
Kobe University Repository : Kernel

PDF issue: 2024-06-14

New multi-speed BGK thermal model in finite
difference lattice Boltzmann method

(Degree)
博士（工学）

(Date of Degree)
2003-03-31

(Date of Publication)
2017-04-28

(Resource Type)
doctoral thesis

(Report Number)
甲2799

(URL)
https://hdl.handle.net/20.500.14094/D1002799

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Watari, Minoru



Doctoral Dissertation 

New multi-speed BGK thermal model in finite 

difference lattice Boltzmann method 

March 2003 

Graduate School of Science and Technology 
Kobe University 

WATARI Minoru 



博士論文

New multi-speed BGK thermal model in finite 

diff ere nee lattice Boltzmann method 

（差分格子ボルツマン法における

新しい多速BGK型熱流体モデル）

2003年 3月

神戸大学大学院自然科学研究科

渡利寅



Contents 

1. Introduction 

2. Possibility to construct a multi-speed thermal model of the lattice 
Boltzmann method 

2.1. Introduction 

2.2. The conditions leading to correct fluid equations 

2.3. Model derivation 

2.4. Verification of the new two-dimensional model 

2.5. Conclusions 

3. Two-dimensional thermal model of finite difference lattice Boltzmann 
method with high spatial isotropy 

3.1. Introduction 

3.2. Finite difference lattice Boltzmann method 

3.3. New FDLBM model derivation 

3.4. Verification of the new model 

3.5. Comparison with existing thermal models 

3.6. Conclusions 

4. Three-dimensional thermal model of finite difference lattice Boltzmann 
method with high spatial isotropy 

4.1. Introduction 

4.2. Finite difference lattice Boltzmann method 

4.3. New FDLBM model derivation 

4.4. Verification of the new model 

4.5. Evaluation of existing thermal models 

4.6. Conclusions 

page 

1 

5 

5 

5 

10 

21 

22 

24 

24 

24 

26 

31 

35 

39 

40 

40 

40 

42 

46 

49 

51 



5. Boundary conditions for thermal models of finite difference lattice 
Boltzmann method 

5.1. Introduction 

5.2. Thermal FDLBM model 

5.3. Control node method 

5.4. Extrapolation method 

5.5. Benchmark test 

5.6. Conclusions 

6. Thermal cavity flow of compressible fluids -Numerical simulation by 
a newly proposed model of finite difference lattice Boltzmann method 

6.1. Introduction 

6.2. Finite difference lattice Boltzmann method 

6.3. Thermal cavity flow 

6.4. Results and discussion 

6.5. Conclusions 

Acknowledgements 

ii 

52 

52 

52 

54 

60 

62 

70 

72 

72 

72 

76 

77 

84 

85 



1. Introduction 

Lattice gas automata (LGA), lattice Boltzmann method (LBM), and finite difference lattice 

Boltzmann method (FDLBM), which have historically evolved in this order, are currently used 

in simulating wide variety of fluid flows.<1
l These methods have common features; 

microscopic models and mesoscopic kinetic equations are used to represent macroscopic 

continuum flow. The basic premise for these ideas is that the macroscopic dynamics of fluid is 

the result of the collective behavior of many microscopic particles, and that although 

microscopic details, like an interaction law between particles, affect parameters such as 

viscosity, the form of macroscopic dynamics is less sensitive to microscopic details.<2
) 

The LGA C3l is constructed as a simplified, fictitious molecular dynamic in which space, time, 

and particle velocities are discretized. To describe the state of particle's condition at each node 

x and each time t, a set of Boolean variables n;(x,t) is assumed, where the suffix i is the 

direction of the particle velocity. If the particle of ith direction is present, the variable ni(x,t) is 

set unity, whereas if absent, the n;(x,t) is set zero. The evolution of the variable ni(x,t) is 

governed by following equation. 

(1.1) 

The particle velocity C; is selected as to link adjacent nodes. Collision operator Qi is designed 

to conserve mass and momentum. Because of the variable n1(x,t)'s Boolean nature, it is 

necessary to take ensemble averages to obtain macroscopic quantities. 

The main feature of the LBM <4l is to replace the Boolean variable ni(x,t) by distribution 

functionj;(x,t) (=< ni >:<>denotes an ensemble average). Same as the LGA, particle velocity 

C; is selected as to link adjacent nodes. Therefore, the evolution equation for the distribution 

function is similar to that of the LGA. 

J;(x + cnt + 1) = j;(x,t) + O;[f(x,t)] (1.2) 

However, as the distribution functions themselves are variables of the problem, the LBM is 

free from statistical noise. Macroscopic quantities, the density p and momentum density pu, are 

defined by taking velocity moment summations. 

(1.3) 

(1.4) 

Collision operator Qi is required to satisfy conservations of mass and momentum. 

(1.5) 
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(l.6) 

Single rel:urntion time scheme proposed by Bhatnagar, Gross, and Krook (BGK scheme) is 

assumed in my study. Although the.BGK scheme fixes the Prandtl number constant (=unity), it 

makes the collision operator quite simple and still has capability of wide applications. 

nj = - ~ u; - J:c°)) (1.7) 

where _fj-0
l is the local equilibrium distribution function. 

The FDLBM <5l was proposed as an extended version of LBM in order to secure numerical 

stability and to apply non-uniform grids. In place of the evolution equation of the LBM ( 1.2), 

following differential equation is used in the FDLBM. 

aJ; +c aJ; = Q(/) 
at ,a ara ' (1.8) 

In the LBM, particle velocity C;, time increment L1t, and the lattice configuration must have a 

close relationship; the particle velocity has to link the lattice nodes in unit time. However, in 

the FDLBM, this requirement is no more necessary. Therefore, time increment L1t can be 

adjusted to satisfy CFL (Courant Friedrichs Lewy) requirement for numerical stability, and 

non-uniform grids, like polar grid or variable pitch grid, are available in the FDLBM. 

My doctoral study is on models of LBM and FDLBM, especially focusing on FDLBM. 

Chapter 2 C
6

l discusses the possibility to construct a LBM BGK thermal model. There are 

two ways to handle thermal fluid. One is the so-called "multi-component thermal mode~" 

where heat is handled as different component from fluid. This model characterizes the flow as 

Boussinesq fluid. Another is the so-called "multi-speed thermal model," where particle 

velocities that have different speeds are used. LBM BGK thermal models have been proposed 

by several authors. While these models are intended to correctly represent heat characteristics 

and compressibility, none of these existing models provides satisfactory accuracy. This chapter 

discusses the possibility of a correct model and how to construct it. To recover correct fluid 

equations, up-to fourth orders of local flow velocity should be retained in the local equilibrium 

distribution function and the particle velocities should have up-to seventh rank tensor isotropy. 

It is concluded that it is possible to construct a thermally correct two-dimensional LBM BGK 

multi-speed model. However, a correct three-dimensional LBM BGK multi-speed thermal 

model is theoretically impossible. A correct two-dimensional LBM multi-speed thermal model 

that has global weighting coefficients in the local equilibrium distribution function was 

proposed. Being applied to a Couette flow, this model showed exact agreement with the 

analytical solution. 
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Chapter 3 C
7
,sJ proposes a new two-dimensional multi-speed thermal model for the FDLBM. 

In the FDLBM, particle velocities can be selected independently from the lattice configuration. 

Therefore, particle velocities of octagonal directions, which have up-to seventh rank isotropic 

tensors, are adopted. Furthermore, as the local equilibrium distribution function is determined 

such that it retains as much Maxwellian characteristic as possible, the proposed model has 

excellent numerical stability in addition to strict accuracy. The model was verified, being 

applied to three flow simulations. All results showed good agreement with the analytical 

solutions. 

Chapter 4 C9l proposes a new three-dimensional multi-speed thermal model for the FDLBM. 

It has been shown in Chapter 2 that a three-dimensional LBM BGK multi-speed thermal model 

is theoretically impossible. Contrary to the LBM, as the FDLBM can select particle velocities 

independently from the lattice configuration, in the proposed model, a group of thirty-two 

particle velocities is selected as a basic group of moving particles, which are derived from 

vectors that point to the vertexes of dodecahedron and icosahedron from the center. As the 

group of thirty-two particle velocities has a quasi-isotropic sixth rank tensor, the model made 

up of a rest particle and four speeds of the basic groups showed good agreement with the 

analytical solutions when applied to two flow simulations. 

Chapter 5 (JO) discusses methods of boundary conditions. In the past, a lot of studies have 

been done to make clear boundary conditions for the LBM. Most of them are about boundary 

conditions for non-thermal models that have a limited number of particle velocities. Few 

studies are found that describe a clear receipt of boundary conditions for the FDLBM, 

especially for thermal models that have a large number of particle velocities. In this chapter, 

two methods of boundary conditions for thermal FDLBM are presented. Their performances 

were compared, being applied to benchmark tests. First method, called "control node method," 

can handle wide variety of boundary conditions and showed excellent performance on the tests. 

Control node method should be applied if accurate simulation is intended. Second method, 

called "extrapolation method," is simple and easy to make computing software. Although the 

performance of extrapolation method is not so high as the first method, it is a viable method if 

it is not required strict accuracy. 

Chapter 6 (Ill presents an example of applications simulated by proposed model and method 

of boundary conditions. In the past, numerical simulations have been extensively performed on 

natural convection in a square cavity with differently heated walls (thermal cavity flow). Most 

of these studies are for Boussinesq fluid. Although some studies treat the flows as 

compressible fluid, they do not clearly state how much compressibility affects the flows and 
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how far Boussinesq approximation is considered valid. Using the two-dimensional model in 

Chapter 3 and the control node method in Chapter 5, thermal cavity flow for compressible 

fluid was studied in a systematic manner and whole features were thoroughly revealed. 
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2. Possibility to construct a multi-speed thermal model of the lattice 
Bol1zmann method 

2.1. Introduction 
Multi-speed thermal models of the lattice Boltzmann method (LBM) that have a single relaxation 

(BGK) scheme have been proposed by several authors_(l-3
) While the multi-spe_ed thermal model is 

intended to correctly represent heat characteristics and compressibility, existing models do not give 

satisfactory accuracy when applied to the Couette flow simulation. These models were carefully 

investigated to discover whether a correct model is possible and how to construct it. 

2.2. The conditions leading to correct fluid equations 
Below are the conditions for the local equilibrium distribution function J,l) for the particle 

velocity cki to lead to correct fluid equations. The symbol p is the density, u" the velocity, and e 

the internal energy. The subscript symbol k indicates a group of the particle velocities whose speed ck, 

and i indicates the particle velocity's direction. The subscript symbols a, p, and y indicate the x, y, or 

z component. D is a space dimension. 

(2.1) 

~ -r(O) -
L_.J ki Ckia - Plla (2.2) 

ki 

(2.3) 

(2.4) 

2 2 
'f,(O) ~ = p(e + !:__) 
L. kz 2 2 
ki 

(2.5) 

2 2 
, <o) ck D+2 u 
L,.fki -Ckia = pua(--e+-) 
ki 2 D 2 

(2.6) 

2 2 2 

L (0) Ck 2 D + 2 u D + 4 u 
fki -ckiacki/J = p[-e(--e+-)oa(J +uaup(--e+-)] 

ki 2 D D 2 D 2 
(2.7) 

As energy diffusion equation (2.7) contains up-to fourth order of flow velocity u, local 

equilibrium distribution function /kl°) should retain up-to fourth order terms of flow velocity. 

Consequently, the local equilibrium distribution function is to contain the fourth rank tensor. 
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Considering that momentum diffusion equation (2.4) contains the third rank tensor, up-to_ seventh 

rank tensor is used. As a result, the tensors up-to seventh rank should be isotropic to recover correct 

fluid equations. 

In the LBM, the particle velocities are restricted to those that exactly link the lattice nodes in unit 

time. Generally, cubic lattice is used in three dimensions, and the square or hexagonal lattice is used 

in two dimensions. However, the hexagonal lattice ensures only up-to fourth rank isotropy, which is 

insufficient to derive correct fluid equations. The model that uses a hexagonal lattice is not discussed 

further. 

The basic particle velocities used in the square lattice and in the cubic lattice are shown in Figure 

2.1 and Figure 2.2, respectively. The odd rank tensors for these particle velocities vanish. The even 

rank tensors generally have the following form: C4l 

(2.8) 

ck2 """' IJ A(4) ...., s;: 
L..-Ck;aCkipCk;yCkix = kila/Jrx + t:..kUaprz (2.14) 

i 2 

The tensors that appear in the above equations are defined as follows: 

r5 arF 1 (if a=/J), =0 (otherwise) 

r5 al¾= 1 (if a=/J=y=x), =0 (otherwise) 

r5 a/¾-<,= 1 (if a=/J=y=x=A =r), =0 (otherwise) (2 .16 abcdet) 
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Th A(6) A(4) S: . . h A(4,2J S: S: . . Th 
e tensors D.apyzM , D.afJrz , U afJ are lSOtrOplC, W ereas D.afJrzM , U afJrxJ.T , U a/Jrz are aIDSOtfOplC. e 

specific values of bk, X,., (f)k · · ·, Zk for the basic particle velocities in Figure 2.1 and Figure 2.2 

are listed in Table 2.1 and Table 2.2, respectively. They are grouped into five groups depending on 

the influence of particle speed ck. If particle velocities that have double or triple the speed of the 

basic particles are adopted, the values of bk, Xk> (f)k · ··, Zk increase to 2n times or 3n times of the 

basic values, depending on group c/. 

