

PDF issue: 2025-07-15

坪田,健一

<mark>(Degree)</mark> 博士(工学)

(Date of Degree) 2001-03-31

(Date of Publication) 2010-01-08

(Resource Type) doctoral thesis

(Report Number) 甲2222

(URL) https://hdl.handle.net/20.500.14094/D1002222

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

博士論文

骨梁表面リモデリングの 計算バイオメカニクスと その工学的応用

平成 13 年 1 月

神戸大学大学院自然科学研究科

坪 田 健 一

日	次

第1章	緒。論	1
第2章	本研究の背景と位置付け	5
2.1	骨の構造とリモデリング	5
	2.1.1 骨構造の力学的階層性	5
	2.1.2 骨のリモデリング現象	7
	2.1.3 骨梁表面リモデリング	11
2.2	骨リモデリングの計算バイオメカニクス	14
	2.2.1 骨リモデリングの数理モデル	14
	2.2.2 巨視連続体レベルの骨リモデリングシミュレーション	17
	2.2.3 微視構造を考慮した骨リモデリングシミュレーション	19
2.3	骨リモデリングシミュレーションの工学的応用	21
	2.3.1 インプラント形状の力学的な評価と設計	21
	2.3.2 骨梁表面リモデリングシミュレーション	23
筆っ卉		
第3章	骨梁表面リモデリングの計算機シミュレーション手法	25
第3章 3.1	骨梁表面リモデリングの計算機シミュレーション手法 緒 言	25 25
第3章 3.1 3.2	骨梁表面リモデリングの計算機シミュレーション手法 緒 言	25 25 26
第3章 3.1 3.2	骨梁表面リモデリングの計算機シミュレーション手法 緒 言	25 25 26 27
第3章 3.1 3.2	 骨梁表面リモデリングの計算機シミュレーション手法 緒 言 骨梁表面リモデリング則 3.2.1 リモデリングによる骨梁表面の移動 3.2.2 骨梁表面リモデリングの駆動力 	 25 25 26 27 30
第3章 3.1 3.2	骨梁表面リモデリングの計算機シミュレーション手法 緒 言	 25 26 27 30 31
第3章 3.1 3.2 3.3	骨梁表面リモデリングの計算機シミュレーション手法 緒 言 骨梁表面リモデリング則 3.2.1 リモデリングによる骨梁表面の移動 3.2.2 骨梁表面リモデリングの駆動力 3.2.3 応力一様化を目指す骨梁表面移動 骨のイメージベースト有限要素法	 25 26 27 30 31 33
第3章 3.1 3.2 3.3	骨梁表面リモデリングの計算機シミュレーション手法 緒 言 骨梁表面リモデリング則 3.2.1 リモデリングによる骨梁表面の移動 3.2.2 骨梁表面リモデリングの駆動力 3.2.3 応力一様化を目指す骨梁表面移動 骨のイメージベースト有限要素法 3.3.1 骨構造の非侵襲的計測手法	 25 26 27 30 31 33 33
第3章 3.1 3.2 3.3	骨梁表面リモデリングの計算機シミュレーション手法 緒 言 骨梁表面リモデリング則 3.2.1 リモデリングによる骨梁表面の移動 3.2.2 骨梁表面リモデリングの駆動力 3.2.3 応力一様化を目指す骨梁表面移動 骨のイメージベースト有限要素法	 25 25 26 27 30 31 33 33 34
第3章 3.1 3.2 3.3	骨梁表面リモデリングの計算機シミュレーション手法 緒 言	 25 26 27 30 31 33 33 34 36
第3章 3.1 3.2 3.3 3.3	骨梁表面リモデリングの計算機シミュレーション手法 緒 言 骨梁表面リモデリング則 3.2.1 リモデリングによる骨梁表面の移動 3.2.2 骨梁表面リモデリングの駆動力 3.2.3 応力一様化を目指す骨梁表面移動 骨のイメージベースト有限要素法	 25 26 27 30 31 33 33 34 36 40

ii 目次

	3.4.2 骨梁表面リモデリング則の離散的表現	42
	3.4.3 骨梁形態変化のシミュレーション手順	43
3.5	結 言	44
第4章	骨梁表面リモデリング則の基本的特性	45
4.1	緒 言	45
4.2	骨梁表面リモデリング則のモデルパラメータの特性	46
	4.2.1 分布する圧縮荷重を受ける長方形海綿骨モデル	46
	4.2.2 骨梁構造変化に及ぼす不感帯幅の大きさ Γ の影響	47
	4.2.3 骨梁構造変化に及ぼす感知半径 l _L の影響	49
4.3	ラット椎体海綿骨の骨梁リモデリング駆動力...........	53
	4.3.1 圧縮荷重を受ける海綿骨の骨梁リモデリング駆動力	53
	4.3.2 力学刺激の感知機構がリモデリング駆動力に及ぼす影響	56
4.4	結 言	60
第5章	大腿骨近位部海綿骨の骨梁表面リモデリングシミュレーション	61
5.1	緒 言	61
5.2	大腿骨近位部の Pixel モデル	62
5.3	単一荷重下の海綿骨リモデリング	64
	5.3.1 リモデリングによる骨梁構造変化	64
	5.3.2 海綿骨における力学状態の変化	67
5.4	複合荷重下の海綿骨リモデリング	68
	5.4.1 リモデリングによる骨梁構造変化	68
	5.4.2 海綿骨における力学状態の変化	69
5.5	結 言	74
第6章	三次元骨梁表面リモデリングシミュレーション	75
6.1	緒 言	75
6.2	骨梁単体の表面リモデリング	76
	6.2.1 骨梁単体モデル	76
	6.2.2 圧縮荷重下の骨梁構造変化	77

目 次 iii

	6.3	圧縮荷重下の海綿骨リモデリング	80
		6.3.1 犬大腿骨遠位骨端部海綿骨のイメージベーストモデル	80
		6.3.2 リモデリングによる骨梁構造変化	81
	6.4	リモデリングによる機能的適応現象..................	85
		6.4.1 骨梁レベルにおける構造特性と力学特性の変化	86
		6.4.2 海綿骨レベルにおける構造特性と力学特性の変化	87
	6.5	結 言	88
第	7章	骨梁表面リモデリングシミュレーションの工学的応用	91
	7.1	緒 言	91
	7.2	固定用スクリュー装着が海綿骨形態に与える影響	92
		7.2.1 スクリューを装着した椎体海綿骨モデル	92
		7.2.2 スクリュー装着時の海綿骨形態変化	94
	7.3	スクリュー近傍における骨梁形態変化	97
		7.3.1 スクリュー近傍の海綿骨モデル	97
		7.3.2 圧縮応力およびせん断応力に対する骨梁形態変化	99
	7.4	スクリュー周囲における三次元骨梁形態変化...........	101
		7.4.1 固定用スクリュー装着が海綿骨形態に与える影響	101
		7.4.2 スクリュー近傍における骨梁形態変化	103
	7.5	結 言	111
第	8章	結二論	113
付	録		117
	A.1	EBE/PCG 法を用いた大規模剛性方程式の解法	117
	A.2	骨梁構造の形態特徴量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	119
	A.3	ファブリックテンソル	123
	A.4	単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーション	125
	A.5	ヒト大腿骨近位部海綿骨の骨梁構造......................	129
	A.6	リモデリングによる海綿骨の弾性係数テンソルの変化........	130
	A.7	圧縮荷重を受けるヒト椎体海綿骨の形態変化	137

iv 目次

A.8	ヒト椎体海綿骨の三次元リモデリングシミュレーション.......	142
参考文献	ن ا ک	147
関連発表	表論文	163
謝辞		167

第1章

緒論

骨は,構造体として力学的な機能を果たす重要な生体組織であり,巨視的な外形状 から微視的な構造に至るまで,機能と密接に関連した形態を有している.この階層的 な骨の構造は,生物学的な因子と力学的な因子が複雑に関連したリモデリングにより 微視的に変化し,その結果として,巨視的な構造が,荷重環境に応じて機能的に適応 変化する.このような骨のリモデリングによる機能的適応現象を力学的な観点から理 解することは,バイオメカニクスにおける最も重要な課題の一つであり,これまでに も実験的および理論的な検討が数多く行われてきた.

骨のリモデリングによる適応のメカニズムを明らかにするためには,リモデリング を支配する様々な因子の中から,微視構造レベルにおける重要な力学的因子を取り出 し,構造変化と機能変化との関連について詳細に検討する必要がある.この点におい て,本研究で用いる計算機シミュレーションを援用したバイオメカニクス的手法は,有 効な手段となる.さらに,メカニズムの検討を通じて構築された骨リモデリングの計 算機シミュレーションモデルは,様々な状況を予測する手段として有用なだけではな く,工学的な応用も広く期待される.

本研究では、骨の微視的な構造要素である骨梁を対象とし、微視から巨視に至るリ モデリングの階層的なメカニズムの解明とその工学的応用について、計算バイオメカ ニクス的手法を用いた検討を行う.本論文では、まず、本研究の背景と位置付けにつ いて述べた後、骨梁表面リモデリングの計算機シミュレーション手法の構築、シミュ レーションを用いた骨梁表面リモデリングのメカニズムの検討、および骨梁表面リモ デリングシミュレーションの工学的応用に関する研究について述べる.以下に本論文 の構成と概要を示す.

1

2 第1章 緒 論

第2章では、本研究の背景と位置付けを示すため、まず、骨梁を含む骨組織の階層 構造を示し、骨のリモデリング現象について力学的な視点から概観する.次に、骨リ モデリングに関するこれまでの計算バイオメカニクス的研究について概観する.さら に、骨リモデリングシミュレーションの工学的な応用例として、整形外科領域で用い られるインプラントの力学的な評価と設計に関する研究を概観し、この分野における 骨梁表面リモデリングシミュレーションの役割について述べる.

第3章では、海綿骨の階層的なリモデリング現象のメカニズムについて検討するた め、骨梁レベルの構造変化を直接表現した骨梁表面リモデリングの計算機シミュレー ション手法を構築する.ここでは、海綿骨の骨梁構造の力学的な階層性を表現するた め、実際の海綿骨における三次元骨梁構造を詳細に反映したイメージベーストモデル を用い、微視的な骨梁レベルの力学状態と巨視的な海綿骨レベルの荷重環境を関連付 ける.さらに、このイメージベーストモデルに、骨梁表面リモデリングの数理モデル として、局所的な力学刺激の一様化を目指すリモデリング則を導入する.

第4章では、シミュレーションモデルの構築を行う上で重要となる、骨梁表面リモ デリング則の基本的な特性を明らかにする.まず、単純な二次元海綿骨モデルを用い た骨梁表面リモデリングシミュレーションを行い、リモデリング則に含まれるモデル パラメータが骨梁構造の変化に与える影響について検討する.次に、イメージベース トモデルを用いてラット椎体海綿骨の骨梁表面リモデリングの駆動力を示し、海綿骨 におけるリモデリングの活性度について検討する.さらに、リモデリング則の形式が リモデリング駆動力に与える影響を示し、リモデリングを担う細胞が力学刺激を感知 するメカニズムについて考察する.

第5章では、大腿骨近位部海綿骨の骨梁表面リモデリングシミュレーションを行い、 微視的な骨梁レベルのリモデリングのメカニズムと、その積み重ねにより得られる巨 視的な海綿骨レベルの構造変化との関連について検討する.まず、大規模な二次元モ デルを用いて単一荷重を受ける海綿骨のリモデリングシミュレーションを行い、局所 的な力学刺激に応じた骨梁構造の変化がもたらす海綿骨レベルの巨視的な構造変化に ついて示す.次に、海綿骨の構造特性と力学状態とを比較し、骨梁レベルの微視的な リモデリング過程と、海綿骨レベルの巨視的な構造の適応変化との関連について検討 する.さらに、複合荷重が骨梁構造変化に与える影響について検討し、実際の大腿骨 において観察される骨梁構造とリモデリングとの関連について考察する. 第6章では、三次元骨梁表面リモデリングシミュレーションを行い、in vivoの実験 系において観察される海綿骨の機能的な適応現象について検討する.まず、単純な骨 梁モデルを用いたリモデリングシミュレーションを行い、骨梁の三次元形態変化の基本 的な特性について検証する.次に、X線µCTにより計測された実際の骨梁構造データ から作成されるイメージベーストモデルを用いて、海綿骨のリモデリングシミュレー ションを行い、巨視的な圧縮荷重を受ける海綿骨の骨梁構造変化を示す.また、骨梁構 造の形態特徴量に着目して、シミュレーション結果と実験結果を定量的に比較し、本 シミュレーションの現象記述能力を検証する.さらに、海綿骨の骨梁構造の変化と、そ れに伴う力学特性の変化との関係を明らかにし、骨梁レベルおよび海綿骨レベルにお ける骨構造の機能的な適応変化について考察する.

第7章では、骨梁表面リモデリングシミュレーションの工学的応用の可能性について 検討する.まず、二次元リモデリングシミュレーションを用いて、固定用スクリューの 装着が椎体海綿骨の骨梁構造および力学状態の変化に与える影響を明らかにする.次 に、スクリューと海綿骨との界面における骨梁構造変化について、界面の近傍に着目 したリモデリングシミュレーションを行い、スクリューに加わる荷重とリモデリング による骨梁構造変化との関係を示す.また、スクリューと海綿骨との界面近傍におけ る骨梁構造の変化から、スクリューの固定性について考察を加える.さらに、実際の 椎体で生じる骨梁構造変化を定量的に検討するため、これらのシミュレーションを三 次元問題へ拡張する.以上を通じて、インプラントの形状設計における骨梁表面リモ デリングシミュレーションの有用性について検討する.

最後に, 第8章では本研究の総括を述べる.

4 第1章 緒 論

第2章

本研究の背景と位置付け

2.1 骨の構造とリモデリング

骨は,巨視から微視に至る階層的な構造を有している (Martin *et al.*, 1998). この 階層構造の中で,微視的な構造は,各種細胞の代謝によるリモデリングにより変化し, その結果として,巨視的な構造が機能的に適応変化する (Cowin, 1990). 本節では,骨 の微視的な構造要素である骨梁のリモデリング現象について概観する.

2.1.1 骨構造の力学的階層性

骨は、力学的な機能と密接に関連した階層的な構造を有している. 巨視的には、肉 眼的に見られる構造の違いから、図2.1(a) に示すように、皮質骨 (Cortical Bone)と 海綿骨 (Cancellous Bone) に分けられる (Bouvier, 1989). これらは、それぞれ緻密骨 (Compact Bone) と骨梁骨 (Trabecular Bone) と呼ばれる場合もある. 皮質骨は、骨 の外側に位置する緻密な骨であり、各部位の機能に応じて三次元的に複雑な外形状を 有している. さらに、微視的に見ると、図2.1(b) に示すように、皮質骨の大部分は 骨単位 (Osteon) と呼ばれる同心円状の層板構造から構成される. 骨単位の大きさは、 長さが1~2 cm、直径が約 200 μ m であり、その中心に位置するハバース管 (Haversian Canal)、および層板を貫くフォルクマン管 (Volkman's Canal)の内部には、血管およ び神経が含まれる. 一方、海綿骨は、皮質骨の内側に位置し、図2.1(c) に示すように、 骨梁 (Trabecula) と呼ばれる梁状の骨が張り巡らされた構造を有している. 骨梁の大 きさは、直径が数 10 μ m から数 100 μ m 程度であり、その空隙部は、骨髄 (Marrow) お よび血管で占められている. さらに、微視的に見ると、個々の骨梁内部にも皮質骨と

同様に層板状の組織が観察される.また,大腿骨などの長骨の骨幹部は,主に皮質骨 から構成されているのに対して,関節近傍の骨端部,椎体内部などでは,海綿骨が多 くを占めている.このように,皮質骨と海綿骨の割合は,骨の各部位の機能に応じた ものとなっている.

器官として見た場合,骨は,骨質,関節軟骨,骨膜および骨髄の4つの基本組織お よび神経,血管系などから構成されている (須田ら,1985). その中でも骨質は,骨の 力学構造の基礎をなしており,骨細胞とその周囲を埋める骨基質から構成される.骨 基質は,有機性成分と無機性成分から構成されており,有機性成分の内の約90%はコ ラーゲン (主に I型),残りはプロテオグリカン (デコリン,バイグライカンなど)と糖 タンパク質 (オステオネクチン,フィブロネクチン,オステオポンチンなど)などの非 コラーゲン性タンパク質である.また,無機性成分は,ハイドロキシアパタイトを主 とするリン酸カルシウムからなり,これらの結晶が有機性基質に沈着して石灰化組織 を構成する.

以上のように,骨は,肉眼的に観察される巨視的な構造から微視的な構造要素に至 るまで,階層的な構造を有している.この階層構造の中で,微視的な階層においては, 骨単位および骨梁などの構造要素がリモデリングにより変化し,その結果として,巨 視的な階層においては,外形状や見かけの密度分布といった構造の変化が観察される. このようなリモデリングによる階層的な骨構造の形態変化により,骨の力学的な機能 が維持されることになる.

2.1.2 骨のリモデリング現象

リモデリングにより形成・維持される骨の構造は、その力学的な機能と密接に関連 すると考えられてきた. Wolff (1869, 1892, 1986) は、外傷、疾病あるいは生活様式の 変化などにより骨の力学状態が変化した場合、新しい力学状態に応じて骨構造が変化 するとした骨の変形法則 (Law of Bone Transformation)を提案した. これが、Wolff の 法則 (Wolff's Law) として知られる仮説であり、骨の力学的な機能が保たれるように、 その構造が力学的な状態に応じて変化すると考えるものである. さらに、Roux (1881) は、機能的適応 (Functional Adaptation)の概念を提案し、骨が力学環境の変化に対し て機能的に適応する自己調節メカニズムを備えていると考えた. また、その結果として 得られる骨の構造に対して、最小材料・最大強度説として知られる仮説を提案した. こ れは、骨が外力に対して最小の材料で最大の強度を実現していると考えるものである. 骨のリモデリングによる機能的な適応現象のメカニズムについては、骨の巨視的な 構造と力学環境との関連が、動物を用いた *in vivo* の実験により検討されてきた.例 えば、Uhthoff and Jaworski (1978) は、若い成熟ビーグル大の片側前脚をギブス固定 した場合、加わる荷重の減少に応じて、リモデリングによる骨の吸収が生じることを 示した.さらに、Goodship *et al.* (1979) は、より局所的な力学状態の変化とリモデリ ング量との関連を検討している.まず、豚の尺骨を切除し、橈骨骨幹部の圧縮ひずみ の値が増加することを *in vivo* でひずみゲージにより確認した後、リモデリングによ り橈骨の断面積が増加し、圧縮ひずみの値は減少することを示した.また、Lanyon *et al.* (1982) は、羊の尺骨を切除することにより、橈骨のリモデリング実験を行い、ひず みの大きさだけではなく、ひずみの分布がリモデリングにおいて重要な役割を果たす ことを示唆している.この他にも、リモデリングに影響を与える力学量としては、ひ ずみ速度 (O'Connor *et al.*, 1982; Lanyon and Rubin, 1984; Mosley and Lanyon, 1998) や疲労亀裂の蓄積量 (Burr *et al.*, 1985) などが報告されている.

リモデリングによる骨構造の変化は、微視的な細胞の活動により行われる. リモデ リングを担う細胞は、骨膜面 (Periosteum: 皮質骨の外面),骨内膜面 (Endosteum: 皮 質骨内膜面と骨梁表面),およびハバース管内表面などのエンベロープ (Frost, 1966)と 呼ばれる各表面に存在する.例えば、骨単位内では、図2.2(a)に示すように、リモデリ ングを担う骨の細胞群と新たに形成された骨が、長さ約400 µm,幅約200 µm 程度の領 域に存在する.これらを、リモデリングの機能的な単位を表現するものとして、Basic Multicellular Unit (BMU) (Parfitt, 1994)と呼ぶ.骨単位のBMUにおいては、図2.2(a) に示すように、破骨細胞が "Cutting Cone"を形成しながら前方へ進み、その後方で、 骨芽細胞が "Closing Cone"と呼ばれる新しい骨を形成する.この結果、図2.1(b)に示 したハバース管を中心に含む同心円状の層板構造を有する骨単位が形成される.骨単 位の長軸方向に BMU が進む速度は、例えば、犬の肋骨の場合で約40 µm/day 程度と 報告されている (Jaworski and Lok, 1972).一方、海綿骨においては、個々の骨梁の表 面においてリモデリングが行われる.骨梁の BMUは、図2.2(b)に示すように、皮質 骨の "Cone"を半分に切ったような形となっており、幅は約300 µm、長さはその数倍 である.これを、骨梁表面リモデリングと呼ぶ.

リモデリングを担う主な細胞は、上層細胞 (Lining Cell)、破骨細胞 (Osteoclast)、骨

図 2.2 皮質骨および海綿骨における Basic Multicellular Unit

芽細胞 (Osteoblast) および骨基質内に存在する骨細胞 (Osteocyte) であり、図 2.3 に示 すように、エンベロープ上でそれぞれが密接に関連した活動を行っている.エンベロー プの大部分は、上層細胞に覆われた休止期 (Quiescene Phase) (Parfitt, 1984) にあるが、 活性化(Activation)によって上層細胞に代わり破骨細胞がエンベロープに付着し,吸収 期 (Resorption Phase)を迎える.吸収期では,破骨細胞によるエンベロープ上での骨 吸収 (Resorption) が行われ,吸収腔 (Resorption Cavity) が形成される (Parfitt, 1993). 次に逆転期(Reversal)を迎えて骨吸収が終わり、破骨細胞に代わって骨芽細胞がエン

図 2.3 リモデリング回転

ベロープ上に付着し、形成期 (Formation Phase) を迎える (Parfitt, 1992). 形成期で は、吸収腔で類骨 (Osteoid) が形成され、数日遅れて石灰化 (Mineralization) が生じる. この際、骨芽細胞の一部は骨基質中に埋め込まれて骨細胞となり、残りはエンベロー プ上で上層細胞となる. 石灰化が終了すると再び休止期の状態に戻る (須田ら, 1985; Parfitt, 1984). この一連の過程がリモデリング回転 (Remodeling Turnover) と呼ばれ る一つのサイクル (須田ら, 1985) であり、その時間スケールは、数週間から数ヶ月の オーダーである. このリモデリング回転において、骨の吸収量と形成量との間に相対 的な差が生じると、皮質骨においては骨単位の形態が、海綿骨においては骨梁の形態 が、それぞれ変化することになる.

リモデリングは、細胞の活動が複雑に連鎖して行われており、その本質的なメカニ ズムは、細胞レベルの生化学的なものである.各種細胞の活動および細胞間の情報伝 達には、化学的、電気的および磁気的な因子が影響を与えることが報告されている. さらに、力学的な因子の影響についても、*in vitro* における詳細な実験的検討により、 その多くが明らかになってきた (Cowin *et al.*, 1991). 例えば、静水圧を連続負荷した 細胞培養系の実験系においては、骨芽細胞様細胞 MCT3T3-E1 のコラーゲンの合成と その石灰化が抑制され、破骨細胞に関連する PGE₂(Prostaglandin E₂)の産生が促進さ れることが示された (Ozawa *et al.*, 1990). また、破骨細胞についても、マウス骨髄 の培養系において、PGE₂ 産生の促進に加えて、多核の破骨細胞の前駆細胞と考えら れる TRAP(Tartrateresitant Acid Phosphate) ポジティブな単核の細胞の数が増加し たことが報告されている (Imamura *et al.*, 1990). 鶏の胚頭蓋骨から単離した骨芽細 胞と骨細胞に対して、変動する静水圧と流れによるせん断応力を与えた場合において は、PGE₂ 増加に与える影響はせん断応力の方が大きく、また、骨細胞の方が刺激に 対する応答が顕著であることが示された (Klein-Nulend *et al.*, 1995). さらに、この骨 細胞には、力学刺激の感知センサーとして重要な役割を果たす可能性が示唆されてい る (Cowin *et al.*, 1991). 例えば、Weinbaum ら (Weinbaum *et al.*, 1994; Wang *et al.*, 1999) は、骨細胞が感知する力学刺激として、骨基質の変形による骨細管と細胞質突 起の間隙における間質液の流れについて検討している.

力学刺激に応じた細胞活動による骨の吸収および形成は,骨の微視的な構造の変化 をもたらす.また,その積み重ねにより巨視的な骨構造の変化が生じる.したがって, 骨のリモデリングのメカニズムを明らかにするためには,微視的なレベル,すなわち 骨単位および骨梁レベルにおける力学刺激と骨の構造変化との関連を検討する必要が あると考えられる.

2.1.3 骨梁表面リモデリング

微視的な骨梁構造を有する海綿骨においては,図2.2(b)に示す骨梁表面におけるリ モデリングにより,微視的な骨の形成および吸収が生じる.この際,図2.4 に示すよう に,骨梁の表面が移動し,個々の骨梁の形態が変化することになる (Parfitt,1994).力 学環境とリモデリングによる骨梁構造変化との関連については,これまでに数多くの 研究が行われきた.しかしながら,海綿骨の力学環境を定量的に制御し得る実験系を 用いて,リモデリングによる骨梁構造変化を検討した報告例は数少ない.これは,*in vivo*において海綿骨に定量的な力学刺激を加えることが容易ではなく,また,個々の 骨梁の力学状態を評価することが困難であったためと考えられる.さらに,海綿骨の 複雑な骨梁構造の変化を定量的に評価する手段が限られていることも一つの要因であ るといえる.本項では,これまでに行われてきた海綿骨の骨梁リモデリングに関する

図2.4 リモデリングによる骨梁構造の変化

in vivo における実験的研究について概観する.

まず, Cheal et al. (1987) は,スムーズな表面とポーラスコートされた表面を持つ 直径 10 mm のステンレス球インプラントを小型馬の膝蓋骨に埋め込み,6ヶ月後にお けるインプラント周囲の骨梁構造変化を定量的に評価した.そこでは,見かけの骨梁 密度が変化し,さらに,骨梁配向が主応力方向に対応するように変化する結果が得ら れている.しかしながら,実際の現象は,Wolffの仮説により説明できるほど単純なも のではなかった.これは,球状のインプラントを埋め込むことにより海綿骨の力学環 境を変化させた結果,海綿骨の力学状態が複雑なものとなり,応力と骨梁構造との比 較が困難であったためと考えられる.

そこで、Goldstein と Guldberg ら (Goldstein *et al.*, 1991; Guldberg *et al.*, 1997a) は、海綿骨に対して制御した応力刺激を *in vivo* において与える実験モデルを作成し、 リモデリングによる骨梁構造の変化と応力との関係を定量的に検討した.そこでは、 水圧で駆動するピストンに連結された直径 6 mm の円柱状圧盤を、犬大腿骨遠位骨端 部の海綿骨に埋めこみ、*in vivo* において海綿骨に繰り返し荷重を与えている.大き さ 35 N, 周期 1 Hz の力学刺激を 24 週間負荷した結果、圧盤近傍においては、圧盤の 形態およびポーラスコートの位置に応じた特徴的な骨梁構造の変化が観察された.ま た、圧盤直下の骨梁構造が X 線 μ CT を用いて計測され、圧縮方向への骨梁配向変化 が定量的に示された.この実験系を用いることにより、応力やひずみなどの力学量と 骨梁構造との関係を定量的に示すことが可能になった.また、骨梁配向が圧縮負荷を 与えた方向に変化したことから、この実験結果は、Wolffの仮説を例証するものと考え られる.

以上の2つの実験系では、実験モデルの作成時に、外科的な侵襲が避けられない.し

たがって、実験において与える力学的な因子に加えて、生物学的な因子がリモデリン グに影響を与えることが予想される.一方、Chambers et al. (1993) は、ラットの第7 および第9尾椎体にピンを挿入し、両ピンの間に圧縮荷重 150 N を 0.5 Hz で与え、第 8 尾椎体に in vivo において力学刺激を与える実験系を作成した.この実験系におい ては、力学刺激の与え方が単純であり、また、リモデリング現象を観察する第8 尾椎 体に対しては非侵襲的であることから、リモデリングにおける力学刺激以外の生物学 的な因子が排除される.着目する第8 尾椎体においては、皮質骨部の圧縮ひずみが約 700 µ であった.荷重を1日だけ 360 回与えた場合、および1日あたり 36 回与えた続 けた場合について実験を行った結果、9日後の骨形成速度が無負荷群に対して、それ ぞれ4倍および 30 倍に増加したことが報告されている.

Guldberg et al. (1997b) は、犬大腿骨遠位骨端部と脛骨近位端部に埋めこんだ円筒 状チャンバ内に、まず、8週間で骨の形成を誘導し、形成された骨構造に対して、水 圧駆動のピストンを用いて,繰り返しの力学負荷を与える in vivo 実験系を作成した. 初期に形成された骨は,その後リモデリングの活性化により,8~24 週間の間に層状 構造を有する骨梁へと改変される.まず,8週間後に力学負荷(18N,1Hz,1800回/日) を開始し、数日から最大12週間まで負荷を与え、X線 µCT を用いてチャンバ内に形 成された骨梁構造の形態特徴量を計測した、その結果、リモデリングにより骨梁構造 の変化が生じ、圧縮負荷方向に対する見かけの剛性が、無負荷コントロール群に対し て600%増加した.また、力学負荷を開始してから数日後には、I型プロコラーゲンを 発現している骨芽細胞に覆われた骨梁表面の面積率が有意に増加したことから、力学 刺激による骨形成の促進が示されている. さらに, Moalli et al. (2000) は, 同実験系 において、力学負荷を与え始めてから3日後には1型プロコラーゲンが増加し、その 6日後にはアルカリフォスファターゼ (ALP: Alkaline Phosphatase) 活性が増加するこ とを示した.また,荷重を1回のみ負荷した後に除荷を行うと,除荷後の経過時間に 応じて mRNA が発現することを報告している.これは,力学負荷に応じた細胞活動の 活性度が、時間的に調節されながら変化することを表すものである.

海綿骨の力学環境を制御した実験系は、力学的な因子とリモデリングによる骨梁構造の変化との関連について、新たな知見をもたらしつつある.しかしながら、制御可能な力学環境は、海綿骨レベルの巨視的なものであることから、個々の骨梁レベルにおける微視的な力学刺激と構造変化との関連を検討するまでには至っていない.また、

14 第2章 本研究の背景と位置付け

実験系において得られた結果は、生物学的な因子と力学的な因子が複雑に関連したものであり、実験結果の理解が困難となる場合が生じる.したがって、骨梁レベルにおけるリモデリングのメカニズムを明らかにするためには、本論文で採用する計算バイオメカニクス的な手法を援用することが不可欠になるものと考えられる.

2.2 骨リモデリングの計算バイオメカニクス

骨リモデリングのメカニズムを探る一つの手段として,数理モデルと計算機シミ ュレーションを用いる計算バイオメカニクス的手法の有効性が広く認められている (Cowin, 1993; Huiskes and Hollister, 1993; Prendergast, 1997). これは,実験におい ては理解が困難な状況下における力学刺激とリモデリングとの関係を,数理モデルと 計算機シミュレーションを援用して明らかにしようとするものである.また,この計 算バイオメカニクス的な手法においては,階層構造を有する骨の力学状態を詳細に評 価することにより,リモデリングにおいて重要となる微視的な力学刺激を定量的に示 すことが可能である.さらに,骨構造の時間的な変化,様々な力学環境下における変 化など,実験的な手法を用いた場合にはコスト的に困難な問題を検討することが可能 である.本節では,骨リモデリングに関するこれまでの計算バイオメカニクス的研究 について概観する.

2.2.1 骨リモデリングの数理モデル

骨のリモデリング現象を数理モデルとして表現することは、リモデリングのメカニ ズムを理解するための重要なアプローチの一つである.これまでに提案されたリモデ リングの数理モデルは、リモデリング量およびその速度の支配式として、応力やひず みなどの力学量と関連付けて記述されてきた (Cowin, 1993).また、リモデリングを駆 動する力学刺激量としては、ひずみや応力などの(1)大きさ、(2)符号、(3)方向、(4) 分布、(5)変化速度、(6)変化の周期、作用期間、回数などが、様々な実験事実に基づ いて採用されてきた.

リモデリングの数理モデルにおいては、一般に、生理的な範囲内の力学刺激に対して、刺激量が増加すると骨が成長し、刺激量が減少すると吸収されるとする考え方が導入されている (Pauwels, 1980). まず、定性的なモデルとして、Pauwels (1980) は、骨

リモデリングに対する自らの観察に基づき,骨の成長と吸収が平衡となる最適応力 T_s の存在を仮定し,リモデリング量 R を応力 Tの関数として表した.さらに,Kummer (1972) は三次式を用いて, Pauwelsの関数の具体形を

$$R = C[(T_s - T_u)^2 (T - T_s) - (T - T_s)^3]$$
(2.1)

と表した. ここで, *C* は定数である. この式は, 応力の下限値 T_u と上限値 $T_o(=2T_s-T_u)$ を用いて, $T_u < T \leq T_s$ の範囲で骨の吸収が, $T_s < T \leq T_o$ の範囲で成長が, さらに $T_o < T$ の過負荷に対しては逆に吸収が生じるとするものである.

