<RNEL

S
“opg O

T Kobe University Repository : Kernel

PDF issue: 2024-10-12

Temporal Linear Logic and Its Applications

Hirai, Takaharu

(Degree)
Bt (EZF)

(Date of Degree)
2000-09-30

(Date of Publication)
2014-11-25

(Resource Type)
doctoral thesis

(Report Number)
2193

(URL)
https://hdl. handle. net/20.500. 14094,/D1002193

X YAVTFUYVIIHRRZOEMBRRTY, BER - FTEFEASE2ELET, ZFEEITROOLNTWREEANT. BNICTFIALCEI W,

\j].\i\'l:lihl'['\'
AN



Doctoral Dissertation

Temporal Linear Logic and Its
Applications

Takaharu Hirai

September 2000

The Graduate School of Science and Technology
Kobe University, Japan



BE#wX

Temporal Linear Logic and Its
Applications

(B G RE & Z D)

ERk 12 £ 9 A

HFEKXF KPR B AN FHER



Abstract

Linear logic, introduced by Girard in 1987, has been called a resource conscious logic. In order to
express a dynamic change in process environment, it is useful to consider a concept of resource such as
data consumption. The expressive power of linear logic is evidenced by some very natural encodings
of computational models such as Petri nets, counter machines, Turing machines, and others. For
example, in Petri nets, tokens are considered as resources that are consumed and transitions are
considered as reusable resources. It is well known that the reachability problem for ordinary Petri nets
is equivalent to the provability for the corresponding sequent of linear logic. Also, as a formal logical
system, linear logic satisfies some basic theorems. In it the cut elimination theorem and the soundness
and completeness theorems for phase semantics which is a standard semantics of linear logic hold true.
In particular, the cut elimination theorem can be applied to logic programming, uniform proof and
proof search, and so on. We think that linear logic has been given various applications in computer
science through its resource consciousness and usefulness as a formal system.

However, since linear logic does not include a concept of time directly, it is not enough to treat a
dynamic change in environments with the passage of time such as execution time and waiting time.
A typical example is the encoding of timed Petri nets. Although ordinary Petri nets can be encoded
into linear logic naturally as stated above, the encoding of timed Petri nets into the corresponding
sequent is too complex for linear logic since the reachability problem for timed Petri nets includes a
time concept.

Thus, it can be considered to extend linear logic with respect to the time concept. The aim of this
thesis is to construct a resource-conscious and time-dependent logical system by means of extending
linear logic and to provide an application to computer science. We think that such a logic can treat
a dynamic change in environments with the passage of time. We call it temporal linear logic.

The basic idea is to introduce temporal operators. We assume discrete linear time in this thesis
and introduce “O”, which means next, and “0”, which means anytime. We make the interpretation
of a formula include a time concept. For inference rules, we refer to modal logic S4. S4 can thus be
regarded as temporal logic, which also has a “0” operator meaning “always”, which is similar to ours.

In this way, temporal linear logic includes linear logic as its subsystem. It can succeed to the
resource-consciousness in linear logic. Also, S4 can be embedded into temporal linear logic. We
can say that the time concept works in our logical system. In addition, the cut elimination theorem
and the subformula property hold in this logic as in the form of linear logic. The full propositional
fragment of temporal linear logic has a complete semantics in terms of temporal phase spaces, which
are an extension of phase spaces in the semantics of linear logic.

Using our temporal linear logic, several cases of a dynamic change in environments with the passage
of time can be expressed. Timed Petri nets can be encoded naturally into it, that is, the reachability
problem for timed Petri nets is equivalent to the provability for the corresponding sequent. This is
connected to the decidability of temporal linear logic fragments. A logic programming language based
on temporal linear logic is designed by using the idea of Miller’s uniform proof. We also represent
the description of a communication model, which is our own model, by temporal linear logic. It can
distinguish a synchronous calculus from an asynchronous calculus.

Keywords

temporal linear logic, phase semantics, timed Petri nets, reachability, synchronous communication,
decidability.
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Chapter 1

Introduction

In this thesis, a logical system called temporal linear logic is constructed and its application studied.
The basic idea is to extend linear logic by means of introducing temporal operators. Dynamic change
in environments with the passage of time can be expressed by temporal linear logic.

In this chapter, the aim and the outline of this thesis is described, starting with the background
and the motivation. Following that, we list the characteristics of temporal linear logic and applications
to computer science. At the end of this chapter, the organization of the thesis is described.

Background

In order to express dynamic change in process environment, it is useful to consider a concept of resource
such as data consumption. Linear logic (LL) [6] introduced by Girard in 1987 has been called a resource
conscious logic. The expressive power is so rich that one can construct a counter machine within the
propositional fragment of linear logic. Some computational models of concurrency are applications
of LL[26, 2, 20]. In particular, the relation between linear logic and Petri nets[11, 36] has been
well-studied [16, 35, 21, 4, 23]. According to [25], the algebraic point of view of Petri nets seems to
be related to the algebraic semantics for linear logic [28, 34]. LL has a modal storage operator “!”
which means an infinite resource. Using this operator, one can distinguish the treatment of a reusable
resource from the treatment of a consumptive resource. For example, a token in Petri nets is treated

as a consumptive resource and a transition is expressed by using the “!”

operator.

Furthermore, linear logic is useful as a formal logical system. The cut elimination theorem holds in
LL. The theorem plays an important part in logic programming, uniform proof and proof search, and
so on. The full propositional fragment of LL has a complete semantics in terms of phase spaces[6]. We
think that linear logic has been given various applications in computer science through its resource-

consciousness and usefulness as a formal system.

The Motivation and Aim of this Study

Linear logic can represent a dynamically changing environment. However, it is not enough to treat
dynamic change in process environments with the passage of time such as execution time and waiting
time because LL does not explicitly include modal operators of time. Although [18] is a study on
introducing the time concept into linear logic on the first order level, it is necessary for a wide
application to develop comprehensive logical systems capable of handling both resource conscious
and time dependent properties.

A typical example is the relation between LL and Petri nets. It is well known that the reachability
problem for Petri nets is equivalent to the provability for the corresponding sequent of LL [16]. Petri



nets can be extended to timed Petri nets[12, 3] with respect to the time concept. Since timed Petri
nets can be replaced into ordinary Petri nets[29, 30], the reachability problem for timed Petri nets
can be expressed by LL indeed. But the mass of places and transitions are supplemented for the
replacement. It follows that the expression of timed Petri nets by LL is too complex. We cannot say
that LL has enough expressive power for natural encoding of timed Petri nets.

Thus it can be considered to extend linear logic with respect to the time concept. The aim
of this thesis is to construct a resource-conscious and time-dependent logical system that can treat
dynamic change in environments with the passage of time within its propositional fragment by means
of extending linear logic and to provide an application to computer science. We call the logical system
temporal linear logic (TLL)!.

The Requirements of Temporal Linear Logic

There are several logical systems called “temporal linear logic” to date [13, 33], yet these systems lack
a modal storage operator which means an infinite resource. It follows that even ordinary Petri nets
cannot be expressed naturally. The one in [33] expresses transitions by non-logical axioms. Thus the
correspondence between the logical system and (timed) Petri nets is not sufficient. That is, though
the soundness of the provability of the sequent in the logical system with respect to the reachability
problem for (timed) Petri nets is shown, the completeness is not shown in [33]. In addition, the one
in [13] has an inference rule that includes an infinite sequence of sequents in the inference rules. For
this, the cut elimination theorem is proved using semantics, that is, one cannot obtain the cut free
proof figure for a provable sequent constructively. It follows that one cannot use the idea of Miller’s
uniform proof when a logic programming language based on the logic is designed. Thus it is difficult
for the systems in [13] and [33] to express naturally dynamic change in process environments with the
passage of time.

We consider that it is the first step toward a natural expression of dynamic change in environments
with the passage of time to fuse linear logic and temporal logic without destroying their characteristics.
Our basic idea is to introduce some temporal operators into linear logic and to add the rules concerning
them. The additional rules should be an extension of temporal logic rules. Also, usefulness as a formal
logical system of linear logic should be satisfied, that is, the cut free proof figure should be given
constructively and TLL should have the soundness and completeness theorems. TLL should be able
to express timed Petri nets as well as ordinary Petri nets.

The Characteristics of Temporal Linear Logic

In this thesis, we restrict the time concept to discrete linear time. We think that it will not be difficult
to extend this concept to continuous linear time (Chapter6).

We introduce “O”, which means next, and “0”, which means anytime. Furthermore, we make the
interpretation of a formula include the time concept. In linear logic, a formula A can be considered as
a resource meaning “A can be used ezactly once”. In TLL, we interpret it as “A can be used exactly
once just now”’. Thus, OA and OA can be interpreted as follows:

OA : “A can be used next time exactly once”,
OA : “A can be used anytime but exactly once”.

'Temporal linear logic, which is an extension of linear logic, is different from linear temporal logic (LTL), a kind of
temporal logic that has no relation with linear logic. The meaning of formula A in TLL is not the same that of formula
A in LTL because LTL has no concept of resource. That of in TLL means “A is usable only once now”. The one in
LTL means “A is usable (any number of times) now”.



Also, in linear logic, since a formula !A can be considered an infinite resource, it may be thought of
as a printing press for A’s, which can generate any number of A’s. Thus 'A can be interpreted as “A

wy

can be reusable” in linear logic. In TLL, the interpretation of this modal storage operator is also

extended, which means reusable at anytime, that is;
!A : “A can be reusable at anytime”.

Now, we characterize TLL by modal logic S4[1], since it can be regarded as temporal logic, which
also has a “0” operator meaning “always”, which is similar to ours. In terms of the operator, 04 — A
and OA — OOA are provable in S4. We referred to these characterizations in order to construct the
TLL syntax. Indeed, O-rules in TLL are extensions of O-rules in S4. We show that S4 is embedded
into TLL. Note that temporal logic by itself has no concept of resource.

Phase semantics is extended by two kinds of homomorphisms A, f : M — M', where M and
M’ are phase spaces. We obtain temporal phase spaces. h(m) means “m at next time” for m € M
and f corresponds to “anytime”. !X C M in phase spaces is extended by f. We show that the full
propositional fragment TLL satisfies the soundness and completeness theorems in terms of temporal
phase spaces.

The characteristics of TLL are:

e A natural extension of linear logic:

— TLL includes LL as its subsystem.

— The cut elimination theorem holds in TLL as in the form of LL. Also, the subformula
property holds in TLL. It follows that LL can be embedded into TLL. The concept of
resource is succeeded.

— Phase spaces are extended to temporal phase spaces. The soundness and completeness
theorems hold in terms of them.

e A natural extension of temporal logic (S4):

— S4 is embedded into TLL. We can say that time concept works in TLL.

Application to Computer Science

TLL can be constructed as a resource-conscious and time-dependent logical system. We can obtain
application to computer science concerning resource and time. For example, place timed Petri nets can
be represented naturally. Suppose p is a place with waiting time for one unit, that is, tokens appearing
in p just now will become available the next time. Thereafter the tokens can be used anytime. Thus
a token appearing in p just now can be expressed by OOp. A transition can be expressed using the
“I” operator, as in encoding in linear logic.

Also, although the correspondence between the concept of the concurrent processes and logical
concept is rough, we can represent the description of a communication model, which is our own
model, by TLL. In linear logic, A —o(B —o (') is equivalent to A @ B —o C'". It follows that we cannot
specify the execution order of processes. Using “O” and “07, in TLL, we can specify the order as
A —O0O(B — 00OC). Furthermore, we can distinguish a synchronous calculus from an asynchronous
calculus [10].

TLL can be applied as follows:

e It is possible to design a logic programming language based on temporal linear logic [32].
Since TLL satisfies the cut elimination theorem, we can use the idea of Miller’s uniform proof
to design a logic programming language.



e It is possible to express timed Petri nets naturally.
Since TLL has concepts of both resource and time, transitions and tokens in timed Petri nets are
expressed naturally. The reachability problem for timed Petri nets is equivalent to the provability
for the corresponding TLL sequent.

e [t is possible to consider a synchronous communication calculus model, which is our own model.
In the model, we can specify the execution order of processes and distinguish a synchronous
calculus from an asynchronous calculus [10].

The remainder of this thesis is organized as follows. In Chapter 2, we survey linear logic. Some
basic interpretations, the relation between linear logic and Petri nets, and phase semantics are stated.
Readers knowledgeable about these matters may wish to skip this chapter. In Chapter 3, we provide
the sequent calculus for propositional temporal linear logic. The cut elimination theorem and the
embedding are shown. At the end of this chapter, we consider the decidability of TLL fragments.
Chapter 4 consists of the phase semantics for TLL, and the soundness and completeness theorems
are shown. Chapterb consists of application to computer science. It is shown that the reachability
problem for timed Petri nets is equivalent to the provability for the corresponding TLL sequent
(Theorem 5.2.1). We consider our own model and can distinguish a synchronous calculus from an
asynchronous calculus in the model. Chapter 6 contains some remarks, related work and future work.



