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Abstract

Modeling of the visual and auditory processing and understanding the relationship
between physical and subjective property is the main topic in this dissertation. This
research was motivated by the desire to understand primal attributes in vision and
auditory sensation gathering toward complex psychological responses and evaluations
in the real environment. As psychological responses mentioned here, subjective
preference and subjective impressions of sounds, visual properties of landscape and
interior space are supposed. To evaluate qualities of such materials from psychological
or affective viewpoint, relationships between physical property and subjective
evaluation are investigated.

The problem in understanding such psychological responses by a scientific
manner is that this kind of information is difficult to express in language, therefore to
definition and quantification. It is easy to understand as we experience it everyday in
sights and sounds, but this is rather vague to describe these properties. The position I
take in this dissertation is that such vague and complicated sensibilities occur as
assemblies of subjective attributes processed in vision, audition, and so on. These
attributes include color, shape, spatial and temporal characteristics of surface, or
loudness, pitch, and timbre of sound. We need to know the way that human process
information about these subjective attributes.

In this dissertation, I introduce the correlation mechanism for modeling the
process in the visual and auditory perception. The signal processing using the
autocorrelation and cross-correlation described in this dissertation is effective for
describing periodical structure of the signal. The background of this correlation analysis
is that periodicity is a salient cue in human perception. Information about the nature of a
periodic phenomenon, such as its structure, strength, and frequency, is important for our
understanding of the environment. The fundamental result that I will present is a
demonstration that it is possible to apply the correlation mechanism to the process in
vision and auditory system. Results are summarized below. The kinds of processing by
visual and auditory sense have two aspects: temporal processing and spétial processing.

It is generally believed that vision is especially good at spatial processing and audition



is good at temporal processing. But temporal information is important for visual
processing and spatial information is important for auditory processing. In visual
processing, detection of the moving objects is crucial for our life. Information of rhythm
or tempo is a cue for perception of periodical events. As for auditory processing,
information of direction and distance of sound source is important cue for us to navigate
in the field. Spatial properties of diffuseness and source width are also important to
define the quality of a sound field such as auditorium.

In Chapter 2, Spatial vision, I present a series of studies on physical
properties and psychological evaluations of two-dimensional spatial pattern. I show that
the autocorrelation function (ACF) analysis provides useful measures for representing
three salient perceptual properties of texture, namely, contrast, coarseness, and
regularity. Another experiment showed that the degree of regularity is a salient cue for
texture preference judgment. Described ACF model offers the advantage of extracting
perceptual properties and evaluating subjective reaction in texture perception.

In Chapter 3, Temporal vision, I discuss the underlying mechanism for the
temporal perception in vision. To address the problem, I focus on the fundamental
properties of the temporal vision mechanism. Psychophysical experiment was
performed on subjective flicker rates for complex waveforms. Results showed that
human observers perceived a rate at the fundamental frequency, although the energy at
this frequency was not included in the signals. It implies the existence of correlation
mechanism in temporal vision.

In Chapter 4, Audition, I present a series of studies on physical properties and
psychological evaluations of sound. I used the ACF in analyzing a sound signal and the
interaural cross-correlation function (IACF) to characterize the spatial properties of
sound field. It was found that the acoustical properties are well represented by the
factors extracted from the ACF and the IACF, and that the subjective evaluations for
sound signal are explained by the combinations of the ACF factors.

As applications of the correlation model for signal processing, I propose two
examples. One is an analyzing method of textural features for image retrieval and
pattern recognition. Another is sound feature extraction for speech recognition
technology. These techniques are using our ability for detecting periodical structure in

visual and auditory signals.
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1. Introduction

Preface

Periodicity is common in the natural world. It is also a salient cue in human perception.
Information about the nature of a periodic phenomenon, such as its structure, strength,
and frequency, is important for our understanding of the environment. Humans are very
good at identifying complex patterns. The auditory system easily senses complex
periodicities such as the rhythm and tempo that occur usually in music and speech, the
visual system readily grasps the symmetries and repetitions inherent in tile patterns, and
the mind searches for simple regularities to explain phenomena that appear complex and
irregular. Undoubtedly humans have the mechanism detecting periodic phenomenon.
This mechanism is probably common in all the sense we have. Among our five senses,
it is generally believed that vision is especially good at spatial processing and audition
is good at temporal processing. But temporal information is important for visual
processing and spatial information is important for auditory processing. In this
dissertation I explore the underlying mechanism for periodicity detection in vision and
audition involving space and time. I show that a periodic phenomenon is one of the

bases of more complex subjective attributes in visual and auditory sensations.

1.1 Motivation

I started this research project motivated by the desire to understand primal attributes in
vision and auditory sensation gathering toward complex psychological responses and
evaluations in the real environment. As psychological responses mentioned here,
subjective preference and subjective impressions of sounds, visual properties of
landscape and interior space are supposed. To evaluate qualities of such materials from
psychological or affective viewpoint, relationship between physical property and
subjective evaluation need to be cleared. Related to these topics, there is an emerging
research area called “KANSEI Information Processing” from Japan. KANSEI is a
Japanese word that does not have a direct counterpart in Western languages. The
concept of KANSEI is strongly tied to the concept of personality and affective

sensibility. KANSEI is an ability that allows humans to solve problems and process



information in personal way. It can be related to emotion, but also refers to the human
ability of information processing in ways not just logical.

The problem in understanding KANSEI by a scientific manner is that this
kind of information is difficult to express in language, therefore to definition and
quantification. It is easy to understand as we experience it everyday in sights and sounds,
but this is rather vague to describe these properties. The position I take in this
dissertation is that such vague and complicated sensibilities occur as assemblies of
subjective attributes processed in vision, audition, and so on. These attributes include
color, shape, and texture of the objects, or loudness, pitch, and timbre of sound. Thus we
need to know fhe way that human process information about these subjective attributes.
Modeling of the visual and auditory processing and understanding the relationship
between physical and subjective property is therefore the main topic in this dissertation.

We also need to know what is a salient cue for subjective evaluations among
the physical and subjective primal attributes. As Gestalists revealed, there are wholes,
the behavior of which is not determined by that of their individual elements, but where
the part-processes are themselves determined by the intrinsic nature of the whole. Our
sensation and subjective evaluation might be the Gestalt itself. It is possible that our
visual and auditory system grasp the whole information of sight and sound roughly by
characterizing only several important properties. I explore what are salient cues in
perception of complex visual pattern and acoustic signals, and how do human process

such complex patterns.

1.2 Organization

This dissertation is organized by following five chapters. In Chapter 2, 3, and 4, I
discuss three different properties of human perception in vision and audition. As shown
in Table 1.1, the kinds of processing by visual and auditory sense have two aspects:
temporal processing and spatial processing. It is generally believed that vision is
especially good at spatial processing and audition is good at temporal processing. But
temporal information is important for visual processing and spatial information is
important for auditory processing. In visual processing, detection of the moving objects
is crucial for our life. Information of rhythm or tempo is a cue for perception of
periodical events. As for auditory processing, information of direction and distance of

sound source is important cue for us to navigate in the field. Spatial properties of



diffuseness and source width are also important to define the quality of a sound field
such as auditorium. To assess the psychological evaluation of sound in the real
environment, it is necessary to investigate such spatial sensations as well as temporally

processed primary sensations. Contents in each chapter are summarized as follows.

Table 1.1 Spatial and temporal processing in vision and audition.

Spatial Temporal
Vision Shape Tempo, Rhythm
Depth Motion
Pattern
Audition Location Loudness, Pitch, Timbre
Spaciousness Tempo, Rhythm

Chapter 2, Spatial vision, discusses about spatial properties of visual
perception. I present a series of experiments on physical properties and psychological
evaluations of two-dimensional spatial pattern. A simple autocorrelation model that
provides useful measures for representing salient perceptual properties of texture is
introduced. Then I discuss the supposed correlation mechanism of the visual system for
texture perception.

In Chapter 3, Temporal vision, I discuss the underlying mechanism for the
temporal perception in vision. Temporal processing in visual system has long been
neglected in spite of its importance in human perception. To focus on the fundamental
properties of the temporal vision mechanism, the subjective flicker rate of complex
waveforms is examined. Later I discuss the possibility of correlation mechanism in
temporal vision.

In Chapter 4, Audition, I present a series of studies on physical properties and
psychological evaluations of sound. I use a method of autocorrelation and inter-aural
cross-correlation in analyzing a sound signal. These studies are based on the previous
knowledge on correlation mechanism in the auditory system. I try to characterize the
primal acoustical properties of sound field and to understand the mechanism of
perception about such properties.

In Chapter 5, Applications, image processing and speech recognition

techniques are proposed. Proposed methods are application of human ability to extract



signal characteristics in vision and audition.
Finally in Chapter 6, Conclusions, summary of this dissertation, contributions

and future directions are described.



2. Spatial vision

2.1 Introduction

In this chapter, I discuss about spatial properties of visual perception. For many
practical reasons, a large part of research in spatial vision is performed with black &
white or simple gray scale patterns. Although they can shed light on certain aspects of
early vision mechanism, these are highly impoverished stimuli compared to the natural
visual environment. To explore more sophisticated mechanism of the visual system, I
focus my research interest on perception of complex spatial pattern, texture.

The term “texture” is used in a variety of meaning and context. Not only as a
visual texture, but also textile surface touch, sound quality, and food material refer to
texture. There are many definitions even in a visual texture. Common nature of texture
according to these descriptions is that texture is intuitive to understand, but somewhat
difficult to define. The only ground truth is what human observers perceive to be the
kind of textural properties of the image content of that signal. This places texture and
spatial pattern into the domain of perceptual attributes of image. A pressing question for
psychological and image-processing researchers is to discover physical properties that
correlate with this perceptual attribute. |

Also, texture is one of the most important cues for spatial perception such as
depth and location of objects in the space. Since Gibson (1950), many efforts have
given into texture perception to understand the mechanism of spaﬁal perception. But
how does our visual system extract and characterize textural information for further
process of spatial perception is still an open problem. To understand the underlying
mechanism for textural properties therefore contributes to the investigation of the high-
level mechanism of the visual system.

The purpose of the study in this chapter is two folds. One is to extract the
physical features corresponding to visual perception. This includes primal features of
texture and psychological evaluation of texture. Another is to understand the mechanism
of texture perception in our visual system. The chapter is organized as follows. In
Section 2.2, I will briefly review a number of texture related studies in the field of

psychophysics, engineering, and psychology. Then I will present an approach of texture



analysis based on the correlation model. Finally, I will discuss the supposed mechanism

of the visual system for texture perception.

2.2 Related work
In this section I review previous works, which are related to this chapter. This contains
the study of the low-level and high-level mechanism of the visual system, texture

modeling in the image processing, and psychological dimension of texture perception.

2.2.1 Pattern perception and model of spatial vision

Psychophysical experiments have shown that certain texture types can be discriminated
and segmented preattentively. Preattentive discrimination and segmentation often occur
in textures with different first-order statistics (Figure 2.1). An analysis of a variety of
textures led Julesz to believe that textures with the same “global” second-order statistics

are indistinguishable from one another (Julesz 1962).

Figure 2.1 Julesz’s random dot (Julesz, 1962). Two regions are preattentively discriminable when
they have different second-order statistics (a), but not discriminable when they have same second-

order statistics (b).

This finding became the basis of texture analysis in engineering. Later, he discovered
evidence to the contrary (Julesz 1980). These were texture pairs with the same global
second-order statistics, which remained easily discriminable. Each pair appeared to have
some “local” differences in the conspicuous features, such as elongated blobs,
orientation, length, width and line crossing (e.g., Figure 2.2). These features were called

textons (Julesz 1983).
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Figure 2.2 Example of texton (Julesz, 1983). (a) Texture pair of which elements having different
textons (line crossing vs. not-crossing segments) is distinguishable, whereas (b) of which elements

have identical textons yields indistinguishable texture pair.

Preattentive texture discrimination, in this case, occurs as a result of differences in
texton types or some other first-order statistics between local features such as their
density or standard deviation, rather than as global second-order differences. Analysis
by global Fourier techniques does no t reveal local distributions or combinations of
image luminance. Consequently, global Fourier transform is inappropriate for analysis
of the local features or textons that distinguish two textures.

The same discrepancy between local and global processing is found in the
models of spatial vision. The receptive field characteristics most frequently mentioned
in texture discrimination models are elongated bar and edge detectors (Hubel and
Wiesel 1959, 1962). The characteristics of these detectors are reasonable to explain
Julesz’ texton theory. Models of a different type claim that visual stimuli are processed
in parallel by a number of independent spatial frequency channels (Campbell and
Robson 1968). Extensive experimental evidence suggests that some form of spatial
frequency analysis is performed in the striate cortex (DeValois et al. 1979). These
findings lead to the view of the cortex as a kind of spatial Fourier analyzer.

These problems can be avoided by applying Fourier transforms to the
windowed local regions corresponding to a specific spatial range within the visual field.
Local distributions, such as textons, are revealed by the Fourier transforms in small
regions, and global second-order statistics are characterized by the Fourier transforms in
a relatively large area. A spatial/spectral analysis such as Wavelet or Gabor filtering, is a

method for determining the optimal window in both spatial and spatial-frequency



domains (Bovik et al., 1990; Jain & Farrokhnia, 1991). The spatial/spectral analysis has
proved to be effective in explaining to some extent the human texture discrimination
(Figure 2.3). It was found that two textures are often difficult to discriminate when they
produce a similar distribution of responses in a bank of spatial-frequency and

orientation selective linear filters (Turner, 1986; Malik & Perona, 1990).

\

Figure 2.3 Example of a frequency and orientation filter bank. The difference of the distributions in

cach filter output is used for discrimination of two textured areas.

Perceptual grouping is a process in chunking of visual information and in
image segmentation, consisting an important aspect of visual processing. However, the
rules that govern grouping lack a quantitative formulation. According to the Gestalt
theory of grouping, simple rules such as similarity of elements, proximity, good
continuation, common fate and connectedness dominate perceptual grouping by
segmenting a visual scene into regions having some internal consistency (Koffka, 1935).
It is still unclear how to define shape and similarity and how to deal with multiple cues.
An approach has been taken to model perceptual grouping on the basis of a similarity
metric (Beck, 1966). That is, by grouping together elements that share common features.
Ben-Av and Sagi (1995) presented a quantitative model for perceptual grouping, which
was based on the intensity autocorrelation (Figure 2.4). The model performance was
successfully compared with data from psychophysical experiments. Results suggested

that at Jeast some of the Gestalt rules of grouping (i.e. similarity and proximity) could



be formalized in terms of directionally estimated spatial correlations. They also
proposed a possibility that oriental filters (e.g. Gabor filters) with long-range

interactions between them can be used for estimations of directional autocorrelations.

Figure 2.4 Perceptual grouping by similarity and proximity, Ben-Av and Sagi (1995).

Importance of the autocorrelation function has been emphasized by Uttal in
his book (Uttal, 1975) on form perception. He conducted the experiment of form
detection with dot patterns. He measured the detectability of dot patterns, which were
masked by the noise patterns (Figure 2.5). It was found that the regularity of dots in a
pattern increased the detectability of the pattern. In the autocorrelation function, the
periodicity in the signal is emphasized and the random noise is diminished.
Consequently, only the periodical signal is extracted and then perceived as a form. The

autocorrelation model well explained the large body of the psychophysical data.
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Figure 2.5 Uttal (1975), form perception by dot pattern and autocorrelation functions.

2.2.2 Texture modeling in engineering
Describing a texture by a small set of parameters is useful for effective compression’and
transmission of an image, because a textured region exhibit certain degree of
homogeneity and can be regarded as containing a same or near same information over
neighborhood. Historically, texture models are categorized into statistical, structural
models (Haralick, 1979). Recently, new approach such as statistical/structural hybrid
models and spatial/frequency (wavelet) models are studied (for review, see Wechsler,
1980).

The statistical approach focuses on the statistical properties of image patterns.
This is the most natural and basic approach, because texture is not usually associated
with identifiable objects. A texture pattern is characterized either by statistics of image
pixel gray levels or by a stochastic model. Early methods include histogram, co-
occurrence matrix and run length (Haralick et al, 1973). In the 1980’s, a large number of
literature appeared in the area of texture modeling using random field statistics (Cross &
Jain, 1983; Mao & Jain, 1992). Models like the Markov random field or autoreggression
models treat texture as a probability field. These models can describe texture by using a
small number of parameters, but they are not based on the mechanism of the visual
system and can hardly represent multiple textural properties corresponding to visual

perception. The structural methods represent a texture pattern by its primitives and their

10



spatial placement rules (Haralick, 1979, Matsuyama et al, 1983). The main deficiency of
the structural methods is that they are not capable of capturing the randomness that
natural textures always exhibit.

Natural textures usually contain both structural and statistical components.
Texture models capable of representing both structure and randomness have been
studied. Francos et al. (1993) proposed a texture model based on the 2-D Wold
decomposition of homogeneous random fields. The mathematical foundation of Wold-
based texture modeling is the 2-D Wold decomposition of homogeneous random fields.
The 2-D Wold theory allows a textured image to be decomposed into three mutually
orthogonal components: harmonic, evanescent, and indeterministic (random)
components. These component images can be characterized separately. Francos et al.
applied Wold-based models to image coding and reconstruction. It was shown that a
handful of model parameters could reconstruct natural textures that are visually
indistinguishable from the originals (Figure 2.6). Liu and Picard (1996) constructed an
image retrieval system based on the Wold theory. Compared to other models, the Wold
model appeared to offer perceptually more satisfying results in the image retrieval

experiments.

Texture image

Indeterministic Deterministic
component component

Evanescent " Harmonic
component component

7

Figure 2.6 Examples of Wold decomposition by Liu and Picard (1996).
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2.2.3 Perceptual properties and affective evaluation of texture

For constructing mature machine vision and computer interface, it is important that the
computational measurements of texture correspond to the multidimensional perceptual
properties well. Here I review some studies on perceptual properties of texture in the
psychological framework.

From the descriptions seen in the past literature and from observation of
textures in Brodatz’s photographic album (Brodatz, 1966), Tamura et al. chose six
properties of visual texture: coarseness, contrast, directionality, line-likeness, regularity,
and roughness, to model computational features of textured image (Tamura et al., 1978).
These properties were supposed to be common to all visual textures and have both
extremes in the concept of each feature, e.g., coarse versus fine for coarseness and
regular versus irregular for regularity, and so on. Then psychological experiments were
conducted to establish the ordering of 16 texture samples based on the six textural
properties. To improvise computational features for the six properties, they tested and
modified heuristic features proposed in the literature as well as composing new ones.
The final computational features were chosen as that provided the highest correlation
between the computer and human ordering. In line with the direction of Tamura et al.,
Amandasun and King (1989) proposed five computational features corresponding to
textural properties of coarseness, contrast, busyness, complexity, and texture strength.
They also composed computational feature heuristically from the absolute differences
between the gray scale value of each pixel and the averaged gray scale value in a
neighborhood surrounding area.

One common problem in Tamura et al.’s and Amadasun and King’s work is
that no strong reasons were given why these properties were chosen. Although their
proposed features seem to be characteristic of natural textures, it is not clear what the
relative importance of there features are and how they span the perceptual space of
human texture perception. Another problem is that the computational features were
improvised heuristically for the individual properties. It is not clear how these features
can be used together to represent a texture pattern. As for the former problem, Rao and
Lohse (1995) conducted a psychological study to identify the relevant dimensions of
human texture perception. In their experiment, twenty subjects rated 56 pictures from
the Brodatz album on 9-point scales labeled by twelve adjectives such as repetitive,

directional, random, granular, uniform, regular, etc. Then the subjects were asked to sort
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the pictures into groups of similar ones. The rating data was analyzed by using
classification and regression tree analysis, discriminant analysis, and principle
component analysis. Also, the grouping data was analyzed by using hierarchical cluster
analysis and non-parametric multidimensional scaling (MDS). Combining the analysis
results of both rating and grouping data, the top three dimensions of texture perception
were identified. These dimensions are shown in Figure 2.7. They presented the
possibility that any kind of natural texture could be characterized by the combinations

of features in their 3D space.
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Figure 2.7 Rao and Lohse (1996), the three dimensions of texture perception.

