.
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Proof. Take
f e (Ker V4)(U) = {f € OW)™ | (d—"2,)f = 0}
and
g€ (Ker V2)(U) ={g € OU)™|(d+Q_)g = 0}.
We have
d('f's™g)
=/ (df)'S g+ 115 dg
:tf(Q+tsr—1 . ts—th_)g.
Since S*(Q 1S~ —1S7HO S =10, 5 — SO_ =0, we have d(*f'S~1g) = 0. O

Let us quickly review the cohomology theory for locally constant sheaves (see e.g.

[12]).

We take fine resolutions of Ker V4 :

0 — KerVy — &°@Cm Yo Yy ErC™ — 0
0 — KeaV. — D'oCm Y5 ... Y5 proom — o,

where E? is the sheaf of smooth p-forms on the real 2r-dimensional manifold T" and DP
is the sheaf of currents of degree p on T
Then we have

Ker(I(T, £ ® C™) 5 (T, £7+! @ C™))
VLI(T, &1 Cm)

_ Ker(I(T, D" © C™) ~5 T(T, D @ C™))
- V.I(T,Dr 1 ®Cm) ‘

HP(T,Ker Vi) ~

The cohomology with compact support H?(T, Ker V) is isomorphic to

Ker(I(T, €7 © C™) 5 (T, E7+ @ C™))
V.I(T, 7 @ Cm)
_Ker(I(T,D? ® C™) 5 T(T, D2+ ® C™))

- V.I(T, D2 @ Cm)

where £? is the sheaf of smooth p-forms with compact supports on 7" and D? is the sheaf
of currents of degree p with compact supports on 7. The natural inclusion I'(7, £ ®
C™) — I(T,E? ® C™) induces a morphism

HP(T,Ker V) — HP(T,Ker V).
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These two cohomology groups agree under conditions: for example, suppose that the
complex manifold 7 is a submanifold of a complex manifold 7 of dimension r and
D = T\ T is a normal crossing divisor of T'. If the connection V. has logarithmic poles
along D and the monodromy along each component of D does not have unit eigenvalue,
then we have

HP(T,KerVy) ~ HY(T,Ker V)

(16, (1.6)]).

It follows from the existence of two fine resolutions of Ker V. that the two expres-
sions of r-dimensional cohomology groups

H (I(T, & ®@C™), V) and H'(I'(T, D @ C™), V)

are isomorphic (resp. cohomology groups expressed by the global sections of £, and
D.). Hence, any cocycle ¢ in I'(T, D" ® C™) can be deformed to a smooth cocycle
¢ eT(T,E" @ C™) modulo VoI'(T, D" ! @ C™). We call ¢ the regularization of £ and
denote it by reg(&).

We define intersection numbers among elements of H. (T, Ker V) and H" (T, Ker V_).

Definition 1.2.1 (cf. [12], [9, p.224]). For [{] € H"(I(T,&, @ C™), V) and [] €
H"(I(T,& ® C™),V_), the integral

€] ] = / )

is called the intersection number of the cocycles [£] and [n].

The intersection numbers depend only on cohomology classes. See [12, 1.5] for the
detail.
Let us define twisted homology groups and intersection numbers among cycles. Once
the duality between Ker V* and Ker V* is given explicitly by S* = S~! as in Lemma
1.2.1, we may just follow [12] to define the intersection number.
Let A be a p-dimensional oriented smooth simplex in 7". We denote by C,(T, Ker V*)
the space of formal finite sums of A ® u, where u,y € limacy(Ker V¥)(U) and by
CJJ/ (T, Ker V% ) the space of formal locally finite sums of A®u} where u} € limacy (Ker V4 )(U).
The pairing between a p-chain and a vector valued p-form ¢ is given by the linear ex-
tension of the following pairing between A ® u{ and ¢ :

(ph@u) = [ (ko)
Here (-, -) is the standard inner product.
We define the boundary operator dyy by the C-linear extension of the boundary
operator

8v2«t (A X Ui) = (0A) ® (ui)km'

Then, we have the twisted Stokes theorem (Vip,0) = (¢, v+ 0) for 0 € C\(T, Ker V1)
(resp. 0 € CY (T, Ker V1)) and ¢ € E771 @ C™ (resp. ¢ € EF71 @ C™).
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The homology groups of the complexes C.(T,Ker V%) and CV (T, Ker V%) are de-
noted by H.(T,Ker Vi) and HY (T, Ker V7).

We can regard twisted cycles as a current. In fact, for ¢ € CY(T,Ker V%), the
functional

F, : o—(p,0), oel(T,&)aC™

defines a vector valued current of degree r. We denote by (F,, ) the evaluation by ¢.
For ¢ € €71 @ C™, we have

<dFU - tQ—l-Foa ¢>

(_1)r+1 <Fa> d¢> - (_1)T<Faa Qer)
(=) (Vi,0)

(=) 9y 0,9) = 0.

<viF¢T7 ¢>

Therefore, we have a morphism

HY (T, Ker V%) o [o] — [F,] € H'((T, D' @ C™), V%) = H(T, V).
Similarly, we have

H.(T,KerV*) > [r] —> [F;] € H(I'(T, D, @ C™),V*) = H.(T,V*).

Let us take a cycle
v € CH(T,Ker V%)

and a cocycle
o €Ker(Vy : (T, @ C™) — I(T, & @ C™)),

the pairing
(p,7) = Z/A(UZ,CP), Y= ZA ®ugf, uf € Ker Vi (A)
A

is called the hypergeometric function. By virtue of the twisted Stokes theorem, the value
of the pairing depends only on the cohomology and homology classes.

If we regard v as a current F),, then the hypergeometric function (¢,v) can be
regarded as the pairing of elements of Ker V. and Ker V7 ; for

o €Ker(Vy : T(T,E @ C™) — I(T, & @ C™))

and
E, eKer(V: : (T, D" ®C™) — I'(T,D;"' @ C™)),

(p,7) is (F, »).

Example 1.2.1. Let us consider the function

Hap) = | seth(1 - 5 — 1y — 2

§>0,¢>0,5+t<1 st(l —s— t)'
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The integral can be written as an iteration of single integrals;

dt
t1—1)

1
Ie, B,7) = /0 (e, B, )

where
= 1—1t)d
u*(t) - tb’/ Sa(l_s_t)vﬂ
0 s(1—s—1t)

= - [en-g gt

The function u*(t) satisfies Viu® = 0 where

. B oa+y
Ve =d (t ) dt.

We regard (1C_ltt) as an element of H'(C\ {0,1}, V) and we have

t

ra.6.0) = (g s, ©07() ).

dt
t(1—1)
Definition 1.2.2. For [o] € HY (T, Ker V*) and [r] € H,(T,Ker V*),

(0] [] := [reg(F,)] - [reg(F,)] = / 5 (reg(F,), reg(F))

is called the intersection number of the cycles [o] and [7].

When HY (T, Ker V%) ~ H,(T,Ker V%) and HY (T, Ker V*) ~ H,(T,Ker V*) hold,
we denote by “reg” the isomorphism from the locally finite twisted homology group
to the twisted homology group. Under this assumption, we can define intersection
numbers on HY (T, Ker V) x HY(T,KerV*), H,(T,Ker V*) x HY(T,Ker V*) and
H,.(T,Ker V") x H.(T,Ker V* ) through the isomorphism reg.

Let ¢ and 7 be bases of H"(T,KerV.) and H,(T,Ker Vi) respectively. We
assume that H"(T,KerVy) ~ H"(T,KerV.) and H,(T,Ker V%) ~ HY(T,Ker V%).
We also assume that the dimension of these homology and cohomology groups as C-
vector spaces is s. We define four s x s-matrices

Py = (0% s P = (@059 D Len = (0] [0 Dwrs In = (1021 100 Do

If these matrices is well-defined, then we have the following twisted period relation under
our definition of intersection numbers.

Theorem 1.2.1 ([3]).
I,="P'I,'P_.

We can prove this theorem in a similar way of the proof given by [3].
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Chapter 2

Monodromy of hypergeometric
function ,F,_;

2.1 Construction of bases of a twisted homology
group

In this section we consider a construction of bases of a twisted homology group H; (T, Ker V*).
Let pi1,...,pn be linear forms in C* and D a hyperplane arrangement defined by
[[l,pi =01in C’. We suppose that the hyperplane arrangement D is generic. Then,
for a derivation V : 7 — dr — Y a;(dpi/p;) A 7, the dimension of H,(C*— D, Ker V)
is equal to (”21) under a certain condition on the parameters ay,...,®, (see e.g. M.
Kita [10] Theorem 2). We prove a similar proposition to this theorem later when the
rank is more than one and the dimension is equal to one.
Now let z; (1 < i < n) be distinct n points in C and set 7= C \ {z1,...,2,}. We
denote by S* f the analytic continuation of a section f of Ker V* along any loop .S inside
T.

Theorem 2.1.1. Let S; be a loop around the point x; for each i. If there exists S;,
such that det(S;, —id) # 0, then dime H, (T, Ker V*) = m(n — 1).

Proof. Without loss of generality, we can assume that det(S; —id) # 0. Let P; be
the base point of the loop S; and P, P; the oriented segment from P, to P, in T. We
define the triangulation K of T' = ((JI_, Si) U (Ui, P1P;) by choosing two consecutive
points ); and R; for each S; as in the following figure and by regarding S; as the
sum of three simplices P;Q;, Q:R;, and R;P;. Since T is a deformation retract of T,
Hy(T,KerV*) ~ H,(T,KerV*). Let U be a simply connected open set in 7" which
contains | J;_, PP UJ;_, P,Q;. Any bounded cycle o of Cy (K, Ker V*) is written as

0= (PQ:® v+ QR @v,+ RP,v)+ Y PP ow,

i=1 1=2

where {w;,v;} is a set of sections of Ker V* on U, {v}} is a set of sections on a neigh-
borhood U/ of the path P,Q);, and {v/} is a set of sections on a neighborhood U}’ of the

15
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path Q;R;. Since

n

050 = (Qi ® (v; — V) + R @ (v] — o))

i=1
—l—ZPi@(v;’—vi—i-wi)—l—Pl vl—vl—sz
=0,

v; is the analytic continuation of v; along the path P;(Q); starting from P; and v/ is the
analytic continuation of v, along the path @;R; starting from @;; that is, v/ = Sv;.
Moreover, it holds that w; = —(S; — id)v; for each i = 2,...,n and that

vy = (S} —id)™! (Z wi>

by the assumption of the theorem. Thus, any bounded cycle ¢ depends only on a
set {vg,...,v,}. Since dimc I'(U, Ker V*) = m, it holds that dim¢ H; (K, Ker V*) =
m(n —1). O

The base given in the proof of Theorem 2.1.1 may contain cycles in the form
Si@Rif+ PR f+Si@Rf (5 —id)"f=0), (2.1)

where Ry and R, are constant matrices and f is a section of I'(U, Ker V*). We cannot
compute monodromy groups in the case that there is cycles in the form (2.1) by using
our method explained in latter sections of this paper. So, we add technical conditions
to construct a base which contains no cycles in the form (2.1).

Under the assumption of Theorem 2.1.1, we assume the condition that, for each ¢
such that det(S; —id) = 0, there exists a decomposition I'(U, Ker V*) = I';  I'/ so that
det(S}|r, —id |r) # 0 and that S}[r» = id [rv. Now assume that det(S} —id) # 0 as in
the proof of Theorem 2.1.1 and construct a set {o;;} of the bounded cycles as follows.
From the proof of Theorem 2.1.1, any bounded cycle depends only on a set {vs, ..., v,}.
If det(S; —id) # 0, then we take a basis {u;; | 1 < j < m} of I'(U, Ker V*) and define

(J —(SF —id)!u,;. For each set {0,... ,vz(j), ..., 0}, we define a cycle oy, that is,
Oij = Sl ® (Sik - id)ilui]’ + Plpl & U5 — Sl (%9 (S* — id)*luij (1 S ] S m) (22)

If det(S; —id) = 0, then let {u;; | 1 < j < dimc [} be a basis of I'; and {w;; | dim¢ I}, <
Jj < m} a basis of I'/. We define

U(j) _ _(Sz*’F'L —id ’H)_luij (1 S ] S diHl(C F;),
Uij (dimc I, < 7 < m).
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Figure 2.1: T and U



18 CHAPTER 2. MONODROMY OF HYPERGEOMETRIC FUNCTION pFp_4

Then, for each set {0, ... ,vi(j), ..., 0}, we define a cycle 0, that is,
05 = S1 @ (S) —id)"tuy; + PP @ uyy (2.3)
=S5 @ (S| —id[r)tuy (1< 5 <dimeTy),

From the proof of Theorem 2.1.1, clearly, the set {0;; |2 <i<n, 1 <j<m}isa
basis of Hy (T, Ker V*). Thus, we have the following theorem.