Chapter 2

A Survey of Linear Logic

In this chapter, starting with the meaning of some logical connectives, we review basic theorems, the
decidability of linear logic fragments and the relation to Petri nets. We also look over phase semantics
for linear logic. The syntax for linear logic (LL) is given in Table A.1 in Appendix A.1l.

2.1 Linear Logic

First, let us review several logical connectives of linear logic. Consider the propositions D, C' and T,
conceived of as resources:

A

D = “We have one Dollar”
A .

C' = “We can obtain a cup of Coffee”
A .

T = “We can obtain a cup of Tea”

Consider the axiomatization of vending machines:
D implies C, D implies T.

In ordinary logic (classical logic LK [5, 31]), one can deduce D implies (C' and T') from D implies C'
and D implies T. It may be read as “With one dollar, we may buy both a cup of coffee and a cup
of tea”. Although the deduction is valid in classical logic, it is nonsense. This paradox arises out
of the confusion in classical logic between two kinds of conjunction. Linear Logic has two kinds of
conjunction “®” which means “we have both” and “&” which means “we have a choice”. Although
D does not imply C® T, D ® D implies C ® T in linear logic. On the other hand, D implies C&T
means “We can choose C' or T but not both”. Moreover, the traditional implication is refined as
linear implication “—0”. D —oC means “D is consumed to produce C”. Thus, we can say again that
D —-oC ® T is not deducible in linear logic. Also linear logic has “@” which means “someone else’s
choice”. D —oC' @ T means “With one dollar, we can obtain either a cup of coffee or a cup of tea, but
we don’t know which”. In addition, there is a modal storage operator “!”. 'D may be thought of as
a printing press for D’s, which can generate any number of D’s. For example, the government can be
thought to have !D. 'D —-o(C ® ...® C holds for arbitrary n, which means “We can obtain as many

n
(s as we like”.

In LL, 1 is the unit of “®”, thus A0 A® 1 and A ® 1 —0 A, for any formula A. T is the unit
of “&”, L is the unit of “p”, and 0 is the unit of “@”. For any formula A, B, C, one can prove
A—oB = AtpB, A—o(B—-oC) = A® B—oC,!A—oA, 1A =14 (1A)L =241 and so on. Here,
“A = B” means both A —o B and B —o A are provable in LL. The cut elimination theorem holds in
LL, that is, if a sequent I" — A is provable in LL then it can be provable in LL without the (cut) rule.



One can obtain its cut free proof figure constructively. The subformula property follows from the cut
elimination theorem, that is, for any sequent Il — A in P, any formula in Il or A is the subformula
in I' or A, where P is a cut free LL proof of I' — A.

The full fragment of LL is undecidable [22]. The fragment of LL without modals “!” nor “?”
(MALL) is known to be PSPACE-complete [22].

2.2 Linear Logic and Petri Nets

Linear logic provides a natural encoding of Petri nets reachability.

A Petri net is a tuple (Pl,Tr, Ar), where Pl indicates a finite set of places, Tr a finite set of
transitions (disjoint with Pl) and Ar (Weight of arcs) : (Pl x Tr)U (Tr x Pl) — N. Here N means
the set of natural numbers (including 0).

A multiset M of places is called a marking, which indicates tokens. We say that a transition 7 is
enabled at M if and only if M~ C M. Here, M~ is the multiset of input places to 7. If a transition 7
is enabled and we fire it, the reached marking M’ is defined by

M =M-M-"wM*.

Here, M7 indicates the multiset of output places p’s from 7. W indicates a multiset union. The
described firing is denoted by the notation M[r)M’.

For a firing sequence 0 = 7 ...7, (n > 0), we use the notation
My[o)M instead of My[r)Mi[ra)My.. . My, _1[r,)M, = M. We
say that M is reachable from My iff there exists a firing sequence
o such that My[o) M.

We consider a Petri net in Fig.2.1. The (initial) marking
My = {p1,p2,p2}. The transition 7, is enabled at My. We fire
it, then the reached marking M; = {p1, p3, p3}. The transition 7,
is enabled at M; and we fire it, then the reached marking M =
My = {p1, p2, p3}. We can say that M is reachable from My since
MO [Tl T2>M.

Using logical connectives of linear logic, one can represent Petri nets. The transition 71 in Fig. 2.1
is encoded to the formula p; ® pa ® pa —0 p1 ® p3s ® ps. Similary, the transition 7 is encoded to the
formula ps —opy. Markings are represented as tensor product of atomic propositions. For example,
the marking My in Fig. 2.1 is encoded to the formula p; ® ps ® p3. Similary, the marking M is encoded
to the formula p; ® ps ® ps.

It is well known that the reachability problem for Petri nets is decidable [24]. The reachability
problem for Petri nets is equivalent to the provability problem for the -Horn fragment of linear
logic [16].

Theorem 2.2.1 (Kanovich [16]) For a given Petri net (Pl,Tr, Ar), a marking M is reachable from
a marking My if and only if the following !~-Horn sequent

Mg\ Tr* — M*

Fig.2.1: Petri net

is provable in Linear Logic, where MJ, M™* are corresponding formulas and Tr* is a corresponding
sequence of formulas. .

Remark 2.2.1 The Horn fragment of linear logic is NP-complete [14, 15].
For a Petri net in Fig. 2.1, the reachability that M is reachable from Mj is presented as a sequent
P1 @ P2 @ p2, H(p1 @ p2 @ p2 o p1 @ p3 @ p3), (ps —0 p2) — p1 © p2 @ ps.

Indeed, this sequent is provable in linear logic.



2.3 Phase Semantics for Linear Logic

In the previous section, we reviewed the correspondence between the provability of linear logic sequnet
and the reachability problem for Petri nets. It can be considered that the resource-consciousness is
one of the cause of the ability to express a dynamic change in a computational model of concurrency
such as Petri nets.

We think that linear logic has another cause why it is applied to computer science widely. That
is the usefulness as a formal logical system. The cut elimination theorem holds in LL. Furthermore,
one can obtain the cut free proof figure constructively. This theorem plays an important part in logic
programming, uniform proof, and proof search. The full propositional fragment LL has a complete
semantics in terms of phase spaces[6]. We think that the soundness and completeness theorems can
be useful to consider model checking.

In this section, we review the phase semantics for linear logic.

A phase space (M, L) is a commutative monoid M with a distinguished subset LC M, called
bottom. In a phase space (M, L), we define

Xt:={2eM|z-z €l forany z € X}

for any X C M. Immediately, X C X1+ for any X, Y+ C X+ whenever X CY, and X++ .Yl C
(X -Y)tL where X .Y :={z-ylz € X and y € Y}. A factis an X C M such that X+ = X. It
is straightforward to show that a phase space satisfies that X is a fact iff X is the form Y* for some
Y C M. In particular L= {1}' is a fact, where 1 is the neutral element of M. Also, any intersection
of facts is a fact. In particular, X1+ is an intersection of all facts containing X. Note that all of the
following are facts:
1:={1}*, T:=M, 0:=0,
XY =X -V)H  Xpy .= (X+.vyHt
X&Y =X nNY, XPY = (XuYy)tt
X oY :={zeMlz-z€Y forall z € X},

for any facts X, VY.
It is easy to show that J(M) := {z € 1|z € {z-2}*+1} is a submonoid of M. Let K be a submonoid
of J(M). Note that K is not required to be a fact. For any fact X C M, we define following facts :

!/Y = ()( ﬂ IX’)J_J_ ?/Y = (/YJ_ ﬂ I(Y)J_.
One can deduce for any fact X:
!)( g /Y, !/Y g!/Y®!1Y7 !/Y g 1.

A phase modelis given by a phase space (M, L) and a valuation which maps each (positive) atomic
p of LL to a fact p* of (M, L). For each propositional formula A of LL, we can associate a fact A*
inductively, thatis, 1*:=1, 1* :=1+t= {1}+L T* := M, 0% := 01+ (pt)* == p*t, (A®B)* := A*@B*,
(ApB)* := A*pB*, (A&B)* := A*&B*, (A@ B)* := A* ¢ B*, (A—oB)* := A* — B*, (14)* :=!4%,
(7A)* :=7A*.

Let Cy,...,Cp — D1, ..., D, be asequent of LL and let ( )* be a valuation. A valuation satisfies
a sequent Cy,...,Cpy = Dy,..., D, iff (C1®...0Cp)* C (Di1p...pD,)*. A sequent of the form
— Dy,..., D, is defined to be satisfied iff 1* C (D1p...pD,)*. A sequent of the form C1,...,C,, —
is defined to be satisfied iff (C; ® ...® Cp)* CL*. A sequent C4,...,Cy — Dy, ..., D, is valid iff it

is satisfied in any valuation in any phase model.

Theorem 2.3.1 (Girard [6]) A sequent is provable in LL if and only if it is valid. "

10



Chapter 3

Syntax of Temporal Linear Logic

In this chapter, we define the syntax of propositional temporal linear logic (TLL). Note that the
sequence of formulas C'y, ..., (), is regarded as a multiset, so that exchange is implicit for all logical
systems in this thesis.

3.1 Interpretation of Formulas in Temporal Linear Logic

The syntax TLL is obtained from LL by introducing some temporal operators, and the rules con-
cerning them. Here we assume discrete linear time and introduce the temporal operators “O”  which
means next and “0”, which means anytime. In order to introduce the time concept without destroying
the fundamental characteristics of linear logic, we devise an interpretation of TLL formulas as follows:

A “A can be used exactly once just now”
(After use, it disappears);

OA : “A can be used nezt time exactly once”
(After use, it disappears);

OA : “A can be used anytime but exactly once”
(After use, it disappears);

1A : “A can be reused anytime”

(It never disappears).

Note that !4 does not mean “A can be reused only now”" in our system. If we use this interpretation,

the meaning of '0A is different from O!'A. In our system, both of them are treated as having the
same meaning. This is related to Remark3.3.1. In a sense our interpretation does not damage the
expressive power. Also it is suitable for the encoding of transitions in timed Petri nets.

Remember the axiomatization of vending machines in Section 2.2. We can consider various sit-
uations compared with the case in LL. The axiomatization of vending machines may be stated as
follows:

O™D implies O™(C', O"D implies O"T,

for any m,n. Here, O"C indicates O...O C. For example, we can express ”With one dollar, we can

n

buy a cup of coffee anytime”? by OD —oO0OC. OD ® OD —oC @ C can be interpreted as ”With two

'This is the early interpretation by Kanovich before [13]. In our system, this is expressed by 1&A&(A ®
A& .. &(A®...® A) for any n.
’ N — ——

n
2We consider here that one dollar, which you have now, can be used anytime but exactly once.

11



A=A 1O — A, OA,7Y
AT 54 07 TemSoaon s

(=0)

oM, A— OA?Y
IO, 04— OA, 7Y
IO, 5 — A, ®,OA,2A () ID,OM,5, A —®,OA,2A
Il 011,05 — OA, 00, OA,7A I, 011,05, 04 — 0P, OA,7A
ol = — &, 04,74
'I'OIl, 05 — 09, OA,7A

I'— A A
I'—- AQA

(C =) (— <)

(©)

(0 +0)

Table 3.1: Modal Rules

dollars, we can buy two cups of coffee today”, OD @ OD —oC ® OC as "With two dollars, we can
buy a cup of coffee today and tomorrow”, and OD —oC&OC' as "With one dollar, we have a choice
of today or tomorrow (but not both) to buy a cup of coffee”.

3.2 Propositional Temporal Linear Logic

Now, we shall define the syntax for TLL. We refer to modal logic S4[1], since it can be regarded as
temporal logic, which also has a “0” operator meaning “always”, which is similar to ours. O-rules in
TLL are an extension of O-rules in S4 which are listed in Table A.5 in Appendix A .4.

Roman capitals A, B, ... stand for formulas. The connectives of TLL are:
e the multiplicatives AQ B, ApB,A—oB, 1,1;

o the additives A&B,A® B, T,0;

e the exponentials A, 7A;

o the temporal modalities DA, >A, OA, OA.

The pairs ®, p; L,1; &, @; T,0;!,2; 0,0; O,0 are de Morgan duals. Greek capitals I, 1, . . . stand
for sequences, which are multisets of formulas (including empty), so that exchange is implicit. I’
stands for the form !Cy,...,!C,,. 7A, 011, OA,0Z, 0@, .. . stand for similar ones.

Definition 3.2.1 (TLL) The syntax for propositional classical temporal linear logic (TLL) is defined
by adding Modal Rules to LL. The Modal Rules are listed in Table 3.1. "

Obviously, LL is included in TLL as its subsystem.
Intuitionistic temporal linear logic (ITLL) is defined as a subsystem of TLL as follows:

Definition 3.2.2 (ITLL) The axioms and inference rules of propositional intuitionistic temporal lin-
ear logic (ITLL) are defined in Appendix Table A.3. .