また、Frost (1987) は、リモデリング平衡をもたらす生理的なひずみの大きさには、あ る程度の幅 (Physiological Lazy Zone) があると考え、メカノスタット理論 (Mechanostat Theory) を提案した. このモデルには、ひずみ量がある閾値を超えた場合に骨の形成 あるいは吸収が生じるとした Minimum Effective Strain (MES)の考え方が導入されて いる. Frost のモデルの基本的な考え方は、Pauwels や Kummer らのモデルと同じであ るが、平衡点が、Kummer の式 (2.1) に導入された最適応力 T_s の1点ではなく、ある 程度の幅を持たせた所に特徴がある.

さらに、骨を連続体として扱ったリモデリングの数理モデルが、見かけの密度の変 化を表現する内部リモデリング (Internal Remodeling)、および骨の外形状変化を表現 する表面 (外部) リモデリング (Surface (External) Remodeling) について示されてい る. Cowin and Hegedus (1976) は、内部リモデリングに対して適応弾性体モデルを提 案した. ここでは、恒常的な平衡状態にあるひずみ値を目標としてリモデリングが行 われると仮定している。微小ひずみに限定した場合は、体積分率の参照値からのずれ e の時間変化 e が、ひずみ E_{ij} により

$$\dot{e} = a(e) + A_{ij}(e)E_{ij} \tag{2.2}$$

と表される (Hegedus and Cowin, 1976; Cowin and van Buskirk, 1978). ここで, a(e)および $A_{ij}(e)$ は、リモデリング速度定数である. さらに、Cowin ら (Cowin and van Buskirk, 1979; Cowin and Firoozbakhsh, 1981) は、皮質骨の表面リモデリングに対す る数理モデルを提案した. ここでは、点 Q における法線 n 方向のリモデリングによ る表面移動速度 U が、ひずみの参照値を E_{ij}^0 として

$$U = C_{ij}(\boldsymbol{n}, Q) \{ E_{ij}(Q) - E_{ij}^{0}(Q) \}$$
(2.3)

と表される.ここで、 $C_{ij}(\mathbf{n}, Q)$ はリモデリング速度定数である.

一方、Carter らは、Roux の最小材料・最大強度説 (Roux, 1881) の説明を試み、骨組 織が荷重支持機能に対して局所的に自己最適構造を形成していると考え、内部リモデ リングモデルとして自己最適化モデル (Fyhrie and Carter, 1986; Carter *et al.*, 1987) を提案した.ここでは、リモデリング平衡における骨の見かけの密度 ρ を、有効応力 σ_{eff} の m 乗に比例するとし、

$$\rho = A\sigma_{eff}{}^m \tag{2.4}$$

と表している.ここで,*A*は定数である.また,有効応力 σ_{eff} は,応力 σ を密度 ρ で除した値であり,骨の微視的な構造レベルにおける応力値を表現したものである.式 (2.4)はリモデリング平衡における状態を示すものであるが,この時間発展式として, Beaupré *et al.*(1990a)は,骨梁表面リモデリングを巨視平均的に捉えたリモデリング 速度 \dot{r} を示した.ここでは,骨に作用する荷重の履歴を考慮した力学刺激量 ψ_b とその参照値 $\psi_{b_{AS}}$ との差がリモデリングを駆動すると考え,リモデリング速度 \dot{r} を

$$\dot{r} = c(\psi_b - \psi_{b_{AS}}) \tag{2.5}$$

と表現している.ここで, c はリモデリング速度定数であり,力学刺激量 ψ_b は,荷重 様式 i が1日当たりに負荷される回数 n_i ,荷重様式の数 N,荷重様式 i に対する有効 応力 $\overline{\sigma}_{b_i}$,および重み指数 m を用いて

$$\psi_b = \left(\sum_{day}^N n_i \overline{\sigma}_{b_i}^m\right)^{1/m} \tag{2.6}$$

と表される. さらに,式(2.5)と,骨表面の面積と骨密度 ρ との関係式 (Beaupré *et al.*, 1990a)を用いることで,骨密度 ρ の時間発展式が導出される.

また, Huiskes *et al.* (1987) は, Cowin らが示したリモデリングモデルを修正し,内 部リモデリングについては弾性定数 *E* の,また外部リモデリングについては表面位置 *X* の時間発展式を,それぞれひずみエネルギー密度 *U* とその参照値 *U_n* との差により

$$\frac{dE}{dt} = C_e(U - U_n) \tag{2.7}$$

$$\frac{dX}{dt} = C_x(U - U_n) \tag{2.8}$$

と表現した.ここで, *C_e* および *C_x* は, それぞれ内部リモデリングおよび外部リモデリングの速度定数である.このモデルには,ひずみエネルギー密度が参照値と一致す

るリモデリング平衡点近傍における不感帯 (Carter, 1984) が導入されている.これは, ある閾値の範囲内の力学刺激に対しては見かけのリモデリングが生じないとする考え であり, Frost のメカノスタット理論 (Frost, 1987) と同様の考え方である.また,内 部リモデリング式 (2.7) は,ヤング率 E と骨の見かけの密度 ρ を n 乗則で関連付けた 実験式 (Carter and Hayes, 1977):

$$E = E_0 \rho^n \tag{2.9}$$

を用いて、以下のように見かけの密度 ρ の時間発展式に拡張される (Huiskes *et al.*, 1992).

$$\frac{d\rho}{dt} = B\left(\frac{U}{\rho} - k\right) \tag{2.10}$$

ここで, E_0 , n, B, および k は定数である.

この他にも連続体理論に基づくリモデリングの数理モデルとして,骨の損傷の蓄積 量を力学刺激量として考慮したモデル (Prendergast and Taylor, 1994; Levenston and Carter, 1998),骨の全体構造の最適性に着目したモデル (Harrigan and Hamilton, 1994) などが提案されている.以上のように,内部リモデリング則および外部リモデリング 則として,骨の巨視的な構造の変化速度が,力学刺激の参照値を目指す形式により表 現されてきた.

2.2.2 巨視連続体レベルの骨リモデリングシミュレーション

骨リモデリングにおける連続体レベルの巨視的な現象は,前項で示したように,骨 の見かけの密度変化を扱う内部リモデリング則,および骨の外形状変化を扱う外部リ モデリング則により表現されてきた.骨リモデリングシミュレーションは,リモデリ ング式を数値的に解くことにより,骨の複雑な構造と荷重環境を詳細に考慮し,力学 刺激と骨構造変化との関連を定量的に理解しようとするものである.

まず, Hart et al. (1984) は、三次元有限要素法による骨構造の力学解析と、内部リ モデリング式 (2.2) および外部リモデリング式 (2.3) に基づく骨構造の変化を繰り返し 計算する手法を用いて、リモデリングによる骨構造の時間変化を示した. このような 骨構造の応力解析と形状変化を繰り返し計算する手法は、現在のリモデリングシミュ レーションにおいて一般的に用いられている. さらに、Cowin et al. (1985) は、長骨 皮質骨の横断面を対象とした二次元表面リモデリングシミュレーションを行い、得ら

18 第2章 本研究の背景と位置付け

れた外形状変化を実験結果と比較することにより,数理モデル中のリモデリング速度 定数を決定した.得られた骨形態は,実験結果をよく表現しており,リモデリングシ ミュレーションの現象記述能力が確認されている. McNamara *et al.* (1992) は,疲労 損傷の蓄積量を力学刺激とした Prendergast and Taylor (1994) のモデルに基づく表面 リモデリングシミュレーションを行い,実験系との比較を通じて,シミュレーション モデルの妥当性を検証した.

また, Carter *et al.* (1989) は,式(2.4)に基づいてリモデリング平衡における大腿骨 近位部の骨密度を二次元有限要素法を用いて求めた.ここでは,式(2.4)の右辺に示さ れる有効応力 σ_{eff} が,式(2.6)に示すような荷重履歴を考慮した形式に修正されてい る.得られた骨密度分布は,大腿骨近位部の特徴的な見かけの骨密度分布を良く表現 するものであった.さらに,Beaupré *et al.* (1990b) は,式(2.5)に示す骨密度の時間 発展式を用いたリモデリングシミュレーションを行い,大腿骨近位部における骨密度 分布の時間変化を求めた.これらのシミュレーションにおいては,複合荷重に対応し たリモデリングにより,大腿骨近位部の骨梁構造が必ずしも直交系とはならない可能 性が示されている.

一方, Huiskes *et al.* (1987) は、人工股関節ステムを装着した大腿骨の単純な二次元 有限要素モデルを用いて、式 (2.8) に基づく表面リモデリングシミュレーションを行っ た. ここでは、ステムの直径と剛性に応じた骨吸収が近位部側で生じることが示され ている. また、Weinans *et al.* (1992b) は、式 (2.10) で示される骨密度の時間発展式を 用いたシミュレーションにおいて、疎密が明確なチェッカーフラッグ状の骨密度分布 が得られることを報告した. これは、シミュレーションの数値的な不安定性 (Harrigan and Hamilton, 1992; Cowin *et al.*, 1993) を表すものであるが、パラメータの設定条 件 (Cowin *et al.*, 1994),および力学刺激の評価方法 (Mullender *et al.*, 1994; Harrigan and Hamilton, 1994; Jacobs *et al.*, 1995) を修正することにより、安定な数値解を得ら れることが示されている.

さらに,実際に観察される骨構造変化を良く表現するリモデリングシミュレーショ ンを応用して,リモデリング現象の予測と評価が行われている. Eckstein *et al.* (1997) は,関節の不適合により生じる軟骨近傍の骨の密度変化の原因が,力学状態に応じた リモデリングであることを示した.また,Weinans (1998) は,リモデリングによる過 剰な骨の適応が,骨粗しょう症の原因になる可能性を報告している.このように,骨 の置かれた力学状態に応じたリモデリングが,骨の病的な形態変化を引き起こすと考 えられる.一方,リモデリングの数理モデルに含まれる関数の形式やモデルパラメー タを修正したシミュレーションを用いて,リモデリングのメカニズムが詳細に検討さ れ始めている.例えば,Levenston *et al.* (1994) は,リモデリングを駆動する力学刺激 には,減衰記憶の効果が存在する可能性を示した.また,Turner *et al.* (1997) は,実 際の大腿骨における骨密度分布が,一様ひずみ状態を目指すリモデリングシミュレー ションにより得られることを示した.この結果は,局所的なひずみの勾配による骨髄な どの流れが,リモデリングを担う細胞の力学刺激になる可能性を支持するものである.

以上のように、骨の構造とリモデリング現象を巨視連続体レベルで扱った計算機シ ミュレーションモデルが構築され、実際の骨構造の変化を現象論的に表現することが 可能となった.構築されたシミュレーションモデルは、様々な状況におけるリモデリ ング現象を予測する際に有効な手段である.さらに、リモデリング現象を様々な視点 から捉えた数理モデルが提案され、シミュレーションを通じた現象の詳細な理解が試 みられ始めた.

2.2.3 微視構造を考慮した骨リモデリングシミュレーション

リモデリングによる骨の巨視的な構造変化は,前項で示した巨視連続体レベルのリ モデリングシミュレーションにより定量的に表現されてきた.しかしながら,実際に リモデリングを担う各細胞の活動と力学刺激との関係を詳細に検討するためには,骨 の微視構造を考慮した数理モデルとシミュレーションが重要になる.このような観点 から,海綿骨の骨梁構造を考慮して,構造および力学特性の異方性を考慮したリモデ リングシミュレーションが行われ始めた.

Jacobs et al. (1997) は、海綿骨の力学特性を完全異方性の弾性係数テンソルで表し、 従来の骨密度の時間発展式 (Beaupré et al., 1990a) を修正することにより、弾性係数 テンソルの発展式を提案した.ここでは、二次元リモデリングシミュレーションによ り大腿骨近位部における弾性係数テンソルを求め、骨リモデリングにおける力学的異 方性の重要性を示している.しかしながら、このモデルは、巨視平均的な挙動として の異方性を表現するのみであり、骨梁レベルの力学状態を詳細に評価するには至って いない.

一方, Tanaka et al. (1997) は、海綿骨の力学モデルとして提案した格子連続体モデ

ルを用い,表面リモデリングによる骨梁の形態変化を,格子部材幅の変化,部材の回 転,および部材間隔の変化として表現した.椎体海綿骨の三次元リモデリングシミュ レーション (Adachi et al., 1999) を行った結果,実際の骨梁構造と良く一致した骨の密 度,骨梁配向および残留応力分布が得られたことから,シミュレーションモデルの現象 記述能力が検証されている.さらに,Fernandes et al. (1999) と Bagge (2000) は,骨 梁構造を直交異方性の単位セルを用いてモデル化し,均質化法 (Guedes and Kikuchi, 1990) を用いて全体構造の最適化を目指す大腿骨近位部の三次元リモデリングシミュ レーションを行った.このような格子連続体モデルや均質化法を用いたシミュレーショ ンにおいては,骨梁構造の周期性を仮定しているため,骨梁構造が不均一に分布する 場合における適用に制限がある.しかしながら,骨梁の微視構造を表現する単位セル を導入することにより,骨梁レベルの力学刺激を考慮することが可能になった.

また, 骨梁レベルの力学刺激と形態変化とを直接関連付けたリモデリングシミュレー ションモデルもいくつか提案されている. Mullender と Huiskes ら (Mullender *et al.*, 1994; Mullender and Huiskes, 1995; Huiskes *et al.*, 2000) は, 骨梁内部に点在する骨細 胞を力学刺激の受容体と考え, 骨梁構造を直接表現した二次元モデルを用いて骨密度 変化のシミュレーションを行い, 骨細胞の点在密度と骨梁構造変化との関係を示した. ここでは, 骨密度の時間発展式を用いているが, 骨梁構造パターンに類似した骨の密 度分布を得ている. これらのシミュレーションの応用として, Mullender *et al.* (1998) は, X線μCT を用いて計測されたヒトのL4 椎体海綿骨の形状データから詳細な三次 元骨梁構造モデルを作成し, 骨粗しょう症における骨梁構造の変化を示した.

さらに、Sadegh et al. (1993) は、境界要素法を用いた骨梁表面リモデリングのシ ミュレーションモデルを提案し、単純な二次元モデルを用いてリモデリングシミュレー ションの基本的特性を示した.この表面リモデリングシミュレーションは、Luo et al. (1995) により力学刺激量としてひずみ速度を考慮したモデルに拡張されている.Luo らのシミュレーションモデルを応用して、Siffert et al. (1996) は、骨減少症における 骨構造と強度との関連を評価した.また、Smith et al. (1997) は、Mullender らのモデ ルを拡張して骨梁表面リモデリングのシミュレーションモデルを提案し、骨細胞およ び上層細胞について、力学刺激の受容体としての働きを検討している.一方、安達ら (1997) は、局所的な応力の一様化を目指す数理モデルに基づき、Pixel 有限要素モデル を用いた骨梁表面リモデリングのシミュレーションモデルを提案した.ここでは、大 腿骨近位部海綿骨の二次元リモデリングシミュレーションを行い,実際に観察される 特徴的な骨梁の配向特性が定性的に得られたことから,シミュレーションモデルの現 象記述能力を確認している.

以上のように、骨リモデリング現象における微視的なメカニズムの解明が、骨梁構造を考慮したシミュレーションにより行われ始めた. 骨梁レベルの力学刺激と構造変化との関連を表現するためには、個々の骨梁の形態変化過程を記述可能な表面リモデリングシミュレーションが不可欠である (Cowin, 1993). また、微視的な骨梁レベルの構造と、巨視的な骨の全体構造との各階層間の関連を明らかにすることも、リモデリングのメカニズムを解明する際に重要である.

2.3 骨リモデリングシミュレーションの工学的応用

骨のリモデリング現象を良く表現するシミュレーションは、様々な状況を予測する 際の手段として有効である。例えば、医学の分野においては、力学環境に応じた適応 的なリモデリングが原因と予想される骨の疾患について、リモデリングシミュレーショ ンを応用した診断および治療方法の検討が期待される。一方、工学の分野においては、 リモデリングによる骨構造の適応的な応答を、構造物の形状最適化への過程と捉えて、 骨リモデリングシミュレーションが構造物の形状設計へ応用されてきた。構造物の形 状設計においては、設計変数が複雑かつ多数になる場合、実験的な手法を用いるのみ では、最適な設計変数の探索にかかるコストが莫大なものとなるため、計算機シミュ レーションを援用した設計手法が不可欠となる。

このような医学と工学の複合領域における問題として,整形外科領域で用いられる, 骨に装着するインプラントの形状設計が挙げられる.本節では,インプラントの力学 的な評価と設計に骨リモデリングシミュレーションを応用したこれまでの研究につい て概観する.

2.3.1 インプラント形状の力学的な評価と設計

骨に装着するインプラントの代表例の一つとして,全股関節形成術 (THA: Total Hip Arthroplasty) において使用されるステムが挙げられる.人工股関節ステムを大腿骨 近位部に装着した際には,力学状態の変化に応じたリモデリングにより骨の構造が変

化し,その結果としてステムの緩みが生じることが問題の一つとなっている (Engh, 1987).したがって,長期に渡り適切な装着が可能となるステムを設計するためには, リモデリングによる骨構造の適応的な変化を考慮する必要があると考えられる.

Huiskes らは、一連の研究 (Huiskes et al., 1987; Huiskes et al., 1989; Huiskes et al., 1992; Weinans et al., 1992a; van Rietbergen et al., 1993; Kerner et al., 1999)の中で、巨視連続体理論に基づく骨のリモデリングシミュレーションを応用し、人工股関節ステム周囲の骨リモデリング現象を詳細に検討している。例えば、大腿骨とステムの二次元有限要素モデルを用いた見かけの骨密度変化のリモデリングシミュレーションにより、ステムの形状およびヤング率が骨吸収に大きな影響を与えることを示した(Huiskes et al., 1989; Huiskes et al., 1992).また、ポーラスコートが施されたセメントレスタイプのステムについては、ポーラスコートの位置が骨吸収に大きな影響を与えることを報告している (Weinans et al., 1992a).さらに、これらのシミュレーションを三次元問題へ拡張し、犬大腿骨を用いた実験系において得られる骨構造変化との比較を通じて、シミュレーションモデルの妥当性を検証した (van Rietbergen et al., 1993).このような三次元シミュレーションと精密なヒト大腿骨の有限要素モデルを併せて用いることにより、個体差に応じた骨密度分布の評価も十分可能になるものと考えられる (Kerner et al., 1999).

また, Prendergast ら (Prendergast and Taylor, 1992; McNamara *et al.*, 1997) は, 損傷密度を力学刺激として考えた骨リモデリングの数理モデルを用いて,人工股関節 ステムを装着した大腿骨近位部について,骨の外形状変化および見かけの密度変化の シミュレーションを行った.その結果,ステムの剛性が低いと骨吸収が抑制されたこ とから,ステムを設計する際,ステムの剛性を低くすることが一つの設計方針になり 得ることを示した.この結論は,Huiskesらが示した結果と同じものである.

人工股関節ステムの周囲における骨吸収現象は、ステムの剛性と骨の剛性が異なる ために、骨に荷重が十分伝達されない応力遮へい (Stress Shielding)の状態によるもの と考えられる.したがって、ステム以外のインプラントにおいても、応力遮へいが原 因で生じる骨吸収により、緩みが生じることが予想される.例えば、Orr *et al.* (1990) は、大腿骨の骨頭表面を置換するカップおよび脛骨近位部に装着する人工膝関節につ いて、見かけの骨密度変化のリモデリングシミュレーションを行い、これらインプラ ントの直下において骨吸収が顕著に生じることを示した.このように、骨に装着する 様々なインプラントについて、インプラントの装着により生じる骨構造変化を評価す る際に、骨リモデリングシミュレーションが有用になると考えられる.さらに、Kuiper and Huiskes (1997) は、リモデリングの力学刺激を目的関数に含むことにより、人工股 関節ステムの形状最適化手法を提案した.長期に渡り装着が可能となるインプラント を設計する際には、このような骨リモデリングを考慮した形状最適化シミュレーショ ンが重要な役割を果たすと考えられる.

インプラント形状の力学的な評価と設計においては、巨視連続体レベルの骨リモデ リングシミュレーションモデルが応用され、これまでに多くの成果が得られてきた.し かしながら、人工股関節ステムなどのインプラントを骨に固定する際には、インプラ ントと骨との界面における機械的な結合が重要である.微視的な骨梁構造を有する海 綿骨にインプラントを装着する場合においては、インプラントと海綿骨との界面にお ける骨梁の表面リモデリングを考慮した上で力学的評価を行う必要が生じる.したがっ て、微視的なインプラントの表面形状、スクリューのネジ山の形状、あるいはステム およびスクリュー自身の応力状態の評価を行う手段として、微視的な骨梁構造変化を 表現する骨梁表面リモデリングシミュレーションが重要になると考えられる.

2.3.2 骨梁表面リモデリングシミュレーション

骨リモデリングシミュレーションは、巨視連続体レベルのモデルから、より微視的 な骨梁レベルにおける力学刺激と構造変化との関連を表現するモデルへと詳細化が進 められてきた.骨梁レベルの現象に着目することは、骨リモデリングのメカニズムを 解明する際に必要となるだけではなく、海綿骨とインプラントとの界面における骨梁 形態の変化を評価する際に不可欠である.

例えば、表面にポーラスコートが施されたセメントレスタイプの人工股関節ステム においては、骨がステム表面の微視的な空孔に進入することにより、骨とステムとの 機械的な結合が行われる.また、骨を固定するスクリューにおいては、ネジ山の谷部 に骨が成長することにより、スクリューの適切な固定が期待される.このように、骨 に対してインプラントを適切に固定するためには、骨とインプラントとの界面におけ る微視的な骨構造の変化が重要である.

Hollister *et al.* (1993) は、ポーラスコートが施されたインプラント表面における骨 梁の形成について、構造物の位相最適化手法 (Bendsøe and Kikuchi, 1988) を応用した リモデリングシミュレーションを行った.その結果,ポーラスコート部分の空孔におい ては骨梁が形成し,また,インプラントの周囲においては力学状態に応じて骨梁構造が 変化することが示された.しかしながら,位相最適化の数理モデルが必ずしも骨リモ デリング現象を表現するものではないため,得られた骨梁構造は,実験系 (Goldstein *et al.*, 1991)で観察される骨梁構造の変化を十分表現するものではなかった.また,見 かけの骨密度の変化を表現したシミュレーションであるため,表面リモデリングによ る骨梁構造の変化は,直接的に表現されていない.

そこで,Sadegh et al. (1993) は,骨梁表面リモデリングシミュレーションを用いて, スクリューのネジ山部近傍およびインプラント表面の微視的な空孔における骨梁の成 長過程を検討した.ここでは,骨梁表面リモデリングによる個々の骨梁の構造変化を 直接表現するため,骨梁の成長過程をより詳細に検討することが可能である.シミュ レーションにより得られた結果は,骨梁の成長により,骨とスクリュー,および骨と インプラントの機械的な結合が得られることを示唆するものであった.さらに,Luo et al. (1999) は,円筒状インプラント周囲の骨梁表面リモデリングシミュレーション を行い,臨床で観察される特徴的な骨梁構造が,インプラントと骨との界面における 力学環境に応じて形成されることを示している.

以上のように,骨梁表面リモデリングシミュレーションにより,インプラント周囲の 微視的な骨梁構造変化を評価することが可能になりつつある.しかしながら,Sadegh らのモデルにおいては,微視的な骨梁構造の変化を表現するが,より巨視的なレベル におけるリモデリング現象との対応が明確ではない.実際のインプラント形状を設計 する際には,骨梁レベルの微視的な構造の変化に加えて,より巨視的な領域の骨構造 変化をも含めた総合的な検討を行う必要がある.この際,微視的な領域における骨梁 構造変化を詳細に表現しつつ,さらに,巨視連続体レベルのリモデリング現象につい ても十分表現し得る骨梁表面リモデリングシミュレーションが不可欠になるものと考 えられる.

第3章

骨梁表面リモデリングの計算機シ ミュレーション手法

3.1 緒 言

海綿骨では,骨梁表面において微視的な力学刺激に応じたリモデリングが行われる. この骨梁表面リモデリングのメカニズムを理解するためには,第2.2.3 項および2.3.2 項で述べたように,骨梁レベルの微視的な力学刺激と骨梁構造変化とを直接関連付け たシミュレーションにより,微視的な骨梁構造変化の結果として現れる巨視的な海綿骨 レベルの骨構造変化について検討する必要がある.骨梁表面リモデリングに影響を及 ぼす因子の中には,ビタミン D, PTH (Parathyroid Hormone) などの全身性因子に加 えて,サイトカインや成長因子などの局所性因子の存在が認められている (永田,1987; Manolagas, 1995).また, *in vitro* の実験系において,基質の変形に対する骨芽細胞の 応答 (Buckley *et al.*, 1988) や,流れによるせん断応力に対する刺激伝達物質の濃度上 昇 (Hung *et al.*, 1996) などが報告されているように,細胞レベルの力学刺激の感知機 構がリモデリングに密接に関係すると考えられる (Cowin *et al.*, 1991).したがって, 骨梁表面リモデリングのメカニズムを理解するためのシミュレーションモデルを構築 する際には,骨梁レベルにおける力学刺激を詳細に評価した上で,個々の骨梁におけ る力学刺激と構造変化とを関連付ける必要がある.

骨梁レベルの力学刺激を評価する際には、複雑な三次元骨梁構造を直接反映するイ メージベーストモデル (Hollister and Kikuchi, 1994) を用いた大規模な応力解析が 有効である. Hollister *et al.* (1994) と van Rietbergen *et al.* (1995) は、海綿骨のイ

25

26 第3章 骨梁表面リモデリングの計算機シミュレーション手法

メージベーストモデルを用いた有限要素解析により,個々の骨梁の力学状態が評価可 能になることを示した.また,このような骨梁レベルの力学状態から,Niebur et al. (2000)は、海綿骨における骨梁の骨折危険箇所を示す手法を提案している.さらに, van Rietbergen et al. (1999)は、ヒト大腿骨近位部全体の大規模なイメージベースト モデルを作成し、大腿骨に加わる外荷重の違いに応じた個々の骨梁の力学状態を示し た.このような大規模な応力解析が、計算機の演算能力および計算手法の発展により 可能となり始めており、海綿骨の力学状態を詳細に求める実用的な手法として、今後 広く用いられるようになるものと期待される.

イメージベーストモデルを用いたリモデリングシミュレーションは、リモデリング における骨梁レベルの微視的なメカニズムと、海綿骨レベルの巨視的な適応現象との 関係を詳細に検討する手段として有効になると考えられる.例えば、Mullender *et al*. (1998) は、海綿骨のイメージベーストモデルを用いたリモデリングシミュレーション を行い、骨梁構造の三次元的な変化を示した.しかしながら、Mullender らのシミュ レーションは、骨の密度変化を取り扱ったものであり、表面リモデリングによる骨梁 構造の変化は表現されていない.

そこで本章では、海綿骨のイメージベーストモデルを用いた骨梁表面リモデリング の計算機シミュレーション手法を構築する.まず、骨梁レベルの微視的な力学刺激と 骨梁構造変化とを直接関連付けた数理モデルとして、局所的な力学刺激の一様化を目 指す骨梁表面リモデリング則について述べる.次に、骨梁レベルの力学刺激を詳細に 評価するために、海綿骨の有限要素モデルとして、骨梁構造を直接表現したイメージ ベーストモデルを採用する.ここでは、イメージベーストモデルを用いた有限要素解 析を行い、海綿骨レベルの骨構造について、個々の骨梁の応力状態が詳細に評価され ることを示す.さらに、表面リモデリングによる骨梁構造変化を直接表現したシミュ レーション手法をイメージベーストモデルに適用する.

3.2 骨梁表面リモデリング則

骨梁表面リモデリングの数理モデルにおいては,個々の骨梁の構造変化と微視的な 力学刺激とを関連付けることが必要になる.そこで,本研究では,リモデリングの数 理モデルとして,安達ら (1997) が提案した骨梁表面リモデリング則を採用する.この リモデリング則は,骨の吸収および形成による骨梁表面の移動が,局所的な応力一様 化を目指して行われると仮定するものである.

3.2.1 リモデリングによる骨梁表面の移動

力学刺激が骨梁表面リモデリングに与える影響は,第2.1節に示したように,骨構造の巨視的な変化から細胞レベルの生化学的な反応に至るまで,様々な階層において 観察される.また,各階層における現象は,互いに密接に関連するものと考えられる. 本研究では,骨梁表面リモデリングの階層的なメカニズムの中で,骨梁レベルの力学 刺激に対する個々の骨梁形態の適応変化と,その積み重ねによりもたらされる海綿骨 レベルの骨構造の変化について焦点を絞るものとする.

海綿骨は、図3.1(a) に示すように、三次元網目状の骨梁構造を有しており、個々の 骨梁の縦断面においては、図3.1(b) に示すように、骨梁表面に沿った層板状の構造が 観察される.これは、骨梁の表面において図3.2 上に示す細胞活動によるリモデリン グが行われ、破骨細胞による骨吸収と骨芽細胞による骨形成が表面に沿って生じたこ とを示している (Parfitt, 1994).リモデリング回転を記述する時間スケール t におい ては、このような骨の形成量あるいは吸収量に応じた骨梁表面の移動が生じる.した がって、リモデリング回転の1周期における骨梁表面の移動量は、骨の形成量と吸収 量との相対差に応じたものとなる.ここで、時間スケール t は、例えば歩行運動など による骨の応力変動を考える時間スケールに比べると、十分長いものである.

以下では、リモデリング回転の時間スケール t における骨梁表面の外向き法線方向 の移動速度を \dot{m} とし、その符号を \dot{m} < 0 (吸収期)、 \dot{m} > 0 (形成期)、および \dot{m} = 0 (休止期) とする、骨梁構造の適応変化について考える場合、実際に観察される骨構造 変化の時間スケールが、図 3.2 上に示すリモデリング回転を記述する時間スケール tと比較して長いことから、リモデリング回転の繰り返しによる骨梁形態の時間変化が 重要になると考えられる、したがって本リモデリング則では、図 3.2 下に示すように、 リモデリング回転の時間スケール t に対して十分長い時間スケール T を基準とした見 かけの表面移動速度 \dot{M} に着目する.

骨梁表面の移動速度 M を局所的な力学量の関数として表現することにより, 骨梁 表面リモデリングの速度式が定式化される. 例えば, Sadegh *et al.* (1993) と Smith *et al.* (1997) は, リモデリングが力学刺激の目標値を目指す形式の数理モデルを提案し 28 第3章 骨梁表面リモデリングの計算機シミュレーション手法

(a) 海綿骨の骨梁構造

(b) 骨梁の縦断面

図 3.1 牛尾椎体海綿骨の SEM 像

図 3.2 骨梁表面リモデリングによる骨梁形態の変化

ている.しかしながら、リモデリングを担う個々の細胞が、細胞の置かれた場所や状況に関わらず同じ目標値に向かうとする実験的な事実は、これまでに報告されていない.したがって、力学刺激の目標値を用いた数理モデルは、適用する範囲によっては現象論的なモデルとして有用であるが、そのメカニズムを明らかにするためには、さらなる実験的な検討が必要である.一方、例えば、骨細管と細胞質突起の間隙における間質液の流れが骨細胞に力学刺激を伝達するというメカニズム(Weinbaum et al., 1994; Wang et al., 1999)を仮定すると、ひずみの絶対的な大きさではなく、局所的なひずみの勾配が流れを駆動することになる.さらに、生体組織における残留応力の解釈 (Fung, 1984; Takamizawa and Hayashi, 1987; Adachi et al., 1998)から、生体組織のリモデリングが、力学刺激の一様化を目指して行われるとする仮説が提案されている.そこで、本リモデリング則では、骨梁表面の移動が局所的な力学刺激の一様化を目指すものと考えて、表面移動速度 M を記述するものとする.

30 第3章 骨梁表面リモデリングの計算機シミュレーション手法

3.2.2 骨梁表面リモデリングの駆動力

リモデリング則に用いる力学刺激として、局所での力学量を考える.ここでは、リ モデリングによる骨の巨視的な見かけの密度変化を現象論的に良く表現する数理モデ ル (Carter *et al.*, 1987; Huiskes *et al.*, 1987) に習い、リモデリングと関連付けられる 力学刺激として、応力のスカラ値関数 σ を採用する.さらに、生体組織は、リモデリ ングによる機能的適応能を有するとの観点から、リモデリング平衡において力学刺激 が一様であるとする仮説 (Fung, 1984; Takamizawa and Hayashi, 1987; Adachi *et al.*, 1998) を採用し、その一様化を目指すリモデリングの駆動力として、局所における応 力の不均一性を用いる.