+x 
Figure 2.1. Basic particle velocities used in the square lattice. 

k = I k=2 k=3 
c, = l c, = Fi __ Ct_=.J3 

Figure 2.2. Basic particle velocities used in the cubic lattice. They consist of vectors 

in six, twelve, and eight directions. 
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Table 2.1. Specific values of bk,Xk,(f)k · ··,Bk for the basic particle velocities in the square lattice of 

Figure 2.1. They are grouped into five groups depending on the influence of particle speed ck. For 

example, if particle velocities that have triple the speed of k=-1 particles are adopted, the value of 1/fk 

becomes 2 x 34 
• 

k 1 2 

ck 1 .fi 
cf bk 4 4 
Cf xk 2 4 

1/fk 2 -8 
ct (f)k 0 4 

rk 1 4 
Ak 2 -16 
Qk 0 0 

cZ ek 0 ½ - 1 -8 .... ........ k 

Ilk 0 4 
zk 1 -16 

cl Nk 0 0 
Bk 0 ½ 
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Table 2.2. Specific values of bk, xk, (f)k · ··,Bk for the basic particle velocities in the cubic lattice of 

Figure 2.2. 

k 1 2 3 

Ck 1 J2_ Jj 
c2 bk 6 12 8 

cl .b 2 8 8 

If/ k 2 -4 -16 

ct (f)k 0 4 8 

rk 1 8 12 

Ak 
I 2 -52 128 

nk 0 4 -16 

cZ ek 0 8 0 

~k 1 -4 -24 

Dk 0 4 12 

zk 1 -52 192 

cl Nk 

I 

0 4 -24 

Bk 0 8 0 
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2.3. Model derivation 
There seem to be two ways to define the local equilibrium distribution function. One is to 

distribute weighting coefficients to each power of u 2 and Ckiaua. The other is to distribute weighting 

coefficients to the whole expansion equation. Both types are discussed in this section. 

2.3.1. Deriving a model that has global coefficients 
This type oflocal equilibrium distribution function was adopted by Takada et al.c3l, although their 

model retains up-to third order oflocal flow velocity. The local equilibrium distribution function that 

retains up-to fourth order is defined as follows. This fom1 is derived by expanding Maxwellian 

distribution regarding local flow velocity u. Weighting coefficients Fk are placed before the 

polynomial. 

coJ D 2 D
2 

4 D D 2 D
2 

D 2 
fki = pFk[(I--u +--2 u )+-(I--u )ck;,;U,; +-2 (I--u )cki,;cki,,u,;u,, 

4e 32e 2e 4e 8e 4e 
D3 D4 

+--3 Cki,;Ck;,,Cki,;U,;U,,U,; + 4 Cki,;Ck;,,Cki,;CkixU,;U,,U,;U x] 
48e 384e 

(2.17) 

This local equilibrium distribution function is applied to conditions (2.1) through (2.7). When the 

property in which the odd tensors vanish is applied, the following equations to deteffiline weighting 

coefficients Fk are obtained: 

IF: =1 (2.18) 
ki 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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(2.25) 

Considering tensor expressions (2.8) through (2.15), constraints (2.18) through (2.25) can be 

rewritten as the following: 

From (2.18), 

From (2.19) and (2.22), 

2 
IxkFk =-e 
k D 

From (2.20), 

4 7 

L(f)kFk =-e-
k D2 

From (2.21), 

IekFk =~e3 

k D 3 

InkFk = o 
k 

From (2.23), 

LCFk = 2(D+2) ez 
k D 2 

From (2.24), 

LI1kFk = 4(D + 4) e3 
k D 3 

L3kFk = 0 
k 

From (2.25), 

"B D - 8(D+6) 4 
L, krk - ---e 
k D 4 

11 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 



(2.38) 

First, let us discuss the model in three dimensions. The constraints are summarized in Table 2.3. In 

the table, the constraints are arranged into five groups according to manner of dependence on c/. Let 

us consider the constraint equations of group c/ 

2 -52 128 0 

0 4 -16 

l~l= 
0 

0 8 0 ½3 7e 
1 -4 -24 0 

0 4 12 2½ e3 
27 

(2.39) 

Ifwe evaluate the ranks of the equations: 

2 -52 128 

0 4 -16 (2.40) 
rankA = rank 0 8 0 

,., =.) 

1 -4 -24 

0 4 12 

2 -52 128 0 

0 4 -16 0 

rankB = rank 0 8 0 ½3 =4 7e 
(2.41) 

1 -4 -24 0 

0 4 12 2½ 3 27e 

There is no solution for Fk because rank.A < rankB . RankA does not increase even if double, triple 

or more speed particle velocities are added to the basic ones. RankA remains unchanged because 

only linearly dependent row vectors are added to the matrix. Therefore, although the other groups: 

c/, c/, c/, and c/, meet the requirement, rank.A = rankB , failure to meet the requirement in group 

c/ makes the equation as a whole unsolvable. It can be concluded that it is impossible to construct a 

three-dimensional model. 

ls a model in two dimensions possible? The constraints are summarized in Table 2.4. It is easy to 

confinn that each group meets the requirement, rank.A = rankB . 

rank.A = rankB = I for group c/ 
rank.A = rankB = I for group c/ 
rank.A = rankB = 2 for group c/ (2.42 abcde) 

rank.A = rankB = 2 for group c/ 
rank.A = rankB = 2 for group c/ 
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Whole equations, as a set of equations, are solvable when we add necessary number of multiple 

speeds of basic particle velocities, because the rank can increase beyond the groups. It can be 

concluded that it is possible to construct a two-dimensional model. 

The following is an example that clemonstrates the constructibility of a two-dimensional model. 

As there are eight linearly independent constraints, a model using a rest particle and seven groups of 

moving particles, as shown in Figure 2.3, was constructed. The results for coefficients Fk are as 

follows: 

1 4 3 2 ) Fu =-(-24e +85e -l06e +48e 
60 

1 4 3 ? ) F:1 = -(24e - 80e + 89e- - 24e 
240 

1 ( 4 3 ? ) 
};3 = -- -264e + 735e -574e- + l44e 

11340 

F;4 = 1 
(36e 4 

- 70e3 + 49e2 -12e) 
13440 

Fii = -1
-( 4e4 -13e3 + 12e2

) 

32 

1 ( 4 ' ?) F,2 =- -4e + 1oe- -3e-
- 320 

1 ( 4 3 2) Fi3 =-- l2e -l5e +4e 
12960 

k=l2 
k=ll c,=2 

k=O 
c, = 0 

++ 
k =13 
c, =3 

k =23 
k = 21 
c, = Ji. 

k =22 
c, = 2..Jz c, = 3..Jz 

xx /~ 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

k = 14 
c, =4 

Figure 2.3. Particle velocities used in the two-dimensional model proposed in this paper. 

They consist of a rest particle and seven groups of moving particles. 
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Table 2.3. Constraints for the coefficients A in the three-dimensional model that has global 

coefficients. Xk represents bk, %k, (f)k ···,Bk. For example, the constraint equation for group c/ is 

. ½ wntten as 2F, + SF,_ + SF; = 
3 

e 

Constraint xk value 
0 "f.bkFk 6 12 8 I ck k 

cl; IxkFk 2 8 8 ½e k 
Ll//kFk 2 -4 -16 0 
k ¾e2 

4 L{f)kFk 0 4 8 ck k l¾e2 IfkFk 1 8 12 
):.AkFk 
k 2 -52 128 0 

IOkFk 0 4 -16 0 
k 

6 I0kFk 0 8 0 ½ e3 ck k 7 
I3kFk 1 -4 -24 0 
k 2½ e3 IILh 0 4 12 
k 27 

):.ZkFk 1 -52 192 0 
k 

s INkFk 0 4 -24 0 ck 
fBkFk 0 8 0 ¾e 4 

k 
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Table 2.4. Constraints for the coefficients A in the two-dimensional model that has global 

coefficients. 

Constraint xk value 

0 .. LbkFk 4 4 1 ck k 
Cf LXkFk 

k 2 4 e 
Lf//kFk 2 -8 0 k 

ct L(pkFk 
k 0 4 e2 

LrkFk 1 4 2e 2 
,. 

:2:AkFk 2 -16 0 k 
'IOkFk 0 0 0 k 

ct 'IE>kFk 0 ½ e3 
k 

:2:BkFk 1 -8 0 k 
'IILFk 0 4 3e3 
k 

LZkFk 1 -16 0 k 
8 L NkFk 0 0 0 ck 

IBkFk 0 ½ 4e 4 
k 
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2.3.2. Deriving a model that has distributed coefficients 

Chen et al.c2
l define the local equilibrium distribution function as follows. The distribution 

function has weighting coefficients on each of the tenns. 

fk~oJ = p[Ak + M kCkil/ilc; + Gku2 + J kckilJcki11ulJu11 + Qkckic;uc;u2 
(2.51) 

Weighting coefficients A1c, M1c, · · · are written as polynomial fonns of internal energy e. 

(2.52) 

Local equilibrium distribution function (2.51) is applied to conditions (2.1) through (2.7). 

Considering tensor expressions (2.8) through (2.15), Table 2.5 for the constraints on the weighting 

coefficients is obtained. 

In two dimensions, looking at Table 2.1, the following linearly dependent relations can be 

recognized. Even if double, triple or more speed particle velocities are added to the basic ones, the 

same linear dependency still holds because G, lf/k , (f)k belong to the same group ct , and 

Therefore, the following equations hold: 

2Lfkxkz = Llf/kXkz +4L(f)kXkz 
k k k 

2L3kxkz = IAkxk1 
k k 

L ITkxkz = 3I; 0 kxk1 
k k 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

Requiring anisotropic tenns ~lf/kXk1 vanish and Y4 = ½, the constraints of Table 2.5 are 

transformed into those of Table 2.6, which is exactly equivalent to TABLE II in Chen et al. 's 

paper.<2
l The constraints of Table 2.6 are solvable because the ranks of all groups meet the 

requirement, rankA = rankB . 
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rankA = rankB = 1 for group c/ 
rankA = rankB = 1 for group c/ 
rankA = rankB = 2 for group c/ (2.59 abed) 

rankA = rankB = 2 for group c/ 

It can be concluded that it is possible to construct a two-dimensional model. 

However, the situations in three dimensions are different. Linear dependencies (2.53) through 

(2.55) do not hold in three dimensions. Therefore, it is necessary to return to the original constraints 

in Table 2.5. When D=3 is substituted, Table 2.7 is obtained. The constraints for groups c/ and c/ 

clearly meet the requirement, rankA = rankB . For group c/, the constraints, except for Qk, meet the 

requirement as follows. 

-4 

4 

8 

-16] 
8 = 2 

12 

{

2 -4 -16 01 2 - 4 -16 0 2 - 4 -16 0 

ran O 4 8 0 = ran O 4 8 ¾ = ran O 4 8 ½ = 2 

1 8 12 0 5 5 
1 8 12 - 1 8 12 -

3 4 

(2.60) 

(2.61) 

However, rankB for Qk depends on the value ofY4. To be solvable, the rank must have a value of 

two. 

2 -4 -16 0 

rank 0 4 8 
1 

=2 
2 

1 8 12 
1 

2-3Y4 

Above requirement is satisfied ifY4 has the following value: 

7 
~=-

12 
For group c/, rankA obviously has a value of three. 

2 -52 128 

0 4 -16 

rank 0 8 0 =3 

1 -4 -24 

0 4 12 

17 

(2.62) 

(2.63) 

(2.64) 



RankB for Hkb.as the following value if the value (2.63) is substituted: 

2 -52 128 0 

0 4 -16 0 

0 8 0 
1 

rank 
~ =4 6 (2.65) 

1 -4 -24 0 

0 4 12 
7 

12 

Therefore, the constraint equations for group c/ are unsolvable. It can be concluded that it is 

impossible to construct a three-dimensional model. 

TABLE II in Chen et al. 's papel2
l is no more valid in three dimensions. Consequently, the 

coefficients for 3D40V in TABLE ill in their paper do not give correct fluid equations. 
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Table 2.5. Constraints for the model that has distributed coefficients. Xk1 represents ako, ak1 ;·, Sko. 

For example, the second equation for ak1 is written as L xkak1 = 3_. Constraints for )kO and gko are 
k D 

related through Y0. For example, if Yo .is calculated by known )kO, Yo becomes the constraint for gko as 

"".f,b,g" = -Y •. 
' 

Constraint 
Ak Mk Jk Gk Hk Qk Rk sk 

ako akI ak2 mkO mk1 ]kO ]kI gkO gkl hkO qkO rkO Sko 
0 Z:bkxkl 1 0 0 -Y -Y, -Y3 ck O 1 k 
2 LXkXk! 0 

2 0 1 0 Yo Yr 1 0 -3Y2 ½ 0 ck - --
k D 2 

L'fhXk/ 0 0 0 0 0 0 0 
k 

2 4 I (f}kXk1 0 
1 

0 Y2 1 0 C1c 
- - --

k D 2 2 
1 

IExk1 Q 2(D + 2) O D+2 D+2 Q Q _ D+2 1 
0 --3Y, 0 --

k D' D 4 2D 2 4 

Z:Akxkl 0 k 
z:nkxkl 0 
k 

1 6 Z:E>kxkl Ck -
k 6 

z:skxkl 0 0 0 0 
k 

D+4 1 
Z:ILxkl 021) ~ -

L· 4 

Table 2.6. Constraints for the two-dimensional model that has distributed coefficients. 

xk 
Ak Mk Jk Gk Hk Qk Rk sk 

Constraint 
Jko Jk1 hko qkO aka ak1 ak2 mko mk1 gkO gkl rkO Ska 

0 Ibkxkl 4 4 1 0 0 -Yo-½ -Y3 ck k 
2 Ixkxkl 2 4 0 I 0 I 0 Yo Yi 

1 
0 -3Y2 ½ 0 Ck --

L,- 2 

4 L lf/kXkl 2 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 
ck 

t(fhXk1 0 0 0 0 
I 

0 
1 

Y2 
1 

0 
1 

4 1 1 - 0 -- -- --
L,- 2 2 2 8 

IAkxk1 2 -16 0 0 0 0 
k 

6 Inkxkl 0 0 ck k 4 I ekxkl I 1 1 
0 - 0 - -

' -
k 3 2 6 i 12 
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Table 2. 7. Constraints for the three-dimensional model that has distributed coefficients. 