Theorem 2.1.2. Suppose that det(S} —id) # 0 and that, if det(S] —id) = 0 for some 1,
then there exists a decomposition I'(U, Ker V*) = I'; @ I'{ so that det(S}|r, —id |r/) # 0
and that S}y = id [py. Then {oy; |2 <i<n, 1 < j <m} is a basis of H,(T, Ker V*).

We give a few remarks. First, due to Theorem 2.1.2, the homology group H; (T, Ker V*)
has a natural decomposition. Let Pr(H; (T, Ker V*)) be the subspace of H,(T, Ker V*)
spanned by o;; of (2.2) and (2.3). And let Deg(H, (T, Ker V*)) be the subspace spanned
by 0;; of (2.4). Then Hy(T,Ker V*) = Pr(H;(T,Ker V*)) & Deg(H: (T, Ker V*)). We
call Pr(H (T, Ker V*)) the primary part and Deg(H,(T,Ker V*)) the degenerate part.
We explain implicit meaning of this decomposition in Theorem 3.2.1.

Second, we recall the notion of regularization. Let (z1,z;) be the oriented polygonal
arc o1 P P;x; which includes neither end points. The analytic continuation of u €
I'(U,Ker V*) starting up from P, along P;Px; and along Pix;, are also sections of
Ker V*. We write those by u again. Under Theorem 2.1.2, we have a linear map “reg”
from H{/ (T, Ker V*) to Hy(T, Ker V*) by

reg((z1, ;) ® uij) = 055 and  reg(S; ® u;j) = 0y,

where {0;;} is the basis of H, (T, Ker V*) as above. The map “reg” is an isomorphism of
C-vector spaces and was called the regularization in Chapter 1. Moreover, the twisted
cycle o = reg((x1, ;) ®u) depends on the base point as follows. Let P/ be a point on the
path (x1,2;) and assume that there exists v € I'(U, Ker V*) such that (S, —id)v = u,
where S}, is a loop around z;, with the base point P]. Then there clearly exists a
decomposition of cycles as

reg((z1, ;) ® u) = reg((z1, %) ® u) + reg((zy, T;) ® u),

where (z, x;) is the polygonal arc z P} P;z;.

2.2 Smooth deformation

We call

Xo =\ J{(,- . 20) | 71— 25 = 0}
i#]

the pure braid space of dimension n. The fibre of the canonical projection

p:Xpo1 2 (x,t) = (21,.. ., 20, t) —> (21,...,2,) =2 € X,
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is denoted by T'(z)

We give an m x m-matrix-valued holomorphic 1-form Q(zy, ..., z,,t) on X, 1 such
that V, V. = 0, where V,,u = d, ;u—QAwu and d,, is the exterior differentiation with
respect to both xq,...,z,, and t. Let S = Ker V,;. The pull back Q% (t) = .*Q(z,t) by
the natural inclusion ¢ : T'(x) < X, 41 is an m X m-matrix-valued holomorphic 1-form
on T'(x). Put £, = Ker V,, where V,u = dyu — Q%(t) A u. Then we have S|r) = L,.

Let m(X,,a) be the fundamental group of X, with a base point a. If we can
smoothly deform a base of Hy(T(z), L,) along an element v of m(X,,a), then we get
the monodromy representation of (X, a):

m(Xn,a) v +— " € Aut(H(T(x), L,)).

In the actual computation, we need to define rigorously the notion of smooth defor-
mation. Although we defined twisted homology groups basing on a smooth triangulation
of the base space, it is more convenient to regard twisted cycles as singular chains to
define smooth deformation. We say that a mapping A is a singular simplex in the fibre
T(x)if A:[0,1] = T'(z) is a C* mapping. Let f be a germ of £, at A(0). We write
the formal pair of A and f by A ® f and call it the singular chain.

Suppose that K is a triangulation of the image A([0,1]) and that f; € I'(U;, £,) is
analytic continuation of f along the image A([0,1]) in T'(z), where Uj is a neighborhood
of a simplex A of K. We identify the singular chain A ® f(t) with the chain ) INEAYL
fi(t).

We next define the smooth deformation of paths and the continuation of sections of
a locally constant sheaf.

Definition 2.2.1. Suppose that a path v(s) : [0,1] — X, and a singular simplex Ag(u)
in T'(7(0)) are given. A singular simplex A;(u) in T'((1)) is called a smooth deformation
of Ag(u) along ~ if there exists a smooth mapping F : [0, 1] x[0,1] 3 (s,u) —> F(s,u) €
X1 satisfying the following conditions:

1. F(s,-) : [0,1] — T(y(s)) € C is a singular chain in the fibre T'(y(s)) for all
0<s<1.

2. No(u) = F(0,u) and Aq(u) = F(1,u).
We denote F'(s,u) by Ag(u).

Definition 2.2.2. Let v(s) be a path in X,, and A; a smooth deformation of A
along . Put £(s) = (y(s), &s(0)), i.e., £ is a lift of v to a path in X,, ;1. Suppose that
fi (i =0,1) be a germ of Loy at A;(0). fi is called the continuation of fy along & if, over
a simply connected open set U C X,,,; which contains ¢, there exists g(s,t) € ['(U,S)
which satisfies the following condition: for ¢ = 0 and ¢ = 1, f; is equal to the germ
(908, 1) |r(+(ip)) of Loy at 2A;(0) where g(s,t)|7¢y)) is a section of L,;) in a neighborhood
of A;(0) in T'(v(2)).

We can now define the smooth deformation of Ag(u) ® f4(t).

Definition 2.2.3. Let v(s) be a path in X,, and A; a smooth deformation of A along
v. /A1 ® fi is called the smooth deformation of ANg® fo along v if f; is the continuation
of fo along the path &(s) = (v(s), As(0)) in X, 41.
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/\s

Figure 2.2: the lift £ of

The finite composition of smooth deformations defined above is also called a smooth
deformation.

Example 2.2.1. Put n = 2 and we regard each configuration of 2 points in C as a point
in Xs. Let v be a path in X, such that the point x5 encircles the fixed point x; in the
positive direction. Suppose that A is a singular chain that encircles the point x5 in the
positive direction. In this case, the smooth deformation of A along the path v is again
A. Let us consider the lift £ of 7 in the (x1,x9,t)-space X3. £ is the path such that
the points t and x5 encircle the point x; in the positive direction. Consider the twisted
chain A ® Log(t — x1). Since the analytic continuation of the function Log(t — x;)
along the path ¢ is Log(t — z;) + 2mv/—1, the smooth deformation of A @ Log(t — 1)
is A @ Log(t — x1) + A @ 2my/—1.

2.3 The generalized hypergeometric function ,F, ;

The generalized hypergeometric function

(ar;n)(ag;n) - (ap;n) n
“ (b2;n)(b3;n) - - (by; m)n!

Fp_l(al, c. ,ap;bz, c. ,bp;Z) =

n=

p

has a single integral representation

[(ovp—2)I'(asp-1)
F,_1(ar,...,a,bo,...,0,;2
F(agp_2+a3p_1)p p 1( 1 pr V2 D )

z
(6% A3p— a3p— . .
=z 3”/ to=2(z — )%=t Fy o(ar, ..., ap-15b2, ..., by_1: )
0
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Figure 2.3: A ® Log(t — 1) and

where we use the notation: asj_o = a;, azj—1 = bj — a;j, asz; = —b; and put b; =
1 for simplicity. Let ¢; = exp(27r\/—_1ai). Since ag;j_o + asj—1 + as; = 0, we have
C3;—2C3j—-1C35 = L.

We consider the 1-dimensional subspace Xj; = {(0,1, 2) | z # 0, 1} of the braid space
X3 and the projection

Xy DX, ={(0,1,2,t) | 2,t #0,1, 2 #t} — X} C X3.

Then the function t*r-2(z — ¢)*»-1,_1 F, o(a; b;t) defines a locally constant sheaf S of
rank p — 1 on X and we regard the generalized hypergeometric function ,F,_; as a
pairing of an element of H;(77!(z),S,) and an element of H'(77!(z),S}).

Thus, we can consider twisted cycles on the 1-dimensional space with a locally
constant sheaf of rank p — 1 instead of twisted cycles on (p — 1)-dimensional space with
a locally constant sheaf of rank one and to compute monodromy groups by utilizing the
general arguments given in Section 2.2.

In this section, we consider two cases oF} and 3F5 to clarify our idea. The compu-
tation in the general case will be given in the next section.

Example 2.3.1. We review a computation of the monodromy for the Gauss hyper-
geometric function. For simplicity we rewrite the integration of Example 2.2 by the
transformation ¢ — s/x and a < 3.

u(s/x) = sP(x — s)77P(1 — ) x 277,
Namely, the Gauss hypergeometric function has the integral representation
oy + as) xds

F(a4)F(a5)xa6 /o Hr T =™ s(x—s)

We define a locally constant sheaf which corresponds to this integration as follows. We
put the holomorphic 1-form

2F1(a1,a2;b2;33) =

d d(x —
S r—Ss 1—s
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Figure 2.4: 71,72 € m(C\ {0,1}, x)

over T'(x) = C\ {0, z,1} and define the covariant derivation
ViiTr—dr — QAT

Suppose that s, a4, and as are not integers. Let U = {s € C | Ims < 0} be the
lower half plane and u a branch of s*(z — $)**(1 — 5)* in U. We should notice that
5% (x—s5)*(1—s5)* is multi-valued in a neighborhood of z. Therefore, we identify = with
the point z; of Theorem 2.1.2. Let vy = reg((z,1) ® u) and vy = reg((0,z) ® u). Then
{v1,12} is the basis of H,(T'(z), Ker V*) which corresponds to the compact chambers of
the arrangement {s | s(x — s)(1 —s) =0} in R.
The monodromy group acts on the basis {v1, v} of Hi(T(x), Ker V*) as
. 1 Cg 0
M (v, ve) — (V1,V2)C_6 (6506 1 1) )
CoCsy —(CQ — 1)>

s (v, v9) — (11, 1) ( 0 1

Here, v1(s) is the closed curve around the point 0 in positive direction and 7,(s) is the
closed curve around the point 1 in positive direction as drawn below.

Put
ds d(z —s) xds
Wy = — — = )
s T —s s(z —s)
xds
=— 1 .
Wo (aux + (ap + )S)S(SL‘ —
Then we have x% (xo‘6 fuwl) = 2% [uwy. We already defined the pairing (v;, wy,) =

fy_ uwy. To define the covariant derivation for the case 3F5 in the next example, we rely
J

on that the pairing z* (<Vj ’ wl)) satisfies the formula:

(Vjv(‘UQ)

0 (210 o) T o awven =) T ()

The formula is also induced by the differential equation

A ) e (oL o) (oL 0
Tar \ Tz T T\ T \Far )YV
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t—s=20

s—1=

AWM

t=20 t—y=0

Figure 2.5: the arrangement D = {st(t — y)(t — s)(s — 1) = 0}

Example 2.3.2. As we have seen, 3F; has an integral representation

['(a7)I(as)

m3F2<a17a27a3; b, bs; Z) = Zag/o ta7(2 - t>a82F1<a17a2§ bz;t)

t(z—1t)

We put the matrix-valued holomorphic 1-form

G_ (0 1 \d [ 0 0 d(1— 1)
—\0 —ag — 1 t —qi0y g+ a5 —2 11—t
(074 0 @ g 0 d<Z_t)
+(0 a?)t+(0 Oé8> z—1

over T'(z) = C\ {0, z,1} and define the covariant derivation

V:irt—dr—QAT.

Suppose that a7, ay — ag, ag, and as + a; are not integers. For the pairing ((Zja Z1§)
iy W2

of Example 2.3.1, put g; = t*6+°7(z — ¢)°s (EZ]’Z;D, it is clear that V*¢; = 0.
E

Now we consider the arrangement D = {st(z—t)(1—s)(t—s) = 0}. By the definition
of vy, the twisted cycle reg((z,1)®q,) corresponds to AW @127 (z —t)*su(t, s). Here AW
is the compact chamber in D enclosed by the hyperplanes {z —t =0,t —s=0,1 —s =
0}. In the same way, let A be the compact chamber enclosed by the hyperplanes
{t=0,2—t=0,t —s5s=0,1—5=0} and A® the compact chamber enclosed by the
hyperplanes {z —¢ = 0,t —s = 0,5 = 0,¢ = 0}. Then reg((0, z) ® ¢;) corresponds to
AUTD @ o7 (2 — t)%su(t, s) (j = 1,2) (Figure 2.5).
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.O.F@
Figure 2.6: {o1,...,04}

Define four bounded twisted cycles:

o1 =reg((z,1) @ ¢1),
oy =1eg((0,2) @ ¢1),
o3 = reg((0,2) @ g2),
o5 = SH1) @ {(c2 = 1)u — (cacs — 1)},

where S!(1) is the circle of the radius ¢ with center 1. The set {oy,...,04} is a basis
of Hi(T(z),Ker V*) by Theorem 2.1.2. Moreover, we notice that {oy, 09, 03} spans the
primary part of H,(7T'(z), Ker V*) and corresponds to the compact chambers in D.