Note all right sides of each sequent of ITLL. There exists exactly one formula on each right side.
It is different from standard intuitionistic logical systems such as LJ[5, 31]. This is from the phase
semantics for ITLL.

The following are several syntactical remarks on TLL for any formulas of A, B.

e 10A=AQ1=A,
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e llA=IA 00A =0A,

e !A—o0OA is provable, but OA —o!A is not provable,

e 0A —O"A is provable, but O"A —oOA is not provable (n > 0),
o Neither OA4 —0 A nor A —0 OA is provable.

“A = B” in the list means both A —o B and B —o A are provable in TLL.

3.3 Fundamental Theorems

The cut elimination theorem holds in both TLL and ITLL. Furthermore, one can obtain the cut
free proof figure for a provable sequent constructively. This theorem plays an important part in logic
programming [32], uniform proof and proof search.

Modal logic S4 has a temporal operator which means “always”. S4 can be embedded into TLL.
We can say that the time concept of this works in TLL.

Theorem 3.3.1 (Cut Elimination) If a sequent I' — A is provable in TLL, then it is cut free
provable in TLL. .

Proof. The proof is as in the linear logic case (see, for example, [34] for details).
Here we summarize the method.
First, we add (lcut) and (7cut) to TLL.

' AW (D), 0= A I' - A (?D)» ?D,II - A
T — A A (teut) T, — A A

(?cut)

—_———
Here, n > 0, and (D)" indicates D,..., D. (lcut) and (?cut) can be reduced to ordinary (cut) rules.
(cut),('cut) and (?cut) are generically called simply “(cuts)”. We define the degree of a (cuts) as the
number of logical symbols in a cut formula. Consider a proof figure that does not contain (cuts) rules
except for the last rule. The argument is by double induction on the numbers of inference rules in the
proof figure, which is called rank, and the degree of the (cuts). Below are several cases. Other cases
are similar.

Case 1: The proof of which the last part is of the form

L =ALD (\D)" !, 011 = A, 04,78 (o)
N =?A 1D Y (D) ILOHT = 0A,0ATY
Ty, 1T, 00T — DA, OA,7A, 75 (teut)

We replace this with

!Fl —}i’Al,D :

T 574,10 ) (D) 000 5 A, 04,78
0,00 = A, O, 74, 7%
Ty T, 001 = OA, OA 7A;, 7%

(Ycut)

(—=10)
The rank of the (lcut) has decreased.
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Case 2: The proof of which the last part is of the form

!Fh Dﬂl, 51 —>.D, @1, <>/11, {)Al !FQ, DHQ, l)7 52 —> A, @2, <>/12, OAQ

— @) = 0]
!Fh Dnh OEI — OD7 O¢17 <>A17 OAI ( ) !F27 DH27 OD7 052 — OA7 O¢27 <>A27 OAQ Ecu)t)

!Fh !F27 Dnh DH27 0517 052 — OA76¢176¢27 <>A17 <>A27 ?Ah ?AQ
We replace this with

!Fl, Dﬂl, 51 — ‘D, @1, <>A1, ?Al !FQ, \:‘Hg, D7 52 —> A, @2, <>/12, OAQ (Cut)

!Fh !F27 Dnh DH27 517 52 — A7 ¢17 ¢27 <>A17 <>A27 ?Ah {)AQ (O)

!Fh !F27 DH17 DH27 0517 052 — 0‘476¢176¢27 <>A17 <>A27 ?Ah {)AZ

The degree of the (cut) has decreased.
Case 3: The proof of which the last part is of the form
!F17\:|H1751 —>.D7¢17<>A1,?A1 o !FQ,DHQ,D,EQ'—} @2,<>A27?A2 —}6)
!I, 011,05, — OD, 0, O Ay, 74, II5,0115,0D,0Z; — O®,, O Ay, 7 A, (cut)
— — cu

!Fh !F27 Dnh DH27 0517 052 — O¢17 O¢27 <>A17 <>A27 ?Ah ?AQ
We replace this with

!Fh DHh 51 — .D, @1, <>/11, ?Al !FQ, DHQ, D7 52 .—> @2, <>/12, {)AQ ( ) t)

!Fh !F27 Dﬂh DH27 517 52 — ¢17 ¢27 <>A17 QA27 ?Ah {)AZ (Ocu 6)
= — —
!Fh !F27 Dnh DH27 0517 052 — O¢17 O¢27 <>A17 <>A27 ?Ah {)AQ
The degree of the (cut) has decreased.
(QE.D.)

Remark 3.3.1 Consider a logical system that has (— O)* and (& —)* rules instead of (— O) and
(¢ =) in TLL.

06,08 — A, OA, 2011 (o) 06,08, A — OA, 201
107,05 — 0A, OA, 2011 107,05, 0A — OA, 7011

(© =)
In this logical system, !0A is not the same as O!A. Also, the cut elimination fails. The sequent
(p&Oq) — O!0Ogq

is provable, where p and ¢ are propositional atoms. Indeed,

Og — Qg

p&Bq — Oq (8(5, :32
l(p&Dq) — Oq (' ) I0g —!0¢ oy
(pkeDq) >1ag ) By omg D)

I(p&Oq) — O!0g (cut)

But the sequent has no cut-free proofs [8].
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It is obvious that the cut elimination theorem holds in ITLL by Theorem 3.3.1. The subformula
property follows from Theorem 3.3.1.

Corollary 3.3.1 (Subformula property) Let P be a cut free TLL proof of I' — A. For any
sequent Il — A in P, any formula in Il or A is the subformula in I’ or A. "

It is obvious that the subformula property holds in ITLL by Corollary 3.3.1. The subformula
property is used in Section 3.4.
S4 can be embedded into the subsystem of TLL [8].

Theorem 3.3.2 (embedding) Suppose TLL' is a subsystem of TLL constructed by excluding the
modal operators O and O, and the inference rules concerning them. Then

S4 FI—-A & 7L - - At
where
Pt = 7P P~ = P (for P atomic)
(-B)* = 7B+ (-B)~ = !'BtL
(B>C)Yt = ?(B”—(C*%) (BD>C)~ = (BT ()
(BANC)T = 2(BT&C*T) (BAC)” = (B &C7)
(BvC)t = ?(BteCt) (Bv(C)” = (B 9C)
(OB)* = ?0B* (OB)~ = OB~
(OB)* = ?20B* (OB)~ = OB~

3.4 Decidability of Temporal Linear Logic Fragments

In this section, we state with respect to the decidability of TLL fragments.

The full fragment of propositional linear logic is known to be undecidable [22]. Obviously, the full
fragment of TLL is also undecidable since it contains a full fragment of propositional linear logic.

MALL is the fragment of propositional linear logic that contains the multiplicative connectives,
“®” and “p”, the additive connectives, “&” and “@”, the constants 0,1, T and L, but excludes the
modal storage operators “!” and “?”. MALL is known to be PSPACE-complete [22]. By Corol-
lary 3.3.1, if a sequent that has no modal operators is provable in TLL, then it is also provable in
MALL. Since MALL is known to be decidable, a TLL sequent without modal operators is also
decidable.

The reachability problem for Petri nets is known to be decidable [24]. Kanovich obtained the
decidability of the -Horn fragment of linear logic by means of showing the equivalence between !-Horn
sequent provability and the reachability problem for Petri nets [16]. The Horn like sequent of the form
(5.2.3) can be rewritten as the !-Horn sequent in [16], which does not contain “O” nor “O”[9, 10].
(5.2.3) is in Subsection 5.2.1. This result implies that we can decide whether a sequent of the form
(5.2.3) is provable in ITLL®, where ITLL® is a subsystem of TLL which appears in Subsection 5.2.2.
The temporal linear logic system in [33] does not satisfy the completeness theorem for timed Petri
nets because it includes non logical axioms. Therefore, decidability of the logical system in [33] has
not been established yet.

[15] researched several kinds of Horn fragments of linear logic, for example, the (&, &)-Horn frag-
ment, the &-Horn fragment, the @&-Horn fragment, and so on. Using a similar method, we may obtain
results concerning decidability of various kinds of Horn fragments of TLL. We plan to do research on
this topic in future.
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Chapter 4

Phase Semantics for Temporal Linear
Logic

Phase semantics is a standard semantics for linear logic. The full propositional fragment LL has
a complete semantics in terms of phase spaces[6, 7]. In this chapter, we extend phase spaces to
temporal phase spaces. For phase spaces (M, L) and (M, L'), we consider two kinds of homomorphisms
h,f: M —— M'. h(m) means “m at next time” for m € M and f corresponds to “anytime”. The
definition of !X C M in temporal phase spaces is obtained by adding f to the one in phase spaces. We
show that the full propositional fragment TLL satisfies the soundness and completeness theorems in
terms of temporal phase spaces. Also, we consider temporal phase structures, which are a generalization
of temporal phase spaces. We show that ITLL satisfies the soundness and completeness theorems in
terms of temporal phase structures.

In [13], the completeness theorem has been given in the strong form: if a sequent is valid then it
is provable without the cut rule in their temporal linear logic. They have shown the cut elimination
theorem by the strong completeness theorem. On the other hand, we have shown the cut elimination
in Chapter 3 independently from the completeness theorem. In this chapter, we show the completeness
theorem in the standard form.

4.1 Temporal Phase Spaces

A phase space (M, L) is a commutative monoid M with a distinguished subset LC M, called bottom.
In phase space (M, L), we define

Xt :={reM|z-z €l forany z € X}

for any X C M. Immediately, X+ has the following properties: X C X+ for any X, Y+ C X+t
whenever X C Y, and X+ .Y+t C (X . V)t where X -V :={z-ylz € X and y € Y}.

A phase structure (M, C1) is a commutative monoid M with a closure operator C'l on M, that is, a
mapping C'l from subsets of M to subsets of M satisfying the following properties for any X,Y C M:

1. X C ClU(X),
2. CU(CI(X)) C CI(X),

3. if X C Y then CI(X) C CU(Y),
4. CU(X)-CUY) CCUX -Y).
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Clearly, a phase space is a special case of a phase structure with closure defined as C1(X) := X*L.

In a phase structure (M, Cl), a subset X C M is said to be a fact iff C1(X) = X. It is straightfor-
ward to show that a phase space satisfies that X is a fact iff X is the form Y+ for some Y C M. In
particular L= {1}+ is a fact, where 1 is the neutral element of M. Also, any intersection of facts is a
fact. In particular, X+ is an intersection of all facts containing X.

We consider several properties of a mapping from M to M’, where M and M’ are commutative
monoids. h : M — M’ is called a monoid homomorphism iff for any m,n € M, h(m-n) = h(m)-'h(n),
and h(1) = 1’, where 1 € M and 1’ € M’ are neutral elements respectively. In particular, a phase
homomorphism is a monoid homomorphism A : M — M’ such that A(L) CL’, where LC M and
1'c M.

For a given mapping ¢ : M — M, let us consider its lower approximations (after [17]).

Definition 4.1.1 Let M be a commutative monoid. For a given mapping ¢ : M — M, a mapping
f: M — M is bounded by g iff for every n € M there exists m € M such that m < n, f(n) < g(m),
where z < y iff Cl({z}) C CI({y}). .

Now, we define a temporal phase space as follows:

Definition 4.1.2 Let (M, L) be a phase space, h : M — M be a phase homomorphism and f :
M —— M a monoid homomorphism. A temporal phase space((M, L), h, f) is a phase space (M, L)
with A, f such that

1. f is bounded by A,
2. f(f(m)) = f(m) for all m € M. .

A temporal phase structure ((M,Cl),h, f) is defined similarly, but & is only required to be a monoid
homomorphism. Obviously, a temporal phase space is a special case of a temporal phase structure.

We consider J(M) := {z € 1|z € Cl({z - 2})}, where 1 := CI({1}). It is easy to see that .J(M) is
a submonoid of M. Let K be a submonoid of J(M). Note that K is not required to be a fact.

Definition 4.1.3 Given a temporal phase structure, we define:

1:=CIl({1}), T:=M, 0:=CIl0),

XY = CI(X-Y),
X&Y = XnY,
XaY = CI(XUY),
X oY = {zeMlz-z€Y forall z € X},
OX = CIl(h(X)),
0xX = Cl(Xnf(X)),
X = ClXnf(X)NK),
where X,Y C M are arbitrary facts. .

In a temporal phase space we further define:

XpY = (Xt.YHt=(Xxtevhi,
?X = (XtnfXHnK)t=(xhHt,
OX = (Xtnf(X))t=(oxh,
OX = h(XHt=(0xHt,

where X,Y C M are arbitrary facts.
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It is straightforward to show that all of 1, T, 0, X @Y, X&Y, XV, X oV, OX, OX, !X,
XpY,?X, ©X and OX are facts.

We have some properties similar to the case of linear logic. They are listed in Appendix B. The
properties are helpful to prove the soundness theorem. We can focus on modal rules only. In addition,
we have some properties concerning modal operators. Before showing those, we prepare a lemma on
bounded mapping.