細胞が刺激を感知する空間的広がりを考慮するため、積分形 (Mullender *et al.*, 1994) を用いて応力 σ の不均一性を表現する.まず、図 3.3 に示すように、骨梁表面上の任 意の点 x_c における応力値を σ_c 、その近傍の骨梁表面上の点 x_r における応力値を σ_r とし、点 x_c と点 x_r の距離 $l = |x_r - x_c|$ に対する重み付き平均値により、点 x_c の近

S: Surface

図3.3 骨梁表面におけるリモデリング駆動力の評価
傍における応力の代表値 σ_d を

$$\sigma_d = \int_S w(l)\sigma_r dS \left/ \int_S w(l)dS \right.$$
(3.1)

と表す. ここで, *S* は骨梁表面を, *w*(*l*) は*l* に関する重み関数を表す. なお, 骨基質 内に存在する骨細胞 (Cowin *et al.*, 1991) の力学刺激に対する応答を考慮するモデル へと拡張する際には, 式(3.1)中の積分領域を表面 *S* から 体積 *V* とする.

近傍応力 σ_d に対する着目点 \boldsymbol{x}_c での応力 σ_c の相対値

$$\Gamma = \ln\left(\sigma_c \,/ \sigma_d\right) \tag{3.2}$$

を用いて, 骨梁表面上の点 \boldsymbol{x}_{c} における応力の不均一性を評価し, これを骨梁表面リモ デリングの駆動力とする. この時, 式(3.1) 中の重み関数 $w(l): w(l) \ge 0$ ($0 \le l \le l_{L}$) は l について単調減少関数とし, 感知半径 l_{L} 内において点 \boldsymbol{x}_{c} からの距離に応じた応 力差の評価を行う. この重み関数 w(l) を用いた式(3.1) の積分形により近傍応力 σ_{d} を 評価することは, 骨の細胞が近傍の細胞とネットワーク (Doty, 1981) を形成して刺激 情報の伝達を行っていること (Donahue *et al.*, 1995) を反映するものである.

3.2.3 応力一様化を目指す骨梁表面移動

リモデリング駆動力 Γ を用いて,局所の応力一様化を目指す骨梁表面リモデリング 則を記述する.なお,ここでは,リモデリング駆動力 Γ が,骨梁表面移動速度 \dot{M} を 記述する時間スケール T における代表的な力学刺激を表すものと仮定する.一般に, 構造体の表面応力は,材料が付加されると減少し,材料を除去すると増大する傾向を 示す.したがって,局所での応力一様化を表現するために,骨梁表面移動速度 \dot{M} と リモデリング駆動力 Γ との間に $\dot{M} > 0$ ($\Gamma > 0$)および $\dot{M} < 0$ ($\Gamma < 0$)の関係を仮 定し,図3.4 に示すように,連続な正弦関数を用いてモデル化する.ここで, Γ_u およ び Γ_l は,リモデリング平衡の近傍における擬似的な不感帯 (Carter, 1984)の閾値で ある.以上より,リモデリング回転の時間スケールに対して十分長い時間スケール Tについて,個々の骨梁構造の変化と骨梁レベルの力学刺激が関連付けられる.

骨梁表面リモデリング則には、2種類のモデルパラメータが導入されている、1つは、 図 3.4 に示される不感帯の閾値 Γ_u および Γ_l であり、細胞の力学状態に対する感度を 表すパラメータである、このパラメータは、細胞の力学刺激に対する活性度を決定す

図 3.4 骨梁表面リモデリングの速度式

るため,骨梁構造の時間変化速度に影響を与えることが予想される.もう1つのモデ ルパラメータは,図3.3 に示される力学刺激の感知半径 l_L であり,細胞の力学刺激に 対する空間的な感度を表すパラメータである.感知半径 l_L の大きさは,例えば,骨 芽細胞の力学刺激に対するカルシウムイオン波伝播の *in vitro* 観察 (Xia and Ferrier, 1992; 佐藤ら, 2000a) から,数100 μ m と推定される.また,これら2種類のモデルパ ラメータは,シミュレーションと実験で得られる骨梁構造の変化を比較することによ り,決定することが可能である.

なお、骨梁表面リモデリング則は、リモデリング平衡近傍における力学刺激に対す る成長と吸収を単調関数を用いて表現したものであり、過負荷時などに見られる病的 な骨吸収は特に考慮していない.また、巨視連続体理論に基づく数理モデル (Cowin and Hegedus, 1976; Carter *et al.*, 1987; Huiskes *et al.*, 1987) に導入されている目標の 力学刺激値を用いておらず、着目している局所の力学状態とリモデリングとの関係は、 局所の因子のみによって決定されるものと考える.さらに、力学刺激の空間的不均一性 だけではなく、応力の分布パターンは変化しないがその大きさが一様に変化する場合 のように、時間的不均一性を考慮することもモデルの拡張により可能である (Tanaka *et al.*, 1993).

3.3 骨のイメージベースト有限要素法

骨梁表面リモデリングシミュレーションでは,骨梁レベルにおける力学状態を詳細 に評価する必要がある.本節では,海綿骨のイメージベーストモデルを用いた有限要 素解析を行い,海綿骨レベルの骨構造について,個々の骨梁の力学状態を評価する手 法について述べる.イメージベーストモデルは,有限要素解析に適した三次元形状モ デルであり,規則的に配列された Voxel 要素から構成される.

3.3.1 骨構造の非侵襲的計測手法

一般に,骨のイメージベーストモデルは,複数の断面に関して計測された二次元形 状の画像データを三次元再構成することにより作成される (周藤,1995). イメージベー ストモデルを用いた骨梁構造の応力解析を行う際には,まず,骨梁構造を精密に計測 した上で,イメージベーストモデルを作成することが必要になる.以下では,骨構造 を計測する際に広く用いられている非侵襲的な計測手法 (Genant *et al.*,1999) として, 表3.1 に示す X線 CT (Computated Tomography) 装置および核磁気共鳴画像 (MRI: Magnetic Resonance Imaging) 装置について概説する.

X線CT装置においては、試料に照射されたX線の透過量を検出することにより、複数の二次元画像データが非侵襲的に計測される (岩井ら、1988). 二次元画像データの 分解能が高いほど、また各画像間のスライス間隔が小さいほど、より詳細な形状デー タが得られるが、試料の被爆線量の増加および計測領域の制約といった問題が生じる (Genant *et al.*, 1999). したがって、低分解能であるが被爆線量が小さく計測領域の大 きい vQCT (Volume Quantitative CT) は *in vivo* 計測に、また被爆線量は大きいが高 分解能である hrCT (High Resolution CT) および μ CT (Micro CT) は *in vitro* 計測に、 それぞれ使い分けられている. 特に海綿骨を対象とする場合、 μ CT (Feldkamp *et al.*, 1989)を用いることにより、骨梁構造の形状データを得ることが可能である. さらに、

表 3.1 X線 CT 装置および核磁気共鳴画像 (MRI) 装置の分解能 (Genant et al., 1999)

·	vQCT	hrQCT	$\mu \mathrm{CT}$	XTM	hrMRI	μ MRI
Resolution	$\sim 500\mu{ m m}$	$\sim 100 \mu \mathrm{m}$	$\sim 10 \mu \mathrm{m}$	$\sim 1 \mu \mathrm{m}$	$\sim 300 \mu \mathrm{m}$	$\sim 80\mu{ m m}$

XTM(X-Ray Tomographic Microscopy) においては,シンクロトロン放射 (Synchroton Radiation) により発生する高エネルギーのX線を用いているため,より高い分解能が得られる.

一方,核磁気共鳴画像 (MRI) 装置では、磁場中に置かれた試料の核磁気共鳴信号を 検出することにより、画像データが非侵襲的に計測される (岩井ら,1988).分解能の 面では X線 CT に劣るが、被爆の危険性がないことから、*in vivo* において分解能の高 い形状データを得ることが可能である。例えば、より強い磁場を用いた μ MR (Micro Magnetic Resonance) では、*in vitro* 計測ではあるが、二次元画像で 80 μ m 程度の分解 能が得られており、骨梁構造の定量的な評価に用いられ始めている (Jara *et al.*, 1993).

以上のように,必要となる分解能や被爆線量に応じて計測装置が選択され (Genant et al., 1999),目的に応じた骨構造の計測が行われている.本論文では,骨梁構造を詳細に表現したイメージベーストモデルを作成するため,比較的分解能が高い X 線 µCT により計測した形状データを用いる.

3.3.2 骨のイメージベーストモデル

骨梁構造を詳細に反映したイメージベーストモデルを作成するためには、十分な分解 能により計測した海綿骨の形状データが必要となる.本項では、Wistar ラット(雌, 10 週齡)のL1 椎骨について、X 線 μ CT (MCT-CB100MF,日立メディコ社)を用いた形状 データの計測を行い、椎骨のイメージベーストモデルを作成する.なお、ここで用いるX 線 μ CT の分解能は、約13 μ m/Pixel~約100 μ m/Pixelであり、計測領域の大きさは、分 解能が13 μ m/Pixel および100 μ m/Pixel の場合、それぞれ 6.2 mm × 6.2 mm × 2.6 mm および 48 mm × 48 mm × 20 mm である.

作成したラット椎骨のイメージベーストモデルを図 3.5 に示す.まず,図 3.5(a) に透 視像で示す椎骨について、 $43 \mu m$ /Pixelの分解能により、A-A'横断面の画像データを 図 3.5(b) に示すように計測した.このような画像データを、A-A'横断面に平行な横断 面について、等間隔で計 201 枚計測した.各画像データ間の間隔は、画像データの分 解能と同じ $43 \mu m$ とした.計測した二次元画像データを二値化処理した後、三次元再 構成を行うと、図 3.5(c) に示す椎骨全体のイメージベーストモデルが得られる.この 際、イメージベーストモデルを構成する Voxel 要素の大きさ、すなわちイメージベー ストモデルの分解能は、画像データの分解能と同じ $43 \mu m$ /Voxel とした.

(c) イメージベーストモデルの三次元像 (分解能 43 µm/Voxel)

図 3.5 ラット椎骨のイメージベーストモデル

さらに、図3.5(a) に示す破線で囲まれた椎体中央部について、分解能が13µm/Voxel のイメージベーストモデルを図3.6 に示すように作成した. X線µCTを用いて計測し た画像データについては、画素の大きさおよびスライス間隔を13µmとし、計測枚数 を計201枚とした.より高い分解能の画像データを用いることにより、骨梁構造を詳 細に反映した形状モデルの作成が可能となる.

3.3.3 イメージベーストモデルを用いた骨の応力解析

イメージベースト有限要素法においては,前項で示したイメージベーストモデルを 構成する Voxel 要素をそのまま利用し,規則的な要素分割を行う.これにより,有限 要素モデル作成においてコストのかかる要素分割が大幅に簡略化され,さらに,付録 A.1 に示す EBE/PCG 法を用いた大規模有限要素解析が可能となる (van Rietbergen et al., 1995). この際,イメージベーストモデルには,Voxel 要素の大きさに依存した 表面形状の凹凸が存在するため,Voxel 要素レベルにおいて応力値が振動する.しかし ながら,この応力値の振動の大きさは,表面が滑らかな通常の有限要素モデルと比較 した場合,例えば,要素分割数が解析精度に与える影響と比較して十分小さいもので

図 3.6 ラット椎体中央部のイメージベーストモデルの全体像と海綿骨の骨梁
 構造(分解能 13 μm/Voxel)

ある (Guldberg *et al.*, 1998). また,表面に位置する要素については,周囲の要素を含 めた領域について応力値を平均化することにより,より滑らかな応力分布を得ること が可能である (Charras and Guldberg, 2000).

本論文では、骨を等方線形弾性体と仮定し、イメージベーストモデルを用いた有限 要素解析を行う. 骨部の材料定数は、ヤング率 E = 20GPa、ポアソン比 $\nu = 0.30$ (Buskirk *et al.*, 1981) とし、骨髄部は空孔とみなして計算対象から除外する. 以下で は、イメージベーストモデルを用いた応力解析の一例として、図 3.6 に示す Wistar ラッ ト L1 椎体の応力解析について述べる.

まず,椎体が主に体幹軸方向の圧縮荷重を受けることを考慮して,図3.7(a) に示す ように,体幹軸方向の圧縮荷重 F を受ける場合,すなわち,荷重方向と前後軸方向 とのなす角 $\Theta_{AP} = 90^{\circ}$ の場合について応力解析を行った.この際,圧縮荷重 Fの大 きさ |F| = 10 N となるように,上端面に一様圧縮変位 U_3 を調節して与え,モデルの 下端面は固着とした.各 Voxel 要素の一辺の長さは,X線 μ CT の分解能と同じ13 μ m とし,解析領域全体の要素数は約4,600万個,その中で骨部の要素数は約500万個と した.なお,境界条件の設定と応力解析は,市販のイメージベースト構造解析ソフト (VOXELCON V4,くいんと社)を用いて行った.

椎体の外側表面および内部の海綿骨部の相当応力を図3.7 に示す.皮質骨部および 海綿骨部の両者ともに,椎体の中央部において比較的高い応力値が示された.これは, 中央部では弓状に湾曲した外形状により応力が高くなることに加え,海綿骨部の骨梁 が,上下端面と比較して中央部付近で疎になるためである.また,個々の骨梁の相当 応力は,図3.7(b)に示すように,最大5 MPa 程度まで広く分布することが分かる.こ れは,骨梁の複雑な三次元網目構造により,椎体全体に一様な圧縮荷重が与えられて も,個々の骨梁が三次元的な曲げ (van Rietbergen *et al.*, 1995) などの複雑な負荷を受 けるためである.

次に,椎体に加わる荷重が体幹軸方向から変化した場合を想定し,図 3.8(a) に示す ように応力解析を行った.この際,圧縮荷重 Fの大きさ |F| = 10 N,荷重方向と前後 軸方向とのなす角 $\Theta_{AP} = 45^{\circ}$ となるように,上端面に一様圧縮変位 U_1 および U_3 を 調節して与えた.応力解析の結果として,椎体の外側表面および内側の海綿骨部の相 当応力を図 3.8 に示す.体幹軸方向に圧縮荷重を与えた $\Theta_{AP} = 90^{\circ}$ の場合 (図 3.7) と 異なり,椎体の上下部において皮質骨部の応力値が高くなった.特に下部においては,

(a) 皮質骨部の相当応力

(b) 海綿骨部の相当応力

図 3.7 ラット椎体のイメージベースト有限要素解析 ($\Theta_{AP} = 90^{\circ}$)

(a) 皮質骨部の相当応力

図 3.8 ラット椎体のイメージベースト有限要素解析 ($\Theta_{AP} = 45^{\circ}$)

固着面が大きな曲げを受けるために,最も高い応力値が示された.また,個々の骨梁の相当応力は,図3.8(b)に示すように,最大10 MPa 程度まで分布することが分かる. このような荷重条件の違いに応じた骨梁レベルの力学状態の違いが,後に第4.3.1項で 示すように,骨梁表面リモデリングの駆動力に影響を与えることになる.

以上のように、イメージベーストモデルを用いた有限要素解析により、海綿骨レベルの骨構造について、個々の骨梁の力学状態を詳細に評価することが可能である.

3.4 骨梁表面リモデリングのPixel/Voxelシミュレーショ ン手法

局所的な力学刺激と骨梁構造変化とを関連付けた骨梁表面リモデリングの数理モデ ルと、骨梁構造を詳細に反映した海綿骨の有限要素モデルを組み合わせることにより、 海綿骨レベルの骨構造について、骨梁表面リモデリングを直接表現した計算機シミュ レーション手法の構築が可能になる.本節では、第3.2節で示した骨梁表面リモデリ ング則を、第3.3節で示した骨のイメージベーストモデルに適用し、骨梁表面リモデ リングの計算機シミュレーション手法を構築する.

3.4.1 Pixel/Voxel 有限要素モデル

骨梁表面リモデリングシミュレーションを行う際には、表面移動による骨梁形態の 変化を離散的に表現する必要がある。例えば、境界要素法を用いた表面リモデリング シミュレーション (Sadegh *et al.*, 1993) においては、節点を移動させることにより骨 梁の形態変化を表現している。一方、安達ら (1997) は、二次元 Pixel 有限要素モデル を用いた表面リモデリングシミュレーションにおいて、Pixel 要素単位の除去および付 加により骨梁表面移動を表現している。そこで本節では、イメージベーストモデルが Voxel 要素により構成されていることから、安達らの手法を三次元問題へ拡張するこ とにする。

リモデリングシミュレーションの対象とする領域を、二次元問題では Pixel 要素、三次元問題では Voxel 要素を用いて、図 3.9 に示すように規則的に分割する. 骨梁、皮質骨、インプラントなどの形態は、それぞれの種類の Pixel/Voxel 要素により離散的に表現する. したがって、本シミュレーションでは、第 3.3 節で示したイメージベースト

(b) 三次元問題 (Voxel)

図 3.9 Pixel/Voxel分割を用いた骨梁形状の離散的表現

モデルのように、二次元および三次元の画像データを直接用いることが可能である.

応力計算を行う際は,各Pixel/Voxel要素の種類に応じた材料定数を与え,付録A.1 に示す EBE/PCG 法を用いた有限要素解析を行う.また,要素剛性マトリクスには, Pixel 要素についてクロスドトライアングル要素を,Voxel 要素について5個の四面体 1 次要素から作成した要素 (Miyamoto *et al.*, 1971)を用いた.

3.4.2 骨梁表面リモデリング則の離散的表現

骨髄要素と面で接する骨梁要素を骨梁表面要素とし、この要素について骨梁表面リ モデリングを考える.まず、離散化された骨梁に対して、式 (3.2) に示す骨梁表面リモ デリングの駆動力 Γ を評価する.骨梁表面要素の総数を N とすると、骨梁表面要素 c に対する応力分布の評価値 Γ_c は、式 (3.2) の離散形として

$$\Gamma_c = \ln\left(\sigma_c \sum_{i}^{N} w(l_i^c) \middle/ \sum_{i}^{N} w(l_i^c) \sigma_i\right)$$
(3.3)

と求められる.ここで、 σ_i は骨梁表面要素 i の応力値、および l_i^c は表面要素 c の重 心から表面要素 i の重心までの距離を表す.また、重み関数 w(l) は、単純な場合とし て距離 l に比例して単調減少する関数:

$$w(l) = \begin{cases} 1 - l/l_L & (0 \le l < l_L), \\ 0 & (l \ge l_L) \end{cases}$$
(3.4)

を仮定する.

骨梁表面の成長・吸収による移動は、図 3.10 に示すように、骨梁要素の付加により 表面の成長を、除去により吸収をそれぞれ表現する.ここで、骨梁表面要素 c の表面 移動速度 \dot{M}_c を、単位時間を表すシミュレーションステップあたりの表面移動量とし て要素寸法単位 (element/step) で表すものとし、本モデルでは $\dot{M}_c = 1, 0, -1$ の 3 通 りの表面移動に限定する.したがって、本来は図 3.4 に示すように連続的な値を取る 表面移動速度 \dot{M}_c が離散値をとることを補うため、図 3.4 に示す関数と相似な確率関

図 3.10 要素の除去および付加による骨梁表面の移動

数 $P_{\dot{M}_c}(\Gamma_c): |P_{\dot{M}_c}(\Gamma_c)| \leq 1$ を用いて骨梁表面移動を確率的に行うものとする (安達ら, 1997). 形態変化が進み表面応力が一様化されてくると,各骨梁表面要素の Γ_c の値は 0 に近づき,表面移動が生じる確率が小さくなる.その結果,見かけの形態変化が生 じないリモデリングの平衡状態へ向かうことになる.

3.4.3 骨梁形態変化のシミュレーション手順

リモデリングによる骨梁形態の変化を、図3.11に示す計算手順にしたがって行う.

- (1) 骨の Pixel/Voxel 有限要素モデルを作成し,初期形態とする.この際,第3.3節で 示したイメージベーストモデルを直接用いることが可能である.
- (2) Pixel/Voxel モデルに境界条件を与え、EBE/PCG 法を用いた有限要素解析を行い、各要素の応力値 σ を求める.
- (3) 応力値 σ から,式 (3.3) を用いて骨梁表面要素 c でのリモデリング駆動力 Γ_c を 求める.
- (4) リモデリング駆動力 Γ_c および 図 3.4 と相似な確率関数 $P_{\dot{M}_c}(\Gamma_c)$ から表面移動速度 \dot{M}_c を決定し,要素の付加・除去により骨梁表面移動を行う.

図 3.11 リモデリングによる骨梁形態変化のシミュレーション手順

(5) リモデリングによる形態変化が得られない場合、あるいは同様の形態変化を繰り 返す場合は、リモデリング平衡に達したと判断して計算を終了し、平衡でなけれ ば手順(2)に戻り計算を続ける.

本論文では、骨梁表面で細胞が力学刺激として感知する応力 σ に Mises の相当応力 を用いる.また、以下では (2)-(5) の一連の手順を 1 step とし、その繰り返し回数を step 数と呼ぶことにする.

3.5 結 言

海綿骨では、微視的な力学刺激に応じた細胞活動による骨梁表面リモデリングにより、個々の骨梁の形態が変化する.この骨梁におけるリモデリングのメカニズムを理 解するためには、骨梁レベルの力学刺激と構造変化とを直接関連付け、さらに、巨視 的な海綿骨レベルの骨構造の変化を表現し得るシミュレーションモデルが必要となる.

本章では、まず、リモデリングの数理モデルとして、骨梁レベルの力学刺激と形態変 化とを直接関連付けた骨梁表面リモデリング則について述べた.ここでは、表面リモ デリングによる骨梁構造の変化が、局所的な応力の一様化を目指すものと仮定し、リ モデリングの駆動力を局所的な応力の不均一性で表した.次に、イメージベースト有 限要素法を用いて骨梁の力学状態を評価した.X線µCTを用いて計測した画像データ から作成される骨のイメージベーストモデルは、海綿骨の骨梁構造を詳細に表現する ことが可能である.ここでは、ラット椎体のイメージベーストモデルを用いた大規模な 有限要素解析から、海綿骨レベルの骨構造について、個々の骨梁の力学状態を詳細に 評価可能であることを確認した.さらに、骨梁表面リモデリング則をイメージベース トモデルに適用し、Pixel/Voxelモデルを用いた表面リモデリングの計算機シミュレー ション手法を構築した.このシミュレーション手法を用いることにより、リモデリン グにおける骨梁レベルの微視的なメカニズムと海綿骨レベルの巨視的な現象との関連 を詳細に評価することが可能となる.

第4章

骨梁表面リモデリング則の基本的 特性

4.1 緒 言

骨リモデリングのシミュレーションモデルを構築する際,数理モデルの基本的特性 を明らかにすることは重要な課題である.第3章では,骨梁表面リモデリングシミュ レーションの数理モデルとして,局所的な力学刺激の一様化を目指す骨梁表面リモデ リング則を示した.本章では,このリモデリング則の基本的特性について,二次元骨 梁表面リモデリングシミュレーションにより検討する.

骨梁表面リモデリング則の基本的特性について,安達ら (1997) は,単純な骨梁モデ ルを用いた二次元シミュレーションにより,骨梁配向が荷重方向に変化することを示 した.また,実際の大腿骨において観察される特徴的な骨梁構造と類似した構造特性 が得られたことから,リモデリング則の現象記述能力を確認している.しかしながら, リモデリング則に導入されたモデルパラメータの特性については,定量的な検討が行 われていない.このような数理モデルに含まれるモデルパラメータは,リモデリング シミュレーションにより得られる骨構造変化を定量的に決定する重要なパラメータで あり (Cowin *et al.*, 1985),実験において観察される骨構造変化との比較を通じて決定 される.この際,数理モデルに含まれるモデルパラメータの基本的特性を予め明らか にしておく必要がある.

また,リモデリングのメカニズムの検討を行う際にも,数理モデルの基本的特性を 明らかにすることが重要となる.骨梁表面リモデリング則においては,細胞が感知す

45

46 第4章 骨梁表面リモデリング則の基本的特性

る局所的な力学量を考慮したリモデリング駆動力とモデルパラメータが導入されてい る.したがって,骨梁表面リモデリング則の特性を明らかにすることにより,細胞レ ベルあるいは骨梁レベルの微視的な力学刺激とリモデリングとの関連を検討すること が可能となる.このことは,リモデリングのメカニズムを探るために必要な新たな実 験系の検討を行う際にも有用である.

本章では、まず、線形に分布する圧縮荷重を受ける海綿骨の二次元リモデリングシ ミュレーションを行い、骨梁表面リモデリング則に含まれるモデルパラメータが骨梁 構造変化に及ぼす影響を明らかにする、次に、第3.3節で示した海綿骨のイメージベー ストモデルを用いて、海綿骨における骨梁の形成および吸収の活性度について検討す る.さらに、リモデリング則の形式がリモデリング駆動力に及ぼす影響を明らかにし、 リモデリングを担う細胞が力学刺激を感知するメカニズムについて考察を加える.

4.2 骨梁表面リモデリング則のモデルパラメータの特性

骨梁表面リモデリング則に導入されたモデルパラメータは,図3.4 に示される不感 帯の閾値 Γ_u,Γ_l および図3.3 に示される力学刺激の感知半径 l_L であり,シミュレー ションで得られる骨梁構造の変化を実験結果と比較することにより決定される.この 際,モデルパラメータの特性が骨梁構造の変化に及ぼす影響を予め明らかにしておく 必要がある.本節では,線形に分布する圧縮荷重を受ける長方形海綿骨の二次元骨梁 表面リモデリングシミュレーションを行い,モデルパラメータが骨梁構造の変化に及 ぼす影響を検討する.

4.2.1 分布する圧縮荷重を受ける長方形海綿骨モデル

線形に分布する圧縮荷重を受ける長方形海綿骨モデルを、図4.1に示すように作成した.海綿骨の初期の骨梁構造は、等方性となるように、外径が1000 μ m、内径が600 μ m である円環状の骨梁をランダムに配置して作成した.骨梁構造の形態特徴量 (Parfitt et al., 1987; Feldkamp et al., 1989) (付録 A.2) は、骨梁の平均体積分率 BV/TV (Bone Volume / Tissue Volume) = 0.62、骨梁の平均厚さ Tb.Th (Trabecular Thickness) = 272 μ m、単位長さあたりの骨梁数 Tb.N (Trabecular Number) = 2.28 mm⁻¹、骨梁間 の平均距離 Tb.Sp (Trabecular Separation) = 166 μ m、および単位面積当たりの連結数

図 4.1 長方形海綿骨モデル

CON (Connectivity) = 2.82 mm⁻² とした. なお,この円環状骨梁の外径および内径を 変化させることにより,作成する骨梁構造の形態特徴量を調節することが可能である. 海綿骨部の一辺の長さは, X_1 軸方向に W = 10.0 mm, X_2 軸方向に W/2 = 5.0 mm とし, Pixel 要素の大きさは,一辺の長さ 25 μ m とした. すなわち,要素分割数は X_1 軸方向に 400 個,および X_2 軸方向に 200 個とした.

海綿骨部の周囲には、図4.1 に示すようにヤング率が骨部の 1/100 倍である要素を 0.2 mmの幅で配置した.この要素を介して、 X_1 軸方向に 0 MPa から 1 MPa まで線形 に分布する X_2 軸方向の圧縮荷重を海綿骨に与えた.モデルの下端面は、 X_2 軸方向の 変位のみを拘束した.

4.2.2 骨梁構造変化に及ぼす不感帯幅の大きさ |Γ| の影響

不感帯幅 Γ_u と Γ_l は、リモデリング駆動力 Γ とリモデリング速度 M とを関係付け る図 3.4 中のモデルパラメータである.ここでは、 Γ_u と Γ_l の大きさ $|\Gamma|$ を 1.0 から 10.0 まで変化させ、リモデリングシミュレーションを行った.感知半径 l_L は、2.0 mm で一定とした.

リモデリングにより得られた代表的な骨梁構造として, $|\Gamma| = 1.0, 2.0, 5.0, および$ 10.0 について, 10th step および 20th step における構造を図 4.2 にそれぞれ示す.す

図 4.2 |Г| = 1.0, 2.0, 5.0, および 10.0 における骨梁構造変化 (*l*_L = 2.0 mm)

べての |Γ| の値について, 圧縮荷重の方向へ配向する骨梁がリモデリングにより形成 された.これは, 圧縮荷重に対する骨梁構造の機能的な適応変化を良く表現するもの である (安達ら, 1997).また, |Γ| の値が大きいほど,初期状態からの骨梁構造変化が 小さくなることが示された.

この骨梁構造の変化を定量的に検討するため, 骨梁構造の形態特徴量の変化を図 4.3(a) ~(e) に示す. リモデリングの進行に伴い, 平均体積分率 BV/TV は, 図 4.3(a) に示 すように, すべての $|\Gamma|$ の値について低下した. これは, 吸収側のリモデリング駆動 力 Γ を持つ骨梁表面の面積が, 形成側に比較して大きいためである. また, BV/TVの減少に応じて, 平均厚さ Tb.Th, 単位長さあたりの数 Tb.N, および単位面積当た りの連結数 CON は減少し, 平均距離 Tb.Sp は増加した. また, これらの形態特徴量 の変化速度は, $|\Gamma|$ の値が大きいほど, その変化速度が抑えられる結果となった. 例え ば, 図 4.3(a) のグラフの傾きから, 平均体積分率 BV/TV の平均的な減少速度の大き さ $|\overline{BV/TV}|$ を $|\Gamma|$ に対して求めると, 図 4.3(f) に示すように, 単調に減少すること が示された.

以上のように,不感帯幅 |Γ| が大きいほど,リモデリングによる骨梁構造の変化速 度が小さくなることが示された.これは, |Γ| が大きくなると不感帯幅が広がり,リモ デリングを行う活性化された骨梁表面の面積が減少するためである.

4.2.3 骨梁構造変化に及ぼす感知半径 l₁の影響

感知半径 l_L は、細胞が力学刺激を感知する領域を表す図 3.3 中のモデルパラメータ である. ここでは、 l_L を 0.05 mm から 10.0 mm まで、すなわち、長方形海綿骨の幅 W で無次元化した値 l_L/W を 0.05 から 1.0 まで変化させ、リモデリングシミュレー ションを行った. 不感帯幅の大きさ $|\Gamma|$ は、5.0 で一定とした.

リモデリングにより得られた代表的な骨梁構造として, $l_L/W = 0.05, 0.3, 0.6, および 1.0 について, 20th step および 50th step における構造を図 4.4 にそれぞれ示す. <math>|\Gamma|$ を変化させた場合とは異なり, 圧縮荷重の小さい左側の領域においては, l_L/W の値が大きいほど骨梁の減少が顕著になる傾向が確認された.その結果として, 圧縮荷重の分布に応じた平均体積分率 *BV/TV* の空間的な偏りが生じていることが分かる.例えば, $l_L/W = 0.05$ の場合, 50th step においても骨梁の欠落は見られないが, $l_L/W = 1.0$ の場合においては, 20th step において左端の骨梁が欠落し, この欠落が生じる領域が,

図 4.3 不感帯の閾値 |Γ| が骨梁構造の形態特徴量変化に及ぼす影響

図 4.4 $l_L/W = 0.05, 0.3, 0.6, および 1.0 における骨梁構造変化 (|\Gamma| = 5.0)$

52 第4章 骨梁表面リモデリング則の基本的特性

50th step においては右側に広がることが分かる.

そこで、感知半径 l_L/W と平均体積分率 BV/TV の空間的な偏りとの関係を定量的 に評価するため、図 4.1 に示した X_1 軸を長方形の幅 W で無次元化した座標 ξ 軸に 関して、50th step における BV/TV の空間的な分布を図 4.5 に示す.ここでは、まず、 ξ 軸方向の幅 $|\xi| = 0.2$ の領域について、図 4.5(a) に示すように、 ξ 軸方向に関する 平均体積分率 BV/TV の移動平均値を求めた.さらに、最小自乗法を用いて、この移

図 4.5 感知半径 l_L が平均体積分率 BV/TV の空間分布に及ぼす影響 (50th step)

動平均値を一次関数近似し,空間的な一次勾配 $\triangle BV/TV$ を求めた.例えば,一次勾 配 $\triangle BV/TV$ は, $l_L/W = 0.05$ において -0.06, $l_L/W = 1.0$ において 0.47 となった. この一次勾配 $\triangle BV/TV$ を各 l_L/W の値について求めると,図 4.5 (b) に示すように, l_L/W に対して $\triangle BV/TV$ が単調増加する傾向が示された.

以上のように、感知半径 l_L が大きいほど、BV/TV の空間的な分布が顕著になることが示された.これは、 l_L が大きくなると、巨視的な力学状態がリモデリング駆動力 Γ に反映され、結果として、巨視的な応力分布に対するリモデリングの感度が増加す るためである.

4.3 ラット椎体海綿骨の骨梁リモデリング駆動力

不感帯幅 Γ_u と Γ_l を決定する際には、リモデリング平衡の状態にある実際の骨梁 構造について、*in vivo* における骨梁表面リモデリング駆動力 Γ の分布を明らかにす る必要がある. このリモデリング駆動力 Γ は、リモデリングの活性度の指標であり、 $\Gamma < 0$ で吸収側、 $\Gamma > 0$ で形成側における活性度の大きさをそれぞれ表す. 本節では、 第 3.3 節で示したラット L1 椎体のイメージベーストモデルを用いてリモデリング駆動 力 Γ を求め、海綿骨の骨梁表面リモデリングにおける吸収および形成の活性度につい て検討する.