2.3 Textural properties corresponding to visual perception

Summary

I show that the autocorrelation function (ACF) analysis provides useful measures for
representing three salient perceptual properties of texture, namely, contrast, coarseness,
and regularity. The validity of the ACF analysis was examined by comparing the
calculated factors to the subjective scores collected for various kinds of natural textures.
The effectiveness of the analysis depends on the structure of the estimated ACF. When a
texture has a harmonic structure, the estimated ACF has periodical peaks corresponding
to the periods of the texture. Both perceived coarseness and regularity are strongly
related to these peaks in the ACF. As for the random texture, however, the estimated
ACF does not have a periodical structure. In this case, the decay rate of the ACF can

represent the texture coarseness and regularity.
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2.3.1 Introduction

In this section, I present a new approach toward measuring textural properties
corresponding to visual perception. Previously a number of studies have focused on
textural properties through both perception and computational models. But the
‘relationship between perceptual and computational properties remains unclear. To be
used in machine vision or a computer interface, the computational properties of texture
must correspond to the perceptual properties well. To understand the mechanism of our
visual system, it is important to know how we extract and characterize the information
to perceive texture. Therefore, I believe that this study contributes both to the research
of image processing and human vision. A

Tamura et al. (1978) described six features corresponding to visual perception,
namely, contrast, coarseness, regularity, roughness, directionality, and line-likeness.
They measured human perception in terms of these features and compared them with
their computational results. Although their study significantly contributed to the texture
analysis, their approach had drawbacks. They used already developed features only
modifying a given feature and combining several features to have a close relationship to
a specific property. As a result, this approach failed to clarify how visual properties are
related to particular physical properties. Amadasun and King (1989) carried out a
similar study, but their computational features had similar drawbacks.

A number of studies have attempted to tackle the problem from a different
perspective focusing on the dimensionality of texture perception. Rao and Lohse (1996)
developed a classification method for visual texture. Based on psychological similarity
judgments, they constructed a three-dimensional space for texture classification. The
three orthogonal dimensions they identified were repetitive vs. non-repetitive; high-
contrast and non-directional vs. low-contrast and directional; and granular, coarse, and
low-complexity vs. non-granular, fine, and high-complexity. An experiment conducted
by Cho et al. (2000) suggests that the dimensionality of perceptual texture space is at
least four. They described four orthogonal attributes, namely, coarseness, regularity,
contrast, and lightness. These studies suggest that the important properties of perceptual
texture can be described by using three or four independent factors.

I analyzed textural properties based on the correlation mechanism in the
visual system. Uttal (1975) conducted an experiment of form detection with dot patterns.

He measured the detectability of dot patterns masked by noise patterns. He found that
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the regularity of dots in a pattern increased the detectability of the pattern. The
autocorrelation principle was applied to explain this result. In his autocorrelation model,
the periodicity of the signal is emphasized and the random noise is minimized. As a
result, only the periodical signal is extracted and then perceived as a form. Ben-AV and
Sagi (1995) developed an autocorrelation function (ACF) model for perceptual
grouping. They used matrix patterns to quantify the grouping law. The ACF was
calculated in two directions (vertical and horizontal). The grouping occurred in the
direction with a higher correlation. Their results imply that there is a correlation
mechanism involved in the process of perceptual grouping. They suggest that the early
local spatial filtering stage (tuned to specific frequency and orientation) may be
followed by a long-range interaction between the filters to estimate the ACF of the input
image.

The ACF is mathematically equivalent to the power spectrum through Fourier
transforms, which means that we can derive the same information from both the ACF
and power spectrum. For example, a vertical stripe pattern has its fundamental Fourier
components along the horizontal axes. The ACF of the same pattern has a periodicity
corresponding to the reciprocal of its fundamental frequency. However, there is a certain
case, in which there is a discrepancy between the spectrum and the ACF. If a pattern
does not have a fundamental component (missing fundamental: MF), we can also see
the period of the fundamental (Henning et al., 1975). This suggests that our visual
system can detect the spatial periodicity of patterns without Fourier components. A
spectrum analysis failed to explain this perceptual phenomenon because the
fundamental component could not be detected. Instead, the ACF of this MF pattern was
found to have a periodicity of a fundamental component. Although the perceptual
mechanism of the MF pattern is still under discussion (Badcock & Derrington, 1989;
Hammett & Smith, 1994), this phenomenon implies that there may be a correlation
mechanism in our visual system.

In this study, I tried to develop a set of measures for texture properties that
corresponding to visual perception. Motivated by the discussion described above, I
assumed that an ACF mechanism does exist in the visual system. I analyzed natural
textures and extracted several features by using the ACF analysis. Then I compared our
psychological judgments and computational measurements to extract and quantify the

textural properties of contrast, coarseness, and regularity. These three properties were
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chosen because of their importance to the study of texture perception described above.
2.3.2 Autocorrelation analysis of natural textures

In this section, we describe mathematical formulation of the ACF and extracted factors,
which we compared with human perception. To show the validity of our analysis,
previous psychological findings are also considered.

Definition of ACF

The ACF of a two-dimensional texture pattern is defined as

M-1N-1
®(Ax,Ay) = 2 E p(x, y)p(x+ Ax,y + Ay)/ MN, (2.1)

2=0y=0
where p(x, y) is the input signal and p(x+Ax, y+Ay) is the shifted version of the input.
The analyzed image was zero-meaned before the calculation to remove the DC
components. “M” and “N” refer to the signal size in horizontal and vertical directions.
In this study, M = N = 256. Equation (1) is the convolution of the signal itself. For
computational efficiency, the ACF was computed as an inverse FFT of the image power

spectrum. Usually, the ACF is normalized as

M-IN-1

P(Ax, By) = D(Ax, 89) (Y, Y plx.y)* | MN). (2:2)

£=0y=0
The denominator in equation (2) is the maximum value of the ACF and is defined as
®(0). After this normalization, the ACF takes the maximum value of 1 at the origin.
Factors extracted from the ACF

From the calculated ACF, we extracted four typical features. Here we only considered a
part of one quadrant because the ACF is symmetrical. As shown in Figure 2.8, the ACF
decays from the origin to the outwards. We assumed that the properties of the two-
dimensional ACF are held in the one-dimensional ACFs. To simplify the calculation
algorithm, we considered two one-dimensional ACFs for the x and y directions from the
origin. When the ACF had a directionality, we chose the periodical one, and when both
directions had a periodicity, we chose the one in which the maximum peak had a higher

amplitude. By this manipulation, the periodical nature of the ACF was extracted.
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Figure 2.8 A calculated ACF and factor definitions. (a) Two-dimensional ACF of texture D3 in
Figure 2.9. (b) and (c) One-dimensional ACF for the x and y directions. By comparing the heights of

the maximum peaks in both directions, we extracted three factors from the ACF for the x direction.

Below, we define and describe the four factors. (1) ®(0): the autocorrelation
at shift value Ax = Ay = 0. Because the ACF was calculated from the zero-meaned
image, ®(0) corresponds to the root-mean-square (RMS) of the signal. Thus, it is
assumed that ®(0) corresponds to the perceived contrast. Only this factor was calculated
from the two-dimensional ACF, and it is shown on the dB scale (10 log,,®(0)). (2) &,:
the displacement of the maximum peak and (3) ¢,: the amplitude of the maximum peak
in the normalized ACF. These two factors are related to the periodicity of the image.
The value of 9, is a reciprocal of the fundamental frequency, and ¢, is the strength of the
harmonic components. It is possible that the coarseness and regularity can be
represented by §, and ¢, respectively. (4) §,: the effective range of the ACF. We defined
this value as a displacement at which the normalized ACF decayed below 0.1. Because
its value is related to the period and height of the peaks, §, may be related to the
perceived coarseness and regularity. The values of §, and §, were normalized based on
the image size. The visual angle (degree) of the values is calculated by applying image

width (cm) and dividing by viewing distance (cm).
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2.3.3 Preliminary experiment

Data collection

As a preliminary experiment, we analyzed 16 textures from the “Brodatz texture
database” (Brodatz, 1966), that were used by Tamura et al. (1978). This texture set
includes a variety of natural and man-made objects (Figure 2.9). The analyzed data
consists of 256 X 256 images with 8-bit (256) gray levels. The ACF was calculated
and four factors were extracted from each image. As mentioned before, Tamura et al.
measured human perception about six textural features including contrast, coarseness,
and regularity, the features we are interested in. We compared their results with our
computed results. A psychological data set was obtained from the figure in Tamura et
al.’s article by using an image scanner, and their subjects’ average scores were re-scaled
between O and 1. The subjective scores for the contrast, coarseness, and regularity were

correlated with the factors extracted from the ACF, namely, ®(0), §,, and ¢,.

D109
Figure 2.9 Texture set used by Tamura et al., (1978).
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Comparing psychological measurements and ACF factors

Figure 2.10 shows the relationship between the ACF factors and subjective scores. The
ACF factors are shown on a logarithmic scale because of its goodness for linear
regression. We can see that our ACF factors are in good agreement with the subjective
scores. For contrast, in particular, correlation coefficient was very high (r = 0.89, p <
0.01) and we concluded that these factors correspond to the perceptual property of
contrast well. As described above, ACF factor ®(0) corresponds to the RMS of the
image. This is consistent with the previous studies that found that textures with the same

RMS are perceived as the same contrast (Mayhew & Frisby, 1978; Tiippana et al.,
1994).
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Figure 2.10 Relationships between the scale values of textural properties and corresponding ACF factors.

Each dot represents a scale value for each texture, and the straight lines express linear regression.

The correlation between the SV of regularity and the value of ¢, was also high
(r = 0.86, p < 0.01). Particularly for the high value of ¢,, perceived regularity was well
represented. Some of the textures with values of log (¢,) below -1 (0.1 in real value)
showed some discrepancies. A low value of ¢, could mean an irregularity or a

randomness of the texture. But the correlation only in this range was very low (r = 0.35).
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This result implies that regular-random dimension can hardly be represented by the
value of ¢, alone, especially in random texture.

The correlation between coarseness and 0, was 0.70, which is worse than the
previous two results. There was a discrepancy for some textures in which ¢, had a low
value. This is because 0, is strongly affected by the value of ¢,. When the ACF contains
high peaks because of a high regularity of the image, ¢, and 9, can be easily determined
and the resultant value of &, accurately represents the dominant period of the image. But
when the image is random, the ACF decays immediately with no particular peaks. As a
result, the determined value of §, might not reflect the period of the image.

We showed that the ACF factors could represent the perceptual properties of
contrast, coarseness, and regularity. But there remains some variance that cannot be
explained by single factors alone. A portion of this unexplained variance might be due
to the properties not being truly one-dimensional. Actually some correlation between
the perceived coarseness and contrast was found by Tamura et al. We used multiple
regression analysis to examine whether the plural factors affect the perceptual
properties.

Multiple regression analysis

The aim of the multiple regression analysis is to predict the behavior of a dependent
variable by using a weighted sum of independent predictor variables. In our case, we
tried to predict the subjective scores by using a linear combination of four ACF factors.
To obtain an optimal model for any given number of predictors, all 11 possible
regression equations were examined. The correlation coefficients and significance levels
were used to determine the goodness of fit.

For contrast and coarseness, the best predictors were ®(0) and 8,. Although the
other factors also had some use, they were not significant. Comparing the results, we
can see that the variance unexplained by single factor shown in Figure 2.10 became
small in Figure 2.11. The partial regression coefficients of ®(0) and &, were 0.98 and
0.36 for the contrast, 0.50 and 0.79 for the coarseness. It means that the perceived
contrast and coarseness are represented mainly by ®(0) and §,, and may be affected by
another factor. This result is consistent with the fact that there was a correlation between
perceived contrast and coarseness. For regularity, only single factor ¢, was significant in
all combinations. Even though the other factors also had some contribution, the

resultant correlation little gained with these factors. Therefore, we concluded that in this
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experiment, single factor ¢, was sufficient to represent the perceived regularity.
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Figure 2.11 Relationships between calculated SVs by means of multiple regression analysis and measured

SVs of contrast and coarseness.

Discussion
Based on the results described above, we believe that the ACF factors can be used to
represent the perceptual properties of contrast, coarseness, and regularity. The
correlation coefficients showed similar or higher levels of correspondence compared
with those found in Tamura et al.’s original results. It is quite surprising that these
simple measures account so well for the subjective attributes of complex natural texture.
The remaining problem is how to improve the correspondence of regularity and
coarseness for random texture.

As described above, the ACF of random texture does not have a periodical
property. Consequently, it is difficult to extract information related to regularity and
coarseness only from the maximum peak of the ACF. A recent study reported that
human visual system might use different cues in texture perception in proportion to the
strength of harmonic components (Sakai & Finkel, 1995, 1997). In the case of random
textures, the value of 9, (the effective range of the ACF, defined as a ten-percent decay
‘of the ACF) may represent the perceived regularity and coarseness. If an image does not
contain any harmonic components, the value of §, corresponds to the slope of its power
spectrum. When the spectrum is flat (white noise), the value of §, becomes very small
(theoretically, 8, — 0). When the spectrum has a slope (correlated noise), the value of §,
becomes larger in proportion to the value of the slope (informal observation). It is

possible that the more the noise-like images correlate, the more we can perceive the
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regularity of the images. In coarse texture, §, is large, whereas in fine texture, §, is small.
A detailed discussion about this issue is presented in the next section on the
psychological experiment. In our experiment, we used a set of random-looking textures
to examine whether the value of 8, could represent the perceived coarseness and

regularity.

2.3.4 Psychological experiment

Methods

Ten subjects (5 males and 5 females) participated in the experiment. Their ages ranged
from 22 to 26. All had normal or corrected-to-normal visual acuity. Except for two of
the authors (FK and SS), the rest of the subjects were unaware of the purpose of the
study.

The stimuli were presented on a CRT display under normal indoor lighting
conditions. The stimuli consisted of a series of two texture pairs located horizontally.
The viewing distance was approx. 100 cm, which result in each texture being subtended
at a visual angle of 6 X 6 degree. The sample texture set used in the experiment
consisted of 12 botanical textures as shown in Figure 2.12. The pictures were taken by a
digital camera and were transformed into 256 X 256 images with 8-bit gray levels. All
the samples were then analyzed by using the ACF in the same way as described in the
previous section, and four factors were extracted. Compared with Tamura et al.’s texture
set, our samples had a higher degree of similarity to one another. Consequently, the

extracted factors fell into a narrow range (Table 2.1).

Table 2.1. ACF factors for textures used in Tamura’s experiment and ours. Mean values are shown

with standard deviation.

Sample set O (0) &, &, 8,
Tamura et. al -37.99 (2.78) 0.21 (0.23) 0.11 (0.1) 0.19 (0.36)
Present study -39.08 (1.61) 0.09 (0.05) 0.03 (0.01) 0.02 (0.01)

Furthermore, as we can see from Table 2.1, the values of ¢, were much lower
for our stimuli. This means that the structure of our sample textures was not harmonic
but more random. The reason why we chose such a texture set is twofold. On the one

hand, we wanted to examine whether the human subjects could detect small differences
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in the properties and whether the results of the ACF analysis corresponded to the
subjects’ judgments. On the other hand, we wanted to examine whether the ACF factors

are useful in analyzing textures with less harmonic structures.

S9 S10 Si1 5192

Figure 2.12 Stimulus set used in the psychological experiment.

Before the experiment, the subjects were given a brief explanation of the basic
concept of texture and the three features described above (the explanations were written
in Japanese, except for the names of features such as “coarseness; coarse vs. fine”,
which were given in English). The method of judgment in our study was a paired
comparison. All possible pairs from the twelve images (66 pairs) were presented to the
human subjects in a random order in one session. During a presentation of 10 s, they
had to make their decisions about the three features, i.e., to choose from each pair the
pattern that was coarser, had a higher contrast, and was more regular. All subjects had
eight series of sessions, giving a total of 528 comparisons for each feature.

Data analysis and Results

We processed the experimental results by applying “the law of comparative judgment”
(case V; Thurstone, 1927). This law was used to produce a one-dimensional scale value
(SV) for each stimulus from the total matrix of superiorities collected from the paired

comparisons. The results were reconfirmed by the goodness of fit (Mosteller, 1951), and
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the agreement of all subjects’ judgments was tested by the chi-square test (p < 0.05). In
Table 2.2, we show the correlation coefficients between the subjective scores for each

feature. Based on the results, we can make the following observations.

Table 2.2. Correlation matrix of the scale values of contrast, coarseness, and regularity.

Property contrast coarseness regularity
contrast -
coarseness 0.672% -
regularity 0.017 -0.363 -
*p < 0.05

a) For all perceptual properties tested in the experiment, the subjects’
judgments are reliable and there are certain underlying criteria upon which the tested
subjects agreed. This does not mean that the same data were obtained for all human
subjects in the experiment. Individual differences must be considered.

b) Especially in the regularity score, a relatively high inter-subject variance
was observed. There might be several reasons for this variance. First, some of our
subjects may have interpreted “regularity” differently, or the concept of regularity itself
might have been difficult to define for the tested textures. Second, because there was
little difference in material or appearance between the sample textures, the subjects may
have had a difficulty in comparing regularity. Finally each subject might have used
different cues for the judgment of regularity. We specified regularity as a property of the
placement rules, but the variation of elements, especially in the case of natural textures,
may reduce the regularity as a whole. As a result, it is assumed that the subjects
perceived a high regularity of those textures for which we can describe texture elements
easily. Additionally, fine texture tends to be perceived as regular (there is a slight
inverse correlation between regularity and coarseness, see Table 2.2).

c¢) There was a high correlation between the SVs of contrast and coarseness (p
< 0.05). This means that more coarse texture is perceived to have a higher contrast. The
coefficient value was consistent with Tamura et al.’s results.

From the above observations, we conclude that our experiment was valid for
measuring human perception of textural properties, even though there were some

individual differences. The psychological data and computed features of the textures are
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compared described as described below. ,

Comparing psychological measurements and ACF factors

The relationship between each SV and its corresponding ACF factor is shown in Figure
2.13. There is a high correlation (r = 0.81, p < 0.05) between the SV of contrast and
®(0). This result is consistent with that of the preliminary experiment and is

satisfactory.
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Figure 2.13 Relationships between the scale values and ACF factors. (a) SV of contrast and ®(0). (b)
and (c) SV of regularity and ¢;, and &, respectively. (d) SV of coarseness and d,. Arrows in (b) and

(c) indicate two textures mentioned in the text.

As for regularity, our result was very different from that obtained in the
preliminary observation. In that experiment, we hypothesized that regular textures had
high-amplitude periodical peaks in the ACF and that the height of the maximum peak
corresponded to the perceived regularity. Qur preliminary observations confirmed this
hypothesis clearly. In our psychological experiment, however, we could not obtain
similar results. As shown in Figure 2.13 (b), the relationship between the SV of

regularity and the value of ¢, is unexpected. For the range of log ¢, below -1 (0.1 in real
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value), there appeared to be a tendency toward a negative correlation. This result is
perhaps related to the fact that most of the textures in our stimuli had a low value of ¢,.
As a result, the maximum peak in the ACF might not represent the periodicity of the
image, resulting in unexpected values of ¢,. The reason for this negative correlation is
not clear. To represent the perceived regularity for these textures, we can use the value
of .. We can see that there is a normal correlation between the regularity and §, with
two exceptional cases (Figure 2.13 (c)). These two textures are also indicated in Figure
2.13 (b), which shows that these textures have large values of ¢,. This result can be
interpreted as follows. When the value of ¢, is low, §, reflects the perceived regularity.
When ¢, exceeds a certain level, however, the perceived regularity might be affected by
the harmonic components included in the texture. It is possible that our subjects
perceived the regularity in proportion to the value of §, for the textures with less
harmonic structures, and to the value of ¢, for the textures with more harmonic
structures.