Lemma 4.1.1 Let AC M be a fact. If f,h: M — M and f is bounded by h, then
Cl(f(A)) C Cl(h(A)).
n

Proof. Suppose a’ € f(A). Then there exists @ € A such that «’ = f(a). For the a, there exists
b € M such that
b<aand f(a) < h(b)

since f is bounded by h. We have
Hence,

For the b € {b} C Cl({b}),

h(b) € ACI{BY) = {h(e)le € CUBNY,
that is, {h(b)} C h(CI({b})). Hence,

CIU({h(b)}) € CU(A(CI({b}))) € CU(A(A)).

Also we have
a' = f(a) € f(a) < h(b).
Therefore,

& € CI({hB)}) C CIR(A)).
For the reasons stated above, we obtain that f(A) C Cl(h(A)). Hence,
CIU(f(A)) € ClL(R(A)).
(Q.E.D.)

Proposition 4.1.1 and Lemma 4.1.2, which are properties concerning modal operators, are straight-
forward.

Proposition 4.1.1 Let A, B be facts. In any temporal phase space,
(1At =241 (24) =141, (OA)E = OA (0A)T =04t (04)F =04t (0A)t =04t

Lemma 4.1.2 In any temporal phase structure,

1A C1, A CIAQ!A, 1A C A,
1A =14, if 1A C B then 'A C!B, A®!B =!(A&B),
OACOOA, 'ACOACOMWA (n>0), OACOA.
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Also dual statements are satisfied, that is,
1LC7A, 7ApTA C?A, A C7A,
7A =774, if A C?B then 7A C7B, TAp?’B =7(A® B),
COAC OA, OMACOACIA (n>0),
in any temporal phase space.

A temporal space model is given by a temporal phase space ((M, L), h, f) and a valuation that
maps each (positive) atomic p of TLL to a fact p* of ((M, L), h, f). For each propositional formula
A of TLL, we can associate a fact A* inductively:

o L*i=1, 1% :=1t= {1} T = M, 0" == L, (pt)* = p*t,
o (A® B)*:= A*® B*, (ApB)* := A*pB*,
o (A&B)* := A*&B*, (Ad B)* := A* & B*,
o (A—oB)":= A" B,
o (OA)* :=0A* (0A)*:= OA*, (OA)* := 0A*, (CA)* 1= OA",
o (1A)* =14 (TA)* :=7A".

A* is called the inner value of A.

Similarly, we can consider a temporal structure model for a temporal phase structure (M, C1), h, f)
and a valuation that maps each atomic p of ITLL to a fact p* of ((M,Cl),h, f).

Proposition 4.1.2 In any temporal space model, (AL)* = A*L. .
Proof. The argument is by induction on the structure of the formula A.

The cases where A is a constant are obvious. Other cases are obtained by A o B = AlpB
and Proposition 4.1.1. For example, ((B ® C)1)* = (BtpC*)* = (BL)*p(Ct)* = B*1pC*! since
(BL)* = B*L, (C1)* = C*L by the induction hypothesis. (Q.E.D.)

Now, we define the concept of valid.

Definition 4.1.4 (valid) Let Cy,...,C,, — Dy,..., D, be asequent of TLL and ( )* be a valuation.
A valuation satisfies a sequent Cy,...,Cp, = Dy,..., D, iff (C1®...0Cp)* C (Dip...pD,)*.
A sequent of the form — Dy,..., D, is defined to be satisfied iff 1* C (Dyp...pD,)*. A sequent of
the form C4,...,C,, — is defined to be satisfied iff (C1 ® ...® C,,)* CL*.
A sequent C4,...,Cp — Dy, ..., D, is valid iff it is satisfied in any valuation in any temporal
space model. .

We can consider the similarities between a sequent of ITLL and a temporal structure model.

4.2 Soundness

Now, we are ready to discuss the soundness theorem.
Theorem 4.2.1 (Soundness) If a sequent is provable in TLL, then it is valid. "

Proof. The argument is by induction on the length of TLL proof. See Appendix C.1 for details.
(Q.E.D.)

Remark 4.2.1 In the proof of Theorem4.2.1 in Appendix C.1, we do not use the property h(Ll) CL
except for Case7 concerning the rule (O — O).

By Remark4.2.1, it follows that the soundness theorem also holds in ITLL.
Corollary 4.2.1 (Soundness) If a sequent is provable in ITLL, then it is valid. .
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4.3 Completeness

In this section, we show the completeness theorem. The ITLL version follows from the TLL version.

4.3.1 Canonical Model

We start by preparing a canonical model. Let M be a set of sequences of formulas, that is,
M ={I,A,..}.

We write Fs I' = A for “I' = A is provable in system §”. If there is no confusion, we omit s for the
sake of readability.

We can consider M as a commutative monoid of which the product of I" by Ais “I', A”. The unit
is the empty sequence e.

For subset X C M, X 11 s a closure, as stated in Section 4.1. It is not difficult to say that

re X iff YAV € X (Fpr T = A) =k I = A). (4.3.1)

We use this paraphrasing depending on the situation.
Given the sequence of formulas A, we define the outer value ||A|| as

A= {I Fooe I — A}
We take 1 C M as the subset ||e]|, that is,
L= le]].

After this, for A = Dy,..., D,, (m > 0), we use the notation AL as Di,..., DL

Y m*

Proposition 4.3.1 For any sequence of formulas A, ||A|| is a fact. .

Proof. We will show that
|A[F C (Al

At first, we show AL € ||A||*.
Let X' € ||4]], that is, = X — A by definition. Since we can deduce

Y 5 A
y,.At -

we obtain X, AL € ||¢]| = L. Thus, AL € ||A||* since we can say that X, At e 1 for any X € ||A]|.
Now, let I" € ||A||*L, that is, if IT € [|A||* then II, I’ € L for any II. We can take AL as I1.
Hence, I, AL € 1 = ||¢||, that is, - I" = A from I, A* — . Therefore, I' € ||4]|. (Q.E.D.)

We define the mapping h:M — M as

i)
&
I
e
>

Obviously, h is a monoid homomorphism.
Proposition 4.3.2 his a phase homomorphism. .

Proof. We show that iz(i) C 1 where 1 = [|¢]|, that is, if Fprr, A — then Fppr, .iL(A) —.
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Case 1: Ais e. Then h(e) = ¢ and this case is a tautology.

Case 2: Aisof the form C,...,Cy (m > 1). f Fppy, Cy,y ..., Cpy — , then Fppy, OCY, ..., 0C,, —
by the (O — O) rule, that is Fppp, A(A) — . (Q.E.D.)

We define the mapping f : M — M as

flo = ¢
A if A is of the form 'B or OB
Ja) = { EIA otherwise

f(Cl7"'7Cm) = . 7f( )

Obviously, f is also a monoid homomorphism and f(f(F)) = f(F) for any I' € M.

Proposition 4.3.3 (bounded) f is bounded by h. .
IA’roof. ~We will show that for every I' € M theAre exists I’ itself as X' such that r=r and
(') =< h(X). Since I < I is obvious, we show only f(I') € {h(I')}1*, which concludes f(I') < ).

(

Let I' =17, OI%, I3, where I3 does not contain formulas of the form !B nor OB. Then f(F)
!Fh‘:lFQ,DFg and h( ) = Q'FI ODFQ,OFg
Now, we suppose A € {h(I')}+, that is,

[ O!F17ODF27OF3,A—>

Since OO
L =0
CoIC (o) OC=0C o BC—C (0
IC = 0IC oc sooc ), acsoc )

we can deduce H!I'y — Oy, = OTy, — OOl - O73 — Ol5. Using (cut) rules,

al3 — OI3 O!I,007,,0I53, A —
ar, — oarly, olr,oar,,dl;, A —
' — oy Oolr,0I,, 013, A —
!Fl,DFQ,ng,A% s

that is, - f(F),A — . This means that f(F),A el= |le]|. We can say that f(F),A € 1 for any
A€ {h(I)}*. Therefore, f(I') € {h(I")}*++. (Q.E.D.)

We define R A
K ={I''l"e M}.

Then K is a monoid since € € K and W\ =, 1y and (M, ), s =, (M, ).
Proposition 4.3.4 K C ](M) .
Proof.

1. Let !I" € K. Suppose A € ||¢||, that is, - A — . We can deduce

A —
———
A — ('w),

R ~ L N
that is, !I', A € ||¢|]| = L. This means that !I" € ||¢|][* = L~ = 1. Therefore, K C 1.
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2. Let A€ {(II,!")}*, that is, F!1I11, A — . We can deduce

\rtr,A —
A — (‘o)
that is, !, A € ||e]| = L. Therefore, !I" € {(!I}, 1)} 1L, (Q.E.D.)

By the definition of K and f, it is obvious that K = f(f&) Therefore, we can say that
K is a submonoid of .J(M) and K C f(K).

Note that R R )
A = (ANf(ANK)L =(AnK)H,
A = (AtnfAbhnK)t=@Atn k)t
since f(X)NK =X NK for any X.
Our canonical model is the temporal phase space {(M, L), h, f}, where M = M,1=1Cl= 1L
h=h, f= f. Finally, we consider the valuation p* = ||p|| for any atomic p. Note that for any formula
A, A* is a fact since p* = ||p|| is a fact.

4.3.2 The Main Lemma and the Completeness Theorem

The completeness theorem is obtained by the Main Lemma. The Main Lemma is obtained by induction
on the structure of the formula A. In the induction hypothesis of the proof, Corollary 4.3.1, which
follows from the Main Lemma, is used.

Lemma 4.3.1 For any formula B, if B € B* then !B € B*,0B ¢ B*. .

Proof. Let VII € B*(F I — A) for any A. Take B € B* as II, and we obtain H!B — A since

B—-A
'B— A (=)

that is, if VIT € B*(F IT — A) then F!B — A. This means that !B € B*t1 = B*.
Similarly, we also obtain that OB € B*. (Q.E.D.)

The completeness theorem follows from the Main Lemma.

Lemma 4.3.2 (Main Lemma) For any formula A,

A™ C []A]].

The proof of the Main Lemma is in Appendix C.3.

Corollary 4.3.1 For any formula A, A € A*. .

Proof. By induction on the structure of the formula A. See Appendix C.2 for details.

Lemma 4.3.3

[lell = 11 L1]-
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Proof. We show that - I' — iff - I" — 1. It is easy to show that if F I" — then - I" — 1 since

We show that if - I" — 1 then - I — by induction on the length of the proof of - I' — 1. But it is
standard. Below are several examples.

e When the proof is of the form I”,0 — L,

— (0>
"0 — ( ).

e When the last rule of the proof is (& —), that is,

AT -1 B, I"—1
Ad B, " —1

(&)

By the induction hypothesis, - A, 1" — and - B, " — . Then,

AT = BI'>
AeB. I — (& =),

Other cases are similar. (Q.E.D.)
Lemma 4.3.4 For any formula A, if A* C ||A|| then AL € A*L. .

Proof. Let A € A*, then we obtain - A — A by the assumption A* C || A||. We can deduce

A= A 1
- —
AJAL — =)
We can say that if A € A* then A, AL € 1 = ||¢||. Therefore, AL € A*. (Q.E.D.)
Theorem 4.3.1 (Completeness) If I' — A is valid, then it is provable in TLL. "

Proof. Assume that I" = A is valid, and we have I'*® C A*® for any model, in particular for our
canonical model.

By Main Lemma4.3.2, and by Corollary4.3.1, I'® € I'*®. Also, by Main Lemma4.3.2, A*® C
|| A®||. Hence,

e e||a,
that is, = I'® — A®. From this, one can deduce
re — A¢
I'—A |
that is, F I" — A. (Q.E.D.)

We also obtain the ITLL version of the completeness theorem, that is,
Corollary 4.3.2 (Completeness) If I' — D is valid, then it is provable in ITLL. .

In order to prove Corollary4.3.2, we should change the closure operator in our canonical model.
We consider C instead of ++ as follows. For subset X C M, we define

C(X):={I'e M|IfYA € X (FrrLL A — D) then Fpppr I' = D, for any formula D}.

This is a special case of (4.3.1). Indeed, C(X) is a closure:
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(1)

(2)

X C C(X).
Let IT € X. Suppose VA € X(F A — D). Take Il as A then - II — D, that is, Il € C(X).

C(C(X)) € C(X).
Suppose VA € X(F A — D). We will show that if Il € C(C(X)) then - II — D.

At first, we show that VA’ € C(X)(F A" — D). Let Ay € C(X). By the definition of C(X),
we obtain that = Ag — D using the assumption VA € X(F A — D). This concludes that if
Ag € C(X) then - Ay — D, that is,

vA" e C(X)(F A" — D). (4.3.2)
Now, we suppose
HeC(CX)={eM|IfVA" € C(X)(F A" — D) then =1 — D'}.

Using (4.3.2), we obtain
Il — D.
If Z C X then C(Z) C C(X).
Suppose VA € X(F A — D). We will show that if I € C(Z) then F II — D.

