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1. Introduction

Lattice gas automata (LGA), lattice Boltzmann method (LBM), and finite difference lattice
Boltzmann method (FDLBM), which have historically evolved in this order, are currently used
in simulating wide variety of fluid flows."” These methods have common features;
microscopic models and mesoscopic kinetic equations are used to represent macroscopic
continuum flow. The basic premise for these ideas is that the macroscopic dynamics of fluid is
the result of the collective behavior of many microscopic particles, and that although
microscopic details, like an interaction law between particles, affect parameters such as
viscosity, the form of macroscopic dynamics is less sensitive to microscopic details.”

The LGA @ is constructed as a simplified, fictitious molecular dynamic in which space, time,
and particle velocities are discretized. To describe the state of particle’s condition at each node
x and each time ¢, a set of Boolean variables m(x,r) is assumed, where the suffix 7 is the
direction of the particle velocity. If the particle of ith direction is present, the variable n(x,z) is
set unity, whereas if absent, the n{(x,f) is set zero. The evolution of the variable n{x,?) is

governed by following equation.
n(x+c,t+1)=n(x,1)+Q,[n(x,1)] (1.1

The particle velocity c¢; is selected as to link adjacent nodes. Collision operator £2; is designed
to conserve mass and momentum. Because of the variable #ni(x,f)’s Boolean nature, it is
necessary to take ensemble averages to obtain macroscopic quantities.

The main feature of the LBM @ is to replace the Boolean variable ni(x,f) by distribution
function f{x,r) (=< n; > : <> denotes an ensemble average). Same as the LGA, particle velocity
¢; 1s selected as to link adjacent nodes. Therefore, the evolution equation for the distribution

function is similar to that of the LGA.
S(x+e, i+ = £, )+ Q[ f(x,1)] (1.2)

However, as the distribution functions themselves are variables of the problem, the LBM is
free from statistical noise. Macroscopic quantities, the density p and momentum density pu, are

defined by taking velocity moment summations.
p= Z f (1.3)
pu = Z fc. 1.4)

Collision operator (; 1s required to satisfy conservations of mass and momentum.

2Q,=0 (1.5)



2. Qe =0 (1.6)

Single relaxation time scheme proposed by Bhatnagar, Gross, and Krook (BGK scheme) is
assumed in my study. Although the BGK scheme fixes the Prandtl number constant (=unity), it
makes the collision operator quite simple and still has capability of wide applications.

Q, E—%(f.-—f.-”)) : (1.7

where £ is the local equilibrium distribution function.

The FDLBM © was proposed as an extended version of LBM in order to secure numerical
stability and to apply non-uniform grids. In place of the evolution equation of the LBM (1.2),
following differential equation is used in the FDLBM.

of o
“67+C.-a67=9,-(f) (1.8)

In the LBM, particle velocity ¢, time increment 4#, and the lattice configuration must have a
close relationship; the particle velocity has to link the lattice nodes in unit time. However, in
the FDLBM, this requirement is no more necessary. Therefore, time increment At can be
adjusted to satisfy CFL (Courant Friedrichs Lewy) requirement for numerical stability, and

non-uniform grids, like polar grid or variable pitch grid, are available in the FDLBM.
My doctoral study is on models of LBM and FDLBM, especially focusing on FDLBM.

Chapter 2 ©© discusses the possibility to construct a LBM BGK thermal model. There are
two ways to handle thermal fluid. One is the so-called “multi-component thermal model,”
where heat is handled as different component from fluid. This model characterizes the flow as
Boussinesq fluid. Another is the so-called “multi-speed thermal model,” where particle
velocities that have different speeds are used. LBM BGK thermal models have been proposed
by several authors. While these models are intended to correctly represent heat characteristics
and compressibility, none of these existing models provides satisfactory accuracy. This chapter
discusses the possibility of a correct model and how to construct it. To recover correct fluid
equations, up-to fourth orders of local flow velocity should be retained in the local equilibrium
distribution function and the particle velocities should have up-to seventh rank tensor isotropy.
It 1s concluded that it is possible to construct a thermally correct two-dimensional LBM BGK
multi-speed model. However, a correct three-dimensional LBM BGK multi-speed thermal
model is theoretically impossible. A correct two-dimensional LBM multi-speed thermal model
that has global weighting coefficients in the local equilibrium distribution function was
proposed. Being applied to a Couette flow, this model showed exact agreement with the

analytical solution.



Chapter 3 ™ proposes a new two-dimensional multi-speed thermal model for the F DLBM.
In the FDLBM, particle velocities can be selected independently from the lattice configuration.
Therefore, particle velocities of octagonal directions, which have up-to seventh rank isotropic
tensors, are adopted. Furthermore, as the local equilibrium distribution function is determined
such that it retains as much Maxwellian characteristic as possible, the proposed model has
excellent numerical stability in addition to strict accuracy. The model was verified, being
applied to three flow simulations. All results showed good agreement ﬁth the analytical

solutions.

Chapter 4® proposes a new three-dimensional multi-speed thermal model for the FDLBM.
It has been shown in Chapter 2 that a three-dimensional LBM BGK multi-speed thermal model
is theoretically impossible. Contrary to the LBM, as the FDLBM can select particle velocities
independently from the lattice configuration, in the proposed model, a group of thirty-two
particle velocities is selected as a basic group of moving particles, which are derived from
vectors that point to the vertexes of dodecahedron and icosahedron from the center. As the
group of thirty-two particle velocities has a quasi-isotropic sixth rank tensor, the model made
up of a rest particle and four speeds of the basic groups showed good agreement with the

analytical solutions when applied to two flow simulations.

Chapter 5"? discusses methods of boundary conditions. In the past, a lot of studies have
been done to make clear boundary conditions for the LBM. Most of them are about boundary
conditions for non-thermal models that have a limited number of particle velocities. Few
studies are found that describe a clear receipt of boundary conditions for the FDLBM,
especially for thermal models that have a large number of particle velocities. In this chapter,
two methods of boundary conditions for thermal FDLBM are presented. Their performances
were compared, being applied to benchmark tests. First method, called “control node method,”
can handle wide variety of boundary conditions and showed excellent performance on the tests.
Control node method should be applied if accurate simulation is intended. Second method,
called “extrapolation method,” is simple and easy to make computing software. Although the
performance of extrapolation method is not so high as the first method, it is a viable method if

1t is not required strict accuracy.

Chapter 6" presents an example of applications simulated by proposed model and method
of boundary conditions. In the past, numerical simulations have been extensively performed on
natural convection in a square cavity with differently heated walls (thermal cavity flow). Most
of these studies are for Boussinesq fluid. Although some studies treat the flows as

compressible fluid, they do not clearly state how much compressibility affects the flows and



how far Boussinesq approximation is considered valid. Using the two-dimensional model in
Chapter 3 and the control node method in Chapter 5, thermal cavity flow for compressible

fluid was studied in a systematic manner and whole features were thoroughly revealed.
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2. Possibility to construct a multi-speed thermal model of the lattice
Boltzmann method

2.1. Introduction
Multi-speed thermal models of the lattice Boltzmann method (LBM) that have a single relaxation

(BGK) scheme have been proposed by several authors."> While the multi-speed thermal model is
intended to correctly represent heat characteristics and compressibility, existing models do not give
satisfactory accuracy when applied to the Couette flow simulation. These models were carefully

investigated to discover whether a correct model is possible and how to construct it.

2.2. The conditions leading to correct fluid equations

Below are the conditions for the local equilibrium distribution function £ ® for the particle
velocity ¢, to lead to correct fluid equations. The symbol o is the density, #, the velocity, and e
the internal energy. The subscript symbol k indicates a group of the particle velocities whose speed c,
and 7 indicates the particle velocity’s direction. The subscript symbols e, £, and y indicate the x, y, or

z component. D is a space dimension.

2 9= @.1)

0
Z & Chia = 2.2)
(0) - o(2es
Zfla‘ CriaCkip = P(Be af +uauﬂ) (2.3)
i
©) _ 2
kai Ckiackiﬂckiy "p[Be(uaaﬂy +uﬂ57a +uy5aﬂ)+uauﬂuy] (24)
ki
2 2
Ok _ o ¥
;sz 5 o( 5 ) (2.5)
LI oha - AR 26
kia = Plig D 2 (2.6)
o ° 2, D+2, u’ D+4 u?
Z ckzacinp P[ e( D —2')5043 "'”a”ﬁ(—D'-e +—2—)] 2.7

As energy diffusion equation (2.7) contains up-to fourth order of flow velocity u, local
equilibrium distribution function fki(o) should retain up-to fourth order terms of flow velocity.
Consequently, the local equilibrium distribution function is to contain the fourth rank tensor.



Considering that momentum diffusion equation (2.4) contains the third rank tensor, up-to seventh
rank tensor is used. As a result, the tensors up-to seventh rank should be isotropic to recover correct
fluid equations.

In the LBM, the particle velocities are restricted to those that exactly link the lattice nodes in unit
time. Generally, cubic lattice is used in three dimensions, and the square or hexagonal lattice is used
in two dimensions. However, the hexagonal lattice ensures only up-to fourth rank isotropy, which is
msufficient to derive correct fluid equations. The model that uses a hexagonal 1aﬁ:ice is not discussed
further.

The basic particle velocities used in the square lattice and in the cubic lattice are shown in Figure
2.1 and Figure 2.2, respectively. The odd rank tensors for these particle velocities vanish. The even
rank tensors generally have the following form: ¥

be

S1=b @3)
=1

Y CiiaCiip = XiOap 2.9)
Z Cria Crip Criy Chiy = ¢kA(:/)m + Wi Oupy (2.10)

H

6 4,2
ZCkiackiﬂckiyckfxckilckir = ®kA(a,;ym + QkA(ap,;M + ArOupppir @.11)
4

cZ2 D p
—_— T —— &

I (2.12)
Cct

Zj:?ckia Cup = L1004 2.13)
c? —_

Z?Ckiackiﬂckiyckiz = HkA(:}” + ErOupy (2.14)

ci 6 42
Z —5— Clia Ckiﬂ ckiy ckiz ckil cki‘r = Bk A(a,gmlr + Nk A(aiﬁn)ﬂr + Z k 5aﬂyxl‘r (2 1 5)

The tensors that appear in the above equations are defined as follows:

0,7~1 (f a=p), =0 (otherwise)
Ow=1 (if a=f=y=y), =0 (otherwise)
Oup=1 (if c=p=y=y¢=A=1), =0 (otherwise) (2.16 abedef)



A(@W:é,ﬂén“’émﬁ/ﬁ'éqéﬁ/
A(®m11=5¢A(4)m1+CszzyA(4)ﬁxlr+6axA(4)ﬂyAr+5MA(4)%+5HTA<4)M‘
A(‘L2)aﬂmlq:éﬂﬂéw(h-,_5m5ﬁkir+5q6ﬂ'ir+5aéﬁzf+5m§/9mi+5@5@(11-1—5&6”)”1’_*— T

(6) O . . 4.2) . .
The tensors Ayp,: , Doy 5ap are isotropic, whereas A ;. , 5‘,[,,111 s d,m are anisotropic. The

specific values of bs Xi>Px Ly, for the basic particle velocities in Figure 2.1 and Figure 2.2

are listed in Table 2.1 and Table 2.2, respectively. They are grouped into five groups depending on
the influence of particle speed c;. If particle velocities that have double or triple the speed of the

basic particles are adopted, the values of bk s Xk Pk *> Ly increase to 2” times or 3” times of the

basic values, depending on group ¢;”.

Ckzl Ck=‘\/5

Figure 2.1. Basic particle velocities used in the square lattice.

= k=3

Figure 2.2. Basic particle velocities used in the cubic lattice. They consist of vectors

1n six, twelve, and eight directions.