Constraint xk 
Ak Mk Jk Gk Hk Qk Rk sk 

ako ak1 ak2 mko mk1 j kO ]kl gkO gkl hko qkO rkO Sko 
u ~ bkxkl 6 12 8 1 0 0 -Yo -Yi -Y3 ck 

~ 

2 Ixkxkl 2 8 8 0 
1. 

0 1 0 Yo Yi .!_ 0 -3Y2 Y3 0 ck - -
} 1 ? 

L1/f'kXk1 2 -4 -16 0 0 0 0 0 0 0 k 2 1 1 4 L(f)kXkl 0 0 Y2 Ck 0 4 8 - - -- 0 
3 2 2 

frkxkl 1 8 12 0 0 
10 5 5 

0 0 
5 .!_ _ 3Y. 0 

1 
- 0 - - - - --

} 9 < ,1 6 2 4 
IAkxkz 2 -52 128 0 k 
Inkxkl 0 4 -16 0 k 

6 I ekxkl 0 8 0 
1 

Ck -
k 6 

I2kxk1 1 -4 -24 0 0 0 0 
k 

7 1 IILxk1 0 4 12 0 - ~ -
k 6 4 
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2.4. Verification of the new two-dimensional model 

The two-dimensional thermal model constructed in section 2.3.1 was evaluated by Couette flow 

simulation. The simulation was conducted using following finite difference scheme: 

afki + c . afki = _ _!_(Ji .. -fi<.o)) at kza ora </J ki k1 (2.66) 

where fi; is the distribution function for the particle velocity cki, t the time, r "' the spatial 

coordinate, and (/) the relaxation parameter. 

The upper wall, which is H apart from the lower wall and has internal energy e2, starts to move at 

speed U. The lower wall has e1 and is at rest (Figure 2.4). Internal energy distribution e along vertical 

a'Ci.s y in a steady state is given as: 

y µ 2 y y 
e = e1 +(e2 -e1)-+-U -(1--) 

H2K' H H 
(2.67) 

Since viscous coefficients µ and thermal conductivity JC' are given as the following equations: 

µ = pe¢ 

K
1 = 2pe</J 

(2.68) 

(2.69) 

value !JiK, is constant(=¾). Therefore, the distribution does not depend on relaxation parameter 

(j) or on internal energy e. 

Figure 2.5 shows the results for internal energy distribution in a steady state for various relaxation 

parameters. In the figure, the internal energy subtracted by linear distribution, which corresponds to 

the last term of equation (2.67), is shown. Figure 2.6 show the results for the internal energy 

distribution in a steady state for various wall temperatures. Both results agree completely with the 

analysis. 

y 

e 

Figure 2.4. Couette flow simulation. The upper wall, which is H apart from 

the lower wall and ms internal energy e2, starts to move at speed U. The lower 

wall has e 1 and is at rest. 
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6 phi=0.1 
<> phi=0.2 
0 phi=0.4 

- Analysis 

0.5 
Vertical position y/H 

Figure 2.5. Internal energy distribution at steady state for various relaxation parameters: <t> =0.05, 0.1, 

0.2, 0.4. U=O.l, e1=er=l.0. The internal energy subtracted by linear distribution is shown. The 

results for all <t> overlap each other. 

~ 
i:: 
<l) 

0.0006 

] 0.0004 
<l) 

.s 
o;: 

~ 
0.0002 

0 

Watari et al 
U=O.l 
phi=O.l 
el=e2=e 

C e=0.6 
6 e=l.O 
O e=l.4 

- Analysis 

0.5 
Vertical position y /H 

Figure 2.6. Internal energy distribution at steady state for various wall temperatures: e1=er=0.6, 1.0, 

1. 4. U=0 .1, <t> =0 .1. The internal energy subtracted by linear distribution is shown. The results for 

all cases overlap each other. 

2.5. Conclusions 
It is possible to construct a thermally correct two-dimensional LBM multi-speed model that has a 

single relaxation (BGK model). However, a correct three-dimensional LBM multi-speed thermal 

model is theoretically impossible. In addition, these results do not change for the types of local 

equilibrium distribution function. 

A correct two-dimensional LBM multi-speed thermal model that has global coefficients in the 

local equilibrium distribution function was derived. The model was evaluated by Couette flow 

simulation. The result showed exact agreement with the analysis. 
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3. Two-dimensional thermal model of finite difference lattice 
Boltzmann method with high spatial isotropy 

3.1. Introduction 
The lattice Boltzmann method (LBM) has become a powerful numerical tool for simulating 

fluid flows. CI) In the LBM, there are two ways of handling thermal fluids. One is the so-called 

"multi-component thermal model,',(2
) where heat is handled as different component from fluid. 

This model characterizes the flow as Boussinesq fluid. Another is the so-called "multi-speed 

thermal model," C3,
4
l where particle velocities that have different speeds are used. While the 

multi-speed thermal model is intended to correctly represent heat characteristics and 

compressibility, existing models seem to have hidden error terms and show a limited accuracy. 

The finite difference lattice Boltzmann method (FDLBM) <5
) was proposed in order to secure 

numerical stability and to apply non-uniform grids. In the LBM, particle velocities are 

restricted to those that exactly link the lattice nodes in unit time. On the other hand, in the 

FDLBM as we do not need to consider that constraint, we can select particle velocities 

independently from the lattice configuration. Therefore, a correct and numerically stable 

multi-speed thermal model can be constructed by adopting more isotropic particle velocities. 

This paper proposes a two-dimensional' FDLBM BGK (single relaxation) model based on the 

above concept. 

3.2. Finite difference lattice Boltzmann method 
Below is a general description of the two-dimensional thermal FDLBM model. The 

. evolution of the distribution function fki for particle velocity ck; is governed by the following 

equation, which is solved using Euler and second upwind difference scheme. 

afki + c . afki =_I_ ( -r. _ -rc_o)) 
at kia ara ¢ Jki Jk1 (3.1) 

where the subscript k indicates a group of particle velocities whose speed ck and i indicates the 

particle velocity's direction. The subscript a indicates x or y component. The variable tis time, 

r., the spatial coordinate, fki(O) the local equilibrium distribution function, and ¢ the 

relaxation parameter. 

Macroscopic quantities, the density p, the velocity u a , and the internal energy e, are 

defined as follows. 

(3.2) 

(3.3) 

24 



2 C 2 
u " k p(e + -) = L...J fki -
2 ki 2 

(3.4) 

The local equilibrium distribution function is determined to satisfy the following moment 

summation equations. 

Lfk~O)Ckia = pua 
ki 

Lf~O)Ckiacki/3 = p(eoap + UaU /3) 
ki 

Lfk~O)ckiacki/Jckir = p[e(ua5 /Jr + u f3'5ra + ur8a/3) + uau /Jur] 
ki 

2 2 

"J-,C.O) :_!_ = p(e + ~) 
.L., kr 2 2 
ki 

2 2 '°' (O) ck _ u .L., fki - Ckia - pua (2e +-) 
ki 2 2 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3 .10) 

(3.11) 

By applying the Chapman-Enskog expansion, the above formulation 1s shown to be 

equivalent to the following fluid equations (Navier-Stokes equations). 

(3.12) 

(3.13) 

where the pressure P, the viscosity coefficient µ, and the heat conductivity ,c' have the 

following relations. 

P= pe 

µ = pe¢ 
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(3 .16) 



K
1 = 2pe</J (3 .17) 

Temperature T is related with the internal energy by the following equation (R: gas 

constant). 

T = e/R (3.18) 

3.3. New FDLBM model derivation 
The nth rank tensor for the group of m particle velocities is defined as 

(3 .19) 

where a1, .• , an indicate either x or y component. The tensor is isotropic if it is invariant for the 

coordinate rotation and the reflection. As for being isotropic, the odd rank tensors should 

vanish and the even rank tensors should be sums of all possible products of Kronecker delta. C5l 

The tensors for four groups shown in Figure 3 .1 are summarized in Table 3 .1. Kronecker 

delta Ja/3, the sum of its products, ~ c4i aj3rx and ~ C6l a/3',•x).r, are isotropic, whereas extended 

Kronecker deltas, r5a.J3rx and ,5aj3yxh , are anisotropic. 

The odd tensors for uniformly distributed particle velocities are shown to vanish. For even 

tensors, Groups I and II yield anisotropic tensors for the fourth rank and higher. Group ID 

ensures isotropy up-to the fourth rank but not for higher ranks. However, Group N ensures 

isotropy up-to the seventh rank. 

Figure 3.1. Four groups of particle velocities. 
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Table 3 .1. Tensors for four groups of particle velocities shown in Figure 3 .1. 

oarl (if a=/J), =O (otherwise) 

o,,p,.x=l (if a=/J=y=x), =O (otherwise) 

OaPJ?:).,=1 (if a=/J=y=x=).=-r), =O (otherwise) 
(4) 

ii a//rx=O~rx+OayOpx+OaxOPr 
00 W 00 00 00 ~ 

ii a,(iyx).,=oapii 'fXA'I" +oayii f3xh +Oaxii ,8)')., +oa).ii /1)'XT +oa.ii fJ'tx.). 

z>kia L ckiacki/3 L ckiaCkipCkir L ckiacki/Jckirc kix L CJciaCk;pCk;yckixcki,. 
i i i i i 

GROUP I 0 2c;8af3 0 2c: 8af3rx 0 
GROUP II 0 2c;8,,p 0 c:(b..a/Jrx - 2Daf3n) 0 
GROUP III 0 3c;8,,p 0 ¾ 4~ (~) 

4 c,._.. a/Jrx 0 
GROUP IV 0 4cJl\p 0 4ii (IJJ 

ck a/Jrx 0 

LCkiacki13C1,.-;yCk;zCki2cki, 
i 

2cZ 8af3rx2T 

c 2 (¼ !:J.:/Jrx)., - 25 afJrx.J.,) 

anisotropic 

¼ 6~(0 
Ck af]rxM 

Energy diffusion equation (3.11) contains up-to fourth order of flow velocity u. Consequently, 

the local equilibrium distribution function fi,COl is derived from Maxwellian distribution, 

retaining up-to fourth order terms of flow velocity. 

(3.20) 

where the parameter Fk represents the term_l _ exp(-J.-c;) and is the function of e and c,._... 

2ne 2e 

The local equilibrium distribution function/kicoi contains the fourth rank tensor and momentum 

diffusion equation (3.8) contains the third rank tensor. Therefore, up-to seventh rank tensor 

should be isotropic to recover correct fluid equations. 

When we apply the property that the odd tensors vanish, we obtain the following equations 

to determine the parameters Fk. 

From equation (3.5), 

'I_Fkcki4ck;t;u;ur; = eu
2 

ki 

(3.21) 

(3.22) 
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LFkcki?ckit;ckir,Ck;xu?usuTJux = 3e2u4 
ki 

From equation (3.6), 

LFkckiacki~u~ = eua· 
ki 

LFkckiacki?Cki,;CkiT]UqU,;UTJ = 3e
2
u

2
ua 

ki 

From equation (3.7), 

LFkckiacki/Jcki?ckit;u?u,; = e2 
(u

2 
8af3 + 2uau /3) 

ki 

(323) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

L Fkckiacki/Jcki;cki(c kiTJckixu;u,;uTJu x = 3e
3
u

2 
(u

2 
8af3 + 4uau /3) (3.28) 

lei 

From equation (3.8), 

LFkckiacki/Jckircki;u? = e2(ua8/Jr +u/38ra +ur8af3) 
ki 

(3.29) 

L~Ckiacki/Jckiycki4C~CkiT/U4Ui;UT/ =3e
3
u

2
(uaoPr +u/Joya +uroap)+6e

3
uau/Juy (3.30) 

ki 

From equation (3.9), 

2 

"F s__ L. k -e 
ki 2 

From equation (3.10), 

(3 .31) 

(3.32) 

(3.33) 

(3.34) 

_:,. _:,.) (,, ,, -) 
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From equation (3.11), 

2 

" ck 2 ~Fk -ckiacki/J = 2e 8a/J 
ki 2 

(3.36) 

(3.37) 

2 

LFk ck ckiacki/Jckil;ck;(ck;r/kixul;usuT/ux = 12e4(u48a/J +4u2uau/J) 
ki 2 

(3.38) 

If we further assume application of Group N particle velocities that have isotropic tensors 

up-to the seventh rank, the above eighteen equations reduce to the following five equations. 