In Figure 2.13 (d), the result for coarseness is shown in relation to 8,. There is

a moderate correlation even allowing some variance (r = 0.63, p = 0.053). We assumed
| that the perceived coarseness is related to the value of §,, but the correlation between 9,
and SV was not significant (r = 0.56, p = 0.28). As described earlier, most of our stimuli
did not have a harmonic structure. As a result, the determined value of §, may not
necessarily reflect the periodicity of the image. The value of §, appears more suitable to
represent the perceived coarseness.
Multiple regression analysis
As in our preliminary experiment, we found a correlation between the SVs (see Table
2.2). Plural factors may be suitable to represent perceptual properties. We conducted a
multiple regression analysis again for the psychological data we obtained.

We found that the factors of ®(0) and 8, were significant predictors of the SVs
of contrast and coarseness (Figure 2.14). The regression coefficients showed that the SV
of contrast is represented mainly by ®(0). In our experiment, predictor §, in the
preliminary experiment was replaced by J,, which is a factor representing the perceived
coarseness. Considering the two experimental results together, it becomes obvious that
the values of the perceived contrast and coarseness affect each other. Although there are
some individual differences, as shown in Table 2.3, the dominance of predictors is

interchanged by ®(0) and §, each other. For regularity, we could not find any significant
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combination of predictors to fit the SV except for a single factor of §.. It means that the

other ACF factors are not related to the perceived regularity. At this point, we think that

the best predictor of perceived regularity is d,.
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Figure 2.14 Relationships between predicted SVs by means of multiple regression analysis and

measured SVs of contrast and coarseness. Each plot represents results for each subject.

Table 2.3. Regression coefficients of ®(0) and 8, and correlation coefficients of regression equations

for SVs of contrast and coarseness.

Contrast Coarseness
Subject O(0) 3, T Subject  ®(0) d, T

A 0.60** 0.50* 0.85%* A 0.26 0.71** 0.80%*
B 0.55* 0.48* 0.80* B 0.10 0.55* 0.58
C 0.79%* -0.02 0.78* C 0.23 0.29 0.40
D 0.56* 0.47 0.79* D 0.49* 0.40 0.68*
E 0.57* 0.44 0.78* E 0.36 0.63* 0.78*
F 0.63** 0.44% 0.83** F 0.16 0.81%* 0.85%*
G 0.77%* 0.32 0.89%** G 0.09 0.43 0.46
H 0.86** 0.08 0.88%* H -0.49 0.36 0.55

I 0.74** 0.21 0.80%* I 0.05 0.75%% 0.76*
J 0.73** 0.43* 0.91%* J 0.15 0.70* 0.75*

% p < 0.01, * p < 0.05

Discussion

Based on the observations above, we believe that the ACF analysis is still useful for

random textures. The value of ®(0) corresponded well to the perceived contrast
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similarly to that in regular textures. The values of ®(0) in our experiment were centered
in a narrow range, but were found to represent the perceived contrast well. These results
mean that the RMS of the image is consistent with the perceived contrast.

As for regularity and coarseness, the value of 8, corresponded to that in the
subjective scores. This result is consistent with our assumption. When a texture has a
harmonic structure, the estimated ACF has periodical peaks corresponding to the
periods of the texture. Both the perceived coarseness and regularity are strongly related
to these peaks in the ACF. For the textures with less harmonic structures, like those we
used, the initial slope of the ACF is important. The value of §, shows a degree of
correlation within the image. The more the textures correlate, the more the subjects
perceived the coarse and regular properties. The boundary of these two aspects for the
perception of texture periodicity was the value of ¢, = 0.1 in this study. Further research
is needed to clarify this mechanism to develop a unified model of periodicity perception
for any kind of texture.

The multiple regression analysis revealed that the perceived contrast and
coarseness could be represented by a linear combination of the ACF factors with certain
weightings. Of all the possible combinations, the most significant predictors were found
to be ®(0) and J,. Comparing this with the result of the preliminary experiment, we
believe that the perceived contrast and coarseness may affect each other. Because the
experiment was based on paired comparisons within a texture set, it was difficult to
determine a single measure of perceived properties for both texture sets. Further
research is needed using more textures or different texture sets to extend our method to
be applied to any texture images. |
2.3.5 Conclusion
We showed that the ACF analysis provides useful measures for representing the textural
properties of contrast, coarseness, and regularity. This study differs from the previous
works reviewed in Introduction mainly in the following two aspects. First, the examined
textural properties in this study were chosen based on a study of the dimensionality of
texture perception. The three properties examined here were found earlier to be salient
in texture discrimination. Therefore, analyzing these properties for texture modeling
makes sense. Second, the proposed analysis is based on a plausible mechanism in the
human visual system. The computed factors were not composed heuristically.

Consequently, the ACF model can provide important information for texture
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representation.

The validity of the ACF analysis was examined by comparing the calculated
factors to the subjective scores collected for various kinds of natural textures. The
applicability of the ACF in analyzing random textures was also examined. The
effectiveness of the analysis depends on the structures of the estimated ACF. When a
texture has a harmonic structure, the estimated ACF has periodical peaks, which
correspond to the periods of the texture. Both the perceived coarseness and regularity
are strongly related to these peaks in the ACF. As for the random texture, however, the
estimated ACF does not have a periodical structure. In this case, the effective range of
the ACF is important to representing the texture coarseness and regularity.

Another contribution of this study is to describe a new approach toward
understanding a mechanism after the relatively low-level and simple linear filtering
stage. It is known that there are many local spatial filters in the visual system, that are
tuned to particular spatial frequencies and orientations. However, it is difficult to
characterize multiple perceptual properties of texture by means of this multi-filter
mechanism alone. The described ACF model offers the advantage of extracting
perceptual properties. Here we did not need to make assumptions about this early
filtering stage, but considering the operation of local filters with the ACF model might

give a full account of texture perception.

2.4 Texture preference

Summary

The purpose of the present study is to quantify the perceptual properties of texture and
evaluate subjective preference of texture. Particularly, comparison between naturally
occurred and man-made textures was attempted in terms of perceived regularity. Texture
could be classified into two categories the degree of regularity, which is estimated by
the amplitude of the maximum peak in the autocorrelation function (ACF).
Psychological experiment showed that the degree of regularity is a salient cue for
texture preference judgment. Human subjects preferred texture with mixed regularity
and randomness, which arouse from fluctuations in object shape, brightness, color, and

structural pattern.
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2.4.1 Introduction
Background
In the field of architectural, landscape, or the industrial design, texture has an important
role as design material so as to affect the subjective evaluation. Texture causes
emotional or affective reactions such as impression and preference. However,
expression of textural properties in an objective manner is difficult because texture is
the mikture of many sensations and the basic visual properties of texture are not
understood quantitatively. If the visual features of texture are handled in a numerical
definition, it will be possible to develop suitable textures for individual designer and
consumer by separating or blending the features. Measurement of textural properties
corresponding to visual perception would be useful for the construction of objective
scale for texture.

The word “texture” expresses the characteristic attribute of materials such as
“wooden texture” or “stone texture”, in architectural design. But we perceive texture for
material surface in a various way depending on the observing conditions. We can
perceive different texture in a different distance for a same material, and we can
perceive texture for an assembly of objects such as pebbles or leaves. Therefore, it is
considered that texture perception is caused not by a material itself but by an optical
pattern, which is reflected by the material surface. In this paper, we treat texture as an

optical pattern and try to describe its visual features by measurable physical features.

Previous studies

Texture has been studied on two levels in pattern recognition: statistical and structural
(e.g., Tomita et al., 1982; Haralick, 1979). On the statistical level, texture is regarded as
defined by a set of statistics. Even simple statistics such as the average, variance, and
histogram of the gray level, can be used for classifying a limited class of textures.
Humans are sensitive to second-order statistics, as pointed out by Julesz (1973). The
gray level co-occurrence matrix, the Fourier power spectrum, the autoregression model,
and the autocorrelation function are second-order statistics. Roughly speaking, these
statistical methods are useful for random pattern textures. To describe textures of more
complex structures such as brick wall and lattice pattern, structural analysis is useful.
On the structural level, a texture is defined by elements (primitive), which occur

repeatedly according to their placement rules.
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Textural properties used in pattern recognition are defined for computational
convenience. To evaluate the subjective response of texture, physical description of
texture should correspond to the human visual perception. Tamura et al. (1978)
proposed six textural features corresponding to visual perception: coarseness, contrast,
regularity, directionality, line-likeness, and roughness. As similar directions, Amandasun
(1989), Cho (2000), and Rao & Lohse (1996) investigated textural properties for
discrimination and dissimilarity judgment of texture. According to these studies,
regularity is the most important properties. They suggested that three or four dimensions

are sufficient to describe texture as the combination of regularity and other properties.

Purpose of the study

The purpose of the present study is to quantify the perceptual properties of texture and
evaluate subjective preference of texture. Particularly, comparison between naturally
occurred and man-made textures was attempted in terms of perceived regularity.
Psychological experiment was conducted for human subjects by means of paired

comparison method.

2.4.2 Analysis
Material and procedure
As described before, perception of texture is dependent of observed distance. Texture of
brick or tile pattern is considered to have the following two levels: (1) texture of
material, and (2) placement pattern of materials. These two levels could be considered
as statistical texture and structural texture. Generally, texture preference is considered as
preference of material itself. However, in the case of wall texture, which consists of an
assembly of objects, psychological evaluation is affected by both levels. Furthermore,
considering the fact that the whole feature is understood before the partial feature
(global precedence phenomenon) as Navon (1977) pointed out, the structural feature is
more important. In this study, therefore, I treated architectural wall texture as the whole
pattern rather than the material texture. Later, I mean the word texture as structural
texture unless exceptional description.

Following is the flow of data analysis: 1) photographing texture in the natural
environment, 2) digitizing and editing texture images, 3) pre-processing to the images,

and 4) calculation of the ACF. Details of each stage are described below.
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As analyzed material, man-made texture such as lattice, brick, and tile pattern,
and natural textures such as leaves and pebbles was photographed in the real
environment (Figure 2.15). Pictures were digitized by an image scanner and edited to
256 x 256 pixels, 8-bit gray scale.images. In the bsychophysical experiment by Ohno, it
was found that we perceive “random dot pattern” as texture when the spatial frequency
is roughly between 5 and 30 cycle/deg (Ohno, 1989). In the real visual environment,
however, the spatial frequency distribution is more coarse and complex to examine the
precise range of texture perception. To keep the digitized image within the texture
perceived range, resolution of the image scanner was decided such that the size of each
primitive of the image was between 10 and 30 pixels (0.1 and 0.3 degree at 1.5 m,
giving spatial frequencies of 10 and 3.3 cycle/deg).

Signal whose mean and variance are not constant over space and time is
called “non-stationary” signal. Many non-stationarities could be observed in the
collected texture images. Especially, the lighting conditions are not uniform across the
image. For example, there can be an illumination gradient across the image. Such non-
stationary signal is not suitable for the ACF analysis, because a slow periodicity much
longer than the integration range cannot be directory captured by the ACF. To remove
such effect, low frequency components were cut out by applying high-pass filter.

After pre-processing, the ACF was calculated for the objective evaluation of
texture. As described in previous section, textural properties of contrast, coarseness, and
regularity could be quantified by the ACF factors. Following four factors were extracted
from calculated two-dimensional ACF. 1) ¢(0): the average power of the image, which
corresponds to perceived contrast. 2) §,: the displacement of the maximum peak and (3)
¢,: the amplitude of the maximum peak in the normalized ACF. These two factors
correspond to perceived coarseness and regularity, respectively. 4) §,.: the effective
range of the ACF. For texture without harmonic structure, the value of 8, corresponds to

coarseness and regularity of texture.
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Figure 2.15 Man-made and naturally occurring textures photographed in the real environment.

Results

The ACF of regular texture has higher degree of periodicity than of random texture. To
compare the degree of periodicity, we consider the amplitude of the maximum peak in
the ACF, ¢,. As described in previous section, rating of the ¢, value could represents
perceived regularity of texture. Figure 2.16 tells us the relationship between the value of
¢, and perceived regularity well. Natural occurring texture or texture of natural material
such as stone has lower value of ¢, than man-made texture. Man-made texture is a
regularly structured pattern with same shape and size, whereas various size and shape
objects are placed randomly in natural texture. This difference is well represented in the

periodicity of the calculated ACF.
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Figure 2.16 Ranking of ¢, for 16 textures. It is clear that perceived regularity is described by the ¢,

values.

Wall pattern of brick and tile is generally made of standardized manufactured
materials. If the size and shape of materials, and spacing between the objects in pattern
is completely equal, the calculated ACF does not decay. It means that such texture is
perfectly regular in theoretically. But practically, there exists some kind of fluctuation,
because of a variety of small error in object size and spacing, and un-uniformity in light
reflection. Consequently, perceived texture is not perfectly regular. In this case the ACF
gradually decays. Therefore, the value of ¢,, which is the measure of perceived
regularity, is also considered as the measure for degree of fluctuation in texture.

Natural texture, in contrast, generally has randomness because of a variety of
size and shape of objects and placement rules. Therefore the calculated ACF does not
have periodical component and decays steeply (Figure 2.17). But they are not
completely random. They also have some degree of regularity as described by the ACF
factor ¢,. Figure 2.16 shows that the more organized the shape and size of component is,

the larger the ¢, value is.
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Figure 2.17 Calculated ACFs for regular texture (top) and random texture (bottom). For random

texture, the ACF does not have periodical peaks and decays steeply.

To summarize the result of analysis, we can say that natural texture consists of
a balance of regularity and randomness. Man-made texture has high degree of regularity,
and naturally occurred texture has high degree of randomness. Human preference for
texture is assumed to be related to this balance of regularity and randomness. Extremely
regular or random texture may not be preferred. It could be assumed that the preferred
texture has moderate balance of regularity and randomness. In the following experiment,

this assumption is examined.

2.4.3 Psychological experiment
To examine how much regularity is preferred, we conducted a psychological experiment.
Human subjects judged five samples from the analyzed texture set by means of paired
comparison test. It is hypothesized that the most preferred texture had moderate degree
of regularity. We tried to formulate the subjective score of preference by the calculated
ACF factors.
Method
Ten male students participated in the experiment. Their ages range from 22 to 24. All
had normal or corrected to normal visual acuity. They were naive as to the purpose of
the study.

Stimuli were presented on a CRT display under a dark surrounding. The
display was set at a distance of 1.5 m from the subjects. Stimulus was 256 x 256, 8-bit

gray images extending about 2.5 degree of the visual angle. Stimuli were chosen from
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the texture set described in previous subsection. Stimulus textures have different values
of ¢,, which means each texture have different degree of regularity. Other two properties
of contrast and coarseness were kept constant by following manipulations. Contrast of
stimulus images was adjusted by dynamic range of gray scales, and coarseness of the
images was adjusted by modifying resolution.

Subjects were presented pairs of two stimuli and asked to judge whether they
preferred. Two stimuli lasted 3 s with a blank of 1 s between them. All possible pairs
from five stimuli (10 pairs) were presented in a random order in one session. All
subjects conducted ten series of sessions, giving totally 100 judgments.

Data analysis and results

Collected data was analyzed by applying “the law of comparative judgment” (case V;
Thurstone, 1927). This was used to produce a one-dimensional scale value (SV) for
each stimulus from the total matrix of superiorities collected from the paired
comparisons. The results were reconfirmed by the goodness of fit (Mosteller, 1951), and
the agreement of all subjects’ judgments was tested by the chi-square test (p < 0.05).

Results of all subjects are shown in Figure 2.18, top. SV of preference has
single peak value for each subject, even allowing some individual differences. The most
preferred range might exist in the value of ¢, for each subject. Subjects did not prefer
texture of which high and low value of ¢,. By averaging the scores of all subjects, it was
found that ¢, = 0.5 was most preferred value for texture regularity (Figure 2.18, bottom).
Considering these results and previous section together, it is considered that the degree
of regularity is a visual property affecting subjective preference for texture.

Comparing the result of individual subject, evaluations for random texture of
which the ¢, value is low had large variance. It might be other factor than degree of
regularity for subjects’ preference judgment. In the present experiment, we used various
textures in natural environment for stimuli. Although we choose stimuli in accordance
with their ¢, values with other two variables (i.e. contrast and coarseness) constant,
there might be other variables exist. One of such variables, we can consider the effect of
difference in material texture. As described before, texture perception is decided by
global feature and local feature. In the present experiment, the subjects’ judgment might
be affected by both of global degree of regularity and local textural pattern of material.
About this point, experimental method could be examined such that the stimuli are

changed to the synthesized artificial texture with material texture excluded.
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Figure 2.18 Scale values (SV) of preference for all subjects (top), and average SV (bottom). For

average SV, fitting curve is also shown.

2.4.4 Discussion

As I described first in this section, this study treated texture as an assembly of the
primitive objects. Therefore, I concerned with the size, shape and placement pattern of
the component materials. To describe physical properties of texture in building surface,
the ACF analysis was applied. When the same components are placed in regular pattern,
the ACF does not decay theoretically. Consequently, the maximum peak in the ACF
always becomes ¢, = 1.0. But practically, for the man-made texture in the real world,
the ACF decays gradually to zero and the ACF peak takes value ¢; < 1.0. This is
because of the noise component due to the error in spacing between the material and
fluctuation in light reflections. The present experiment showed that texture with such
noise components are preferred to texture with high degree of regularity. Preferred
texture needs to have a balance of regularity and randomness. Therefore, when we make
a wall texture by assembling manufactured materials like tile and brick, we should use a
set of materials in which some degree of variance in color and shapes contained. Along
with this discussion, natural material has variety of shape and size, and its surface is

uneven, irregular, and rugged so as to introduce a fluctuation of light reflection. This
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might be one of the reasons that such natural materials are preferred to the manufactured
materials.

For naturally occurring texture such as leaves and pebbles, texture image
inherently include higher degree of randomness, because of a variety of size and shape
of objects and placement rules. But they are not completely random. They also have
some degree of regularity as described by the ACF factor ¢,. Our analysis showed that
the more regular the shape and size of component is, the larger the ¢, value is. Our
subjects did not prefer texture with lower value of ¢,. We can say again that the
preferred texture needs to have a balance of regularity and randomness.

As I discussed above, this study has shown that the ACF analysis is useful to
describe textural property of contrast, coarseness, and regularity. Also, the degree of
regularity in texture is an affecting factor in human evaluation for texture preference. As
an example of application of the results gained, we can consider a texture of tile pattern
with some degree of randomness introduced by manipulating the placement pattern or
color variation. We can examine the most preferred degree of randomness by computer
simulation as shown in Figure 2.19.

Finally, of course, there might be another factor other than regularity, which is
not examined in this study. Preference judgment of texture may not be as simple as that
we could explain only by one-dimensional analysis. Thus we need to find such a factor

and analyze the texture preference multi-dimensionally.

2.5 Summary

In this chapter, I presented a series of studies on physical properties and psychological
evaluations of two-dimensional spatial pattern. I showed that the autocorrelation
function (ACF) analysis provides useful measures for representing three salient
perceptual properties of texture, namely, contrast, coarseness, and regularity. Another
experiment showed that the degree of regularity is a salient cue for texture preference
judgment. Described ACF model offered the advantage of extracting perceptual

properties and evaluating subjective reaction in texture perception.
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3. Temporal vision

3.1 Introduction

In this chapter, I discuss the underlying mechanism for the temporal perception in vision.
In the field of vision science, temporal processing in visual system has long been
neglected. Because the temporal resolution of the visual system is much poor in contrast
with its high spatial resolution, we are apt to think that the important information is
received mostly by spatial vision. However, the temporal information is very important
for perception in the real environment. Detection of the moving objects is crucial for our
life. Information of rhythm or tempo is a cue for perception of periodical motion such as
human motion and other biological activity, and natural behaviors like waving water,
fire, and leaves moving in the wind.