For a Ag € Z, one can say that Ag € X since Z C X. By the assumption VA € X(F A — D),
we obtain - Ag — D, that is

vA' e Z(F A" — D). (4.3.3)
Now, we suppose
NeC(Z)y={r e M|1fVA" € Z(+ A" - D] then I — D)}.

Using (4.3.3), we obtain
Il — D.

C(Z)-C(X)C C(Z- X).
Suppose VA € Z - X (- A — D). We will show that if Il € C(Z) - C(X) then - II — D.
Let Ay € Z, Ay € X then Ay, Ay € Z - X. By the assumption VA € 7 - X (- A — D),

F Al, AQ — D.
One can deduce
Hence, one can say that
VAL € Z(+ A} — AY - D). (4.3.4)

Now, suppose II € C(Z)-C(X), that is, II} € C(Z) and II, € C(X) for some Iy, II; such that
1T = Iy, 1T,
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From II; € C(Z), if VA] € Z(- A} — D) then  II; — D, for any Dy. Put AY —o D as D,
and we obtain that + IT; — AY —o D by (4.3.4). One can deduce
AP - A D—D
I, =AY oD AY oD, A - D
Iy, AY — D
I, Ay D
Ay = IIY - D

(cut)

Hence, one can say that

VAL € X(F Ay — TP - D). (4.3.5)

Similarly from IT, € C(X), we obtain that = I, — IT¥ —o D by (4.3.5). Therefore, one can
deduce
H17 H2 — D7

that is, I — D.

Lemma4.3.1, Main Lemma4.3.2 and Corollary 4.3.1 are also satisfied in the ITLL version. They are
obtained by checking rules and connectives concerning ITLL.
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Chapter 5

Some Applications to Computer
Science

Temporal linear logic has been introduced by extending linear logic with respect to the time concept.
In [32], as an application of TLL, we have shown that a logic programming language based on temporal
linear logic has been designed by using the idea of Miller’s uniform proof, and its efficient computation
model has been given by using the idea of Hodas’s IO model.

In this chapter, we continue to apply TLL to computer science. In the first section, we provide
a correspondence between the concept of a parallel calculation and the logical concept roughly, and
consider a communication model, which is our own model. We show that TLL can represent not only
an asynchronous calculus but also a synchronous calculus [10].

The relation to timed Petri nets follows that. We show that the reachability problem for timed
Petri nets is equivalent to the provability of the corresponding sequent of TLL [9, 10]. We also show
that the reachability problem for timed Petri nets is decidable by a method different from [29, 30].

5.1 Synchronous Communication and Temporal Linear Logic

In linear logic, since m —o(n —o P) is equivalent to m ® n —o P, the following cannot be distinguished:
o “A process which receives m, then receives n, and behaves like P”,
e “A process which receives mn, then receives m, and behaves like P”,
e “A process which receives m and n simultaneously, and behaves like P”.

It follows that we cannot specify the execution order of processes. Also, we cannot distinguish a
synchronous calculus from an asynchronous calculus in linear logic.

Using “O” and “O7, in temporal linear logic, we can specify the order such as m —o OO(n —o OO P).
Furthermore, we can distinguish a synchronous calculus from an asynchronous calculus.

We compare descriptions of a parallel calculation by linear logic and by temporal linear logic. At
first, we consider several descriptions by linear logic in the same manner as in Okada [27]. From here,
we omit some inference rules applied in proof figures.

We consider the following correspondence:

e m®AQ ;

Send a message m, and then @) executes.

e m-—o(;
Receive a message m, and then () executes while consuming m.
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o ()
Copy any number of process J, and then each of () executes.
Also, we can express the transitions of states by means of reading the proof figure upwards from below

as follows:

e sending;
I'm,Q,A—
I'm@Q,A—

m ® () sends m and then executes process () concurrently.

e receiving;
(m—m) INQ,A—
I'm-—oQ,m,A—
m —o () receives m and then executes process () while consuming m. Here, I' and A mean
sequences of parallel processes which are executed concurrently.

e Milner’s bang;
1,0,'Q,A—
QA —
Q) generates a copy of () and then executes it.

As an example, let us consider a process “sending message m repeatedly”. This process can be
represented by !(p —o(m ® p)). A process “receiving message m repeatedly” can be represented by
(¢ —o(m —oq)). Here, let us consider a situation including the parallel execution of these processes
expressed by the sequent p,q,!I" — , where !I' =l(p —o(m ® p)), (¢ —o(m —0q)). See the following
proof figure, which is read upwards from below:

m,m,p, m.—oq7 N —
(p—=p) mmepm-—oq!l —
m,p,p—o(m®@p),m—oq !l —

(23)
(2)

m,p,m—-oq,![" —

(p—=p g—4q) m@pm-oq!I' =

P.¢,p—o(m®p),g—o(m—ogq),!I' =
p,q, " —

(#1)

(81)—(42) express the transition that !(p —o(m ® p)) copies p —o(m @ p) for the behavior of sending a
message m and !(g —o(m —o q)) copies ¢ —o(m —o q) for the behavior of receiving m. (43) expresses the
sending of m. (84)-(46) means that process !(p —o(m ® p)) can send the next message without waiting
for m to be received by m —o ¢, that is, asynchronous behavior.

In temporal linear logic we can also represent synchronous behavior, while linear logic cannot.
Processes stated above are expressed by !(p —o(m®O00Op)) and (g —o(m —o OOgq)) respectively. m@OOp
sends a message m synchronously, that is, until m is received, it is suspended. After m is received,
Op and Og will be active the next time. The synchronous communication is represented as follows:

P, —
(m —m) OOp,00g,!I" —
m,O0p, m —o O0¢q, ! [" —
(p—=p q—q m®OOp,m—-o00q!I"—
P, q,p —o(m ® OOp), g —o(m — 00¢q),!I' —
p,q, " —
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Process !(p —o(m®O0Op)) cannot send the next message in this case. As we considered above, temporal
linear logic can distinguish a synchronous calculus from an asynchronous calculus.

5.2 Timed Petri Nets and Temporal Linear Logic

In this section, we consider timed Petri nets[3, 12] and the reachability problem as an application of
ITLL.

5.2.1 Timed Petri Nets
We choose place timed Petri nets in this thesis.

Definition 5.2.1 (Timed Petri Net) A (place) Timed Petri Net (TPN)is a tuple (Pl, Tr, Ar, 8),
where

Pl: Finite set of places

Tr: Finite set of transitions (disjoint with P/)

Ar: (Pl xTr)U (Tr x Pl) — N (Weight of arcs)
0: Pl — N

Here, N means the set of natural numbers (including 0). #(p) > 0 indicates the waiting time till the
tokens which are usable in future become available in p € Pl .

A multiset of places (i.e. marking) is not sufficient to represent a state of TPN. We need not only
the information of available tokens (i.e. active tokens), but also tokens to be usable in future (i.e.
pending tokens). Thus, we consider a “state” of TPN, which contains “marking” with “time”.

Definition 5.2.2 (State) A state of TPN is an infinite sequence of multisets of places (Mg, My, ...)
where M,, = M,,4+1 = ... = () for some m > 0. "

In a state S at some instant, My, which is called a timed marking, indicates active tokens and M; (i > 1)
indicates pending tokens which will be active after z time units.

We will define reachability with respect to states. A reached state is derived by firing derivation
or time derivation.

Definition 5.2.3 (Derivation) Let S = (Mg, Mj,...) be a state at some instant ¢.

firing derivation : We say that a transition 7 is enabled at S if and only if My C My. Here, M7
is a multiset of input places to 7. If a transition 7 is enabled and we fire it at that instant, the
reached state at the same instant ¢ is the state S’ defined by

S' = (Mo — My W My, Myw Mt Myw M), ...

Here, MZ»’" indicates a multiset of output places p’s from 7 with #(p) = i > 0. W indicates a
multiset union. Note that a firing terminates at the instant. The described derivation is denoted
by the notation S[7)S".

time derivation : The reached state at the instant ¢ + 1 from S is the state S’ defined by
SI — <M0 (] Ml, Mg, . >

The described derivation is denoted by the notation S[6)5’. .
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We consider TPN in Fig.5.1. The numbers beside each
place p; indicates 8(p;). The state S = ({p1,p2,p2},0,...).
The transition 7y is enabled at S. We fire it at ¢ = 0, then
the reached state S1 = ({p1}, 0, {p3, p3},0,...) at t = 0. After
2 time units, the reached state Sy = ({p1,ps, p3},0,...) at
t = 2. The transition 7 is enabled at S; and we fire it at
t = 2, then the reached state S’ = ({p1,ps},{p2},0,...) at P32 t=0
t =9, Fig.5.1: Timed Petri net

Now, we define the reachability for TPN with respect to states. For a derivation sequence o =

K1...Kn (n > 0), we use the notation S[o)S’ instead of S[k1)S1[k2)S2...Sn—1[kn)S’, where k; is either
¢

T € Tr or 4. Specially, if the number of § in ¢ is ¢, we use the notation S [¢) S, which means that S’
2
will be reached from S after t time units. For example, S [r18d72) S’ for the TPN in Fig.5.1.

Definition 5.2.4 (Reachable) Let S and S’ be states of a TPN. We say that S’ is reachable from
S, which will be denoted by S’ € [S), iff there exists a derivation sequence o such that S[o)S’. =

Specially, we say that S” is strictly reachable from S at the instant ¢, which will be denoted by S’ € [S),
t
iff there exists a derivation sequence o such that S [o) 5.

5.2.2 Reachability and Provability

We can encode the reachability problem for TPN into the provability problem of the corresponding
Horn sequent of a Horn-like system HTPN completely. HTPN is extended without destroying the
equivalence to the reachability problem for TPN in order to associate with temporal linear logic. At
the end of this section, we obtain Theorem 5.2.1, which claims that the reachability problem for TPN
is equivalent to the provability problem for the Horn fragment of the subsystem of temporal linear

logic.
At first, we define HTLL which include HTPN as a subsystem of it. We start from a constructive
definition. For atomics p,q, ..., a token formula and a simple product are defined by

ax=0p|0a, Mu=a|MeM,

respectively. A token in p € Pl can be represented by a token formula, a state can be represented by a
simple product. Let us consider the encoding for TPN in Fig.5.1 (See subsection 5.2.1). For a state S,
we denote the corresponding simple product by S*. In Fig.5.1, §* = Op; ® Opy ® Opy. The encoding
of a transition 7 is denoted by 7*. 7 = Op; ® Opy ® Opy —o Opy ® O?0p3 ® O?0ps, 75 = Ops —o OOpy.
In this thesis, simple products are denoted by X,Y, 7, M,.... For t > 0, a Horn sequent is a sequent

of the form
A1 M — 07,

where I’ is a set of formulas of the form X —oY and A is a multiset of formulas of the form X —o Y.
M will associate with the initial state, Z the goal state, I’ the whole transitions in TPN and A the
used transitions for the derivation sequence.

By a Horn sequent, we can express the statement with respect to the reachability. For the TPN
in Fig.5.1, the statement “S’ is reachable from S after 2 time units” is represented by the following
Horn sequent

1,751 ® Op; @ Opy @ Opy — 02(1 ® Op; ® Ops @ OOpy). (5.2.1)

1 in a Horn sequent is a trick to be able to construct the corresponding state from a formula of the
form O"Op. For example, although we can construct the state ({py},0,...) from O3(1 ® Op,), we
cannot decide the corresponding state from the form O”Op on the right side of the Horn sequent.
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x5 x A7)
I''itoMPQo®...0a, — 0'Z
(fire)  1M1@MP®0a; ®...Q Oay — Ol 7
where M is of the form Op; @ ... ® Opym,
each «; is a token formula.

I''AY®M — 0O'Z
I''AX@M —0'Z
provided that X —oY € I'.

(next)

IAX 5 X
o1 W Axayosxay @
I A AM—0'7 I' Ay, M — X T;A,X 07 (Heu
I'yAM — 0'Z I Ay, Ay, M — O 7
provided that A € I'. where I" C I,

X ov. xSy A7)

(absorb)

Table 5.1: Horn temporal linear logic

Now, we define HTLL as follows:

Definition 5.2.5 (HTLL) Let formulas be of the form X, X —oY,0"Z, sequents be the form of
Horn sequents. We define HTLL as a system constructed from Table 5.1. .

We call the subsystem which is constructed by (Az;), (fire) and (nezt) only as HTPN. It is not
difficult to show the following lemma.

t
Lemma 5.2.1 Let (Pl,Tr, Ar,0) be a timed Petri net and S, S’ states of it. Then S [o) S’ for some
derivation sequence o if and only if the following sequent

Tr*:1® S* — O'(1® S™)
is provable in HTPN, where Tr* is a sequence of 7 such that 7 € T'r. .