4.3.1 圧縮荷重を受ける海綿骨の骨梁リモデリング駆動力

圧縮荷重を受けるラット L1 椎体について,第 3.3.3 項で示した応力解析の結果を用いて,骨梁表面リモデリングの駆動力 Γ を求めた.ここでは,骨梁の平均厚さ Tb.Thが数百 μ m であることから,感知半径を $l_L = 200 \,\mu$ m とした.

椎体内部の1mm×1mm×2mmの直方体領域について、リモデリング駆動力 Γ を 図 4.6(a) および (b) に示す.まず、圧縮荷重の方向が体幹軸方向と一致する場合、す なわち、荷重方向と前後軸方向とのなす角 $\Theta_{AP} = 90^{\circ}$ の場合、図 4.6(a) に示すよう に、骨梁の分岐部におけるリモデリング駆動力 Γ の値は、吸収側 ($\Gamma < 0$) から形成側 ($\Gamma > 0$)まで幅広く分布することが示された.これは、骨梁の分岐部においては、相 当応力が複雑に分布するためと考えられる.また、この分岐部においては、リモデリ ング駆動力 Γ の絶対値が大きい骨梁表面の面積率が大きくなり、リモデリングによる

図 4.6 圧縮荷重を受けるラット椎体海綿骨の骨梁リモデリング駆動力 Γ

骨の吸収および形成の活性度が高い箇所であることが分かる.

これに対して, 圧縮荷重の方向が体感軸方向から前後軸方向へ 45° 傾いた場合, すなわち, 荷重方向と前後軸方向とのなす角 $\Theta_{AP} = 45^{\circ}$ の場合, 図 4.6(b) に示すように, 吸収側のリモデリング駆動力 Γ を有する骨梁表面の面積が, $\Theta_{AP} = 90^{\circ}$ の場合と比較して増加することが分かる.

ここで、海綿骨の全領域に着目するため、リモデリング駆動力 Γ を有する骨梁表 面の面積 $S(\Gamma)$ を骨梁表面の全面積 S_{All} で無次元化した値の度数分布を図4.7 に示 す. 骨梁表面の面積 $S(\Gamma)$ は、圧縮荷重と前後軸方向とのなす角 $\Theta_{AP} = 90^{\circ}$ および $\Theta_{AP} = 45^{\circ}$ の両者において、リモデリング駆動力 Γ の絶対値が0に近いほど大きくな ることが示された. また、吸収側のリモデリング駆動力 Γ を有する表面積 $S(\Gamma)$ の方 が、形成側より大きいことが分かる. これらの結果は、圧縮荷重と同じ方向に配向し

図 4.7 圧縮荷重を受けるラット椎体海綿骨の骨梁表面積 S(Γ)/S_{All}

た骨梁においては、リモデリング駆動力 Γ が 0 に近いほど表面積 $S(\Gamma)$ が大きく、な おかつ、荷重方向以外の方向に配向した骨梁においては、吸収側のリモデリング駆動 力 Γ を有する表面積 $S(\Gamma)$ が大きくなり、結果として、形成側と吸収側の表面積 $S(\Gamma)$ に不釣合いが生じるためである。特に、 $\Theta_{AP} = 45^{\circ}$ の場合においては、 $\Theta_{AP} = 90^{\circ}$ の 場合と比較して、吸収側のリモデリングの活性度が増加しており、骨吸収による骨梁 構造の変化が生じやすい状態であることが分かる。逆に考えると、 $\Theta_{AP} = 90^{\circ}$ の場合 は、 $\Theta_{AP} = 45^{\circ}$ の場合と比較して *in vivo* の荷重条件に近いため、リモデリング平衡 に近い状態にあるといえる。

4.3.2 力学刺激の感知機構がリモデリング駆動力に及ぼす影響

骨梁表面リモデリング則では、リモデリングを担う細胞が力学刺激を感知するメカ ニズムを考慮した数理モデル化が行われている.ここでは、骨梁表面リモデリングに おける力学刺激の感知機構を検討するため、図 4.6(a) に示した体幹軸方向の圧縮荷重 $(|\mathbf{F}| = 10 \text{ N}, \Theta_{AP} = 90^\circ)$ を受けるラットL1 椎体について、図 3.3 中のモデルパラメー タである力学刺激の感知半径 l_L および式 (3.1) 中の積分領域がリモデリング駆動力 Γ に及ぼす影響を検討する.

まず, 感知半径 l_L を 100 µm から 300 µm まで変化させた場合について, 骨梁リモ デリング駆動力 Γ の平均値および標準偏差を図 4.8 に示す. 感知半径 l_L を大きくす ると, 骨梁リモデリング駆動力 Γ の平均値は吸収側に変化し, 標準偏差は増加するこ とが確認された. ここで, $l_L = 100$ µm, 200 µm, および 300 µm における骨梁表面積 $S(\Gamma)/S_{All}$ の度数分布を比較すると, 図 4.9 に示すように, l_L が 100 µm から 300 µm と大きくなるにつれて, リモデリングの活性度が高い表面積 $S(\Gamma)$ が増加する結果と なった. また, リモデリングの活性度の変化は, 骨の形成側および吸収側の両方にお いて生じるため, 図 4.9 に示すように, 骨吸収側の骨梁表面積 $S(\Gamma)$ と骨形成側の面 積 $S(\Gamma)$ の比率は, 大きく変化しないことが分かる.

以上のように, 感知半径 *l*_L が大きくなると, 巨視的な領域における応力分布がリモ デリング駆動力 Γ に反映され, 海綿骨の全領域において, リモデリングの活性度が増 加することが示された. これは, 細胞が力学刺激を感知する領域の大きさが, リモデ リングに影響を及ぼす可能性を示すものである. また, このようなリモデリングの活 性度の変化は, 骨の形成側および吸収側の両方において生じるため, 第4.2.2 項で示し

図 4.8 感知半径 l_L に対するリモデリング駆動力 Γ の平均値および標準偏差

たような海綿骨全体における平均的な骨量の変化に対しては,大きな影響を及ぼさな いものといえる.

次に,骨基質内に存在する骨細胞の力学刺激に対する応答を考慮し,式(3.1)中の積 分領域を骨梁の表面 S から体積 V へ拡張した場合におけるリモデリング駆動力 Γ を 図 4.10(a) に示す. なお,感知半径は $l_L = 200 \,\mu$ m とした.積分領域を表面 S のみと した図 4.6(a) と比較すると,形成側のリモデリング駆動力 Γ を有する骨梁表面の面 積が増加していることが分かる.これは,曲げ荷重を受ける骨梁においては,骨梁の 内部における応力が表面に比較して低いため,式(3.1)中の積分領域を表面 S から 体 積 V へ拡張したことにより,近傍応力の代表値 σ_d が低めに見積もられた結果である. 海綿骨の全領域における骨梁表面の面積 $S(\Gamma)/S_{All}$ の度数分布は,図 4.10(b) に示す ように,積分領域を表面 S のみとした場合と比較した場合,面積 $S(\Gamma)/S_{All}$ の分布パ ターンはほとんど変化しないが,形成側の値に移行することが分かる.

以上のように,式(3.1)中の積分領域を面積 S から 体積 V とした場合,リモデリ ング駆動力 Γ が変化することが示された.これは,力学刺激を感知する受容体として の骨細胞の働きを示唆するものである (Mullender *et al.*, 1998).

図 4.9 $l_L = 100 \mu m$, 200 μm , および 300 μm における骨梁表面積 $S(\Gamma)/S_{All}$ の分布

図 4.10 リモデリングの活性度に及ぼす式 (3.1) 中の積分領域の影響

60 第4章 骨梁表面リモデリング則の基本的特性

4.4 結 言

骨リモデリングのシミュレーションモデルを構築する際、シミュレーションに導入 した数理モデルの基本的特性を明らかにする必要がある.また、この数理モデルの特 性を明らかにすることは、リモデリングのメカニズムの検討を行う際にも重要である. 本章では,骨梁表面リモデリング則の基本的特性について検討した.まず,骨梁表 面リモデリング則に含まれるモデルパラメータが、骨梁構造変化に及ぼす影響を明ら かにするため、線形に分布する圧縮荷重を受ける海綿骨の二次元リモデリングシミュ レーションを行った.その結果,不感帯の閾値は骨梁構造の時間変化速度に,また,力 学刺激の感知半径は海綿骨の平均体積分率の空間的な分布に、それぞれ影響を及ぼす ことが示された、骨梁構造の形態特徴量に着目することにより、これらのモデルパラ メータは、実験結果との定量的な比較を通じて決定することが可能である、次に、海綿 骨における骨梁リモデリングの吸収および形成の活性度について検討するため、ラッ ト椎体のイメージベーストモデルを用いて骨梁表面リモデリング駆動力の分布を求め た. 椎体に体幹軸方向の圧縮荷重が加わる場合, 骨梁の分岐部においてリモデリング 駆動力の分布が大きくなる傾向が示された.また,圧縮荷重の方向が体幹軸方向から 前後軸方向へ45°傾いた場合,荷重方向が体幹軸方向と一致する場合と比較して,吸収 側のリモデリング駆動力を有する骨梁表面の面積が増加し、リモデリング駆動力の値 が、より広く分布することが示された、さらに、骨梁表面リモデリングにおける力学 刺激の感知機構について考察するため、リモデリング則の形式がリモデリング駆動力 に及ぼす影響について検討した.ここでは,力学刺激の感知半径が大きくなると,巨 視的な領域における応力分布が反映されてリモデリング駆動力が変化することが示さ れた.また.骨細胞の力学刺激に対する応答を考慮して,骨梁内部の応力状態も含め てリモデリング駆動力を評価した結果、骨梁表面の応力状態のみを考慮した場合と比 較して、リモデリング駆動力が形成側に変化することが示された.

第5章

大腿骨近位部海綿骨の骨梁表面リ モデリングシミュレーション

5.1 緒 言

海綿骨におけるリモデリング現象を理解するためには、実際に海綿骨が置かれる力 学環境を詳細に考慮する必要がある.第4章では、単純な海綿骨モデルを用いたシミュ レーションにより、表面リモデリングがもたらす骨梁構造変化の基本的な特性を示し た.本章では、大腿骨近位部の海綿骨を対象とし、複雑な荷重環境における骨梁表面 リモデリングについて検討する.

Wolffの仮説 (Wolff, 1869, 1892, 1986) が提案されて以来, リモデリングにより形 成・維持される骨の構造と力学環境との関連について, 大腿骨近位部海綿骨の骨梁構 造を対象とした研究が数多く行われてきた. 大腿骨近位部においては, 皮質骨の外形 状が複雑であり, また, 様々な大きさおよび方向の外荷重が加わることから, 内部の 海綿骨は複雑な力学環境に置かれている. したがって, リモデリングにより形成・維 持される骨梁構造は, 部位の違いに応じて異なる力学状態に対応した特徴的な骨梁構 造が観察される.

これまでに、巨視連続体レベルのリモデリングシミュレーションにより、大腿骨近位 部における骨の密度変化と力学環境との関連が現象論的に示され、骨構造の巨視的な適 応変化が明らかになってきた (Huiskes *et al.*, 1987; Carter *et al.*, 1989; Beaupré *et al.*, 1990b). さらに、骨梁の微視構造を考慮したリモデリングシミュレーション (Jacobs *et al.*, 1997; Fernandes *et al.*, 1999; Bagge, 2000) により、異方性を含めた骨梁の構

61

62 第5章 大腿骨近位部海綿骨の骨梁表面リモデリングシミュレーション

造特性と力学環境との関連が検討され始めている.しかしながら,海綿骨の骨梁構造 変化は,微視的な個々の骨梁における表面リモデリングにより生じるものである.し たがって,大腿骨近位部の海綿骨におけるリモデリングのメカニズムを探るためには, 複雑な荷重環境において,骨梁レベルの力学刺激を詳細に評価し,骨梁表面リモデリ ングによる個々の骨梁形態の変化を考慮することが必要である.

本章では、大規模な Pixel モデルを用いた大腿骨近位部海綿骨の骨梁表面リモデリ ングシミュレーションを行い、複雑な荷重環境に置かれる海綿骨の骨梁表面リモデリ ングについて検討する. なお、以降ではリモデリングシミュレーションを二次元問題 に単純化するが、表面リモデリングによる個々の骨梁の構造変化と、その積み重ねに よりもたらされる海綿骨レベルの骨構造変化との関連を検討することが十分可能であ ると判断している.まず、骨梁構造を直接的に表現した大腿骨近位部の大規模な Pixel モデルを示す.次に、単一荷重を受ける海綿骨のリモデリングシミュレーションを行 い、個々の骨梁構造の変化がもたらす海綿骨レベルの巨視的な構造変化について明ら かにする.ここでは、得られた骨梁の構造特性と力学状態との関連を比較することに より、骨梁レベルの微視的なリモデリング過程がもたらす巨視的な適応現象について 検討する.さらに、複合荷重を受ける海綿骨のリモデリングシミュレーションを行い、 大腿骨に加わる外荷重とリモデリングによる骨梁構造変化との関連について検討する.

5.2 大腿骨近位部の Pixel モデル

ヒト大腿骨近位部の Pixel モデルを図 5.1(a) に示すように作成した. 海綿骨の初期の 骨梁構造は,等方性を仮定し,図 5.1(b)上に示すように,外径 1680 μ m,内径 1120 μ m の円環状の骨梁をランダムに配置して作成した. 骨梁構造の特徴量 (付録 A.2) は,平 均体積分率 BV/TV = 0.58,骨梁の平均厚さ $Tb.Th = 438 \,\mu$ m,単位長さあたりの骨 梁数 $Tb.N = 1.33 \,\mathrm{mm^{-1}}$,および単位面積あたりの連結数 $CON = 0.90 \,\mathrm{mm^{-2}}$ とした. 海綿骨の配向特性を表すファブリック楕円 (Cowin, 1985) (付録 A.3) は,図 5.1(b) 下 に示すように,楕円の長径は $H_1 = 714 \,\mu$ m,短径は $H_2 = 713 \,\mu$ mとした.異方性の程 度を示すファブリック楕円の長径と短径の比が $H_1/H_2 = 1.00$ であることから,骨梁 構造の等方性が確認される.

大腿骨が置かれる荷重環境を代表して、図 5.1(c) に示すように、(L1) 立脚相 (One-

図 5.1 ヒト大腿骨近位部モデル

Legged Stance), (L2) 外転時 (Abduction), および (L3) 内転時 (Adduction) の境界条 件を仮定した (Beaupré et al., 1990b). それぞれの境界条件について, 骨頭部には関節 からの圧縮荷重, および大転子には外転筋からの引張荷重を, 図 5.1(c) に示すように 正弦波状の分布荷重として与えた. また, 大腿骨の長管部にあたるモデル下端面は固 着とした. 全解析領域の要素分割数は, 縦 2000 個 × 横 1106 個, 要素の大きさは一辺 70 µm とした. 初期構造における骨部の要素数は, 668,718 個とした. なお, シミュレー ション結果については, 固着とした下端面の境界条件の影響が十分少ない線分 A-A'よ り近位部側の領域に着目する.

応力解析は、厚みを 10.0 mm とし、二次元平面ひずみ問題として行った. リモデリ ング則に含まれるモデルパラメータは、図 3.3 中の感知半径を $l_L = 2.0$ mm、図 3.4 中 の不感帯の閾値を $\Gamma_u = 1.0$, $\Gamma_l = -2.0$ とした. 第 4.2 節で述べたように、感知半径 l_L は海綿骨の平均体積分率 BV/TV の空間分布に、不感帯の閾値 Γ_u および Γ_l は骨 梁構造の変化速度にそれぞれ影響を与えるパラメータであり、シミュレーションと実 験においてそれぞれ得られる骨梁構造変化を定量的に比較することで決定される.

5.3 単一荷重下の海綿骨リモデリング

大腿骨近位部の海綿骨においては,複雑な力学環境に応じた特徴的な骨梁構造が観察される.ここでは,骨梁表面リモデリングにより形成・維持される骨梁構造と,その結果としてもたらされる海綿骨レベルの巨視的な適応現象との関連を検討するため, 単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーションを行う.

5.3.1 リモデリングによる骨梁構造変化

立脚相(L1)の単一荷重が負荷される場合について、大腿骨近位部海綿骨のリモデリ ングシミュレーションを行った.リモデリング過程における代表的な骨梁構造として、 4th step および16th step における骨梁構造を図5.2(a) および(b) にそれぞれ示す.骨 梁表面における応力の高低に応じた形成・吸収がリモデリングにより生じ、初期状態 においては図5.1 に示すように等方的であった骨梁構造が,図5.2(a)から(b) に示す ように4th step から16th step へと変化し、部位の違いにより異なる力学状態に応じ て、特徴的な異方性を有する骨梁構造が得られた.

図 5.2 立脚相 (L1) の単一荷重を受ける大腿骨近位部海綿骨の骨梁構造変化

骨頭のほぼ中央に位置する Region 1 においては,関節面からの圧縮荷重の方向に 沿った圧縮骨梁群が,また,大転子に位置する Region 2 においては,大転子に加わる 引張荷重の方向に沿った引張骨梁群が,それぞれ形成された. Region 1 および2のファ ブリック楕円は,図5.3 (a) および (b) に示すように,主軸方向 Θ_H がほぼ一定のまま 主軸の長さが変化した.異方性の程度を示す長径と短径の比 H_1/H_2 は,16th step にお いては Region 1 で 1.44, Region 2 で 1.60 となった.一方,骨頭首部の下方の Region 3 においては,大転子下の外側部から骨頭首部に伸びる引張骨梁群,および外側部から内 側部に伸びる圧縮骨梁群が,互いに直交網を形成した.ファブリック楕円は,図5.3(c) に示すようにほぼ円形を保ち,16th step においては,異方性の程度 $H_1/H_2 = 1.06$ と なった.以上の結果より,微視的な個々の骨梁の構造変化に伴い,巨視的な海綿骨レ ベルの構造変化がもたらされることが分かる.

図 5.3 立脚相 (L1) の単一荷重を受ける大腿骨近位部海綿骨のファブリック楕円
5.3.2 海綿骨における力学状態の変化

海綿骨の骨梁構造と力学環境との関連を検討するため、図 5.2 に示す Region 1~3 に ついて、各応力成分の領域平均値から、それぞれの領域における見かけの主応力を求 めた.初期状態および 16th step における見かけの主応力を図 5.4 に示す.なお以下で は、2つの見かけの主応力値 σ_1 、 σ_2 について、 $|\sigma_1| > |\sigma_2|$ とする.一方向の骨梁群が 主に形成された Region 1 および 2 においては、図 5.4(a)および (b) に示すように、初 期状態における 2 つの主応力の絶対値の比 $|\sigma_1|/|\sigma_2|$ がそれぞれ 7.9 および 9.4 と大き く、Region 1 においては単軸圧縮、Region 2 においては単軸引張に近い応力状態であ ることが分かる.骨梁構造が変化した 16th step においても、見かけの主応力の大きさ $|\sigma_1|$ 、 $|\sigma_2|$ および主応力方向 Θ_σ は、初期状態からほとんど変化しない結果となった. また、16th step においては、主応力方向 Θ_σ がファブリック楕円の主軸方向 Θ_H と良 く一致することが示された.一方、直交網の骨梁群が形成された Region 3 においては、

図 5.4 立脚相 (L1)の単一荷重を受ける大腿骨近位部海綿骨の見かけの主応力

68 第5章 大腿骨近位部海綿骨の骨梁表面リモデリングシミュレーション

図 5.4(c) に示すように、初期状態において主応力の絶対値の比 $|\sigma_1|/|\sigma_2|$ が 1.4 と小さ く、2 つの主応力の大きさがほぼ同じである圧縮-引張の応力状態となっている.ま た、Region 1 および 2 と同様に、見かけの主応力の大きさ $|\sigma_1|$ 、 $|\sigma_2|$ および主応力方 向 Θ_{σ} は、初期状態から 16th step まで、ほぼ一定であった.主応力方向 Θ_{σ} は、16th step においてファブリック楕円の主軸方向 Θ_H に近くなることが示された.

このように、立脚相の単一荷重を受ける大腿骨近位部においては、リモデリングに より見かけの主応力と良好に対応した骨梁構造が得られた.また、外転時および内転 時の単一荷重を受ける場合についてそれぞれリモデリングシミュレーションを行った 結果、付録 A.4 に示すように、立脚相の単一荷重を受ける場合と同様に、得られた骨 梁構造は見かけの主応力状態と良好に対応することが示された.

本シミュレーションで用いた骨梁表面リモデリング則においては,個々の骨梁の構造変化が,骨梁レベルの主応力方向に配向するように生じることが示されている(安達,1997).本シミュレーションにおいては,このような骨梁レベルにおける微視的な主応力状態に対応した構造変化の積み重ねにより,海綿骨レベルにおける巨視的な骨構造も,見かけの主応力方向に対応したと考えられる.また,このように得られた骨梁構造は,海綿骨の主応力方向と骨梁配向との関連について述べたWolffの仮説を良く表現するものといえる.以上より,微視的な力学刺激に応じた骨梁構造の変化により,海綿骨レベルの巨視的な骨構造が機能的に適応変化することが示された.

5.4 複合荷重下の海綿骨リモデリング

実際の大腿骨に加わる外荷重は,その大きさや方向が時間的に変化する.ここでは, 時間的に変化する荷重環境における骨梁表面リモデリングについて検討するため,複 合荷重を受ける大腿骨近位部の海綿骨リモデリングシミュレーションを行う.

5.4.1 リモデリングによる骨梁構造変化

大腿骨が実際に置かれる荷重環境を考慮して、立脚相 (L1)、外転時 (L2)、および内 転時 (L3)の荷重が複合して加わる場合について、リモデリングシミュレーションを行っ た. なお、複合荷重下における骨梁リモデリング駆動力は、各荷重条件下におけるリ モデリング駆動力 Γ_i (*i* =L1, L2, L3) から、図 5.1(c) に示す荷重頻度 n_i (cycles/day) に応じた重み付き平均値 Γ_{Mult} :

$$\Gamma_{Mult} = \sum_{i=L1}^{L3} w_i \Gamma_i \tag{5.1}$$

として求めた (Beaupré et al., 1990b). ここで、重み関数 w_i は、

$$w_i = n_i \bigg/ \sum_{j=L_1}^{L_3} n_j$$
 (5.2)

と表される.

リモデリング過程における代表的な骨梁構造として、4th step および 16th step にお ける骨梁構造を図5.5(a) および (b) にそれぞれ示す.初期状態では図5.1 に示すように 等方な骨梁構造が、単一荷重を受ける場合と同様に、図5.5(a) から (b) に示すように, 4th step から 16th step へと力学状態に応じた異方性を有する構造に変化した. このよ うな異方性の発達は、図5.6 に示すように、4th step から 16th step にかけて各 Region における異方性の程度 H_1/H_2 が大きくなっていることからも分かる. 16th step にお いて得られた骨梁構造は、立脚相の荷重頻度が 60%と高いため、立脚相の荷重条件を 単一で与えた場合の構造に類似しているが、比較的ばらつきのある構造となった. 圧 縮の骨梁群が得られた Region 1 および引張りの骨梁群が得られた Region 2 における ファブリック楕円は、図5.6(a) および (b) に示すように、主軸方向 Θ_H が立脚相の荷 重条件を単一で与えた場合とほぼ等しく、異方性の程度 H_1/H_2 が、Region 1 で 1.32、 Region 2 で 1.51 であった. また、直交網の骨梁構造が得られた Region 3 においては、 異方性の程度 $H_1/H_2 = 1.06$ となった.

5.4.2 海綿骨における力学状態の変化

Region 1~3 について、初期状態および 16th step における領域内の見かけの主応力 を図 5.7 に示す. なお、応力の値は、式 (5.1) に示されるリモデリング駆動力 Γ_{Mult} と 同様に、各荷重条件 (L1)~(L3) の頻度に応じた重み付きの平均値として求めた. 単一 荷重を受ける場合と同様に、各 Region において、見かけの主応力の大きさ $|\sigma_1|$, $|\sigma_2|$ および主応力方向 Θ_{σ} は初期状態からほぼ一定であり、16th step においては、主応力 方向 Θ_{σ} がファブリック楕円の主軸方向 Θ_H とほぼ一致した.

16th step における Region 1 の中央部について,各荷重条件における相当応力を図 5.8 に示す.いずれの荷重条件においても,骨梁個々の応力は最大 30 MPa 程度までの範囲

図 5.5 複合荷重を受ける大腿骨近位部海綿骨の骨梁構造変化

図 5.6 複合荷重を受ける大腿骨近位部海綿骨のファブリック楕円

で広く分布した.また,荷重を主に支持する骨梁は,各荷重条件において異なってお り,例えば,立脚相,外転時,および内転時において,それぞれ矢印で示す方向の骨 梁に沿って高い応力値が示された.このように,各荷重条件における微視的な力学状 態に応じて個々の骨梁構造が形成され,その結果として,より巨視的な領域において は,ばらつきのある骨梁構造が得られることが分かる.また,得られた骨梁構造は,付 録 A.5 に示す実際のヒト大腿骨近位部の骨梁構造を良く表現しており,本シミュレー ションの妥当性を示すものと考えられる.

海綿骨の骨梁構造は、微視的な力学刺激に応じた細胞活動によるリモデリングによ り形成・維持されている.個々の骨梁の力学環境は、図5.8に示したように、それ自身 の網目構造の形態および外荷重条件などにより、複雑な状態であると推測される.本 シミュレーションで得られた結果は、二次元シミュレーションではあるが、細胞が感 知し得る局所的な力学刺激に応じたリモデリングにより、骨の微視構造が変化し、そ の結果として巨視的な骨構造レベルの適応現象がもたらされる可能性を示したものと

図 5.7 複合荷重を受ける大腿骨近位部海綿骨の見かけの主応力

いえる.このように,骨梁表面リモデリングの大規模な計算機シミュレーション手法 は,巨視から微視に至る骨リモデリングの階層的なメカニズムを解明する際に,有用 な手段になるものと考えられる.

(a) 立脚相 (L1)

(b) 外転時 (L2)

(c) 内転時 (L3)

図 5.8 各荷重条件における Region 1 中央部の相当応力 (16th step)

74 第5章 大腿骨近位部海綿骨の骨梁表面リモデリングシミュレーション

5.5 結 言

大腿骨近位部においては、皮質骨の外形状が複雑であり、さらに、様々な大きさお よび方向の外荷重が作用することから、海綿骨は複雑な力学環境に置かれている.し たがって、リモデリングにより形成・維持される骨梁構造と力学環境との関連を明ら かにするためには、複雑な荷重環境における海綿骨の骨梁表面リモデリングについて 検討する必要がある.

本章では、大腿骨近位部海綿骨について、骨梁レベルの微視的な表面リモデリング による骨梁構造の変化と、その結果としてもたらされる海綿骨レベルの巨視的な適応 現象との関連について検討を行った.まず、大腿骨近位部の大規模な Pixel モデルを 用いて単一荷重を受ける二次元骨梁表面リモデリングシミュレーションを行った.そ の結果、表面リモデリングによる個々の骨梁の構造変化により、巨視的な海綿骨レベ ルの構造変化がもたらされることが確認された.得られた巨視的な海綿骨レベルの構 造特性は、見かけの主応力状態と良好に対応することが示された、すなわち、微視的 な力学刺激に応じた骨梁表面リモデリングにより, Wolff の仮説に代表される海綿骨レ ベルの巨視的な構造の適応変化がもたらされることが明らかになった.次に,大腿骨 に作用する外荷重と骨梁構造変化との関連について検討するため,複合荷重を受ける 海綿骨のリモデリングシミュレーションを行った.ここでは.複合荷重に応じた局所 的な力学刺激により個々の骨梁構造が変化し、その結果、単一荷重を受ける場合と比 較してばらつきのある骨梁構造が形成された.得られた骨梁構造は,実際のヒト大腿 骨近位部の骨梁構造を良く表現しており,本シミュレーションの妥当性が確認された. 以上より、大腿骨近位部で観察される骨梁構造の巨視的な適応変化は、大腿骨の複雑 な皮質骨形状や外荷重条件に応じた骨梁レベルの微視的な表面リモデリングの結果と してもたらされることが示された.

第6章

三次元骨梁表面リモデリングシミ ュレーション

6.1 緒 言

海綿骨におけるリモデリング現象を定量的に評価するためには,実際の三次元骨梁 構造を詳細に反映した表面リモデリングシミュレーションが必要となる.そこで本章 では,第5章で示した二次元骨梁表面リモデリングシミュレーションを三次元問題に 拡張し,実験系で得られる力学環境と骨梁構造変化との関係について検討する.

リモデリングにおける力学刺激と骨梁構造変化との関連を検討するため、力学環境 を制御した海綿骨のリモデリング実験が行われ始めた. Guldberg *et al.* (1997a) は、犬 大腿骨遠位骨端部の *in vivo* におけるリモデリング実験により、圧縮荷重を受ける海 綿骨の骨梁構造変化を観察している.実験で得られた海綿骨レベルの巨視的な構造特 性の変化は、力学環境に応じた機能的適応現象を良く示すものであった.しかしなが ら、海綿骨の骨梁構造が三次元的に複雑なものであるため、個々の骨梁レベルにおけ る力学刺激とリモデリングによる構造変化との関連については明らかにされていない. また、このような実験系を用いる場合、骨梁構造の変化を経時的に検討することはコ スト的に困難である.したがって、実験系で観察される骨梁リモデリング現象を理解 するためには、骨梁の三次元構造を詳細に反映したリモデリングシミュレーションが 必要となる.

本章では,実験で用いられた海綿骨試料 (Guldberg *et al.*, 1997a) のイメージベース トモデルを用いて,三次元骨梁表面リモデリングシミュレーションを行い,実験系で

75

76 第6章 三次元骨梁表面リモデリングシミュレーション

観察される海綿骨レベルの機能的適応現象と,微視的な力学刺激に応じた骨梁表面リ モデリングとの関連について検討する.まず,圧縮荷重を受ける単純な骨梁モデルを 用いて,骨梁表面リモデリングにより得られる三次元骨梁構造変化の基本的特性を検 証する.次に,犬大腿骨遠位骨端部のイメージベーストモデルを用いた海綿骨の骨梁 表面リモデリングシミュレーションを行い,圧縮荷重を受ける海綿骨の三次元骨梁構 造変化について検討する.また,得られた骨梁構造変化を実験結果と比較し,本シミュ レーションの妥当性を検証する.さらに,シミュレーションで得られる海綿骨レベル の構造特性および機能と密接に関連した力学特性の経時的な変化を明らかとし,両者 の関係から,骨梁表面リモデリングと海綿骨レベルの機能的適応現象との関連につい て考察を加える.

6.2 骨梁単体の表面リモデリング

海綿骨レベルの巨視的な構造特性の変化は,個々の骨梁の構造変化の積み重ねによりもたらされる.本節では,骨梁表面リモデリングによる三次元骨梁構造変化の基本的 特性を検証するため,骨梁単体に着目した表面リモデリングシミュレーションを行う.

6.2.1 骨梁単体モデル

Frost (1988) の示した骨梁リモデリングの基本パターンに習い,図 6.1 に示すよう に、Z字型骨梁 (case Z),Y字型骨梁 (case Y),およびX字型骨梁 (case X)の計 3 通り について、X₃ 方向に圧縮荷重を受ける骨梁モデルを作成した.骨梁の直径は、骨梁の 平均厚さ *Tb.Th* が数 100 μ m (Guldberg *et al.*, 1997a) であることを考慮して、100 μ m とした.また、モデル全体の大きさは $a_1 \times a_2 \times a_3 = 700 \mu$ m × 700 μ m × 500 μ m,要素 分割数は骨梁の直径方向に 10 個、すなわち Voxel 要素の大きさを一辺 10 μ m とした. この時、全解析領域の要素分割数は 70 × 70 × 50= 245,000 個、初期状態における骨梁 部の要素数は case Z で 11,664 個、case Y で 7,492 個、case X で 10,984 個とした.

境界条件は、図 6.1 に示すように、 $X_3 = 500 \,\mu\text{m}$ の上面に X_3 軸方向の一様圧縮変 位 U_3 を与え、下面は固着とした.この時、 X_3 軸方向の全荷重 F_3 を考え、同軸方向 の見かけの応力 $\sigma_3 = F_3/a_1a_2$ が -1.0 MPa となるように、一様圧縮変位 U_3 を各計 算 step で調整した.ここで、 $\epsilon_3 = U_3/a_3$ を X_3 軸方向の見かけのひずみと定義する.

(b) case Y

(c) case X

図 6.1 単純骨梁モデル

リモデリング則に含まれるモデルパラメータは、図3.3 中の感知半径を $l_L = 250 \,\mu m$, 図3.4 中の不感帯の閾値を $\Gamma_u = 0.1$, $\Gamma_l = -0.2$ とした. 第4.2 節で述べたように、感 知半径 l_L は海綿骨の平均体積分率 BV/TV の空間分布に、不感帯の閾値 Γ_u および Γ_l は骨梁構造の変化速度にそれぞれ影響を与えるパラメータであり、シミュレーショ ンと実験において得られる骨梁構造変化を定量的に比較することで決定される.