When we perceive tempo or rhythm for a motion or some behavior, it is
considered that we detect a kind of periodicity contained in that signal. When we could
detect a periodicity and that periodicity is in the limited time range, we could perceive a
sense of tempo. Rhythmic perception occurs when the sequences of successive events
have more complex pattern, which are perceived as groupings of two, three or four
elements. It should be noted that subjective rhythm is created by the repetition of
stimulus and give rise to the repetition of a pattern in the time sequence. In both cases of
tempo and rhythm perception, we need to detect a kind of periodicity in the signal. Then,
is there a mechanism for detecting periodicity involved in the visual system? It is a main
question posed in this chapter. It is recognized that temporal processing such as
periodicity detection is an important strategy in signal processing in the auditory system.
Perceived pitch of a sound is decided as the most salient periodicity in the signal by
means of correlation mechanism. Is there a correlation mechanism also in the temporal
vision mechanism? To address the problem, I focus on the fundamental properties of the
temporal vision mechanism, namely the subjective flicker rate of complex waveforms.
After a brief review of relevant field, I present an experimental result, which implies the

existence of correlation mechanism in temporal vision (Fujii et al., 2000).
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3.2 Related work

In this section I will give a brief review of previous works on response to flickering
light, mechanism of temporal vision, and temporal perception.

3.2.1 Studies on flicker response

A number of studies have dealt with the human response to flickering light. They mostly
concerned the sensitivity to or detectability of flicker with sinusoidal modulation.
Temporal sensitivity refers to our response to timing of visual signals. Consider a light
that is pulsing, such as the blinking cursor on a computer screen. It is easy to discern
that the light is blinking because of the low frequency, or rate at which it flashes.
Imagine gradually increasing the frequency. As the light blinks faster and faster, it
would eventually reach a rate where it would no longer be possible to detect that the
light is flashing, it would look like a "solid", or continuous light. We say that our visual
system has fused the flicker. |

The frequency at which that occurs is called the critical flicker frequency
(CFF) or flicker fusion frequency (FFF). Refresh rates of cinematography (48 Hz) and
television (60 Hz) are carefully chosen to prevent flicker. But now it is known that CFF
depends on a variety of physical and psychological factors. Hecht and Verrijp (1933)
showed that CFF increases as luminance is increased. More precisely, de Lange (1958)
demonstrated that for a visual stimulus with a fixed temporal frequency, sensitivity to
flicker increases as the amplitude of the luminance modulation is increased. Flicker
perception depends on the depth of modulation (modulation amplitude) and not only on
time-averaged luminance. Temporal frequency characteristics of visual flicker
sensitivity have been found by Kelly (1961, 1969, 1971). Figure 3.1 shows the flicker
threshold measured with five levels of background (mean) luminance. The figure tells
that flicker sensitivity generally has band-passed characteristic (peaks around 10-20 Hz)
and the mean luminance increases CFF.

Another physical factors that determine the rate at which flicker is fused is
size of the stimulus and location of the stimulus within the visual field. At frequencies
higher than about 20 Hz, CFF is known to increase with increasing target stimulus size.
Below 20 Hz, sensitivity decreases with increasing target size (Keesey, 1972).
According to the Granit-Harper Law, CFF increases linearly with the logarithm of the
retinal area subtended by the target (Granit and Harper, 1930). For small targets flicker

is more easily perceived when the image falls on fovea, rather than in the periphery.
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This may appear to suggest that the fovea is more sensitive to flicker. However, the
periphery is more sensitive to flicker when larger targets (such as flickering fields or
CRT screens) are used. Roehrig (1959) best demonstrated this by showing that CFF
increases only when the outer circumference of a visual target is increased, while CFF
remains the same when the inner circumference of a ring-shaped target of the same size

is decreased.
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Figure 3.1 Temporal frequency characteristics of flicker sensitivity, measured by Kelly (1961).

3.2.2 Model of temporal vision

Studies of temporal sensitivity in the visual system have been dominated by linear
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system theory. Most of psychophysical data is economically described within this
framework. The underlying assumption is that the visual response to any periodic
waveforms could be analyzed by decomposing the waveform into its Fourier series and
then evaluating response to its components separately. One of an example is a study of
de Lange (1952). He investigated the sensitivity to a variety of different flicker like
square and saw-tooth waveforms. Square waves and saw-tooth waves each can be
regarded as sums of a non-flickering component (i.e., average luminance or dc
component), the fundamental component (i.e., the first harmonic), and a series of
higher-harmonic components. He showed that above 10 Hz, sensitivity to a variety of
different periodic waveforms could be predicted from sensitivity to the first harmonic
component. This implies that the eyes respond to any periodic flicker as a linear system.

The visual system, however, does not respond perfectly linearly. Especially
for flicker above threshold (i.e., at high contrast level), the visual system behaves
nonlinearly. For example, it is known that flickering lights appear brighter than steady
lights of equal mean luminance. This is an effect named brightness enhancement or the
Briicke-Bartley effect (e.g., Bartley et al, 1957). The effect of brightness enhancement
could not be explained by a linear system. It requires nonlinearity somewhere in the
visual systerh. Wu et al. (1996) investigated the mechanism of brightness enhancement

by using amplitude-modulated flicker (Figure 3.2).

e

Figure 3.2 Brightness enhancement caused by the amplitude-modulated flicker, Wu et al. (1996).

s

The results could be modeled by a broad temporal filter followed by a single
accelerating nonlinearity (Figure 3.3). But they also suggested that the nonlinearity is
more complex than a single, static one. As possible alternatives, compressive
nonlinearity, asymmetric detector (Kelly & Savoie, 1978), and dual-pathway (ON and
OFF) model (Krauskopf, 1980; Schiller et al., 1986) could be considered (Figure 3.4).
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Figure 3.4 Three types of asymmetric nonlinearities in temporal vision proposed by Kelly (1978) (a)
An offset detector, in which the positive limit is 2.7 times the negative one, with no other intervening
nonlinearity. (b) A strongly compressional nonlinearity, followed by a symmetrical, two-sided

detector. (c) As asymmetric rectifier, with a negative slope 2.7 times its positive slope, followed by a

one-sided detector.

Most of studies mentioned above assumed a single pathway in the visual

system so as to simplify the problem. However, a fundamental property of the visual
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system is multiplicity of parallel pathways. Since the properties of these initial pathways
places fundamental constraints on subsequent stages of visual processing, it is important
to understand the individual properties of these pathways and how they are organized. It
is now accepted that the initial stage of visual processing involves an array of spatio-
temporal filters implemented by the characteristics of receptive fields. A collection of
receptive fields with the same filtering properties is also called “channel”. Although we
have a substantial amount of information about the spatial properties of these filters,
investigation into their temporal properties has been neglected. From psychophysical
data of adaptation (Mandler and Bowker, 1980), and other evidence, the channels that
are tuned to different temporal frequencies were believed to be few in number and broad
in frequency bandwidth. Data on temporal frequency discrimination (Mandler, 1984;
Mandler and Makous, 1984) required at least three channels. Hess and Snowden (1992)
found evidence for three temporal channels - a low pass channel, a band-pass channel
peaked at around 10Hz and another peaked at around 18 Hz (Figure 3.5). Properties of
these channels are used in the model of motion perception (Johnston and Clifford,

1995).
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Figure 3.5 Hess and Snowden (1992), three temporal filters.

3.2.3 Studies on time perception
Time perception is formed when the stimuli are presented both visually and auditory.

Although the duration of perceived time is different to some extent, they are not
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perceived as different kind of time. Many researchers accepted the idea that, to perceive
time is in fact a general expression that means that succession and duration of the event
are both perceived. This idea means that the results of the processing information in
physical stimuli give the cue for time perception. Perception of duration refers to the
ability to comprehend successive events as perceptually simultaneous, within the
framework of the psychological present. Psychological present has no fixed duration. It
is based on what is perceived and refers to our capacity to apprehend the series of events.
It has an upper limit about 5 s, and has an average value of 2 to 3 s (Fraisse, 1984).

To speak of rhythm is to speak of ordering in temporal succession. A series of
identical sounds (separated by equal intervals) heard for a certain time is spontaneously
perceived as grouping of two, three, or four elements. This phenomenon is also
observed with visual stimuli (Handel & Yoder, 1975). Such subjective rhythms are
created by the repetition of stimulus and give rise to the repetition of a pattern in the
course of time. This aspect seems to be a gestalt in the time domain. We perceive tempo
when the equal or almost equal length of duration is presented successively. The
succession of shorter time duration is perceived as faster rate. We can make estimation
for tempo as fast or late, and we can produce spontaneous tempo by tapping of fingers.
For both tempos perceived moderate and produced spontaneously, duration between the
events is several hundred ms. This duration has a range with an upper limit about 2 s
and lower limit about 100 ms. Mishima (19.51, 1956) investigated such a "mental
tempo" by using the flickering light and metronome. He found consistent tempo

between different modalities.

3.3 Missing fundamental phenomenon in temporal vision

Summary

Subjective flicker rates were measured for compound waveforms consisting of five
harmonics without fundamental component. It is found that observers perceived a rate at
the fundamental frequency, although the energy at this frequency was not included in
the signals. It is called the missing fundamental phenomenon in auditory pitch sensation,
and an analogous finding is known to occur in spatial vision. Moreover, observers
perceived the rates at fundamental even in the random-phase conditions, in which real
waveforms the period of the fundamental is unclear. The results indicate that the

perceived flicker rates are not detected from the temporal waveforms per se. One
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possible operation to extract such a periodicity in the signal is autocorrelation function
to the nonlinearly distorted temporal waveforms.

3.3.1 Introduction

This section describes a phenomenon that shows an analogy between visual and
auditory system. As described later, it is called “missing fundamental”, which is known
in the auditory pitch sensation. When the signal contains only a number of harmonics
without fundamental frequency, we hear the fundamental frequency as a pitch. The
missing fundamental phenomenon found in temporal vision is presented here.

We investigated how humans process or perceive flickers with compound
waveforms. Although a number of studies have dealt with the human response to
flickers, they are mostly concerned with the sensitivity to flickering stimuli. In contrast,
this paper is concerned with the temporal aspect of visual perception. Our interest is
what humans perceive in the temporal dynamics of the visual stimulus. Some studies
were related to compound waveforms (de Lange, 1952; Bowen, Pokorny & Smith,
1989; Bowen, Pokomy, Smith & Fowler, 1992; Kremers, Lee, Pokorny & Smith, 1993;
Eisner, 1995). In particular, square or sawtooth waveforms were commonly used in
comparison with sinusoidal waves. Square and sawtooth waveforms each consist of the
fundamental frequency (F,) and a series of sinusoidal components (harmonics). For
sufficiently high temporal frequencies the sensitivity to a variety of different periodic
waveforms could be predicted from sensitivity to the F, component. At lower
frequencies, the sensitivities to the compound waveforms were affected by higher-order
harmonics (de Lange, 1954). On the other hand, we know of no previous studies that
dealt with a compound waveform without the F, component. The effect of F,, which is
not contained in the waveform is known in the spatial vision (Henning, Herz &
Broadbent, 1975; Nachmias & Rogowitz, 1983) and in the auditory pitch sensation
(Wightman, 1973a,b).

Henning et al. (1975) reported that in their experiment on the simultaneous
masking of vision, the F, component not being contained in the masking stimulus
affected the detection of the test stimulus. They used 1.9 c¢/deg sinusoidal patterns as the
test stimulus, and an amplitude modulation pattern whose components are 7.6, 9.5, and
11.4 c/deg (i.e., the 4-th, S5-th, and 6-th harmonics of the 1.9 c/deg) as the masking
stimulus. That is, the missing fundamental component in the masking stimulus (1.9

c/deg) was perceived and it then disturbed the detection of the test stimulus. Nachmias
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and Rogowitz (1983) found similar results.

In the perception of pitch in the auditory system, it is known that the
perceived pitch for a complex tone consists of some harmonics (e.g., 600, 800,
1000,1200, and 1400 Hz) corresponds to the F, (200 Hz). Such a pitch is called a
residue, low pitch or virtual pitch. Wightman (1973a) found that the residue is not
affected by the relative phase of the components in the stimulus. It means that the
pitches of complex tones do not depend on the stimulus waveforms. According to the
pattern-transformation model (Wightman, 1973b), the auditory system detects the pitch
not from the temporal waveform per se but by means of peaks in the autocorrelation
function of the stimulus. Autocorrelation function provides information about pitch,
which is not dependent on the stimulus waveforms.

The two major questions we wished to address were, firstly, whether the F,
component was perceived, and secondly whether the subjective rate is affected by the
relative phase of the components in the stimulus. In the following experiment, we
measured the subjective flicker rates for compound waveforms consisting of harmonic
components (without F;). Since the components are combined linearly, there is no
Fourier energy at F,. To examine the second question, we used two kinds of waveforms
as the stimulus. One was an in-phase, and the other was a random-phase waveform. If
the perceived rates are based on the temporal waveform itself, observers could not
detect the rates for random-phase stimuli, because the relative phase of components
makes the periodicity of waveforms unclear. If, on the other hand, the F, components
are perceived for both in- and random-phase stimuli, there should be a mechanism to

detect it.

3.3.2 Method

Observers

Four human observers, who were males and 23-26 years old, participated in the
experiment. All had normal or corrected-to-normal vision. They were allowed sufficient
practice before starting the experiment, because they had never participated in such an
experiment before. They dark-adapted for about 1 minute before all sessions.
Apparatus

The light source was a 7-mm-diam green LED, set at a distance of 0.8 m from the

observer in dark surrounding. The LED stimulus field was spatially uniform and the
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size of it corresponded to 0.5 deg. Stimulus waveforms were generated by the computer
with a 16-bit digital-to-analog converter. The mean luminance was set to 20 cd/m* and
kept constant during the sessions. To prove the linearity of the apparatus, we measured
the luminance waveforms of the stimuli with a Juminance meter (TOPCON BM-8) with
response time of 1 ms. The LED output was not linear at very low light level, but such
nonlinear components were sufficiently smaller than signal components (-30 dB) for our
experiment.

Stimuli

Stimuli in the present study were compound waveforms consisting of five components,
The frequency of each component corresponded to the n-th harmonic of the common F,,.
We selected eight combinations of components in terms of frequency range and F,. The
F, for stimuli 1, 2, 3, and 4 was 1 Hz. Stimulus 1 consisted of 3, 4, 5, 6, and 7 Hz, and
the ranges 11-15, 21-25, and 31-35 Hz were selected for stimuli 2, 3, and 4, respectively.
For stimuli 5, 6, 7, and 8, components were selected in the frequency range between 30
and 40 Hz. Stimulus 5 consisted of 30, 30.75, 31.5, 32.25, and 33 Hz, harmonics of the
0.75 Hz F,. The F,s of stimuli 6, 7, and 8 were 2, 2.5, and 3 Hz, and the components
were 30-38, 30-40, and 27-39 Hz, respectively. These components had equal amplitude
and were compounded to make two kinds of waveforms for each stimulus. One was an
“in-phase “, and the other was a “random-phase” waveform. The waveforms of the
signals used in the experiment are illustrated in Figure 3.6. It shows that the temporal
waveforms of stimuli were affected by the phase of components, so that the in-phase
and random-phase stimuli had different waveforms. The in-phase waveforms had
remarkable peaks corresponding to the F, For the random-phase condition, each
component was compounded with different phases so that the waveforms had no
significant peak. In the experiment, four “random-phase” waveforms were presented to

all observers.
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Figure 3.6 Left: the spectrum of the compound waves used in the experiment (components are 30, 32,
34, 36, and 38 Hz, for example) does not include the energy at fundamental frequency FO = 2 Hz).
Right: real waveforms show that the temporal waveforms are affected by the phase of components.
The in-phase waveform has remarkable peaks corresponding to the F0O, and the random-phase

waveform has several peaks, of which periodicity is not clear.

Procedure

The subjective flicker rate of the stimulus was measured by means of the “method of
limits”. The flicker with compound waveforms was used as the test stimulus, and
sinusoidal flicker was used as a comparison stimulus. These two stimuli were presented
in pairs with a blank interval. The observers’ task was to judge which of these two
stimuli seemed to flicker at the faster rate. As the comparison stimulus, we used
ascending and descending series. That is, the comparison stimulus was varied in steps,
from a low frequency to a high frequency (or vice versa) to measure the value at which
the observers’ response reversed. The mean of the two values before and after reversal
of the observers’ response was determined as the matched frequency of the test stimulus.
When the observers perceived two or more rates for one test stimulus, they were asked
to judge with the rate perceived most strongly. It means that the observers matched the
sinusoid to the most prominent component of the compound waveforms, and thus, one
matched frequency was obtained through one trial. Intervals of the comparison stimulus
were 0.1 Hz step for frequencies below 1 Hz, 0.2 Hz step for 1 to 3 Hz, and a 1 Hz step
for above 3 Hz. In the descending series, trials started from a value a few Hz above the

highest frequency of the components in the test stimulus. There were two series of the
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comparison stimulus (ascending and descending) and two orders of presentation (test-
comparison and comparison-test), giving a total of four conditions. For each condition
four trials were repeated. Thus, 16 matched frequencies were obtained for each test

stimulus.

3.3.3 Results

Results are shown in Figure 3.7 and 3.8 as histograms. The abscissa represents the
frequency of the comparison stimulus matched with each test stimulus. On the ordinate,
the probability of the response is represented in percentiles. We conducted the
experiment for several frequency ranges and found that sensitivity decreased for the
high frequency components in the compound waveforms. There were limit frequencies,
above which no response was seen to the éomponcnt frequencies. These values allowed
some individual differences between 5 Hz to 20 Hz. For the stimuli with components of
low frequencies below such limits, observers were able to match test stimuli with
component frequencies. For the in-phase stimuli, observers perceived the rates at F.
But in this case, this frequency is easily detected, because it is consistent with the time
interval between the periodic peaks appearing in the temporal waveforms as shown in
Figure 3.6. For the random-phase stimuli, matched frequencies were comparable to the
several aperiodic peaks, which correspond to the component frequencies. It is possible
that the human visual system could detect the flicker rates from local peaks in the
waveforms in this low frequency range. In the high frequency range above the limits
described, however, the F, components were perceived most frequently for both in- and
random-phase stimuli, even allowing some exception such as certain multiples of F,
(Figure 3.7, right).
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Figure 3.7 Results of four observers were summed. The abscissa represents the frequency of the
comparison stimulus matched with each test stimulus. On the ordinate, the probability of the
response is represented in percentiles. For stimuli 1-4, FO was set as 1 Hz. Component frequencies

were chosen between 3-7 Hz to 31-35 Hz, respectively.
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Figure 3.8 Results of four observers were summed. The abscissa represents the frequency of the
comparison stimulus maiched with each test stimulus. On the ordinate, the probability of the
response is represented in percentiles. The FOs for stimuli 5-8 were varied between 0.75 Hz and 3 Hz.

Component frequencies were selected between 30-40 Hz.

Figure 3.9 shows the relationship between the observers’ response and F,. Both curves
have a similar profile except that the probability was about 10 % higher for in-phase
condition. Although probability was affected by phase, the most frequently perceived
rates were F, component in all cases. The highest probability is seen at 2 and 2.5 Hz for
random- and in-phase condition, respectively. These values correspond to the periods of
500 ms and 400 ms, which periods are similar to the “sensitive range” reported by
Fraisse (1984). He reported that in the sensitive range (500 ms to 700 ms) the sensitivity
increased to the periodicity of successive presentation of the stimuli. Our observers
might also have responded sensitively to the periodicity of the flickering stimuli in this

range. Since the observers were told to match to the most prominent component, a
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missing fundamental that was visible but was not the strongest component is missed in
the data. Had the observers been told to match to all visible frequencies, they might

have given more response to F;, even out of the sensitive range.
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Figure 3.9 Relationship between the response probability and FO. The data for five F0s (stimulus 4, 5,
6, 7 and 8) were gathered and plotted in terms of response probability in the FO = 10 % frequency

range. Filled circles and open circles represent in- and random-phase conditions, respectively.