Lemma5.2.1 claims that we can encode the reachability problem for TPN into the provability problem
2

of the corresponding Horn sequent of HTPN completely. For example, since S [r18dm3) S’ in Fig.5.1,
the Horn sequent (5.2.1) is provable in HTPN by Lemmab5.2.1. In fact, the following is the proof

figure:
71,751 ®@0p; @ Ops ® OOpy — 1 ® Opy @ Ops @ OOp,

m1,75;1 ® Op; @ Ops @ Ops — 1 ® Op; @ Ops @ OOpy
71, 75;1® 0p; ® OOps @ OOps — O(1 ® Op; ® Ops @ OOpy)

(fire)
(next)

* o 2 2 2 (next)
71, 73;1®@0p; © O"Op3 ® O°0ps = O°(1 ® Opy @ Op3 @ OOpy) (fire)
71,7531 @ Opy © Opy ® Opy — O%(1 @ Opy @ Ops ® OOpy)
Let us consider another Horn sequent with respect to Fig.5.1,
77,7531 @ O*Ops — O%(1 @ Opy). (5.2.2)

This is provable in HTPN:
1, 73;1 @ 0py — 1@ Opy
1, 7531 ® OOpy — O(1 ® Opy)
7, 7531 ® Ops — O(1 ® Opy)
71,7531 ® OOps — O*(1 ® Opy)
71,7531 ® O?0Opy — 0%(1 ® Opy)

(next)

(Jire)
(next)
(next)
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Reachable Lemma 5.2.2 Lemma 5.2.3 ITLL®
TPN = — Provable
HTLL
Lemma 5.2.1( - Provable
HTPN ubsystem
Provable -

Fig.5.2: Tllustration of the proof of Theorem 5.2.1

3
Suppose S1 = (0,0,{ps},0,...) and Sy = ({p2},0,...). By Lemma5.2.1, Sy [0) Sz for some o.

Furthermore, we can construct o = §§m,6 from the proof figure.
LLemma5.2.1 can be extended to the following lemma:

Lemma 5.2.2 Let (Pl,Tr, Ar,0) be TPN and S, S’ states of it. Suppose A* is a multiset structured
from ™ € Tr*. If the Horn sequent

Tr* A* 1@ S* — O'(1® S™)

t
is provable in HTLL then there is o such that S [o) S" and any 7 € A has been really used in o (i.e.
Foranyr e A, T €0). .

Proof. (sketch) The claim is shown by induction on the length of the proof of the Horn sequent. See
[16]. (Q.E.D.)

Let ITLL® be a subsystem of ITLL by replacing (— ®) with (— ®)° and provided that all atomics
are of the form Op, where

I'A—-A A B—>B
I'AA B AR B (

We can associate HTLL with ITLL® by the following lemma.

—®)°

Lemma 5.2.3 Let I'; A, M — O'Z be a Horn sequent. Then I'; A, M — O'Z is provable in HTLL
if and only if '\I', A, M — O'Z is provable in TITLLC. .

Proof. It is not difficult to show that if I'; A, M — O'Z is provable in HTLL then !I', A, M — O'Z
is provable in ITLL®.

We sketch the proof of converse. Suppose 'I'A,M — O'Z is provable in ITLL® and M =
a1 ®...8% o, where each «; indicates a token formula. Then there exists some cut free proof of
'I''A,aq,...,a, — O'Z. One can prove the claim by induction on the length of the proof figure.

(Q.ED.)

Now, we obtain the completeness theorem for the reachability problem for timed Peri nets.

Theorem 5.2.1 (Completeness theorem) Let (Pl,Tr, Ar,0) be a timed Petri net and S, S’ states
of it. Then S’ is reachable from S after t time units if and only if the sequent

Tr*1® S* — O'(1® S™) (5.2.3)
is provable in TTLL®. .
Proof. (See Fig.5.2)

(Soundness) Suppose !Tr*,1®S5* — O'(1®5") is provable in ITLL®. By Lemma5.2.3, Tr*; 1@ 5* —
t
O'(1®S5"™) is provable in HTLL. Then S [¢) S’ for some derivation sequence o by Lemma 5.2.2.
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t
(Completeness) Suppose S [¢) S’ for some o. Tr*;1® S* — O'(1 ® S™) is provable in HTPN by

Lemma5.2.1. Therefore, it is provable in HTLL. By Lemma5.2.3, ITr*,1 ® S* — O'(1 ® S™)
is provable in ITLL®. (Q.E.D.)

Unlike theorem 2.2.1, we have to restrict the tensor rule for the equivalence between the reachability
of TPN and the provability of the corresponding sequent of temporal linear logic. This concludes that
the following does not satisfy generally: if there exists some oy such that Sp[o1)S and o3 such that
Solo2)S’, then there exists o such that Sow Sylo)Sw.S’. One can deduce I, I, 04, 0B — O(A® B)
from I'1,0A — OA and I, OB — OB in ITLL®. This concludes that if !Tr*,1® S} — O'(1 ® S*)
and 'Tr*,1® Sk — O'(1 @ S’) are provable in ITLL® then !Tr*,1 ® S5 ® Si* — O'(1 ® S* @ S™)
is also provable in ITLL®. We can say that if we match between the passages of time then we can
combine two derivation sequences.

5.3 Decidability of the Reachability Problem for Timed Petri Nets

By the previous section, the strict reachability for timed Petri nets is equivalent to the provability of
the corresponding Horn sequent. In this section, we show the decidability of the strict reachability
problem for timed Petri nets by rewriting a Horn sequent (Corollary 5.3.1).

Let S be the following Horn sequent of HTPN

Iri1teoM— 0 (1® 7),

where I is a set of formulas of the form X —oY. We rewrite S to obtain the rewritten Horn sequent

S
f; clock(® & M = clock® ® Z,

which does not include temporal modalities. The rewriting steps are as follows:
Rewriting steps for a Horn sequent

o Rewriting for M and 7.

1. Each 1 on both sides is removed. We put an atomic clock® in front of M and an
atomic clock® instead of O,
2. Each token fomula of the form O*Op in M and Z is rewritten into an atomic p(*) and
p{t+k)  respectively.
e Rewriting for I’. The rewriting corresponds to the translation from TPN structure into PN
structure.

1. Each X —oY is rewritten into a series of linear implications of the forms
clock® ® X —o clock® ®Y,

where 0 < i < t. Each token fomula of the form O*Op in X and Y is rewritten into an

atomic p(“'k).
2. We add a series of auxiliary linear implications to I'.

(a) We add a series of auxiliary linear implications of the forms
clockl) —o tmp(j), tmp(j) —o clockUth)

b

where 0 < j <t —1.
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(b) For each pin X and Y, we add a series of auxiliary linear implications of the form
where 0 < 7 <t —1.

For example, we consider a Horn sequent (5.2.1) in subsection 5.2.2 as §. We can rewrite it into the
following Horn sequent as S

Tr; clock!® @ pgo) ® pgo) ® pgo) — clock® @ ng) ® ng) ® pgg) (5.3.1)

where Tr is the following sequence of linear implications:

clock® @ pi” @ pi @ pi! o clock® @ pi @ i+ @ pi*Y,

clock @ pgi) —o clock® ®‘pg+1),
clockli) —o tmp(j)7 tmp(j) —0 clock(j'H),

tmp) @ p{¥) —o tmpli) @ pli Y,
tmpld) @ p§’) —o tmp) @ p*Y,
()

tmpld) @ p§) o 1mp@ @ p§t (0<i<3,0<)<2).

We can obtain the following lemma by replacing (next) rules in the proof figure of S into (fire)

rules with respect to auxiliary linear implications in I

Lemma 5.3.1 For a given Horn sequent S of HTPN, suppose S is the rewritten Horn sequent. Then
we can say that S is provable in HTPN if and only if S is provable in HTPN without (next) rule.

For the proof figure of (5.2.1) on page 30, the corresponding proof figure of (5.3.1) without (nezt) rule

is as follows:

Tr; clock® @ p(12) & ng) @ pgg) — clock? ® p(12) ® p§2) ® pgg)

- 4
Tr; clock® @ p(12) & ng) @ pgz) — clock® ® p(12) @ pgz) ® pgg)

= - - ; - > o S((fire)3 times)
Tr; clock® @ pg ) ®pg ) ® pg ) s clock® ®pg ) ® Pg ) ®Pg :

2((fire)3 times)

Tr; clock® @ pi” @ pf? @ p? = clock® @ p{” @ p? @ p{” 1

Tr: clock©® @ p(10) ®p(20) ® ng) — clock(®) ®p(12) ® ng) ®p§3)

Double lines mean that several inference rules are applied.
Each number 1 — 4 in the proof figure means one or several (fire) rules which correspond to the
following linear implications, respectively:

1.

2.

3.

4.

clock® @ p{ @ p? @ p{*) —o clock® @ p\” @ p{? @ pl?.

(0) (1)

clock® —o tmp©) tmp©) @ pi”) —tmp® @ py” | tmp(® —o clock™).

(1) (2)

clock™ —o tmpW | tmpV) @ 7 —otmpM) @ Py, tmp) —o clock?).

clock® @ ng) —oclock® @ pgg).

Lemma 5.3.1 concludes that the strict reachability problem for timed Petri nets can be translated
into the reachability problem for Petri nets. Since the reachability problem for Petri nets is decid-
able [24], we can obtain the following corollary which claims that the strict reachability problem for
timed Petri nets is decidable.

Corollary 5.3.1 (Decidability of the strict reachability problem)
Let S and S’ be states of a timed Petri net, t € N. We can decide if S’ € [S);. .

This result is similar to [29, 30]. We obtained another proof of it.
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Chapter 6

Conclusions and Future Work

In this thesis, we developed a resource-conscious and time-dependent logic called temporal linear logic
(TLL). It is a natural extension of both linear logic and temporal logic (S4). It has both modal
storage operators and temporal operators. The temporal operators are “O”, which means “next”,
and “07, which means “anytime”. The modal storage operator “!”
formula in TLL has an interpretation including concepts of both resource and time. It contains linear
logic as its subsystem and S4 can be embedded into it.

TLL is also useful as a formal logical system, in which the cut elimination theorem holds. One can
obtain the cut free proof figure of a provable sequent constructively. This theorem plays an important
part in logic programming, uniform proof and proof search. We designed a temporal linear logic
programming language by using the idea of Miller’s uniform proof[32]. Decidability and undecidability
of TLL fragments were obtained from the results of linear logic using subformula property.

The phase semantics of linear logic was extended by a phase homomorphism. The full propositional
fragment of temporal linear logic has a complete semantics in terms of temporal phase spaces. We
think the soundness and completeness theorems are useful to consider model checking. We referred to
the proof of the completeness theorem in [17]. In [17], the phase semantics has been extended to the
second order case. It showed the strong completeness theorem, that is, if a formula is valid then it is
cut free provable. It follows that the second order of the logic in [17] also satisfies the cut elimination.
By a similar method, TLL will be able to extend to second order and be able to show the similar

means “reusable at anytime”. A

result.

We restricted the time concept to discrete and linear time in this thesis. We think that it will
not be difficult to extend this concept to continuous linear time using the idea in [19] as follows: We
introduce a new formula “Dg A” to mean “A can be used exactly once during time ¢; to t3”. OA can
be considered a shorthand form for 01 A, and OA for 0% A.

Timed Petri nets are encoded naturally into ITLL®, which is a subsystem of TLL. The reachability
problem for timed Petri nets is equivalent to the provability of the corresponding ITLL® sequent. This
result leads to the decidability of the reachability problem by a method different from [29, 30]. Using
the & and the @ fragments, it will be possible to give a detailed description of the behavior of timed
Petri nets.

Although the correspondence between the concept of the concurrent processes and logical concept
was rough, we considered our own communication model. In our model, using TLL, we can represent
concurrent systems and distinguish synchronous models from asynchronous models. We will continue
research on the connections with existing models such as w-calculus, CCS, CSP and so on. In par-
ticular, it is interesting to focus on statechart. The second order case of TLL may be useful for the
argument about w-calculus.