From equation (3.21), 

From equations (3.22), (3.24), (3.26), (3.31), 

IFkc; = ¼ 
ki 

From equations (3.23), (3.25), (3.27), (3.29), (3.32), (3.34), (3.36), 

From equations (3.28), (3.30), (3.33), (3.35), (3.37), 

From equation (3.38), 

IFkc; = 48e
4 

ki 

speedO 
speed c1 

* 1'-

' 

speed c2 

speed c3 

** ' 

speed c4 

i=4 i=3 

i=5 

i=6 i=7 

Figure 3.2. Particle velocities of the proposed FDLBM model. 
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(3 .39) 

(3.40) 

(3 .41) 

(3.42) 

(3.43) 

i=2 

i=l 

i=8 



Five speeds are necessary to satisfy the above equations. A rest particle (co =0.0) and four 

group N particles, whose speed are CJ, c2, C3, and C4 ,'are assumed (Figure 3.2). The equations 

of (3.39) through (3.43) are easily solved to give the following. The parameters Fk are 

functions of CJ, c2, C3, c4, and internal energy e. 

(3.48) 

As far as a simulation being stably conducted, the combination of the values, CJ, c2 , c3 , and 

c4, does not affect the accuracy itself. We can utilize this freedom to obtain the stably simulated 

range of temperature as wide as possible. Several criteria were tried and it was finally 

concluded that following hypothesis has the closest relationship with simulation stability: 

"Simulation is stable as far as Fo>F1>F2>F3>F4>0." Therefore, the following optimum 

problem was solved: 

Under the condition 

determine 

which maximizes 

keeping 

(eweJ/eM 

Fr/FJ> 1.1 and F/F2> 1.1 and 

F2/F3> 1.1 and F/F4> 1.1 and F4>0. holds 

e,w =(eH+er)/2=1.0 

(3 .49) 

The result is the following. The model is expected to stably simulate the flow for the 

temperature range: e = 0.4-1.6. 

(3.50) 

(3 .51) 
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3.4. Verification of the new model 
The model was confirmed valid by conducting two simulations. First, the speed of sound 

was measured. Second, the shear flow between parallel walls (Couette flow) was investigated. 

3.4.1. Speed of sound 
In a box, a plate divides fluids that have a small difference in density (Figure 3.3). When the 

plate is removed, sound waves (expansion and compression) propagate. The position of the 

pressure jump (Figure 3.4) was measured to calculate the speed of sound. The results at various 

internal energy levels are shown in Figure 3.5. The simulation was stably conducted for the 

range: e=0.4-1.6. The speed of sound exactly agrees with the following theoretical value. 

(3.52) 

Figure 3 .3. Sound wave simulation. 

A plate divides fluids that have small difference in density. As the plate is removed, 

sound waves (expansion or compression) propagate. 

Cl) 1.010 
~ t=30 20 10 
Cl'l 1.005 Cl'l 
Cl) 0 10 20 30 I-< 

A-. 1.000 

-50 Distance 0 50 

Figure 3.4. Propagation of sound waves. 

The pressure jumps advance as time proceeds. 
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Figure 3 .5. Sound speed versus internal energy. 

3.4.2. Couette flow 
The upper wall, which is H apart from the lower wall and has internal energy e2, starts to 

move with speed U. The lower wall has e1 and is at rest (Figure 3.6). The viscous shear stress 

transmits momentum into the fluid and changes the horizontal speed profile. The horizontal 

speed distribution at various instants for e1=e2 is shown in Figure 3.7. The simulation result 

exactly agrees with the analytical value of equation (3 .53). 

U y 2 ~ [ 2 2 µt ] · [ Y ] -=--- L..,exp -n TC --
2
- sm nTC(l--) 

U H TC n=I pH H 
(3.53) 

The analytical distribution of internal energy in a steady state is shown in equation (3.54). 

y µ 2 y y 
e = e1 +(e2 -e1)-+-U -(1--) 

H 2K' H H 
(3.54) 

Since the coefficients µ and K ' are given as (3 .16) and (3 .17), respectively, value ;{K, 1s 

constant (=0.25). Therefore, the distribution does not depend on the relaxation parameter¢ or 

on the internal energy e. The internal energy subtracted by linear distribution, which 

corresponds to the last term in equation (3.54), will be shown. 

Figure 3.8 shows the result for various relaxation parameters The result, which is shown to 

be independent of ¢, coincides exactly with the analysis. Figure 3.9, the result for various 

walls' temperatures, also shows complete agreement with the analysis. The relevance of the 

model for the variation of speed U is shown in Figure 3.10. 

Finally, simulation for e1# 2 was conducted. The result for e1=0.5 and e2=1.5 is shown in 

Figure 3 .11. The result exactly agrees with the analytical solution. 
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Figure 3.6. Couette flow simulation. 
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Figure 3.7. Evolution of horizontal speed distribution. e1=e2=1.0. 
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Figure 3.8. futemal energy distribution at steady state for various relaxation 

parameters:¢ =0.05, 0.1, 0.2, 0.4. U=0.l, e1=e2=1.0. The internal energy sub­

tracted by linear distribution is shown. The results for all ¢ overlap each other. 
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Figure 3.9. Internal energy distribution at steady state for vanous wall 

temperatures: e1=e2=0.5, 1.0, 1.5. U=0.l, ¢=0.1. The internal energy subtracted 

by linear distribution is shown. The results for all cases overlap each other. 
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Figure 3.10. Internal energy distribution at steady state for various boundary 

speeds: U=0.1, 0.2, 0.3. ¢=0.1, e1=e2=1.0. The internal energy subtracted by 

linear distribution is shown. 
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Figure 3 .11. Internal energy distribution at steady state for various boundary 

speeds: U=0.1, 0.2, 0.3. The wall temperatures are different: e1 =0.5, e2=1.5. 

¢ =0 .1. The internal energy subtracted by linear distribution is shown. 

3.5. Comparison with existing thermal models 

Couette simulations using existing multi-speed thermal BGK LBM models were conducted 

in a FDLBM scheme to compare them with the proposed model. 

The model by Alexander et al C
3
) 2D13V (rest particle and 2 speeds of Group III): 

They retain up-to third orders of local flow speed in the local equilibrium distribution function. 

They use Groupill velocities (hexagonal) that ensure only fourth rank tensor isotropy. As 

shown in the new model derivation, up-to fourth order expansion and up-to seventh rank tensor 

isotropy are necessary to recover correct fluid equations. Therefore, in their model, error terms 

are hidden in the momentum and energy diffusions. Figure 3.12 shows the result for the 

variation of the relaxation parameter. The result indicates the dependency on the relaxation 

parameter, which contradicts the analysis. The result for the variation of walls' temperature is 

shown in Figure 3.13. The figure shows the dependency on the internal energy, which also 

contradicts the analysis. Those discrepancies are the reflection of the error terms described 

above. 

The model by Chen et af 4· 
7
) 2D 16V (2 speeds of Group I and 2 speeds of Group II ) : 

They say that as they retain up-to fourth orders oflocal flow speed and realize equivalent up-to 

seventh rank tensor isotropy by mixing weighted Group I and II velocities, their model 

recovers correct fluid equations. However, the simulation results are different from what they 

say. The result for the various values of the relaxation parameter ¢ is shown in Figure 3 .14. 

Although the model has been quite improved from Alexander's model, the model still yields an 

erroneous solution for the ¢<0.2. For ¢=0.1, the result for the variation of walls' temperature 
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is shown in Figure 3 .15. This figure indicates that the simulation for ¢ <0 .2 (low viscosity 

flow) yields an erroneous solution if the internal energy e diverts from 0.5. Consequently, 

although the result for e=0 .5 in the variation of speed U (Figure 3 .16) shows good agreement 

with analytical solution, the model- gives distorted solutions if the difference in temperature 

between walls exceeds a certain range (Figure 3.17). Further study is necessary where these 

discrepancies come from. 

0.001 ....-------~-----~ 

0.0008 

~ 
5 
"2 0.0006 

~ 
.El 
jg 0.0004 

Cl.) 

Q 

0.0002 

0 

Alexander's model 
U=0.l 
el=e2=0.5 C 

C 

C 

A A 

C phi=0.l 
A phi=Q.2 
0 phi=0.4 

- Analysis 

0.5 

C 

Vertical position y /H 

C 

Figure 3.12. Alexander's model. Internal energy distribution at steady state for 

various relaxation parameters: ¢=0.1, 0.2, 0.4. U=0.1, e,=e2=0.5. The internal 

energy subtracted by linear distribution is shown. The result shows dependence 

on ¢ , which contradicts the analytical prediction. 
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Figure 3.13. Alexander's model. Internal energy distribution at steady state for 

various wall temperatures: e1=e2=0.3, 0.5, 0.7. U=0.1, ¢ =0.1. The internal 

energy subtracted by linear distribution is shown. The result shows dependence 

one, which contradicts the analytical prediction. 
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Figure 3.14. Chen's model. Internal energy distribution at steady state for 

various relaxation parameters: ¢=0.05, 0.1, 0.2, 0.4. U=0.l, e1=e2=0.5. The 

internal energy subtracted by linear distribution is shown. Although the model 

has been improved from Alexander's model, the result still shows dependence 

on ¢, which contradicts the analytical prediction. 
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Figure 3 .15. Chen's model. Internal energy distribution at steady state for 

various walls' temperatures: e1=e2=0.3, 0.4, 0.5, 0.6, 0.7. U=0. l, ¢=0.1. The 

internal energy subtracted by linear distribution is shown. The results for e=0 .4 

and 0.6 overlap. The results for e=0.3 and 0.7 overlap. The result shows 

dependence one, which contradicts the analytical prediction. 
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Figure 3.16. Chen's model. Internal energy distribution at steady state for 

various boundary speeds: U=0.l, 0.2, 0.3. ¢=0.1, e1=e2=0.5. The internal 

energy subtracted by linear distribution is shown. 
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Figure 3 .17. Chen's model. Internal energy distribution at steady state for 

various boundary speeds: U=O. l, 0.2, 0.3, when the wall temperatures are 

different; e1=0.3, e2=0.7. ¢ =0.1. The internal energy subtracted by linear 

distribution is shown. The model gives distorted solutions. 
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3.6. Conclusions 
A new multi-speed thermal model for the FDLBM was proposed. To recover correct fluid 

equations, up-to fourth orders of local flow velocity should be retained in the local equilibrium 

distribution function and the particle_ velocities should have up-to seventh rank tensor isotropy. 

In the FDLBM, we can select particle velocities independently from the lattice configuration. 

Therefore, particle velocities of octagonal directions, which have up-to seventh rank isotropic 

tensors, are adopted. Furthermore, as the local equilibrium distribution function is determined 

such that it retains as much Maxwellian characteristic as possible, the proposed model has 

excellent numerical stability in addition to strict accuracy. 

The model was verified by flow simulations and was compared with the results of existing 

models. While existing multi-speed thermal models give correct answers in quite limited 

ranges of viscosity and temperature, the proposed model gives correct answers in wide ranges. 

I would like to note that the proposed model has capability to high Reynolds number problems. 

In an application study,<8
l thermal cavity flow simulations of ¢=0.0009 was successfully 

conducted. 
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4. Three-dimensional thermal model of finite difference lattice 
Boltzmann method with high spatial isotropy 

4.1. Introduction 
In the lattice Boltzmann method (LBM), there are two ways of handling thermal fluids. One 

is the so-called "multi-component thermal model."(!) The other is the so-called "multi-speed 

thermal model," C2.3l where particle velocities that have different speeds are used. While the 

multi-speed thermal model is intended to correctly represent heat characteristics and 

compressibility, it has been shown that a three-dimensional LBM BGK multi-speed thermal 

model is theoretically impossible. C4l 

The finite difference lattice Boltzmann method (FDLBM) C5l was proposed in order to secure 

numerical stability and to apply non-uniform grids. In the LBM, the particle velocities are 

restricted to those that exactly link the lattice nodes in unit time. On the other hand, in the 

FDLBM, as that constraint does not need to be considered, particle velocities can be selected 

independently from the lattice configuration. Therefore, a correct and numerically stable 

multi-speed thermal model can be constructed by adopting more isotropic particle velocities. 

This paper proposes a three-dimensional FDLBM BGK (single relaxation) thermal model 

based on the above concept. 