6.2.2 圧縮荷重下の骨梁構造変化

リモデリング過程における代表的な骨梁構造として, case Z, case Y, および case X について, それぞれ 8th step, 20th step, および 50th step における構造を図 6.2 に示 す. ここで, 図中の濃淡は相当応力を示す.

図 6.2 圧縮荷重を受ける骨梁単体の構造変化

case Z の場合,初期構造においては,図 6.2(a)に示すように,Z字上下の平行部で応 力が低く, 強い曲げを受ける Z 字の鋭角部および中央部で高い. リモデリングの進行 に伴い, 応力の低い平行部が完全に吸収されて1本の骨梁となり, 応力の高い2字の鋭 角部の骨梁表面が内側へ移動した.その結果,骨梁の配向は圧縮方向へ変化し,50th step においては、圧縮方向に1本の骨梁が形成された.また、このような骨梁構造の 変化に伴い,骨梁表面の応力は一様になることが分かる.case Y の場合,初期構造に おいては,図6.2(b)に示すように,Y字上部の外側表面で応力が低く,内側表面で高 い.したがって、リモデリングの進行に伴い、Y字の外側で骨吸収が、内側で骨形成 がそれぞれ生じ、Y字の上部が閉じるように骨梁の構造が変化した.その結果、50th step においては、V字型の骨梁構造となった.また、Y字下部は上部と比較して応力 が高く、骨梁が形成されて直径が増す結果となった. case X の場合、初期構造におい ては,図6.2(c)に示すように,強い曲げを受けるX字交差部の外側で応力が高い.こ のX字の交差部における応力の不均一性は, case Y における Y 字分岐部と比較して より大きく、リモデリングによる形成および吸収が顕著に生じた.その結果、X字型 骨梁がH字型骨梁に変化し、さらにH字型の水平部の吸収が進行した。50th step に おいては, H字型の水平部の骨梁が完全に吸収され, 圧縮方向に平行な2本の骨梁が 形成された.

以上のように、リモデリングにより骨梁の配向が圧縮方向へ変化する結果が得られた.これは、ひずみあるいはひずみ速度の目標値へ向かう骨梁表面リモデリングシミュレーションと同じ傾向を示すものである (Sadegh *et al.*, 1993; Luo *et al.*, 1995).しかしながら、局所的な応力の不均一性をリモデリング駆動力とした本シミュレーションでは、目標値を用いていないため、最終的に得られる骨梁構造は初期構造の影響を大きく受けるものとなる。例えば、case ZとXを比較すると、いずれも圧縮方向に骨梁が形成されるものの、その本数については、case Zにおいては1本、case Xにおいては2本となった.さらに、リモデリング則に導入したモデルパラメータである感知半径 l_L ならびに不感帯幅の閾値 Γ_u , Γ_l の値を変化させた場合、本項で得られた骨梁構造と異なる構造が形成される可能性がある。すなわち、パラメータの値によっては、case X において1本の骨梁が、あるいは case Z および caseY において圧縮方向により強く配向した骨梁が形成される可能性がある。したがって、より現実に即したリモデリングシミュレーション行うためには、実際の骨梁構造を精密に表現した海綿骨モデ

80 第6章 三次元骨梁表面リモデリングシミュレーション

ルをシミュレーションの初期構造として使用し、さらに、実験との比較を通じてリモ デリング則に含まれるモデルパラメータの同定を行う必要がある.

6.3 圧縮荷重下の海綿骨リモデリング

実際の海綿骨で観察されるリモデリング現象を定量的に評価するためには,複雑な 三次元骨梁構造の変化を詳細に反映した骨梁表面リモデリングシミュレーションが必 要である.本節では,実験系で観察される骨梁構造の経時的な変化について検討するた め,イメージベーストモデルを用いた海綿骨のリモデリングシミュレーションを行う.

6.3.1 犬大腿骨遠位骨端部海綿骨のイメージベーストモデル

Guldberg *et al.* (1997a) は、犬大腿骨遠位骨端部の海綿骨に、半径3mmの円柱状圧 盤を用いて、大きさ35Nの圧縮荷重を *in vivo* で直接与え、圧盤先端直下近傍の海綿 骨の骨梁構造変化を観察している.この実験系を参照し、圧縮荷重を受ける海綿骨の骨 梁表面リモデリングシミュレーションを行う.ここでは、同実験で用いた犬大腿骨のコ ントロール側の海綿骨をX線 μ CTを用いて計測し、図6.3(a) に示す一辺 a = 5.0 mm の立方体海綿骨モデルを作成した.なお、同図中の X_1 軸が左右軸、 X_2 軸が前後軸、 X_3 軸が大腿骨長軸にそれぞれ対応する.Voxel要素の大きさは一辺 25 μ m、すなわち、 モデル全領域の分割数は 200³ = 8,000,000 個とした.この中で、骨梁部の要素数は約 230 万個であった.

初期状態における骨梁構造の形態特徴量 (付録 A.2) は、平均体積分率 BV/TV = 0.282, 骨梁の平均厚さ $Tb.Th = 112 \mu m$, 単位長さあたりの骨梁数 $Tb.N = 2.52 mm^{-1}$, および骨梁間の平均距離 $Tb.Sp = 286 \mu m$ であった.また、ファブリック楕円体 (付録 A.3) は、図 6.3(b) に示すようになり、その主値 H_i ($i = 1, 2, 3, H_1 \ge H_2 \ge H_3$) は、そ れぞれ $H_1 = 387 \mu m$, $H_2 = 311 \mu m$, $H_3 = 291 \mu m$, 異方性の程度を示す長径と短径 の比 $H_1/H_3 = 1.33$ であった.また、ファブリック楕円体の3つの主軸方向 $n_i \ge X_3$ 軸方向とのなす角度 Θ_{i3} は、それぞれ $\Theta_{13} = 73.6^\circ$, $\Theta_{23} = 37.0^\circ$, $\Theta_{33} = 57.9^\circ$ であっ た.最大主方向の角度 Θ_{13} の値および図 6.3(c) に示す X_1 - X_3 中央断面像から、今回 用いた海綿骨試料の骨梁構造は、 X_3 軸方向と垂直に近い方向に強く配向していること が分かる.

図 6.3 圧縮荷重を受ける海綿骨のイメージベーストモデル

境界条件は、図 6.3(a) 上に示すように、 $X_3 = 5.0 \text{ mm}$ の上面に X_3 軸方向の一様 圧縮変位 U_3 を与え、残りの5面はそれぞれの面外方向変位のみを拘束した. この時、 X_3 軸方向の全荷重 F_3 を考え、同軸方向の見かけの応力 $\sigma_3 = F_3/a^2$ が実験で与えた 値 $\sigma_3 = -35 \text{ N}/3^2 \pi \text{ mm}^2 = -1.24 \text{ MPa}$ となるように、一様圧縮変位 U_3 を各計算 step で調整した. ここで、 $\varepsilon_3 = U_3/a$ を X_3 軸方向の見かけのひずみと定義する. リモデ リング則に含まれるモデルパラメータは、図 3.3 中の感知半径を $l_L = 500 \mu \text{m}$ 、図 3.4 中の不感帯の閾値を $\Gamma_u = 4.0$ 、 $\Gamma_l = -5.0$ とした. 第 4.2 節で述べたように、これら のモデルパラメータは、シミュレーションと実験において得られる骨梁構造変化を定 量的に比較することで決定される.

6.3.2 リモデリングによる骨梁構造変化

リモデリング過程における代表的な骨梁構造として、10th step、20th step、および 50th step における骨梁構造の三次元像、ファブリック楕円体、および中央 X_1 - X_3 断 面像を図 6.4 にそれぞれ示す. 図 6.3(a) に示す初期骨梁構造から、リモデリングによ

図 6.4 圧縮荷重を受ける海綿骨の骨梁構造変化

り表面応力の高低に応じた形成・吸収が生じて骨梁構造が変化し、図 6.4(a) および (b) に示すように 10th step から 20th step にかけてリモデリングが進行するのに伴い、圧 縮方向である X_3 軸方向に骨梁の配向が変化する. この X_3 軸方向への配向変化は、同 図中の X_1 - X_3 断面像に〇印で示すように X_3 軸方向へ骨梁が形成して連結し、さらに □印で示すように X_3 軸方向と垂直方向の骨梁が吸収されて連結性が失われることに より生じる. このような骨梁の配向変化は、ファブリック楕円体の最大主方向 n_1 が X_3 軸方向へ変化することからも確認される. リモデリングの進行に伴い、骨梁の配向 はさらに X_3 軸方向に変化し、50th step においては図 6.4(c) に示す形態となった. ま た、骨梁構造の変化に伴い、その異方性の程度 H_1/H_3 は、初期状態における 1.33 か ら 50th step においては 1.39 に増加した.

骨梁構造の形態特徴量の変化を図 6.5 に示す. なお以降では,解析領域の境界を除 外した海綿骨内部中央の一辺 4.0 mm の立方体部分について,形態特徴量を計測した. 形態特徴量 BV/TV, Tb.Th, および Tb.N は,図 6.5(a)~(c) に示すように,単調減 少し,50th step においては初期状態に対して,BV/TV は 21.2%, Tb.Th は 19.3%, Tb.N は 2.2% の減少となった.一方,平均厚さ Tb.Sp は,図 6.5(d) に示すように単 調増加し,50th step では初期状態に対して 10.0% の増加となった.これは, 圧縮方 向である X_3 軸方向への骨梁の形成と比較して, X_3 軸方向に垂直な方向における骨梁 の吸収が顕著なためである.ファブリック楕円体の主軸方向 n_i と圧縮方向である X_3 軸とのなす角度 Θ_{i3} の変化については,図 6.5(e) に示すように,配向角 Θ_{13} は単調減 少, Θ_{23} は初期において若干減少した後に増加, Θ_{33} は単調増加した.その後,50th step においては,配向角 Θ_{13} は 0°, Θ_{23} および Θ_{33} は 90° にほぼ収束した.

以上のように, Guldberg *et al.* (1997a) の実験系で用いられたコントロール側の海 綿骨試料を用いてリモデリングシミュレーションを行った. 同じ個体における実験側 の海綿骨においては, 24 週間で表 6.1 に示すような形態特徴量の変化が得られている. 平均体積分率 *BV/TV* について本シミュレーション結果と実験結果を比較すると,本 シミュレーションの 41 steps が 24 週間に対応することが分かる. この 41st step にお けるシミュレーション結果は,実験系で示された形態特徴量 *BV/TV*, *Tb.Th*, *Tb.N*, および配向角 Θ₁₃ の減少を定性的に良く表現しているものといえる. また,平均厚さ *Tb.Th* については,実験系においては増加したのに対して,本シミュレーションにお いては減少する結果となった. しかしながら,他の個体の実験結果を含めて評価する 84 第6章 三次元骨梁表面リモデリングシミュレーション

図 6.5 骨梁構造の形態特徴量の変化

	BV/TV	Tb.Th	Tb.N	Tb.Sp	Θ_{13}
		(μm)	(mm^{-1})	(μm)	$(\deg.)$
Control	0.282	112	2.52	286	73.6
Experiment (24 weeks)	0.230	121	1.88	421	47.9
Simulation (41st steps)	0.230	92	2.50	310	40.3

表 6.1	、ミュレーションおよび実験系 (Guldberg et al., 1997) における骨羽	と
	毒造の形態特徴量の変化	

と、実験系における平均厚さ *Tb.Th* の変化について統計的な有為差は示されていない. 本シミュレーションで得られた結果は、定性的には実験結果をよく表現しているが、 定量的には十分対応していない部分がある.より現実に即したシミュレーションを行 うためには、実験系で用いられた複数の個体について、それぞれシミュレーションを 行い、統計的に結果を評価する必要があるものと考えられる.また、境界条件の詳細 な設定に加え、シミュレーションおよび実験においてそれぞれ得られる骨梁構造につ いて、形態特徴量の定量的な比較を行い、リモデリング則に導入したモデルパラメー タである感知半径 *l_L* および不感帯の閾値 *Γ_u*, *Γ_l* の同定を行う必要がある.このよう な点について検討を加えることにより、実験を精密に反映したシミュレーションモデ ルが構築され、*in vivo* における経時的な骨梁形態変化の定量的な予測が可能になるも のと考えられる.

6.4 リモデリングによる機能的適応現象

海綿骨レベルの巨視的な機能的適応現象は, 微視的な個々の骨梁におけるリモデリ ングによりもたらされる.本節では,実験系で観察される海綿骨の機能的適応現象を 理解するため,前節のシミュレーションにより得られた骨梁構造の変化とその力学特 性の変化との関連を示し, 微視的な骨梁表面リモデリングがもたらす海綿骨レベルの 巨視的な機能的適応現象について考察を加える. 86 第6章 三次元骨梁表面リモデリングシミュレーション

6.4.1 骨梁レベルにおける構造特性と力学特性の変化

第6.2節で示した骨梁単体の表面リモデリングシミュレーションにおいては,図6.2 に示すように,骨梁配向が圧縮荷重の方向に変化することが示された.この荷重方向 への骨梁配向の変化は,実際に観察される骨の機能的適応現象を良く表現するものと 考えられる.そこで,骨梁構造の適応変化を定量的に検討するため,図6.2 に示すシ ミュレーション結果について,骨梁の力学的機能と密接に関係した骨梁構造の体積と 力学特性の変化を図6.6 に示す.

骨梁の体積 V_B の時間変化については、図 6.6(a) に示すように、すべての case にお いて初期形態における体積 V_{B_0} で割った値 V_B/V_{B_0} が単調減少する結果となった.ま た、圧縮方向である X_3 方向に関する見かけの剛性については、図 6.6(b) に示すよう に、見かけの応力 σ_3 と見かけのひずみ ε_3 との比 σ_3/ε_3 がすべての case においてシ ミュレーションの初期に単調増加し、その後はほぼ一定値を保った.一般に、材料の 減少は見かけの剛性を低下させるが、シミュレーションの初期においては、体積の減 少にも関わらず見かけの剛性が増加することが示された.したがって、リモデリング により骨梁配向が圧縮方向に変化することで、荷重に対する骨梁構造の剛性が増加し

図 6.6 骨梁の体積および見かけの剛性の変化

たといえる.また,見かけの剛性が増加した後にほぼ一定となったことは,骨梁の量 的減少に起因する剛性低下の効果と,骨梁配向の変化による剛性増加の効果が均衡し ていることを示すものと考えられる.以上のように,局所的な応力一様化を目指す骨 梁表面リモデリングにより,骨梁レベルの見かけの剛性が機能的に変化することが示 された.

6.4.2 海綿骨レベルにおける構造特性と力学特性の変化

第6.3節で示した海綿骨の骨梁表面リモデリングシミュレーションにおいては,図6.4 に示すように,海綿骨の全領域において骨梁配向が圧縮荷重の方向に変化することが 示された.これは,第6.2節で示された骨梁個々の配向変化が積み重なった結果であ る.そこで,このような骨梁レベルの微視的な構造の変化がもたらす海綿骨レベルの 巨視的な機能的適応現象を定量的に評価する.

以下では、力学的機能と密接に関連した海綿骨の力学特性に着目し、形態特徴量を 計測した領域と同じ内部中央の一辺 4.0 mm の立方体海綿骨について、力学特性を評 価する.ここでは数値的な力学試験として、 X_1 、 X_2 、および X_3 軸の3方向について、 それぞれ圧縮荷重を受ける海綿骨の有限要素解析を行った.境界条件は、リモデリン グシミュレーションと同様に、 X_i 軸 (i = 1, 2, 3)方向へ一様圧縮変位 U_i を与え、残り

図 6.7 海綿骨の見かけの剛性の変化

の面はそれぞれの面外方向変位のみを拘束した.得られた X_i 軸方向に対する見かけ の圧縮応力 σ_i と圧縮ひずみ ε_i との比で表した見かけの剛性 σ_i/ε_i の変化を図 6.7 に 示す. X_3 軸方向に関する見かけの剛性 σ_3/ε_3 は、単調増加した後に一定値に収束し、 X_1 軸方向および X_2 軸方向に関する見かけの剛性 σ_1/ε_1 および σ_2/ε_2 は、単調減少 する結果となった. 50th step においては、初期状態に対して σ_3/ε_3 は 29.4% の増加、 σ_1/ε_1 および σ_2/ε_2 は 60.0% の減少となった. これより、リモデリングシミュレーショ ンにおける圧縮方向である X_3 軸方向の見かけの剛性が他の 2 方向に対して相対的に 大きくなり、力学特性の異方性が顕著になったことが分かる.

以上より,局所的な応力一様化を目指す骨梁表面リモデリングにより,海綿骨レベ ルの巨視的な構造特性および力学特性が機能的に変化することが示された.また,海 綿骨レベルの巨視的な構造特性と力学特性の主軸は,付録A.6に示すように,ほぼ一 致しながら変化することが示された.これらの結果は,海綿骨レベルの巨視的な機能 的適応現象が,微視的な力学刺激に応じた骨梁表面リモデリングによりもたらされる ことを裏付けるものといえる.

6.5 結 言

海綿骨のリモデリング実験においては,骨梁構造が力学環境に応じて機能的に適応 変化する現象が観察される.しかしながら,海綿骨の骨梁構造が三次元的に複雑なも のであるため,個々の骨梁レベルにおける力学刺激とリモデリングによる構造変化と の関連については明らかにされていない.

本章では、表面リモデリングによる微視的な骨梁構造の変化と実験系で観察される 海綿骨レベルの機能的適応現象との関連について検討した.まず、圧縮荷重を受ける 骨梁単体のリモデリングシミュレーションを行い、表面リモデリングにより得られる 三次元骨梁構造変化の基本的特性について検証した.その結果、リモデリングにより 骨梁の配向が変化し、圧縮荷重方向に配向する骨梁構造が得られた.また、得られた 骨梁構造の変化は初期構造に依存することから、実際の骨梁構造を詳細に反映するリ モデリングシミュレーションの必要性が確認された.次に、犬大腿骨遠位骨端部海綿 骨のイメージベーストモデルを用いた骨梁表面リモデリングシミュレーションを行い、 圧縮荷重を受ける海綿骨の三次元骨梁構造変化について検討した.その結果、微視的 な力学刺激に応じた骨梁の吸収および形成が生じ,海綿骨全体の骨梁配向が圧縮方向 へ変化する過程が示された.また,シミュレーションで得られた骨梁構造の形態特徴 量の変化が実験結果と定性的に一致したことから,本シミュレーションの妥当性が確 認された.さらに,リモデリングによる骨梁構造変化と,機能に密接に関連した力学 特性との関係について定量的に検討した.ここでは,表面リモデリングによる骨梁構 造の変化により,個々の骨梁レベルにおいて,荷重方向に関する見かけの剛性が増加 することが示された.また,このような骨梁レベルの剛性増加により,海綿骨レベル においても,巨視的な荷重方向に関する見かけの剛性が増加することが示された.以 上より,実験系で観察される海綿骨の骨梁構造変化が,微視的な力学刺激に応じた骨 梁表面リモデリングにより得られることが明らかになった. 90 第6章 三次元骨梁表面リモデリングシミュレーション

第7章

骨梁表面リモデリングシミュレー ションの工学的応用

7.1 緒 言

骨に装着するインプラント等の装具は、疾病や傷害により失われた骨の力学的な機 能を補うため、整形外科領域において広く用いられてきた.しかしながら、このよう なインプラントを骨に装着した場合、力学状態の変化に伴うリモデリングが生じ、そ の結果として生じる骨形態の病的な変化や骨吸収によるインプラントの緩みなどが問 題となる.本章では、第6章までに示した骨梁表面リモデリングシミュレーションの 工学的応用の可能性を探るため、インプラントの装着が骨梁構造変化に与える影響に ついて検討する.

長期に渡り骨に装着するインプラントを設計する際,力学的なリモデリングによる インプラント周囲の骨構造の変化を明らかにする必要がある.これまでに,巨視的な 骨の形態変化を現象論的に良く表現するリモデリングシミュレーションにより,人工 股関節ステムおよび人工膝関節などの周囲で生じる見かけの骨の密度変化が示されて きた.また,インプラントと骨との界面における微視的な機械的結合に着目して,表 面リモデリングシミュレーションにより,人工股関節ステムや固定用スクリューなど のインプラント近傍における骨梁構造の変化が検討されている.しかしながら,リモ デリングによるインプラント周囲の骨梁構造変化を明らかにするためには,インプラ ントと海綿骨との界面における微視的な骨梁構造の変化と,より巨視的な海綿骨レベ ルの骨構造変化の両者について,総合的な検討を行う必要がある. このような骨に装着するインプラントの一つとして,椎体に装着する固定用スク リューが挙げられる.脊椎の除圧,固定および変形矯正を目的として用いられる固定 用スクリューにおいては,スクリューの緩みが問題点の一つとなってきた (McLain *et al.*, 1993;佐藤ら, 2000b; Lu *et al.*, 2000). このようなスクリューの緩みを防止して適 切な固定を保つためには,リモデリングによるスクリュー周囲の骨梁構造変化を明ら かにすることが必要となる.

本章では、骨梁表面リモデリングシミュレーションを応用して、固定用スクリュー が椎体海綿骨の骨梁構造変化に与える影響を明らかにする.まず、スクリューを装着 した椎体海綿骨の二次元骨梁表面リモデリングシミュレーションを行い、固定用スク リューの装着が椎体海綿骨の巨視的な形態に与える影響について検討する.次に、ス クリューと海綿骨との界面近傍を想定した骨梁表面リモデリングシミュレーションを 行い、スクリューに与える荷重と骨梁構造変化との関係について検討する.また、得ら れた骨梁構造の変化から、海綿骨におけるスクリューの固定性について考察する.さ らに、実際の椎体における骨梁構造変化の定量的な評価に応用するため、これらのシ ミュレーションを三次元問題へ拡張する.以上の結果より、インプラントの形状設計 における骨梁表面リモデリングシミュレーションの有用性について検討する.

7.2 固定用スクリュー装着が海綿骨形態に与える影響

脊椎悪性腫瘍に対して行われる脊椎全摘術(池渕ら,1995)においては,図7.1(a)左 に示すように,脊椎を再建する際に人工椎体と固定装置が用いられる.本節では,固 定装置の一部であるペディクル・スクリュー(Pedicle Screw)の装着が,椎体の巨視的 な海綿骨形態に与える影響について検討するため,スクリューを装着した椎体を想定 した骨梁表面リモデリングシミュレーションを行う.

7.2.1 スクリューを装着した椎体海綿骨モデル

スクリューを装着したヒト椎体矢状断面の Pixel モデル (case I)を,図7.1(a) 右に示 すように作成した.初期状態における海綿骨の骨梁構造は,付録 A.7 に示す健常な椎体 海綿骨のリモデリングシミュレーション (case N)の16th step において得られた骨梁構 造を用いた.したがって,初期状態においては,図7.1(b) に示す Region 1~7のファブ

(a) 海綿骨の初期形態および境界条件

(b) Region 1~7 における海綿骨のファブリック楕円

図 7.1 スクリューを装着した椎体モデル (case I)

94 第7章 骨梁表面リモデリングシミュレーションの工学的応用

リック楕円に代表されるように、骨梁は体幹軸方向に配向している.また、皮質骨の形 態は、付録 A.7 に示す健常椎体 (case N) と同様の形態とし、スクリューは外径 4.0 mm とした.実際の荷重状態を模擬するため、椎体の上下には、線維輪 (Annulus Fibrosus) と髄核 (Nucleus Pulposus) からなる椎間板、および軟骨終板 (Cartilaginous End-Plate) を配置した.椎間板、軟骨終板、およびスクリューは、等方線形弾性体と仮定し、そ れぞれのヤング率 E および ポアソン比 ν は、表7.1 に示す値とした (Belytschko *et al.*, 1974; 西澤ら、1994; 池渕ら、1995).体重による圧縮荷重を想定した境界条件とし て、椎体には体幹軸方向の圧縮荷重 $F_1 = 588$ N を仮想的な剛体板を介して与えた.モ デルの下端面は固着とした.また、スクリューの端部には、体幹軸方向に体重の 1/10 の大きさの荷重 $F_2 = 58.8$ N を与えた (池渕ら、1995).全解析領域の要素分割数は、縦 128 個 × 横 290 個、Pixel 要素の大きさは、一辺 250 μ m とした.応力解析は、厚みを 1.0 mm とし、二次元平面ひずみ問題として行った.この際、スクリューから骨に引張 荷重が伝達されないものと仮定した.リモデリング則に含まれるモデルパラメータは、 図3.3 中の感知半径を $l_L = 1.0$ mm、図 3.4 中の不感帯の閾値を $\Gamma_u = 4.0$, $\Gamma_l = -5.0$ とした.

7.2.2 スクリュー装着時の海綿骨形態変化

リモデリングにより,部位の違いに応じて特徴的な海綿骨形態の変化が生じ,20th step においては,図7.2(a) に示す海綿骨形態が得られた.まず,スクリュー先端前方の Region 1 では,骨梁が左回りに回転し,20th step におけるファブリック楕円の主方向 Θ_H は,図7.2(b) に示すように,初期状態に対して -12° 変化した.また,骨梁 構造の異方性の程度を表す楕円の長径と短径の比 H_1/H_2 は,初期状態に対して 17% 増加した.

	表 7.1	椎間板お	よびスク	リュー	・の材料定数
--	-------	------	------	-----	--------

	E	ν
Annulus Fibrosus	$20\mathrm{MPa}$	0.45
Nucleus Pulposus	$1\mathrm{kPa}$	0.49
Cartilaginous End-Plate	$20\mathrm{MPa}$	0.45
Pedicle Screw	$200\mathrm{GPa}$	0.29

(a) 海綿骨の骨梁構造

(b) Region 1~7 における海綿骨のファブリック楕円

図 7.2 スクリューを装着した椎体の海綿骨形態変化 (case I, 20th step)

96 第7章 骨梁表面リモデリングシミュレーションの工学的応用

スクリュー下方においては、スクリューの先端に近い Region 2、スクリュー中央部 の Region 3、および皮質骨弓状部に近い Region 4 において、それぞれ異なる骨梁配 向の変化が生じた. Region 2 においては、骨梁が左回りに回転し、20th step におけ るファブリック楕円の主方向 Θ_H は、初期状態に対して -20° 変化した. また、異方 性の程度 H_1/H_2 は、初期状態に対して 21% の増加となった. 一方、Region 3 および Region 4 においては、骨梁は右回りに回転し、20th step におけるファブリック楕円の 主方向 Θ_H は、初期状態に対してそれぞれ 7° および 21° の変化となった. 異方性の程 度 H_1/H_2 は、初期状態に対して Region 3 で 19%、Region 4 で 13% の増加となった.

スクリュー上方の Region 5~7 においては, 骨梁配向はほぼ一定であった. 20th step における異方性の程度 H_1/H_2 は, スクリュー先端に近い Region 5 およびスクリュー 中央部の Region 6 ではほぼ一定であった. 一方, 皮質骨弓状部に近い Region 7 にお いては, 初期状態に対して 22% の増加となった.

このような骨梁形態の変化により、海綿骨の平均体積分率 BV/TV は、図7.3(a) に 示すように減少し、16th step では初期形態に対し 11% の減少となった. また、海綿 骨と皮質骨を併せた骨部の全ひずみエネルギ U_{Bone} は、スクリューの装着前に相当す る case N の 16th step に対して、スクリューを装着した case I の初期状態において

(a) 海綿骨の平均体積分率 *BV/TV* (b) 骨部の全ひすみエネルギ U_{Bon}

図 7.3 case I における海綿骨の平均体積分率 *BV/TV* および骨部の全ひず みエネルギ U_{Bone} の変化

32%増加した.リモデリング過程におけるひずみエネルギ U_{Bone} は,図7.3(b) に示すようにほぼ一定であり,骨部の構造体としての剛性が変化していないことが分かる.

以上のように、スクリューの装着によって変化した力学状態に応じて、部位の違い に応じた特徴的な骨梁構造の変化が得られた.特に、スクリュー下方の Region 2~4 においては、スクリュー装着に伴う骨梁形態の変化が最も顕著に示された.また、ス クリューの装着により増加した骨部の全ひずみエネルギは、リモデリング過程におい てほぼ一定値を保つことが示された.このひずみエネルギに表される骨構造の剛性は、 適切なスクリューの装着を行う際に重要になると考えられる.

7.3 スクリュー近傍における骨梁形態変化

スクリューを適切に装着する際には,第7.2節で示した海綿骨レベルの巨視的な骨 構造に加えて,スクリュー近傍における微視的な骨梁構造が重要になると考えられる. 本節では,スクリューと海綿骨との界面における微視的な骨梁形態変化について検討 するため,スクリュー近傍を想定した骨梁表面リモデリングシミュレーションを行う.

7.3.1 スクリュー近傍の海綿骨モデル

スクリュー近傍の海綿骨について、図 7.4 に示す Pixel モデルを作成した. 骨梁の初期 形態は,等方性を仮定し,図 7.4(a) に示すように外径 160~200 μ m,内径 80~120 μ m の 円環状の骨梁をランダムに配置して作成した. 海綿骨の平均体積分率は,BV/TV = 0.63とした.スクリューは,ピッチ 0.7 mm,ネジ山の高さ 0.4 mm とし,材料定数は,第 7.2 節と同様にヤング率 E = 200 GPa,ポアソン比 $\nu = 0.29$ とした.

境界条件は、第7.2節で示した case Iのスクリュー上部における圧縮の荷重状態 (case Sc)、およびスクリューに引抜き荷重が加わった状態 (case Ss)の2通りを想定し、 図7.4(b) に示すように、case Sc においてはスクリュー上面に圧縮応力 $\sigma = 1.0$ MPa を、case Ss においてはせん断応力 $\tau = 1.0$ MPa をそれぞれ与えた.また、海綿骨部の 左右および下側の3面について、面外方向の変位のみを拘束した.なお、シミュレー ション結果については、境界条件の影響が十分小さい図7.4(a)の白実線で囲まれた矩 形領域、すなわち、図7.4(c) に示す領域に着目する.着目領域においては、異方性の 程度 $H_1/H_2 = 1.07$ であり、骨梁構造が等方であることが確認される.

図 7.4 スクリュー近傍における海綿骨の Pixel モデル

全解析領域の要素分割数は,縦140 個 × 横280 個, Pixel 要素の大きさは一辺20 μ m とした. 応力解析は,厚みを1.0 mm とし,二次元平面ひずみ問題として行った.こ の際,スクリューから骨に引張荷重が伝達されないものと仮定した.リモデリング則 に含まれるモデルパラメータは,図3.3 中の感知半径を $l_L = 1.0$ mm,図3.4 中の不感 帯の閾値を $\Gamma_u = 4.0$, $\Gamma_l = -5.0$ とした.

7.3.2 圧縮応力およびせん断応力に対する骨梁形態変化

圧縮応力を与えた場合 (case Sc),およびせん断応力を与えた場合 (case Ss) について,20th step において得られた骨梁形態をそれぞれ図7.5(a)および (b) に示す. 圧縮 応力を与えた case Sc においては、リモデリングの進行に伴い、図7.5(a) 左に示すように、スクリューに与えた圧縮応力の方向に太い骨梁が形成された. また、ネジ山の

(a) 圧縮応力 (case Sc)

(b) せん断応力 (case Ss)

図 7.5 スクリュー近傍における海綿骨形態とファブリック楕円の変化 (20th step)

斜面からは、斜面法線方向に伸びる骨梁が形成された.ネジ部の遠方におけるファブ リック楕円については、図 7.5(a) 右に示すように、楕円の主方向 Θ_H が圧縮方向とほ ぽ一致し、異方性の程度 H_1/H_2 は 1.22 となった.

一方, せん断応力を与えた case Ss においては, 図 7.5(b) 左に示すように, 圧縮力 を受けるネジ山の右側斜面において, 斜面の法線方向および接線方向に骨梁が形成さ れた. これに対して, スクリューから荷重を受けないネジ山の左側では, 骨梁の欠落 が生じた. また, ネジ山の谷底部においても骨梁の欠落が顕著に示された. ネジ部か ら遠方においては, せん断応力に応じて 45°方向に傾いた格子状の骨梁が形成された. スクリュー遠方におけるファブリック楕円は, 図 7.5(b) 右に示すように, 楕円の主方 向 Θ_H は約 45° となり, 異方性の程度 H_1/H_2 は 1.05 なった.

また, 圧縮応力を与えた case Sc およびせん断応力を与えた case Ss の両者において, 図 7.6(a) に示すように,海綿骨の平均体積分率 BV/TV は減少し, 20th step におい ては,初期状態に対して case Sc で 18%, case Ss で 24%の減少となった.骨部の全ひ ずみエネルギ U_{Bone} は,図 7.6(b) に示すように減少し,20th step においては,初期 状態に対して case Sc で 36%, case Ss で 54%の減少となった.したがって,荷重状態 に応じたリモデリングにより,骨梁構造の剛性が増加したことが分かる.