The expressive power of our temporal linear logic could be sufficient to deal with dynamic change
in process environments with the passage of time.
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Appendix A

Syntax

A.1 Classical Propositional Linear Logic

Identity and Cut rule:
I'—-AD D/ II—A

R TIsAA ()
Propositional Rules :
I' - A, D D, ' — A
' L ' L
— —
DﬁF%A( ) F%ADL()
A, B, T'— A I'—AA IT—AB

10BToA®? Thoasass 9

Al'—-A B IO—=A I' - AAB
AB T I > A4 P2 T5A ApB

I'—-AA I'-AB

(=)

AT — A B, I'—» A (— &)
BT 54 &I quproa &2 I'—+ A, ALB
Al—-A B, I'—> A
! ! (@ —) I'— A A I'— AB
ASB,I'— A ToaisB "I Foxaas (79?2
I'—-AA B/IIl - A AT — AB
AoBTload ) T5a108
Constants : I 3 A
Toal?) —S7C0 57500
- I -5 A
11— (=) I'— A L (=) ro— A (0-)
Exponential Rules :
AT — A =730 A I = A AIA, T — A
Arosat ) 7o arosa M Tarsa (9
AN 7Y I'— AA I = A I'— A7TA7A

T (7 I —— Y L 7= (7 ?
AT ) 7580 To5aaa ™ T a4 9

Table A.1: The sequent calculus for classical linear logic LL
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A.2 Propositional Temporal Linear Logic

A.2.1 Classical Temporal Linear Logic

(Rules of LL)

Modal Rules : AT —A I, 000 — A, QAT
AT 54 87 TemSoaon s
uwmA%omw(oﬂ = A A
00, 0A = OA, 7% T = AOA

INOIL,5 5 A, 9,040,724 OIS, A— &, O, 7A
' OI1,05 — OA, 00, OA,7A ' O11,05,04 — 0®, OA,2A
1O, 5 — &, 0A,7A

' OI1,05 — 06, OA,7A

(= 0)

(=)

(©)

(O = 0)

Table A.2: The sequent calculus for classical temporal linear logic TLL

A.2.2 Intuitionistic Temporal Linear Logic

Identity and Cut rule:
I'—-D D II—-C

T il —C (cut)
Propositional Rules :
ﬁ££%§ﬂ®ﬂ ‘?}iﬁgfﬁé®
e E M g o S o
sty i=vea (RN ey -y ARLOM N e vy
I'—-A BII—-C A, ' = B
AoB T ISC (°7) ToAoB (™™
Constants :
Llﬁlﬁ%CC(l_}) —1(_>1) F,0—>C(0_>) F—>T(_>T)

Exponential Rules :

AT —=C NS A I > C AIA T = C
- - N ! 1, !
arosc 7 o) mrse ™ Tarse

Modal Rules :
AT —=C - \rofll — A (= 0) \rof,=— A (0)
a0 07 Tensoa T, 011,05 — OA

Table A.3: The sequent calculus for intuitionistic temporal linear logic ITLL
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A.3 Classical Logic

Identity:
D—>D(I)
Structural Rules :
I'—> A ) I'—> A ) A7A7F_>A F_>A7A7A
AToAW?) 75Aa20" Gr5a 62 Toaa
I'—-AD D/ II—A ;
I — A A (cut)
Propositional Rules :
I'— AD D, I'— A
D747 r—a,-p 7
AT — A
_— I'—-AA I'>AB
ANB T4 NI T el G
BI—A = A, AN
ANBT AN

A l'—-A B, I'—> A

AvBToa WV

I'—-AA B/ Il - A

ASBII—AA PO

I'— AA

) Foaave W1
I' - AB
ToaAvE (V)2
AT — AB
) T=a4-58 2

Table A.4: The sequent calculus for classical logic LK

A4 S4

(Rules of LK)

Modal Rules : Al — A

AT 54 07

arA— oA
ar, A — <A

) TS5acoal

O — A, 04
O — 04,04

I'— AA

(—0)

— <)

Table A.5: The sequent calculus for S4

Note that for all of systems, exchange is implicit.
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Appendix B

Properties of TLL Phase Semantics

We list here some properties of TLL phase semantics similar to the case of linear logic:
o If AC Bthen A® C C B® (' in any temporal phase structure,

e 1 ® A= Ain any temporal phase structure,

AR (B C)=(A®B)& (A® () in any temporal phase structure,
e A—oB = AtpB in any temporal phase space,

e 11 =1, I+=1 in any temporal phase space,

e T1 =0, 01 =T in any temporal phase space,

(A® B)* = AtpBL, (ApB)t = AL ® B in any temporal phase space,

o (A&B)t = At 3 BL, (A® B)Lt = AL&BL in any temporal phase space,

if A C B then ApC' C BpC' in any temporal phase space,

e A= Ap | in any temporal phase space,

Ap(B&C) = (ApB)&(ApC') in any temporal phase space,
o (ApB)® C C (A® C)pB in any temporal phase space,

where A, B, C are facts.
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Appendix C

Proofs of Theorem, Corollary and
Lemma in Phase Semantics

C.1 Soundness

Theorem 4.2.1 (Soundness) If a sequent is provable in TLL, then it is valid. ]

Proof. The argument is by induction on the length of propositional TLL proof. For I' = C4,...,C),
(m > 0), we use a notation I'*® as CF®...®@C% . Similarly, we use I'*¥ and so on. We consider only
the modal rules, since all other cases are standard [6].

Case 1: The last rule of the proof is (O —) rule of the form:
AT— A -
AT 5 a 0
By the induction hypothesis,
A @ I*® C A,
By Lemma4.1.2 we have OA* C A*. Thus,
OA* @ I'*® C A* @ I'*®.
Hence,
OA* @ I™*® C A*®,
Case 2: The last rule of the proof is (— O) rule of the form:
o0l — A,0A7Y -
o o4 o4 ()

Let I'=By,...,B, ¥ =Cy,...,Cy, I = Dy,...,D;, A= Fy,...,E, (m,n,l,u > 0). Note
that each B, C7, Di, Ef and A* is a fact.

2.1 I'=1 = A =X = ¢, where ¢ denotes an empty sequence.
By the induction hypothesis, 1* C A*, that is, 1 € A*. We have

f)y=1¢€ f(A7)
since f is a monoid homomorphism. Hence,
1€ f(A")n A*.

Therefore,
1" C f(A")N A* C OA".
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2.2 Other cases.
By the induction hypothesis,

'Bi®...0'B;, 0D} ® ... 0D] C A"pOEp...p0FEp?CTp...p7C.
From this, it is straightforward to obtain
B} ®...0BeICit®..0IC" 90D;@...00D; @ 0F ... O C A,
Hence,

(f(BY)NBfNK) - (f(By) NBINK) - (f(CTH)NCTENK) - (f(CrH) N Crt N K)-
(f(DD) N DY) - (F(D) N D7) - (FIEFH) N EFY) - (F(EFH) N EGE) C A%

Here, let
Bi = f(B)nB (0<i<m), C; = f(CHnct (0<j<n),
Dy = f(DH)ND; (0<k<I), E, = f(EXHNEY (0<s<u

Then,

By A K) (B0 K) - (G A K) - (Co V) - Dy Py By B € A",
By definition, f(f(X))= f(X) for any X C M. Hence,
fX)NX C f(X) = ff(X)) N fX) = FF(X) N X)

for any X C M.
Similarly,

FX)NXNKCFAX)NX)NK C f(F(X)nX)N f(K) = f(f(X)NXNK)

since K C f(K) by definition. Hence,
~1~ﬂK)---(B~ijK)-(élﬂ]()---(énﬂlﬁ:)-151---151~-E~1---Ey ] ]
BiNK)- f(BpuNK)- f(CiNK)---f(Co NK) - f(Dy)---f(D)) - f(EY) - - f(E)

(

C f(B 3 ( J ) g
Cf(BiNK)--(BunNK)-(ChNK)---(CoNK)-Dy---Dy-Ey--- E,)
C f(A").

since f is a monoid homomorphism. Hence, we have obtained
(Bi1NK)---(BoNK)- (CiNK)---(C,NK)-Dy---D;-Fy---E, C A*n f(A*%).
Therefore,
B} ®...0BeICit®...0IC"e0D;®...00D;0Ft®...@ OE:* C 0A™
From this, it is straightforward to obtain

'Bf®...Q!B;, 0D} ® ... 0D; COA*pOEfp...p0Ep?Clp...p7Cr.
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Case 3: The last rule of the proof is (& —) rule of the form:

11,0, A — OA2E
I, 011, 0A — OA, 7%

(© =)

Let I' = Bl,...7Bm7 Z:Ch...,Cn, I = Dh...,D[, A= Eh...,Eu (m,n,l,uz 0)

that each B, C7, Dy, ET and A* is a fact.
By the induction hypothesis,

'Bi®...0'B;, 0D ®...0 OD] @ A* COEfp...p0FEpCTp...p7C.
From this, it is straightforward to obtain

B} ®...0!B 0D} ®...0 OD; C A pOFEp...p0Ep?Crp. .. p2C".
Since we can reduce the Case2, we can obtain

B} ®...@'BX @0D}® ... OD; COA* pOFEp...pO0E pClp. ..p2CT,
that is,

'Bi®...0'B;, 0D ® ... 0D @ CA* C OEfp...p0FEp?7CTp...p7C".

Case 4: The last rule of the proof is (— <) rule of the form:

I'— A A

TSaoa 9

Let I'=By,...,Bn, A=Cq,...,Cph,(m,n > 0). Note that each A* is a fact.
By the induction hypothesis,
Bi®...0B; CCip...pCrpA".
From this, it is straightforward to obtain
Bi®...@ B, @ A CCip...pCr.
Since we can reduce the Case 1, we can obtain
Bi®...@ B @O0A* CCrp...pCT,

that is,
Bi®...@B;, CCip...pCp A",

Case 5: The last rule of the proof is (O) rule of the form:

'NOILE - A,$,0M,78
'I'OIl,05 — 0A,00,OA,7%8

0)

Let I' = B17--'7Bm7 Y = C’l,...,Cn, I = Dl,...,Dl, A= El,...,Eu, = = Fl,...

Note

s b,

®=G1,...,Gy (myn,l,u,v,w > 0). Note that each BY, C¥, Dy, By, Iy, G} and A* is a fact.
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51 1'=1==Z=¢=A=2X =¢, where ¢ denotes an empty sequence.
By the induction hypothesis, 1* C A*, that is, 1 € A*. We have

h(1)=1¢€ h(A)
since h is a monoid homomorphism. Therefore,
1* C OA*.

5.2 Other cases.
By the induction hypothesis,

'Bi®...0'B;, 0D ®...00D; @ Ff ®...Q F;
C ApGip...pGCL e 0 E p. . . pOEpClp. .. .plCT.

From this, it is straightforward to obtain

B} ®...0BLRICit®..0IC @0D;®...00D; @ OFt @ ...@ Okt

QFf®...0 Gt ®...0G5 C A~

Hence,
By -...\BylCyt . ekt oDy - .0oDy -OFfE . OB,
Fy e FFGER - GEE C A

Since h is a monoid homomorphism,

R(\BY) -...-h('B5) - h(IC3H) - h(ICEY)
h(ADF) ... h(OD}) - h(QE;L) - ... H(OE:Y)
BED) - R(ED) WG - (@) A(AT).
Hence,
O!By-...-O!B: -OlCyt.....OlCxt. 00Dy -...- 00Dy - OOF;L -
OFf-...-OFF . 0Gyt.....0Gxt € oax

For any X C M, we can say that
X Cl'X COlX

by Lemma4.1.2. Also,
OX CcOOoxX C oox

by the same Lemma. Hence,

By ... IB:ICyh . ICxt 0Dy - ... 0ODF - OEf - OEs:
OFF-...-OFr.0Gyt.....0Gxt C oA~

Therefore,

.-ogExt

B ®...QBLRICH ®..9ICr 0D ®...00D; @Ot ®...0 OE:?

QOFF®...0 000Gt ®...0 0G:E C 0OA~,
From this, it is straightforward to obtain

Bf®...QBf®0D;®...00D; @ OFf®...Q OFF
C 0A*pOGIp...p0GY, pOElp OB .. p?Cr.
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Case 6: The last rule of the proof is (O) rule of the form:

N OILE,A— &, 00,78 ©)
'I'OIl,05,0A4 — 09, OA, 7Y

Let I' = Byy,...,Bpm, ¥ = C1,...,Cp, T = Dy,....D;, A = Ey,...,Fu, = = F},..

o Py,

®=Gy,...,Gy (m,n,l,u,v,w > 0). Note that each BY, C7, Dy, £y, Iy, G} and A™ is a fact.

By the induction hypothesis,

Bf®...QB,®0D;®...0 0D} Ff®...0 I ® A*
C Gip...pGLe O p. . . pOEpClp. .. .p7CT.

From this, it is straightforward to obtain

'Bf®...0!B;,@0D]®..00D[@F®...0 F;
C A*J‘gaGlga GO ETp . pOERIClp . . 0O

Since we can reduce the Caseb, we can obtain

'BI®...0!B;, 0D ®...00D @ OFf ®...® OF;
C OA*pOGIp...pO0GL O ... pOEp?CTp. .. p?Cs,

that is, o
'Bi®...0!B5®0D;®...00D;®O0Ff®...0 OFF @ OA*
C OGIp...p0G O Ep...pO0Ep?CTp. .. p?C*.