Table 2.1. Specific values of bk, i, @i -+, By for the basic particle velocities in the square lattice of

Figure 2.1. They are grouped into five groups depending on the influence of particle speed ¢,. For
example, if particle velocities that have triple the speed of k=1 particles are adopted, the value of 1,

becomes 2x3*.

k 1 2
Ci I V2
Cy b, 4 4
Ci X 2 4
Wi 2 -8
Cr P 0 4
I, 1 4
A, 2 -16
Q, 0 0
cs O, 0 %
=y 1 -8
II, 0 4
Zs 1 -16
Ci N, 0 0
B. o X4



Table 2.2. Specific values of b, i, 9x -, Bx for the basic particle velocities in the cubic lattice of

Figure 2.2.
k 1 2 3
Cx 1 2 B
¢l b, 6 12 8
ct X 2 8 8
Wi 2 -4  -16
Ck D 0 4 8
I, 1 8 12
Ay 2 -52 128
Q, 0 4 -16
cs 0, 0 8 0
E, 1 -4 -24
I, 0 4 12
Z, 1 -52 192
i | N 0 4 -2
B. 0 8 0




2.3. Model derivation A
There seem to be two ways to define the local equilibrium distribution function. One is to
distribute weighting coefficients to each power of #° and cuat.. The other is to distribute weighting

coefficients to the whole expansion equation. Both types are discussed in this section.

2.3.1. Deriving a model that has global coefficients
This type of local equilibrium distribution function was adopted by Takada etal®, although their
model retains up-to third order of local flow velocity. The local equilibrium distribution function that
retains up-to fourth order is defined as follows. This form is derived by expanding Maxwellian
distribution regarding local flow velocity u. Weighting coefficients F) are placed before the
polynomial.
D? D D’

D D D
W = ka[(l——4—e-u2 i u4)+—2—e-(l—zu2)ck,-¢u§ +§e—z(l—zu2)cki§ckf,,u¢u,,

3 4
D
+ = CugCrinCric U s sy +——CiuizClinCuic Chiy U U U U |
3 VgL kintlig U iU nths kicC kinb kig Y kiy A sU ntb J U o
48¢ 384¢*

.17
This local equilibrium distribution function is applied to conditions (2.1) through (2.7). When the

property in which the odd tensors vanish is applied, the following equations to determine weighting

coefficients F;, are obtained:

ZE =1 (2.18)
2
;chmck,ﬁ = 535aﬁ (2.19)
4,
;chkiackiﬁckiyckiz = 52"@_ (a,l)im (2.20)
8 6

;Fkaiackiﬁckiyckizckilckir = *bTe3A(aﬁ)fmlr 2.21)

Y F, G _ e

a k 5 2.22)
Cr 2(D+2) ,

;Fk ?kckiackiﬂ = '—(—2‘—)6_5% 2.23)
o 4D+4 4

%Fk —'2£‘Ckiackiﬂ0kiyck-il = -—(—D—3-—)e3A(a};yl (2.24)
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2
c; 8(D+6
ZE, '?Chackiﬁck,’kailckﬁ.ckir = '—(_Z——)e4
ki

) ’
A (2.25)

Considering tensor expressions (2.8) through (2.15), constraints (2.18) through (2.25) can be

rewritten as the following:
From (2.18),
;bka =1 2.26)
From (2.19) and (2.22),
2
;Z eFy = D¢ @21
From (2.20),
4 2
;(Pka =5 ¢ (2.28)
;‘/’kF e =0 (2.29)
From (2.21),
8 |
;Qka = Ee’ (2.30)
;Qka =0 (2.31)
;Aka =0 (2.32)
From (2.23),
2(D+2)
;DF,C = D e’ (2.33)
From (2.24),
4D+4) |
;H"'Fk T ¢ (2.34)
;Eka =0 (2.35)
From (2.25),
8(D+6) ,
gBka “ T e ¢ (2.36)
;N‘Fk =0 2.37)

11



2 ZiF =0 238)

First, let us discuss the model in three dimensions. The constraints are summarized in Table 2.3. In
the table, the constraints are arranged into five groups according to manner of dependence on ¢;”. Let
us consider the constraint equations of group ¢;’:

2 —-52 128 0
0 4 -16 || A g 0 (2.39)
3
0 8 0 |F|=| Y%e
1 -4 =241 F 0
8 3
If we evaluate the ranks of the equations:
(2 -52 128 ]
0 4 -16 (2.40)
rankA = rank| 0 8 0 |=3
1 -4 -24
0 4 12|
(2 -52 128 i
0 4 -16 0 @2.41)
rankB = rank| 0 8 0 %7e3 =4
1 -4 -24 0
28 3
0 4 12 A7e |

There is no solution for F, because rank4 < rankB . RankA does not increase even if double, triple
or more speed particle velocities are added to the basic ones. RankA remains unchanged because
only linearly dependent row vectors are added to the matrix. Therefore, although the other groups:
¢l ¢, ¢, and ¢,°, meet the requirement, rankd = rankB , failure to meet the requirement in group
¢’ makes the equation as a whole unsolvable. It can be concluded that it is impossible to construct a
three-dimensional model.

Is a model in two dimensions possible? The constraints are summarized in Table 2.4. It is easy to

confirm that each group meets the requirement, rank4 = rankB .

rankd = rankB=1  for group ¢;’
rankd = rankB=1  for group ¢
rankA = rankB=2  for group ¢;’ (2.42 abcde)
rank4d = rankB=2  for group ¢’

rankd = rankB=2  for group ¢;°

12



Whole equations, as a set of equations, are solvable when we add necessary number of multiple

speeds of basic particle velocities, because the rank can increase beyond the groups. It can be

concluded that it is possible to construct a two-dimensional model.
The following is an example that demonstrates the constructibility of a two-dimensional model.

As there are eight linearly independent constraints, a model using a rest particle and seven groups of

moving particles, as shown in Figure 2.3, was constructed. The results for coefficients F are as

follows:

F = 61—0(—24e" +85¢’ —106e” + 48¢) (2.43)
F. = L(24e" —80¢” +89%¢” — 24¢) (2.44)
240
b= ! (—264¢" + 735¢’ — 574¢” +144e) (2.45)
11340
Fu=—L (366" ~70¢" + 49¢* ~12¢) 246)
13440
Fy = 2 (4¢ —13¢" +12¢%) 2.47)
32
F, = 1 (—4e' +10e’ —3e’) (2.48)
320
Fy=—1 (126" —15¢ +4¢%) (2.49)
12960
Fo=1-4F +F,+F;+F .+ F, + o+ F) (2.50)
k=14
k=12 Ici;lg o =4
k=11 ¢ =2
k=0 Cp =
¢, =0
e
= k=23
k=21 ];—:222‘/5 Cr =3\E

V2 P ‘
X ><
Figure 2.3. Particle velocities used in the two-dimensional model proposed in this paper.

They consist of a rest particle and seven groups of moving particles.

13



Table 2.3. Constraints for the coefficients F, in the three-dimensional model that has global

coefficients. X, represents bs, yi,®s - -, B . For example, the constraint equation for group ¢’ is

written as 2F; +8F, +8F, = 2/ e

3
Constraint X value
cd | 2F | 6 12 8 | 1
c; | Zuk | 2 8 8 | He
Zk:‘//ka 2 -4 -16 40
¢t | Zer | 0 4 8 | K€
Zrka 1 8 12 l%ez
;Aka 2 52 128 0
2F 0 4 16| 0
ct | X8R | o 8 o | e
YEF 1 -4 -241] 0
YILE | o 4 12 |2%,e
LA 1 52 12| O
cs 2NeFe | 0 4 -24| O
B.F. 8/
ﬁk: Lk 0 8 0 Ae

14



Table 2.4. Constraints for the coefficients F, in the two-dimensional model that has global

coefficients.

Constraint X value
¢y 2oF | 4 4 1
ct | XuvE |2 4| e
;V/ka 2 -8 0
ci | Tol 0 4| e
2L 4 | 2e?
;Aka 2 -16 0
SOUuF | 0 0
;EkF,c 1 -8 0
;Hkﬂ 0 4 | 3e3
;Zka 1 -16 0
ct SNFe | 0 0| O
SBE 0 4| det

15



2.3.2. Deriving a model that has distributed coefficients _
Chen et al® define the local equilibrium distribution function as follows. The distribution
function has weighting coefficients on each of the terms.

0 _ i 2 2
w = PlA +Mycp iy +Guut +J 00y U, + 0,0 U U

251
+ H ClupCrinCrac gty + RyCpuisCrppti s u® + Spu ] @>1)
Weighting coefficients 4y, M, - - - are written as polynomial forms of internal enel;gy e.
2
1
X, = Zxkze (2.52)

1=0

Local equilibrium distribution function (2.51) is applied to conditions (2.1) through (2.7).
Considering tensor expressions (2.8) through (2.15), Table 2.5 for the constraints on the weighting
coefficients is obtained.

In two dimensions, looking at Table 2.1, the following linearly dependent relations can be
recognized. Even if double, triple or more speed particle velocities are added to the basic ones, the

same linear dependency still holds because I w;,q, belong to the same group Ci, and

=, A, I1,,0, tothe same group ;.

2[ = 4 +4(pk (2.53)
25, = A, (2.54)
I1, =30, (2.55)

Therefore, the following equations hold:

22 [xy = Zl//kxu + 42 PeXu (2.56)
x T %

2ZE/c-ku = ZAkku (2.57)

D Txy =32 Oxu (2.58)

3 % .

1

Requiring anisotropic terms ;‘//kxkl vanish and Y. = 5 , the constraints of Table 2.5 are

transformed into those of Table 2.6, which is exactly equivalent to TABLE I in Chen et al’s
paper® The constraints of Table 2.6 are solvable because the ranks of all groups meet the

requirement, rank4 = rankB .

16



rankA =rankB=1  for group ¢’
rankd = rankB=1  for group ¢’
rankd = rankB=2  for group ¢;° (2.59 abced)
rankA = rankB=2  for group ¢,°

It can be concluded that it is possible to construct a two-dimensional model. A

However, the situations in three dimensions are different. Linear dependencies (2.53) through
(2.55) do not hold in three dimensions. Therefore, it is necessary to retum to the original constraints
in Table 2.5. When D=3 is substituted, Table 2.7 is obtained. The constraints for groups ¢’ and ¢;°

clearly meet the requirement, rankd = rankB . For group ¢, the constraints, except for Q,, meet the

requirement as follows.
2 -4 -16
rank|0 4 8 (=2 (2.60)
1 8 12
2 -4 -16 0 2 -4 =16 0 2 -4 -16 0
2 1
rankh 0 4 8 Ol=rank0 4 8 E =rank 0 4 8 5 =2 2.61)
1 8 12 0 5 5
1 8 12 = 1 8 12 —
A 3] L 4]

However, rankB for O, depends on the value of Y. To be solvable, the rank must have a value of
two. '
2 -4 -16 0

rank|0 4 8 -3 |7 2 (2.62)

1
1 8 12 —-37,
2 ]

L
Above requirement is satisfied if Y4 has the following value:
7

Yo=— 2.63
‘"2 (2.63)
For group ¢, rankA obviously has a value of three.
2 -52 128
0 4 -16
rank| 0 8 0 |=3 2.64)
1 -4 -24
0 4 12

L J

17



RankB for H, has the following value if the value (2.63) is substituted:

[2 -52 128 0]
0 4 -16 0

rank| 0 8 0 'é’ =4 2.65)
1 -4 -24 0 :
0 4 12 L
i 12

Therefore, the constraint equations for group ¢, are unsolvable. It can be concluded that it is
mmpossible to construct a three-dimensional model.