図 7.6 case Sc および Ss における海綿骨の平均体積分率 BV/TV および骨 部の全ひずみエネルギ U_{Bone} の変化

以上のように、スクリューに与えた応力に応じた骨梁形態の変化が得られた.また、 せん断応力を与えた case Ss においては、ネジ山の左側と谷底部において骨梁の欠落が 顕著に示された.これは、応力遮へいによる骨吸収現象を表現するものであり、スク リュー装着時の問題点である緩みの原因になると考えられる.

7.4 スクリュー周囲における三次元骨梁形態変化

スクリュー周囲の海綿骨における実際の骨梁構造変化を定量的に評価する際には、骨 梁構造,スクリューの形状,および荷重条件などを三次元問題として取り扱う必要が ある.本節では,三次元的な骨梁構造変化について検討するため,第7.2節および第 7.3節で示した骨梁表面リモデリングシミュレーションを三次元問題へ拡張する.

7.4.1 固定用スクリュー装着が海綿骨形態に与える影響

ここでは,第7.2節で示した固定用スクリューを装着した椎体 (case I) のリモデリン グシミュレーションを,三次元問題へ拡張する.

スクリューを装着した椎体の三次元モデルとして、図7.7 に示す Voxel モデルを作 成した. 椎体は、前後軸および左右軸方向について直径 50.0 mm、体幹軸方向につい て高さ 25.0 mm とし、スクリューは、直径 4.0 mm とした. なお、以降では、左右軸を X_1 軸、前後軸を X_2 軸、体幹軸を X_3 軸とし、矢状面に関する対称性を仮定して、1/2 領域のみを解析対象とする. 初期状態における海綿骨の骨梁構造は、付録 A.8 に示す 健常な椎体海綿骨のリモデリングシミュレーションの 16th step において得られた骨梁 構造を用いた. したがって、図7.7(a) 右に示す X_2 - X_3 および X_1 - X_3 断面について厚 み 1.5 mm で切り出した像、および図 7.7(b) に示す Region A~C におけるファブリッ ク楕円体から分かるように、初期状態において骨梁は体幹軸方向に配向している. 骨 梁構造の形態特徴量 (付録 A.2) は、骨梁の平均体積分率 BV/TV = 0.36、骨梁の平均 厚さ $Tb.Th = 929 \mu$ m、単位長さあたりの骨梁数 $Tb.N = 0.39 \text{ mm}^{-1}$ 、および骨梁間の 平均距離 Tb.Sp = 1.66 mmであった. 全解析領域の要素分割数は、 $X_1 \times X_2 \times X_3$ 軸方 向を 125 個 × 250 個 × 128 個とし、Voxel 要素の大きさは一辺 250 μ m とした. この中 で、骨部とスクリュー部を合わせた要素数は約 79 万個とした.

境界条件として、モデルの上端面には一様な圧縮変位 U3 を与え、モデルの下端面

図 7.7 スクリューを装着した椎体の Voxel モデル
は固着した.この際, 圧縮変位 U_3 を, 全荷重 $F_1 = 297$ N となるように各計算 step で 調節した.また,スクリューの端部には, $F_2 = 58.8$ N を与えた.なお,応力解析を行 う際は,スクリューから骨に引張荷重が伝達されないものと仮定した.リモデリング 則に含まれるモデルパラメータは,図 3.3 中の感知半径を $l_L = 2.5$ mm,図 3.4 中の不 感帯の閾値を $\Gamma_u = 1.0$, $\Gamma_l = -1.25$ とした.

リモデリングにより得られた骨梁構造として、8th step における骨梁構造の三次元 像、 X_2 - X_3 および X_1 - X_3 断面像を図7.8 に示す.スクリュー先端前方の Region A お よび Region B においては、体幹軸方向の骨梁が太くなり、それと垂直な方向の骨梁は 吸収される傾向が示された.その結果、ファブリック楕円体にも示されるように、体 幹軸方向の骨梁配向がより顕著となり、異方性の程度 H_1/H_3 は、初期状態に対して Region A で 20%、Region B で 11% それぞれ増加した.

一方,スクリュー下方の Region C においては,図7.8 (b)の X₂-X₃ 断面像に示され るように,スクリュー先端から根元部にかけてアーチ状の骨梁が形成された.また,ス クリュー先端から椎体下部に伸びる骨梁は体幹軸方向から左回りに,スクリューの根 元から椎体下部へと形成された骨梁は体幹軸方向から右回りに,それぞれ傾いたもの となった.異方性の程度 H₁/H₃ は,初期状態に対して 11%の増加となり,Region A と比較して増加率は小さくなった.これは,各部における骨梁構造変化の傾向が異な り,領域全体としては,ばらついた骨梁構造となったためである.このように,Region C においては,スクリュー装着が骨梁形態変化に与える影響が最も顕著に示された.

以上のように、スクリューの装着に応じた巨視的な三次元骨梁構造変化が得られた. ここでは、第7.2節で示した二次元シミュレーションと類似した境界条件を用いたた め、得られた結果は、二次元シミュレーションの結果と定性的に一致する傾向を示し た.しかしながら、実際の椎体における三次元的な外荷重条件およびスクリューの挿 入角度などを考慮することにより、より複雑な骨梁構造変化の検討が可能になると考 えられる.

7.4.2 スクリュー近傍における骨梁形態変化

ここでは, 第7.3節で示したスクリュー近傍における海綿骨のリモデリングシミュ レーション (case Sc および case Ss)を,三次元問題へ拡張する.

スクリュー近傍の三次元海綿骨モデルとして、図7.9 に示す Voxel モデルを作成し

(a) 海綿骨の三次元像およびファブリック楕円体

図 7.8 スクリュー装着による三次元海綿骨形態とファブリック楕円体の変化 (case I, 8th step)

図 7.9 スクリュー近傍における海綿骨の Voxel モデル

た.初期における骨梁構造は、第7.3節と同様に等方性を仮定し、図7.9(a) に示すよう に外径 1190 μ m,内径 910 μ mのドーナツ状の骨梁をランダムに配置して作成した.骨 梁構造の形態特徴量 (付録 A.2) は、骨梁の平均体積分率 *BV/TV* = 0.46,骨梁の平均 厚さ *Tb.Th* = 312 μ m,単位長さあたりの骨梁数 *Tb.N* = 1.48 mm⁻¹,および骨梁間の 平均距離 *Tb.Sp* = 363 μ m とした.スクリューは、外径 4.9mm,内径 3.0mm,および ピッチ 1.8mm とし、その長軸方向を図7.9(a) に示す X_2 軸方向と一致させた. Voxel 要素の大きさは一辺 70 μ m とした.すなわち、全解析領域の要素分割数は、図7.9 に 示す $X_1 \times X_2 \times X_3$ 軸方向を 200 個 × 100 個 × 100 個とした.この中で、初期状態に おける骨部とスクリュー部を合わせた要素数は約 91 万個とした.

境界条件として、第7.3節と同様に、case Iのスクリュー上部における圧縮の荷重状 態 (case Sc)、およびスクリューに引抜き荷重が加わった状態 (case Ss) の 2 通りを想 定し、case Sc においてはスクリュー全体に X_3 軸方向の一様変位 U_3 を、case Ss に おいてはスクリュー全体に X_2 軸正方向の一様変位 U_2 を、それぞれ与えた. この際、 図 7.9(b) に示すように、case Sc および case Ss におけるスクリューの上面の見かけの 応力が 1.0 MPa となるように、一様圧縮変位 U_3 および U_2 を各計算 step で調整した. 海綿骨モデルの底面および側面については、面外方向の変位のみを拘束した. なお、シ ミュレーション結果については、境界条件の影響が十分小さい図 7.9(a) の破線で囲ま れた直方体領域、すなわち、図 7.9(c) に示す領域に着目する. なお、応力解析を行う 際は、スクリューから骨に引張荷重が伝達されないものと仮定した. リモデリング則 に含まれるモデルパラメータは、図 3.3 中の感知半径を $l_L = 700 \, \mu$ m、図 3.4 中の不感 帯の閾値を $\Gamma_u = 1.5$, $\Gamma_l = -1.875$ とした.

初期状態における図 7.9(c) に示す X_2 - X_3 断面について,リモデリング駆動力 Γ の 分布を図 7.10 に示す.スクリューに圧縮荷重を与えた case Sc においては,図 7.10(a) 中の〇印で示すように,形成側 ($\Gamma > 0$)のリモデリング駆動力を有する骨梁表面が, 圧縮荷重を与えた X_3 方向に沿って分布する.一方,スクリューにせん断荷重を与え た case Ss においては,図 7.10(b)中の〇印で示すように, case Sc において形成側の リモデリング駆動力であった骨梁表面が吸収側 ($\Gamma < 0$)のリモデリング駆動力に変化 している.このように, case Sc と case Ss のリモデリング駆動力の分布には、与えた 荷重に応じた違いが確認される.特に、ネジ山の谷部に着目すると、case Ss において は、リモデリング駆動力が吸収側となる骨梁表面の割合が case Sc に比較して大きい

(a) 圧縮荷重 (case Sc)

(b) せん断荷重 (case Ss)

図 7.10 スクリュー近傍における初期状態の骨梁表面リモデリング駆動力 Γ (X₂-X₃ 断面) 108 第7章 骨梁表面リモデリングシミュレーションの工学的応用

ことが分かる.

リモデリングにより得られた骨梁構造として, case Sc および case Ss の 8th step における海綿骨形態の三次元像, X_1 - X_3 および X_2 - X_3 断面像を, それぞれ図7.11(a) および (b) に示す.スクリューに圧縮荷重を与えた case Sc においては, X_1 - X_3 断面 像から分かるように,スクリューから放射状に骨梁が形成された.また,スクリュー の直下においては, X_2 - X_3 断面像から分かるように,圧縮荷重を与えた X_3 方向に骨 梁が配向した.これに対して,スクリューにせん断荷重を与えた case Ss においては, X_1 - X_3 断面像から分かるように, case Sc ほど明確ではないが,放射状に骨梁が形成 される傾向が確認された.一方,スクリューの直下においては, X_2 - X_3 断面像から分 かるように,せん断荷重に応じて 45° 方向に傾いた格子状の骨梁が形成された.さら に,スクリューのネジ山部においては,圧縮力を受けるネジ山の右側の先端近傍で骨 梁の形成が,ネジの谷底部,および骨梁から引張力が伝達されないネジ山の左側で骨 梁の欠落が,それぞれ示された.

case Sc と case Ss で得られた骨梁構造を比較すると、スクリューの遠方における骨 梁配向について違いが見られた.また、ネジ山部においては、case Sc で骨梁が形成さ れたのに対して、case Ss で顕著な骨梁の欠落が示され、両者の間に骨梁の量的な違い が示された.ここで、case Sc および case Ss について、骨梁とスクリューの接触面積 S を初期状態の接触面積 S_0 で無次元化した値 S/S_0 を、それぞれ図7.12(a) および(b) に示す.case Sc においては、ネジ山の先端部(B) で接触面積 S/S_0 は緩やかに増加し、 ネジ山の斜面(A および C)、およびネジ山の谷底部(D) で減少した.一方、case Ss で は、接触面積 S/S_0 は A ~ D のいずれの部分についても減少した.特に、スクリューか らの引張力を伝達しないネジ山の左側の斜面(A) およびネジ山の谷底部(D) では、接 触面積 S/S_0 の減少速度が大きく、8th step においては、ほぼ0 となった.このような 骨梁とスクリューの接触面積は、骨とスクリューの機械的な結合を行う際に重要にな ると考えられる.

以上のように、スクリューに与えた荷重に応じた骨梁構造変化が得られた. 圧縮荷 重を与えた case Sc において得られた圧縮方向の骨梁配向、およびせん断荷重を与え た case Ss において得られた格子状の骨梁構造などは、第7.3 節で示した二次元シミュ レーションの結果と定性的に一致するものである. 一方、case Sc と case Ss の両者に ついて、 X_1 - X_3 断面と X_2 - X_3 断面で明らかに異なる骨梁構造が得られたことから、リ

図 7.11 スクリュー近傍における三次元海綿骨形態変化 (8th step)

図 7.12 スクリューに接する骨梁面積 S/So の変化

モデリングによる三次元的な骨梁構造変化が確認された.

本節で示した固定用スクリューのように、長期間装着するインプラントの形状設計 を行う際には、インプラント周囲における骨梁構造変化を考慮する必要がある.本章 で示した骨梁表面リモデリングシミュレーションは、イメージベーストモデルと組み 合わせて用いることにより、様々な骨形状およびインプラント形状に対する骨梁構造 変化を詳細に評価する手段として有用であるといえる.さらに、これまでに提案され てきた構造物の形状最適化シミュレーションとリモデリングシミュレーションを融合 することにより、リモデリングを考慮したインプラントの形状設計が計算機内で可能 になるものと期待される.すなわち、このような数値シミュレーションを基礎とした インプラントの設計システムが、長期間における装着性に優れたインプラントの開発 に大きく貢献するものと考えられる.

7.5 結 言

骨リモデリングの計算機シミュレーションは、様々な状況を予測する際の有効な手 段であり、その工学的な応用が広く期待される.特に、整形外科領域で用いられるイ ンプラントの設計においては、力学的なリモデリングによる骨構造変化を詳細に評価 することが不可欠であり、リモデリングシミュレーションの援用が有効である.

本章では、インプラントの一種である椎体に装着する固定用スクリューを対象とし て、骨梁表面リモデリングシミュレーションを応用し、スクリュー周囲の骨梁構造変化 について検討を行った.まず、固定用スクリューの装着が椎体海綿骨形態に与える影 響を検討するため、スクリューを装着した椎体の二次元骨梁表面リモデリングシミュ レーションを行った.その結果、スクリュー装着により変化した海綿骨の力学状態に応 じて、骨梁構造が変化することが示された.特にスクリューの下部においては、スク リューの先端部、中央部および根元部で骨梁構造の変化に違いが見られた.次に、スク リューの近傍における海綿骨の二次元骨梁表面リモデリングシミュレーションを行い、 スクリューに加わる荷重と骨梁構造の変化との関連について検討した.スクリューに 圧縮応力を与えた場合、圧縮応力の方向に骨梁が配向し、ネジ山の斜面からは斜面法 線方向に伸びる骨梁が形成された.一方、スクリューにせん断応力を与えた場合では、 ネジ山の遠方で45°方向に傾いた格子状の骨梁構造が形成され、ネジ山部では顕著な 骨梁の欠落が示された.このような骨梁の欠落は,応力遮へいによる骨吸収現象を表 現するものであり,スクリューの緩みの原因になるものと考えられる.さらに,スク リュー周囲における骨梁構造変化を詳細に評価するため,これらのシミュレーション を三次元問題へ拡張した.その結果,実際の椎体におけるスクリュー周囲の三次元的 な骨梁構造変化を定量的に評価する際,本シミュレーションが有効であることが示さ れた.以上より,インプラントの形状設計問題における本シミュレーション手法の応 用可能性が示された.

第8章

結 論

骨の構造は、力学環境に応じたリモデリングにより機能的に適応変化する.この骨 リモデリング現象を解明するためには、従来の巨視的な検討に加えて、骨梁レベルあ るいは細胞レベルといった、より微視的なメカニズムへと掘り下げた検討が必要にな る.本研究では、骨梁の表面リモデリングについて、微視的な骨梁レベルから巨視的な 海綿骨レベルに至る階層的なメカニズムを解明するため、数理モデルと計算機シミュ レーションを用いた検討を行った.さらに、構築した骨梁表面リモデリングシミュレー ション手法の工学的応用の可能性を探るため、整形外科領域で用いられるインプラン トが骨梁構造変化に与える影響に着目し、提案したシミュレーション手法の有用性を 検討した.以下に、本論文の各章で得た結果をまとめて示す.

第2章では、本研究の背景と位置付けを示した.まず、骨の力学構造の階層性を示 し、海綿骨の微視構造である骨梁の表面リモデリング現象について概観した.次に、骨 リモデリングに関して、数理モデルと計算機シミュレーションを用いたこれまでの研 究を概観した.さらに、整形外科領域で用いられるインプラントの評価と設計に骨リ モデリングシミュレーションを応用した研究を概観し、本論文で取り組んだ骨梁表面 リモデリングシミュレーションの必要性について述べた.

第3章では,骨梁表面リモデリングの計算機シミュレーション手法を示した.まず, 骨梁表面リモデリングの数理モデルとして,局所的な力学刺激の一様化を目指すリモ デリング則を導入した.また,実際の骨梁構造を詳細に反映したイメージベーストモ デルを用いた大規模有限要素法により,骨梁個々の力学状態が詳細に評価されること を示した.さらに,骨梁表面リモデリング則とイメージベーストモデルを組み合わせ ることにより,海綿骨レベルの骨構造について,骨梁個々の構造変化を直接表現する

113

114 第8章 結 論

骨梁表面リモデリングの計算機シミュレーション手法を構築した.

第4章では、リモデリングシミュレーションに導入した骨梁表面リモデリング則の 基本的特性について検討した.まず、単純な分布荷重を受ける二次元海綿骨モデルを 用いた骨梁表面リモデリングシミュレーションを行い、リモデリング則に含まれるモ デルパラメータの特性を検証した.次に、ラット椎体のイメージベーストモデルを用 いて実際の海綿骨におけるリモデリングの活性度について検討した.さらに、リモデ リング則の特性の検討を通じて、リモデリングを担う細胞が力学刺激を感知するメカ ニズムについて考察を加えた.

第5章では、実際の骨組織が置かれる複雑な荷重環境下におけるリモデリング現象 として、大腿骨近位部海綿骨における骨梁構造変化について検討した.ここでは、大 規模な Pixel モデルを用いて、単一荷重および複合荷重を受ける大腿骨近位部の二次 元骨梁表面リモデリングシミュレーションを行い、骨梁表面リモデリングがもたらす 海綿骨組織全体の骨梁構造変化を示した.その結果、実際に観察される大腿骨近位部 の骨梁構造は、大腿骨の複雑な皮質骨形状や変動する荷重環境に応じた骨梁表面リモ デリングの結果としてもたらされることが示された.

第6章では, in vivoの実験系において観察される海綿骨の機能的な適応現象につい て検討した.まず,圧縮荷重を受ける骨梁単体のリモデリングシミュレーションを行 い,表面リモデリングにより得られる三次元骨梁構造変化の基本的特性について検証 した.次に,実験で用いられた海綿骨試料のイメージベーストモデルを用いて,三次 元骨梁表面リモデリングシミュレーションを行った.その結果,実験系で観察される 骨梁構造の変化が, 微視的な力学刺激に応じた骨梁表面リモデリングにより得られる ことが示された.さらに,個々の骨梁構造の適応的な変化が,海綿骨レベルの巨視的 な構造の機能的な適応現象をもたらすことが示された.

第7章では, 骨梁表面リモデリングシミュレーションの工学的応用の可能性について 検討した.ここでは, インプラントの一種である固定用スクリューを装着した椎体海 綿骨の二次元骨梁表面リモデリングシミュレーションを行った.その結果, スクリュー 装着により骨梁構造が変化し, スクリューに作用する荷重がスクリュー近傍の微視的 な骨梁構造変化に影響を与えることが示された.さらに, これらのリモデリングシミュ レーションを三次元問題へ拡張し, スクリュー周囲における骨梁構造変化を定量的に 評価する手段として, 本シミュレーションの有用性を検証した.以上の結果より, イ ンプラントの形状設計における本シミュレーションの応用可能性が示された.

以上のように、本論文では、計算バイオメカニクス的な手法を用いて、微視的な力 学刺激に応じた表面リモデリングによる骨梁構造変化と、その結果として生じる巨視 的な海綿骨レベルの機能的適応現象を明らかにした.今後、リモデリングのメカニズ ムの解明を目指した実験的な検討が進む中で、計算バイオメカニクス的な手法は、よ り微視的な未知のメカニズムを新しい実験事実から探る手段として、益々重要になる ものと考えられる.

さらに、本論文で構築した骨梁表面リモデリングの計算機シミュレーション手法は、 骨構造の計測技術および画像処理技術を融合することにより、新しいインプラントの 設計手法を提供するものである.また、生体組織工学への応用として、本シミュレー ション手法を、骨組織に移植する骨代替物の形状設計問題に適用することが考えられ る.以上のように、計算バイオメカニクス的手法を応用することにより、計算機シミュ レーションを基礎としたインプラントの総合的な設計システムの構築が期待される.

116 第8章 結 論

A.1 EBE/PCG 法を用いた大規模剛性方程式の解法

有限要素法においては、全体構造剛性マトリクス A, 既知節点力ベクトル b, および未知節点変位ベクトル x からなる連立一次方程式

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \tag{A.1}$$

を解く事により、未知節点変位ベクトル x が求められる.本論文で用いるイメージベー ストモデルのように、要素数が多い大規模な有限要素モデルにおいては、この連立一次 方程式(A.1)が大次元問題となり、計算機の記憶容量および計算時間などの計算コスト が問題となる.本論文では、大次元の連立一次方程式に適した解法として、Hughes *et al*. (1987)が示した EBE/PCG(Element by Element Preconditioned Conjugate Gradients) 法を用いる.

Hestenes and Stiefel (1952) により提案された共役勾配法 (Conjugate Gradient Method) は、反復法の一種であり、ある特定の条件下において収束が速い、および有限回の計 算で厳密解に到達するなど、いくつかの利点を持つ (戸川、1977). この共役勾配法に、 反復計算における収束速度を向上させるための変数変換による前処理を組み合わせた ものが、前処理付き (Preconditioned) 共役勾配法である. 前処理付き共役勾配法によ り式 (A.1) を解く際は、以下の手順 (1)~(11) にしたがう (Hughes *et al.*, 1987).

- (1) m = 0 (A.2)
- $\boldsymbol{x}_0 = \boldsymbol{0} \tag{A.3}$
- $\boldsymbol{r}_0 = \boldsymbol{b} \tag{A.4}$

(4)
$$p_0 = z_0 = B^{-1} r_0$$
 (A.5)

(5)
$$\alpha_m = \frac{(\boldsymbol{r}_m \cdot \boldsymbol{z}_m)}{(\boldsymbol{p}_m \cdot \boldsymbol{A} \boldsymbol{p}_m)}$$
(A.6)

(6)
$$\boldsymbol{x}_{m+1} = \boldsymbol{x}_m + \alpha_m \boldsymbol{p}_m \tag{A.7}$$

(7) $\boldsymbol{r}_{m+1} = \boldsymbol{r}_m - \alpha_m \boldsymbol{A} \boldsymbol{p}_m \tag{A.8}$

(8)
$$z_{m+1} = B^{-1} r_{m+1}$$
 (A.9)

(9)
$$\beta_m = \frac{(\boldsymbol{r}_{m+1} \cdot \boldsymbol{z}_{m+1})}{(\boldsymbol{r}_m \cdot \boldsymbol{z}_m)}$$
(A.10)

(10)
$$\boldsymbol{p}_{m+1} = \boldsymbol{z}_{m+1} + \beta_m \boldsymbol{p}_m \qquad (A.11)$$

(11)
$$\|\boldsymbol{r}_{m+1}\| \leq \delta_L \|\boldsymbol{r}_0\|$$
であれば収束とみなして計算を終了し,

収束が十分でない場合 m = m + 1 として手順(5) に戻る

ここで、*m* は収束計算の反復回数、 x_m は真の解ベクトル x の第 *m* 近似解ベクトル、 *r_m* は残差ベクトル、*p_m* は修正方向ベクトル、*B* は前処理行列、*z_m* は補助変数ベク トル、 α_m は修正量、 β_m は *p_m* の修正係数、 δ_L は収束判定における許容誤差をそれぞ れ表す. また、(·) および (||||) は、それぞれベクトルのスカラー積およびユークリッ ド・ノルムを表す. この解法では、収束特性が前処理行列 *B* の選択に大きく依存する ことが知られており、能率的な計算を行うための行列 *B* の形式がいくつか提案され ている (Hughes *et al.*, 1987).本論文では、収束特性に加えて、前処理行列 *B* が必要 とする計算メモリも考慮し、行列 *B* として、式(A.1) 中のマトリクス *A* の対角成分 *diag*(*A*) を用いた (van Rietbergen *et al.*, 1995). また、手順(11)の収束判定に用いた 許容誤差 δ_L は、本論文では 10⁻³ から 10⁻⁵ とし、解くべき問題において必要とされ る精度に応じて調節した.

式(A.6) および (A.8) 中の全体剛性マトリクス A と修正方向ベクトル p_m の積で表 されるベクトル Ap_m は、要素数を N_e とすると、要素 i ($i = 1, 2, ..., N_e$) の剛性マト リクス A_i^e および 要素 i に関する修正方向ベクトル $p_{i_m}^e$ から、

$$\boldsymbol{A}\boldsymbol{p}_{m} = \sum_{i=1}^{N_{e}} \boldsymbol{A}_{i}^{e} \boldsymbol{p}_{im}^{e}$$
(A.12)

と求められる. このように, 各要素 *i* についてマトリクスとベクトルの積 $A_i^e p_{im}^e$ を 求めてから, これらを足し合わせてベクトル Ap_m を求める手法を EBE (Element by Element) 法 (Hughes *et al.*, 1987) と呼ぶ. この式 (A.12) で示される EBE 法を用いて 式 (A.7) および (A.10) 中の Ap_m を計算することにより, 全体剛性マトリクスを直接 作成することなく, 手順 (1)~(11) に示される PCG 法により近似解 x_i を求めること が可能となる.

A.2 骨梁構造の形態特徴量

海綿骨の平均的な骨梁構造特性を表すために, 骨梁構造の形態特徴量として骨梁の平 均体積分率 *BV/TV* (Bone Volume / Tissue Volume), 骨梁の平均厚さ *Tb.Th* (Trabecular Thickness), 単位長さあたりの骨梁数 *Tb.N* (Trabecular Number), 骨梁間の平均 距離 *Tb.Sp* (Trabecular Separation), および単位体積当たりの連結数 *CON* (Connectivity) などが用いられる (Parfitt *et al.*, 1987). これらの特徴量は, 海綿骨の体積 *TV* (Tissue Volume), 骨梁の体積 *BV* (Bone Volume), 骨梁の表面積 *BS* (Bone Surface), およびオイラー数 N (Euler Number) と以下のように関係付けられる (Parfitt *et al.*, 1987).

$$BV/TV = \frac{BV}{TV} \tag{A.13}$$

$$Tb.Th = \frac{2}{BS/TV} \tag{A.14}$$

$$Tb.N = \frac{BV/TV}{Tb.Th}$$
(A.15)

$$Tb.Sp = \frac{1}{Tb.N} - Tb.Th \tag{A.16}$$

$$CON = (1 - N)/TV \tag{A.17}$$

骨梁構造が Pixel/Voxel 要素で離散的に表現されている場合, 骨梁の平均体積分率 BV/TV, 骨梁の平均厚さ Tb.Th, 単位長さあたりの骨梁数 Tb.N, および, 骨梁間の 平均距離 Tb.Sp は以下のように求められる (Feldkamp et al., 1989).

まず,ある断面について,図A.1 に示すように,Pixel/Voxel要素の中心を通るよう に格子状の走査線 (Test Line)を引き,骨梁要素内における走査線同士の交点の数 N_B , 骨梁と骨髄の境界面と走査線との交点の数 N_{BMI} ,着目する断面の全領域における走 査線同士の交点の数 N_T ,および走査線の全長 L_T を求める.ここで, P_P , P_L をそれ ぞれ

$$P_P = \frac{N_B}{N_T} \tag{A.18}$$

$$P_L = \frac{N_{BMI}}{L_T} \tag{A.19}$$

とすると、 P_P は BV/TV そのものであり、式(A.13) より

$$BV/TV = \frac{BV}{TV} = P_P \tag{A.20}$$

図 A.1 Pixel/Voxel モデルにおける形態特徴量の計算

である.また,骨梁の単位体積当たりの表面積 BS/BV は

$$\frac{BS}{BV} = \frac{2P_L}{P_P} \tag{A.21}$$

と求まる. これらの式 (A.20) および (A.21) と,式 (A.14)~(A.16) から,骨梁の平均 厚さ *Tb.Th*,単位長さ当たりの骨梁数 *Tb.N*,骨梁間の平均距離 *Tb.Sp* がそれぞれ以 下のように求められる.

$$Tb.Th = \frac{2}{BS/BV} = \frac{P_P}{P_L} \tag{A.22}$$

$$Tb.N = \frac{BV/TV}{Tb.Th} = \frac{P_P}{P_P/P_L} = P_L \tag{A.23}$$

$$Tb.Sp = \frac{1}{Tb.N} - Tb.Th = \frac{1}{P_L} - \frac{P_P}{P_L} = \frac{1 - P_P}{P_L}$$
(A.24)

また,連結数 *CON* は,図 A.2(a) に示すような節点 (Node) と辺 (Branch) から構成 される幾何学的形態を考える際,節点間が分裂しない状態で取り除くことのできる辺 の最大数を示しており,節点数 *n* と辺数 *b* の差であるオイラー数 *N*:

$$N = n - b \tag{A.25}$$

から,式(A.17)より求められる.海綿骨の骨梁構造において連結数 CON を考える 際は,図A.2(b)に示すように骨梁と骨梁の分岐部を1つの節点,それぞれの骨梁を1

(c) Pixel/Voxelモデルにおける細線化とオイラー数Nの計算

図 A.2 連結数 CON の計算

つの辺と見なす. 例えば, 健康な海綿骨の骨梁構造に対して連結数 CON を計測する と数千/cm³ 程度であるが, 骨粗鬆症の海綿骨ではこの値が大きく減少する (Feldkamp *et al.*, 1989).

Pixel/Voxel モデルに対しては,連結数 CON を以下のようにして求めることがで きる. 骨梁形態を図 A.2(c) に示すように細線化し,前述の骨梁要素の数 N_B および骨 梁要素と骨梁要素の境界面 N_{BBI} の数を求める. この N_B と N_{BBI} よりオイラー数 Nが

$$N = N_B - N_{BBI} \tag{A.26}$$

と求められる.ここでは,節点である骨梁の分岐部の数,および辺である骨梁の数を 求めるのではなく,両者の差であるオイラー数を直接求めている.このオイラー数 *N* から,式(A.17)を用いて連結数 *CON* が求められる.

A.3 ファブリックテンソル

海綿骨の骨梁構造の配向性を評価するために、ファブリックテンソル H (Cowin, 1985, 1986) が用いられる.ファブリックテンソルは、MIL (Mean Intercept Length) の極座標表示により描かれる図形を楕円体に近似することで得られる.

MIL は、座標系 x_i に対して描かれる方向余弦 $\mathbf{n} = [n_1 \ n_2 \ n_3]^T$ の直線が、骨梁と 骨髄との境界を横切る平均長さを表すものであり (Whitehouse, 1974; Harrigan and Mann, 1984), これを $L(\mathbf{n})$ として表示すると、ほぼ楕円体に近い形状を示す.楕円体 は、 x_i 座標系において、一般に定数 $a \sim f$ を用いて

$$ax_1^2 + bx_2^2 + cx_3^2 + 2(dx_1x_2 + ex_2x_3 + fx_3x_1) = 1$$
(A.27)

と表され、この式に

$$x_1 = L(\boldsymbol{n})n_1, \ x_2 = L(\boldsymbol{n})n_2, \ x_3 = L(\boldsymbol{n})n_3$$
 (A.28)

を代入すると,

$$\frac{1}{L^{2}(\boldsymbol{n})} = an_{1}^{2} + bn_{2}^{2} + cn_{3}^{2} + 2(dn_{1}n_{2} + en_{2}n_{3} + fn_{3}n_{1})$$

$$= M_{11}n_{1}^{2} + M_{22}n_{2}^{2} + M_{33}n_{3}^{2} + 2(M_{12}n_{1}n_{2} + M_{23}n_{2}n_{3} + M_{13}n_{3}n_{1})$$
(A.29)

の関係が得られる.ここで, M_{ij} は MIL テンソル **M** (Harrigan and Mann, 1984)の 成分であり, 座標系 x_i における成分を

$$\boldsymbol{M} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{12} & M_{22} & M_{23} \\ M_{13} & M_{23} & M_{33} \end{bmatrix}$$
(A.30)

と表すと,式(A.29)は

$$\frac{1}{L^2(\boldsymbol{n})} = \boldsymbol{n}^T \boldsymbol{M} \boldsymbol{n} \tag{A.31}$$

と表される.また、ファブリックテンソルHは、MILテンソルMと

$$\boldsymbol{H} = \boldsymbol{M}^{-\frac{1}{2}} \tag{A.32}$$

のように関係付けられる (Cowin, 1985). ここで, M は正定の二階の対称テンソルで あるため, H も同様に正定の二階の対称テンソルとなる. M を座標系 $\overline{x_i}$ に変換し

対角化すると,

$$\overline{\boldsymbol{M}} = \begin{bmatrix} M_1 & 0 & 0\\ 0 & M_2 & 0\\ 0 & 0 & M_3 \end{bmatrix}$$
(A.33)

と表される.この際,ファブリックテンソル H は

$$\overline{\boldsymbol{H}} = \begin{bmatrix} H_1 & 0 & 0\\ 0 & H_2 & 0\\ 0 & 0 & H_3 \end{bmatrix}$$
(A.34)

と表される.ここで, H_1 , H_2 , H_3 は, それぞれ H の主軸である \overline{x}_1 , \overline{x}_2 , \overline{x}_3 軸方向に おける L(n) であり, ファブリック楕円体の主軸径の半分の長さを表している.すな わち, H の固有ベクトルは骨梁構造の主軸方向を表し, その固有値は骨梁構造の主軸 方向の特徴的な長さを表す. 例えば, ファブリックテンソルの主値が3個とも等しい 場合, ファブリックテンソルは球となり, その構造は等方であると考えられる.また 主値のうち2個が同じで1個が異なる場合は垂直異方性, 3個とも異なる場合は直交 異方性を表す. A.4 単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーション 125

A.4 単一荷重を受ける大腿骨近位部海綿骨のリモデリン グシミュレーション

第5.2節の図5.1(c) に示す外転時(L2) および内転時(L3)の単一荷重を受ける大腿骨 近位部海綿骨について、リモデリングシミュレーションの結果を示す.