For the same 71,72 € m(C\ {0, 1}, 2) as in Example 2.3.1, the monodromy group
acts on the primary part as

Co 0 0
. 1
Vit (01, 09,03) — (01,02,03)0— CgCy — Cg Cé 0],
9 1— C5Cq CrCg — 11

CaC5Cg 1-— CoCr Co — 1
Y5 (01,09,03) —> (01, 09,03) 0 1 0 :
0 0 1

This fact in a more general setting will be proved by using an induction in the next
section.

2.4 The monodromy group of ,f,_;

We put the (p — 1) x (p — 1)-matrix-valued holomorphic 1-form

0 1 0o --- 0
o dt L : d(l—1t)
0 1 t 0 0 1—1
0 —Bl —Dp_2 AO AP,Q
3p—2 A3p—1
Qizp— dt Qzp— d(z —1
n 3p—2 dt 3p—1 | (z—1t)
t . z—1

Q3p—2 Q3p—1
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over T'(z) = C\ {0, z,1}, where A; and B; are defined as follows:

p—1 —1
A+ A X 4+ Ao X2 = XX+ b — 1) = [[(X + aw),
k=2 =1
p—1
BiX 44 By o X2+ X0 = X (X + b — D).
k=2

hS]

o

Relative to the covariant derivation V* : 7 —— d7 — Q A 7, Ker V* is a locally constant
sheaf on T'(2).
Moreover, we introduce the notation:

o 0;i — 1 .
(=1)"* (C3p—3i+3 + ) (1 <i<p),
C3p—3i+4

0 (otherwise),
T, = (—1)"™ (H C3l4+2 — 1) ;
1=0

where ¢;; is Kronecker’s delta and define a p X p lower triangular matrix M; and a p X p
upper triangular matrix M, as follows:

Sij =

SH 0 1 0 Tl ... T
M, = : ; My = +
Spi o Spp 0 1 0

Theorem 2.4.1. Suppose that

k
Q3p—1, Q3p—2 — O35, Z&gi,1 ¢ Z foralll < 7 < k < p. (25)

i=1

Let A = H,(C\{0, z, 1}, Ker V*). Then dim¢ A = 2p—2. The twisted homology group A
can be decomposed as A = Pr(A) @ Deg(A) where both Pr(A) and Deg(A) are invariant
under the action of the monodromy group. Then the same loops 71,72 € m(C\{0,1}, 2)
as in Example 2.3.1 act on Pr(A) as

. 1
Yo (v, ) (Ve vp) — My,
3p
Yot (Vs 1) — (V1. ) M.

Proof. 1t is clear that each part of A is invariant under the action of the monodromy
group. In order to find the monodromy matrix on Pr(A), we argue by induction on
p. In order to distinguish the twisted homology group A on each step of induction, we
denote by A(p) the twisted homology group A with parameter p and use the similar
notation for S;;, T;, M;, and V*. We will prove dim¢ A(p+1) = 2p and construct a basis
of A(p+ 1) from a basis of A(p) = H;(C\ {0, z, 1}, Ker V*(p)).
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For the initial step, we assume p = 2; in this case, the theorem is equivalent to
Example 2.3.1, that is,

(et V)= (88 saim) (3 77 ") =00 )

Next we assume that the assertion is true for p and proceed to p+1. The assumption
implies that
1

V(v ) (v, v) — Mo (p),
Cgp

s i (v, ) = (V. 1vp) Mo (D).

We can take p-dimensional vector-valued rational 1-forms wy,...,w, with the poles at
0, z, and 1 such that V*(p + 1)g; = 0 where

(Vj’ wl)
g =t (e et [ (=1 p).
(v, wp)
In fact, we construct w;’s by the condition:
zdt
t(z—t)
0 d , .
Wy = _ and i (2% (vj,wg)) = 2% (v, wp1) (1 <7 <p, 1<k <p).
: z
0

The explicit forms of wy are very complicated and not written down here. However, we
should notice that for any p-dimensional vector w of rational 1-forms with poles at 0, z,
and 1, the action of the monodromy group on (v;,w) is decided only by v; and not by
w.

With this chain of 1-forms, we check the assumption of Theorem 2.1.1. Let S(0),
S*(1), and S*(z) be loops around the points 0, 1, and z, respectively. Since S'(1)" :
(q1s- -, @) = c3pralq, - - qp), we have det(S*(1)" —id) # 0 by the assumption (2.5).
Hence, the assumption of Theorem 2.1.1 is satisfied and we get dim¢ A(p + 1) = 2p.

Since SY(0)" : (q1,---,qp) = (q1,---,qp)c3pr1 Mi(p), the eigenvalues of S'(0)* are
{cskr3cspr1 | 1 < k < p}. By the assumption (2.5), csriscspr1 # 1 (1 < k < p), that
is, det(S1(0)* —id) # 0. Moreover, since S*(2)" : (q1,-..,q) — (q1,---,qp) Ma(p), the
eigenvalues of My(p) are {1+ Ti(p),1,...,1}. Thus det(S'(z)" —id) = 0. On the other
hand, since Ti(p) # 0 by (2.5), we can see that the matrix Ms(p) is diagonalizable.
Therefore, the assumption of Theorem 2.1.2 is satisfied.

We identify {¢;} with a set of sections of Ker V*(p + 1) on the lower half plane
{t e C|Imt < 0} and define 2p bounded cycles as

o1 =reg((z,1) @ (1)),
ojr1 = reg((0,2) ® ¢;(t)) G=1...,p),
Op+k = Sl(’Z) ® {Tk(p)QI(t) - T1<p)Qk(t)} (k =2,... 7p)7
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Figure 2.7: The smooth deformation of o; under the action of ~;j.

where Ty (p)g1 — T1(p)gqr are distinct eigenvectors of My(p) with eigenvalue 1. The set of
these cycles is a basis of A(p+ 1) by Theorem 2.1.2. Note that Pr(A(p+ 1)) is spanned

by o1,...,0p11, and Deg(A(p + 1)) by opi9,...,09,. As we have seen, o1,...,0,41
correspond to compact chambers of the arrangement D.
First, we will trace the action of 4; on o4,...,0,11. Recalling the process of decom-

posing cycles by referring to Section 2.1, we obtain the action

m reg((z,1) ® qu) — reg((2,1) © q1) +1eg((0, 2) @ (capr2q1))

12
+ reg <(Z, 0) ® <03p+203p+1c3pc_ Z Sia (M%))

3p =1
1 1 Pt
=0+ o9 — Si—11(p)o;
! C3p+3C3p+1 ? C3p+3 Jz:; i-11(P)o
1 1 p+1
= C3p4+301 + < - Sll(?)) o2+ Z(_ijl,l@))aj
C3p+3 C3p+1 o8
1 p+1
= > Sialp+1)ay,
3p+3 =1
where we used the identity
C3p+3 (] = 1)7
Siap+1) =4 &= —Sulp) (1=2)
—Sj-alp) (G =3,...,p+1).

Similarly, by tracing the smooth deformation of the path in detail, we see that

1 p
71 :reg((0,2) ® q;) — reg ((0> 2) ® {C3p+103p? Z Si.j (p)(03p+2qi)}>
P =1

C
1 p
= > Sis(p)oi
C3p+3 i1
1

p
= Zsi+17j+l(p+ 1)oi1,

C3p+3 T4
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Figure 2.9: The smooth deformation of o, under the action of ~;.

where we used the identity S;;(p) = Si+1,j+1(p +1). Thus 7 acts on Pr(A) as

Su(p+1) 0
1 Sau(p+1)  Salp+1)
(01,...,O'p+1)|—>(01,...,0'p+1) .
C3p+3 : .
Spr1i(p+1) Spriglp+1) - Spripn(p+1)
:(01,...,O'p+1> M1<p+1)
C3p+3
Second, we will trace the action of 75 on oy,...,0,41. In a similar way as above,

shown as in Figure 2.9, by tracing the smooth deformation of the path in detail, we see
that

Y5 rreg((z,1) @ 1) = reg((z,1) @ {(1 + T1(p))(capraqr) }) = (1 + Ti(p + 1))oy

by using (1 + T1(p))cspr2 =1+ T1(p + 1).
Moreover, as in Figure 2.10, we see that

75 s 1eg((0, 2) ® q;) — reg((0, 2) ® q;) +reg((2,1) ® q;) +reg((1,2) ® (T;(p)qr + q5))
=041 — Tj(P)Ul
=0j11+ Tit1(p+ 1)oy,

where we used the relation —T;(p) = Ti11(p + 1).
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Figure 2.10: The smooth deformation of ¢, under the action of ~;.

Therefore, this means that 75 acts on Pr(A) as

L0\ (Bt e Ty )
(01, 0pt1) — (01, ..., Opt1) +
0 1 0

= (0'17 PN ,O'p+1)M2(p + ].)
Thus, Theorem 2.4.1 is proved. [l
Corollary 2.4.1. The monodromy matrices of solutions of the differential equation

() TT () L
Zdz Zdz k : Zdz @ y=

k=2 k=1

which correspond to the compact chambers of the hyperplane arrangement

{m—¢n@—wpnfhmH—uuju=o}

i=1
are given by the matrices M, (p) and Ms(p).
Example 2.4.1. We give a table of monodromy representation of p = 2,3, and 4.

p=2:
. Cé 0 (s 1 —cy
Ml_(c506—1 1)’ MQ_(O 1 >
p=3:
Cg 0 0 CoCsCs 1 — Cocs o — 1
M1 = CgCqg — Cg Cg 0 s MQ = 0 1 0 s
1—c5c6 c5¢6—1 1 0 0 1
p=4:
C12 0 0 0 CoCs5C8C11 1 — cacscg cacs — 1 1 — ¢y
C11C12 — G Co 0 0 . 0 1 0 0
Ml - Cg — CgC9 CgCg — Cg Cg 0]’ M2 - 0 0 1 0
C5Ce — 1 1-— C5Cg C5Cg — 11 0 0 0 1

We remark cs; = exp(—2mv/—1b;), 31 = exp(2mv/—1(b; — a;)), and c3;_p = ¢35, (Ca5t =
exp(2mv/ —1a;).
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Chapter 3

Computation of intersection
numbers of twisted cycles

3.1 Another definition of intersection numbers of
twisted cycles

Our definition of the intersection number of twisted cycles is a natural generalization of
[12]. We can give a similar formula to evaluate intersection numbers of cycles for our
case.

Let K, be a smooth triangulation of 7" and K_ the dual cell decomposition.

Theorem 3.1.1. For
o= eaA®ujf € HY (K, KerV?)

and
T = Z OnA' @ uy, € H(K_,Ker V*),

the intersection number [o] - [7] is given by

Z cacarS*(ux, un) I, (A, A)

AN fv}=ANA
where I,(A, A") is the topological intersection number of A and A’ at v and S* is the

bilinear form defined by the matrix 'S~" which gives the pairing of Ker V*_ and Ker V* .

Proof. Let 0 be a delta r-current which has support on A. Then, we have

FU = Z CA(SAUZ

and

FT = ZCA/(SA/UJK,.
We note that it is not always possible to take a wedge product for currents. For example,
d(t)o(t) is not well-defined. Since A and A’ crosses transversally, the wedge product of

31
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currents F, A F, can be defined. If we regard the operator V. as an operator on the
2r-dimensional real manifold 7', it is holonomic at degree r — 1 and hypo-elliptic on T
for any current F' of degree r and GG of degree r — 1, if V.G = F and F' is smooth at
the point p, then G is also smooth at the point p. Hence, when reg(F,) = F, + V.G,
and reg(F,) = F, + V_G,, the wedge product of G, and G, is well-defined. Therefore,
we may compute the intersection number by evaluating the integral of currents

/ S*(F,, F),
T

Z CACA/S*(UZ,UA,) / (SA VAN 5A"
AA o} =ANA T

which is equal to

O
Example 3.1.1. If m = 1, then the formula above is nothing but Theorem 1.3 of [12].