TABLE II in Chen et al.’s paper'” is no more valid in three dimensions. Consequently, the
coefficients for 3D40V in TABLE 1II in their paper do not give correct fluid equations.
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Table 2.5. Constraints for the model that has distributed coefficients. X represents g, Qii,*, Sko -

For example, the second equation for ay, is written as ° a0 = —;— . Constraints for jx and gip are
k

related through Y;. For example, if ¥ is calculated by known jig, ¥, becomes the constraint for g as

Zbkgko:_yo,
) A, M, i G, H, O, R, S,
Constramt S
Ao Apy Qur | My My | Jro Jo1 180 8rt|Peo | Do Feo | Sko

ce | 2P [1 0 0 Y, -, 7,

2D Aexu 2 Y, v |-}

Ck T O B O l O 0 1 _5 0 —3Y2 },3 O
gwkxu 0 0,0 0 0/ 0 [0

ci| 2o 05 30 -5 |0

+ + 1
STxa |0 02522 0 222222 0 022 losk| 0 |-
;Ak-xld 0
Zk:Qkxk; 0
le Z@)kxu %
2By 0 0 0 0
- D+4 1
;Hkxk, 0 2; Y, 4
Table 2.6. Constraints for the two-dimensional model that has distributed coefficients.
. Ak Mk Jk Gk Hk Qk Rk Sk
[Constraint X, ..
Ao Ay Qi |Myo My | Jio Ji1|8ko Ex Mo | Dro| Tio | Sio

ci|2bxe |4 411 00 -¥, -1 -1,

|Zxx |2 alo 1 o1 0 x y|-1 o] BHE0

JA2Zwexe |2 8]0 0 0 0 0 0 0l0 0/ 0] 0[0!/0

c .

“[Zox 0 4fo 010 1|2 ojo-tn Lol
k 8
;Akxk, 2 -16 0 0 0 0

le ZL:Qkxkl 0O 0O
‘ 4
200w | 0 < 0 5 A
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Table 2.7. Constraints for the three-dimensional model that has distributed coefficients.

Constraint X A My .Jk' G [Hy Qi \RS,
o By Gip [Mao My | o Jir |Bko &x1 [ Fro| Tko |Tro|Sko
Cr ;bkxkz 6 12 8|11 0 O -Y, -1, -Y,
c|Xxx]2 8 8o S 0f1 0¥ ¥ -0 AR
DWixu |2 -4 16 0 0/0 O ol 010
| Zoxelo 4 s 0 T3 0 v, =510
ra i snfoo 2o HEon 2 Lo
DA 2 52128 0
iQkxk, 0 4 -16 0
cf[zem o s 1
2EXa | 1 —4 -2 0 0 0 0
Eﬁlﬂkxkz 0 4 12 % Y. %
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2.4. Verification of the new two-dimensional model _
The two-dimensional thermal model constructed in section 2.3.1 was evaluated by Couette flow

simulation. The simulation was conducted using following finite difference scheme:

%4, Ckia % = —é(f}a- ~fi (2.66)
where f is the distribution function for the particle velocity ¢y, ¢ the time, r, the spatial
coordinate, and ¢ the relaxation parameter.

The upper wall, which is H apart from the lower wall and has internal energy e, starts to move at
speed U. The lower wall has e; and 1s at rest (Figure 2.4). Internal energy distribution e along vertical

axis y in a steady state 1s given as:

y  H . 2) Y
e=¢ +(e;~¢)—+-—U"—=(1-=
1 +(e; —ep) o H( H) (2.67)
Since viscous coefficients 4 and thermal conductivity x’ are given as the following equations:
p=ped (2.68)
k' =2ped (2.69)

value # k! is constant (= % ). Therefore, the distribution does not depend on relaxation parameter

¢ or on internal energy e.

Figure 2.5 shows the results for internal energy distribution in a steady state for various relaxation
parameters. In the figure, the internal energy subtracted by linear distribution, which corresponds to
the last term of equation (2.67), is shown. Figure 2.6 show the results for the internal energy
distribution in a steady state for various wall temperatures. Both results agree completely with the
analysis.

Figure 2.4. Couette flow simulation. The upper wall, which is A apart from
the lower wall and has imternal energy e, starts to move at speed U. The lower
wall has e; and is at rest.
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Watari et al l
U=0.1
0.0006 - -
el=e2=10
S
5
e
5 .
S 0.0004 F .
5
=
%‘ O phi=0.05
A 0.0002 - A  phi=0.1 i
: © phi=0.2
O phi=04
— Analysis
1 N
o 05 1

Vertical position y/H
Figure 2.5. Internal energy distribution at steady state for various relaxation parameters: ¢ =0.05, 0.1,
02, 04. U=0.1, e;~e~1.0. The internal energy subtracted by linear distribution is shown. The
results for all ¢ overlap each other.

Watari et al '
U=0.1
0.0006 nphi=0.1 ~
2 el=e2=e
g
3]
& 0.0004 -
§
R
<
E o e=06
A =10
0.0002 | 6 w14 -
— Analysis
(¢, L ©
0 1

0.5
Vertical position y/H
Figure 2.6. Internal energy distribution at steady state for various wall temperatures: e;=¢;=0.6, 1.0,
14. U=0.1, ¢=0.1. The interal energy subtracted by linear distribution 1s shown. The results for

all cases overlap each other.

2.5. Conclusions
It is possible to construct a thermally correct two-dimensional LBM multi-speed model that has a

single relaxation (BGK model). However, a correct three-dimensional LBM multi-speed thermal
model is theoretically impossible. In addition, these results do not change for the types of local
equilibrium distribution function.

A correct two-dimensional LBM multi-speed thermal model that has global coefficients in the
local equilibrium distribution function was derived. The model was evaluated by Couette flow

simulation. The result showed exact agreement with the analysis.
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3. Two-dimensional thermal model of finite difference lattice
Boltzmann method with high spatial isotropy

3.1. Introduction . ‘

The lattice Boltzmann method (LBM) has become a powerful numerical tool for simulating
fluid flows. " In the LBM, there are two ways of handling thermal fluids. One is the so-called
“multi-component thermal model,”® where heat is handled as different component from fluid.
This model characterizes the flow as Boussinesq fluid. Another is the so-called “multi-speed
thermal model,” ®* where particle velocities that have different speeds are used. While the
multi-speed thermal model is intended to correctly represent heat characteristics and
compressibility, existing models seem to have hidden error terms and show a limited accuracy.

The finite difference lattice Boltzmann method (FDLBM) ® was proposed in order to secure
numerical stability and to apply non-uniform grids. In the LBM, particle velocities are
restricted to those that exactly link the lattice nodes in unit time. On the other hand, in the
FDLBM as we do not need to consider that constraint, we can select particle velocities
independently from the lattice configuration. Therefore, a correct and numerically stable
multi-speed thermal model can be constructed by adopting more isotropic particle velocities.
This paper proposes a two-dimensional FDLBM BGK (single relaxation) model based on the

above concept.

3.2. Finite difference lattice Boltzmann method
Below is a general description of the two-dimensional thermal FDLBM model. The
.evolution of the distribution function f;; for particle velocity cy; is governed by the following

equation, which is solved using Euler and second upwind difference scheme.

afki afki 1 (0)
=2 4+, == - | ~
ot Cria al‘a ¢ (fkl ki G.1D

where the subscript & indicates a group of particle velocities whose speed ¢, and 7 indicates the
particle velocity’s direction. The subscript o indicates x or y component. The variable 7 1s time,

©

r, the spatial coordinate, f; ° the local equilibrium distribution function, and ¢ the

relaxation parameter.
Macroscopic quantities, the density o, the velocity u, , and the internal energy e, are
defined as follows.

p=3 1. 32)
ki

pua :kaickia (33)
ki
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e+ )= 1, -
ple+ )= fu (3.4)

The local equilibrium distribution function is determined to satisfy the following moment

summation equations.

Z F = (3.5)

0

Z i kia = Pl (3.6)
0

ka(,- )ckiacki,b’ = p(ebap +ityip) (3.7)

ki

kaz CtiaCipCuiy = Ple(u,Op, +ugd,, +u,8,5) +uyugu,] (3.8)

2 2

(0)—c—k—: €+u—

%:fk, = plet =) (3.9)

2

Z “’)—-ck,a pua(2e+u7) (3.10)
(0) 2 2

Z ck,ack,,; Ple(2e+7)8,p +uyt y Ge+7-)] G.11)

By applying the Chapman-Enskog expansion, the above formulation is shown to be

equivalent to the following fluid equations (Navier-Stokes equations).

op ©
+ 0
P (puy)= (3.12)

0 Ou, 8u
—_ +__._. Mg + PO —— 7 5)]=0 (3.13)
(P“ ) e (puatg 5) 85[ (6r o, or, 5)]

o, ,0e /9 Ou, Ou (3.14)
+ = 8,5)]=0'
o [ o g ( o arﬂ " s)]=

%{p(e el [pua<e+7+—)1—

where the pressure P, the viscosity coefficient y, and the heat conductivity x' have the

following relations.

P = pe (3.15)

p=ped (3.16)
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K'=2peg (.17
Temperature 7 is related with the internal energy by the following equation (R gas
constant).

T =e/R | (3.18)

3.3. New FDLBM model derivation
The sth rank tensor for the group of m particle velocities is defined as

m
(n) — LI
Ea1a2a3-~-a,, - Z Cio:l Cia; Cia3 Cia, (3.19)
i=]

where a,,..,a,indicate either x or y component. The tensor is isotropic if it is invariant for the
coordinate rotation and the reflection. As for being isotropic, the odd rank tensors should
vanish and the even rank tensors should be sums of all possible products of Kronecker delta.

The tensors for four groups shown in Figure 3.1 are summarized in Table 3.1. Kronecker
delta dgs the sum of its products, A(A)aﬁyx and A(ﬁ)aﬂ,,m are isotropic, whereas extended
Kronecker deltas, Jopy, and dopyp- , are anisotropic.

The odd tensors for uniformly distributed particle velocities are shown to vanish. For even
tensors, Groups I and I yield anisotropic tensors for the fourth rank and higher. Groupll
ensures isotropy up-to the fourth rank but not for higher ranks. However, Group IV ensures

isotropy up-to the seventh rank.

group I group 11 group III group IV

— XX

Figure 3.1. Four groups of particle velocities.
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Table 3.1. Tensors for four groups of particle velocities shown in Figure 3.1.
a1 (if a=p), =0 (otherwise)

Oapp=1 (if a=p=y=y), =0 (otherwise)

Oapr=1 (if a=f=y=y=A=1), =0 (otherwise)

A(A)qﬁnzaaﬁ‘sn"'éayaﬁx*"aaxaﬁr

A(G)aﬂyx/lr= b A(a)mr 6, A@)ﬂxlr =y A@ﬂy}.r +, A(d)ﬂ?ﬁ 5, A@ﬂm

ch,-a chmck,ﬁ Z ckiackiﬁckxﬂz Chic C1if iy C kiy Y- CkiaCkipChiy ChiyChin chiaclciﬁckiyckizcldlckir
i i i i i -

GROUPI | 0 20: Oup 0 2¢; Oty 0 l 20: 5413;1,11
GROUPII| (O | 2606, | 0 le/(Ausy ~2605) 0 R DD e =2 0pir)
GROUP 11! O 30135,4; 0 A ; A :;ﬂ 0 anisotropic
GROUPIV| (O | 4¢i6,, 0 c; A, L 0 ( % ,C/f A:;yxlr

Energy diffusion equation (3.11) contains up-to fourth order of flow velocity u. Consequently,
the local equilibrium distribution function f£,{” is derived from Maxwellian distribution,

retaining up-to fourth order terms of flow velocity.

£O = L exp(— 1 (Cra — U )2)
2e

2me
1 1, 1 u
=p—oexp| ——¢ [exp| —(Cualts —— (3.20)
P 2me p( 2e ) p(e( 2 )]
u w1 u’ 1 u’
= E 1——+ > +—(1-— Cuglh; + — I-— Ciag CuaryU Uy
PE( 2e. 86‘) e( Ze) VS ( 23) e

1 1 s
+ 5 CugCrnCrag U UyUy +— Ckigckinchéckizufunuguz] + O(u )
be 24e

—ex
2me P

where the parameter Fj represents the term 1 (_ —ch) and is the function of e and c;.
The local equilibrium distribution function £ ” contains the fourth rank tensor and momentum
diffusion equation (3.8) contains the third rank tensor. Therefore, up-to seventh rank tensor
should be isotropic to recover correct fluid equations.