4.2. Finite difference lattice Boltzmann method 
Below is a general description of the three-dimensional thermal FDLBM model. The 

evolution of the distribution function /ki for particle velocity ck; is governed by the following 

equation, which is solved using Euler and the second upwind difference scheme: 

8/i:; aJ;,, __ _!_ ( .( _ .(CO)) + C kia - J Id J kt at 8ra ¢ 
(4.1) 

where the subscript k indicates a group of particle velocities whose speed ck and i indicates the 

particle's direction. The subscript a indicates x, y, or z component. The variable tis time, r" 

the spatial coordinate, /kicoi the local equilibrium distribution function· and¢ the relaxation 

parameter. Macroscopic quantities: the density /J, the velocity u "' and the internal energy e, 

are defined as follows: 

(4.2) 

(4.3) 

2 2 

u " ck p(e + -) = L. fk, -
2 ki 2 

(4.4) 
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The local equilibrium distribution function is determined to satisfy the following moment 

summation equations: 

" .f(OJ 
L.Jki = p 
ki 

" {'(OJ 
L., J ki ckia = pua 
ki 

2 2 

It:0
J ~ = p(e+!!_) 

ki 2 2 
2 5 2 

(OJ Ck U 
If1a -C/da = pua(-e+-) 

1a 2 3 2 

'°' coJ ct (10 u
2 

s: (7 u
2 

L.f1a -Ck;aC1ap = p[e -e+-)uap +UaU/3 -e+-)] 
ki 2 9 3 3 2 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

( 4.9)" 

(4.10) 

(4.11) 

Applying the Chapman-Enskog expansion, the above formulation is shown equivalent to the 

following fluid equations (Navier-Stokes equations): 

ap +~(pua) = 0 
at 8ra 

(4.12) 

8 8 s: , 8 [ (aup &ua 2 our (4 13) -(pua)+-(puaUp +Puap)-- µ-+----bap)]=0 · 
at 8rp 8rp 8ra 8rp 3 arr 

a [p( U
2 

a ( U
2 

p)] a [ I & (au/J Bua 2 au7 S: ) (4.14) - e+-)]+-[,ata e+-+- -- K -+f.-0,lp -+----uap ]=0 
8t 2 Bra 2 p Bra Bra Bra 8rp 3 arr 

where the pressure P, the viscosity coefficientµ, and the heat conductivity K' have the following 

relations: 

2 
P=-pe 

3 

2 
µ=-pe</> 

3 

I 10 ,I, 
K =-peip 

9 

(4.15) 

(4.16) 

(4.17) 

Temperature Tis related to the internal energy by the following equation (R: gas constant): 

T='!:!_ 
3R 
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4.3. New FDLBM model derivation 
The energy diffusion equation (4.11) contains up-to fourth order of flow velocity u. 

Therefore, up-to fourth order terms of flow velocity are retained in the local equilibrium 

distribution function Jt/0)_ Assuming the velocity u is small, the Maxwellian distribution is 

expanded: 

.f(O) P ( 3 ( )2) 
Jki = (j{ n-e)½ exp - 4e Ckia -Ua 

1 ( 3 2) ( 3 2 ) = p 
41 

½ exp --Ck exp --(CkiaUa -U ) 
(j-

3 
n-e) 2 4e 2e 

(4.19) 

The local equilibrium distribution function for the FDLBM is obtained: 

where the parameter A represents the term 
1 ½ exp(- 2. c J ) and is the function of e and 

(:½ 1re) 2 4e 

ck. The local equilibrium distribution function Jt/0
) contains the fourth rank tensor and the 

momentum diffusion equation (4.8) contains the third rank tensor. As a result, up-to seventh 

rank tensor must be isotropic to recover correct fluid equations. 

The nth rank tensor for the group of m particle velocities is defined as: 

(4.21) 

where a 1, .. , an indicate any of x, y, and z components. The tensor is isotropic if it is invariant for 

the coordinate rotation and reflection. As for being isotropic, the odd rank tensors should 

vanish. 

Ec2n+1) O 
aia2a1-azn+1 - (4.22) 

The isotropic even rank tensors should be sums of all possible product of Kronecker delta. C6) 

(4.23) 
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This paper's strategy for constructing the model is, first, to create a basic group of particle 

velocities that has isotropic tensors up-to seventh rank. Then, the model is constructed using 

several speeds of these groups in addition to a rest particle. 

Vectors that point to the vertexes of dodecahedron and icosahedron (Figure 4.1) from the 

center have high isotropy. The components and tensors for these vectors are summarized in 

Table 4.1. 

(a) Dodecahedron (b) Icosahedron 

Figure 4.1. Dodecahedron and icosahedron. 

Table 4.1. Tensors for vectors pointing from the center to the vertexes of 

dodecahedron and icosahedron. The m is the number of vectors. If-nl is the nth rank 

tensor. The eye indicates cyclic permutations. The symbol O indicates isotropic, 

and the symbol X anisotropic. 

group components of vectors m E(l) £(2, E(3) £(4) £(5) £(6) 1Ec1) 

Dodecahedron ,1,(±1,±1,±1),eye: .,l(0,±r1,±¢) 20 0 0 0 0 0 X 0 
Icosahedron eye: i-(0,±¢,±1) 12 0 0 0 0 0 X 0 

¢ = (1 + /5) / 2 

Table 4.2. Sixth rank tensors for vectors of dodecahedron, icosahedron in Table 4.1, 

and for the combined vectors. The values in the parenthesis are those for isotropic 

tensors calculated by the equation (4.23). 

6th rank tensor Dodecahedron Icosahedron 
Dodecahedron 
+ Icosahedron 

m 2.9630 1.6000 4.5630 L CvcCixCixC;xC ;.,Cix 
(2.8571) (1.7143) (4.5714) i=l 

m 0.3529 0.5789 0.9318 L C;xC,xC ,xC;.,C,yCiy 
i=I (0.5714) (0.3429) (0.9143) 
m 0.6842 0.2211 0.9053 L C,xC,xC,yC,yC;zC;, 
i=I (0.5714) (0.3429) (0.9143) 
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The odd tensors for spatially uniformly distributed vectors are shown to vanish. For even 

tensors, both groups have isotropic tensors up-to fourth rank, however, they yield anisotropic 

tensors for the sixth rank and higher. How anisotropic are they? The sixth rank tensors for 

typical combinations are shown in. Table 4.2. In the table, the values in the parenthesis are 

those for isotropic tensors calculated by the equation (4.23). The tensors of dodecahedron and 

icosahedron have more than ten percent discrepancies from the isotropic tensors. However, if 

both vectors are combined as a group, the !;iixth rank tensor becomes almost isotropic with 

about one or two percent errors. Therefore, these thirty-two vectors are adopted as a basic 

group of particle velocities. 

When the property that the odd tensors vanish is applied to equations (4.5) through (4.11), 

the following equations are obtained to determine the parameters Fk: 

(4.24) 

(4.25) 

~ 17 4 2 A(4) 
~ r kCkiaCk;pCk;rCkix = -e D.afrtx 
ki 9 

(4.26) 

~ 17 8 3 A(6) 
~rkCk;aCkipCk;rCkizCki).ckiT = -e D.aprzM 
ki 27 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

If it is further assumed that particle velocities have isotropic tensors up-to seventh rank, the 

eight equations above reduce to the following five equations: 

From equation (4.24), 

LF;. = I (4.32) 
ki 

From equations (4.25), (4.28), 

~Fkc; = ;{6 
(4.33) 

From equations (4.26), (4.29), 
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4 5 2 
LFkck = -e 

ki 24 
From equations (4.27), (4.30), 

6 35 3 
LFkck =-e 

ki 36 
From equation (4.31), 

LFkc! = 
35 

e
4 

ki 6 

(4.34) 

(4.35) 

(4.36) 

Five speed groups of particle velocities are necessary to satisfy the above equations. A rest 

particle (c0 =0.0) and four moving groups of particles whose speeds are CJ, c2, cs, and C4 

(O<cJ<c2<c3<c4) are assumed. The equations (4.32) through (4.36) are easily solved to give 

the following. The parameters Fk are functions of CJ, c2, C3, C4, and internal energy e. 

R 1 [35 4 35( 2 2 ') 3 5 ( ' ' ' ' 2 ') ' c:c:c: ](4.37) 
1 =--------- -e -- Ci +c, +c. e +- c1c, +c,c. +c.c, e ---e 

c,'(c:-c:)(c: -c:)(c,' -c:) 6 36 24 - 16 

v 1 [35 4 35( , , ') 3 5 1 , , , , , ')e' C:c:c,' ](4 38) 1·, = 
2 2 2 2 2 2 2 

-e -- C3 +C4 +c, e +-,C,C4 +C4 C, +c,c, ---e . 
c2 (c2 -c3 )(c2 -c.)(c2 -c,) 6 36 24 16 

v_ 1 [35 4 35(, , ') 3 5 1 ,, , , , ')e' c:c,'~ ](4.39) 1·, ---------- -e -- c. +c, +c, e +-,c.c, +c,c, +c,c. ---e 
C:(C: -c:)(C: -c,')(C:-~) 6 36 24 16 

D 1 [35 4 35{ 2 2 2)e3 5 ( 2 2 2 2 2 ')e' c,'~c: ]<4 40) r. = , , , , , , , -e --,c, +c, +c, +- c,c, +c,c; +c,c, ---e · 
c. (c. -c, )(c. -c, )(c. -Ci) 6 3 6 24 16 

(4.41) 

As far as the model being stably simulated, the combination of the values: Ci, c2, c3, and c4, 

does not affect the accuracy itself. It governs the range of temperature where simulation is 

stably conducted. Several criteria were tried and it was finally concluded that following 

hypothesis has the closest relationship with simulation stability: "The model is stable as far as 

Fo> F1 > Fz> F3> F4>0." 

Therefore, the following optimum problem was solved: 

Under the condition 

determine 

which maximizes 

keeping 

0 < Ci < C2 < C3 < C4 

CJ, Cz, C3, and C4 

(eweL)!eM 

F olF1 > l. l and F/F2> 1.1 and 

F2/F3> 1.1 and F ;/F4> 1.1 and F4>0. holds 

eM =(eH+eL)/2=1.0 

(4.42) 

The result is the following. The model is expected to stably simulate the flow for the 

temperature range: e = 0.48-1.52. 
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(co, C1, C2, C3, C4) = (O.O,l.01,1.82,2.67,3.88) 

ei=0.48, eH =I.52, (ewei)leM= 1.04 

4.4. Verification of the new model 

(4.43) 

(4.44) 

The validity of the model was confirmed by conducting two simulations. First, the speed of 

sound was measured. Second, the shear flow between parallel walls (Couette flow) was 

investigated. 

4.4.1. Speed of sound 
In a box, a plate divides fluids that have small difference in density (Figure 4.2). When the 

plate is removed, sound waves (expansion and compression) propagate. The position of the 

pressure jump (Figure 4.3) was measured to calculate the speed of sound. The results at various 

internal energy levels are shown in Figure 4.4. The simulation was stably conducted for the 

range: e=0.5-1.5. The measured sound speed agreed exactly with the following theoretical 

value: 

c, = Ji¾e 

Figure 4.2. Sound wave simulation. 
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Figure 4.3. Propagation of sound waves. 

The pressure jumps advance as time proceeds. 
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Figure 4.4. Sound speed versus internal energy. 

2 

The results are compared with the theoretical value, c, = ~1% e. 

4.4.2. Couette flow 
The upper wall, which is H apart from the lower wall and has internal energy e2, starts to 

move at speed U. The lower wall has e1 and is at rest (Figure 4.5). The horizontal speed 

distribution at various instants for e1=e2 is shown in Figure 4.6. The simulation result agreed 

exactly with the theoretical value of equation (4.46). 

u Y 2 ~ [ 2 2 µt ] · [ Y ] -=---L..exp -n tr --
2 

sm ntr(l--) 
U H tr n=I pH H 

(4.46) 

The analytical distribution of internal energy in a steady state is: 

y µ 2 y y 
e = e1 +(e2 -e1)-+-U -(1--) 

H2K' H H 
(4.47) 

Since the coefficients µ and K' are given as (4.16) and (4.17), respectively, value o/iK, 1s 

constant (=0.3). Therefore, the internal energy subtracted by linear distribution, which 

corresponds to the last term in equation ( 4 .4 7), does not depend on relaxation paran1eter ¢ or 

on walls' temperatures. 

Figure 4.7 shows the result for various relaxation parameters The result, which is shown to 

be independent of¢, coincides exactly with the analysis. Figure 4.8, the result for various 

walls' temperatures, also shows complete agreement with the analysis. 
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Figure 4.5. Couette flow simulation. 
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Figure 4.6. Evolution of horizontal speed distribution. 
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Figure 4.7. Internal energy distribution in a steady state for vanous relaxation 

parameters: ¢=0.05, 0.1,0.2,0.4. U=0.I, e1=e2=1.0. The internal energy subtracted by 

linear distribution is shown. The results for all cases overlap each other. 
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Figure 4.8. Internal energy distribution in a steady state for various wall 
temperatures: e1=e2=0.5, 1.0, 1.5. U=0. l, ¢=0.1. The internal energy subtracted by 
linear distribution is shown. The results for all cases overlap each other. 

4.5. Evaluation of existing thermal models 
Existing three-dimensional multi-speed thermal LBM models were evaluated by applying 

them to a Couette simulation, using a FDLBM scheme. 

As predicted in the previous study, C4l although the model by Chen et a1.C2
l (3D40V) gave a 

linear profile to the horizontal speed distribution in a steady state, internal energy showed 

strange distribution (internal energy in the fluid is lower than that at the walls!). 

The model by Takada et a1.C3
l (3D39V) retains up-to third order terms of flow velocity in the 

local equilibrium distribution function J,j0
l and ensures only up-to fifth rank tensor isotropy. 

The model adopts as particle velocities, a rest particle and 5 groups of moving particles shown 

in Figure 4.9. As expected from insufficient terms in the local equilibrium distribution function 

and insufficient isotropy, although the horizontal speed profile showed an appropriate 

evolution, the internal energy distribution in a steady state yielded discrepancies with the 

analytical prediction, as shown in Figure 4.10 and Figure 4.11. 