3.3.4 Discussion

The purpose of this study was to investigate the missing fundamental phenomenon in
the judgment of flicker rates by using the compound waveforms. In the high frequency
range above 20 Hz, we found a phenomenon of missing fundamental. Observers
detected the rates at fundamental frequency, which were not included in the stimuli. The
results indicate that the perceived flicker rates are not detected from the temporal
waveforms per se, because the period of F; is not clear in the temporal waveforms for
the random-phase stimuli. It is necessary to suppose another mechanism in the visual
system to extract the periodicity in the temporal variation of flickering stimuli.

It is known that the visual system behaves nonlinearly for flickering stimuli
that are above threshold, such as the stimuli we used (Wu, Burns, Reeves, & Elsner,
1996; Macleod, Williams, & Makous, 1992; Eisner, Shapiro, & Middleton, 1998).
Suprathreshold flicker is accompanied by changes in color and changes in brightness.
Such nonlinear distortions produce real sinusoidal components at the fundamental

frequency and some multiples of it in the compound waveforms. We have examined
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whether the nonlinear distortion affected the observers’ responses in our experiments.
The amplitude of the distortion depends on the attenuation by the temporal filter
preceding the nonlinearity and the form of nonlinearity. For the present purpose, this
can be represented simply by a power series in the temporal waveforms of the stimuli,
f(t), and we only considered here the quadratic terms. The characteristic of the temporal

filter was assumed to be flat. The nonlinear response then becomes f*(t).
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Figure 3.10 Top: nonlinear responses for the stimuli (see Figure 3.6) show that the nonlinearity
expands the upper portion of the wave, creating distortion products at the low frequencies. Second
row: spectra of the nonlinear responses contain FO and multiples of it. Third row: the autocorrelation
functions of the real stimulus waveforms are identical for different phase condition and have
periodical peaks at FO. Bottom: the autocorrelation functions of the nonlinear responses are not

identical, but have identical periodical peaks at FO.
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The accelerating nonlinearity expands the upper portion of the wave (Figure
3.10, top), creating distortion products at low frequencies (Figure 3.10, second row).
The relative size of low frequency distortion products depends on the relative phase of
the compound waveforms. When the waveforms are “in-phase”, the strongest low
frequency distortion will produce a component at F,, (Figure 3.10, second row, left). It is
therefore no surprise that observers see F, most strongly with in-phase compound
stimuli. The situation for the “random-phase” condition is more complicated because
phase modulation itself adds sidebands or other frequencies to the stimulus. Fourier
transform of the resulting signal confirms the severe reduction of the F, component
(Figure 3.10, second row, right). In some extreme cases the signal lacks the F,
component. Nonlinear distortion itself could not explain our results because the
observers perceived F, most strongly for random-phase stimuli. Since the observers’
task is to set the most prominent frequency, information about other frequencies is lost.
Therefore it is not clear whether the observers detected distortion at several multiples of
F,. However, the important thing here is that they preferentially perceived F, as apparent
rate of flicker with compound stimuli.

One possible operation that gives the phase-independent prediction for our
empirical evidence is autocorrelation. The autocorrelation function is defined as the

Fourier transform of the power spectrum, P(w);
O(7) = f: P(w)e™ do, (3.1)

Since only the power spectrum of the waveform appears in this definition, it is obvious
that ®d(t) is not phase-dependent. Actually, the autocorrelation function of the real
stimulus waveforms had identical profiles for both phase conditions used in the
experiment (Figure 3.10, third row). Our result is consistent with the fact that the
autocorrelation function has particular peaks corresponding to the F,. It is possible to
suppose a mechanism to extract a periodicity at F,, from the peaks in the autocorrelation
function of the stimulus.

In the experiment, the observers’ response at F, was slightly affected (about
10 %) by phase (Figure 3.9), and some response was seen at multiples of F, with
random-phase stimuli. Such a phase effect could be explained by the autocorrelation

with nonlinearly distorted stimulus waveforms. The autocorrelation is not identical for
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the in-phase and random-phase stimuli with the nonlinearity of the system. For the
random-phase stimuli, the autocorrelation has several peaks corresponding to the
multiples of F,. These peaks might have the role of interrupting the visibility of F, for
the random-phase stimuli and of producing exceptions to the rule that “the perceived
flicker rate is the missing fundamental frequency”. However, both waveforms have
dominant peaks with the period of 1/F, (Figure 3.10, bottom). These peaks correspond

to the rates that the observers perceived most strongly.

3.3.5 Conclusions

1. The most frequently perceived flicker rate for the compound waveforms corresponds
to the missing fundamental component, which is not included in the stimulus.

2. Even though the periodicity of the waveform is unclear, the fundamental frequency is
perceived.

3. The phenomenon can be explained by assuming a process that detects periodical

peaks in the autocorrelation functions for the nonlinearly distorted waveforms.

3.4 Proposed model of temporal vision

Summary _

A qualitative model is proposed here to explain the perception of the missing
fundamental frequency for complex flicker. The model consists of the envelope
extraction mechanism from the complex signal and periodicity detection mechanism
from the signal envelope. To explore the limitation of the model, thresholds of the
modulation detection was measured for amplitude modulation (AM) flicker. It was
found that the visual sensitivity for AM flicker is affected by the carrier and modulation
frequencies. It was proofed that the subjective flicker rate of complex flicker is

perceived only when the flicker is well above the threshold of envelope detection.

3.4.1 Introduction

As 1 stated in the previous section, it was found that the subjective flicker rate of
complex waveform is the “missing fundamental” frequency, which is not included in the
signal (Fujii et al, 2000). When the periodicity of the waveform is unclear due to the
relative phase of the components, the fundamental frequency is also perceived.

Furthermore, this signal caused some additional perception at multiple of the
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fundamental. To explain this perceptual phenomenon, a process was assumed that
detects periodical peaks in the autocorrelation functions for the nonlinearly distorted
waveforms. Although the model seemed suitable for the data presented, the detail of the
model has not been examined, and therefore it still holds several problems.

Proposed model in the previous section was quite rough. We introduced the
mechanisms of visual nonlinearity and the autocorrelation, but did not examine the
behaviors of these mechanisms in detail. More detailed model is proposed here and its
limitation is tested. In the present model, the input signal is firstly processed by the
nonlinearity, which works to extract the waveform envelope. Then, the periodicity of
the extracted envelope is detected by the autocorrelation function. About nonlinear
mechanism, how much effect would the visual nonlinearity have on flicker perception
will be examined. In the previous experiment, it was not clear how far above flicker
threshold was the stimuli used. We used complex flicker with nearly 100 % modulation.
Because the visual system behaves linearly at lower contrast (e.g. modulation depth)
and become nonlinearly at high contrast, we need to know this threshold to discuss the

effect of nonlinearity on perception of complex flicker.

3.4.2 A qualitative model for flicker rate perception

To account for the experimental results about missing fundamental flicker, a model is
proposed which consists of an initial linear filter followed by nonlinearity and
autocorrelation mechanisms. Schematic illustration of this model is shown in Figure
3.11. In the experiment, subjects saw the complex flicker consisting five components
and matched its flicker rate to that of sinusoidal flicker. Results showed that subjects
could see the fundamental component, which was not included in the complex flicker.
The initial linear filter determines the amplitude and phase of the response to the flicker
component, but there is no response at the frequency of the fundamental component at
this stage. After the complex flicker passes through the linear filter, some kind of
nonlinearity works to the flicker. This nonlinearity creates a distortion product at the
fundamental frequency and its multiples, according to the relative phase of components.

This distortion product corresponds to the envelope of the flicker waveforms.
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Figure 3.11 Illustration of a model for flicker rate perception in complex waveforms.

It is assumed that a matching of flicker rates is made when the period of the
extracted envelope is equal to that of the sinusoidal flicker. To illustrate this, I show in
Figure 3.11 that the input waveform is separated into its high frequency component
(carrier) and low frequency component (envelope) by nonlinearity and low pass filtering.
The carrier component has a distorted waveform due to nonlinear operation, but no
assumption is made as to the exact shape of this component. Several researchers
proposed the kind of nonlinearity, such as asymmetric nonlinearity (Kelly, 1978),
compressive nonlinearity (Eisner et al, 1998), and expansive nonlinearity (Wu et al,
1996), but it is difficult to determine the shape of nonlinearity and its contribution to the
flicker rate matching at this point. Rather, we assumed that the envelope component
extracted by nonlinear mechanism has much effect on the perceived rate of complex
flicker in our previous experiment.

As an operation for extracting periodicity included in the envelope component,
we introduce the autocorrelation mechanism after early processing of the linear filter
and some kind of nonlinear mechanisms. The envelope of the complex flicker contains
periods of fundamental frequency and its multiples. The relative strength of these low
frequency components is much affected by the relative phase of components in the
complex flicker. Thus it is easy to find that fundamental frequency is perceived for “in-

phase” stimulus, but difficult to suppose which periodicity is perceived for “random-
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phase” stimulus (see Figure 3.11, middle). By calculating the autocorrelation function,
we can see that both of in-phase and random-phase stimuli have dominant peaks at
fundamental frequency that all the subjects perceived in the experiment. The decrease in
the subjects’ response at fundamental frequency for random-phase stimuli is also
explained such that the autocorrelation for random-phase stimuli has minor peaks other

than fundamental frequency, which corresponds to the multiple of it.

3.4.3 Test of the model: Envelope extraction by nonlinearity

A proposed model mainly consists of the following two processes: the envelope
extraction by the nonlinearity, and the periodicity detection by the autocorrelation.
Testable predictions of the model are that the flicker rate is perceived only when the
envelope of the flicker is extracted, and that the perceived rate of the complex flicker is
corresponded to the dominant peaks in the autocorrelation functions. Test of the former
prediction is described as following based on the experimental results about threshold of
modulation detection for the amplitude-modulation flicker. The purpose of this
experiment is to examine the threshold of modulation detection for the complex flicker.
In the previous experiment, it was not clear how far above flicker threshold was the
stimuli used. Because the visual system behaves linearly at lower contrast (e.g.
modulation depth) and become nonlinearly at high contrast, we need to know this
threshold to discuss the effect of nonlinearity for the perceived flicker rate of complex

waveforms.

Method
Apparatus and stimulus
Same apparatus was used as previous experiment except that the electric circuit was
added to compensate the linearity of the LED emission at high frequencies. Linearity of
the apparatus was confirmed by the measurement of the luminance waveforms of the
stimulus with a luminance meter (TOPCON BM-8) with a response time of 1 ms.
Amplitude-modulation (AM) flicker was used as stimulus. AM waveform L(t)
is defined as
L(t)=L,J[1+ KA+ mcos2naf, t)sin2xaf, t], (3.2)
where f, is carrier frequency, f, is modulation frequency, L, is mean luminance, K is

carrier contrast, m is modulation depth, and t is time. Equation 3.2 can be expressed as
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L(t) = L(,{K[% sin27(f, - f,)t +sin2af s + ’;—’sin 20(f, + f )]+ (3.3)
From equation 3.3, it is clear that the AM flicker consists of only three sinusoidal
components of f, (carrier), f-f,, and f+f,, (sidebands), and modulation frequency f, is
missing. If the visual system behaves linearly, we could not see the modulation
frequency. Contrary, if the modulation frequency is perceived, we can say that some
kind of nonlinearity does exist in our visual system. The modulation frequency is
contained in the signal envelope, which could be extracted by the nonlinear operation.
To examine the effect of the carrier frequency and the modulation depth for visibility of
the modulation frequency, modulation depth thresholds were measured for several
carrier frequencies ranged from 5 to 50 Hz. Modulation depths were varied between 0.1
and 0.9 during the session. Tested modulation frequency was 2 Hz, and mean luminance

was kept constant as 20 cd/m?® during the experiment.

Procedure and subjects

Modulation detection thresholds were roughly determined by the method of limits as
following. The amplitude-modulation flicker was presented successively separated by
blank intervals of 1 sec. Each flicker interval lasted 4 sec with rise and fall time of 0.2
sec. During the session, the modulation depth was increased from 0.1 to 0.9 with the
step size of 0.1. The subject’s task was to specify the interval, at which the subject just
perceived the modulation frequency. The procedure was repeated five times for each

stimulus configuration. The author was tested as the subject.

Results and discussion

Determined threshold modulation depths are plotted in Figure 3.12. The abscissa
represents the carrier frequency and the ordinate shows threshold modulation depth.
Each plot represents the averag'c value of the thresholds for five measurements. As the
result shows, the sensitivity for the AM flicker peaked around 10 and 20 Hz, and
decreased at high and low carrier frequencies for the modulation frequencies of 1, 2, and
3 Hz. For the 0.5 Hz modulations, the sensitivity was low pass characteristic. For high
carrier frequencies, the sensitivity decreased more steeply and modulation frequencies

could not be seen even for the 100 % modulation at 50 Hz.
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Figure 3.12 Thresholds of amplitude modulation flicker measured for carrier frequencies of 5, 10, 20,

30, 40, and 50 Hz, and modulation frequencies of 0.5, 1, 2, and 3 Hz.

Figure 3.13 re-plots the data of Fig. 3.12 as a function of modulation
frequency. Sensitivity peaked at 2 Hz of modulation for the carrier frequencies below 40
Hz. Dashed line in Fig.3.13 is modulation threshold measured by Gorea, Wardak, and
Lorenzi (2000) for large (30°) flickering stimuli set at an average luminance of 50 cd/m?
with amplitude modulated temporal white noise (AM-TWN). This data is shown for
comparison with the present one as the similar experimental data available. Even though
the experimental conditions are different (e.g. stimulus size, xhean luminance), Gorea et
al’s and present results show similar tendencies. Large difference is only seen at 0.5 Hz
modulations. The most likely reason for this discrepancy relates to the different
procedures used in the two experiments. While Gorea et al obtained thresholds with
2AFC methods, the present data was collected with criteria of perceived modulation
frequencies. For the modulation frequency of 0.5 Hz, it is difficult to distinguish the

flicker rate even when the modulation is perceivable.
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Figure 3.13 Thresholds of amplitude modulation flicker as a function of modulation frequency. For
comparison with previous data, measured thresholds for amplitude-modulated temporal white noise

(Gorea et al, 2000) are shown as dashed line.

From the observations above, it could be said that the sensitivity for the
amplitude modulation flicker is affected by both of the carrier and modulation
frequency. As for the effect of the carrier frequency, the present data is similar to the
previous data of flicker brightness enhancement (Wu et al, 1996). Brightness
enhancement increased with increasing modulation depth at all frequencies, and peaked
around 16 Hz at high modulations. Wu et al’s results suggest that the visual nonlinearity
leading to brightness enhancement is dependent with temporal frequency. The present
result is also interpreted as that the nonlinearity is frequency dependent, which works to
extract waveform envelope and make it perceivable.

We can say that the previous experiment of complex flicker was conducted in
the range well above threshold of modulation detection. To prove this, stimulus
condition of the previous experiment was extended and reexamined. The informal
observation by the author confirmed that the flicker rate of the fundamental component
could not be seen for the stimuli near threshold. At high component frequencies above
40 Hz and at low modulation depth near threshold, the amplitude modulation could be

just perceivable but flicker rate could not be distinguishable. Therefore, it can be
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concluded that the flicker rate is perceived only when the envelope of the flicker is

extracted and exceeded well above threshold.

3.5 Summary

In this chapter, I discussed the underlying mechanism for the temporal perception in
vision. To address the problem, I focused on the fundamental properties of the temporal
vision mechanism. Psychophysical experiment was performed on subjective flicker
rates for complex waveforms. Results showed that human observers perceived a rate at
the fundamental frequency, although the energy at this frequency was not included in

the signals. It implies the existence of correlation mechanism in temporal vision.
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4. Audition

4.1 Introduction

In this chapter, I present a series of studies on physical properties and psychological
evaluations of sound. I use a method of autocorrelation in analyzing a sound signal. In
addition, I use the interaural cross-correlation function to characterize the spatial
properties of sound field. This is based on the autocorrelation function and the interaural
cross-correlation function mechanisms, which have been proposed as a model of
auditory system. Throughout the numerous studies on subjective responses in the sound
field, Ando (1998, 2001) suggested that primary sensations of sound (loudness, pitch,
and timbre), and spatial sensations such as localization, diffuseness, and apparent source
width (ASW), are processed by the autocorrelation and the cross-correlation
mechanisms respectively. Purpose of the present studies is to characterize the acoustical
properties of sound field and to understand the mechanism of perception about such
properties.

Loudness, pitch, and timbre are considered as primary sensations of sound
stimulus. The loudness of a sound is the subjective attribute that is evaluated on a scale
from “soft” to “loud”. By the method of adjustment, loudness can be defined
operationally as the amount of energy in a reference sinusoidal tone or broadband noise
that is adjusted to be equally loud as a given stimulus. Loudness is generally correlated
with the physical property power. Many sounds are perceived to have a pitch. The pitch
of a sound is the attribute that allows it to be positioned on a continuum scale from
“low” to “high”. The pitch of a sound is defined as the frequency of a sinusoidal tone
that is matched to the given sound by the method of adjustment. Perceived pitch of
complex sound such as human voices and music instruments is correlated with the
frequency of the lowest harmonic component (i.e., fundamental frequency). Also, we
can evaluate subjectively the “pitch strength” or “pitchness” of a sound. A very pitchy
sound, like a harmonic complex tone, has a clear pitch. For a less-pitchy sound, like that
of repetition noise, the perception of pitch is not as immediate and seems weaker in
strength. Comparing with loudness and pitch, the timbre of a sound is difficult to be

correlated with particular physical property. There is no simple set of physical
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properties that corresponds to timbre, and no clear operational definition. According to
the American National Standards (ANSI) standard of 1960, timbre is that attribute of
auditory sensation in terms of which a listener can judge that two sounds similarly
presented and having the same loudness and pitch are dissimilar. Using this definition, it
is necessary to extract from the mixture of sensations those that might be important.

In natural sound field we have spatial sensations such as direction and
distance of sound source, diffuseness, and width of sound source, in addition to sound
qualities described above. Information of direction and distance of sound source is
important cue for us to navigate in the field. Spatial properties of diffuseness and source
width are also important to define the quality of a sound field such as auditorium. To
assess the psychological evaluation of sound in the real environment, it is necessary to

investigate such spatial sensations as well as primary sensations.

4.2 Related work

Here, I will give a review of studies related to peripheral and central models of auditory
system and subjective attribute of sound.

4.2.1 Model of auditory periphery

A starting point for modeling the auditory system is to look carefully at the biological
origin to see what may be learned. Our understanding of the auditory periphery to the
level of the hair-cell synapses and beyond has been increasing over the past four
decades. Here, each of stages will be described briefly in accordance with literatures
(Békésy, 1960; Pickles, 1982).

Outer and middle ear

Sound entering the outer ear is subject to a pressure gain at the tympanic membrane
relative to the entrance to the ear canal; this pressure gain is maximal in the region
between 2 and 5 kHz. The middle ear, which couples sound energy from the external
auditory meatus to the cochlea, also has a band-pass pressure transfer function. But, in
this case, the peak is near 1 kHz and has a much steeper slope at the low frequencies.
These two functions could be combined to obtain an effect of outer and middle ear’s
frequency characteristic effect.

Cochlea filtering

The cochlea is probably the single most critical component in the auditory pathway.