外転時の単一荷重を受ける大腿骨近位部海綿骨の骨梁構造変化

外転時の単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーションに より得られた16th step における骨梁構造を図A.3(a) に示す. 関節面に加わる圧縮荷 重により骨頭首部に大きな曲げ荷重が加わるため, 長管骨の外側から骨頭首部を通っ て骨頭へ伸びる骨梁群が顕著に形成された. また, この骨頭首部から伸びる骨梁群は, Region 1 に代表される骨頭部において, 骨頭上部から下部にかけて湾曲した太い圧縮 骨梁群と互いに直交網を形成した. これに対して, Region 2 に代表される大転子にお いては, 骨頭首部から外側部に伸びる一方向の引張骨梁群が形成され, その上部では 大転子に加わる引張荷重の方向に骨梁が配向した. Region 3 に代表される骨頭首部の 下方では, 立脚相の単一荷重を与えた場合に得られた図5.2 に示す構造と類似した直 交網の骨梁構造が形成されたが, 長管骨の外側部から骨頭首部へ向かう骨梁がより太 いものとなった.

各 Region 1~3 におけるファブリック楕円を図 A.3(b) に示す.異方性の程度を示す 長径と短径の比 H_1/H_2 は,直交網の骨梁群が形成された Region 1 および 3 において, それぞれ 1.15 および 1.46 となった.また,一方向の骨梁群が形成された Region 2 に おいては,異方性の程度 H_1/H_2 は 1.46 となった.各 Region における見かけの主応力 は,図 A.3(c) に示すように,直交網の骨梁群が形成された Region 1 および 3 において は,2つの主応力の絶対値の比 $|\sigma_1|/|\sigma_2|$ がそれぞれ 2.75 および 2.69 となり, Region 1 で圧縮-引張, Region 3 で引張-圧縮の応力状態であることが示された.また,一方 向の骨梁群が形成された Region 2 においては,2つの主応力の比 $|\sigma_1|/|\sigma_2|$ が 4.13 で あり,単軸引張の応力状態であった.

内転時の単一荷重を受ける大腿骨近位部海綿骨の骨梁構造変化

次に、内転時の単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーショ

図 A.3 外転時 (L2) の単一荷重を受ける大腿骨近位部海綿骨のリモデリング シミュレーション (16th step)

A.4 単一荷重を受ける大腿骨近位部海綿骨のリモデリングシミュレーション 127

ンにより得られた16th step における骨梁構造を図 A.4(a) に示す.

関節面に加わる圧縮荷重に応じて, Region 1 に代表される骨頭部では顕著な圧縮骨 梁群が形成された. 骨頭首部にはほとんど曲げ荷重が作用しないため, この骨梁群は, 図 5.2 に示す立脚相の単一荷重を受ける場合および図 A.3(a) に示す外転時の場合と比 較して, Region 3 に代表される骨頭首部の下方まで広範囲に現れている. 大転子側に おいては, Region 2 に代表されるように直交網の骨梁群が形成された. また, 関節面 に加わる圧縮荷重により大きな曲げ荷重が加わる長管部では,約45°方向に配向した 直交網の骨梁構造が得られた. このように, 大腿骨の上部では一方向に配向した骨梁 構造が, 下部では直交網の骨梁構造がそれぞれ顕著に示された.

各 Region1~3 におけるファブリック楕円を図 A.4(b) に示す. 異方性の程度 H_1/H_2 は,一方向の骨梁群が形成された Region 1 および Region 3 において,それぞれ 1.65 お よび 1.30 となり,直交網の骨梁群が形成された Region 2 においては 1.06 となった.ま た,見かけの主応力は,図 A.4(c) に示すように,一方向の骨梁群が形成された Region 1 および Region 3 においては,2つの主応力の絶対値の比 $|\sigma_1|/|\sigma_2|$ がそれぞれ 13.1 お よび 15.3 と大きく,単軸圧縮の応力状態であった.また,直交網の骨梁群が形成され た Region 2 においては,2つの主応力の絶対値の比 $|\sigma_1|/|\sigma_2|$ が 2.19 であり,引張一圧 縮の応力状態であった.

以上のように,単一荷重を受ける大腿骨近位部において,外転時および内転時の荷 重条件にそれぞれ応じた特徴的な骨梁構造が得られた.いずれの荷重条件の場合につ いても,得られた骨梁構造の主方向は,見かけの応力の主方向に良く一致し,構造の 異方性の程度は,2つの見かけの主応力値の比の大きさに対応することが分かる.

図 A.4 内転時 (L3) の単一荷重を受ける大腿骨近位部海綿骨のリモデリング シミュレーション (16th step)

A.5 ヒト大腿骨近位部海綿骨の骨梁構造

実際のヒト大腿骨近位部海綿骨においては,図A.5 に示すように,外側部から骨頭 首部にかけて伸びる骨梁群や,骨頭部において関節面から伸びる骨梁など,特徴的な 骨梁構造が観察される.また,この骨梁構造は,明確な直交網ではなく,ややばらつ きのある構造であることが分かる.第5.4節で示した複合荷重を受ける大腿骨近位部 海綿骨のリモデリングシミュレーションは,このような実際に観察される骨梁構造の 形成を良く表現している.

図 A.5 ヒト大腿骨近位部海綿骨の骨梁構造(田中, 1992)

A.6 リモデリングによる海綿骨の弾性係数テンソルの変化

海綿骨の骨梁構造の特性は、付録 A.2 に示す形態特徴量および付録 A.3 に示すファ ブリックテンソルなどにより定量的に評価される.一方,力学特性については、均質 化法 (Guedes and Kikuchi, 1990)を用いることにより、弾性係数テンソルの評価が可 能である.ここでは、ファブリックテンソルと弾性係数テンソルを用いて、骨梁表面 リモデリングによる海綿骨の構造特性と力学特性の変化について検討する.

海綿骨の弾性係数テンソル

ここでは、均質化法 (Guedes and Kikuchi, 1990) を用いて、海綿骨の巨視的な弾性 係数テンソル \overline{E} を求め、直交異方性近似を行う (van Rietbergen *et al.*, 1996).

均質化法は,微視的変数と巨視的変数を結びつける理論であり,図A.6 に示すよう に,全体構造を記述する巨視的な座標系 *x* と微視構造を記述する微視的な座標系 *y* が 導入される.この際,微視構造は巨視構造に対して十分小さく,また微視構造は周期

図 A.6 均質化法における全体構造と微視構造の関係

性を有するものと仮定される. すなわち, 巨視的な座標系 x と微視的な座標系 y の比 η :

$$\boldsymbol{y} = \boldsymbol{x}/\eta \tag{A.35}$$

が十分小さく、また、ある場の関数 ϕ が、微視構造と同一の周期を持つものとする. この周期性を、Y-periodic と呼ぶ.

ここでは、着目する海綿骨試料が、図A.6 に示すように y 座標系において周期的に 配置される場合について、x 座標系における均質化された海綿骨の弾性係数テンソル \overline{E} を求める.

 \overline{E} は Local Structure Tensor L, 微視構造レベルの弾性係数テンソル E, および代表体積要素 V より

$$\overline{E}_{ijkl} = \frac{1}{|V|} \int_{V} E_{ijpm} L_{pmkl} dV$$
(A.36)

と求められる (Hollister *et al.*, 1991; Hollister and Kikuchi, 1992). ここで, *L* は, 巨 視的ひずみ *e* と微視的ひずみ *e* を

$$\varepsilon_{ij} = L_{ijkl}\overline{\varepsilon}_{kl} \tag{A.37}$$

として関連付ける4階のテンソルである.この4階のテンソルLは、均質化法では、

$$L_{ijkl} = \frac{1}{2} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) - \varepsilon_{ij}^{*kl}$$
(A.38)

$$\int_{V} E_{ijpm} \varepsilon_{ij}(\boldsymbol{v}) \varepsilon_{pm}^{*kl}(\boldsymbol{u}) dV = \int_{V} \varepsilon_{ij}(\boldsymbol{v}) \sigma_{ij}^{*kl}(\boldsymbol{u}) dV$$
(A.39)

の2式を解くことにより求められる.ここで,式(A.39)は,微視領域における変位u,仮想変位vに対する平衡方程式であり, ε_{ij}^{*kl} は特性ひずみ, $\varepsilon_{ij}(v)$ は微視領域における仮想ひずみ, $\sigma_{ij}^{*kl}(u)$ は特性応力をそれぞれ表す.

式 (A.36) で表される **E** は,完全異方性の弾性係数テンソルであり,以下のマトリ クスで表される 21 個の独立な成分を持つ.

$$\left[\overline{E}\right] = \begin{bmatrix} \overline{E}_{1111} & \overline{E}_{1122} & \overline{E}_{1133} & \overline{E}_{1123} & \overline{E}_{1131} & \overline{E}_{1112} \\ \overline{E}_{2211} & \overline{E}_{22222} & \overline{E}_{2233} & \overline{E}_{2223} & \overline{E}_{2212} \\ \overline{E}_{3311} & \overline{E}_{3322} & \overline{E}_{3333} & \overline{E}_{3323} & \overline{E}_{3331} & \overline{E}_{3312} \\ \overline{E}_{2311} & \overline{E}_{2322} & \overline{E}_{2333} & \overline{E}_{2323} & \overline{E}_{2331} & \overline{E}_{2312} \\ \overline{E}_{3111} & \overline{E}_{3122} & \overline{E}_{3133} & \overline{E}_{3123} & \overline{E}_{3131} & \overline{E}_{3112} \\ \overline{E}_{1211} & \overline{E}_{1222} & \overline{E}_{1233} & \overline{E}_{1223} & \overline{E}_{1231} & \overline{E}_{1212} \end{bmatrix}$$
(A.40)

ここでは,海綿骨の力学特性が直交異方性であると考え (Cowin and Mehrabadi, 1989), \overline{E} を任意の座標系 X^{α} で記述した \overline{E}^{α} :

$$\overline{\boldsymbol{E}}^{\alpha} = \begin{bmatrix} \overline{E}_{1111}^{\alpha} & \overline{E}_{1122}^{\alpha} & \overline{E}_{1133}^{\alpha} & \delta_{1123}^{\alpha} & \delta_{1131}^{\alpha} & \delta_{1112}^{\alpha} \\ \overline{E}_{2211}^{\alpha} & \overline{E}_{2222}^{\alpha} & \overline{E}_{2233}^{\alpha} & \delta_{2223}^{\alpha} & \delta_{2211}^{\alpha} \\ \overline{E}_{3311}^{\alpha} & \overline{E}_{3322}^{\alpha} & \overline{E}_{3333}^{\alpha} & \delta_{3323}^{\alpha} & \delta_{3311}^{\alpha} \\ \delta_{2311}^{\alpha} & \delta_{2322}^{\alpha} & \delta_{2333}^{\alpha} & \overline{E}_{2323}^{\alpha} & \delta_{2311}^{\alpha} \\ \delta_{3111}^{\alpha} & \delta_{3122}^{\alpha} & \delta_{3133}^{\alpha} & \delta_{3123}^{\alpha} & \overline{E}_{3131}^{\alpha} & \delta_{3112}^{\alpha} \\ \delta_{1211}^{\alpha} & \delta_{1222}^{\alpha} & \delta_{1233}^{\alpha} & \delta_{1223}^{\alpha} & \delta_{1231}^{\alpha} & \overline{E}_{1212}^{\alpha} \end{bmatrix}$$
(A.41)

において、 δ_{ijkl}^{α} が十分小さくなる座標系を X^{ORT} とし、この座標系における X_i^{ORT} 軸方向 (i = 1, 2, 3) を直交異方性の主軸方向とする (van Rietbergen *et al.*, 1996). ま た、座標軸 X_i^{ORT} は、弾性係数テンソル \overline{E}^{ORT} の成分が、 $\overline{E}_{1111}^{ORT} > \overline{E}_{2222}^{ORT} > \overline{E}_{3333}^{ORT}$ と なるように決定する.

ファブリックテンソルおよび弾性係数テンソルの変化

第6.3 節に示したリモデリングシミュレーションにおいて、イメージベーストモデ ルの分解能を50µmとした場合に得られる骨梁構造変化を対象とし、ファブリックテ ンソルおよび弾性係数テンソルの変化を検討する.立方体海綿骨モデルの初期形態は、 図 A.7(a) に示す通りであり、モデル全領域の分割数は100³ = 1,000,000 個、骨梁部の 要素数は289,294 個とした.また、海綿骨モデルの大きさ、境界条件、およびモデル パラメータの値など、その他のシミュレーション条件は第6.3 節と同じとした.

リモデリングシミュレーションを行った結果, 50th step においては,図A.7(b) に示 すように圧縮方向に配向する骨梁構造が得られた.この際,海綿骨の形態特徴量の変 化は,図A.8 に示すように,第6.3 節に示した結果と定性的には同じ傾向を示したが, シミュレーションの1 step における変化量は,増加することが分かる.これは,Voxel 要素の除去および付加により骨梁表面の移動を表現していることから,イメージベー ストモデルを構成する Voxel 要素が大きくなると,1 step あたりの骨梁表面移動量が 増加するためである.骨梁の平均体積分率 *BV/TV* について図A.8(a) に示すシミュ レーション結果と表 6.1 に示す実験結果を比較すると,本シミュレーションの15 steps が24 週間に対応することが分かる.

各計算 step において得られた海綿骨形態に対して,解析領域の境界を除外した海綿 骨内部中央の一辺 4.0 mm の立方体領域に着目し,弾性係数テンソル *E* を求めた.任 A.6 リモデリングによる海綿骨の弾性係数テンソルの変化 133

図 A.7 圧縮負荷を受ける海綿骨の骨梁構造の変化

図 A.8 海綿骨の形態特徴量の変化

意の方向に対する垂直応力と垂直ひずみを関連付ける成分 \overline{E}_{1111} の極座標表示および 直交異方性の主軸を図A.9(a) に示す.異方性の最大主方向は,初期状態では圧縮負荷 を与えた X_3 軸方向と垂直に近い方向であったが,リモデリングにより変化し,50th step においては X_3 軸方向 とほぼ一致することが示された.また,ファブリック楕円 体は,図A.9(b) に示すように変化し,力学特性の主軸の変化と同じように,楕円体の 最大主方向が X_3 軸方向に変化することが示された.

弾性係数テンソル \overline{E} の直交異方性の主軸方向 n_i (i = 1, 2, 3) と X_3 軸方向とのな す角度 Φ_{i3} ,およびファブリック楕円体の主軸方向 n_i と X_3 軸方向とのなす角度 Θ_{i3} は、それぞれ図 A.10 (a) および (b) に示すように、 Φ_{13} と Θ_{13} は 0° 方向へ、 Φ_{23} 、 Φ_{33} と Θ_{23} , Θ_{33} は90°方向へそれぞれ変化した.このように, Φ_{i3} と Θ_{i3} は,ほぼ一致 しながらリモデリングにより変化することが分かる.また、この結果は、Wolffの仮説 について Cowin ら (Cowin, 1986; Cowin et al., 1992) が示した数理モデルの妥当性を 示すものと考えられる. 直交異方性の弾性係数 E_{iiii}^{ORT} (i = 1, 2, 3, i not summed) は, 図 A.10(c) に示すように、初期状態から 20th step 前後にかけて、 E^{ORT} および E^{ORT} 3333 は減少した.一方で、 E_{2222}^{ORT} は増加したことから、 E_{1111}^{ORT} と E_{2222}^{ORT} との差が減少する 結果となった. また, 20th step 以降では, E^{ORT} が一定値を保ち E^{ORT} および E^{ORT} 3333 が減少したため、 E_{1111}^{ORT} と E_{2222}^{ORT} および E_{3333}^{ORT} との差が増加する結果となった.この 際,ファブリック楕円体の主値 H_i については,図 A.10(d) に示すように, H_1 と H_3 は 20th step 前後までほぼ一定であった. これに対して H_2 は増加したため, $H_1 \ge H_2$ との差は減少する結果となった. また, 20th step 以降では, いずれの H_i も増加した が, H_1 の増加速度が H_2 および H_3 を上回り, 結果として H_1 と H_2 および H_3 との 差は増加した.このように、 E_{iiii}^{ORT} と H_i の値の変化から、異方性の程度の増減につ いて,弾性係数テンソルがファブリックテンソルに良好に対応することが分かる.

図 A.9 海綿骨のファブリック楕円体および弾性係数 \overline{E}_{1111} の変化

図 A.10 ファブリック楕円体と弾性係数テンソルの比較

A.7 圧縮荷重を受けるヒト椎体海綿骨の形態変化

ヒト椎体の海綿骨では、体重による圧縮荷重を主に支持するように、骨梁が体幹軸 方向に配向する.しかしながら、加齢に伴い皮質骨の形態が変化すると、海綿骨の骨 梁形態も変化することが知られている (Mosekilde, 1990).ここでは、椎体の皮質骨形 態が健常な場合 (case N)、および加齢に伴い変性した場合 (case A) の2通りを想定し て、海綿骨の骨梁表面リモデリングシミュレーションを行う.

椎体の Pixel モデル

ヒト椎体の矢状断面について,図A.11 に示す Pixel モデルを作成した.骨梁の初期 形態は,等方性を仮定し,外径 2.0~2.5 mm,内径 1.0~1.5 mmの円環状の骨梁をラ ンダムに配置して作成した.この際,海綿骨の平均体積分率 *BV/TV* を 0.63 とした. 皮質骨突起部の形態については,健常な場合 (case N) と変性した場合 (case A) では異 なることを考慮して,図A.11 に示す突起部の長さ *a* を case N で 3.0 mm, case A で

図 A.11 ヒト椎体 Pixel モデル

6.5 mm とした. また, 第7.2 節と同様に, 実際の荷重状態を模擬するため, 椎体には髄 核と線維輪からなる椎間板および軟骨終板を考慮した. 椎間板および軟骨終板は, 等 方線形弾性体と仮定し, それぞれのヤング率 E および ポアソン比 ν は, 表7.1 に示 す値とした (Belytschko *et al.*, 1974; 西澤ら, 1994; 池渕ら, 1995).

体重による圧縮荷重を想定した境界条件として,椎体には体幹軸方向の圧縮荷重 $F_1 = 588$ N を仮想的な剛体板を介して与えた.また,モデルの下端面は固着とした. 全解析領域の要素分割数は,縦128 個 × 横208 個, Pixel 要素の大きさは一辺250 μ m と した.応力解析は、厚みを 1.0 mm とし、二次元平面ひずみ問題として行った.リモデ リング則に含まれるモデルパラメータは、図 3.3 中の感知半径を $l_L = 1.0$ mm,図 3.4 中の不感帯の閾値を $\Gamma_u = 4.0$, $\Gamma_l = -5.0$ とした.

皮質骨形態の違いに対する海綿骨形態変化

リモデリングシミュレーションにより得られた16th step における骨梁形態を図 A.12 に示す.健常椎体を想定した場合 (case N) においては,図 A.12(a) に示すように,海綿 骨全域で体幹軸方向に骨梁が太く形成され,また体幹軸方向と垂直な方向の骨梁は吸 収されて細くなることが示された.一方,皮質骨が変性した椎体を想定した場合 (case A) においては,図 A.12(b) に示すように,椎体の弓状部から放射状に伸びる骨梁が形 成された.また,放射状の骨梁と直交網をなすように,弓状部を中心とする同心円状 の骨梁も形成された.なお,第7.2節では,スクリューを装着した海綿骨モデルの初 期骨梁形態として, case N の 16th step において得られた図 A.12(a) に示す骨梁形態を 用いている.

このように、椎体の皮質骨形態の違いに応じた骨梁形態が得られた.シミュレーションにより得られた図 A.12 に示す健常椎体および皮質骨が変性した椎体の骨梁形態は、それぞれ図 A.13 に示す実際の骨梁形態 (Mosekilde, 1990)の特徴をよく表現しており、本シミュレーションの妥当性を示すものである.

また,骨梁形態の変化により,海綿骨の平均体積分率 BV/TV は,図A.14(a) に示 すように減少し,16th step においては, case N および case A の両者について,初期 形態に対して9%の減少となった.また,海綿骨と皮質骨を併せた骨部の全ひずみエ ネルギは,図A.14(b) に示すように case N, case A の両者について減少し,16th step においては,初期形態に対して case N で6%, case A で3%の減少となった.したがっ

(a) 健常椎体 (case N)

(b) 変性椎体 (case A)

図 A.12 皮質骨形態の違いに応じた椎体海綿骨の形態変化 (16th step)

(a) 健常椎体 (case N)

(b) 変性椎体 (case A)

図 A.13 実際のヒト椎体海綿骨 (Mosekilde, 1990)

図 A.14 case N および A における海綿骨の平均体積分率 *BV/TV* および骨 部の全ひずみエネルギ U_{Bone} の変化

て、一定の荷重が負荷される状態でひずみエネルギが減少したことから、リモデリン グにより骨部の変形量は減少し、構造としての剛性が増加したことが分かる.このよ うに、BV/TV の減少に関わらず、骨梁配向の変化により骨構造の剛性が増加したこと は、第6.4節で示した骨梁表面リモデリングによる機能的適応現象を示すものである. 142 付 録

A.8 ヒト椎体海綿骨の三次元リモデリングシミュレーション

ここでは、付録 A.7 に示した健常椎体 (case N) の骨梁表面リモデリングシミュレーションを三次元問題に拡張する.

椎体の Voxel モデル

ヒト椎体について,図A.15(a) に示す Voxel モデルを作成した.椎体は,前後軸およ び左右軸方向について直径 50 mm,体幹軸方向について高さ 25.0 mm とした.また,左 右軸を X_1 軸,前後軸を X_2 軸,体幹軸を X_3 軸とし,矢状面に関する対称性を仮定して, 1/2 領域のみを解析対象とした.骨梁の初期形態は,等方性を仮定し,図A.11(a) に示 すように外径 4.25 mm,内径 3.25 mm のドーナツ状の骨梁をランダムに配置して作成し た.海綿骨の異方性の程度を示すファブリック楕円体の長径と短径の比 H_1/H_3 は 1.04 とした.図A.11(b) に示す X_2 - X_3 断面および X_1 - X_3 断面についてそれぞれ厚み 1.5 μ m で切り出した像から,骨梁構造の等方性が確認される.骨梁構造の形態特徴量(付録 A.2)は,骨梁の平均体積分率 BV/TV = 0.48,骨梁の平均厚さ Tb.Th = 1.19 mm,単 位長さあたりの骨梁数 Tb.N = 0.40 mm⁻¹,および骨梁間の平均距離 Tb.Sp = 1.29 mm とした.

体重による圧縮荷重を想定した境界条件として,図A.15 に示すように,モデルの上 面には体幹軸方向の圧縮荷重 $F_1 = 294$ N と等価な X_3 軸方向の一様圧縮変位 U_3 を, 各計算 step で調節して与えた. また,モデルの下面は固着とした.全解析領域の要素 分割数は, $X_1 \times X_2 \times X_3$ 軸方向を 100 × 200 × 100 個とし, Voxel 要素の大きさは 一辺 250 μ m とした. 骨部の要素数は約 85 万個とした. リモデリング則に含まれるモ デルパラメータは,図3.3 中の感知半径を $l_L = 2.5$ mm,図3.4 中の不感帯の閾値を $\Gamma_u = 2.0, \Gamma_l = -2.5$ とした.

リモデリングによる海綿骨形態変化

リモデリングシミュレーションにより得られた16th step における骨梁形態を図A.16 に示す.リモデリングの進行に伴い,海綿骨全域で体幹軸方向に骨梁が太く形成され ることが示された.海綿骨全体のファブリック楕円体の主軸方向は,ほぼ体幹軸方向

図 A.15 ヒト椎体 Voxel モデル

144 付 録

(a) 海綿骨の三次元像およびファブリック楕円体

図 A.16 椎体海綿骨の三次元形態変化 (16th step)

と一致しており,異方性の程度を示す長径と短径の比 H_1/H_3 は 1.47 となった. なお, 第 7.4.1 項では,スクリューを装着した海綿骨モデルの初期形態として,図 A.16 に示 す 16th step における海綿骨形態を用いている.得られた骨梁構造は,圧縮方向に配向 しており,また,図 A.16(b) および (c) に示す X_2 - X_3 断面像および X_1 - X_3 断面像か ら,個々の骨梁が三次元的に連結していることが分かる.

以上のように,体重による圧縮荷重に応じて椎体海綿骨の骨梁構造が体幹軸方向に 配向することが示された.これは,図A.12(a)に示す二次元シミュレーションで得ら れた結果と同じ傾向を示すものである.しかしながら,実際の椎体で作用する,前後 屈などによる三次元的な荷重下における骨梁構造の変化を検討する際は,ここで示し た三次元リモデリングシミュレーションが必要となる. 146 付 録

参考文献

- 安達泰治, 冨田佳宏, 坂上拡, 田中正夫, (1997), 応力の局所不均一性による骨梁表面再 構築モデルと形態変化シミュレーション, 日本機械学会論文集, 63C-607, 777-784.
- Adachi, T., Tanaka, M. and Tomita, Y., (1998), Uniform Stress State in Bone Structure with Residual Stress, Trans. ASME, J. Biomech. Eng., 120-3, 342-347.
- Adachi, T., Tomita, Y. and Tanaka, M., (1999), Three-Dimensional Lattice Continuum Model of Cancellous Bone for Structural and Remodeling Simulation, JSME Int. J., 42C-3, 470-480.
- Bagge, M., (2000), A Model of Bone Adaptation as an Optimization Process, J. Biomech., 33-11, 1349-57.
- Beaupré, G. S., Orr, T. E. and Carter, D. R., (1990a), An Approach for Time-Dependent Bone Modeling and Remodeling — Application: Theoretical Development, J. Orthop. Res., 8-5, 651-661.
- Beaupré, G. S., Orr, T. E. and Carter, D. R., (1990b), An Approach for Time-Dependent Bone Modeling and Remodeling — Application: A Preliminary Remodeling Simulation, J. Orthop. Res., 8-5, 662-670.
- Belytschko, T., Kulak, R. F., Schultz, A. B. and Galante, J. O., (1974), Finite Element Stress Analysis of an Intervertebral Disc, J. Biomech., 7, 277–285.
- Bendsøe, M. P. and Kikuchi, N., (1988), Generating Optimal Topologies in Structural Design Using a Homogenization Method, Compt. Methods Appl. Mech. & Eng., 71, 192-224.
- Bouvier, M., (1989), The Biology and Composition of Bone, In: Bone Mechanics, (Eds.: Cowin, S. C.), 1-13, CRC Press.

- Buckley, M. J., Banes, A. J., Levin, L. G., Sumpio, B. E., Sato, M., Jordan, R., Gilbert, J., Link, G. W. and Tran. Son. Tay., R., (1988), Osteoblasts Increase Their Rate of Division and Align in Response to Cyclic, Mechanical Tension in vitro, Bone & Mineral, 4-3, 225-236.
- Burr, D. B., Martin, R. B., Schaffer, M. B. and Randin, E. L., (1985), Bone Remodeling in Response to in Vitro Fatigue Microdamage, J. Biomech., 18-3, 189-200.
- Buskirk, W. C. V., Cowin, S. C. and Ward, R. N., (1981), Ultrasonic Measurement of Orthotropic Elastic Constants of Bovine Femoral Bone, Trans. ASME, J. Biomech. Eng., 103, 67–72.
- Carter, D. R. and Hayes, W. C., (1977), The Compressive Behavior of Bone as a Two-Phase Porous Structure, J. Bone & Joint Surg., 59A, 954-962.
- Carter, D. R., (1984), Mechanical Loading Histories and Cortical Bone Remodeling, Calcif. Tissue Int., 36, S19–S24.
- Carter, D. R., Fyhrie, D. P. and Whalen, R. T., (1987), Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy, J. Biomech., 20-8, 785-794.
- Carter, D. R., Orr, T. E. and Fyhrie, D. P., (1989), Relationships between Loading History and Femoral Cancellous Bone Architecture, J. Biomech., 22-3, 231-244.
- Chambers, T. J., Evans, M., Gardner, T. N., Turner-Smith, A. and Chow, J. W. M., (1993), Induction of Bone Formation in Rat Tail Vertebrae by Mechanical Loading, *Bone & Mineral*, **20**, 167–178.
- Charras, G. T. and Guldberg, R. E., (2000), Improving the Local Solution Accuracy of Large-Scale Digital Image-Based Finite Element Analyses, J. Biomech., 33–2, 255–259.
- Cheal, E. J., Snyder, B. D., Nunamaker, D. M. and Hayes, W. C., (1987), Trabecular Bone Remodeling around Smooth and Porous Implants in an Equine Patellar Model, J. Biomech., 20-11/12, 1121-1134.

- Cowin, S. C. and Hegedus, D. H., (1976), Bone Remodeling I: Theory of Adaptive Elasticity, J. Elasticity, 6-3, 313-326.
- Cowin, S. C. and van Buskirk, W. C., (1978), Internal Bone Remodeling Induced by a Medullary Pin, J. Biomech., 11, 269–275.
- Cowin, S. C. and van Buskirk, W. C., (1979), Surface Bone Remodeling Induced by a Medullary Pin, J. Biomech., 12, 269–276.
- Cowin, S. C. and Firoozbakhsh, K., Bone Remodeling of Diaphyseal Surfaces Under Constant Load: Theoretical Predictions, J. Biomech., 14 (1981), 471–484.
- Cowin, S. C., (1985), The Relationship Between the Elasticity Tensor and the Fabric Tensor, Mechanics of Materials, 4, 137-147.
- Cowin, S. C., Hart, R. T., Balser, J. R. and Kohn, D. H., (1985), Functional Adaptation in Long Bones: Establishing In Vivo Values for Surface Remodeling Rate Coefficients, J. Biomech., 18–9, 665–684.
- Cowin, S. C., (1986), Wolff's Law of Trabecular Architecture at Remodeling Equilibrium, Trans. ASME, J. Biomech. Eng., 108, 83–88.
- Cowin, S. C. and Mehrabadi, M., (1989), Identification of the Elastic Symmetry of Bone and Other Materials, J. Biomech., 22–6/7, 503–515.
- Cowin, S. C., (1990), Structural Adaptation of Bones, Appl. Mech. Rev., 43–5, Part 2, S126–S133.
- Cowin, S. C., Moss-Salentijn, L. and Moss, M. L., (1991), Candidates for the Mechanosensory System in Bone, Trans. ASME, J. Biomech. Eng., 113-2, 191-197.
- Cowin, S. C., Sadegh, A. M. and Luo, G. M., (1992), An Evolutionary Wolff's Law for Trabecular Architecture, Trans. ASME, J. Biomech. Eng., 114, 129–136.
- Cowin, S. C., (1993), Bone Stress Adaptation Models, Trans. ASME, J. Biomech. Eng., 115-4(B), 528-533.

- Cowin, S. C., Arramon, Y. P., Luo, G. M. and Sadegh, A. M., (1993), Chaos in the Discrete-Time Algorithm for Bone-Density Remodeling Rate Equations, J. Biomech., 26-9, 1077-1089.
- Cowin, S. C., Luo, G. M., Sadegh, A. M. and Harrigan, T. P., (1994), On the Sufficiency Conditions for the Stability of Bone Remodeling Equilibrium, J. Biomech., 27-2, 183-186.
- Donahue, H. J., McLeod, K. J., Rubin, C. T., Andersen, J., Grine, E. A., Hertzberg,
 E. L. and Brink, P. R., (1995), Cell-to-Cell Communication in Osteoblastic Networks: Cell Line-Dependent Hormonal Regulation of Gap Junction Function, J. Bone & Mineral Res., 10-6, 881-889.
- Doty, S. B., (1981), Morphological Evidence of Gap Junction Between Bone Cells, Calcif. Tissue Int., 33, 509-512.
- Eckstein, F., Jacobs, C. R. and Merz, B. R., (1997), Mechanobiological Adaptation of Subchondral Bone as a Function of Joint Incongruity and Loading, *Med. Eng. Phys.*, **19**–8, 720–728.
- Engh, C. A., Bobyn, J. D. and Glassman, A. H., (1987), Porous Coated Hip Replacement: The Factors Governing Bone Ingrowth, Stress Shielding, and Clinical Results, J. Bone Joint Surg., 69B, 45–55.
- Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., Jesion, G. and Kleerekoper, M., (1989), The Direct Examination of Three-Dimensional Bone Architecture In Vitro by Computed Tomography, J. Bone & Mineral Res., 4-1, 3-11.
- Fernandes, P., Rodrigues, H. and Jacobs, C., (1999), A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff, *Compt. Methods Biomech. & Biomed. Eng.*, 2, 125–138.
- Frost, H. M., (1966), The Bone Dynamics in Osteoprosis and Osteomalacia, CharlesC. Thomas, Springfield.