3 
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Figure 4.9. Particle velocities of the model by Takada et al. They are three speeds of 

six directions: ck= 1,2,3, one speed of twelve directions: ck=2°'12, and one speed of 
eight directions: ck=-13. 
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Figure 4.10. Internal energy distribution in a steady state for various relaxation 

parameters: ¢=0.05, 0.1, 0.2, 0.4. U=0.l, e1=e2=1.0. The internal energy subtracted 

by linear distribution is shown. The result shows dependence on ¢, which contradicts 

the analytical prediction. 
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Figure 4.11. Internal energy distribution m a steady state for vanous wall 

temperatures: e1=e2=0.6, 1.0, 1.3. U=0.l, ¢=0.1. The internal energy subtracted by 

linear distribution is shown. The result shows dependence on e, which contradicts the 

analytical prediction. 
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4.6. Conclusions 
Existing three-dimensional LBM multi-speed thermal models do not provide a correct 

solution. 

In order to recover correct fluid equations, up-to fourth orders of local flow velocity should 

be retained in the local equilibrium distribution function and particle velocities must have up-to 

seventh rank tensor isotropy. In the FDLBM, particle velocities can be selected independently 

from the lattice configuration. Therefore, a group of particle velocities that has high rank 

isotropic tensors can be adopted. 

A new three-dimensional multi-speed thermal model for the FDLBM was proposed. In the 

model, a group of thirty-two particle velocities is selected as a basic group of moving particles. 

These moving particles are derived from vectors that point to the vertexes of dodecahedron and 

icosahedron from the center. As they have quasi-isotropic sixth rank tensor, the model made up 

of a rest particle and four speeds of the basic groups showed good agreement with the 

analytical solutions when applied to two flow simulations. 
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5. Boundary conditions for thermal models of finite difference lattice 
Boltzmann method 

5.1. Introduction 
A lot of studies(!-?) have been done to make clear boundary conditions for the lattice 

Boltzmann method (LBM)_ Most of them are about boundary conditions for non-thermal 

models that have limited number of particle velocities. Few studies describe a clear receipt of 

boundary conditions for thermal models of the finite difference lattice Boltzmann method 

(FDLBM), that have multi-speed particle velocities. Furthermore, many of the previous work 

were about boundary conditions for planar wall. It seems difficult to handle conditions for 

comers.<1
J We challenged to these themes. 

In order to realize accurate boundary conditions, it is necessary not only to realize boundary 

conditions explicitly stated, such as velocities and temperatures, but also to assure the 

conditions that are not explicitly indicated, such as continuity of stress tensor_ To accomplish 

these requirements, there seem to be two ways. One is to assume the boundary as part of fluid 

and to apply evolution equation there. We shall call this method "the control node method." 

The other, which shall be called "extrapolation method," is to define the distribution functions 

on the boundary by inverse mapping or extrapolation from quantities in the fluid domain. 

This paper present these two methods and compare their performances, applying benchmark 

tests. 

5.2. Thermal FDLBM model 
We show here a two-dimensional thermal model of FDLBM that was used in this study. The 

evolution of the distribution function fi; for particle velocity Ck; is governed by the following 

equation. The particle velocities are shown in Figure 5 .1. 

(5.1) 

where t is time, r a the spatial coordinate ( x , y ), g a the gravity acceleration vector ( 0, -g ), 

and ¢ the relaxation parameter. Macroscopic quantities: the density ,o, the velocity u a, and 

the internal energy e, are defined as follows. 

Plla = Lfkickia 
ki 
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(5.2) 

(5.3) 

(5.4) 



The local equilibrium distribution function fi/0
l is defined as 

£(0) _ p·D m(O) 
J ki - 'I'k'f'ki 

where 

1 3 , 
F0 = l--(255e -525e- + 392e) 

144 

1 
F1 =-(195e 3 -355e 2 +180e) 

240 

F2 = --
1
-(75e3 -125e 2 + 36e) 

480 

1 
F3 =-(15e 3 -15e 2 + 4e) 

720 

The external force distribution function Eki" is defined as 

k=O k=l 
rest particle speed I 

k=2 
speed 2 

* ,.,+-·+ 
i=4 

k=3 
speed 3 

k=4 k=5 
ckiy speed ..r2 speed 2..r2 

=L :::x:: X 
0

0 1 2 3 ckv: 

Figure 5.1. Particle velocities. 
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(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 



By applying the Chapman-Enskog expansion, the Navier-Stokes equations can be recovered 

with the error of o ( u 4) 

(5 .14) 

(5 .15) 

a U
2 a u 2 P 

-[p(e +-)]+-[pua(e +-+-)] at 2 ara 2 p (5 .16) 

a [ 1 ae (aup Olla ) 1 Olly] -- K -+µu p -+- +AUa- +pgaUa =0 
ara ara Ol'a orp arr 

where the pressure P, the viscosity µ, the second viscosity A, and the heat conductivity K' are 

defined as follows . 

P=pe 

µ=pe</J 
)., =-pe¢ 

K
1 = 2pe</J 

5.3. Control node method 

(5 .17 abed) 

We apply the evolution equation to boundary nodes assuming that they are part of fluid. 

Outside the boundary, fictitious nodes, called "control nodes" are arranged. Assuming second 

order upwind difference scheme, two layers are necessary, as shown in Figure 5.2. 
j y 

X 

8 fluil node e bourrlary node O control node 

Figure 5.2. Sketch of the control node method. 
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Applying Euler scheme on time derivative, the following finite difference equation 1s 

derived from the evolution equation ( 5 .1). 

[}t [}t l 
1 n+I = 1 n _ C _'J_ ca /1{ _ C _'J_ ca /1{ _ g£n /1t __ ( 1 n _ 1 (0}n )/1t 

l a l a ax OX · ay 0) ay <p J a Ja (5 .18) 

ofa 
+ 

3J: - 4J:i-l + J:i-2 
= . , 

ofa ox 2Ar 

ox ~1- 3f: - 4f:.i+I + fa~i+2 (5 .19) 
= 

-2Ar 

ofa + _ 3/:- 41:.1-1 + fa~j-2 

ofa _ oy 2Lly 

oy - -rn -rn -rn 
Ofa _ 3;a -4Ja,j+I + Ja,j+2 

(5 .20) 

oy -2Lly 

where the suffix ik is written as a for simplicity, and the suffix n indicates the time step. 

Spatial derivatives are defined differently depending on the direction of particle velocities . 

The upper parts of the equations (5 .19) and (5 .20) are for particles that have positive speed, 

and the lower parts for negative speed. Suffixes i-1 , i-2, andj-1, j-2 indicate the nodes in x and 

y direction, respectively from the nominal node. 

5.3.1. Boundary conditions on planar walls 
Let us consider the boundary conditions on the left wall as an example (see Figure 5.3) . We 

post an equilibrium-type distribution function .fa<0l( ,oc, U c, Ve , ec) on the control node (-2 , j) . 

Assuming the distribution of the node (-1, j) is an average of the nodes (-2, j) and (0, j ), the 

spatial derivative for positive particle velocities (rightward direction) is expressed as : 

J y 

j­

~ 

X 

i 

Figure 5.3. Left wall of the control node method. 

55 



ar I+ 3 rn _ 4 rn + rn rn f(O)( ) 
_:;_,a = Ja Ja,-1 Ja,-2 _ Ja - Ja Pc,uc,vc,ec 

@ 2~ 2~ 

Therefore, the finite difference evolution equation on the boundary node becomes 

fl'l+l = fl'l -c 
Ja Ja ax 

2~ 
afa 

ax 

- gE;/1t - : (fan - J/)n )~f 

of . 
&-c _a & 

ay By 

(5.21) 

(5.22) 

In the [ ] of equation (5.22), the upper part is chosen for positive Cax and the lower part for 

negative Cax. The control distribution function J;,C0l( pc, Uc, Ve, ec) is used for the adjustment of 

boundary condition. If macroscopic quantities and/or their combinations are given as boundary 

conditions, these macroscopic requirements are expressed by moment summations on the 

distribution at the step n+ 1. Some examples are shown below. 

'"'rn+l Pw = ~J a 
a 

P u ='"' rn+lc 
w w ~Ja ax 

a 

P V ='"' fn+IC 
w w ~Ja ay 

a 

u2 +v2 c2 
( w w) ='"' rn+I _E._ Pw ew +--- L..J a 

2 a 2 
? 

[E F] - '"'J n+I c; C Pw · · x - L,. a 
2 

ax 
a 

2 

[EF] _ '"'Jn+1 ~c Pw · · y - ~ a ay 
a 2 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

where [E.F]" is energy flux per unit mass m a direction. These requirements can be 

satisfied by adjusting pc, Uc, Ve, ec. Specific examples are given. 

Wall example 1 (adiabatic with zero velocities) 

The conditions of adiabatic wall with zero velocities are expressed as 

(5.29) 
a 

(5 .30) 
a 
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2 

"J.n+I :.::._C = Q 
L,;a 

2 
ax 

a 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

where 

H = {'n -c ofa M-gEn Llt-_!_(f.n -f.(O)n)M 
a Ja ay 0/ ay </J a a 

(5.35) 

~ means the summation over positive Cax, ~ over negative Cax, and ~ over all c=· 

We have four degrees of freedom: /Jc, Uc, Ve, ec, against three conditions. It is physically 

understandable that Uc strongly affects on the requirement ,0 wUw=O, Ve on ,0 wVw=O, and ec on 

,o w[E.F]x=O. The ,o c affects evenly on each requirement, however, the effect is quite small. 

Therefore, equations (5.32) through (5.34) are solved by adjusting Uc , Ve , ec in the control 

distribution function. The density ,o c is extrapolated from the fluid domain (Figure 5.4). 

(5.36) 

p 

r--
__ , 

'\ 

X 

-2 -1 0 1 l 

Figure 5.4. Density extrapolation in the control node method. 

Equations (5.32) through (5.34) are solved by Newton Raphson method assuming following 

iteration equation: 

(5.37) 

where Uco, Vea, eco are initial estimated values and L1 Uc , L1 Ve , and L1 ec are their deviations. 

Following sensitivity functions are readily available by differentiating the equilibrium 

distribution function. 
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81' co) 8rp coi 

:,,~ = PcFk 
8
: (5.38) 

81' coi 8rp coi 

:,,~ = PcFk ~ (5.39) 

8~/'coi 8,17 8 coi 
_:,,_,a_= (-'I'_k' coi +F _!!!.E_) 

8e Pc 8e rpki k ae (5.40) 

The convergence in iteration is quite fast. Three times of the iteration are enough. 

Wall example 2 (constant temperature (or internal energy ew) with non-zero velocities: 

Uw, V,.,) 

These conditions are expressed as 

(5.41) 
a 

(5.42) 
Cl 

(5.43) 

Like the wall example 1, /Jc is estimated from the fluid domain and the equations above are 

Solved in terms Of Uc , Ve , and ec . 

5.3.2. Boundary conditions on corners 
The example of a lower left corner is shown in Figure 5.5. Control distribution functions are 

placed on the two nodes: la(O)( ,ox, Ux , Vx , ex) on the node (-2,0), andj}0Jc.o y, Uy , Vy , ey) on 

the node (0,-2). 

j y 

f} 0 l(p,,u,,v,,e,) 

~ X 

i 

Figure 5 .5. Lower left comer of control node method. 
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The distributions on the nodes (-1,0) and (0,-1) are averaged values of their both sides. Then, 

the evolution equation on the corner (0,0) becomes: 

J,n+l = f," _ C 
a a ax 

J,,n - J?)(Py,uy, vy,ey) 

2/iy 

8fa 
oy 

At 

(5.44) 

dt - u£n At_ .!_(fn - /"(O)n)At 
o ay ¢ a Ja 

The relationship between macroscopic quantity requirements and the distribution function of 

the step n+ 1 are similar to the case of wall. However, we have eight variables for boundary 

control: p x, Ux, Vx, ex, p y, Uy, vy, ey. Appropriate variables have to be selected according to 

boundary conditions, and others are fixed at values extrapolated from the fluid domain. Let us 

show specific procedures according to the following examples. 

Corner example 1 (adiabatic with zero velocities) 

The requirement for zero velocity uw=0 is adjusted by the control variable Ux of the node 

(-2,0) and the requirement for zero energy flux in x direction is by ex. The situation in y 

direction is the same as in x direction. Namely, vw=0 is by vy , and zero energy flux in y 

direction is by ey . Other variables yield minor effects. Therefore, during iteration process, the 

following variables are fixed at values extrapolated from the fluid domain: 

,., 0 2 1 Px = jPo - Po (5.45) 

,., 0 2 0 PY= jPo - Pi (5.46) 

V = 0 
X 

(5.47) 

u = 0 
)' 

(5.48) 

Boundary condition requirements expressed by following equations are solved by adjusting the 

control variables: Ux , Vy , ex , and ey. 

""""'pi+tc = 0 L..J J a ax (5.49) 
a 

""""'+n+lc =0 L..JJ a ay (5.50) 
a 
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2 

Lfn+l ~C = 0 
a a 2 ax 

(5 .51) 

2 

" -rn+I ~C = Q L_.Ja 
2 

ay 
a 

(5.52) 

Corner example 2 (adiabatic on the lower side, constant temperature (or internal 

energy e,._.) on the left side, and zero velocities) 

Same as the previous example, p x, p Y , vx , and uy are fixed at e:,,,.'trapolated values . Control 

variables Ux, Vy, ex, and ey are used to solve following equations. 