When we apply the property that the odd tensors vanish, we obtain the following equations
to determine the parameters F;.

From equation (3.3),

Y F. =1 (3.21)
ki
Zchkiéckigugu; = ey’ (3.22)

ki
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ZF Cag Cric CuinCriy YU Uy, =3e’u’ - (3.23)

From equation (3.6),

ZF kChiaCriche = €U, (3.24)
ki
ZF Cria Crie Cric CoipYeUe Uy = =3e’u . (3.23)
ki

From equation (3.7),

Z F;cckiacla‘ﬁ = e5aﬁ (3.26)
ki

2,2
Zchkiackiﬂckigckfgugug =e (U 0,5 +2u,up) (3.27)
i

-2 3.2 2 "
ZFCkzacklﬂcszckxfckmckzzufu[u u,=>seu (u §aﬂ +4uauﬂ) (3.28)
ki

From eguation (3.8),

2
Zchkiackiﬁckiyckifuf =é (ua5ﬂy +u,857a +uy5aﬂ) (329)
ki
- aB

_13,3 3 .
> FCiuaCuipCrayCuaeCing gl =36 (U, 8 5, +u 50, +14,8,5) +6€’u ugu, (3.30)
ki

From equation (3.9),

CZ
ZF/( _k e (3.31)
w2
2,2
ZF cklgc,a; U, =2eu (3.32)
3,4 2 2a
ZF Ckn;ckzgckmckzxuf (g, =9€U (3.33)

From equation (3.10),

ZF Ckuzclar,‘ e = =2¢’ U, (3.34)

ZF ckra Crie Crig CripHe U U, = 9¢’u u, (3.33)
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From equation (3.11),

2
¢
> F .0, =205, | (3.36)
w2
cZ
k _~. 372
;Fk—z—ckiacwckiécwugug =3¢ (U 0,5 +2u,u,) _ (3.37)
1

2
Ck 4, 4 2
ZEL —:_)jckiackiﬂck-igckigckmck,zufugu,’uz =12e"(u"5,, +4u ug)  (3.38)
ki

If we further assume application of Group IV particle velocities that have isotropic tensors
up-to the seventh rank, the above eighteen equations reduce to the following five equations.

From equation (3.21),

> F, =1 (3.39)
ki

From equations (3.22), (3.24), (3.26), (3.31),

F.cl=¢ (3.40)

; k-k /4

From equations (3.23), (3.25), (3.27), (3.29), (3.32), (3.34), (3.36),
Y Fep=e (3.41)
ki

From equations (3.28), (3.30), (3.33), (3.35), (3.37),
> Fic; =6€° (3.42)
ki

From equation (3.38),

> Fc; =48¢* (3.43)
ki

speed c;
speed ¢,
d -
speed 0 Speedn » /
X 47‘%\\
v 4 ¥
A\

Figure 3.2. Particle velocities of the proposed FDLBM model.
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Five speeds are necessary to satisfy the above equations. A rest particle (¢, =0.0) and four

group IV particles, whose speed are ¢;, ¢, ¢35, and ¢, , are assumed (Figure 3.2). The equations

of (3.39) through (3.43) are easily solved to give the following. The parameters F, are

functions of ¢;, ¢z, ¢;, ¢4, and internal energy e.

h=75—=— 21 (et -2

ciler ~ele —e)e i) |
k= (5~ )(03'1— e)e; ~ef)|
G |
- 1

2.2 22
ca(cy ~ci )y

22
—ea)es —a)|

48¢* — 6(c3 +c% + c})e’ + (c2e? + ik + c4c§)e

—6((:3 +c2 + D) + (cke? +c4cl +cleh)e’ -

2.2

48¢* —6(c2 + ¢ + c)e’ + (cict + ¢f c

F,=1-8(F +F,+F,+F),)

+@qk

48¢* — 6(ct + 3 + c3)e® + (clcs + c2ct + cich)e?

222 ]
czcjc“e (3.44)

222
cc4cl

he|(3.45)

2232 ]
c“cicz e |(3.46)

2022 ]
(oo
_L_Zie (3.47)

(3.48)

As far as a simulation being stably conducted, the combination of the values, c;, ¢, ¢;, and

¢4, does not affect the accuracy itself. We can utilize this freedom to obtain the stably simulated

range of temperature as wide as possible. Several criteria were tried and it was finally

concluded that following hypothesis has the closest relationship with simulation stability:

“Simulation is stable as far as Fo>F>F,>F>F>0." Therefore, the following optimum

problem was solved:

Under the condition
determine
which maximizes

fore; <e <ey

keeping

0<c¢g;<er<es<ey

¢y, €, ¢35, and ¢4

fen-er)/ey

FyFy>1.1 and F}/F>>1.1 and

FQ/F3>1.1 and F3/F4>1.1 and F4>0. holds

(274 =(eH+eL)/2=l .0

(3.49)

The result is the following. The model is expected to stably simulate the flow for the

temperature range: ¢ = (0.4~1.6.

(CO:CI:CZ:CS:

;=04 ey =16,

c,) =(0.0,1.0,1.92,2.99.4.49)

(eg-e ) ey =12
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3.4. Verification of the new model _
The model was confirmed valid by conducting two simulations. First, the speed of sound

was measured. Second, the shear flow between parallel walls (Couette flow) was investigated.

3.4.1. Speed of sound
In a box, a plate divides fluids that have a small difference in density (Figure 3.3). When the

plate is removed, sound waves (expansion and compression) propagate. The position of the
pressure jump (Figure 3.4) was measured to calculate the speed of sound. The results at various
internal energy levels are shown in Figure 3.5. The simulation was stably conducted for the

range: e=0.4~1.6. The speed of sound exactly agrees with the following theoretical value.

¢, =2e (3.52)

yl

J Pr:€ P2,€ X

Figure 3.3. Sound wave simulation.
A plate divides fluids that have small difference in density. As the plate is removed,

sound waves {(expansion or compression) propagate.

5 :2(1):: £30 20 10 | ] ]
g 1:000 ] / ] H0 10 20 30
-50 Distance 50

Figure 3.4. Propagation of sound waves.

The pressure jumps advance as time proceeds.
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Figure 3.5. Sound speed versus internal energy.

3.4.2. Couette flow

The upper wall, which is A apart from the lower wall and has internal energy e,, starts to
move with speed U. The lower wall has e; and is at rest (Figure 3.6). The viscous shear stress
transmits momentum into the fluid and changes the horizontal speed profile. The horizontal
speed distribution at various instants for e;=e; is shown in Figure 3.7. The simulation result

exactly agrees with the analytical value of equation (3.53).

<0

u oy 2 2 2 M| y
==——— ) exXp|—h7x sinj nr(l——=—
”Z xp{ pHZ} [ ( H)} (3.53)

E— H n=1

The analytical distribution of internal energy in a steady state is shown in equation (3.54).

e=e +(e —el)%+LU2—}—}—(l——y—)

e H I, (3.54)

Since the coefficients «and « ° are given as (3.16) and (3.17), respectively, value %K, is

constant (=0.25). Therefore, the distribution does not depend on the relaxation parameter ¢ or
on the internal energy e. The internal energy subtracted by linear distribution, which
corresponds to the last term in equation (3.54), will be shown.

Figure 3.8 shows the result for various relaxation parameters The result, which is shown to
be independent of ¢, coincides exactly with the analysis. Figure 3.9, the result for various
walls’ temperatures, also shows complete agreement with the analysis. The relevance of the
model for the variation of speed U is shown in Figure 3.10.

Finally, simulation for e,#e, was conducted. The result for ¢,=0.5 and e,=1.5 is shown in

Figure 3.11. The result exactly agrees with the analytical solution.
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Figure 3.7. Evolution of horizontal speed distribution. e,=e,=1.0.
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Figure 3.8. Internal energy distribution at steady state for various relaxation
parameters: ¢ =0.05, 0.1, 0.2, 04. U=0.1, e;=e,=1.0. The internal energy sub-

tracted by linear distribution is shown. The results for all ¢ overlap each other.



Watari's model
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Figure 3.9. Internal energy distribution at steady state for various wall
temperatures: e;=e,=0.5, 1.0, 1.5. U=0.1, $=0.1. The internal energy subtracted

by linear distribution is shown. The results for all cases overlap each other.

Watart's model o U=01
phi=0.1 a U=02
el=e2=1.0 v U=03
— Analy.
250.005 - -
5]
5
=
E
2
R=|
=
5]
)]
|
0 0.5

Vertical position y/H
Figure 3.10. Internal energy distribution at steady state for various boundary
speeds: U=0.1, 0.2, 0.3. ¢=0.1, e;=e,=1.0. The internal energy subtracted by

linear distribution 1s shown.
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Figure 3.11. Internal energy distribution at steady state for various boundary
speeds: U=0.1, 0.2, 0.3. The wall temperatures are different: ¢, =0.5, ex=1.5.

¢=0.1. The internal energy subtracted by linear distribution is shown.

3.5. Comparison with existing thermal models

Couette simulations using existing multi-speed thermal BGK LBM models were conducted
in a FDLBM scheme to compare them with the proposed model.

The model by Alexander et al @ 2D13V (rest particle and 2 speeds of Group II):
They retain up-to third orders of local flow speed in the local equilibrium distribution function.
They use Grouplll velocities (hexagonal) that ensure only fourth rank tensor isotropy. As
shown in the new model derivation, up-to fourth order expansion and up-to seventh rank tensor
isotropy are necessary to recover correct fluid equations. Therefore, in their model, error terms
are hidden in the momentum and energy diffusions. Figure 3.12 shows the result for the
variation of the relaxation parameter. The result indicates the dependency on the relaxation
parameter, which contradicts the analysis. The result for the variation of walls® temperature is
shown in Figure 3.13. The figure shows the dependency on the internal energy, which also
contradicts the analysis. Those discrepancies are the reflection of the error terms described
above.

The model by Chen et al*” 2D16V (2 speeds of Group I and 2 speeds of Group II ):
They say that as they retain up-td fourth orders of local flow speed and realize equivalent up-to
seventh rank tensor isotropy by mixing weighted Group I and H velocities, their model
recovers correct fluid equations. However, the simulation results are different from what they
say. The result for the various values of the relaxation parameter ¢ is shown in Figure 3.14.
Although the model has been quite improved from Alexander’s model, the model still yiélds an

erroneous solution for the ¢ <0.2. For ¢=0.1, the result for the variation of walls’ temperature