Case 7: The last rule of the proof is (O — O) rule of the form:

IF, 00,5 — &, OA,78 _

=22 (0 -0
'roll, 05 — 0@, OA, 7Y
Let I' = By,...,By, ¥ = Cy1,...,Cp, Il = Dy,....D;, A = FEy,....F,, 5 = F,...,F,
®=Gy,...,Gy (myn,l,u,v,w > 0). Note that each Bf, C¥, Dy, E, Fy, G is a fact.
As in Caseb, we can obtain
BUB) - h(Bg) - h(ICTY) - (IO
-h(DD’f) h(DD*) h(uEl*L) ..-h(QES)
B(FF) o h(FD) - R(GEY) - h(GE) € h(L7).
Since h is a phase homomorphism, we have h(L*) C_L*. Hence,
h(1BY) ... h(1B}) - h(ICT+) - ... B(IC3)
-h(DDf) h(TD7) - h(DE*J-) -h(OE*L)
h(FY) - h(F*) h(GTH) - h(G*L) c 1.
Then, as in Case5,
B ®...0B;, 90D ®..00D;@0F ®...0 OF;
C OGip...p0G pOEfp...pOE 0 Ctp. .. pICx.
(Q.E.D.)
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C.2 Corollary of the Main Lemma

Corollary 4.3.1 (Corollary of the Main Lemma) For any formula A, A € A*. .

Proof. By induction on the structure of the formula A. We consider A* = A*L+,

Case 1: A=1
FL— by (L—). In other words, L€ ||e|]| =L*.

Case 2: A=1
Let - — A for any formula A. Then

that is, 1 € 1*.

Case 3: A=T
Obviously, T € M = T*.

Case 4: A=0
Obviously, 0 € 0* since - 0 — A for any A by (0 —).

Case 5: A = p (atomic)
p € |lpll = p* since - p — p by (I).
Case 6: A = B+
Let I' € B. By the Main Lemma, - I' — B. We can deduce

I'—= B 1
— —
I Bt — (*=)

that is, B+ € (B*)t.

Case 7: A = B® C. Suppose VII € B*,C*( Il — A) for any A. By the Main Lemma and the
induction hypothesis,

Be B*and C € C™.
Then B,C € B*,C*. Take B,C as II, and we obtain - B,C — A. We can deduce

B,C— A
B(C—= A (® =)

Hence F B® C — A, that is, B® C € B*® C* = (B*,C*)*1L.

Case 8: A = BpC.
Let A; € B*L and Ay € C*L. By A, € B*L, V¥ € B*(F Ay, Y — ). By the Main Lemma and
the induction hypothesis, we can take B € B* as Y. Hence, - Ay, B — . Similarly, - A, C — .
Then, we can deduce

B,A1—> C,A2—>
BoC, Ay, Ag —

In other words, BpC' € (B*L,C*4)+ = B*pC*.

(p—)
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Case 9: A = B&C.
Suppose VII € B*(F II — A) for any A. By the Main Lemma and the induction hypothesis, we
can take B € B* as II, that is, F B —+ A. We can deduce

B - A
B&C o 4 &)

Hence, - B&C — A. Thus, B&C € B**1 = B* since B* is a fact.
Similarly, B&C' € C*. Therefore, we obtain B&C € B*NC* = B*&C*.
Case 10: A=BgC.

Suppose YII € B*UC*(F II — A) for any A. By the Main Lemma and the induction hypothesis,
we can take B € B* C B*UC* as II, that is, - B — A.

Similarly, F C' —+ A. We can deduce

B—-A C—> A
BaeC— A

that is, B C € B*& C* = (B*U C*)+L,

(® =)

Case 11: A= B (.
Suppose A € B*. By the Main Lemma, B* C ||B||. Hence, - A — B.

Suppose VII € C*(F I — A) for any A. By the Main Lemma and the induction hypothesis, we
can take C' € C* as II, that is, - C — A. We can deduce

A—>B C—>A
B—oC/A— A

Hence, - B—oC, A — A. We can say that VII € C*(F Il — A) implies - B—oC, A — A. In
other words, B —-o(C, A € C*.

Moreover, we can say that A € B* implies B—o(C, A € C* for any A. Threfore, B—oC €
B* - C*.

(o =)

Case 12: A= O0B.
By the Main Lemma and the induction hypothesis, B € B*. Therefore,

OB = h(B) € h(B*) C h(B*)**+ = 0B~

Case 13: A= O0B.
Suppose IT € h(B*1), that is, Il = OIl' and II' € B*L. By II' €¢ B*t, VA ¢ B*(F II", A — ).
By the Main Lemma and the induction hypothesis, we can take B € B* as A, thatis, - II', B — .

We can deduce
B— B (J_

Bt B —
OB, 0B —
OB — (OB+)t

!

—) ', B —>J_ (ot
(0) "= B~ o
L ol —» OBJ'

(OB4),00
OB, Il —
We can say that IT € h(B*%) implies - OB, Il — . In other words, OB € h(B*')t = OB*.

~—~

=)

)
(t=)
(

cut)

Case 14: A =0B.
By the Main Lemma and the induction hypothesis, B € B*. By Lemma4.3.1, OB € B*. By the
definition of f, OB = f(OB) € f(B*). Hence,

OB e B*N f(B*) C (B*n f(B*)*" =0B"
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Case 15: A =OB.
Suppose II € B*L N f(B*4), that is, Il = OI" and YA € B*(F II', A — ) since II' € B*1. By
the Main Lemma and the induction hypothesis, we can take B € B* as A, thatis, - II'. B — .

We can deduce
B—+ B

=8 1 ', B —

BL, B> (t—) / - (=Y
— 1~ (0-) ' — B*

OB, B — . (O)
— (0 ) oi’'— B ~0)
OO0y Bo0BT
OB — (OB+)L (@oBhHt on’ — .

OB, I — (cut)

We can say that IT € B*+n f(B*%) implies - OB, Il — | thatis, OB € (B*tnf(B*1)t = OB~

Case 16: A =!B.
Note that !B* = (B* N K)1* in our canonical model. By the Main Lemma and the induction
hypothesis, B € B*. By Lemma4.3.1, !B € B*. Also, !B € K by the definition of K. Hence,

'Be B*NK C (B*nK)*t =!B*.

Case 17: A =7B.
Note that ?B* = (B*1 N K)* in our canonical model.
Suppose II € B*1 N K, that is, IT ='I1" and YA € B*(F!I'; A — ) since !II' € B*L. By the
Main Lemma and the induction hypothesis, we can take B € B* as A, that is, H!I', B — . We
can deduce

B—B
BY B — ("= 17
— T (1) ', B — n
BL B~ = pr &)
'BL,?B — (=) ;H’—>'BL -

7 o (=9 Iy 177/ —)
’B — (!1B) (!B-)~,UI" — ;

7B, 11 — (cut)

We can say that IT € B*X N K implies F?B, Il — , that is, 7B € (B*t N K)* =7B*. (Q.E.D.)
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C.3 The Main Lemma

Lemma4.3.2 (Main Lemma) For any formula A,

A™ C []A]],

Proof. By induction on the structure of the formula A.

Case 1: A=1
1*=||e|| by definition. By Lemma4.3.3, ||¢|]| = || L ||

Case 2: A=1
Let I' € 1* = {e}1+, that is, if F — A then - I' — A for any A. We can take 1 as A since
F — 1. Hence, I" € |[1]].

Case 3: A=T
Obviously, - I' — T for any I' € M.

Case 4: A=0
Let I' € 0* = )1+, Then - I' — A for any A. Take 0 as A, and we obtain - I" — 0, that is,
I e||o]].

Case 5: A = p (atomic).
Obviously, p* = ||p|| by definition.

Case 6: A = B+
Let I' € (BY)* = B*L, that is, if - A — then - I A — for any A € B*. By the induction
hypothesis B* C ||B||, and hence by Corollary4.3.1, B € B*. Thus, we can take B as A. We

can deduce B
y b — n
I' - Bt (=7)
Therefore, I' € || BL||.

Case 7: A=B®C.
By the induction hypothesis, B* C ||B]||. Suppose A; € B*, and we obtain A; € ||B||, that
is, F Ay — B. Similarly, if Ay € C* then = Ay — C, by the induction hypothesis C* C ||C]].
Hence for Ay, Ay € B*,C*, F Ay, Ay — B® C since

A1—>B A2—>C
A17A2—>B®C

(= ®)

In other words, Ay, Ay € ||B ® C||. Hence, we obtain B*,C* C ||B® C||.
Therefore, B* ® C* = (B*,C*)*L C ||B® C||** = ||B® C|| since ||B® C|| is a fact.
Case 8: A = BpC.
Let I' € B*pC* = (B*L, C*4)L, that is, if AL € Bt YL ¢ C*% then - I', A+, X1 — | By the
induction hypothesis and Lemma4.3.4, B* € B** and C+ € C*1. Take Bt as At and C* as
X+ above. We obtain - I, BY,C+ — . We can deduce
I B+ Ct—
T=BC
T = BpC Y

Threfore, I' € ||BpCl|.
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Case 9: A = B&C.
Let I' € B*&C* = B*NC*. By the induction hypothesis B* C ||B||, I" € ||B||, that is, - I' — B.

Similarly, - I' — C'. Hence,
I'-B I'>C
I' - B&C (= &)

that is, I" € ||B&C|.

Case 10: A=BaC.
By the induction hypothesis, B* C ||B|| and C* C ||C||. Hence B*U C* C ||B||U ||C]|.
Now, let I" € || B||. We can deduce

I'—> B

I'—--BgpC (= &)

that is, I" € ||B @ C||. Hence, ||B|| C ||B @ C||. Similarly, we obtain ||C|| C ||B & C||. Hence,
[|Bl|U|C]| C ||B & Cl|, that is, B* U C* C ||B & C|| Therefore, B* & C* C ||B & C|| since
||B & C| is a fact.

Case 11: A= B (.
Let I' € B* —oC™, that is, VA € B*(I, A € C*). By the induction hypothesis, and hence by
Corollary 4.3.1, we can take B € B* as A. Hence B,I' € C*. By the induction hypothesis,
C* C||C]|. Hence, B, I" € ||C]|, that is, = B, I' = C. One can deduce

B, I'=>C

=B=C (7™

Therefore, I' € ||B - C]|.
Case 12: A =0B5B.
Let I' € h(||B]|), that is, I' = OI" and I"" € || B||. Since - I"" — B, one can deduce
_I"=B (0)
Oor"— OB
that is, I = OI"” € ||OB]|. Hence, h(||B]|) C ||OB]|.
Now, by the induction hypothesis B* C ||B]|,
h(B*) € h(|B[]) C [|1OB]].
Therefore,
OB* = h(B*)** C||0B]],
since ||OB]| is a fact.

Case 13: A= O0B.
Let I' € h(B*%)L, that is, for any X € h(B*L), - [ X — .
By the induction hypothesis and Lemma4.3.4, B+ € B*+. Thus, OBt = h(B*) € h(B*1). We
can take OB as Y above. Then, we can deduce

B— B

1
- = |
—>BL,B( 0))
I, OBt = N —+ OB+, 0B |
 aniL (&) — (")
I — (oBhHt (OBt - OB
— (cut)
I'—» OB

Threfore, - I' — OB, that is, I' € ||OB]|.
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Case 14: A =0B.
Let I' € B*N f(B*). By the induction hypothesis, B* C ||B||. Hence, I" € ||B|| N f(||B]]), that
is, I' =!I, 076y and F!IYy, 075, — B. Then, we can deduce

!Fl,DFQ,—}B (
!F17DF27_>DB

— 0)

that is, I' =!I, 07, € ||OB||. Therefore, OB* C ||OB|| since ||OB|| is a fact.

Case 15: A =CB.
By the induction hypothesis and Lemma4.3.4, B+ € B*L. Hence, OB+ € B*! by Lemma4.3.1.
Since OBt = f(B*) € f(B*1),
OBt ¢ B*:n f(B*).

Now, let I' € (B*t N f(B*1))4, that is, for any X € B*t n f(B*Y), - I X — . We can take
OBt as X. We can deduce

B— B L
— B1 B ((_; )<>)
— B+, OB (= 0)
I,oB+ — — OBL, OB
T (&) (t—
I,— (aBi)L (8BHt = OB .
I' - OB (cut)

We obtain - I — OB, that is I" € ||OB]].

Case 16: A =!B.
Note that !B* = (B*N K)*1 in our canonical model. Let I' € B*N K. By the induction
hypothesis, B* C ||B||. Hence, I" € ||B|| N K, that is, I' =!I and F!'I"" — B. Then

"= B [
i (7Y

that is, I' =!I"" € ||!B||. Therefore, !B* C ||!B]| since ||!B]| is a fact.
Case 17: A ="B.

Note that ?B* = (B*+ N K)* in our canonical model.

By the induction hypothesis and Lemma4.3.4, B+ € B**. Hence, !B+ € B*! by Lemma4.3.1,
that is,
Bt ¢ B*'nK.

Now, let I € (B*t N K)*, that is, for any ¥ € B** N K, - I, Y — . We can take !Bt as ¥.
We can deduce

B—~ B L
— (=
— BY. B ( {,)
el S
I'B+ — N —?BY, B |
S aanL ) GpnL e O)
I'— (!BY) (!B+)~ =»7’B
T 7B (cut)
We obtain - I" =7B, that is I" € ||?B||. (Q.E.D.)
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