(5 .53) 

" /n+lc = 0 L_.J a ay (5.54) 
Cl 

2 

Lfan+l(ew - C;) = 0 
a 

(5 .55) 

7 

"'°"J,n+I c; = Q 
L. a 2 cay 

a 

(5 .56) 

5.4. Extrapolation method 
This method is a modification of McNamara_C7) The sketch of this method is shown in 

Figure 5.6. 

j y 

X 

9 fluid node e boundary node 

Figure 5.6. Sketch of the extrapolation method. 

Distribution function is divided into two parts. One is equilibrium distribution function J:,C0) 

and the other is non-equilibrium partJ;,<1 l_ The macroscopic quantities : ,.o , u O', e, are represented 

by_t:,C0l and quantities, such as stress tensors, are represented by J;}1>_ 
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(5.57) 

In most cases, boundary conditions are given as the macroscopic quantities: p , u ,., e. In 

order to guarantee the continuity of stress tensors, it is enough to assure the continuity of fa O l in 

stead of knowing individual tensors. In prior to applying the evolution equation on fluid node, 

the distribution functions on boundary nodes are arranged so that the equili?rium part satisfies 

the boundary condition explicitly stated and the non-equilibrium part is continuous . 

Same as control node method, second order upwind scheme was applied on most of fluid 

nodes. However, first order upwind scheme was applied onto the outermost fluid nodes. Let us 

show specific examples. 

Wall example 1 (constant temperature (or internal energy e,.,) with non-zero velocities: 

U,.,, Vw) 

Density on the wall, which is not required as boundary condition, is extrapolated from the 

fluid domain by a quadratic fit (Figure 5.7). 

(5.58) 

j ti ______ ___,..;, 7 
~ 2 3 l 

Figure5 .7. Left wall of the extrapolation method. 

Non-equilibrium distribution, which is defined as the difference between the distribution and 

the equilibrium distribution, is linearly extrapolated from the fluid domain. 

(5.59) 

Consequently, the distribution function on the boundary node (O , j) is given by 

f - f (0) ( . ' ) [j - f (0) ] a - a Po, u w, , w, ew + a a o (5 .60) 

Wan example 2 (adiabatic wall) 

If adiabatic condition is required instead of being given as temperature itself, the 

temperature, or internal energy is given by extrapolation from the fluid domain, assummg 

quadratic equation and vertex on the boundary (see Figure 5.8). 
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X 
'------'---~-...;,. 
0 2 i 

Figure 5.8. Extrapolation for adiabatic condition. 

(5 .61)' 

Distribution on corners 

The evolution equation is applied only on fluid nodes, which do not use any information of 

corners. Therefore, the distribution functions on corners are not necessary to solve flows. 

However, if a complete set of the distributions is desired, the following extrapolation 

procedure is applied (Figure 5.9). 

P o -po +pl -pl 
0 - I O I 

j y 

ltt ~ X 
0 . 

~ "'" l 

Figure 5.9. Lower left corner of extrapolation method. 

5.5. Benchmark test 
The performance of the two methods were evaluated in three tests. 

Recovery of hydrostatic equilibrium 

Thermal cavity flow 

Thermal Couette flow 
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5.5.1. Recovery of hydrostatic equilibrium 
Initially, a rectangular box of the size of L x L is filled with uniform fluid of density J) 0 and 

internal energy eo. Gravity g is added at t=O and on. The boundaries are adiabatic with zero 

velocities. At an early stage, the momentum equilibrium is recovered, resulting higher 

temperature in lower part of the fluid and lower temperature in the upper part. Thereafter, long 

process for acquiring energy equilibrium, namely, process to uniform temperature, follows. 

The final pressure distribution along vertical axis y should be: 

(5.65) 

The time of about 4000 in FDLBM time-units was required to get uniform temperature. The 

mass p and the energy E, which is calculated by following formula, at the nodes of 21 X 21 are 

summed in each time step. 

(5.66) 

Histories of the summed values of mass and energy, divided by the values at t=O, are shown 

in Figure 5.10. The final pressure distribution is shown in Figure 5.11. The conservation of 

mass and energy is excellent for the control node method, resulting in a good agreement in 

pressure distribution with the analysis. The performance of the extrapolation method is 

satisfactory, though some leak-in was observed, resulting in a higher pressure in the 

equilibrium state. 
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(a) Conservation of the density (b) Conservation of the energy 

Figure 5.10. Conservation of the density and the energy. 
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Figure 5 .11. Pressure equilibrium. 

5.5.2. Thermal cavity flow 
The sketch of the simulation is shown in Figure 5.12. Upper and lower walls are adiabatic. 

Left wall has higher temperature T0+ ..1 T/2 (or internal energy e0+ ..1e) and right wall has lower 

temperature T0- ..1 T/2 (or internal energy e0- L1 e). Due to the buoyancy caused by the 

temperature difference, clockwise flow is generated. 

T +bT 
0 2 

y 
t 
I 
I 

(e 0 + be)~ 

Figure 5 .12. Sketch of the thermal cavity flow. 

To compare the result with the solution for Boussinesq approximation, the numerical 

simulations were conducted for small gravity and small temperature difference. TI1e . 

non-dimensional equations for Boussinesq approximation are derived from the Navier-Stokes 

equations assuming that the speed of flow is small, the density changes only by temperature 
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variation, the dissipation of kinetic energy into heat can be neglected, and the physical 

properties are considered constant over the flow domain. (BJ 

ffija = 0 
ar a 

(5.67) 

mia _ mia BP. a Bup mia 2-·. 
-_ +up-+--P,-(-+-)-GrP,.T la=O 
Bt Brp Bra orp aru Brp 

(5.68) 

af* _ af· af* 
--+u -----=0 
oi a ar ar 

a a 

(5.69) 

where 1" and p* are variations from To and hydrostatic pressure distribution, respectively. The 

variables with cap "-" are non-dimensional quantities normalized by characteristic values: 

length L, speed KIL, and temperature difference L1 T(=2 L1 e/R). The i"' is a unit vector (0, 1). 

Paran1eters that characterize the flow: Grashof number Gr and Prandtl number Pr, are defined 

as, 

where 

G = JJg!iTL3 
r 2 

V 

V P=-,. 
K 

1 (op) 1 R /J = - - oT = T = - : thermal expansion parameter 
Po p o eo 

v = _!!:__ : kinetic viscosity 
Po 

RK' th l d .. 
K = --: erma con uct1v1ty 

PoCp 

(5.70) 

(5.71) 

(5.72 abc) 

Numerical simulations for Grashof number= 103 (Prandtl number is unity for BGK model) 

were conducted, varying the meshes: 21 X 21, 41 X 41, 81 X 81, and 161 X 161. The acquisition 

of steady state was judged when the relative variation of the maximum flow speed became less 

than 5 X 10-4 in 100 FDLBM time-units. About 3200 time-units was required in most cases. 

The general view of velocity vectors and temperature contours for the mesh of 161 X 161 is 

shown in Figure 5 .13. Horizontal velocity along mid-vertical axis and vertical velocity along 

mid-horizontal axis are shown in Figure 5 .14. Temperature distribution at upper boundary, mid 

position, and lower boundary are shown in Figure 5.15. In these figures, Boussinesq solutions 

are also shown. Corresponding Boussinesq solution was obtained using the software of 

HSMAC method,C9
J whose adequacy was confirmed by comparing it with the results of 

reference_Cl 0l Although some differences due to the departure from Boussinesq approximation 

are observed in the results, agreements are generally good. 
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Figure 5 .13. Velocity vectors and temperature contours of thermal cavity flow. 
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Figure 5 .14. Velocity distribution of thermal cavity flow. 

66 



0.5 

0.2 0.4 
Horizontal position 

-- Boussinesq 
O Control node 
+ Extrapolation 

-0.5 

(a) Temperature distribution at upper wall 

0.5 

0.2 0.8 
Horizontal position 

Boussinesq 
o Control node 
+ Extrapolation 

-0.5 

(b) Temperature distribution at mid position 
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( c) Temperature distribution at lower wall 

Figure 5.15. Temperature distribution of thermal cavity flow. 
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To confirm the convergence rate, error norms of velocity Eu and of temperature. Er are 

calculated by following formulas. The reference values: u 00 , v 00 , r; are taken from the solution 

for the highest resolution 161 X 161, and the summation is taken for the common nodes of 21 

X21. 

(5.73) 

(5.74) 

The results are shown in Figure 5. 16. The solution converges nearly at the rate of third order 

for both methods 
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·, 
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0.00l ~2~0------4~0---6~0--~80~ 

lattice size 

Figure 5.16. Convergence with mesh sizes. 

5.5.3. Thermal Couette flow 
The geometry of the flow is sketched in Figure 5 .17. The upper wall, which is L apart from 

the lower wall, is moving at a speed of U and has an internal energy e2. The lower wall is at 

rest and has e1. The right and left boundaries are assumed periodic. 
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Figure 5 .17. Sketch of the thermal Couette flow 

Assuming 8/ 8t=0, 8/ 8x=0, and v=O, we obtain analytical solutions for internal energy e 

along vertical axis ( y = y I L ) . 

(5.75) 

= µU 2 -(1- -) 
2 

I y y 
K e0 

(5.76) 

Simulation result for e2 =e1 is shown in Figure 5 .18 and for e2>e1 in Figure 5 .19. Excellent 

agreement with the analytical solution for the control node method and less but still good 

agreement for the extrapolation method are shown. 
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Figure 5.18. Temperature distribution for e2 = e1. 
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Figure 5.19. Temperature distribution for e2 > e1• 

5.6. Conclusions 
Two methods of boundary conditions that can be applied to thermal models ofFDLBM were 

studied and were evaluated by three tests. 

First method, called "control node method," can handle wide variety of boundary conditions 

and showed excellent performance on the tests. The structure is slightly complicated and it 

seems rather tedious to make computing software. However, if accurate simulation is desired, 

control node method should be used. 

Second method, called "extrapolation method" is simple. Making computing software is 

quite easy and the performance is assured· to some extent. It is a viable method if it is not 

required strict accuracy. 
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6. Thermal cavity flow of compressible fluids 
-Numerical simulation by a newly proposed model of finite 
difference lattice Boltzmann method 

6.1. Introduction 
Numerical simulations have been extensively performed on natural convection in a square 

cavity. Most of these studies are for Boussinesq fluid. <1•
2
) Although some studies<3

,
4

) treat the 

flows as compressible fluid, they do not state clearly how much compressibility affects the 

flows and how far the Boussinesq approximation is considered valid. 

The finite difference lattice Boltzmann method (FDLBM) is a new numerical tool for 

simulating viscous fluid flows. While existing models of FDLBM for compressible fluid have 

drawbacks of poor numerical stability and narrow band of temperature, we developed an 

FDLBM model for compressible fluid that is very stable and can handle wide range of 

temperature. 

Using this model, we studied thermal cavity flow for compressible fluids. The simulations 

were conducted by varying viscosity, gravity, and temperature difference in a systematic 

manner. Our objectives are to reveal how compressibility affects natural convection and to 

confirm the range over which Boussinesq approximation insists its validity. 

6.2. Finite difference lattice Boltzmann method 

6.2.1. Formulation 
Below is the two-dimensional thermal FDLBM model used in this study. The evolution of 

the distribution function f1a for particle velocity C1a is governed by the following equation, 

which is solved using Euler and second upwind difference scheme. 

afki afki 1 (0) 

at+ckia ora - gaEkia = - ¢ (fki - fki ) (6.1) 

where the subscript k indicates a group of particle velocities whose speed is ck and i indicates 

its direction. The subscript a indicates x or y component. The variable t is time, r a the 

spatial coordinate, g" the gravity acceleration vector ( 0 , -g ), fi;<0
l the local equilibrium 

distribution function, E1a" the external force distribution function, and ¢ the relaxation 

parameter. 

The particles consist of a rest particle and four groups of moving particles as shown in Figure 

6.1. 
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Figure 6.1. Particle velocities. 

speed c4 

i=4 i=3 i=2 

i=5 i=l 

i=8 

i=6 i=7 -

While existing models adopt the group of square directions, which has up-to second rank 

tensor isotropy, or adopt the group of hexagonal directions, which has up-to fourth rank tensor 

isotropy, our model is based on the group of octagonal directions, which has sixth rank tensor 

isotropy. This high isotropy contributes to the numerical stability and the applicability to wide 

range of temperature. 

Macroscopic quantities, the density /J, the velocity u ,,, and the internal energy e, are defined 

as follows. 

pua = I fkickia 
ki 

u 2 cJ 
P <e + -) = I lki -

2 ki 2 

The local equilibrium distribution function is defined as: 

f < o) = pF m < o) 
ki k 't' ki 

2 4 2 
(0) u u 1 u 

rp . = (l--+-)+-(1--)(ckiaua) 
ki 2e 8e 2 e 2e 

2 
1 u 2 1 3 l 4 

+-(1--)(ckiaua) +-(ckiaua) +--(ckiaua) 
2e 2 2e 6e 3 24e 4 
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(6.2) 

(6.3) 

(6.4) 

(6,5) 

(6.6) 

(6.7) 



1 4 F2 =---------[48e 
c2(c2 - c2)(c2 - c2)(c2 - c2) 22 3 2 4 2 l 

1 4 F3 =---------[48e 
c2(c2 - c2)(c2 - c2)(c2 - c2) 
33 43 13 2 

The external force distribution function is defined as 

a (0) 

E =- ckia piF m(O) +piF _!f.!E_ 
kia k 'f' k, k :::i 

e uckia 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

By applying the Chapman-Enskog expansion, the above formulation 1s shown to be 

equivalent to the following fluid equations. 

where 

ap a 
-+-(pua)=O at ora 

a a aP 
-(pua)+-(puaup)+-
Bt orp ora 

a OUp OU our 
- -[µ(--+ _a __ --6afi )] + pga = 0 

orp ora orp orr 

0 U
2 0 u 2 P 

-[p(e +-)] +-[pua (e +-+-)] 
at 2 ora 2 p 

a , ae ( au /3 au a au r s: )] - -[K -+ µup --+--- --uap = 0 
ora ara ora orp arr 

P = pe : the pressure 

µ = pe </> : the viscosity coefficient 

K' = 2 pe </> : the heat conductivity 

(6.13) 

(6.14) 

(6.15) 

(6.16 abc) 

The following equation relates the temperature T with the internal energy (R: gas constant). 