35



is shown in Figure 3.15. This figure indicates that the simulation for #<0.2 (low viscosity
flow) yields an erroneous solution if the internal energy e diverts from 0.5. Consequently,
although the result for e=0.5 in the variation of speed U (Figure 3.16) shows good agreement
with analytical solution, the model. gives distorted solutions if the difference in temperature

between walls exceeds a certain range (Figure 3.17). Further study s necessary where these

discrepancies come from.
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—— Analysis
1
0 0.5
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Figure 3.12. Alexander’s model. Internal energy distribution at steady state for
various relaxation parameters: ¢=0.1, 0.2, 0.4. U=0.1, e;=e,=0.5. The mternal
energy subtracted by linear distribution is shown. The result shows dependence

on ¢, which contradicts the analytical prediction.
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Figure 3.13. Alexander’s model. Internal energy distribution at steady state for
vanious wall temperatures: e;=e,=0.3, 0.5, 0.7. U=0.1, ¢ =0.1. The internal
energy subtracted by linear distribution is shown. The result shows dependence

on e, which contradicts the analytical prediction.
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Figure 3.14. Chen’s model. Internal energy distribution at steady state for
various relaxation parameters: =0.05, 0.1, 0.2, 04. U=0.1, e;=e;=0.5. The
internal energy subtracted by linear distribution is shown. Although the model
has been improved from Alexander’s model, the result still shows dependence

on ¢, which contradicts the analytical prediction.
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Figure 3.15. Chen’s model. Internal energy distribution at steady state for
various walls’ temperatures: e;=¢,=0.3, 0.4, 0.5, 0.6, 0.7. U=0.1, $=0.1. The
internal energy subtracted by linear distribution is shown. The results for e=0.4
and 0.6 overlap. The results for e=0.3 and 0.7 overlap. The result shows

dependence on e, which contradicts the analytical prediction.
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Figure 3.16. Chen’s model. Internal energy distribution at steady state for
various boundary speeds: U=0.1, 0.2, 0.3. ¢=0.1, e;=e,=0.5. The internal

energy subtracted by linear distribution is shown.
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Figure 3.17. Chen’s model. Internal energy distribution at steady state for

various boundary speeds: U=0.1, 0.2, 0.3, when the wall temperatures are

different; ¢,=0.3, €,=0.7. ¢ =0.1. The internal energy subtracted by linear

distribution is shown. The model gives distorted solutions.
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3.6. Conclusions .
A new multi-speed thermal model for the FDLBM was proposed. To recover correct fluid

equations, up-to fourth orders of local flow velocity should be retained in the local equilibrium
distribution function and the particle.velocities should have up-to seventh rank tensor isotropy.
In the FDLBM, we can select particle velocities independently from the lattice configuration.
Therefore, particle velocities of octagonal directions, which have up-to seventh rank isotropic
tensors, are adopted. Furthermore, as the local equilibrium distribution function is determined
such that it retains as much Maxwellian characteristic as possible, the proposed model has
excellent numerical stability in addition to strict accuracy.
The model was venfied by flow simulations and was compared with the results of existing
models. While existing multi-speed thermal models give correct answers in quite limited
ranges of viscosity and temperature, the proposed model gives correct answers in wide ranges.
I would like to note that the proposed model has capability to high Reynolds number problems.
In an application study,® thermal cavity flow simulations of $=0.0009 was successfully

conducted.
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4. Three-dimensional thermal model of finite difference lattice
Boltzmann method with high spatial isotropy

4.1. Introduction

In the lattice Boltzmann method (LBM), there are two ways of handling thermal fluids. One
is the so-called “multi-component thermal model.™"” The other is the so-called “multi-speed
thermal model,” *® where particle velocities that have different speeds are used. While the
multi-speed thermal model is intended to correctly represent heat characteristics and
compressibility, it has been shown that a three-dimensional LBM BGK multi-speed thermal
model is theoretically impossible. @

The finite difference lattice Boltzmann method (FDLBM) © was proposed in order to secure
numerical stability and to apply non-uniform grids. In the LBM, the particle velocities are
restricted to those that exactly link the lattice nodes in unit time. On the other hand, in the
FDLBM, as that constraint does not need to be considered, particle velocities can be selected
independently from the lattice configuration. Therefore, a correct and numerically stable
multi-speed thermal model can be constructed by adopting more isotropic particle velocities.
This paper proposes a three-dimensional FDLBM BGK (single relaxation) thermal model

based on the above concept.

4.2. Finite difference lattice Boltzmann method
Below is a general description of the three-dimensional thermal FDLBM model. The

evolution of the distribution function £, for particle velocity ¢ is governed by the following

equation, which is solved using Euler and the second upwind difference scheme:

kice

ot a—n,'¢

where the subscript £ indicates a group of particle velocities whose speed ¢, and 7 indicates the

ajii + Cy, aﬁ' Z—l(fki_ *‘EO)) "

particle’s direction. The subscript a indicates x, y, or z component. The variable ¢ is time, 7,
the spatial coordinate, 7,{” the local equilibrium distribution function and g the relaxation
parameter. Macroscopic quantities: the density o, the velocity u,, and the internal energy e,

are defined as follows:

pua = ;fkiclda (43)

2

u ¢l
Yoy pl (4.4)
ple+ 2) >/ 5

ki
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The local equilibrium distribution function is determined to satisfy the following moment

summation equations:

S =p 4.5)
2 S Cua = ik (4.6)
Zf(o)ckmckw = p(i—edm +uau'g) (47)

Zﬁ' Cluack.ﬂckzy p[’%‘e(uaép}, +u/;57a +u7§aﬁ)+uauﬁuy] (48)

Zﬂ@ p@+%& (4.9)
Zf“’) Ck o =pua(§e+y——) (4.10)
sz) CuaCup = p[e(—qe+——)5,,,, +u u,,(—e+_)] 4.11)

Applying the Chapman-Enskog expansion, the above formulation is shown equivalent to the

following fluid equations (Navier-Stokes equations):

op 4.12
+— «)=0 (4.12)
P (oue)=
Gu 2 ou
O ou )+ (puuy + PEy) -2 2 L 5p)]=0 (413
(P ) E}rﬂ (puati s s) ar,, [#(ar o 3 o, g)]=
a’lﬂ Oua 2 0u, (4.14)
— e+~— +~ L(e+ =)]-— + —=—"04)]=0 "
[,0( )] [ﬁu ( )] & [ ar . o s)]
where the pressure P, the viscosity coefficient x4, and the heat conductivity x’ have the following
relations:
P = % pe (4.15)
J
2
< peg (4.16)
3
=20 s (4.17)
9
Temperature 7 is related to the internal energy by the following equation (R: gas constant):
_z2e (4.18)
3R
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4.3. New FDLBM model derivation _
The energy diffusion equation (4.11) contains up-to fourth order of flow velocity u.

Therefore, up-to fourth order terms of flow velocity are retained in the local equilibrium
distribution function £ ”. Assuming the velocity # is small, the Maxwellian distribution is
expanded:

© _

p 3 2
i = CXP| ———Che — U, -
T ) p( 20" )] (4.19)
= p—l——7exp(—icf)exp(—-3—(cmua —uz))
(%ﬂ—e) 2 4de 2e

The local equilibrium distribution function for the FDLBM is obtained:

3u® 9’ 3 3u’ 9
= pF[(1-—+ +—(1 = )cult; + —
S = pEI 4e 32e2) 25; 4e) BT ge?

+ —;ch;ch‘,’ch{ugu”ug + ‘—‘—‘Tch-gch,,ckigckizu5u,7u{uz]
16e 128e

3u’
(1—ze—)cn:cﬂqugun (4.20)

where the parameter ¥, represents the term c,f) and is the function of e and

1
@) ol %
¢e. The local equilibrium distribution function £,” contains the fourth rank tensor and the
momentum diffusion equation (4.8) contains the third rank tensor. As a result, up-to seventh
rank tensor must be isotropic to recover correct fluid equations.

The nth rank tensor for the group of m particle velocities is defined as:

m

0 =St

a1a2a3 i 1a2 1a3 ic, 4.21)
i=1

where a,,.., 0, Indicate any of x, y, and z components. The tensor is isotropic if it is invariant for
the coordinate rotation and reflection. As for being isotropic, the odd rank tensors should
vanish.
(2n+1) _ '
Ealaza;—azn+1 - O (422)
©®

The isotropic even rank tensors should be sums of all possible product of Kronecker delta.

m 2n A(2n)

5.-.(3+2n-2)

E(Zn) _
s -o2s

aa03~2n

@ (4.23)
Aaﬂ =

(4)
Aaﬂrz =0u 5 + 5a7 5131 + 51715[77

(6) 4) (4) ) (4) (4)
Aaﬂnlr - aﬁAyz].r + 5ayA/3p'lr + 5azAﬂyﬂ.r 5(1& Brxr + §arAﬂrzﬂ
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This paper’s strategy for constructing the model is, first, to create a basic group of particle

velocities that has isotropic tensors up-to seventh rank. Then, the model is constructed using

several speeds of these groups in addition to a rest particle.
Vectors that point to the vertexes of dodecahedron and icosahedron (Figure 4.1) from the

center have high isotropy. The components and tensors for these vectors are summarized in

Table 4.1.

A\A‘
(a) Dodecahedron (b) Icosahedron
Figure 4.1. Dodecahedron and icosahedron.

Table 4.1. Tensors for vectors pointing from the center to the vertexes of
dodecahedron and icosahedron. The  is the number of vectors. E™ is the nth rank
tensor. The cyc indicates cyclic permutations. The symbol O indicates isotropic,

and the symbol X anisotropic.

group components of vectors | m |[EVE@EDE@ECIEOED
Dodecahedron| AFLELx),eye: 40267 2¢) 120 | O O1OO O X|O
Icosahedron cyc : 7(0,£¢,11) 2 O0000X 0O

b=(1++5)/2  A=1/3  t=v2/\{5+45

Table 4.2. Sixth rank tensors for vectors of dodecahedron, icosahedron in Table 4.1,
and for the combined vectors. The values in the parenthesis are those for isotropic

tensors calculated by the equation (4.23).

6th rank tensor | Dodecahedron Icosahedron ?(I)Sggaahh:grrgg
Descucatutats  Guen) | aouy | asma
Descactutny  Gimi | oome | oo
gc""c""c"yc"yc”c” (812?1%) (géig) {33?23)




The odd tensors for spatially uniformly distributed vectors are shown to vanish. For even
tensors, both groups have isotropic tensors up-to fourth rank, however, they yield anisotropic
tensors for the sixth rank and higher. How anisotropic are they? The sixth rank tensors for
typical combinations are shown in-Table 4.2. In the table, the values in the parenthesis are
those for isotropic tensors calculated by the equation (4.23). The tensors of dodecahedron and
icosahedron have more than ten percent discrepancies from the isotropic tensors. However, if
both vectors are combined as a group, the sixth rank tensor becomes alrﬁost isotropic with
about one or two percent errors. Therefore, these thirty-two vectors are adopted as a basic
group of particle velocities.

When the property that the odd tensors vanish is applied to equations (4.5) through (4.11),

the following equations are obtained to determine the parameters Fi:

;Fk =1 (4.24)
2
D FiCiaCiip = =€00p (4.25)
r 3
_ 4 , (4)
> FiChiaChigCiy Ciiy = 3¢ Aopr (4.26)
ki
_ 8 e
ZEcckiackiﬁckiyckizcki).ckir =—e Augpic 427
I 27
c?.
F,—t=e
%: s (4.28)
cr 10
F —C -ackfﬂ =—"ez5ap
; e Cn 5 (4.29)
2
c 28
;Fk %Ckmckwckircm =Ee3A(2}m (4.30)
¢} 8
> F éckiackiﬂckirckizckilcer = §€4A(§;7xi~r (4.31)
ki

If it is further assumed that particle velocities have isotropic tensors up-to seventh rank, the
eight equations above reduce to the following five equations:

From equation (4.24),
Y F, =1 (4.32)
ki

From equations (4.25), (4.28),
F.ci =€ (4.33)
Lk %6

From equations (4.26), (4.29),
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5
Eck = -—_e (4.34)
2 24

From equations (4.27), (4.30),
35 ~
Fel ==—¢ (4.35)
Z 36
From equation (4.31), _
35
ZFACA =Ze (4.36)

Five speed groups of particle velocities are necessary to satisfy the above equations. A rest
particle (¢, =0.0) and four moving groups of particles whose speeds are ¢;, ¢, c¢; and ¢,
(0<¢;<cy<cs<c,) are assumed. The equations (4.32) through (4.36) are easily solved to give

the following. The parameters F} are functions of c;, ¢, ¢, ¢4, and internal energy e.