- Frost, H. M., (1987), The Mechanostat: A Proposed Pathogenic Mechanism of Osteoporoses and the Bone Mass Effects of Mechanical and Nonmechanical Agents, Bone & Mineral, 2, 73-85.
- Frost, H. M., (1988), Structural Adaptations to Mechanical Usage: A Proposed 'Three-Way Rule' for Bone Modeling, Veterinary Comparative Orthopaedics Traumatlogy, 1, pp. 7-17.
- Fung, Y. C., (1984), Biodynamics: Circulation, 64, Springer.
- Fyhrie, D. P. and Carter, D. R., (1986), A Unifying Principle Relating Stress to Trabecular Bone Morphology, J. Orthop. Res., 4-3, 304-317.
- Genant, H. K., Gordon, C., Jiang, Y., Lang, T. F., Link, T. M. and Majumdar, S., (1999), Advanced Imaging of Bone Macro and Micro Structure, Bone, 25-1, 149-152.
- Goldstein, S. A., Matthews, L. S., Kuhn, J. L. and Hollister, S. J., (1991), Trabecular Bone Remodeling: an Experiment model, J. Biomech., 24, Suppl. 1, 135–150.
- Goodship, A. E., Lanyon, L. E. and McFie, J. H., (1979), Functional Adaptation of Bone to Increased Stress, J. Bone Joint Surg., 61A, 539-546.
- Guedes, J. M. and Kikuchi, N., (1990), Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods, Compt. Methods Appl. Mech. & Eng., 83, 143-198.
- Guldberg, R. E., Richards, M., Caldwell, N. J., Kuelske, C. L. and Goldstein, S. A., (1997a), Trabecular Bone Adaptation to Variations in Porous-Coated Implant Topology, J. Biomech., 30-2, 147-153.
- Guldberg, R. E., Caldwell, N. J., Guo, X. E., Goulet, R. W., Hollister, S. J. and Goldstein, S. A., (1997b), Mechanical Stimulation of Tissue Repair in the Hydraulic Bone Chamber, J. Bone & Mineral Res., 12-8, 1295-1302.

- Guldberg, R. E., Hollister, S. J. and Charras, G. T., (1998), The Accuracy of Digital Image-Based Finite Element Models, *Trans. ASME*, J. Biomech. Eng., 120-2, 289-295.
- Hart, R. T., Davy D. T. and Heiple K. G., (1984), A Computational Method for Stress Analysis of Adaptive Elastic Materials with a View toward Applications in Strain-Induced Bone Remodeling, *Trans. ASME, J. Biomech. Eng.*, 106, 342-350.
- Harrigan, T. P. and Mann, R. W., Characterization of Microstructural Anisotropy in Orthotropic Materials Using a Second Rank Tensor, J. Materials Science, 19 (1984), 761-767.
- Harrigan, T. P. and Hamilton, J. J., (1992), An Analytical and Numerical Study of the Stability of Bone Remodelling Theories: Dependence on Microstructural Stimulus, J. Biomech., 25–5, 477–488.
- Harrigan, T. P. and Hamilton, J. J., (1994), Bone Remodeling and Structural Optimization, J. Biomech., 27-3, 323-328.
- Hegedus, D. H. and Cowin, S. C., (1976), Bone Remodeling II: Small Strain Adaptive Elasticity, J. Elasticity, 6-3, 337-352.
- Hestenes, M. R. and Stiefel, E., (1952), Method of Conjugate Gradients for Solving Linear Systems, J. Res. NBS, 49, 409-436.
- Hollister, S. J., Fyhrie, D. P., Jepsen, K. J. and Goldstein, S. A., (1991), Application of Homogenization Theory to the Study of Trabecular Bone Mechanics, J. Biomech., 24-9, 825-839.
- Hollister, S. J. and Kikuchi, N., (1992), A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites, *Compt. Mechanics*, 10, 73–95.
- Hollister, S. J., Kikuchi, N. and Goldstein, S. A., (1993), Do Bone Ingrowth Processes Produce a Globally Optimized Structure?, J. Biomech., 26-4/5, 391-407.

- Hollister, S. J. and Kikuchi, N., (1994), Homogenization Theory and Digital Imaging: A Basis for Studying the Mechanics and Design Principles of Bone Tissue, *Biotechnol. & Bioeng.*, 43-7, 586-596.
- Hollister, S. J., Brennan, J. M. and Kikuchi, N., (1994), A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress, J. Biomech., 27–4, 433–444.
- Hughes, T. J. R., Ferencz, R. M. and Hallquist, J. O., (1987), Large-Scale Vectorized Implicit Calculations in Solid Mechanics on a Cray X-MP/48 Utilizing EBE Preconditioned Conjugate Gradients, Compt. Methods Appl. Mech. & Eng., 61, 215-248.
- Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudala, B. and Slooff, T. J., (1987), Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis, J. Biomech., 20-11/12, 1135-1150.
- Huiskes, R., Weinans, H. and Dalstra, M., (1989), Adaptive Bone Remodeling and Biomechanical Design Considerations for Noncemented Total Hip Arthroplasty, Orthopedics, 12, 1255–1267.
- Huiskes, R., Weinans, H. and van Rietbergen, B., (1992), The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials, *Clin. Orthop. & Rel. Res.*, 274, 124–134.
- Huiskes, R. and Hollister, S. J., (1993), From Structure to Process, From Organ to Cell: Recent Developments of FE-Analysis in Orthopaedic Biomechanics, Trans. ASME, J. Biomech. Eng., 115-4(B), 520-527.
- Huiskes, R., Ruimerman, R., van Lenthe, G. H. and Janssen, J. D., (2000), Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone, *Nature*, 405, 704–706.
- Hung, C. T., Allen, F. D., Pollak, S. R. and Brighton, C. T., (1996), Intracellular Ca²⁺ Stores and Extracellular Ca²⁺ Are Required in the Real-Time Ca²⁺ Response of

Bone Cells Experiencing Fluid Flow, J. Biomech., 29-11, 1411-1417.

- 池渕公博,川原範夫,末吉泰信,富田勝郎,尾田十八,坂本二郎,(1995),脊椎全摘術後モ デルの安定性に関する生体力学的検討(多層構造体解析の有限要素法を用いて), 日本臨床バイオメカニクス学会誌,**16**,273-276.
- Imamura, K., Ozawa, H., Hiraide, T., Takahashi, N. Shibsaki, Y., Fukuhara, T. and Suda, T., (1990) Continuously Applied Compressive Pressure Induces Bone Resorption by a Mechanism Involving Prostaglandin E2 Synthesis, J. Cell Physiol., 144-2, 222-228.
- 岩井喜典, 斎藤雄督, 今里悠一 編, (1988), 医用画像診断装置 CT, MRI を中心として —, コロナ社.
- Jacobs, C. R., Levenston, M. E., Beaupré, G. S., Simo, J. C. and Carter, D. R., (1995), Numerical Instabilities in Bone Remodeling Simulations: The Advantages of a Node-Based Finite Element Approach, J. Biomech., 28–4, 449–459.
- Jacobs, C. R., Simo, J. C., Beaupré, G. S. and Carter, D. R.,(1997), Adaptive Bone Remodeling Incorporating Simultaneous Density and Anisotropy Considerations, J. Biomech., 30–6, 603–613.
- Jara, H., Wehrli, F. W., Chung, H. and Ford, J. C., (1993), High-Resolution Variable Flip Angle 3D MR Imaging of Trabecular Microstructure in vivo. Magnet Res. Med., 29, 528-539.
- Jaworski, Z. F. and Lok, E., (1972), The Rate of Osteoclastic Bone Erosionin Haversian Remodeling Sites of Adult Dog's Rib, Calcif. Tissue Res., 10, 103–112.
- Kerner J., Huiskes R., van Lenthe, G. H., Weinans H., van Rietbergen B., Engh, C. A. and Amis A. A., (1999), Correlation between Pre-Operative Periprosthetic Bone Density and Post-Operative Bone Loss in THA Can Be Explained by Strain-Adaptive Remodelling, J. Biomech., 32–7, 695–703.

- Klein-Nulend, J., van der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A. Nijweide, P. J. and Burger, E. H., (1995), Sensitivity of Osteocytes to Biomechanical Stress in vitro, FASEB J., 9, 441–445.
- Kuiper, J. H. and Huiskes, R., (1997), Mathematical Optimization of Elastic properties: Application to Cementless Hip Stem Design, Trans. ASME, J. Biomech. Eng., 119-2, 166-174.
- Kummer, B. K. F., (1972), Biomechanics of Bone: Mechanical Properties, Functional Structure, Funcional Adaptation, In: *Biomechanics: Its Foundations and Objectives*, (Eds.: Fung, Y. C., Perrone, N. and Anliker, M.), 237–271, Prentice Hall.
- Lanyon, L. E., Goodship, A. E., Pye, C. J. and MacFie, J. H., (1982), Mechanically Adaptive Bone Remodeling, J. Biomech., 15-3, 141-154.
- Lanyon, L. E. and Rubin, C. T., (1984), Static vs. Dynamic Loads as an Influence on Bone Remodeling, J. Biomech., 17–12, 897–905.
- Levenston, M. E., Beaupré, G. S., Jacobs, C. R. and Carter, D. R., (1994), The Role of Loading Memory in Bone Adaptation Simulations, *Bone*, 15-2, 177-186.
- Levenston, M. E. and Carter, D. R., (1998), An Energy Dissipation-Based Model for Damege Stimulated Bone Adaptation, J. Biomech., 31-7, 579-586.
- Lu, W. W., Zhu, Q., Holmes, A. D., Luk, K. D., Zhong, S. and Leong, J. C., (2000), Loosening of Sacral Screw Fixation under in Vitro Fatigue Loading. J. Orthop. Res., 18-5, 808-814.
- Luo, G., Cowin, S. C., Sadegh, A. M. and Arramon, Y. P., (1995), Implementation of Strain Rate as a Bone Remodeling Stimulus, Trans. ASME, J. Biomech. Eng., 117, 329-338.
- Luo, G., Sadegh, A. M., Alexander, H., Jaffe, W., Scott, D. and Cowin, S. C., (1999), The Effect of Surface Roughness on the Stress Adaptation of Trabecular Architecture around a Cylindrical Implant, J. Biomech., 32-3, 275-284.

- Manolagas, S. C., (1995), Role of Cytokines in Bone Resorption, Bone, 17–2, 63S– 67S.
- Martin, B. R., Burr, D. B. and Sharkey, N. A., (1998), Skeltal Tissue Mechanics, Springer.
- McLain, R. F., Sparling, E. and Benson, D. R., (1993), Early Failure of Short-Segment Pedicle Instrumentation for Thoracolumbar Fractures. A Preliminary Report, J. Bone Joint Surg. Am., 75–2, 162–167.
- McNamara, B. P., Prendergast, P. J. and Taylor, D., (1992), Prediction of Bone Adaptation in the Ulnar-Osteotomized Sheep's Forelimb Using an Anatomical Finite Element Model, J. Biomed. Eng., 14, 209-216.
- McNamara, B. P., Taylor, D. and Prendergast, P. J., (1997), Computer Prediction of Adaptive Bone Remodelling around Noncemented Femoral Prosthesis: the Relationship between Damege-Based and Strain-Based Algorithms, Med. Eng. Phys., 19-5, 454-463.
- Miyamoto, H., Shiratori, M. and Miyoshi, T., (1971), Analysis of Stress and Strain Distribution at the Crack Tip by Finite Element Method, In: *Recent Advances* in Matrix Methods of Structural Analysis and Design, (Eds.: Gallagher, R. H., Yamada, Y. and Oden, J. T.), 317-341, The University of Alabama Press.
- Moalli, M. R., Caldwell, N. J., Patil, P. V. and Goldstein, S. A., (2000), An In Vivo Model for Investigations of Mechanical Signal Transduction in Trabecular Bone, J. Bone & Mineral Res., 15–7, 1346–1353.
- Mosekilde, L., (1990), Age-Related Loss of Vertebral Trabecular Bone Mass and Structure: Biomechanical Consequences, In: Biomechanics of Diarthrodial Joints II, (Eds.: Mow, V. C., Ratcliffe, A. and Woo, S. L-Y.), 84.
- Mosley, J. R. and Lanyon, L. E., (1998), Strain Rate as a Controlling Influence on Adaptive Modeling Responce to Dynamic Loading of the Ulna in Growing Male Rats, Bone, 23-4, 313-318.

- Mullender, M. G., Huiskes, R. and Weinans, H., (1994), A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process, J. Biomech., 27–11, 1389–1394.
- Mullender, M. G. and Huiskes, R., (1995), Proposal for the Regulatory Mechanism of Wolff's Law, J. Orthop. Res., 13-4, 503-512.
- Mullender, M. G., van Rietbergen, B., Rüegsegger, P. and Huiskes, R., (1998), Effect of Mechanical Set Point of Bone Cells on Mechanical Control of Trabecular Bone Architecture, Bone, 22–2, 125–131.
- 永田直一, (1987), 骨代謝とカルシウムホメオスタシス, 生体の科学, 38-2, 137-142.
- Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J. and Keaveny, T. M., (2000), High-Resolution Finite Element Models with Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone, J. Biomech., 33-12, 1575-1583.
- 西澤隆, 高畑武司, 六馬信之, 藤村祥一, (1994), 有限要素法による腰椎椎間板の力学 的解析 (負荷条件が及ぼす影響について), 日本臨床バイオメカニクス学会誌, 15, 123-126.
- O'Connor, J. A., Lanyon, L. E. and MacFie, H., (1982), The Influence of Strain Rate on Adaptive Bone Remodelling, J. Biomech., 15–10, 767–781.
- Orr, T. E., Beaupré, G. S., Carter, D. R. and Schurman, D. J., (1990), Computer Predictions of Bone Remodeling around Porous-Coated Implants, J. Arthroplasty, 5-3, 191-200.
- Ozawa, H., Imamura, K., Abe, E., Takahashi, N. Shibsaki, Y., Fukuhara, T. and Suda, T., (1990), Effect of Continuous Applied Compressive Pressure on Mouse Osteoblasts-like Cells(MCT3T3-E1) in vitro, J. Cell Physiol., 142-1, 177-185.
- Parfitt, A. M., (1984), The Cellular Basis of Bone Remodeling: The Quantum Concept Reexmined in Light of Recent Advances in the Cell Biology of Bone, Calcif. Tissue Int., 36, S37–S45.

- Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier,
 P. J., Ott, S. M. and Recker, R. R., (1987), Bone Histomorphometry: Standardization of Nonmenclature, Symbols, and Units, J. Bone & Mineral Res., 2-6, 595-610.
- Parfitt, A. M., (1992), Bone-Forming Cells in Clinical Conditions, Bone, 1, CRC Press.
- Parfitt, A. M., (1993), Morphometry of Bone Resorption: Introduction and Overview, Bone, 14, 435–441.
- Parfitt, A. M., (1994), Osteonal and Hemi-Osteonal Remodeling: The Spatial and Temporal Framework for Signal Traffic in Adult Human Bone, J. Cellular Biochem., 55, 273–286.
- Pauwels, F., (1980) Biomechanics of the Locomotor Apparatus, Springer.
- Prendergast, P. J. and Taylor, D., (1992), Design of Intramedullary Prostheses to Prevent Bone Loss: Predictions Based on Damage-Stimulated Remodelling, J. Biomed. Eng., 14, 499–506.
- Prendergast, P. J. and Taylor, D., (1994), Prediction of Bone Adaptation Using Damege Accumulation, J. Biomech., 27-8, 1067-1076.
- Prendergast, P. J., (1997), Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design, *Clin. Biomech.*, **12**–6, 343–366.
- van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D. R., Turner, T. M. and Galante, J. O, (1993), The Mechanism of Bone Remodeling and Resorption around Press-Fitted THA Stems, J. Biomech., 26-4/5, 369-382.
- van Rietbergen, B., Weinans, H., Huiskes, R. and Odgaard, A., (1995), A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models, J. Biomech., 28-1, 69-81.

- van Rietbergen, B, Odgaard, A., Kabel, J. and Huiskes, R., (1996), Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone, J. Biomech., 29-12, 1653-1657.
- van Rietbergen, B., Müller, R., Ulrich, D., Rüegsegger, P. and Huiskes, R., (1999), Tissue Stress and Strain in Trabeculae of a Canine Proximal Femur Can Be Quantified from Computer Reconstruction, J. Biomech., 32-4, 443-451.
- Sadegh, A. M., Luo, G. M. and Cowin, S. C., (1993), Bone Ingrowth: An Application of the Boundary Element Method to Bone Remodeling at the Implant Interface, J. Biomech., 26–2, 167–182.
- 佐藤克也, 星合壮大, 安達泰治, 冨田佳宏, (2000a), 力学的刺激の負荷により生じる培養骨芽細胞間のカルシウムイオン波伝播の観察, 日本機械学会 2000 年度年次大会講演論文集(II), 00-1, 251-252.
- 佐藤健司, 笹田直, 系重, 笹生豊, 青木治人, (2000b), Pedicle Screw System を用いた 腰椎固定術の力学的評価, 日本臨床バイオメカニクス学会誌, **21**, 33-36.
- Siffert, R. S., Luo, G. M., Cowin, S. C. and Kauman, J. J., (1996), Dynamic Relationships of Trabecular Bone Density, Architecture, and Strength in a Computatinal Model of Osteopenia, *Bone*, 18–2, 197–206.
- Smith, T. S., Martin, R. B., Hubbard, M. and Bay, B. K., (1997), Surface Remodeling of Trabecular Bone Using a Tissue Level Model, J. Orthop. Res., 15-4, 593-600.

- Takamizawa, K. and Hayashi, K., (1987), Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics, J. Biomech., 20-1, 7-17.
- 田中正夫, (1992), 骨の力学的リモデリングと適応, システム/制御/情報, **36**-4, 226-235.

須田立雄, 小澤英浩, 高橋栄明, (1985), 骨の科学, 医歯薬出版.

周藤安造, (1995), 医学における三次元画像処理 --- 基礎から応用まで ---, コロナ社.

- Tanaka, M., Adachi, T. and Tomita, Y., (1993), Bone Remodeling Considering Residual Stress: Preliminary Experimental Observation and Theoretical Model Development, In: Computatinal Biomedicine IV, (Eds.: Held, K. D., Brebbia, C. A., Ciskowski, R. D. and Power H.), 239–246, Computational Mechanics Publications.
- Tanaka, M., Adachi, T. and Tomita, Y., (1997), Simulation Model of Surface Remodeling in Cacellous Bone by Lattece Continuum Concept, In: Simulations in Biomedicine IV, (Eds.: Power H., Brebbia, C. A. and Kenny, J.), 189–198, Computational Mechanics Publications.
- 戸川隼人, (1977), 共役勾配法, 教育出版.
- Turner, C. H., Anne, V. and Pidaparti, M. V., (1997), A Uniform Strain Criterion for Trabecular Bone Adaptation: Do Continuum-Level Strain Gradients Drive Adaptation?, J. Biomech., 30-6, 555-563.
- Uhthoff, H. K. and Jaworski, Z. G. F., (1978), Bone Loss in Response to Long Term Immobilization, J. Bone Joint Surg., 60B, 420-429.
- Wang, L., Fritton, S. P., Cowin, S. C. and Weinbaum, S., (1999), Fluid Pressure Relaxation Depends upon Osteonal Microstructure: Modeling an Oscillatory Bending Experiment, J. Biomech., 32-7, 663-672.
- Weinans, H., Huiskes, R. and Grootenboer, H. J., (1992a), Effects of Material Properties of Femoral Hip Components on Bone Remodeling, J. Orthop. Res., 10, 845–853.
- Weinans, H., Huiskes, R. and Grootenboer, H. J., (1992b), The Behavior of Adaptive Bone-Remodeling Simulation Models, J. Biomech., 25-12, 1425-1441.
- Weinans, H., (1998), Is Osteoporosis a Matter of Over-Adaptation?, Technol. & Health Care, 6, 299-306.
- Weinbaum, S., Cowin, S. C. and Zeng, Y., (1994), Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stress, J. Biomech., 27-3, 339-360.

- Whitehouse, W. J., (1974), The Quantitative Morphology of Anisotropic Trabecular Bone, J. Microscopy, 101, 153–168.
- Wolff, J., (1869), Ueber die Bedeutung der Architectur der Spongiösen Substanz für die Frage vom Knochenwachsthum, Zentralblatt für die Medizinischen Wissenschaften, 6, 223–234.
- Wolff, J., (1892), Das Gesetz der Transformation der Knochen, Hirschwald, Berlin.
- Wolff, J., (1986), The Law of Bone Remodeling, (Trans.: Maquet, P. and Furlong, R.), Springer.
- Xia, S. L. and Ferrier, J., (1992), Propagation of a Calcium Pulse between Osteoblastic Cells, Biochem. & Biophys. Res. Commun., 186-3, 1212-1219.

162 参考文献

関連発表論文

学術雑誌

- (1) 安達泰治, 坪田健一, 冨田佳宏, (1997), 椎体海綿骨形態に及ぼす固定具の影響 (直接シミュレーションによる検討), 日本臨床バイオメカニクス学会誌, Vol. 18, pp. 153-157.
- (2) Adachi, T., Tsubota, K. and Tomita, Y., (1999), Surface Remodeling Simulation of Trabecular Bone Using Microstructural Finite Element Models, IUTAM Symposium Synthesis in Bio Solid Mechanics, (Eds.: Pedersen, P. and Bendsøe, M. P.), pp. 309-320, Kluwer Academic Publishers.
- (3) 安達泰治, 坪田健一, 冨田佳宏, (1999), 骨梁表面再構築による海綿骨の力学的適応 シミュレーション, シミュレーション, Vol. 18, No. 4, pp. 251-259.
- (4) 安達泰治, 坪田健一, 冨田佳宏, (2000), デジタルイメージモデルを用いた海綿骨の力学的再構築シミュレーション, 日本機械学会論文集, Vol. 66A, No. 648, pp. 1640-1647.
- (5) Adachi, T., Tsubota, K., Tomita, Y. and Hollister, S. J., (2000), Trabecular Surface Remodeling Simulation for Cancellous Bone Using Microstructural Voxel Finite Element Models, Transactions of the ASME, Journal of Biomechanical Engineering, (submitted).
- (6) 坪田健一, 安達泰治, 冨田佳宏, (2000), 固定用スクリュー近傍の三次元骨梁リモデ リングシミュレーション, 日本臨床バイオメカニクス学会誌, (投稿中).

国際会議論文集、抄録集

- Tsubota, K., Adachi, T. and Tomita, Y., (1998), Simulation Study on a Rate Equation for Trabecular Surface Remodeling Using Microstructural Finite Element Model. Abstracts of the Third World Congress of Biomechanics, (Eds.: Matsuzaki, Y., Nakamura, T. and Tanaka, E.), pp. 254a.
- (2) Adachi, T., Tsubota, K., Tomita, Y. and Hollister, S. J., (1999), Microstructural Changes in Cancellous Bone Predicted by Trabecular Surface Remodeling Sim-

ulation, Proceedings of the 1999 Bioengineering Conference, (Eds.: Goel, V. K., Spilker, P. L., Ateshian, G. A. and Soslowsky, L. J.), ASME BED-Vol. 42, pp. 699-700.

- (3) Adachi, T., Tsubota, K. and Tomita, Y., (2000), Simulation Study on Mechanical Adaptation in Cancellous Bone by Trabecular Surface Remodeling, Proceedings of the RIKEN Symposium on Computational Biomechanics, pp. 115-124.
- (4) Tsubota, K., Adachi, T. and Tomita, Y., (2000), Computational Simulation of Cancellous Bone Remodeling Using Digital Image-Based Model, Proceedings of the RIKEN Symposium on Computational Biomechanics, pp. 133-145.
- (5) Adachi, T., Shibutani, K., Tsubota, K. and Tomita, Y., (2000), Three-Dimensional Simulation of Trabecular Bone Remodelling in Vertebral Body with Fixation Screw, Proceedings of the 12th Conference of the European Society of Biomechanics, pp. 57, Royal Academy of Medicine in Ireland.
- (6) Tsubota, K., Adachi, T. and Tomita, Y., (2000), Simulation Study on Model Parameters of Trabecular Surface Remodeling Model, Proceedings of the 4th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Gordon and Breach Publishing Group (in press).
- (7) Adachi, T., Tsubota, K., Hollister, S. J. and Tomita, Y., (2000), Digital Image-Based Finite Element Model for Trabecular Surface Remodeling in Cancellous Bone, Proceedings of the 4th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Gordon and Breach Publishing Group (in press).

講演論文集

- (1) 安達泰治, 坪田健一, 冨田佳宏, (1996), 椎体海綿骨の骨梁再構築シミュレーション,
 日本機械学会第7回バイオエンジニアリング学術講演会・夏季セミナー講演論文
 集, No. 96-29, pp. 46-47.
- (2) 坪田健一,安達泰治,冨田佳宏,(1996),海綿骨形態に及ぼす固定具の影響(直接 シミュレーションによる検討),日本機械学会第74期全国大会講演論文集(I), No. 96-15, pp. 203-204.

- (3) 坪田健一,安達泰治,富田佳宏,(1997),骨梁再構築シミュレーションによるスク リュー近傍の海綿骨形態の検討,日本機械学会第9回バイオエンジニアリング講演 会講演論文集, No. 96-48, pp. 61-62.
- (4) 安達泰治, 坪田健一, 冨田佳宏, (1997), 骨梁形態に及ぼす表面再構築則のモデルパ ラメータの影響, 日本機械学会第8回バイオエンジニアリング学術講演会・夏季セ ミナー講演論文集, No. 97-4, pp. 38-39.
- (5) 坪田健一,安達泰治,冨田佳宏,(1998),表面再構築モデルに基づく骨梁形態変化の 三次元シミュレーション,日本機械学会第10回バイオエンジニアリング講演会講 演論文集, No. 97-72, pp. 563-564.
- (6) 坪田健一, 安達泰治, 冨田佳宏, (1998), 力学的適応性を有する海綿骨の再構築シ ミュレーション, 日本材料学会併設企画/ポスター展示研究交流会塑性工学の新 しい流れ, 展示内容概要集, pp. 4.
- (7) 坪田健一,安達泰治,冨田佳宏,(1998),骨梁表面再構築による海綿骨の残留応力生成シミュレーション,日本機械学会第9回バイオエンジニアリング学術講演会・夏季セミナー講演論文集,No. 98-9, pp. 87-88.
- (8) 坪田健一,安達泰治,富田佳宏,(1998), µCT データを用いた海綿骨の三次元再構築シミュレーション,日本機械学会第11回計算力学講演会講演論文集, No. 98-2, pp. 193-194.
- (9) 坪田健一,安達泰治,冨田佳宏,(1998),骨再構築の計算力学(モデルの構築とアプ リケーション),第22回NCP研究会・機械の強度と形態研究懇話会シンポジウム 論文集,pp. 37-40.
- (10) 冨田佳宏, 安達泰治, 坪田健一, 松下冨春, 土居憲司, 前原克彦, (1999), 骨の再構築 のモデル化と人工装具設計への応用, 神戸大学産学官技術交流会/平成10年度中 小企業産学官技術交流会予稿集, pp. 40-44.
- (11) 坪田健一, 安達泰治, 冨田佳宏, (1999), 海綿骨の力学特性変化に及ぼす骨梁構造変化の影響 (Voxel モデルを用いた再構築シミュレーション), 日本機械学会第11回 バイオエンジニアリング講演会講演論文集, No. 99-3, pp. 162-163.
- (12) 安達泰治, 坪田健一, 冨田佳宏, (1999), 骨リモデリングの計算バイオメカニクス
 (階層的モデルとその応用), 理研シンポジウム「生体力学シミュレーション研究」
 予稿集, pp. 64-68.

166 関連発表論文

- (13) 坪田健一,安達泰治,冨田佳宏,(1999), µCT デジタルイメージを用いた骨梁構造の 三次元モデルと再構築シミュレーション,理研シンポジウム「生体力学シミュレー ション研究」予稿集, pp. 69-76.
- (14) 渋谷基, 坪田健一, 安達泰治, 冨田佳宏, (1999), Voxel モデルを用いた椎体海綿骨の再構築シミュレーション, 日本機械学会第10回バイオエンジニアリング学術講演会・秋季セミナー講演論文集, No. 99-36, pp. 15-16.
- (15) 坪田健一,安達泰治,冨田佳宏,(1999),大規模計算モデルを用いた骨梁リモデリン グシミュレーション,日本機械学会第12回計算力学講演会講演論文集,No. 99-5, pp. 711-712.
- (16) 坪田健一,河野雄二,安達泰治,冨田佳宏,(1999),骨の生体組織工学における力学 的再構築シミュレーションの役割,第23回NCP研究会・機械の強度と形態研究懇 話会シンポジウム論文集, pp. 83-84.
- (17) 坪田健一, 澁谷基, 安達泰治, 冨田佳宏, (2000), 固定用スクリューを装着した椎体 海綿骨の三次元形態変化シミュレーション, 日本機械学会第12回バイオエンジニ アリング講演会講演論文集, No. 99-37, pp. 259-260.
- (18) 澁谷基, 坪田健一, 安達泰治, 冨田佳宏, (2000), スクリュー近傍の椎体海綿骨形態 変化 (再構築シミュレーションによる評価), 日本機械学会関西支部第75 期定時総 会講演会講演論文集, No. 004-1, pp. 11.51-11.52.
- (19) 坪田健一, 澁谷 基, 安達泰治, 冨田佳宏, (2000), 固定用スクリュー近傍の三次元骨
 梁リモデリングシミュレーション, 第 27 回日本臨床バイオメカニクス学会抄録集,
 pp. 202.
- (20) 坪田健一,安達泰治,冨田佳宏,(2000),複合荷重下におけるヒト大腿骨近位部海綿骨の表面再構築シミュレーション,第21回バイオメカニズム学術講演会講演予稿集,pp. 475-476.
- (21) 澁谷基, 坪田健一, 安達泰治, 冨田佳宏, (2000), 骨梁表面再構築シミュレーションのインプラント形状設計への応用, 日本機械学会第13回計算力学講演会講演論文集, No. 00-17, pp. 207-208.
- (22) 坪田健一, 安達泰治, 冨田佳宏, (2000), イメージベースト FEM による骨梁リモデリング駆動力の検討, 日本機械学会第13回計算力学講演会講演論文集, No. 00-17, pp. 209-210.

謝 辞

本研究を遂行するにあたり,終始懇切丁寧なるご教授,ご指導を賜った神戸大学工 学部冨田佳宏教授に深甚なる感謝の意を表します.また,本論文の作成に際して,有 益なご教示とご校閲を賜った神戸大学工学部上田完次教授,多田幸生教授,ならびに 大阪大学大学院基礎工学研究科田中正夫教授に深く感謝の意を表します.本論文をま とめるに至るまで,終始丁寧かつ熱心なご指導とご鞭撻を賜った神戸大学工学部安達 泰治助教授に心から感謝の意を表します.

本研究を遂行するにあたり,有益なご助言,ご討論を賜った神戸大学工学部渋谷陽 二助教授(現大阪大学大学院工学研究科教授)ならびに屋代如月助手に深く感謝致しま す.また,研究設備の使用に際して丁寧なご指導をいただいた古宇田由夫技官に感謝 致します.理化学研究所において研究活動を行うにあたり,牧野内昭武主任研究員な らびに横田秀夫研究協力員には有益なご助言,ご討論をいただきました.神戸大学共 同研究開発センター松下富春客員教授((株)神戸製鋼所理事)には臨床面から貴重なご 意見をいただきました.ここに記して感謝致します.本研究は一部,理化学研究所ジュ ニア・リサーチ・アソシエイト制度による援助のもとに行われました.ここに記して 謝意を表します.

神戸大学工学部機械工学科固体力学研究室の諸氏には今日に至るまで多大なるご援助をいただきました.先輩として有益なご討論と暖かい激励をいただいた坂上拡氏(現 富士通(株)),良き同輩であった釘宮哲也氏(現大阪大学大学院工学研究科),清水正治 氏(現東芝(株)),中村浩二郎氏(現松下電器産業(株)),山下高広氏(現石川島播磨重工 業(株)),山下洋正氏(現(株)タダノ),研究に協力いただいた澁谷基氏,河野雄二氏, 西海征志氏をはじめ,研究室諸氏に厚く御礼申し上げます.

最後に、大学における9年間の学生生活を終えるにあたり、常に暖かい理解と限りない援助をいただいた父義徳ならびに母國子に心から感謝の意を表し、ここに記します.

 2001年1月

 坪田健一

167