T =e/R (6.17) 
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6.2.2. Validation of the method 
The model is confirmed valid by two numerical simulations. First, the speed of sound was 

measured. The result, shown in Figure 6.2, indicates that sound speed obtained by the 

simulation agrees well with the theoretical value of equation (6.18). 

(6.18) 

Second, shear flow between parallel walls (Couette flow) was investigated. The upper wall, 

which is H apart from the lower wall and has internal energy e2, starts to move with speed U. 

The lower wall has e1 and is at rest. The result for e1=e2 is shown in Figure 6.3. 

2.0 

1.5 
'"O 

(1) 
(1) 

r:i.. 
"' 1.0 12 
9 
0 

Cll 
0.5 0 FDLBM simulation 

Theoretical value 

0 0.5 1 1.5 2 
Internal energy 

Figure 6.2. Simulation result of speed of sound. 

Compared with the theoretical value ( = .,fi;). 

~ 
c::: 
0 

·.;:: 
·v.:o -0 _:, 
0.. 

~ u ·-e 
Q) 

> 

0 

-o- t=40 
_. t=lO0 
-v- t=200 
-<>- t=600 
-o- t=2800 
- Analysis 

Speed o. 5 u/U 

(a) 

1 

o Simulation 
- Analysis 

o~----'-----' 
1.0005 1.001 

Int. energy 

(b) 

Figure 6.3. Couette flow. e1=e2=l.O. (a) Horizontal speed distribution 

at various instants. {b) Internal energy distribution at steady state. 
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The horizontal speed distribution along vertical axis y at various instants t, and the internal 

energy distribution at steady state, agree well with the theoretical values (6.19) and (6.20), 

respectively. 

UY 2~ [ 22J.l1]-[ y] -=--- .l...exp -n 1r --2 sm n,r(l--) 
U H 1C n=I pH H 

(6.19) 

µUz y y 
e-e =---(1--) 1 2K' H H 

(6.20) 

6.3. Thermal cavity flow 
The sketch of the simulation is shown in Figure 6.4. The upper and lower walls are adiabatic. 

The left wall has a higher temperature of T0+ .1 T/2 ( or internal energy e0+ .1 e) than that of the 

right wall of To- L1 T/2 (or internal energy eo- .1 e). Due to the buoyancy caused by the 

temperature difference, clockwise flow is generated. 

L 

11T 
T+­

o 2 

(e0 + !1e) 

y 
adiabatic 

a ia atic L 

T _ AT 
0 2 

(e 0 - Ae) 

X 

Figure 6.4. Sketch of the thermal cavity flow. 

Parameters characterizing the flow are the Grashof number Gr, the Froude number Fr, the 

Prandtl number Pr, and the normalized temperature difference 0. The Prandtl number is unity 

in the single-relaxation (BGK) formulation. 

Gr = gf]0 ATL
3 = gATL

3 = 2gAeL
3 

(µo/ Po)
2 

To(µo/ Po? e~¢i 
(6.21) 

Fr = yRTo = 2eo 
gL gL 

(6.22) 

0 =AT= 2Ae 

To eo 
(6.23) 
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where suffix O denotes a mean value, jJ O the volume expansion parameter 

(= -l/p(Bp/BT)p =l/T, ), and r the specific heat ratio (=2 in the monatomic formulation). 

Stream function If/ for compressible steady flows is calculated by integrating the following 

equations. 

Olf/ 
--= -pv ox 

8 If/ = pu 
ay 

The sinmlation starts from the initial condition as an equilibrium state in the vertical 

direction in the presence of gravity assuming the temperature field varies linearly in the 

horizontal direction. 

(6.24) 

(6.25) 

Parametric study was conducted in the combinations of the Froude number, the normalized 

temperature difference, and the Grashof number, as shown in Figure 6 .5. 

Fr 

0 

Figure 6.5. Cases of the numerical simulation. 

The circled numbers are identified for combinations of Fr and 0. 

At each combination, Gr varies from 103 to 106
. 

6.4. Results and discussions 

6.4.1. Relevance of the mesh size 
The effect of the mesh size on numerical accuracy was evaluated; an example is shown in 

Figure 6.6. Finer mesh is necessary as the Grashof number increases. We concluded the mesh 

in Table 6.1 to assure the accuracy of 1 % both for velocity and temperature fields. 
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Figure 6.6. Numerical accuracy with mesh sizes. 

Horizontal speed along vertical centerline for 

the case of 0=0.1, Fr=20, Gr=l03
. 

Table 6.1. Meshes of the numerical simulation 

Gr 103 104 105 

mesh 81 X 81 101x101 161x161 

6.4.2. The Grashof number effect 

106 

161x161 

The effect of the Grashof number for the case of 0=0.1 and Fr=20 is shown on the 

temperature contours in Figure 6.7, and on the stream function contours in Figure 6.8. As the 

Grashof number increases, temperature variation becomes concentrated next to the left and 

right walls (temperature boundary layers: TBL). In the central region between these layers, the 

fluid is in a stratified state as is typical in Figure 6.7(c) and (d); the upper fluid is warm and 

thin, while the lower fluid is cool and dense. 

The stream function contour indicates that, at Gr= 103
, the circulation has a single core. 

However, as Gr increases the circulation becomes flattened and finally has two cores for Gr > 

105
. Let us take as an example the flow near the right wall at Gr= I 06

. The down flow just 

outside the TBL transports the heat downward. Thus, as shown in Figure 6.9, locally inverted 

temperature distribution ( 8e I ax~ 0) is exerted. A reverse phenomenon occurs on the left wall. 

This locally inverted temperature distribution induces secondary flows with closed streamlines 

there. 
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(a) Gr=l03 (b) Gr=l04 (c) Gr=l05 (d) Gr=l06 

Figure 6.7. Temperature ( e) contours for the case of 0=0.1, Fr=20. 

-6.2400E-002 0.0 -7.0S27E-002 0.0 -3.S794E-002 0.0 -2.3S40E-002 0.0 

(a) Gr=l03 (b) Gr=l04 (c) Gr=l05 (d) Gr=l06 

Figure 6.8. Stream function contours for the case of 0=0.1, Fr=20. 

1.05 .-------,,-----,----,,----"T----, 

\. 

- - - Gr=l03 
-------- Gr=l04 
..... ....... Gr=105 

Gr=l06 

0.2 04 0.6 0.8 

Horizontal Position x/L 

Figure 6.9. Temperature distribution along mid-depth horizontal line 

for the case of 0=0.1 , Fr=20. Inverted temperature distribution ( oel ax "2. 0) near 

the walls are significant at Gr-=105
, 106

. 
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6.4.3. Compressibility effect 
The temperature contour at various Fr numbers for the combination of 0=0 .1 and Gr= 105 is 

shown in Figure 6.10. The temperature in the down flow near the right wall increases due to 

compressibility, as the fluid is descending. On the contrary, the fluid in the up flow near the left 

wall inflates to be cooled. Therefore, as Fr decreases ( or the gravity increases), the gradient of 

temperature in TBL becomes steeper and the width ofTBL becomes thinner. 

The stream function, shown in Figure 6.11, indicates that the flow near the bottom prevails 

over the flow near the ceiling, as Fr decreases. 

9. 5000E-OO 1 1. OSOOE +000 9.SOOOE-001 1. OSOOE +000 9. 5000E-OO 1 1. OSOOE +000 9. 5000E-OO 1 1. 0500E +0 00 

(a) Fr=lO0 (b) Fr=20 (c) Fr=5 (d) Fr=2 

Figure 6.10. Temperature (e) contours for the case of0=0.l, Gr=l05
. 

Mf,:-~:::,:,:,:,.,',',', ( / ! 

-1. 9854E-00 2 0.0 -3.6794E-002 0.0 -4.4579E-002 0. 0 -4. 8 135E-002 0. 0 

(a) Fr=l00 (b) Fr=20 (c) Fr=5 (d) Fr=2 

Figure 6.11. Stream function contours for the case of 0=0.1, Gr=l05
. 
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6.4.4. Temperature difference effect 
The temperature difference is a source of convection. Therefore, as 0 increases, circulation 

becomes stronger. At the same time, since the viscosity and heat conductivity are functions of 

temperature, asymmetry of the flow becomes significant. At Gr=l03 the temperature varies 

more horizontally than vertically, therefore, horizontal asymmetry is significant as indicated in 

the stream functions of Figure 6.12 (a). On the other hand, at Gr=l06 where temperature varies 

more vertically than horizontally, vertical asymmetry is significant (Figure 6.12 (b)) . 

- 2. 1844E-001 0.0 -9. 7678E-002 0 . 0 

(a) Gr=l03 (b) Gr=l06 

Figure 6.12. Stream function contours for the case of 0=0.8, Fr=20. 
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6.4.5. Asymptotic behavior to Boussinesq fluid 
As implied in Figure 6.5, the flow of small 0 and large Fr leads to the Boussinesq flow. The 

simulation, varying Fr for combination of 0=0 .1 and Gr= 103
, was conducted. The result was 

compared with the Boussinesq solution, which was obtained by the HS MAC method. C5) The 

peak speeds (maximum and minimum speeds) in the horizontal direction are shown in Figure 

6.13. The peak speeds in the vertical direction are shown in Figure 6.14. These figures clearly 

indicate that the flow approaches to the Boussinesq flow as Fr increases. The Boussinesq 

assumption is considered valid when Fr > 100 and e< 0 .1 . 

4 .------,-------,------, 

'"O 
~ 3.5 
C. 
"' 
~ 

[ 3 

1 
2 
·c 2.5 
::8 

1l ----- Boussinesq 
---0-- /umax/ 
..... 1;. •...• /umin/ 

2'-----~----~----~ 
10 100 1000 

Froude number 

Figure 6.13. The peak speeds in the horizontal direction at different Fr numbers 

for 0=0.1, Gr=l03
• 

4~--~----~----~ 

'"O 3 -
~ .) 
C. 

"' {1 
g_ 3 

8 
-~ 
> 2.5 

-·-·- Boussinesq 
---0-- /vmax/ 
..... f;. ...•. /vmin/ 

2'-----~----~----~ 
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Figure 6 .14. The peak speeds in the vertical direction at different Fr numbers for 

0=0.1, Gr=l03
. 
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6.4.6. Heat transfer characteristics 
Heat transfer characterized by the averaged Nusselt number was calculated at the walls by 

the following equation. 

L ,c' a T · 
Nu= -f-, -(-)try 

0
,c0 8x 11T 

(6.26) 

The value at the left wall (higher temperature) is slightly larger than that at the right wall. The 

result at the left wall is shown, as a function of Gr and Fr, in Figure 6.15 (a). In the figure, the 

value of the Boussinesq approximation is also shown. The figure indicates that compressibility 

assists the increase of heat transfer. 

The result as a function of Gr and 0 is shown in Figure 6.15 (b). The Nusselt number is less 

sensitive to 0, or it slightly decreases as 0 increases, which is the opposite result to the 

simulation study by Leonardi et a1.<4
l, who say the Nusselt number increases as 0 increases. 
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Figure 6.15. Heat conductivity characteristics. 
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6.5. Conclusions 
The effects of viscosity, gravity, and temperature difference, on natural convection in a square 

cavity were investigated and the features were revealed in a systematic manner. 

As the Grashof number increases, temperature boundary layers (TBLs) are formed on the 

walls. In the central region between the layers, the fluid is in a stratified state. The circulation 

has a single core for small Gr. As Gr increases the circulation becomes flattened and finally 

has two cores for large Gr. These secondary flows with closed streamlines are induced by 

locally inverted temperature distribution. 

As the Froude number decreases (or the gravity increases) the gradient of temperature in 

TBL becomes steeper and the width of TBL becomes thinner due to compressibility. As Fr 

decreases the flow near the bottom prevails over the flow near the ceiling 

As the temperature difference increases, circulation becomes stronger. At the same time, 

since the viscosity and heat conductivity are functions of temperature, the asymmetry of the 

flow becomes significant. For small Gr, horizontal asymmetry of the flow is significant. On 

the other hand, for large Gr, vertical asymmetry is significant. 

It was confirmed that the flow of small 0 and large Fr leads to the Boussinesq flow. The 

Boussinesq assumption is considered valid when Fr > 100 and 0<0.1. 

The Nusselt number increases as Gr increases. The compressibility assists the increase of 

heat transfer. The Nusselt number is less sensitive to 0 or it slightly decreases as 0 increases, 

which is the opposite result to the simulation study by Leonardi et al. 
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