1 (35 . 035 . i s 5 a0 aa Hzczc:cf 4.37)
1= —————————| —¢ - — (0, +G +¢)e +—(ae e tec)e -
cief =)l —a e —c)| 6 36 24
1 35 aac (4.38)
s = ——c3+ +qe+—qc4+c4q+q e
&G -8 —a)G —a)| 6 ( ) ( c) - }
1 (35, )~ GGG
YR VERENYE — ‘——(6'4 +c1 +Cz)€ +—'_(aicl +c1cz +C7,C4 cxcz :}(439)
a(d-a)g - -c) 6 36 24 16
1 35, . aao (4.40)
= T +G +6 + cc+ac yac) ———e |\
a(d ) -6 —c,)[ ( 2 ( i e 16 }

As far as the model being stably simulated, the combination of the values: ¢;, ¢, ¢3, and ¢g,
does not affect the accuracy itself. It governs the range of temperature where simulation is
stably conducted. Several criteria were tried and it was finally concluded that following
hypothesis has the closest relationship with simulation stability: “The model is stable as far as
F>F>F>F>F>07

Therefore, the following optimum problem was solved:

Under the condition 0<c<<e3<ey
determine 1. €2, €3, and ¢4
which maxinmuizes (eg-er)/ens (4.42)
fore; <e<ey FyF;>1.1and Fi/F>>1.1 and
Fy/Fs>1.1 and F3/F>1.1 and F,>0. holds
keeping er=(egter)/2=1.0

The result is the following. The model is expected to stably simulate the flow for the

temperature range: e = 0.48~1.52.

45



(Co,C1,C2,C3,¢4)=(0.0,1.01,1.82,2.67,3.88) (4.43)

er=0.48, eg =152, (ey-er)/er,=1.04 (4.449)

4.4, Verification of the new model
The validity of the model was confirmed by conducting two simulations. First, the speed of

sound was measured. Second, the shear flow between parallel walls (Couette flow) was

mvestigated.

4.4.1. Speed of sound
In a box, a plate divides fluids that have small difference in density (Figure 4.2). When the

plate i1s removed, sound waves (expansion and compression) propagate. The position of the
pressure jump (Figure 4.3) was measured to calculate the speed of sound. The results at various
internal energy levels are shown in Figure 4.4. The simulation was stably conducted for the
range: e=0.5~1.5. The measured sound speed agreed exactly with the foliowing theoretical

value:

¢, = 1% e ' (4.45)

y/

Pr1>€ Pr,€ X

Figure 4.2. Sound wave simulation.
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Figure 4.3. Propagation of sound waves.

The pressure jumps advance as time proceeds.
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Figure 4.4. Sound speed versus internal energy.

The results are compared with the theoretical value, » - /1 % e

4.4.2. Couette flow
The upper wall, which is A apart from the lower wall and has internal energy e, starts to

move at speed U. The lower wall has e; and is at rest (Figure 4.5). The horizontal speed
distribution at various instants for e;=e, is shown in Figure 4.6. The simulation result agreed

exactly with the theoretical value of equation (4.46).

y 2 ) Lt . y
- e —-n°r 1——
E Xp’: n 2 jl Slnlinﬂ( )} (446)

n=l

u
U
The analytical distribution of internal energy in a steady state is:

Y M2V 4 Y
e=el+(ez—el)§+5;U2§(l-g) (4.47)

Since the coefficients uand k”are given as (4.16) and (4.17), respectively, value %K, 1S

constant (=0.3). Therefore, the internal energy subtracted by linear distribution, which
corresponds to the last term in equation (4.47), does not depend on relaxation parameter ¢ or

on walls’ temperatures.

Figure 4.7 shows the result for various relaxation parameters The result, which is shown to
be independent of ¢, coincides exactly with the analysis. Figure 4.8, the result for various

walls’ temperatures, also shows complete agreement with the analysis.
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Figure 4.5. Couette flow simulation.
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Figure 4.6. Evolution of horizontal speed distribution.
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Figure 4.7. Internal energy distribution in a steady state for various relaxation
parameters: ¢=0.05, 0.1,0.2,0.4. U=0.1, e;=e,=1.0. The internal energy subtracted by

linear distribution is shown. The results for all cases overlap each other.
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Figure 4.8. Internal energy distribution in a steady state for various wall
temperatures: e;=¢,=0.5, 1.0, 1.5. U=0.1, $=0.1. The internal energy subtracted by
linear distribution is shown. The results for all cases overlap each other.

4.5. Evaluation of existing thermal models

Existing three-dimensional multi-speed thermal LBM models were evaluated by applying
them to a Couette simulation, using a FDLBM scheme.

As predicted in the previous study, ® although the model by Chen et al.”’ (3D40V) gave a
linear profile to the horizontal speed distribution in a steady state, internal energy showed
strange distribution (internal energy in the fluid is lower than that at the walls!).

The model by Takada et al.”” (3D39V) retains up-to third order terms of flow velocity in the
local equilibrium distribution function £,'” and ensures only up-to fifth rank tensor isotropy.
The model adopts as particle velocities, a rest particle and 5 groups of moving particles shown
in Figure 4.9. As expected from insufficient terms in the local equilibrium distribution function
and insufficient isotropy, although the horizontal speed profile showed an appropriate
evolution, the internal energy distribution in a steady state vielded discrepancies with the

analytical prediction, as shown in Figure 4.10 and Figure 4.11.

Figure 4.9. Particle velocities of the model by Takada et al. They are three speeds of
six directions: ¢,=1,2,3, one speed of twelve directions: c=2\2, and one speed of
eight directions: c=\3.
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Figure 4.10. Internal energy distribution in a steady state for various relaxation
parameters: ¢=0.05, 0.1, 0.2, 0.4. U=0.1, e;=e,=1.0. The internal energy subtracted
by linear distribution is shown. The result shows dependence on ¢, which contradicts

the analytical prediction.
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Figure 4.11. Internal energy distribution in a steady state for various wall
temperatures: e;=e,=0.6, 1.0, 1.3. U=0.1, ¢=0.1. The intemal energy subtracted by

linear distribution is shown. The result shows dependence on e, which contradicts the

analytical prediction.



4.6. Conclusions _

Existing three-dimensional LBM multi-speed thermal models do not provide a correct
solution.

In order to recover correct fluid equations, up-to fourth orders of local flow velocity should
be retained in the local equilibrium distribution function and particle velocities must have up-to
seventh rank tensor isotropy. In the FDLBM, particle velocities can be selected independently
from the lattice configuration. Therefore, a group of particle velocities tﬁat has high rank
1sotropic tensors can be adopted.

A new three-dimensional multi-speed thermal model for the FDLBM was proposed. In the
model, a group of thirty-two particle velocities is selected as a basic group of moving particles.
These moving particles are derived from vectors that point to the vertexes of dodecahedron and
icosahedron from the center. As they have quasi-isotropic sixth rank tensor, the model made up
of a rest particle and four speeds of the basic groups showed good agreement with the

analytical solutions when applied to two flow simulations.
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5. Boundary conditions for thermal models of finite difference lattice
Boltzmann method

5.1. Introduction
A lot of studies”” have been done to make clear boundary conditions for the lattice

Boltzmann method (LBM). Most of them are about boundary conditions for non-thermal
models that have limited number of particle velocities. Few studies descrik;e a clear receipt of
boundary conditions for thermal models of the finite difference lattice Boltzmann method
(FDLBM), that have multi-speed particle velocitigs. Furthermore, many of the previous work
were about boundary conditions for planar wall. It seems difficult to handle conditions for
corners.” We challenged to these themes. '

In order to realize accurate boundary conditions, it is necessary not only to realize boundary
conditions explicitly stated, such as velocities and temperatures, but also to assure the
conditions that are not explicitly indicated, such as continuity of stress tensor. To accomplish
these requirements, there seem to be two ways. One is to assume the boundary as part of fluid
and to apply evolution equation there. We shall call this method “the control node method.”
The other, which shall be called “extrapolation method,” is to define the distribution functions
on the boundary by inverse mapping or extrapolation from quantities in the fluid domain.

This paper present these two methods and compare their performances, applying benchmark

tests.

5.2. Thermal FDLBM model
We show here a two-dimensional thermal model of FDLBM that was used in this study. The

evolution of the distribution function f; for particle velocity ¢;; is governed by the following

equation. The particle velocities are shown in Figure 5.1.
& o 1
- _kl_gaEkia =—=(fu =) (5.1)

+ Clcia
ot or é

a

where ¢ is time, 7, the spatial coordinate ( x, y ), g, the gravity acceleration vector ( 0, -g ),

and ¢ the relaxation parameter. Macroscopic quantities: the density o, the velocity u ,, and

the internal energy e, are defined as follows.

p=S1. (52)
ki
Py, = Zfla’ckia (5.3)
ki
u’ cl
P(e+—2—):Zf;a-7 (5.4
ki

52



The local equilibrium distribution function £ ” is defined as

) _ (0)
w = PF.oy

where

P

e 2e 2e? 2¢?

F, = 1—i(25593 —525¢* +392e)
144

F =—1—(195e3 ~355¢? +180e)
240

F, = ——1_(75¢° —125¢* + 36¢)
480

F =7§6(15e3 1507 + 4e)

F, =—IIE(3€3 - 4e?)

F, =-—1—(3e3 —e?)

* 192

The external force distribution function E,;, is defined as

©)
c, o,
_ kia (0) ki
Epe =- PF. @, + pF,
€ ki
k=0 k=1 k=2 k=3
rest particle  speed 1 speed 2 speed 3
o % i=1 ,
=2
i=4
C k=4 k=5
kiy speed 4/ 2 speed 2/ 2
» =2 =1
v ><
-~ -3 i=4
oO 1 2 3 Ckix

Figure 5.1. Particle velocities.

2 2 3
(0 :1+_(M_£+(cﬁ“u”) __(ckmua)u +(Ckiaua)

e’

(5.5)

(5.6)

)

(.8

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



By applying the Chapman-Enskog expansion, the Navier-Stokes equations can be recovered

with the error of 0 (u4)

op
8 0 5.14
o ° (pu,) = | G.14)
0 0
5(pua)+—(pu,,uﬂ +P5aﬂ) (5.15)
0 éup Out, |
_ +A . =0
arﬂ[ (ar ar,;) 8r,] Pg
o uz 0 lI2 P
5[ﬂ(€+?)]+—é;:[pua(e+7+;)] (5.16)
0. ,0e Oug  Ou, ou,
_—— —_— —+ + a + ata :O
o [x o pn g ( &, o, U ar, 1+ pgau

where the pressure P, the viscosity y, the second viscosity 4, and the heat conductivity x~ are
defined as follows.

P = pe _

U= ped (5.17 abcd)
A=-ped

K'=2peg¢

5.3. Control node method
We apply the evolution equation to boundary nodes assuming that they are part of fluid.
Outside the boundary, fictitious nodes, called *“control nodes” are arranged. Assuming second

order upwind difference scheme, two layers are necessary, as shown in Figure 5.2.

@ fluid node @ bowdarynode (O cortrol node

Figure 5.2. Sketch of the control node method.



Applying Euler scheme on time derivative, the following finite difference equation is

derived from the evolution equation (5.1).

frl= froc Zf“ At-c,, %At—gE:yAt—é(fa" ~fO"MAL (5.18)

a a
29

o, 3fd —Afea t fai

x| 2Ax

o o, 3JF At S (5.19)
x| - 2Ax

aj.ar _ 3fan —4fa},1j—l +.far,lj-—f.)

& || 20y
V|| e At Sy (5.20)
o) -2Ay

where the suffix 7k is written as a for simplicity, and the suffix » indicates the time step.

Spatial derivatives are defined differently depending on the direction of particle velocities.
The upper parts of the equations (5.19) and (5.20) are for particles that have positive speed,
and the lower parts for negative speed. Suffixes i-1, i-2, and j-1, /-2 indicate the nodes in x and

y direction, respectively from the nominal node.