Example 3.1.2. . This example is a continuation of Example 1.2.1. We are given two
connections

Vi—d- (g—of’o dt and V’L:d+(é—a+7)dt.

t 1—t

The functions v and

uf(t) = tiﬂ(l —t)/o ) SiO{(l _3_t>'yﬁ
_ t—6(1—t)—“—”/0 5‘“(1—5)‘”5(1df 5

belong to Ker V% and Ker V* respectively. Put S = 1/a+ 1/y and S* = S~*. Then,
from the twisted period relation of the Beta function (or from a well-known identity of
the Beta function), we have

e2milat+y) _ 1

TS uT =2mi A . =:d;.
u u T (627r7,oc _ 1)(627m'y _ ]_) 1

Consider the twisted cycle o = (0, 1) ®u" which belong to H}/(C\ {0, 1}, Ker V% ). The

regularization reg(o) of o is

1 1

WCQ®U++[O+€,1—€]®U+— 101®U+

e2mi(aty) —

where C), is the circle with the radius ¢ and the center p. Put 7 = (0,1) ® u~ €
HY(C\ {0,1},Ker V*). By applying Theorem 3.1.1, we have

1 1
[reg(o)] - [7] = m(—l)dl +(=1)di - e2mi(aty) — 1d1

1— 627ri(a+,3+7)
(627ria _ 1)(627”',3 _ 1)(627m"y _ 1) :

= 2m
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3.2 Example: generalized hypergeometric function
F
3479

The next example was the motivating example of this study. We uses the notations of
Example 1.1.2.

Example 3.2.1 (Generalized hypergeometric function 3F;). The generalized hy-
pergeometric function 3F5 admits a double integral representation that can be regarded
as a pairing of a twisted cycle on a 2-dimensional space with the coefficients in a 1-
dimensional locally constant sheaf and a twisted cocycle. Another integral representa-
tion is

L'(p)L'(q)
L'(p+q)
:/0 Py — )T F(a, B,y y)dt

Yy By (an 8,57, p + ;)

(cf. [25, Section 3]), which can be proved by expanding the Gauss hypergeometric
function in the integral into the series and using the formula B(p,q) = %. We
will regard the single integral representation above as an element of a period matrix

associated to a locally constant sheaf of rank 2 and evaluate intersection numbers by
applying our method.

Set
T =C\{0,y,1}
(0 0\dt (0 3 dit—1)  (p—1 0 \dt
Q_(a —’y) t+(0 oz—l—ﬂ—’y) t—1 +< 0 p—1/) ¢

+(q—1 0 )d(y—t)7

0 q—-1) y—t

VvV =d—Q,
V: =d+ Q.

The vector valued functions

g (t) =ty — )" 'pf (1),
g (t) =ty — )" p; (t)

are in the kernels Ker V7 and Ker V* respectively where the column vectors p; and p;
are defined in (1.2). The bilinear form S* that gives the isomorphism between the dual
of Ker V% and Ker V* is given by (1.1). Notice that the value of S* can be given by
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the intersection number of cycles 7; and ~; :

S*(qi", q; ) = reg(v) -

d; it1 .
didis> LT
1 .
_ ) j=1+1
a =il

<

osa

other cases

where we put

Br=a,bo=vy—a,f3=—0,fs=0—17
and

=P di=ci—1, diy=cic;j—1

([3, Theorem 2] and [12, Theorem 2.1]).
Here we put
B1=au, P2 =0by— a1, B3 =—az, 01 = —as,p=ar,q = as
We assume 1 < 1/zx. By looking at monodromy groups of the integrals of the
period matrices, we can see that the functions p; and p; have the following asymptotic
behavior:
p = holomorphic function at t = 0
py = (1 — t)" x (meromorphic function at ¢t = 1)

py = t%P x (meromorphic function at t =0 )

and
p; = holomorphic function at ¢ =0
py = (1 — )77 x (- meromorphic function at t = 1)
py = t77%7P1 x (- meromorphic function at t =0 ).
Put ¢5 = e*™P cg = €*™ and d; .. = cicjcp--+ — 1. We assume ¢; # 1. Define

twisted cycles as follows:

1 1
reg(oy) = d—sco@“h+ +ley—c®q - d—60y®q1+,

1 1
reg(ag):d—6Cy®q§r+[€+y,1—€]®q2+—EC&@q;,
1 1

reg(o3) = d345Co®q3++[Ejy—€]®q3+—d—60y®q;

and
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where C), is the circle of the radius ¢ with the center p, then we have reg(c;) €
H\(T,Ker V%) and 7; € HY (T, Ker V*).
Let us compute the self intersection number reg(os) - 7o:

-1, _ . _ 1 . _
reg(os) - 72 = —5S"(¢3 .45 ) — 1-5(43,¢5) — =—S*(45, 43 )

d6 d2,3
d2 3,6 d? 3
= =20 L (—=1). ==
d6d2,3 ( ) d2d3
d2 3,6
_ e 1
dadsdy (3:1)

Evaluating other intersection numbers in a similar way, we get the following intersection
matrix [ :

ds,6d1,2 1 0
d1,2,5,6 dadg
C2C6 d2,3,6 Cc3
dodg dadsdg deds
0 ce d3,4,5,6d3,4

deds d3,4,5ded3dy

Let us compare our result with [13]. We take an element v € C? such that S((x,y),v) =
x. Clearly, V_ vdt = 0.
Put
u(t,s) =ty — )P 1M1 — 5)P271 (1 — ts)Ps

and
D, ={(s,t)|0<s<1,0<t <y}

Dy =A{(s,t)|s>1,t>y,s<1/t}
D3 ={(s,t) |t <y,s>1/t}.

Then the integral (reg(o;), vdt) is equal to

/ u(t, s)dtds.
D;

Thus, our 1-dimensional twisted cycles reg(c;) can be naturally regarded as an element
of 2-dimensional twisted cycles; we consider the twisted homology group

HQ(X> ‘Cil)
where

X = {(s,t) € C2[t(y — t)s(1 — s)(1 — ts) # 0}
L* = the locally constant sheaf defined by u¥

and get the following embedding 7.

Theorem 3.2.1. 1. Suppose that 5; € 7Z and > [3; ¢ 7Z. Then, there exists an
injection
4 HQ(X, ﬁ:’:) — Hl(C \ {O,y, 1},K€1"V*i)
where i, (reg(D;) @ u(t, s)) = reg(0;) and i_(D; @ u™'(t,s)) = 7.
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2. Under the same condition, the map
je o HY(X,LF) — HY(C\ {0,y,1},Ker V)

is an injection.

The statement 2 can be proved by using the natural isomorphisms Hy(X, LF) ~
H*(X, £*) and Hy(T,Ker V%) ~ H'(T,Ker V) where T' = C\ {0, y, 1} defined through
the period matrix. We will give a different proof to the statement 2 by Orlik-Solomon
algebras. The proof can be generalizable for “generic” locally constant sheaf L.

Now, applying the transformation s — 1/s, we get a similar arrangement of lines
to that considered in [13, Figure 3.4]. We can see that reg(o;) - 7; = reg(D;) - D; for
1 < 4,7 < 3 by a suitable choice of branches. Note that a miracle cancellation is
happening in (3.1) and reg(os) - 72 agrees with reg(Ds) - Do, which is evaluated in [13].
In Section , it is shown that the two intersection numbers evaluated in H?(X, £*) and
H(T, Ker V1) agree; for [¢] € H2(X, £+) and ] € HX(X, £°), [¢)- 1] = [j(€)]-[j-(n)].
Since we choose ji such that the period matrix defined as pairing of Ho(X, £*!) and
H?(X, L' is a submatrix of the period matrix obtained by the pairing H,(T, Ker V%)
and H'(T,Ker V). It follows from the twisted period relation that two intersection
numbers of cycles agree; for D; @ u™ € Hy(X, LF),

[reg(D; @ w™)] - [Dj @ u™'] = [i(D; @ wt)] - [i-(D; @ u™)].
Finally, we consider the projection
T T ={(t,y) eC*lt#0,y, 1,y #0,1} — Y ={yeC|ly £0,1}

and the families of locally constant sheaves on 77! (y) : Ker V. and Ker V_ C O,-1(,) X
C2. Tt follows form [4, p.105 Cor 6.11] and [11, Theorem 6] that

dim HY (77 (y), Ker V* ) = dim H' (7 (y), Ker V_) = 4.

It is shown in Example that the set {reg(oy),reg(o2),reg(o2)} is a basis of a mon-
odromy invariant subspace of H;(7 '(y),Ker V% ). The set defines a locally constant
sheaf of rank 3 on Y by a period matrix, e.g.,

d d>
H, 30— ((o,vdt), @(0, vdt), d—yQ(U, vdt)) € Oy ® C°.

Intersection matrix I is invariant under the monodromy matrices.

We explain an implicit meaning of statement 2 of Theorem 3.2.1. The injectivity is
not a special property of 3F5. It holds for “generic” locally constant sheaf of rank one
on the complement of hyperplane arrangement. We consider p + ¢ hyperplanes

£1<t> = tl —Q1,... ,€p<t) = tl — ap,€p+1(t), Ce 7£p+q(t)

where a; are constants and ¢;(t), ¢ > p are not horizontal to the hyperplane ¢; = 0. We

regard fig .1 li(t) = 0 as a hyperplane arrangement in C™ ! with a parameter ¢;. Then,
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there exists a finite set of points A = {a,41,- - , apq } such that the arrangement is not
generic if and only if #; belongs to this set; for any ¢, the face lattice of the arrangement
f;irl ¢;(t) = 0 in C"! is the same as far as t; keeps staying in one of the segments of
C\ A.
Put

X = C”\V(ﬁéi(t)),
X = X\V(Iﬁ(tl—ai)),

i=p+1
p+q’
Z =V ( 1T (tl—al-)> NnX,
i=p+1
T = C\{ai,...,ap,ap41,...,Qpiqg}

The spaces X, X’ and Z satisfy the relation
X\Z=X"
Let f be the projection
f X' > (tl,...,tn) =t eT

and g be a map which sends T" to a point. We denote by Rf, the right derived functor
of f.

In order to show injectivity, we utilize well-known facts in the sheaf theory.

Let £ be a locally constant sheaf on X and by £’ the restriction of £ to X’. Then,
by the definition of the cohomology group, we have H (X', L) = R'(go f).L'. The first
fact we need is

R(go f).L' = Rg.Rf.L'. (3.2)
The second fact is the following short exact sequence:
0— H'(X,L) - H(X',L) = H Y (Z,L17) = 0 (3.3)

for any “generic” locally constant sheaf. In this case, “generic” means that £ satisfies
HY(X,L) ~ H'(A(A),w), where A(A) is the Orlik-Solomon algebra. We will prove the
exact sequence (3.3) in Appendix A.1 using Orlik-Solomon algebras.

Proof. (Proof of statement 2 of Theorem 3.2.1.)
We apply a transformation s — 1/s and prove the theorem for
X = {(t,s)|st(t —y)(s —t)(s — 1) # 0},
t _

X' = {ts)|stlt—y)(s—t)(s—1)(t—1) # 0},
Z = Xn{(ts)|t—1=0}

T = {t[t#0,y1}.
Let £ be the locally constant sheaf defined by

u_l(l/s, t) — P+l (y _ t)—36+18—2+51+,32+,33(8 _ 1)—52+1(S _ t)—ﬂa'
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We have H*(Z, L) = C, since Lz is the locally constant sheaf defined by
S—2+51+/52+ﬁ3 (S _ 1)—ﬂ2—,33+1_

In this case, “generic” means that the following condition holds:

517 6% ﬁ37/847/857/86751 + 62 - 65a
B+ Bs — Bs — Bs, B1 — Bs — Be, B2 + B3, B2 + Bs,
B2 + Bs, B3 + Be, Ba + Be, B5 + Bs & Z

Then we have
0— H*(X,L) » H*(X'.L') = H (Z,L;z) = C = 0.
Since R'f,L" =0 for i # 1 and (3.2) holds under the condition above, we have
H*(X', L) = R'g.(R'f.L") = H'(T,R' f.L') = HY(T,Ker V).
Hence, we have the exact sequence

0 — H*(X,L) — H'(T,KerV,) — C — 0,

which implies that H?(X, L) — H'(T,Ker V) is injective. O
t—s=0
s—1=0
=10
L=0  t—y=0 t—1=0

3.3 Example: Selberg integrals

Let zy,...,x,, be distinct real numbers as r; < x93 < --- < x,, and ag,Qq,...,Qp,
complex numbers. In this section we consider twisted homology groups associated with
the Selberg-type integral with dimension 2:

" () (g — £)00 dsdt
/[ oy L m )™ =)™ o = 0%

/th—xk {/:ﬁ(s—xk)ak(s—t)aosf‘;}ti“xi.

v k=1 k=1
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In order to treat this integral, we use a similar method of Example 3.2

Set
{t eC

ﬁt—l‘k #0}
k=1

Q= dat A+ + at Am,
t— a1 t—x
Aj = Ozj[m + OélEjl + -+ OémEjm + OZOE]],
Vi =d-Q,
Vi =d+Q.