After coupling to the acoustic free-field via the outer and middle ears, the one-
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dimensional sound pressure fluctuation is transmitted to the oval window, which starts a
traveling wave down the spiraled transmission line of the cochlea. Because of the
variation of the mechanical structure of the basilar membrane — the central division of
the cochlea — and cochlea fluid, a continuous array of band-pass filters are formed.
Fourier components in the pressure variation will travel some distance down the cochlea
(further for lower frequencies) before reaching a point where the membrane is in
resonance, causing a maximum in basilar membrane motion and the dissipation of the
traveling wave. It mean that the cochlea performs a spectral analysis, converting the
incident sound-pressure variation into motion at different places of the basilar
membrane, with the place of motion encoding spectral location and amplitude of the
motion indicating intensity.
Mechanical-neural transduction at hair-cell
The mechanical motion of the basilar membrane is converted to nerve firings via
synapses at the base of the inner hair cell. This transduction forms a crucial component
of any model of the auditory periphery, since it is the firing patterns on the
approximately 30,000 fibers of the auditory nerve that comprise the description of
sound used by higher levels of the brain. The inner hair cells have tiny embedded hairs
(cilia) that bend when the basilar membrane moves relative to the cochlea fluid, and the
cells emit electrical spikes with a probability that depends on the degree of deflection.
There are two properties of the inner hair cells that have particularly important
effects on the signals transmitted to higher levels. First, the cells respond to cilia
deflection asymmetrically (Hudspeth and Corey, 1977). This introduces a kind of
nonlinearity to the input signal. Several complex models of inner hair cell function have
been developed that are faithful to the nonlinear properties of mammalian inner hair
cells (Hewitt and Meddis, 1991), but the simple half-wave rectification model is chosen
by many researchers. Second, at low frequencies, the hair cells tend to fire at a
particular phase of the signal — a process called phase locking. As the frequency of the
input signal increases, phase locking begins to run out at about 1.5 kHz and disappears
by 5 kHz (reference). This is because the capacitance of inner hair cells prevents them
from sufficiently rapid changing in voltage. In absence of locking to the fine structure of
the waveform, the hair cells lock to the signal’s amplitude envelope (reference). This

produces a reasonable envelope function at high frequencies.
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4.2.2 Central mechanism of auditory system

Place model and temporal model of pitch

Models of central processing in the auditory system after auditory nerve have been
controversial. Especially for pitch extracting mechanism, there are two main types of
models; place models and temporal models. Place models of pitch hold that perceived
pitch originates in spatial aspect of the initial pattern of excitation on the basilar
membrane. Because primary auditory cells are distributed along the length of the
membrane, and this tonotopic organization is maintained throughout the auditory
pathway (Langner, 1997), there is good anatomical justification for the place model. A
good example of the place model is Goldstein’s optimum processor model (Goldstein,
1973). In this model, the instantaneous spectral peaks of a signal are extracted.
Statistical analysis like a maximum-likelihood method is used to decide the fundamental
frequency of the signal. Similar mechanisms have been proposed by Terhardt (1973),
Wightman (1973a, b) and Hermes (1988), among others. There are several
disadvantages of such models. First, they require more spectral resolution than is known
to exhibit in cochlea. Signals with closely spaced spectral peaks can still give rise to a
pitch, even though they are not resolved by the cochlea (Moore and Rosen, 1979).
Second, place models could not explain certain pitch phenomena, such as iterated noise
signals, that are spectrally flat (reference).

In a temporal model, pitch is extracted as the result of temporal processing
and periodicity detection on each cochlear channel. Cochlea acts as a spectrum analyzer,
but perceived pitch is not based on the spectral peaks from this representation. Rather,
the band-passed signals that are output from cochlea are analyzed in time domain.
Pitched signals have periodic fluctuations in the envelopes of the band-passed signals.
These periodicities are viewed as origin of pitch. A variety of methods have been
proposed for measuring the periodicity of sound. Licklider’s duplex theory is the first
temporal model of pitch (Licklider, 1959). He proposed a method based on a network of
delay lines and coincidence detectors oriented in a two-dimensional representation
(Figure 4.1). The first dimension corresponded to the distribution of frequency analyzed
by cochlea, and the second to the delay time of autocorrelation over the range of periods
that evoke a pitch sensation. This network is compiled as that, it calculates a running
autocorrelation function in each frequency channel; the peak of the function within a

channel indicated the primary pitch to which that channel responded. The information
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from multiple channels would be integrated to give rise to a single sensation of pitch.
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Figure 4.1 Duplex theory for pitch perception (Licklider, 1959).

Since Licklider’s formulation, this method has been reintroduced several
times. First, van Noorden (1983) proposed calculation for histograms of neural
interspike intervals in the cochlear nerve. More recently, the model was reintroduced by
Slaney and Lyon (1990), Meddis and Hewitt (1991), and others. Their method is called
the autocorrelogram method of pitch analysis and is the preferred model today. Meddis
and Hewitt (1991) specifically proposed that the integration of calculated
autocorrelation functions (ACFs) in each frequency band produces a summary ACF
(Figure 4.2).
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Figure 4.2 The summary ACF model of pitch detection, following Meddis and Hewitt (1991). After
passed through the outer and middle ear, the input acoustic signal is separated into frequency
subbands by a cochlear filterbank. A rectifying nonlinearity is induced in mechanical-neural
transduction at auditory nerve in hair cell. Running ACF is calculated for the rectified waveforms in

cach frequency band and summed across frequencies to give a summary ACF.

They presented a number of analytic and experimental results showing that this model
can quantitatively explain a wide range of pitch perception. An interesting study that
can be connected to this pitch model is about neural mechanisms for auditory
processing. Recent reports suggest evidence that the information needed for pitch
perception is present in the temporal discharge pattern of auditory nerve. Cariani and
Delgutte (1996a,b) measured the discharge pattern of auditory nerve fibers in cat in
response to a variety of periodic complex sounds. They found that the inter-spike
interval distributions for the auditory nerve resemble the summary ACF, and that the
properties of these distributions corresponded to the large amount of psychophysical
data on pitch perception.

Model of Binaural hearing

In binaural hearing (hearing with two ears), the auditory system is provided with
differences in the input signals to the two ears that would not be available in monaural

hearing. Consequently, binaural hearing offers a number of advantages over monaural
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hearing (Blauert, 1983). The most obvious ones are following:
 Spatial hearing. The formation of an auditory space is improved with regard to the
positions (azimuth, elevation, distance) of sound source and the spatial extents of the
auditory events.
* Separation of sound signals from concurrent sound source. Simultaneous sound events
are spatially separated. This improves the listeners’ ability to concentrate on one and
disregard the others (i.e. cocktail party effect).
* Suppression of the perceptual effects of reflected sounds. Coloration and reverberance
as induced by reflected sounds are reduced. The dominant role of the first wavefront
effect (precedence effect) is supported.

A starting point for modeling in binaural hearing is the model of Jeffress
(1948) as depicted in Figure 4.3. The main body of this model is the estimation of
interaural cross-correlation function (IACF). In this model, it is assumed that the IACF
is computed by a delay-coincidence network. Each coincidence detector records
coincidences of neural impulses from the two ears after a series of internal time delays.
Cross-correlation is an adequate means of analyzing interaural differences in arrival
time. Following cues are extracted from IACF: determination of the azimuth of sound
source, detection and identification of echoes, and estimation of the amount of spatial
impression. Jeffres model was extended by various researchers to cover a broad range of
binaural psychophysical phenomena and to include physiological mechanisms (e.g.,

Lindemann, 1986a,b; Blauert, 1983).

70



lateral position of the auditory event

3 A [ 3 4

TN AN
.6\5&2\0‘\ \~

\ e
. . monaural
”;ggg:;ﬁir interaural cross—correiotion processor
R function left
right &
right left
gar ear

Figure 4.3 IACF model proposed by Jeffres (1948).

4.2.3 Subjective attributes of sound
Loudness
Loudness is generally correlated with sound pressure level (SPL) of sound, but there are
other factors affecting perceived loudness. For example, the variation in frequency
distribution for broadband noise, bandwidth and center frequency for narrowband noise,
and duration of sound causes different loudness for sound with the same intensity. As
for these effects on loudness, there is an extensive work by Zwicker and others. Zwicker
et al. (1957) firstly reported that when the spacing between groups of pure tones is
increased, perceived loudness remains constant until it reaches a critical point, after
which the loudness increases. The same effects occurred when the bandwidth of a noise
sound was increased. The bandwidth at which loudness summation begins was
approximately the same as the critical band determined by methods of masking and
threshold estimation. After that, their numerous data and established modeling led to the
formulation of the “critical band theory”, which become the basis of today’s standard
loudness meter.

However, there are still a lot of controversies about this theory regarding the
basic theory involved. They concerned with the effect of tonal components within the
spectrum. Hellman (1982, 1984) investigated the perceived loudness of tone-noise

complex in relation to the frequency and amplitude of tone. Their results suggest that
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the extent of the increments and decrements in perceived loudness depends on the
overall SPL and the interaction between a specific tone frequency and noise spectrum.
Tonal components might be contributed more to overall loudness than predicted by a
method of loudness summation based on the critical band theory. Merthayasa and Ando
(1996) found that loudness increases for band pass noise with its bandwidth narrower
than the critical band. Their result contradicts to Zwicker’s theory as shown in Figure
4.4, Filtering by a sharp filter as they used, ratio of the tonal components increases
when bandwidth decreases. Their result also indicates the effect of the tonal components
on loudness estimation. Although a tone corrections for loudness is warranted for
certain tone-noise configurations, none of the proposed calculation procedures consider

all the valuables relevant to perceived loudness.
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Figure 4.4 Loudness of bandpass noise measured by Merthayasa and Ando (1996).

Pitch and pitch strength

Complex tones, such as vowels or musical tones, consist of a series of sinusoidal
components (harmonics) whose frequencies are integer multiples of the repetition rate
of the complex, also called as the fundamental frequency (F,;). Complex tones are
usually heard as having a single pitch corresponding to F,. When there is little or no
energy present at F, (i.e. missing fundamental), we also hear the pitch corresponding to
that F,. The pitch of such a signal is called “periodicity pitch,” “residue pitch,” “low
pitch,” or “virtual pitch” (reference). These pitches associated with multi-component

9«

spectral patterns can be contrasted with “place,” “spectral,” or “pure tone” pitches that

72



are associated with individual frequency components.

In addition to complex tones, random noise can also be manipulated to elicit
pitch sensations. For example, “regular interval noise” (RIN) is a sound derived from
random noise, which has temporal regularity in the waveform. The most common RIN
is “ripple noise,” which is produced by delaying a portion of random noise and adding it
back to the un-delayed version. The normalized ACF of ripple noise has a single peak at
the correlation lag corresponding to the delay. By controlling gain and number of
iteration for adding process, we can manipulate the regularity of the signal and
consequently the height of this ACF peak. Yost (1996a,b) found that perceived pitch
strength of his iterated ripple noise corresponded to the height of the ACF peak. It
means that we can detect the degree of regularity in sound and then perceive the
strength of pitch. As another example, Ando and his colleagues examined pitch strength
of “complex noise” which consists of harmonically related narrow-band noises without
fundamental component (Ando et al., 1999). As shown in Figure 4.5, the height of the
ACF peak was controlled by the bandwidth of each component. Their result also
suggested that the pitch strength is corresponded to the height of the ACF peak (Figure
4.6).
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Figure 4.6 Relationship between the ACF peak ¢; and probability of the perceived pitch within

200 16 Hz (r = 0.98, p < 0.01). From Ando et al. (1999).
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Timbre

- Researchers have long been interested in identifying perceptual dimensions of timbre of
sound. Multidimensional scaling (MDS) is a general method for finding underlying
dimensions of timbre perception. A typical MDS study of timbre begins with a
collection of sounds (for simplicity, complex tones are often used) with differences of
pitch, loudness, and duration minimized. Subjects are asked to rate either the similarity
or dissimilarity of each pair of sound stimuli. From these judgments, a low-dimensional
arrangement of the stimuli is found as that best fit the subjects’ ratings. If the set of
stimuli has an underlying dimensional structure, the dimensions of the arrangement can
be interpreted in terms of perceptual/physical attributes.

Miller and Carterette (1975) made similarity judgment for complex tones
simulating instrumental tones. They found that the fundamental frequency was the most
salient factor for similarity judgment. Other factors were found as time envelope of
stimuli and number of components. Grey (1977) performed similar experiments by
using computer-synthesized instrument tones. Salient dimensions were interpreted in
terms of the spectral energy distribution and the temporal structures in the transients.
Considering these two results and others, timbre might be dependent on both the
spectral structure and temporal structure. Especially for the spectral structure, the
average spectral centroid, which correlates strongly with sharpness or brightness of
sound, and the consonance, which correlated with clarity of sound is consistently found
to be principal (Bismarck, 1974; Ohgushi, 1980).

Spatial sensations (localization and spatial impression)

The most tempting field of application for binaural auditory models concerns the ability
of binaural hearing to process signals from different sources selectively, and to enhance
one of them with regard to the others. Lateral displacement of sound source is perceived
when an interaural time difference (ITD) or interaural level difference (ILD) is present.
Subjective lateral displacement is assumed to correspond to the location of the
maximum peak of the IACF.

Other spatial sensations, such as subjective diffuseness and apparent source
width (ASW) have been extensively studied in the field of room acoustics. Keet (1968)
reported that the absolute ASW for fixed listening level is highly correlated to the cross-
correlation function measured by two microphones with angle of 90° between them.

Barron (1971) described the importance of early lateral reflections for spatial
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impression, and claimed that the degree of spatial impression is related to the ratio of
lateral to non-lateral sound arriving within 80 ms of the direct sound. Damaske and
Ando (1972) defined IACC as the maximum value of the interaural cross-correlation
function lying within the possible maximum interaural time delay (between -1 ms and +
1 ms). They reported that IACC corresponds to the subjective diffuseness of sound field.
Later, it was determined that IACC is a significant factor for the subjective preference
of sound fields. Schroeder et al. (1974) conducted the subjective preference tests. They
found two significant factors, namely, reverberation time, and IACC. From the
systematic investigations in simulated sound fields, Ando (1985) found the four
orthogonal factors (listening level: LL, initial time delay gap: At,, subsequent
reverberation time: T,,,, and IACC). Beranek (1996) also proposed that IACC is one of
his proposed six significant factors. As another spatial factor, Barron and Marshall
(1981) proposed Lateral Energy Fraction. But the reflection from 90° in the horizontal

plane did not always have an advantage for increasing the subjective diffuseness.

4.3 Acoustical properties of aircraft noise measured by temporal and
spatial factors

Summary

Acoustical properties of aircraft noise were investigated by means of temporal and
spatial factors in sound fields based on the model of auditory-brain system. The model
consists of the autocorrelation and crosscorrelation mechanisms for sound signals
arriving at two ears and the specialization of human cerebral hemisphere. There are four
temporal factors extracted from the autocorrelation function (ACF); 1) sound energy
®(0), 2) effective duration of ACF, t,, 3) delay time of the first peak, t,, and 4) its
amplitude ¢,. From the interaural cross correlation function (IACF), three spatial factors
are extracted as, 1) magnitude of the interaural crosscorrelation, IACC, 2) interaural
delay time at JACC, Tj5cc, and 3) width of the maximum peak of the IACF, W . It is
found that the acoustical properties are well represented by the factors extracted from
the ACF and the IACF.

4.3.1 Introduction

This paper describes the acoustical properties of aircraft noise in terms of its temporal
and spatial factors. Aircraft noise disturbs peoples’ daily lives and sometimes causes

serious problems such as hearing loss or has an adverse impact on the growth of unborn
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babies, infants, and children (Ando, 1977; Ando and Hattori, 1970, 1973, 1974, 1977a,
b). A lot of effort has been spent on noise research and noise reduction technologies
(Stephens and Cazier, 1996). Significant progress has been made on reducing noise
level but a big problem remains. Noise has only been evaluated by statistic sound
pressure level (SPL), but perceived acoustical properties have not been considered
sufficiently (Research Committee of Road Traffic Noise in Acoustical Society of Japan,
1999). In particular the relationship between physical properties and psychological
affects is not clear. For example, a sound may exist that has a SPL below standards such
as EPNL or WECPNL, but that is perceived to be noisy in a given situation. Such an
annoyance may be related to primary auditory sensations (pitch, loudness, and timbre)
based on the mechanisms in the human auditory-brain system (Ando et al., 1999).

The most plausible mechanism in the auditory system consists of
autocorrelators and a crosscorrelator for analyzing sound signals arriving at both ears
(Ando, 1998). Perceived pitch and its strength of complex tones or complex noises are
expressed by the first peak in the autocorrelation function (ACF) of the signal (Sumioka
and Ando, 1996). Loudness is also related to a factor of the ACF, ¢, (Merthayasa and
Ando, 1996), not only to the SPL. In addition, spatial properties are important for noise
evaluation. Noise sources are usually not fixed, but move spatially. We hear a different
sound quality when the noise source is coming or going away. Information on location
or direction of the sound source, subjective diffuseness, and apparent source width
(ASW) can be expressed by the factors extracted from the interaural crosscorrelation
function (IACF) (Ando, 1998; Sato and Ando, 1998). To specify such spatial

characteristics, binaural measurements were conducted.

4.3.2 Method
Measurement procedure
Measurements were taken outdoors near the flight course of Kansai International
Airport on January 12, 2000, and near Osaka International Airport on December 13,
1999. Measurement locations are illustrated in Figure 4.7.

For measurement of noise along the flight course of Kansai Airport, a dummy
head was set near coast. This location is 20 km southwest from the airport, and the flight
course for landing is about 1.0 km from the shore. The altitude of the plane used in the

measurement was about 1.0 km above sea level, according to the flight data from the
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airport. It was cloudy and windless on the ground level during the measurement. The
average temperature for the day was 12 °C. Ambient noise level in this area was 43 + 2

dB.
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Figure 4.7 (a) Location of two airports and the measurement points. Configuration of each

measurement point for (b) level flying, (c) landing, and (d) takeoff.

At the Osaka Airport, two locations were chosen close to a runway to measure
the noise from aircraft landing and taking off. The distances between the runway and
each measuring point was about 100 m. Ambient noise level in this area was higher
because of road traffic (60 + 2 dB). It was cloudy and windless on the ground level.
Temperature was about 10 °C during the measurement. Noise signals were received by
two half-inch condenser microphones set at both ear positions of a sphere representing a
human head. This dummy head is made of 20-mm-thick styrofoam with a diameter of

200 mm. Microphones were set at 1.5 m above the ground.
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Analysis of acoustical factors

An autocorrelation function (ACF) is defined by

+T
: __1_ g |
P, (1)= r]meZT:pr (Hp (¢ +T)dr, (4.1)

where p’(t) = p(t)*s(t), in which p(t) is sound pressure and s(t) is ear sensitivity. For
practical reasons, s(t) may be chosen as the impulse response of an A-weighting
network. The value t represents the time delay, and the value of 2T is the integration
interval. There are four significant parameters extracted from the ACF (Ando, 1998).
The first factor is a geometrical mean of the sound energies arriving at both ears, ¢(0),
which is expressed by,

@(0) =[@,0)2, (0)]", (4.2)
where @,,(0) and ®,(0) are the normalized ACF at delay time t = O for left and right ears.
Sound pressure level is obtained as SPL = 10 log,,®(0). The second factor is the
effective duration of the normalized ACF, t,, which is defined by ten-percentile delay of
the normalized ACF, representing repetitive features or reverberation contained within
the signal itself. The third and fourth factors are the delay time and the amplitude of the
first peak of the normalized ACF, T, and ¢,. These two factors are closely related to the
pitch sensation (Sumioka and Ando, 1996).

For specifying the spatial characteristics of sound signals, three factors were
extracted from the interaural crosscorrelation function (IACF). The crosscorrelation

function between the sound signals at both ears fi(t) and f(t) is given by,

+T
. 1 1 [
@, (@) = lim — fT £ OF ¢+ vy, (4.3)
where f’(t) and f’(t) are approximately obtained by signals f, (t) after passing through
the A-weighting network, as in equation (1). Normalized IACF is defined by

By (1) - (4.4)

where the values of ®,(0) and ®,(0) represent the sound energies arriving at left and
right ears. The denominator means the geometrical mean of the sound energies arriving
at both ears. The magnitude of IACF is defined by,

ucc=lg,@| ., k=ims (4.5)
The value of IACC represents the degree of similarity of sound waves arriving at each

ear. This is a significant factor in determining the degree of subjective diffuseness in the
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sound field. As IACC decreases the subjective diffuseness increases.