5.3.1. Boundary conditions on planar walls

Let us consider the boundary conditions on the left wall as an example (see Figure 5.3). We
post an equilibrium-type distribution function £,”( 0., u,, V., e.) on the control node (-2, j).
Assuming the distribution of the node (-1, f) is an average of the nodes (-2, j) and (0, j), the

spatial dertvative for positive particle velocities (rightward direction) is expressed as:

Jy

Figure 5.3. Left wall of the control node method.
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B | 2Ax 2Ax%

Therefore, the finite difference evolution equation on the boundary node becomes

faﬂ _fa(O)(pc’uc>vc>ec
2Ax

1
fan+ =fan _cax

Oox

n 1 n n
- gE, At 5 (f = 17" )b

afa_ - ay—a

(5-,2 1)

(5.22)

In the [ ] of equation (5.22), the upper part is chosen for positive ¢, and the lower part for

negative c,. The control distribution function £,%( 0., u., v., e.) is used for the adjustment of

boundary condition. If macroscopic quantities and/or their combinations are given as boundary

conditions, these macroscopic requirements are expressed by moment summations on the

distribution at the step »+1. Some examples are shown below.

n+l
pn=>.1
a
_ n+l
pwuw - Zfa Cm:
a

_ n+l
PV _Zfa Ca
a

2 2 2
uw+vw _ n+l ca
W
2
C

P JIEF], = £ ~ Ca

2

n+ ca
P IEF ], :zfa l —{cay

p.(e, +

(3.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

where [E.L], is energy flux per unit mass in « direction. These requirements can be

satisfied by adjusting o ., #., V., e.. Specific examples are given.

Wall example 1 (adiabatic with zero velocities)

The conditions of adiabatic wall with zero velocities are expressed as

Zf;nﬂcax =0

Z fan+1 cay =0

a
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n+l c: .
> L > Cax =0 (3.31)

Applying these conditions on the equation (5.22), we get the following equations.

{Y el [f;’ - f(f°’(pcucvcec)]—2% = ZalcmH .- gc;(z;—“ At (5.32)

At (5.33)

\ At o,
z+: CaxCoy [fa - fa(O) (:Dcucvcec‘ ]EE - ; CayHa B g Caxcay—g[;

2 2 2 -
where
n 5fa n 1 n n
H,=f]-c, & At—gE@At—g(fa — 1" At (5.35)

Z means the summation over positive c.,, 2 Over negative ¢, and Z over all ¢,..

We have four degrees of freedom: 0., u., V.. e, against three conditions. It is physically
understandable that . strongly affects on the requirement o0 ,%,~0, v.on 0,v,=0, and e, on
0wE.E]=0. The o affects evenly on each requirement, however, the effect is quite small.
Therefore, equations (5.32) through (5.34) are solved by adjusting u. , v, , e, in the control

distribution function. The density o . is extrapolated from the fluid domain (Figure 5.4).

Pe=3p0—2p (3.36)

P
Ao
P/c’,,.-i 7
/N
X

-2 -1 0 1 i

Figure 5.4. Density extrapoiation in the control node method.

Equations (5.32) through (5.34) are solved by Newton Raphson method assuming following

iteration equation:

()] )] ()] _
IO 0o 110, Ve,8.) = F7( e Ueo, Vi, €00) + @;‘; Au, + g, Av, +%Aec (.37)

L ov
where uq, Vo, €. are initial estimated values and Adu, ,4v,. , and de, are their deviations.
Following sensitivity functions are readily available by differentiating the equilibrium

distribution function.



© (0
d, =p.F, 09, (5.38)

P

af(O) aw(f))

e = p F,—H 5.39
av pc k aV ( )
o7 oF, o

Voo p (Zep o5, %0 (5.40)
oe Oe Oe

The convergence in iteration is quite fast. Three times of the iteration are enough.
Wall example 2 (constant temperature (or internal energy e,) with non-zero velocities:

uwa vw )

These conditions are expressed as

>, —c,)=0 (5.41)

> i, —e,)=0 (5.42)

a2 +v2 Cl
n+l e A_*_uw w |_“a :O 544
gfa K TS (5.43)

Like the wall example 1, 0. is estimated from the fluid domain and the equations above are

solved in terms of ., v, and e, .

5.3.2. Boundary conditions on corners

The example of a lower left corner is shown in Figure 5.5. Control distribution functions are
placed on the two nodes: (0, u; , v , €,) on the node (-2,0), and £, 0 ys Uy, Vy, €,)0n
the node (0,-2).

0
fa( )(pxsux:vxaex)

-2
(0) el
fa (py?uy7vy7ey)

Figure 5.5. Lower left comer of control node method.



The distributions on the nodes (-1,0) and (0,-1) are averaged values of their both sides. Then,

the evolution equation on the corner (0,0) becomes:

f‘an - -f;(OJ(px7llx7‘)x’ex)

_f:H — f: "ca_\. ;fAX; At
o 5.44
Jo = L2 Pyt vy o
a a 2y Ty ty
2Ay " 1 "
~c,, ol At-gE,yAt—E(fa — fOMAL
%y

The relationship between macroscopic quantity requirements and the distribution function of
the step »+1 are similar to the case of wall. However, we have eight variables for boundary |
control: o, Ux, Vi, €, 0y, Uy, v, €, Appropriate variables have to be selected according to
boundary conditions, and others are fixed at values extrapolated from the fluid domain. Let us

show specific procedures according to the following examples.

Corner example 1 (adiabatic with zero velocities)

The requirement for zero velocity u,=0 is adjusted by the control variable #, of the node
(-2,0) and the requirement for zero energy flux in x direction is by e,. The situation in y
direction is the same as in x direction. Namely, v,=0 is by v, , and zero energy flux in y
direction is by e, . Other variables yield minor effects. Therefore, during iteration process, the

following variables are fixed at values extrapolated from the fluid domain:

pe=3p0 =2 (5.45)
Py =3ps —2pi (5.46)
v, =0 (5.47)
u,=0 (5.48)

Boundary condition requirements expressed by following equations are solved by adjusting the

control variables: u, , v, , e, , and e,.

Z e, =0 ‘ (5.49)

a

D fe, =0 - (5.50)
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Sl =0 (5.51)

Zae =0 (5.52)

Corner example 2 (adiabatic on the lower side, constant temperature (or internal
energy ¢,) on the left side, and zero velocities)
Same as the previous example, o, 0, , Vx , and u, are fixed at extrapolated values. Control

variables u, , v, , e, , and e, are used to solve following equations.

D flMe, =0 (5.53)
> fMe,, =0 (5.54)
> fr e, ~Zey=0 (5.35)
~ 2

wt Ca .
L 1—2—%, =0 (5.56)

5.4. Extrapolation method
This method is a modification of McNamara."” The sketch of this method is shown in

Figure 5.6.

RS\
& fluid node @ boundary node

Figure 5.6. Sketch of the extrapolation method.

Distribution function is divided into two parts. One is equilibrium distribution function £,
and the other is non-equilibrium part £". The macroscopic quantities: 0, u ,, e, are represented

by £ and quantities, such as stress tensors, are represented by £,.
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o= O+ Y (5.57)

In most cases, boundary conditions are given as the macroscopic quantities: o, #,, e. In
order to guarantee the continuity of stress tensors, it is enough to assure the continuity of £, in
stead of knowing individual tensors. In prior to applying the evolution equation on fluid node,
the distribution functions on boundary nodes are arranged so that the equilibrium part satisfies
the boundary condition explicitly stated and the non-equilibrium part is continuous.

Same as control node method, second order upwind scheme was applied on most of fluid
nodes. However, first order upwind scheme was applied onto the outermost fluid nodes. Let us

show specific examples.

Wall example 1 (constant temperature (or internal energy e,) with non-zero velocities:

Uy Vyy )
Density on the wall, which is not required as boundary condition, is extrapolated from the

fluid domain by a quadratic fit (Figure 5.7).

Po=3py =3P, + ps (5.58)

Figure5.7. Left wall of the extrapolation method.

Non-equilibrium distribution, which is defined as the difference between the distribution and

the equilibrium distribution, is linearly extrapolated from the fluid domain.

U= FO% =201 - f OO0 -1 - £, (5.59)

Consequently, the distribution function on the boundary node (0, ) is given by

fo= g u,v, e )+ o = £, (5.60)

Wall example 2 (adiabatic wall)
If adiabatic condition is required instead of being given as temperature itself, the
temperature, or internal energy is given by extrapolation from the fluid domain, assuming

quadratic equation and vertex on the boundary (see Figure 5.8).
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Figure 5.8. Extrapolation for adiabatic condition.

1
e, = 5(4e1 -e,)

Distribution on corners

The evolution equation is applied only on fluid nodes, which do not use any information of
comers. Therefore, the distribution functions on corners are not necessary to solve flows.

However, if a complete set of the distributions is desired, the following extrapolation

procedure is applied (Figure 5.9).

Py =P+ Py P

0o _ 0 1 1
e, =e +e;—e;

fa =100 = U = LO0 + 1 - L) -1 - LT,

Jjy
R
1
X
°§\)\\ >

Figure 5.9. Lower left corner of extrapolation method.

5.5. Benchmark test
The performance of the two methods were evaluated in three tests.
Recovery of hydrostatic equilibrium
Thermal cavity flow

Thermal Couette flow
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5.5.1. Recovery of hydrostatic equilibrium ,
Initially, a rectangular box of the size of L X L is filled with uniform fluid of density 0, and
internal energy e,. Gravity g is added at /=0 and on. The boundaries are adiabatic with zero
velocities. At an early stage, the momentum equilibrium is recovered, resulting higher
temperature in lower part of the fluid and lower temperature in the upper part. Thereafter, long
process for acquiring energy equilibrium, namely, process to uniform temperature, follows.

The final pressure distribution along vertical axis y should be:

gly-L/ 2)} (5.65)

P = pye, exp[— "
0

The time of about 4000 in FDLBM time-units was required to get uniform temperature. The
mass p and the energy £, which is calculated by following formula, at the nodes of 21 X 21 are

summed in each time step.
u2
E=p e+—2—+g(y—L/2) (5.66)

Histories of the summed values of mass and energy, divided by the values at /=0, are shown
in Figure 5.10. The final pressure distribution is shown in Figure 5.11. The conservation of
mass and energy is excellent for the control node method, resulting in a good agreement in
pressure distribution with the analysis. The performance of the extrapolation method is
satisfactory, though some leak-in was observed, resulting in a higher pressure in the

equilibrium state.

1.004 — ——r 1.004 ——————g
: ’(E: otntrol lnf().de o Control node
1.003 + xtrapolation . 1.003 - + Extrapolation =
2z
2 1.002f { gloo - i
=l (5
= 5 l
< = +
1001 4 £ro0f Lt
2 ; T
+ + * " et 7
+ + + * + 1 + +
& ¢ & & S 60000 o0 o ol 163 & 00000000 o0 ol
. . . - I s 1 : ] "
0.9995 T000 2000 30004000 0 1000 2000 3000 4000
Time Time
(a) Conservation of the density (b) Conservation of the energy

Figure 5.10. Conservation of the density and the energy.
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Figure 5.11. Pressure equilibrium.

5.5.2. Thermal cavity flow

The sketch of the simulation is shown in Figure 5.12. Upper and lower walls are adiabatic.
Left wall has higher temperature T+ A4 7/2 (or internal energy e,+ Ae) and right wall has lower
temperature 7y,- A7/2 (or internal energy e,- 4e). Due to the buoyancy caused by the

temperature difference, clockwise flow 1s generated.

y
!

Figure 5.12. Sketch of the thermal cavity flow.

To compare the result with the solution for Boussinesq approximation, the numerical
simulations were conducted for small gravity and small temperature difference. The
non-dimensional equations for Boussinesq approximation are derived from the Navier-Stokes

equations assuming that the speed of flow is small, the density changes only by temperature
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variation, the dissipation of kinetic energy into heat can be neglected, and the physical

properties are considered constant over the flow domain.®

ou

=0 5.67
- | 6
Oty o OB (OP _p 0 0y \Oday copop; (5.68)

u )
i ' oFr, OF  OF OF OF
or +1I, a:f —aT =0 (5.69)
o oF oF

o o

where 7" and P* are variations from 7, and hydrostatic pressure distribution, respectively. The
variables with cap “-” are non-dimensional quantities normalized by characteristic values:
length L, speed « /L , and temperature difference 47(=2 4e/R). The i, is a unit vector (0, 1).