Here A; are m x m-matrices and E;; are matrix elements at (i,j) component. The
differential system df — Qf = 0 are given in [1].

We assume that the weight {ay} satisfies the condition:

QQ, Oy« oy Oy, Qg + 2001, .., 0 + 200, € 7. (3.4)
This is the special case of the condition [1, (C.1)].
We put zp = t and denote by 7; the open interval (z;,z;41). Let w; Sf‘;. For
J

1 <i < m we define vector valued functions pi(¢) on {t € C | Im¢ < 0} by

t
pzi(t) = (/ uiwla"w/ uiwm)>
Vi Vi

m

u* (s, t) = [ [ (s — ap)*

k=0

is a single valued function on the simply connected domain {(s,t) € C* | Ims < Imt <
0}.

where

Then vector valued functions

m

g (t) = [Jt — z)**pf(t) (1<i<m)

k=1

are solutions of the differential system V*q¢* = 0. We put q% (t) =D iche; g (t).
Put

¢; = exp(2mv —1lay), dj=c¢;—1, Cike = CjCl -+ djg... = Cjk... — L.
The duality of Ker V% and Ker V* is written as

S*(q q;) =reg(vi®@u) - (v; @u")

diit1 .
didit1’ t=1J
1 -
e j=1+1
C]' s .
d_j’ j—Z—l
0

other cases
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Fix a real number ty as x,, < tg. Then the analytic continuation of the functions

q (t),q5(t),...,q"(t) along a simple closed curve around z; of positive orientation at the
base point ¢y are written as (¢, ..., ¢h) — Tif(qf, ..., q}), where T'; are m x m ma-
trices which has eigenvalues ¢;, ..., ¢; (m — 1 times) and c¢?cy. From the condition (3.4)
we obtain that I'; and D; = I'; — I,,, are regular. Therefore there exists the inverse map
Dt
In easy way we obtain
dk k 62d0
D lgt — ; + % +
& u dido g i Tu dido ki Yo
1 Cldo
1 9 4, Ay dido, 0

for 1 <k <l <m. These formulae is used to evaluate intersection numbers.

In [1], symmetric domains of X = {(s,t) € C* | [[}L (s — zx)(t — ax)(s — t) # 0}
with natural actions of elements of G, are treated as integral domains of Selberg-type
integrals.

We define cycles T%[ of HY (T, Ker V%) by
The cycle 7'5-E corresponds to a symmetric domain {(s,¢) € R* | 21 < s,t < z;}. We
denote by H{f (T, Ker V% )2 the subspace of H{f (T, Ker V%) spanned by {Tf; )

We are interested in the intersection form Hi (T, Ker V* )®2 x H (T, Ker Vi)©: = C
for the bases {5 } and explicitly evaluate the intersection number reg(7;;)-7,; for the set
of four natural numbers {7, j, k,l | i < j and k < [}. Then the set {3, j, k,(} has thirteen
different configurations. For each configurations we discuss the intersection number.

Theorem 3.3.1. The intersection number of 7,; € Hy (T, Ker V* ) with 7;; € Hy (T, Ker V*)

has the following values:

. . _ k0,0,
1. Ifi<j=k<I, then 7} - 7, = —>—""
’ MO dyd ggedo

2. Ifi<k<j<l, theHlei-Ti;:L

. . d 1
3. Ifi=k<j<lI thent} -7 = —.
J kt J d%do,k,k

d d d
4. Ifi =k < j =1, then 7';; o = QORkLITH + doa(cs + Cl).

“ ddydo k. xdo 11
5. Ifi<k<j=I thenr) 7, = Qd“ .
dido,
. . + - o,k k&
6. Ifi =k <l<y, thent 7, =—"—-.
dkdo,k,k
_ di0

7. Ifk<l=1<}, thenT,:;-Tij:dd )
100,11
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8 Ifk<i<l<yj,thent 7. =1

o114,
9. Ifk<i<l=j, thenr) -7 = 02,5,1 b
dl do,l,l

10. If otherwise, then 7,5 - 7; = 0.

Example 3.3.1. Set m = 3. The twisted homology group H,(T,Ker V*)®2 (resp.

H,(T,Ker V*)®?) has a basis {75, 713, To3} (resp. {715, 715, 755 }). The intersection ma-
trix of 7,; with 7. is

e S
Ti2 " T2 T13°Ti2 T2z " T2
e
T12 * T13 713 “T13 TQE "T13
Jr i — J—
T2 " To3 T13 " Toz Toz * To3

doo1122d12+do12(c14c2) diy _chdooza

didadp,1,1do,2,2 dido,1,1 dado,2,2do2

_ cocidin d113300d13+do13(c14c3) dss
d2do,1,1 didsdo,1,1do,3,3 d3do,3,3
dos coc3das doo2233d23+do23(c2+c3)

dado,2,2 d2do,3,3 dadsdp,2,2do,3,3
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Chapter 4

Intersection numbers of
Selberg-type integrals

4.1 Twisted cohomology groups

We assume that X is the complement of hyperplanes in C". Let hq,...,hy be linear
forms in C[zy,...,z,] and set

N
X:{(:cl,...,a:T)e(C” Hhﬁéo},

dhy dhn
Wy =w_ = \j— + -+ Ay—,
+ " N

V+:d+w+, V,:d—w,,

where A1, ..., Ay are sufficiently generic complex numbers so that all k-th twisted coho-
mology groups appearing in this section vanish, where £ is not equal to the dimension
of the base space X, and so that H*(X,Ker V) and H*(X,Ker V) agree.

We assume that we can choose linear forms A, ..., k! in C[y| such that there exists
the projection

f:XB(xl,...,xT)l—>xT€T:{yGC

i)

Then we have the natural inclusion ¢ : f~(y) — X, where f~!(y) is the fibre of
y. We denote by V' and V' covariant derivations d + (s*wy) and d — (¢*w_) on
f(y). Let {o7,...,0,h} be abasis of H"*(f~(y),Ker V') and {07 ,...,0,,} a basis
of Hgil(ffl(y),Kel" V’_) Put S = (Sij>i,j:1

-----

)

that is, it is an intersection matrix of twisted (r — 1)-cocycles ;" and o; . We suppose
that we can take the bases {o;"} and {0 } so that the matrix S does not depend on y.

43
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We take a suitable integral domain A and set

t N N
ut () = (/ th’“af,...,/ thka,z) ,
B k=1 B k=1
¢ N N
u (A) = (/ Hh,;)"“al_, . ,/ HhkAkU;> :
A Ay

k=1

The functions u™(A) (resp. u~(A)) satisfies a system of first order differential
equation; let €2, 2_ be m x m-matrix valued one forms which satisfy the following
equations:

du™ —'"Qut =0, du™ +'"Q_u” = 0.

Here,the complete integrable condition d€2; = Q4 A Qy and —d2_ = Q_ A Q_ are
satisfied. In the sequel, we assume the condition (1.4). Put V| = d + Q4 and V" =
d—Q_. Then the locally constant sheaf Ker V'] is the dual sheaf of Ker V”. In Section ,
we will prove (1.4) for the Selberg-type arrangement using a recursive method.

We consider cohomology groups H'(T,Ker V) and H}(T,KerV”). In Defini-
tion 1.2.1, we defined the intersection number of the cocycles {£} of H"(T,Ker V)
and n of H!(T,Ker V") by the integral

€] ] = / S(E.n).

We will see that the two intersection numbers evaluated in H" (X, V) and H (T, Ker V')
agree.

We suppose that we can choose bases {7} of H"(X,KerV,) and H’(X,KerV_)
such that 7% can be expressed as

Ti:zazi/\(p?:a t(gO:lt,...,(p;,t,L)EHl(T,KeI'VI:L).
i=1

A small example of this decomposition is given in (??). For these bases {7*}, we define
the following C-linear maps

+
Y1

RT:H (X, KerVy)s7rt=0af Aol +- 40t Aph = | + | € H(T,Ker V'),
P

(4.1)
P1

R :H!(X,KerV_)>7 =0, Aoy +-+0, Ao, = | 1 | € H(T,Ker V).
Prm

(4.2)

Rewriting a multiple integral to an iterated integral, we get the following lemma.
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Lemma 4.1.1. The following diagram is commutative:

H'(X,KerV,) x H'(X,Ker V_) —*+ C

HYT,Ker V") x H(T,KerV") —— C
+ c I

T

Proof. Set

h=0 Nl +--+aol Nt

T =0, Ny +-F 0, Np,.

Then, we have

]

We next explain a method to evaluate intersection numbers on H' (T, Ker V’{). Put

dn, dn’,
A

A ==Y Ay
k=1
where Ay, ..., A, € M(m,C), and recall that
T = {yE(C Hh#@}.
i=1

Here h},...,h, are linear forms in C[y].

Q+:Q,:
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Theorem 4.1.1. Suppose that there exists Ay, ..., Ap, Ao € M (m,C) of which eigen-
values are not integers and so that Ay+-- -+ A, + A, = 0. In addition, if the connections
Vi=d+Qand V_=d—Q onT are written as

dn!, dh’,
Q= i A+ + e Ay,
then the intersection number of cocycles ¢ = [;%v*] € HY(T,KerV’) and v =

k3

[ y~] € HY(T,Ker V") is

t—x;

(0] - [v] = 27mv/—=1 x {0;; S(A;'v™, v7) 4+ S(AJv", v7)},
where v € C™.

Theorem 4.1.1 is a generalization of Theorem 2.1 (k = 1) in Matsumoto [15] to
twisted cohomology groups with the coefficient sheaf of which rank is more than one.
We omit the proof because it can be shown in a similar method with that explained in
Section 4 of [15]. In Section 4.2, Theorem 4.1.1 and Lemma 4.1.1 are used to derive a
recursion formula of intersection numbers for a basis of symmetric subspaces of twisted
cohomology groups associated with Selberg-type integrals.

Remark. Let by, ..., b, be the eigenvalues of the matrix A;. Then the eigenvalues of the
local monodromy of the locally constant sheaf Ker V'’ at the point ¢; are exp(27+/—1b1), .
If none of by, ..., b, is an integer, then none of the eigenvalues is one. Therefore, if the

hypothesis of Theorem 4.1.1 holds, then there exists the isomorphism H'(T, Ker V') ~
HX(T,KerV’). ([6, Lemma (1.6)])

Example 4.1.1. We consider twisted cohomology groups associated with the B-

function )
d
/ (1 — x)b—x.
0 x(1—x)

X={zxeC|z(1l-1z)#0},
dx dx

w=a—+Db ,
T z—1

V+:d+w, V_:d—w

Set

and assume that a,b,a + b € Z. Then the dimension of H'(X,Ker V_) is one and an
intersection number on H'(X, Ker V) is given by

el ]

1—ux) 1—ux)

Example 4.1.2. Let us illustrate our method under the setting of Example 1.2.1 and

3.1.2. We regards t(ldit) as a cocycle of H'(C\ {0,1}, Ker V). Since

u+<t):t5/0 . sa(1—s—t)7%,

.., exp(2my/—
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(1—t)ds dt
s(1—s—t) A

to GEE

we have a correspondence (1 t)

In Example 4.1.1, we have that the self intersection number of S

QW\/—ICL—T. In addition, we suppose

a+7y,B,a+ B8+ ¢Z

(1—t)ds

t)lSS_

(4.3)

From Theorem 4.1.1, the intersection pairing on H'(T,Ker V.) is given by

s
) ) e )
{dt] [t—tl _27\/__1(0H1r7_a+;+7>

Since intersection forms on H'(T, Ker V) is bilinear,

) ) - ] [
BB
A (fert):
— A 20+ B+
afy

that is, the self intersection number of - dSAdt =

sGNNI

on H?(X,Ker V) is

Lt (Clis_/\sdf t)] . Lt<‘115_/\8di t)} oy Tt BT

afy

4.2 Recursion formulae of intersection numbers with

the Selberg-type integral.

In this section, using the method explained in previous sections, we study the intersec-
tion matrix of cohomology groups associated with the Selberg-type integral:

J. I

1<z<]<n i=1 k=1

(z; — tp)day - - - dr,



48 CHAPTER 4. INTERSECTION NUMBERS OF SELBERG-TYPE INTEGRALS

Set

1<i<j<n i=1 k=1
n m
v A
d(n,m) = H (z; — xj) HH(IZ—tk) k
1<i<j<n i=1 k=1
n m
dr; — dx; dx;
w= ) v DD IR s
T, — T T; —
1<i<j<n v J i=1 k=1 ¢ k

Vit=drtwAT.