The interaural time delay is defined as <,,cc at which the IACC is decided. It
represents the horizontal sound location or direction, and the balance of the sound field.
When <, is zero, the front-sound-source image and a well-balanced sound field are
perceived. The width of the maximum peak of IACF, W, is defined by the delay time
interval 10% below IACC. It is worth noticing that the apparent source width (ASW)
could be evaluated by IACC and W, (Sato and Ando, 1998).

Conditions for calculating acoustical factors

Aircraft noise lasts for certain duration. Its duration depends on the distance between the
receiver and the planes or speed of the planes. Noise was measured 10 s for aircraft
landing and 20 s for taking-off. During level flying at high altitude, noise lasted about
60 s. Although the sound pressure level fluctuated throughout the flight, the mean level
was constant. Therefore, the measurement time for one session was set to 10 s for level
flying aircraft with center of maximum SPL.

As sound signals vary continuously, the acoustical factors described above
should be calculated in every certain duration with short interval. In the case of music
sources, the integration interval (2T in equation 1) is between 2 to 5 s. This length is
based on the theory of “psychological present”, which states that humans perceive
successive events as one thing (Fraisse, 1982). But in calculating ACF to describe a
single syllable for Japanese speech, a much shorter integration interval (30 ms) is used
because the speech signal varies in very short time (Shoda and Ando, 1998).

To capture the correct properties of aircraft noise, integration interval for ACF
and TACF has been examined. Figures 4.8 (a) and (b) show examples of measured SPL
for two types of signals with different t, (Figure 4.8, top) integrated for three different
intervals. It is clear that an interval of 1 s is too long to capture the fluctuation of sound
properties. Such a variation could be caught by 0.25 s or 0.5 s integration. The
properties throughout the measuring time are the same for both intervals, but a finer
variation could be measured in the case of 0.25 s. Listening to the noise with long <,
(minimum value: 20 ms), these fine variations could not be heard. For the sound with
short T, (minimum value: 10 ms), on the other hand, 0.25 s integration matches the
actual sound fluctuation. Mouri et al. (2001) reported that the integration interval should
be set as 2T = 30 (T.),;,- In this case, recommended 2T is 0.6 s and 0.3 s for the signal

with (t.)m. 0f 20 ms and 10 ms, respectively. In the present study, integration interval
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was chosen as 0.5 s for signals with (t,),,;, = 20 ms, and 0.25 s for signals with (t,) ., =
10 ms.
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Figure 4.8 Examples of measured SPL for two different types of noise signals with a) (t.)u, = 20 ms
and b) (t)min = 10 ms with three different integration intervals, from the second row, 0.25, 0.5,

andl1.0 s.

4.3.3 Results and discussion

Temporal factors extracted from ACF

An aircraft flying overhead produces a noise on the ground, which rises above the

ambient level, reaches a maximum when the aircraft is approximately overhead, and

then decreases again below the ambient level. The properties of the aircraft noise vary

throughout the flight. The typical case is one in which the noise is predominantly high

frequency while the aircraft is approaching and is predominantly low frequency after the

aircraft has passed over and is receding. Such characteristics are clearly represented by

the factors from the ACF as shown in Figures 4.9 (a) - (c) for landing condition. |
Measured SPL is shown as a function of time; at t = 5.0 s the aircraft was

directly overhead. The duration above the ambient level was about 10 s. The delay time
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and the amplitude of the first peak in ACF, T, and ¢,, represent the perceived pitch and
its strength. The reciprocal of T, corresponds to the perceived pitch. Results indicate that
the perceived pitch varied throughout the flight. As the aircraft approached, t, was about
1 ms with the value of ¢, increasing. The strongest pitch of 3300 Hz was perceived
when the aircraft passed overhead, at which the value of T, was 0.3 ms. Such a strong
tonal component is emitted from fan exhaust. After the aircraft passed over, T, value
increased and ¢; value decreased simultaneously, indicating that the noise was
dominated by the lower frequency components produced by jet exhaust.

Power spectra and the ACF measured at t = 1.0, 5.0, and 7.0 s are illustrated in
Figures 4.9 (b) and (c). They show that T, and ¢, represent the properties of aircraft
noise clearly; at t = 1.0 s there is a small peak around 1000 Hz, which is perceived as a
noise with a weak pitch; at t = 5.0 s there is a high frequency component at 3300 Hz
perceived as a tonal sound; and at t = 7.0 s the strong peak disappears and the lower
frequency components increases below 500 Hz, which is perceived like white noise.

For the same type of aircraft during taking off, the duration above ambient
level was approximately 20 s, longer than that of landing condition. The acoustical
properties of taking-off aircraft were somewhat different from those of landing aircraft.
The ¢, value was always below 0.2, which means the high frequency tonal components
were lessened and low frequency components were pronounced. This is possibly
because the aircraft is at a higher altitude and the engine power is higher. Thus, high
frequency components attenuate and more jet noise is produced.

Figures 4.10 (a) show the measured factors for the aircraft during level flying
overhead at an altitude of about 1 km, and measured power spectra and normalized ACF
are shown in Figures 4.10 (b) and (c). The noise for level flying aircraft was classified
into two typical cases. The SPL throughout the flight fluctuated in the same manner, but
the values of t, and ¢, were extremely different for each case. The value of T, for the
two cases was almost the same (mean value: 3.06 and 2.45 ms), but the ¢, value for one
case varied dramatically throughout the flight. At times with high ¢,, a tonal sound was
heard and its pitch strength fluctuated in relation to SPL. In other words, when the noise
contained a strong tonal component, the total SPL increased. This phenomenon may be
related to diffusion, air absorption, or the scattering reflection of sound caused by air

conditions such as wind or clouds.
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Figure 4.10 (a) Measured SPL, t;, and ¢; for level flying aircraft. (thick line), tonal noise, and

(dotted line), un-tonal noise. (b) examples of spectrum and (c) normalized ACF, measured at A, B,

and C.

Spatial factors extracted from IACF

The normalized interaural crosscorrelation function (IACF) is shown in Figure 4.11 (a)
for landing, taking off, and level flying conditions. The values of IACC, 5, and Wcc
were found from them. Measured IACC is shown in Figure 4.11 (b) as a function of

time. For the landing and taking off conditions, the IACF had a strong peak at t = 0,
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meaning that the direction of the noise source is perceived clearly. The value of IACC
decreased when the aircraft passed overhead for landing, possibly because the noise was
dominated by the high frequency component produced by fan exhaust. The value of
W, Acc is dependent on the dominant frequency of the sound. For the taking off condition,

W, .cc Was large because of the low frequency components.
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Figure 4.11 (a) Normalized interaural crosscorrelation function and (b) measured IACC as a function
of time for the conditions of landing (top), takeoff (second row), level flying 1 (third row), and level

flying 2 (bottom).

The value of JACC was generally small for the level flying condition. In this
case subjective diffuseness became high or no spatial impression was perceived. For
flying aircraft at high altitude, the sound signals may come from various directions
because of diffusion or the scattering reflections by clouds. It was also found that the
value of IACC increased when the noise was dominated by tonal components. It is
possible that such a tonal component reached the ground from the aircraft directly.

The value of T, for landing and taking off aircraft was always close to zero,
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which means that the sound source is perceived for a frontal direction. On the contrary,
for level flying condition the value of T, e could not be calculated in many cases
because the peak of the IACF shifted over 1 ms. The value of W, was also larger for
level flying than for landing or takeoff conditions. As a result, information about sound

source direction may be lost and apparent source width (ASW) may become wider.

4.3.4 General discussion

It was found that the measured temporal and spatial factors represent the acoustical
properties of aircraft noise well. Although the results have already been reported such
that the dominant frequency component varies throughout the flight for landing aircraft
(Raney and Cawthon, 1979), the present ACF analysis represents these properties
simply and clearly.

For the level flying condition, aircraft noise was classified as either tonal noise
or un-tonal noise with low frequency components. For the tonal noise, the value of =,
becomes longer because of the repetitive component of the signal. It has been reported
that loudness increases in proportion to the value of T, (Merthayasa and Ando, 1996). It
is possible that the aircraft noise including tonal component is perceived louder than un-
tonal noise. Psychological experiments should be performed to examine the relationship
between loudness and the value of <, for aircraft noise.

The spatial properties of aircraft noise are also interesting. It was found that the
value of IACC decreases and W, increases for the level flying condition. This
phénomenon may be related to the scattering reflection by clouds in the sky. The aircraft
noise for level flying condition may cause higher subjective diffuseness and wider ASW.
Psychological tests on spatial impressions also need to be performed to examine the
correspondence between the measured physical properties and psychological

perceptions or evaluations for the aircraft noise.

4.4 Physical properties and annoyance of traffic noise

Summary

Temporal and spatial factors of traffic noise were analyzed based on a model of an
auditory-brain system. This model consists of the autocorrelation and cross-correlation
mechanisms for sound signals arriving at two ears, and takes account of the

specialization of left and right cerebral hemispheres. There are three temporal factors
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extracted from the autocorrelation function (ACF): (1) the effective duration of ACF <.,
(2) the delay time of the first peak t,, and (3) its amplitude ¢,. The four spatial factors
extracted from the interaural cross-correlation function (IACF) are (1) listening level,
(2) magnitude of the interaural cross-correlation IACC, (3) interaural delay time T, ¢c,
and (4) width of the maximum peak of the IACF W,,... Annoyance of the traffic noise
reproduced in an anechoic chamber was evaluated by nine subjects in a paired-
comparison test. Even though the listening level was constant for all the stimuli, the
scale value of annoyance was much different for each vehicle noise. The scale value of

annoyance could be well described by the linear combination of these factors.

4.4.1 Introduction

In this section I describe an analysis of traffic noise by a newly developed measurement
system (Sakurai et al, 2001) and a laboratory experiment designed to explore the
relationship between the physical properties of noise sound and its annoyance (Atagi et
al., 2001).

Numerous studies have tried to use the listening level of a noise sound to
predict its perceived annoyance. Annoyance depends directory on listening level when
sounds are roughly equivalent in other attributes, such as timbre and duration. In the
case of aircraft noise, an increase in SPL (sound pressure level) of 10 dB results in a
doubling of the subjective annoyance (ISO R/507, 1970) For sound sources having
widely different acoustical properties or durations, however, this relationship may no
longer hold. We must consider other factors influencing the annoyance.

Cermak and Cornillon (1976) asked their subjects to compare a wide range of
road-traffic sounds to find significant factors which affect annoyance. Despite using a
variety of sounds having different temporal variance and spectrum shapes, they did not
find significant factors contributed to the annoyance other than SPL. Versfeld and Vos
(1997) measured the annoyance caused by sounds of military tracked vehicles and civil
passenger cars. They found that the annoyance depended on the vehicle type and
suggested that the difference between the high-frequency part and the low-frequency
part of the spectrum might play a role in the annoyance. For evaluating the
unpleasantness or annoyance of noise, Zwicker and Fastl (1999) proposed parameters
such as sharpness, roughness, tonality, and fluctuation strength, in addition to loudness.

Recently, Ando (2001) said that perceived annoyance is influenced by primary
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and spatial sensations of sound sources and sound fields. As primary sensations,
loudness, pitch, and timbre should be considered, and as spatial sensations in a sound
field, localization, subjective diffuseness, and apparent source width (ASW) should be
considered. Such fundamental subjective attributes for sound fields have béen described
in relation to a model of an auditory-brain system (Ando, 1998, 2001) This model
includes autocorrelation function (ACF) and inter-aural crosscorrelation function
(IACF) mechanisms. It has been suggested that primary and spatial sensations of noise
fields could be described by the temporal and spatial factors extracted from the ACF
and the IACF respectively.

Based on Ando’s theory, we have analyzed aircraft noise in terms of temporal
and spatial factors extracted from the ACF and IACF. For example, perceived pitch and
its strength of complex tones and complex noises are expressed by the first peak in the
ACF of the signal. Loudness is related to the ACF factor, t,, not only to the listening
level. These ACF factors could be possible measures of noise annoyance. In addition,
spatial properties are important for noise evaluation. Noise sources are usually not fixed.
We hear a different sound quality when the noise source is approaching or departing.
Information on the location or direction of the sound source is expressed by the location
of the maximum peak of the IACF. Subjective diffuseness and apparent source width
can be evaluated by the height and width of the maximum peak of the IACF. These
temporal and spatial factors may contribute to annoyance in a complex manner. To
simplify the problem, only the ACF factors were investigated in the present laboratory
experiment. A paired comparison test for ten subjects revealed that the ACF factor, T, ¢,,
and the variance of SPL are most highly correlated with the Asubjective annoyance.

4.4.2 Physical properties of traffic noise

Measurement procedure

Sound recordings were made of civil road traffic, such as a passenger car, a bus, a truck,
and a motorbike. The measurement point was 5 m from the center of a road, along a line
perpendicular to road. Sounds were received by two 1/2-inch condenser microphones
" set at the ear positions of a sphere representing a human head. This dummy head was
made of 20-mm-thick Styrofoam having a 200-mm diameter. The ear positions were set
at 1.5 m above the ground. Received sounds were recorded on a DAT recorder at a
sampling rate of 48 kHz, and simultaneously stored on a hard disk of an analyzing

computer at a sampling rate of 44.1 kHz for the following analysis.
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Analysis of acoustical factors

To evaluate a temporally varying noise sound, we used the running short-time ACF and
IACF. Running short-time temporal and spatial factors were used to describe the
primary and spatial sensations of a sound field.

Results and discussion

Based on the running short time SPL [dBA] measured by the system, eight standard
measures were calculated: (1) mean SPL, (2) variance o of the SPL, (3) maximum SPL,
(4) minimum SPL, (5) — (7) the SPL values exceeded 10 % of the time (L,,), 50 % of
the time (Ls,), and 90 % of the time (L), and (8) equivalent sound level L,,. Most of
these standard measures were highly inter-correlated (see Table 4.1). Clearly, all of
these factors contain information about the overall sound level and its variability.
Therefore, only the median (Ls,) and variance (0?) of the SPL were considered in the

subsequent analysis.

Table 4.1 Correlations among eight standard noise measures for nine traffic noises.

max min mean o* Lsy L.. Lo L.,
max 1
min -0.69* 1
mean -0.24 0.62 1
o* 0.89%* -0.91** -0.53 1
Lso 0.06 0.24 0.84%** -0.11 1
L, 0.57 -0.31 0.44 0.48 0.82%** 1
) -0.85%* 0.87** 0.66* -0.97** 0.27 -0.32 1
Lo 0.70* -0.46 0.28 0.63* 0.70%* 0.98** -0.49 1

**p<0.01,*p<0.05

The measured SPL and three ACF factors are represented in Figure 4.12 as a
time function. Thick lines and thin lines show the two extremes of measured sounds:
one has a clear pitch sensation, and the other has a weak pitch. We call these two sounds
tonal noise and un-tonal noise as in a previous study (Fujii et al., 2001). The SPL
throughout the measurement varied in the same manner, but the ACF factors were
extremely different for each case. The value of T, varied between 1 ms and 10 ms,
meaning that perceived pitch varied between 1000 Hz and 100 Hz for both noises. The

strength of perceived pitch increases in proportion to the value of ¢,. For a tonal noise,
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the ¢, value reaches maximum around 0.6 and 0.7. At this time, a strong tonal sound is
heard having a pitch of t,. When the t, value varies with a high ¢, value, we can
perceive the variation of the pitch. However, the ¢, value for an un-tonal noise remained
constant around 0.2, despite the variation of <,. The perceived pitch for an un-tonal

noise is therefore very weak, and it is hard to discriminate pitch fluctuation.

N U 0 :
Time [s] Time [s]
Figure 4.12 Two extreme examples of measured SPL and three ACF factors as time functions. Thick
lines show the factors of tonal noise (motor bike), and thin line shows the factors of un-tonal noise

(passenger car).

The calculated power spectrum and ACF for tonal and un-tonal noises is
shown in Figure 4.13. For the tonal noise, there are several peaks in the spectrum.
Generally, the spectrum consists of harmonic components (discrete part) and noise
component (continuous part), but it is difficult to identify which peak is a fundamental
frequency in the spectrum for a complex sound. When the same sound is analyzed by
the ACF, its harmonic structure is easily extracted. Strong periodical peaks in the ACF
show that a periodicity corresponding to the pitch is present in the sound. Minor peaks
within a period of the ACF give information about the higher-frequency components or
timbre of the sound (Meddis and Hewitt, 1991; Cariani and Delgutte, 1996). This
information can be used by the measurement system to identify the sound source. For
the un-tonal noise, there is no particular peak in the spectrum. This means that the sound
has no particular periodicity perceived as pitch. In this case, the ACF decreases to zero

without strong periodical peaks. Because the envelope of the ACF is related to the value
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of ¢,, the value of T, is a good measure of the periodicity of the sound signal.
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Figure 4.13 Calculated power spectrum and the ACF of tonal noise and un-tonal noise.

The perceived direction of a sound source is represented by the maximum
peak of the IACF, because it corresponds to an interaural time difference. As a sound
source moves from left to right, the value of T, varies from a minus to plus value, as
illustrated in Figure 4.14. The measured values of <, show that the vehicles passed

through the receiver from left (right) to right (left).
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Figure 4.14 Examples of the IACF and the values of Tj4cc.

4.4.3 Psychological experiment

Method

Nine recordings of noise sounds were used in the experiment. Each stimulus was edited
on computer software to have a 4-sec duration, and contains one vehicle’s passage. The
maximum level was adjusted to be equal (73 = 2 dB) and to occur near the middle of the
sound. To make the envelope of sounds equal, a 0.5-sec rise and fall time was added to
all stimuli.

The cumulative frequency of measured SPL and three ACF factors are shown
in Figure 4.15. To characterize the acoustical properties of a stimulus, we used the
median and variance of each factor. Our assumption of perceived annoyance is as
follows. (1) It has been reported that the median of SPL (L,) is a good measure of
annoyance. Therefore, a higher-level sound is considered to be more annoying than
lower level sound. (2) Perceived pitch may also be related to anndyance. The calculated
T, value of stimuli ranged between 1 ms and 10 ms, corresponding to the perceived
pitch of 1000 Hz and 100 Hz. Generally, a sound having a low pitch is not as annoying
as a sound having a high pitch. In our experiment, stimuli with a small value of t, might
be more annoying. (3) It has been found that the perceived loudness of band pass noise

increases in proportion to the value of t, (Merthayasa and Ando, 1996; Sato et al., 2001).
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Annoyance may also be related to loudness, and consequently to the value of <.. (4)
Values of ¢, represent perceived pitch strength. A sound having a strong pitch might be
more annoying than one having a weak pitch. (5) In general, a noise whose sound level
fluctuates is more annoying than the same average noise having a constant sound level.
Similarly, a noise whose pitch and timbre fluctuates is more annoying than one having a
constant quality (Molino, 1979). To estimate the effects of such fluctuations of sound
level and sound quality, we added the variance of SPL and ACF factors to the variables

for the annoyance calculation.
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Figure 4.15 Cumulative frequencies of the SPL and the ACF factors measured for the stimuli used in

the experiment.

The traffic sounds were reproduced in an anechoic room through a laptop
computer, a D/A converter, a power amplifier, and a loudspeaker. As described before,
only the effects of the temporal factors were examined in the experiment. A single
loudspeaker was used to keep the spatial properties of the sound field constant. The
subjects sat 1.0 m in front of the loudspeaker.

Ten subjects (nine males and one female) participated in the experiment. They
were between the ages of 23 and 27, in good health, with normal auditory acuity. Except

for two of the authors (FK and AJ), the rest of the subjects were unaware of the purpose
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of the study. Subjective annoyance was measured by a paired comparison method. All
possible pairs from the nine sounds (36 pairs) were presented to the subjects in a
random order in one session. After the presentation of paired stimuli, the subjects were
asked to judge which of the two sounds were more annoying. All subjects had four
series of sessions, giving a total of 144 comparisons.
Results and discussion
Collected data were processed by applying “the law of comparative judgment” (case V;
Thurstone, 1927). This law is used to produce one-dimensional scale values (SV) for
each stimulus from the total matrix of superiorities collected from the paired
comparisons. The results were reconfirmed by the goodness of fit (Mosteller, 1951) and
the agreement of all subjects’ judgments was tested by the chi-square test (p < 0.05).
With these analyses it was ascertained that the subjects’ judgments were reliable and
that there were certain underlying criteria upon which they agreed.