The cohomology group H™(X, V. ) admits the natural action of &,, by the change of
indices of 71, ..., x,. The symmetric subspace H"(X,V)®" was studied in Aomoto [1]
and Mimachi [17]. Our purpose is to derive recurrence relations of intersection numbers
for a basis of the symmetric subspace. Our intersection matrix is expressed in terms
of n,m,v, Ay,..., \,. We will derive a recursion formula of intersection numbers with
respect to n and m. We do not have explicit expressions of intersection numbers in
general, but we can obtain the explicit formula of intersection numbers for small n and
m using computer algebra systems.

In order to describe a basis of the symmetric subspace, we define some notations as

follows. Put
" 1
90(a1a2---an) == { Z H —t} d$1 Ao A d{lj’n

oS, i=1 xa(i) - la;
This index (ajas - - - a,) is abbreviated as

(1k12k2mkm) = (1...12...2...m...m)_
1 2 m

We define the following finite set of indices:
En,m _ {(1k1 e (m _ 1)km—1) | kl + k2 + -4 km—l — ’I’L}

The cardinal number of the set Z,, ,, is (":ﬁf) We regard =, ,,, as a subset of =,, ,,,11

by (15 -+ (m — 1)km=1) = (1F .. (m — 1)km—1m0).
We define the following maps:
En,m ) 5 — (]_kl N (m — 1)km*1> — é-j = <1k1 .. .jkj—l e (m i 1)]{:”"*1) = En—l,m7
(4.4)

En—Lm > g — (1k1 - (m _ l)km—l) — gr — (1k1 .. _,r,k?'r+1 L (m _ l)km_l) c En,ma

&= 1" (m =11 = (8 = k.

Then we get the following relation between n-forms ¢, (£ € Z,,,,) and (n — 1)-forms
3 (& € Enm1m1):
dx,,

m—1
e =D g MO —+ (4.7)
j=1 o
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Let Api1 = Amao = -+ = Appan—1 = v. For any ¢ such that 0 < i < n we put

k(k—1)
—2 1%

m-+i
{ kz/\ >y

Note that, if A(n,m)NZ =0, then [[;—3(Am + Ev) #0.

A(n—z,m—i—z):{k)\J—i-

1§j§m+z’,1§k§n—i}

1§k§n—z}.

Theorem 4.2.1 (Aomoto [1]). Suppose the following conditions:
1. A(n,m)NZso =10,

2. [ (Om + £v) £ 0.

Then the set {@¢}eez, ,, is a basis of H"(X (n,m), V)%,

—n,m

In order to evaluate intersection numbers for ¢¢ (£ € =,,,) by using the method
explained in the previous section, we use the projection

f:X(n,m)B(xl,...,mn)HanY—{yeC

fio-40)

k=1
The fibre of y € Y is

n—1m+1
fﬁl(y) - {(xl,.._,:cnl) c ! H T — T H H i — tg) 750} X(n—1,m+1),
1<i<j<n—1 i=1 k=1

where ¢,,11 = v.
Since our purpose is to derive a recursion formula of intersection numbers, we assume
that

OA(i,m+n—z’)ﬂZ:®. (4.8)

i=1
By virtue of Theorem 4.2.1, the set {¢ | £ € Z,,_1,m41} is a basis of H"1(f~(y), V" )1
under the condition (4.8). For any § € Z,_1 41 We put ue = /@(n,m)gpg where we

r
assume that the integral domain I' is invariant by the action of &,, ([1]). The function
ug of y satisfies the ordinary differential equation:

4, =ii 0t S8,y $ 2t EE),

s=1 U ts

(see [17], Prop. 2.1.) Namely the ("' ?)-dimensional vector valued function U =
(tUg)eezy_1mysr Of y satisfies the system:

d 1 1
Y= LA 4 A U
dy (y—tl L ) ’
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where Aq,..., A, are square matrices of size (”;:ﬁ;?) and all elements of Ay,..., A,
are linear forms of A1, ..., \,,,v. We put
d d
0= y A1+...+—yAm’
Yy— ty Y- tm
Vi=d+Q, V" =d- Q.
By Aomoto [1] Lemma 1.6, we can see that none of eigenvalues of matrices Ay, ..., Ay, A

is a non-positive integer under the condition A N Z<y = 0.

Remark. Under a suitable total order in =,,_1,,+1, one of A; can be expressed as a
tridiagonal matrix. For example, A; is expressed as a lower tridiagonal matrix with
respect to the lexicographic order in =,,_1 ;5 41.

Example 4.2.1. In the case n = 2, m = 3, the coefficient matrices Aq,..., A3 are
written as
2)\1 +v )\2 )\1 >\3 )‘1
Al = )\2 )\1 s A2 = 2)\2 +v s A3 = )\3 )\2
A3 A1 A3 A2 2 3 + v

We prove the relation (1.4) for the Selberg-type arrangement.

Theorem 4.2.2. Let S be the intersection matrix for the basis { ¢ }ecz, ., of H*(X (n,m), V).
If the condition (4.8) holds, then S satisfies the relation (1.4);

S — SQ = 0.

Proof. We use an induction on the dimension n of X. If n = 1 then the theorem is
clear. Assume n > 1. We identify S with an intersection matrix on H'(Y,V’[). From
the condition (4.8) none of eigenvalues of each A; are integers. Then we can apply
Theorem 1.2.1;
I, ='P'S™'P_.

From Theorem 4.2.3 for n — 1 the matrix S does not depend on y € Y and, from
the intersection theory of twisted homology groups, the intersection matrix [, is also
constant (cf. [12, Theorem 1.3]). Therefore

0=d('P,/'S™'P.) = (d'P,)'S'P_+'P,'S™'(dP.)
= (-'P,Q)S'P.+'PISTHIQP)
=P (STt~ P
Hence Q!S~! — 1571 = 0, that is, S'Q — SQ = 0. O

In order to apply Theorem 4.1.1 to evaluate intersection numbers for the basis {¢},
we suppose that inverse matrices of Aq,---, A,,, As are expressed as

Al_1 - (hég’)&E’EEn,Lmﬂv S 7A7_n1 = (hg’)ff’GEnfl,mﬂv A;ol = (h22/>675,65n71,m+1'
Note that we can get hég, from A; for given small n and m using computer algebra
systems.

The following theorem gives a recursion formula in which the intersection form See
on H"(X (n,m), V) are expressed in terms of the intersection form Sr¢ on H" 1 (X (n—
1,m+1),V,).
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Theorem 4.2.3. Put Seer = [pe] - [per]. Suppose the condition (4.8). Then, for any
€, ¢ € 2,m, we have

m—1m—1
Seer =2mv/=1 Y {ZZ@ ¢&h, W§,+Z£ hwgsﬁ,}. (4.9)

TEEn—1,m+1 i=1 j=1

Proof. We use an induction on n.
In the case n = 1, since an intersection number Sze in the right hand side of (4.9)
is Kronecker’s delta 5ﬂ§9, the theorem holds.

Next we assume n > 2. From the formula (4.7), we have the C-linear map

m—1
d "
H™(X, V)% 3 pe —> e = ) y _ytfj(f)eéj € H'(Y, V), (4.10)
=1 !

where e¢ is the vector whose £-th element is 1 and the other elements are 0.

Since this C-linear map preserves intersection numbers, i.e. [p¢] - [per] = [We] - [ter],
we may prove the theorem with respect to the right hand side.
By (4.8), none of eigenvalues of matrices Ay, ..., A,,, A is a non-positive integer,

that is, it holds the hypothesis of Theorem 4.1.1. From the hypothesis of the induction,
the intersection matrix for the basis {¢¢}eez of H" 1(f~!(y), V)%t is S =

(Seer)eeremn_1.mis- Since

n—1,m+1

—1 _ 7
A e = E hy¢€x,
71'EEn—l,m+1
we have

S(ATlee, eo) = Y hieS(er o)

TEEn—1,m+1

= Y hicSne

71—EE'n,fl,”m«l»l

From Theorem 4.1.1, for any &,£ € Z,,_1n+1, we have

d d ,
|:y yt 64 . |iy yt 65/:| = 271'\/ -1 E (5Z]h;£ + h;z)s,rg/. (411)
-t —t;

7T€En—l,m+1

From the formulae (4.10) and (4.11), the intersection numbers of {¢¢}¢cz, are
Sezr = [Vl - [ve/]

=omv/=1 > {ZZ& h,,ES,TngZe )hggsﬂg/}

TEEn—1,m+1 =1 j5=1 i=1
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4.3 Example: the case n =2, m = 3.

Using Theorem 4.2.3, we evaluate intersection numbers in the case n =2, m = 3. Set
X ={(z,y) € C* | wy(x — )(y — (z —t)(y — t)(x —y) # 0},
V={yeClyly—1(y—t)#0}
© = (zy)M ((z = Dy — 1)) ((@ = t)(y — )" (z — )",

d d d d d d dr —d
w:M(_ﬂ_y)HQ( @ +_y)H3( @ +_y)+yu.
T Y r—1 y—1 r—t y—t r—y

Then

Note that

A<2, 3) U A(l, 4) = {)\1, )\2, )\3, v, 2)\1 + v, 2)\2 + v, 2)\3 + v,
— A+ A+ A3), =M1+ Ao+ A3+ 1), —(2A + 2 + 203 + )}

We assume that (A(2,3) UA(1,4))NZ = 0.

The fibre of the projection f: X 5 (z,y) —y €Y is
[ y) ={z eCla(r - 1)(z—t)(x —y) # 0},

We take a basis of H'(f !(y), V) as

1 1 1
PYa) = E’ Pe) = m, i) =

We put b= A\i + Ao + A3+ v.
The intersection matrix of the basis {¢(1), ©(2), @(3)} is

S, S Sa)e) 1/M (11
S@.1) 5@ S | =2mv-1 1/Xs e
SE.m SeLe) S6).e) 1/As 111
(e.g. Example 4.1.1).
We already gave Ay, As, A3 in Example 4.2.1. Put
AM+b N A1
Aoo:—(A1+A2+A3):— )\2 )\2+b )\2
A3 A3 A3+ b
Then
1 1 A 1 A
-1 Pty (1) ! —1 e (2A21+1V)A2 ! —1 3 (1) _W
A= T RMAOAN A 01, A47°=10 Datv 01, A5 =|0 23 —m
X 0 L 0 ——2s L1 0 0 B
(2)\1+V))\1 A1 (2)\24’1/))\2 A2 2A3+v
and
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where ¢ = 21 4+ 2\ + 2A3 + V.
From Theorem 4.2.3, we have

Sa),a1) = 27V — {42 1)Sx },

1
S12),(22) = 27V — {22 22)Sx2 + 2)\—2512} ;
Sa2),a1) = 27V — QZ ~3)Sx1 + 2)\ 521}

1
S2),012) = 2V — /\—511 + " 522 + Z{ ho3)(Sx1 + Sw2)}} ;

Sz, = 2mvV/—1 {42%5”1}

5(22)7(22) = 27’(’\/ 4 h;g + h721.2)s7r2} .

Therefore, we have

5 8()\2 + )\3>(V +2X + 2)\3)
leay] - leap] = —4m" ’
(V4 200) (V4 AL+ Ao 4 A3) (v + 201 + 20 + 2)3)

[pay] - lpaz)] = 4r° A ]

PaD P = N  + da + M) (7 + 20 + 200 + 20g)

8
. = — 2
[pan] - [Pl a (V+ A+ Ao+ A3) (1 + 20 + 200 + 2)03)

4(v 4 21 + 2)3)
Ao(V 4 AL+ Ag + A3) (¥ + 201 + 200 + 2)3)
9 8(A1+ A3) (v + 2A; + 2)3)
Aa(V 4+ 20) (1 4+ A1+ Ao+ A3) (0 + 201 + 209 + 2)3)”

lpaz)] - [pe] = 4

[0 - [pea)] = —4n

L2002 + (A1 4 200 + 3A3)1 + 4\ Ag + 201 A + 2X0)3 + 2A2)

. — 4
vl leay] = —4m Ado(v + AL+ Az + ) (v + 201 + 2Xg + 2)3)

53
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Appendix A

Combinatorics for twisted
cohomology groups

In this appendix, we give a brief overview on combinatorial description of twisted co-
homology groups. We refer to the book [22] for combinatorics of arrangements and the
theory of Orlik-Solomon algebras and the paper [7] for fnbc bases.

A.1 Orlik-Solomon algebras and Snbc

Let hy, ..., h, be linear forms in C[zy,...,z,] and H; be the hyperplane in C* defined
by h; = 0. The finite set A = {Hy,..., H,} is called a hyperplane arrangement. We
put M = C*\ U}, H;, that is, M is the complement of A.

Definition A.1.1. Put w; = dlogh;. We define

The algebra A(A) is called the Orlik-Solomon algebra.
We use the followings of Orlik-Solomon algebras.

Definition A.1.2. We define a linear map V,, : Ay — Ap1 by Vo7 = w A 7, where
w=awi + -+ azw, € A1(A)

Clearly V,V,, = 0, that is, {A(A), V,} is a cochain complex. We denote the p-th
cohomology group by HP(A(A), V).

Assume that ay,...,a, € C. Let U(x) = h{*h5?---hor, that is, U(z) is a multi-
valued function. We denote by L a local constant sheaf of rank one over M which is
determined by U(x).

The following theorem is well-known for cohomology groups H*(M, £) in which we
are interested.

Theorem A.1.1 ([5, p.558], [23, Corollary 10]). Let A be a finite collection
of hyperplanes, A(A) the Orlik-Solomon algebra of A, and M the complement of A.

25
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Suppose that none of the exponents Z a; lies in Zwq for all L € L(Ay). Then
H,DL
H*(M, L) ~ H*(A(A),V,,) for 0 < k <n.

Since H*(A(A),V,) has a more simple structure than H*(M, L), we can study
H*(M, L) via the complex of the Orlik-Solomon algebra. As an application of the use
of the Orlik-Solomon algebra, we give a proof of (3.3) by utilizing the Orlik-Solomon
algebra.

Theorem A.1.2. We assume that the exponent along the hyperplane Hy is zero. Let
A={Hy, Hy,...,Hy,}, A =A\{Hy}, and A" the restricted arrangement of A" to H.
Then the following short exact sequence holds.

0 — H"(A(A'),V.) = H*(A(A),V,) = H* 1 (A(A"),V.,,) = 0. (exact)

Proof. From [22, Theorem 3.127|, there is the following short exact sequence of C-vector
spaces:

Then Ay(A) = Ar(A’) @ cokerj. We put Ny = cokerj. From a construction of the
mapping j, we know that any elements of N, has an expression wy A 1, where wy =
dlog hy. (see [22, p.97])

Since the exponent along Hy is zero, we can see that w € A;(A’). Then, V,,(Ax(A")) C
Ag+1(A") holds. In addition, we know that V,(NN;) C Niy1 because V,(wy A1) =
w A wy An.

Therefore, there is a short exact sequence

0— H¥(A(A),V,) = H*(A(A),V,) = H*(N,V,,) = 0.

In addition, we have that H*(N,V,,) ~ H*1(A(A"), V.,.).
Hence,

0 — H"(A(A'),V.,) — H*(A(A),V,) = H* 1 (A(A"),V.,,,) =0 (exact)
O

Let M be the complement of the arrangement A’, Z = M N Hy, and M' = M \
Z. Namely, M’ is the complement of A. We assume that a locally constant sheaf
L on M is “generic”, i.e. the pair (M, L) satisfies the hypothesis of Theorem A.1.1.
Since the exponent along the hyperplane Hy is zero, the pair (M’, L) also satisfies the
hypothesis of Theorem A.1.1. Then H*(M, L) ~ H*(A(A'),V,,) and H*(M \ Z, L) ~
H*(A(A),V,). Hence, we obtain (3.3):

0— HY(M,L) — H*(M\ Z,£) — H"(Z,L;7) - 0.  (exact)
We shall consider how to take a basis of a cohomology group. In fact, Falk and

Terao introduced Snbc bases of H(A, V) ([7]), which we are going to explain.
Firstly, we give terms of combinatorics of hyperplane arrangements to express Snbc.
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Definition A.1.3. Let B be a subset of A.
B is dependent = NB(=Nyep H) # 0 and codim(NB) < #B.

B is a circuit ﬁ B is a minimally dependent set.
e

We fix a linear order < on the finite set A. For example, H; < Hy < --- < H,,.

Definition A.1.4. Let B C A.
B is a broken circuit = NB # () and there exists H < min,(B) such that BU{H} is

a circuit.
We define finite sets NBC and SNBC which depend on the fixed order <.
Definition A.1.5.

NBC = {B C A |NB # 0 and B includes no broken circuit},
BNBC = {B € NBC | For any H € B, there exists H' < H such that (B\ {H})U{H'} € NBC}

Example A.1.1. Set £ =2, n = 5. Consider the hyperplane arrangement of Selberg-
type
Q(A) = z(z — Dyly — )(z —y);

hy =x, ho =x—1, hg3 =y, hy =y —1, hy = x —y. We fix a linear order < as
H, < Hy, < H3 < Hy < H5. Then

the set of circuits = {(135), (245)}
the set of broken circuits = {(35), (45)}
NBC = {(13), (14), (15),(23), (24), (25)}
BNBC = {(24),(25)}

fnbc depends on the fixed order <. For example, SNBC is the set {(14), (23)} with
respect to a linear order <’ defined by Hs <’ Hy <" Hy <" Hz <’ Hy.

Secondly, we explain the Folkman complex of A.

Definition A.1.6 (Folkman Complex). We define a finite set
F(A)={nB|BC Aand N B # 0}
and a partial order on F' by the reverse inclusion relation, that is,

X<Y<=>XDY (VXY €F).

We identify any linear ordered subset of F' with a simplex and specially a maximal
ordered subset with a facet. Then F'is called the Folkman complex.

Example A.1.2. Under the hypothesis of Example A.1.1,

F(A) ={(1),(2),3), (4), (5), (135),(23), (14), (245)}

Finally, we introduce the fnbc basis due to [7].
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Definition A.1.7. Let B = {H,,,..., H;,} € SNBC and assume that H;, <--- < H;,.
We define a chain &(B) of Cy(F,C) as follows:

£(B) = (X1, Xo,..., X)),
where Xj = Hz'j NN Hig‘

Theorem A.1.3 (Bjoner-Ziegler). The set {[{(B)*] | B € BNBC} is a basis of
HY(F,C).

Theorem A.1.4 ([26]). If none of the exponents Z «; is 0 for all dense L € L(Ay,),
H,DL
then

H*Y(F,C) =~ H'(A(A), V.,)
This theorem is proved with the sheaf theory on the finite set F'U {C*}.

Definition A.1.8. Let B € SNBC and ¢(B) = (X3, Xa, ..., X;). we define

£(6+1)

E(B) = (_1) 2 (,u(Xl) AN Aw(Xg),

where w(X) = > _y aidlogh;.

Theorem A.1.5 ([7]). Under the hypothesis of Theorem A.1.4, the set {[=(B)] | B €
BNBCY} is a basis of HY(A(A), V,,) and is called the 3nbc basis.

Example A.1.3. Since (245) is a circuit, the following holds.
Wy AWy —wa A ws + wy Awy = 0.
Then fnbc basis of H*(A(A), V,,) with respect to < is

5(24) = (062(&)2 + gy + a5w5) N\ Oy
= (o4Wa4 + Qy5Ws4y
(25) = (Oég(x)g + aywy + a5w5) N sws

= Qpsway — (Qo5 + Qus)wsa,

[1]

where we put w;; = w; Aw; and «a;; = ;.
Remark. The nbc basis with respect to another order <’ is {Z(14) = ayqwi4, Z(23) =

Qlg3w3 }-
We can evaluate intersection numbers of Snbc bases using our method. For example,
the self intersection number of fnbc base =(24) is

[E(24)] - [E(24)] =
0614(041 + a9 + 065)71(063 + ay + &5)71(041 + a9 + Q3 + ay + 045)’1
(123 + Q195 + Q135 + Qa5 + Q34 + 335 + Qogs + Qizas + Qaos

+ 33 + Qoo + 20955 + Q335 + 200355 + sy + sy + )
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A.2 An implementation for a computation of Snbc.

In Appendix A.1, we explained that a Bnbc basis gives a basis of H*(M, £) under a
“generic” condition for £. In order to study twisted cohomology groups H(M, L) and
HY(T,Ker V), we need to obtain Bnbc bases using a computer algebraic system.

In this section, we present an algorithm and an implementation to obtain Snbc bases.
Our program is written in the computer algebraic system “Asir” which is developed by
M. Noro in Fujitsu Laboratory. Asir is available from the URL
ftp://endeavor.fujitsu.co. jp/pub/isis/asir/ via the Internet. Our program is
also available from the URL http://www.math.kobe-u.ac.jp/HOME/ohara/.
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/* —%—C-%x— *x/
/* ~/beta-nbc-asir/beta */

/* This program compute beta nbc bases for twisted cohomology groups
with given arrangements.

First, you give an arrangement of hyperplanes as follows:
(1] Arr = [ [z-t, t, t-s, s, 1-s], [t,s] ];

The data structure of arrangements as follows:
[ (A 1list of linear forms), (A list of indeterminates) ].

Second, you can get its incidence graph as follows:
[2] IG = getIGraph(Arr);

Third, give a total order on the hyperplanes and you can get the
beta nbc for the incidence graph IG.

[3] Order = [1,2,3,4,5];
[4] B = getBetaNbcSet(IG, Order);

Finally, you can get a basis of its twisted cohomology group.
[6] BF = betaNbcSet2forms(B, IG, Order); */

/* These are samples of arrangemnts. */

Arrl1 = [ [z-t, t, t-s, s, 1-s], [t,s] ]$

Arr2 = [ [z-u, u-t, t-s, 1-s, u, t, sl, [u, t,s] 1%

Arr3 = [ [z-t, z-s, 1-t, 1-s, t-s, t, s], [t,s] 1$

Arrd = [ [z-u, z-t, z-s, 1-u, 1 1-s, u-t, t-s, u, t, sl, [u, t,s] 1%
Arr5 ]

[ [s, t, s+t-z], [t,sj $

load("sets")$
load("igraph")$

#define hpPart(X) ((X)[0])

/* extract the family of intersectable sets with rank=Rank from an
incidence graph */
def igRank(IGraph, Rank) {
return (--Rank < 0) ? ([]) : reverse(IGraph) [Rank];
+

def intersectable_p(Set, IGraph) {
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Len = length(IGraph);
for (I = 0; I < Len; I++) {
if (subset_of_subset_p(Set, IGraph[I])) {
return 1;
}
}
return O;

by

def getDepSets(IGraph) {
IGraph = reverse(IGraph);
ASL = cdr(reverse(getAllSortedLists(length(car(IGraph)))));
DepSets = [];
while ((List = car(IGraph)) '= [] && (SL = car(ASL)) != []) {
while ((L = car(SL)) != [1) {
if (subset_of_subset_p(L, List)) {
DepSets = cons(L, DepSets);
}
SL = cdr(SL);
}
IGraph = cdr(IGraph);
ASL = cdr(ASL);
}
return DepSets;

b

def circuitl_p(Set, DepSets) {
Len = length(DepSets);
for (I =0; I < Len; I++) {
if (properSubSet_p(DepSets[I], Set)) {
return O;
}
}
return 1;

by

def getCircuits(IGraph) {

DepSets = getDepSets(IGraph);

Len = length(DepSets);

Circuits = [J;

for (I =0; I < Len; I++) {
if (circuitl_p(DepSets[I], DepSets)) {

Circuits = cons(DepSets[I], Circuits);

}

}

return Circuits;

61
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def getIntersectables(Dimension, IGraph) {

HSize = length(car(reverse(IGraph)));

X = getSortedLists(Dimension, HSize);

Len = length(X);

Intersections = [];

for (I =0; I < Len; I++) {
if (intersectable_p(X[I], IGraph)) {

Intersections = cons(X[I], Intersections);

}

}

return Intersections;

/* The following functions are used in computations of beta-nbc. */
def howSmallThisInOrder(This, Order) {

Len = length(Order);

for (I = 0; I < Len && Order[I] != This; I++)

I

return I;

by

def minimalCounterWithOrder (List, Order) {
Len = length(List);
PrevNum = length(Order) + 1; Prev = -1;
for (I = 0; I < Len; I++) {

if ((Tmp = howSmallThisInOrder(List[I], Order)) < PrevNum) {
Prev = I;
PrevNum = Tmp;
}
}
return Prev;

by

def listDeleteMinimalWithOrder(List, Order) {
N = minimalCounterWithOrder (List, Order);
return listDeleteNth(List, N);

+

/* the value is 1 when any elements of List are not contained in SupSet.

def uncontained_p(List, SupSet) {
while ((Set = car(List)) !'= [1) {
if (subset_p(Set, SupSet)) {
return O;