The scale values (SV) of annoyance for all the subjects were averaged, and
the correlation coefficients, r, were calculated between the annoyance and the median
and variance of ACF factors. The correlation matrix between the ACF factors and SV is

shown in Table 4.2.

Table 4.2 Correlations between the median and variance of the ACF factors and annoyance.

SPL T, o, T. Var SPL.  Var T, Var ¢, Var .
SPL 1
T, -0.66 1
Y -0.29 0.82** 1
T, 034 033 0.74%* 1
Var_SPL -0.11  0.02 0.22 0.03 1
Var_t, -0.57 0.46 0.37 0.35 -0.04 1
Var_ ¢, -0.09 0.50 0.30 0.78** -0.35 0.12 1
Var_t, -0.15  0.59* 0.77%* 0.78** 0.13 0.33 0.58*% 1
annoyance 0.11 030 0.57* 0.56* 0.64* 0.39 0.20 0.67*

#**p<0.01, *p<0.05
Contrary to the predictions, perceived annoyance was not correlated to the SPL. It is

considered that the range of the SPL among the stimuli was too small (5 dBA) to affect

annoyance. Instead, the variance of the SPL had much effect on annoyance. Although
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Cermak and Cornillon (1976) did not find a significant contribution of measures other

than L., our results suggest that other acoustical factors are more dominant than the L,

e
or L., when the difference of overall SPL is small.

The values of t, and ¢, were significantly correlated to annoyance (r = 0.56
and 0.57, p < 0.05). This result shows that a sound having a strong tonal component was
perceived to be more annoying than the un-tonal noise. The subjects’ comment also
indicated that they judged a sound having a clear pitch to be more annoying. In the
evaluation of the perceived noise level for a tonal sound as used in the experiment, a
number of tone corrections are used. Generally, a value is added to the “Perceived Noise
Level” (PNL) to give the “Tone Corrected Perceived Noise Level” (PNLT). However,
the calculation for this correction is lengthy, and their accuracy is not well established
(May, 1978). Instead, by using the value of <, and ¢,, the effect of the tonal component
on perceived annoyance is clearly explained.

Considering the results above, it is considered that the ACF factors and the
variance of the SPL independently affect perceived annoyance. To calculate perceived
annoyance more precisely, we examined multi-regression analysis by using a linear
combination of eight variables, which consist of the median and variance of the ACF
factors and the SPL. To obtain an optimal model, all possible combinations were
examined. The correlation coefficients and significance levels were used to determine
the goodness of fit. The best combination of variables was found as the variance of SPL,
the median of t,, and the variance of t,. Partial regression coefficients of each variable
were 0.64, 0.50, and 0.36.

SV ~ 0.64Var _SPL +0.57, +0.36Var _t, (7

annoyance
Using these tentative values for equation 7, the total correlation coefficient 0.91 was
obtained with the significance level p < 0.05, as shown in Figure 4.16. This result shows
that the combination of the ACF factors was sufficient to calculate perceived annoyance.
In addition to the fluctuation in SPL, tonality of the sound and pitch fluctuation, which
are the important factor for annoyance, could be calculated by the proposed ACF
analysis. As for the other factors, which we did not concern in this study, roughness and

sharpness of sound could be considered in the future work.
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Figure 4.16 Relationship between the measured annoyance and the calculated annoyance by using

the linear combination of the ACF factors.

4.4.4 Conclusion

The purpose of this study Was to describe the acoustical properties of traffic noise and to
explore the relationship between the described properties and perceived annoyance.
From the results we concluded that: (1) The ACF analysis is effective in characterizing
sounds, such as the perceived pitch and timbre. The IACF analysis is effective in
describing the spatial information of the noise source. (2) Perceived annoyance is
greatly affected by the variation of the SPL and other primary sensations, when the
difference of the overall SPL is small. (3) The combination of the ACF factors can

calculate perceived annoyance sufficiently.

4.5 Summary

In this chapter, I presented a series of studies on physical properties and psychological
evaluations of sound. I used the ACF in analyzing a sound signal and the interaural
cross-correlation function (IACF) to characterize the spatial properties of sound field. It
was found that the acoustical properties are well represented by the factors extracted
from the ACF and the IACF, and that the subjective evaluations for sound signal are

explained by the combinations of the ACF factors.
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5. Application

5.1 Introduction

In this section, I will present two engineering applications based on the correlation
model in human visual and auditory system. One is a method of analyzing textural
features for image retrieval and pattern recognition. Another is about feature extraction
for speech recognition technology. These techniques are using our ability for detecting
periodical structure in visual and auditory signals. Also, they intend to evaluate our

subjective attributes in visual and auditory sensations.

5.2 Analysis of textural features for image retrieval

Summary

I present a new method for measuring textural properties especially corresponding to
human visual perception. Proposed method is a basis of the image retrieval system,
pattern recognition, and machine vision. Physical parameters on perceived contrast,
coarseness, and regularity are extracted from the autocorrelation function on the gray

scale image.

5.2.1 Background and previous work

Recently, a huge archive of image, film, and photographs is digitized in various fields.
Consequently a demand of automated image retrieval system is increasing. Tools
assisting image search within a large database have broad applications, such as medical
image query, video editing, and materials for architectural design, product design, and
so on. A retrieval system serves the purpose of saving human users’ time and effort of
browsing the entire database. Therefore, it is expected that the retrieved images
resemble the visual properties of the prototype pattern provided by the human user. To
construct such a system, it is important that the features used for pattern comparisons
are faithful to those used by humans (Liu and Picard, 1996). Considering an application
for pattern recognition, we have to choose a set of features for measuring human
perceptual similarity.

To describe visual properties of image, texture might have an important role,
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because a textured region exhibit certain degree of homogeneity and can be regarded as
containing a same or near same information over neighborhood. However, there is a
difficulty in evaluation of subjective judgment of similarity and preference of texture,
which are inevitable for image comparison and classification. This difficulty comes
from multidimensional nature of texture perception. We need to know how many
features are related to texture perception. As human texture perception, Rao and Lohse
(1996) have indicated that the most salient perceptual dimensions in texture
dissimilarity judgment can be described as “repetitiveness”, “contrast”, and
“coarseness”. Hence, it is effective for a retrieval system to use in modeling textural
features, which relate to these perceptual dimensions. I propose here a set of image
features based on the correlation model to capture the properties of human texture
perception.

5.2.2 Method

As I presented in Chapter 2, the autocorrelation function (ACF) analysis provides useful
measures for representing three salient perceptual properties of texture, namely, contrast,
coarseness, and regularity. Especially, regularity is the most important property for
texture discrimination. Our method is based on the nature of the ACF such that the
periodical component in the image is extracted. The ACF gives the correlation between
pixel pairs for every direction and distance in the image. If the image contains
periodicity, its ACF also has periodical structure. Period of the ACF (§,) corresponds to
the period of the image, and amplitude of the maximum peak in the ACF (¢,) is related
to the degree of periodicity. Such properties of the ACF are well corresponded to the
perceptual properties of textures, coarseness and regularity. Also, perceived contrast of
the image is related to the root mean square (RMS) of the gray scale distribution. The
value of RMS is effectively calculated in the ACF analysis because when the correlation
lag is zero (®(0)), the autocorrelation is the RMS itself (see 2.3.2 Autocorrelation

analysis of natural textures).

5.2.3 Results .
To examine the efficiency of the ACF analysis, we analyzed 16 textures from the
“Brodatz texture database” (Brodatz, 1966), that were used by Tamura et al. (1978).

This texture set includes a variety of natural and man-made objects (Figure 2.9). The
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analyzed data consists of 256 X 256 images with 8-bit (256) gray levels. The ACF
was calculated and three textural properties were extracted from each image. Results are
shown in Figure 5.1, 5.2, and 5.3 for contrast, coarseness, and regularity. In each Figure,

textures are replaced from left to right, top to bottom, in ranking order by computation

for each property.
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Figure 5.1 Test samples displayed in ranking order by computation for contrast. From left to right,

top to bottom, the images are from the highest contrast to the lowest contrast.
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Figure 5.2 Test samples displayed in ranking order by computation for coarseness. From left to right,

top to bottom, the images are from coarse to fine.
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Figure 5.3 Test samples displayed in ranking order by computation for regularity. From left to right,

top to bottom, the images are from regular to random.

5.3 Feature extraction for speech recognition

Summary

A method of feature extraction for speech recognition system in the real environment is
proposed. By using a minimum set of parameters corresponding to the human auditory
attributes, we can characterize speech signals. Our method is based on the ACF and
IACF model of human auditory system. The ACF analysis is effective to extract
subjective attributes of sound, such as pitch and timbre. Also, the IACF analysis could
be used to characterize spatial attribute of sound field. Identification is based on the
extracted parameters' minimum distance between input signal and syllable set in the

database.

5.3.1 Background and previous work

In the technology of speech recognition, there is a widely accepted method such that
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analyzing a given speech signal within a series of short duration, constructing the time
sequence vectors of extracted features, then comparing them with the vector of stored
template signals. The main problem in the speech analysis is to find out the sufficient
feature set by which we could discriminate a given signal with others. Among a various
method proposed, frequency spectrum estimation, Cepstrum, and linear predictive
coding (LPC) is generally used. Because the characteristics of speech signals are
represented in the spectral structure, estimation of the spectrum shape could be effective
for speech identification.

However, there remain some serious problems in the present method. Firstly,
we need complex parameter to approximate a spectrum shape, because the speech
signals contain a large amount of frequency information. It may cause a prediction error.
These parameters also include ones, which does not reflect our auditory sensation. To
adapt the individual voice differences, the recognition system must identify the
difference in spectral shapes. Secondly, these methods do not work well with noise.
Spectral shapes of the speech signal are much affected by the presence of background
noise and reverberation in the real environment. Thirdly, when considering speech
recognition in the real environment, it needs to separate the plural sources arriving from
different directions and localize the target source. Therefore we need to consider the
spatial attributes in the sound field. These problems, namely, “speaker adaptation”,
“noise robustness”, and “source separation”, are the very topic that speech recognition
technology is currently facing.

Here, I propose a method for implementation of speech recognition system in
the real environment by using a minimum set of parameters corresponding to the human
auditory characteristics. Our method is based on the ACF and IACF model of human
auditory system. As described in Chapter 4, the ACF analysis is effective to extract
subjective attributes of sound, pitch and timbre. Also, the IACF analysis could be used
to characterize spatial attribute of sound field.

There is effective duration time t, ACF, as the most important factor (feature
quantity) in the analysis of ACF. Effective duration T, is defined as a 10% delay time.
Effects of the repetition and reverberation components included in the signal are
described by .. In addition, the fine structure of ACF including peak and dip contains
much information on the periodicity of the signal. The most effective factor in the

analysis of speech signal is information on a pitch. Delay time and amplitude of the
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principal peak of ACF are the factors, which corresponds to a pitch of the voice and its
strength. The principal peak is a largest peak of ACF in most cases, and successive
peaks appear in its period. The local peaks within a period between principal peaks
show the time structure of the high frequency range. Information on the tone color is
included. Especially in case of the voice signal, features of the resonant frequency of
vocal tract called a formant are shown. The above ACF factors seem to contain all
features necessary for the voice recognition.

The value of tjcc, in the range between -1ms and +1ms in the IACF is an
important factor on the horizontal direction of the sound source. Clear sense of direction
is perceived, when IACC has large value. When IACC has the small value, the
subjective diffuseness increases, and sense of direction becomes unclear. It is possible to
obtain the apparent width of sound source by IACC and W .

5.3.2 Method

The specific equipment for this method is consisted of binaural microphones, low-pass
filter, A/D converter, and computer for calculating ACF and IACF as it is shown in
Figure 5.4. Figure 5.4 also shows a flowchart of the method for identifying the syllable.
Collected speech signal is converted into digital signal through the A/D converter and
low pass filter and stored in the memory. Stored signal is read out, and the factors are
deduced by the calculation of ACF and IACF. Finally, it is compared with the database
storing the template of the syllables.
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Figure 5.4 Specific equipment for the proposed syllable identification method. It is consists of

binaural microphones, low-pass filter, A/D converter, and computer for calculating ACF and IACF.

As following, the concrete calculation method of ACF and IACF is described. For the
target speech signal, running ACF and running IACF are calculated for short time
segment (it is called the frame) F, (t), as shown in Figure 5.5. Usually the integral
interval 2T (length of the frame) is set as between 20 and 30 ms, overlapped with

neighboring frames. Short time running ACF will be calculated as following equation.
t+T

Q@ (7,t,T) = El!;p' ()P (t +7)dt (5.1
Normalized ACF will have the 1 maximum value at T = 0. Binaural sound pressure level
is given by the average of two monaural levels. Effective duration time <, is defined by
delay time t as the 10-percentile attenuation of the ACF. Since that initial ACF linearly

attenuates is generally observed, it is possible to easily require <t, by the linear

regression.
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Figure 5.5 Short time segment of speech signal for calculation of running ACF.

Concretely, T, is decided using least mean square method (LLMS) for the peak of ACF
appeared in some fixed time At. In Figure 5.6, the example of normalized ACF is shown.
The delay time and amplitude of the normalized ACF is defined as t,, ¢,, k=1, 2, ..., N.
The interval in search of the peaks is up to the maximum peak of ACF appears from
delay time T = 0. It is correspondent to the one period of the ACF. The largest peak of
ACEF is correspondent to a pitch of the sound source, and the local peaks within the

largest peak are correspondent to the formant.
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Figure 5.6 The example of normalized ACF calculated for speech signal.

Finally, the method for identifying the syllable is described. Identification is
based on the extracted parameters' distance between input signal and syllables of the

template. The template is a set of ACF factors on the whole syllable set calculated
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beforehand. Distance D(x) of the template (shown by symbol b) and input data (shown
by symbol a) is calculated like the following equation (x: ®(0), <., T, ¢, k=1,2, ..., N).

N
D(D(0) = {Y llog(@(0), )" - log(®(0), /N (5:2)
k=1
Equation 11 calculates the distance on ®(0). N shows the number of the analysis frame.
The distance is also obtained on other independent factors in the similar equation.
Total D of the distance is shown by the following equation.

D=3 WD) (53)

51
M in equation 12 is a number of the factor, and W is a weighting factor. It is judged that
the template, in which calculated distance D is the smallest, is a syllable of the input
signal. In the actual sound field, the recognition at the high accuracy becomes possible
by adding the IACF factors.

5.3.3 Results

As an example of the implementation of proposed method, Figure 5.7 shows the
prediction of speech intelligibility in the real sound field. Experiment was carried out as
follows. Target syllable and interference sound (white noise or another syllable) was
presented from loudspeaker placed in front or lateral direction of the subject. Subjects
were asked to answer what they hear as target syllable. Intelligibility is represented by a
percentage of the correct answer on the abscissa. To predict intelligibility, the distance
of the ACF and IACF factors were calculated between target-only signal and mixed
signal. Percentage of which the least distance was found for target syllable is
represented on the ordinate as predicted intelligibility. As shown in Figure 5.7, the result
gave high correlation (r = 0.86, p < 0.05) between measured and calculated
intelligibility. We can say that that the recognition by the proposed method reflects

human sensibility.
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Figure 5.7 Measured and calculated speech intelligibility for single syllable presented

simultaneously with interference sound.

5.4 Summary

In this chapter, I proposed two engineering applications based on the correlation model
in human visual and auditory system. One is an analyzing method of textural features
for image retrieval and pattern recognition. Another is sound feature extraction for
speech recognition technology. These techniques use our ability for detecting periodical

structure in visual and auditory signals.
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6. Conclusion

6.1 Summary of results

As I outlined in Chapter 1, this dissertation covers the research area of perception and
psychological evaluation in spatial vision, temporal vision, and audition. The
fundamental result that I have presented is a demonstration that it is possible to apply
the correlation mechanism to the process in vision and auditory system. The results
gained in each study are summarized as follows.

In Chapter 2, Spatial vision, I presented a series of studies on physical
properties and psychological evaluations of two-dimensional spatial pattern. I showed
that the autocorrelation function (ACF) analysis provides useful measures for
representing three salient perceptual properties of texture, namely, contrast, coarseness,
and regularity. Another experiment showed that the degree of regularity is a salient cue
for texture preference judgment. Described ACF model offered the advantage of
extracting perceptual properties and evaluating subjective reaction in texture perception.

In Chapter 3, Temporal vision, I discussed the underlying mechanism for the
temporal perception in vision. To address the problem, I focused on the fundamental
properties of the temporal vision mechanism. Psychophysical experiment was
performed on subjective flicker rates for complex waveforms. Results showed that
human observers perceived a rate at the fundamental frequency, although the energy at
this frequency was not included in the signals. It implies the existence of correlation
mechanism in temporal vision.

In Chapter 4, Audition, I presented a series of studies on physical properties
and psychological evaluations of sound. I used the ACF in analyzing a sound signal and
the interaural cross-correlation function (IACF) to characterize the spatial properties of
sound field. It was found that the acoustical properties are well represented by the
factors extracted from the ACF and the IACF, and that the subjective evaluations for
sound signal are explained by the combinations of the ACF factors.

In Chapter 5, Application, I proposed two engineering applications based on
the correlation model in human visual and auditory system. One is an analyzing method

of textural features for image retrieval and pattern recognition. Another is sound feature
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extraction for speech recognition technology. These techniques use our ability for

detecting periodical structure in visual and auditory signals.

6.2 Future directions -
One of the most important future research is to get into more sophisticated model for -
visual and auditory perception. In this dissertation, I presented workable correlation
models for evaluating perception and subjective response in spatial vision, in temporal
vision, and in audition. But we are still far from understanding of the mechanisms in
vision and audition. Especially for the high level recognition of the real environment,
there remains amount of room for future research. I believe that the approach I take in
this dissertation contributes to the understanding of the mechanisms in perception and
recognition of complex phenomena.

Understanding of the neural mechanism is also important. To discuss the
analogous subjective attributes in vision and audition, we need to assume the general
neural strategy in the brain. As one of such mechanism, “neural timing net” is proposed
(Cariani, 2001). Timing nets constitute a new and general neural network strategy for
performing temporal computations on neural spike trains: extraction of common
periodicities, detection of recurring temporal patterns, and formation and separation of
invariant spike patterns. Although the main concern in the paper is with the importance
of the timing information in auditory perception, the analogous strategies in visual
perception are also suggested. The possibilities of extension of this model to visual
perception could be examined in the future.

In this dissertation, I discussed the correlation mechanism of spatial and
temporal vision separately. As a next step, they could be expanded to the general model
of visual system including spatial and temporal properties. Adelson and Bergen (1991)
proposed the generalized concept of “plenoptic functions”, which can describe the
structure of the information in the light rays coming on an observer. Plenoptic functions
characterize local change along one or more dimensions of a single function. Their basic
notion about visual perception is based on the edge detection mechanism in early vision.
We can also consider the periodicity detection mechanism in somewhat late visual
pathway for describing visual perception. As for a model of spatio-temporal vision,

. Reichardt’s motion detectors and motion energy models have been proposed (Reichardt,
1961; van Santen and Sperling, 1984, 1985; Adelson and Bergen, 1985). These models
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referred to spatial and temporal correlation detection mechanisms. Therefore they could
be applied to spatial-only pattern and temporal-only pattern of visual information.
Another interesting and important research direction related to this
dissertation is the engineering application using human abilities and characteristics in
perception. Firstly, we can consider the implementation of human mechanism in the
environment recognition system, such as image recognition and speech recognition.
Secondly, the man-machine interface could be accomplished which reflects human
perceptual properties. An example in this direction is the image and sound retrieval

system using salient cues in visual and auditory perception.
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