3
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List = cdr(List);
+

return 1;

by

def number_of_planes(IGraph) {
return length(car(reverse(IGraph)));

by

def rank_of_igraph(IGraph) {
return length(IGraph);
+

def getNbcSet (IGraph, Order) {
Circuits = getCircuits(IGraph);
/* Len = length(Circuits); x/
BcSet = [];
while ((Cir = car(Circuits)) !'= []) {
BcSet = cons(listDeleteMinimalWithOrder (Cir, Order), BcSet);
Circuits = cdr(Circuits);

}

/* BcSet = getBcSet(IGraph, Order); */
Family_of_maxrank = car(IGraph);
SL = getSortedLists(rank_of_igraph(IGraph), number_of_planes(IGraph));
NbcSet = [];
while ((L = car(SL)) != [1) {
if (subset_of_subset_p(L, Family_of_maxrank) && uncontained_p(BcSet, L)) {
NbcSet = cons(L, NbcSet);

}

SL = cdr(SL);
}
return NbcSet;

def existLowerSetInListAtNth_p(Set, List, Order, N) {
Ind = Set[N];
while((Ind2 = car(Order)) != Ind) {
Set2 = listSetObject(Set, Ind2, N);
if (element0fSet_p(sort(Set2), List)) {

return 1;
}
Order = cdr(Order);
}
return O;

by
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def betaNbc_p(Nbc, NbcSet, Order) {
Len = length(Nbc);
for (I =0; I < Len; I++) {
if (lexistLowerSetInListAtNth_p(Nbc, NbcSet, Order, I)) {
return O;
}
}
return 1;

}

/* This is main module!! */
def getBetalNbcSet (IGraph, Order) {
NbcSet = getNbcSet (IGraph, Order);
Len = length(NbcSet);
BetaNbcSet = [];
for (I = 0; I < Len; I++) {
if (betaNbc_p(NbcSet[I], NbcSet, Order)) {
BetaNbcSet = cons(NbcSet[I], BetalNbcSet);
}
+
return sort(BetaNbcSet);

/* get the support for indepence set in the fixed arrangement. */
def getSupport(Independence, IGraph) {
IG2 = igRank(IGraph, length(Independence));
Len = length(IG2);
for (I=0; I<Len; I++) {
if (subset_p(Independence, IG2[I])) {
return IG2[I];
}
}
return [];

by

/* We construct the list which represent a log-form for given beta-nbc. */
/* A “‘1list’’ [[i,j],[k],[1]] means a 3-form (tau_i+tau_j)*tau_l*tau_l. */

def nbc2form(Nbc, IGraph, Order) {
/* translate a nbc to its log-form */
PrevSupport = [];
Snbc = [];
Form = [];
Order = reverse(QOrder);
Len = length(Order);
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for (I=0; I<Len; I++) {
if (element0fSet_p(Order[I], Nbc)) {
Snbc = cons(0Order[I], Snbc);
/* reduce the log-form */
Support = getSupport(Snbc, IGraph);
Form = cons(setMinus(Support, PrevSupport), Form);
PrevSupport = Support;
}
}
return Form;

}

def betalNbcSet2forms(BetaNbcSet, IGraph, Order) {
Forms = [];
Len = length(BetaNbcSet);
for (I=0; I<Len; I++) {
Forms = cons(nbc2form(BetaNbcSet[I], IGraph, Order), Forms);
}

return reverse(Forms);

b

def listupBetaNbcs(Arrangement) {
IGraph = getIGraph(Arrangement) ;
HSize = length(hpPart (Arrangement));
Orders = getOrders(HSize);
MaxNumOrders = length(Orders);
output ("x")$
print(["Incidence Graph:", IGraph, "--- Circuits", getCircuits(IGraph)]);
for (I = 0; I < MaxNumOrders; I++) {
Order = Orders[I];
BetaNbcSet = getBetaNbcSet (IGraph, Order);

print (["Order:", Order, "--- Beta NBC:", BetaNbcSet]);

}
output()$

end$
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/* —%—C-%x— *x/
/* ~/beta-nbc-asir/igraph */

/* This program generates the incidence graph for a given arrangement.

The data structure of incidence graphs of arrangements as follws:
[ (A list of the intersections with rank $m$),
(A list of the intersections with rank $m-1$),
(A list of the intersections with rank $1$) ],
where $m$ is the rank of a given arrangement.
An intersection with rank $k$ is expressed as the set of its supporting
hyperplanes.
*/

/* The data structure of arrangements as follows:
[ (A 1list of linear forms), (A list of indefinite) ].
*/

/* Remark.
This program run under the following assumption derived from
the Groebner bases package of ‘‘Asir’’:
The variables which are not included the list of indeterminates
have ‘‘generic’’ value.

For example, we assume that z is not equal to O with respect to the
arrangement [ [s, t, s+t-z], [s,t] ].

*/

load("sets")$
load("gr")$

#tdefine rankPart(X) ((X)[0])
#define setPart(X) ((X)[1])

#define hpPart(X) ((X)[0])
#define varPart(X) ((X)[11)
#define static

/*x cf. List = [1,2,3,...] */
static def xlateSet2HSet(Set, Hyperplanes) {
HSet = [];
Len = length(Set);
for (I =0; I < Len; I++) {
HSet = cons(Hyperplanes[Set[I]-1], HSet);
}
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return HSet;

by

/* This function use Groebner package. */
static def getRankOfSet(Set, Arrangement) {
Variables = varPart(Arrangement) ;
HSet = xlateSet2HSet(Set, hpPart(Arrangement));
GBasis = gr(HSet, Variables, 0);
if (length(GBasis) == 1 && dp_td(dp_ptod(car(GBasis), Variables)) == 0) {
/* GBasis is near equal to [1] */
return O;
}
return length(GBasis);
}
static def xlateSListsWithRank(SLists, Arrangement) {
SListsWithRank = [];
while((Set = car(SLists)) != [1) {
Rank = getRank0fSet(Set, Arrangement);
if (Rank != 0) {
SListsWithRank = cons([Rank,Set], SListsWithRank);
}
SLists = cdr(SLists);
}
return SListsWithRank;
}

static def getIntersectionsList(Arrangement) {
/* HSize is number of hyperplanes. */
HSize = length(hpPart (Arrangement));
RevASLists = reverse(getAllSortedLists(HSize));
X = [1;
while((SLists = car(RevASLists)) != [1) {
SListsWithRank = xlateSListsWithRank(SLists, Arrangement);
if (SListsWithRank == [1) {
return X;
}
X = append(SListsWithRank, X);
RevASLists = cdr(RevASLists);
}

return X;

/* generate an incidence graph */

def getIGraph(Arrangement) {
MaxRank = length(varPart (Arrangement)) ;
RevIGraph = [];
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for (I = 0; I < MaxRank; I++) {
RevIGraph = cons([], RevIGraph);

}
IList = getIntersectionsList(Arrangement) ;
while((Int = car(IList)) != [1) {

R = rankPart(Int) -1 ;
X = RevIGraph[R];
if (!subset_of_subset_p(setPart(Int), X)) {
RevIGraph = listSetObject(RevIGraph, cons(setPart(Int), X), R);
+
IList = cdr(IList);
}

return reverse(RevIGraph);

by

end$
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/* —%—C-%— */
/* ~/beta-nbc-asir/sets */

/* This program is a module treating a SET for Asir. This module
identify a SET with a list. Namely, it ignores the order of
elements in a list. */

load("gr")$

/* compute (SupSet - Subset) */
def setMinus(SupSet, SubSet) {
LenSup = length(SupSet);
X =1[;
for (I = 0; I < LenSup; I++) {
if (lelementOfSet_p(SupSet[I], SubSet))
X = cons(SupSet[I], X);
}
return reverse(X);

by

/* static */
/* Is given list sorted? */
def sortedList_p(List) {
Len = length(List);
for (I =1; I < Len; I++) {
if (List[I-1] > List[I]) {
return O;
}
}
return 1;

+

/* deleting unsorted sets */
def chooseSortedLists(Lists) {
Len = length(Lists);
SortedLists = [];
for (I = 0; I < Len; I++) {
if (sortedList_p(Lists[I])) {
SortedlLists = cons(Lists[I], SortedLists);
}
}
return SortedLists;

by

def getAllSortedLists(HSize) {
ASLists = [];
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SLists = [ [1 1;

for (I = 0; I < HSize; I++) {
SLists = getSubOrders(SLists, HSize);
SLists = chooseSortedLists(SLists);
ASLists = cons(SLists, ASLists);
}
return ASLists;
+
def getSortedListsWithDepth(HSize, Depth) {
ASLists = [];
SLists = [ [1 1;
for (I = 0; I < Depth; I++) {

SLists = getSubOrders(SLists, HSize);
SLists = chooseSortedLists(SLists);
ASLists = cons(SLists, ASLists);

+

return ASLists;

by

def getIntersectables(Rank, IGraph) {

HSize = length(car(reverse(IGraph)));

X = getSortedLists(Rank, HSize);

Len = length(X);

Intersections = [];

for (I = 0; I < Len; I++) {
if (intersectable_p(X[I], IGraph)) {

Intersections = cons(X[I], Intersections);

}

}

return Intersections;

def getIntersectables2(Rank, IGraph) {
Indep = getIndependentSets(IGraph);
return igRank(Indep, Rank);

}

def getSortedLists(Rank, HSize) {
Lists = [ [1 1;
for (I = 0; I < Rank; I++) {
Lists = getSubOrders(Lists, HSize);
Lists = chooseSortedLists(Lists);
}
return Lists;

by
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def getSubOrders(SubOrders, HSize) {
Len = length(SubOrders);
X=0;
for (I=0; I<Len; I++) {
for (J=1; J<=HSize; J++) {
if (element0fSet_p(J, SubOrders[I]))
continue;
X = cons(cons(J, SubOrders[I]), X);
+
+
return X;

by

def getOrders(HSize) {
Orders = [ [0 1;
for (I=0; I<HSize; I++) {
Orders = getSubOrders(Orders, HSize);
}

return sort(Orders);

}

/* set ‘‘Object’’ to N-th element of given list. */
def listSetObject(List, Object, N) {
X=0;
Len = length(List);
for (I =0; I <Len && I < N; I++) {
X = cons(List[I], X);
}
X = cons(Object, X);
for (I=N+1; I < Len; I++) {
X = cons(List[I], X);
}
return reverse(X);

by

/* delete N-th element of given list. */
def listDeleteNth(List, N) {
Len = length(List);
X=0;
for (I =0; I <N; I++) {
X = cons(List[I], X);
}
for (I=N+1; I < Len; I++) {
X = cons(List[I], X);
}

71
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return reverse(X);

by

/* Is ‘‘Element’’ included in ‘‘Set’’? *x/
def elementOfSet_p(Element, Set) {
Len = length(Set);
for (I = 0; I < Len; I++) {
if (Element == Set[I])
return 1;
+

return O;

by

/* Is ‘‘Set’’ a proper subset of ‘‘SupSet’’? */
def properSubSet_p(Set, SupSet) {

return (subset_p(Set, SupSet) && length(Set) < length(SupSet));
+

/* Is ‘‘Set’’ a subset of ‘‘SupSet’’? */
def subset_p(Set, SupSet) {
Len = length(Set);
for (I = 0; I < Len; I++) {
if ('elementOfSet_p(Set[I], SupSet)) {
return O;
}
}
return 1;

by

/* Is ‘‘Set’’ a subset of subset of ‘SupSupSet’’? x/
def subset_of_subset_p(Set, SupSupSet) {
Len = length(SupSupSet);
for (I = 0; I < Len; I++) {
if (subset_p(Set, SupSupSet[I])) {

return 1;
}

+

return O;
}
/* This is a subfunction of ‘‘sort()’’. */
def sortSub(SortedList, Object) {

X =1[];

while ((L = car(SortedList)) !'= [] && L < Object) {
X = cons(L, X);
SortedList = cdr(SortedList);
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}
X = cons(Object, X);
return append(reverse(X), SortedList);

by

/* This simple sorting function spends an 0(n~2) time. */
def sort(List) {
Sorted = [];
while ((L = car(List)) !'= [1) {
Sorted = sortSub(Sorted, L);
List = cdr(List);
}
return Sorted;

by

/* compute the sign of a permutation °‘append(SortedList, [Object])’’.

def signSub(SortedList, Object) {
X=10;
while ((L = car(SortedList)) !'= [] && L < Object) {
X = cons(L, X);
SortedList = cdr(SortedList);
}
X = cons(Object, X);

return [append(reverse(X), SortedList), length(SortedList)];

b

/* compute the sign of a permutation ‘‘List’’ */
def sign(List) {
Sorted = [];
Sign = 0;
while ((L = car(List)) !'= [1) {
X = signSub(Sorted, L);
Sorted = X[0];
Sign += X[1];
List = cdr(List);
}
return (Sign % 2) 7 -1 : 1;
}

end$
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