Parameters that characterize the flow: Grashof number G, and Prandtl number P,, are defined

as,
ATL?
G, = E;z—_ (5.70)
p=Y (5.71)
K
where

1 (op 1 R .
p=-— 3T , = };‘ =~ . thermal expansion parameter

p o eO
y =% kinetic VISCOSItY (5.72 abc)
Po
K = Rx’ : thermal conductivity
p Oc P

Numerical simulations for Grashof number=10°> (Prandt]! number is unity for BGK model)
were conducted, varying the meshes: 21 X21, 41 X41, 81 X81, and 161 X 161. The acquisition
of steady state was judged when the relative variation of the maximum flow speed became less
than 5 X 10 in 100 FDLBM time-units. About 3200 time-units was required in most cases.

The general view of velocity vectors and temperature contours for the mesh of 161 X161 is
shown in Figure 5.13. Horizontal velocity along mid-vertical axis and vertical velocity along
mid-horizontal axis are shown in Figure 5.14. Temperature distribution at upper boundary, mid
position, and lower boundary are shown in Figure 5.15. In these figures, Boussinesq solutions
are also shown. Corresponding Boussinesq solution was obtained using the software of
HSMAC method,”” whose adequacy was confirmed by comparing it with the results of
reference."’” Although some differences due to the departure from Boussinesq approximation

are observed in the results, agreements are generally good.



Figure 3.13. Velocity vectors and temperature contours of thermal cavity flow.
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(a) Horizontal speed along mid-vertical axis (b) Vertical speed along mid-horizontal axis

Figure 5.14. Velocity distribution of thermal cavity flow.
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Figure 5.15. Temperature distribution of thermal cavity flow.
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To confirm the convergence rate, error norms of velocity £, and of temperature Er are
calculated by following formulas. The reference values: #,,,7,,,7, are taken from the solution

for the highest resolution 161 X 161, and the summation is taken for the common nodes of 21

X21.

£ - VE@-7,) +Y -7, 575
JZE&2+ZV¢,2 '
’ T* _]—_,-* 2
Ey = 2 =) , (5.74)

The results are shown in Figure 5.16. The solution converges nearly at the rate of third order

for both methods

—QO— Speed error Control node 1
— -0~ - Speed error Extrapolation |
—A—-. Temp. error Control node ]
---—--- Temp. error Extrapolation_|

relative error

01k

0.01¢

0.001 =55 20 50 80
lattice size

Figure 5.16. Convergence with mesh sizes.

5.5.3. Thermal Couette flow
The geometry of the flow is sketched in Figure 5.17. The upper wall, which is L apart from

the lower wall, is moving at a speed of U and has an internal energy e,. The lower wall is at

rest and has e;. The right and left boundaries are assumed periodic.
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Figure 5.17. Sketch of the thermal Couette flow

Assuming d/ 8t=0, 8/ 8x=0, and v=0, we obtain analytical solutions for internal energy e

along vertical axis (¥ =y/L).

—=Jy + ; YA = Y)for e;>e (5.75)
€ — ¢ 2x'(e; —e;)
e—e, pU? - _

= y(l - y) for e;=e=ep (5.76)

Simulation result for e,=e, is shown in Figure 5.18 and for e;>e,; in Figure 5.19. Excellent
agreement with the analytical solution for the control node method and less but still good

agreement for the extrapolation method are shown.

14
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+ Extrapolation
0.8
=]
N
Z 06
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>
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Figure 5.18. Temperature distribution for e; = e;.
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Figure 5.19. Temperature distribution for e;> e;.

5.6. Conclusions
Two methods of boundary conditions that can be applied to thermal models of FDLBM were

studied and were evaluated by three tests.

First method, called “control node method,” can handle wide variety of boundary conditions
and showed excellent performance on the tests. The structure is slightly complicated and it
seems rather tedious to make computing software. However, if accurate simulation is desired,
control node method should be used.

Second method, called “‘extrapolation method” is simple. Making computing software is
quite easy and the performance is assured to some extent. It is a viable method if it is not

required strict accuracy.
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6. Thermal cavity flow of compressible fluids ,
-Numerical simulation by a newly proposed model of finite
difference lattice Boltzmann method

6.1. Introduction

Numerical simulations have been extensively performed on natural convection in a square
cavity. Most of these studies are for Boussinesq fluid.*® Although some studies®® treat the
flows as compressible fluid, they do not state clearly how much compressibility affects the
flows and how far the Boussinesq approximation is considered valid.

The finite difference lattice Boltzmann method (FDLBM) is a new numerical tool for
simulating viscous fluid flows. While existing models of FDLBM for compressible fluid have
drawbacks of poor numerical stability and narrow band of temperature, we developed an
FDLBM model for compressible fluid that is very stable and can handle wide range of
temperature.

Using this model, we studied thermal cavity flow for compressible fluids. The simulations
were conducted by varying viscosity, gravity, and temperature difference in a systematic
manner. Our objectives are to reveal how compressibility affects natural convection and to

confirm the range over which Boussinesq approximation insists its validity.

6.2. Finite difference lattice Boltzmann method
6.2.1, Formulation
B¢10W is the two-dimensional thermal FDLBM model used in this study. The evolution of
the distribution function f; for particle velocity ¢, is governed by the following equation,
which is solved using Euler and second upwind difference scheme.
U S

1
5 e 5 " 8aFa =—;(fk,-— ) (6.1)

where the subscript £ indicates a group of particle velocities whose speed is ¢; and 7 indicates
its direction. The subscript « indicates x or y component. The variable ¢ is time, #, the
spatial coordinate, g, the gravity acceleration vector ( 0, -g ), £'® the local equilibrium
distribution function, £, the external force distribution function, and ¢ the relaxation
parameter.

The particles consist of a rest particle and four groups of moving particles as shown in Figure

6.1.
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speed c3
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Figure 6.1. Particle velocities.

While existing models adopt the group of square directions, which has up-to second rank
tensor isotropy, or adopt the group of hexagonal directions, which has up-to fourth rank tensor
1sotropy, our model is based on the group of octagonal directions, which has sixth rank tensor
isotropy. This high isotropy contributes to the numerical stability and the applicability to wide
range of temperature.

Macroscopic quantities, the density o, the velocity u ,, and the internal energy e, are defined

as follows.
p=> fu (62)
ki
=Y fuCua (6.3)
ki
2 2 .
ple+ —”2—) = ; i 52"— (6.4)

The local equilibrium distribution function is defined as:

W= pFp 6,5)
2t 2
o = (1=t ) 2 (- ) enata)
2e 8e 6
.6
+1(1”2)(c )+ (c )+l(c )4 o0
—(1- ki — ey ki
23 o 6e ota 24e atter
1 4
F = [48¢
) G Gl
20202 (6.7)
—6(c22 +c§ -*—c‘f)e3 +(czc3 +c3c4 +c4c2) _4~ie]
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1 4
F,= [48¢
ey —e)e; —ef)e; —¢f)

22 2 (6.8)
foee
~6(c2 +c2 +ctye® +(ciel +cict +cle)er - 2L : Le]
F= ! [48e*
=
c3(ef —ed)e3 —ef)(ef —¢3)
(2022 6.9)
—6(c? +¢f +c2)e’ +(ckcf +clcl +cicy)e? -1 2]
1 4
F4 = [48€
cZ (cf - 012 )(cZ - c% )(cZ - 032 )
(26252 (6.10)
—6(c? +c2 +c2)ed + (cie? + ciel + ciclyer - 123 ¢ ‘
F,=1-8(/y+F,+F,+F)) (6.11)
The external force distribution function is defined as
(®
Chia 0 0Py
Eye =- PFk(Pl(a) + pF, (6.12)
€ ackiaf

By applying the Chapman-Enskog expansion, the above formulation is shown to be
equivalent to the following fluid equations.

cp 0

ot Oor

a

(pugy)=0 (6.13)

U
ot 57‘/3 ra

6.14)
6 dus ou, ou, (
- a _ S =0
or, [u( o, + ory  or, N+ g,
0 u’ d u’ P
— +—)]+ e+ —+—
Y [p(e 5 )] o [pua(e 5 p)] (6.15)
0 , Oe Ou, Ou, OJu,
- K + uu + - 04)]=0
or, [ OF, pite or. Orz Or, 2]
where
P= pe : the pressure
M = peg : the viscosity coefficient (6.16 abc)

k' =2 ped : the heat conductivity

The following equation relates the temperature 7 with the internal energy (R: gas constant).

T =e/R (6.17)
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6.2.2. Validation of the method _
The model is confirmed valid by two numerical simulations. First, the speed of sound was
measured. The result, shown in Figure 6.2, indicates that sound speed obtained by the

simulation agrees well with the theoretical value of equation (6.18).

c, =+2e (6.18)

Second, shear flow between parallel walls (Couette flow) was investigated. The upper wall,
which 1s H apart from the lower wall and has internal energy e,, starts to move with speed U.

The lower wall has e; and is at rest. The result for e;=e, is shown in Figure 6.3.

2.0 T T T

Sound speed
=

<
L
T

(o] FDLBM simulation
Theoretical value

0 0.5 1 15 2
Internal energy

Figure 6.2. Simulation result of speed of sound.
Compared with the theoretical value (= y2¢ ).

1

Vertical poosition y/H
7

Vertical position y/H
o

O Simulation

0 — Analysis
. T 10005 1001
0 Speed 05 yu 1 Int. energy

(@ (b)

Figure 6.3. Couette flow. e;=e,=1.0. (a) Horizontal speed distribution

at various instants. (b) Internal energy distribution at steady state.
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The horizontal speed distribution along vertical axis y at various instants £, and the internal

energy distribution at steady state, agree well with the theoretical values (6.19) and (6.20),

respectively.
u _y 2¢ i : M| y
—="———) €Xx ——— |sin| nr(l-—
5 ﬂ; { sz} { ( H)} (6.19)
U?
e—ey =LY 2 ———) (6.20)
2k’

6.3. Thermal cavity flow
The sketch of the simulation is shown in Figure 6.4. The upper and lower walls are adiabatic.

The left wall has a higher temperature of 75+ 47/2 (or internal energy eq+ 4 e) than that of the
right wall of Tp- A7/2 (or internal energy eo- 4e). Due to the buoyancy caused by the

temperature difference, clockwise flow is generated.

adiabatic

L~ .

AT AT
T, +— T,——
2 g 2
(60 + Ae) (eo - Ae)
N
A AT X
adiabatic L

Figure 6.4. Sketch of the thermal cavity flow.

Parameters characterizing the flow are the Grashof number Gr, the Froude number F¥, the

Prandt] number Pr, and the normalized temperature difference 6. The Prandtl number is unity

in the single-relaxation (BGK) formulation.

gB,ATL? B gATL’ _ 2gAel?

Gr = = = (6.21)
(Ho/Po)*  Tole/po)*  ei¢?
Fr = ZZ{—O = % (6.22)
AT  2Ae
=20 =228 (6.23)
T, €
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where suffix 0 denotes a mean value, £, the volume expansion parameter _
(=-1/p(@p/oT), =T, ), and ¥ the specific heat ratio (=2 in the monatomic formulation).

Stream function ¥ for compressible steady flows is calculated by integrating the following

equations.
é]
Yoy (6.24)
Ox _
oy
— = pu 6.25
Py P (6.25)

The simulation starts from the initial condition as an equilibrium state in the vertical
direction in the presence of gravity assuming the temperature field varies linearly in the
horizontal direction. A

Parametric study was conducted in the combinations of the Froude number, the normalized

temperature difference, and the Grashof number, as shown in Figure 6.5.

Fr

Figure 6.5. Cases of the numerical simulation.
The circled numbers are identified for combinations of Fr and 6.

At each combination, Gr varies from 10’ to 10°,

6.4. Results and discussions

6.4.1. Relevance of the mesh size
The effect of the mesh size on numerical accuracy was evaluated; an example is shown in

Figure 6.6. Finer mesh is necessary as the Grashof number increases. We concluded the mesh

in Table 6.1 to assure the accuracy of 1% both for velocity and temperature fields.
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Figure 6.6. Numerical accuracy with mesh sizes.
Horizontal speed along vertical centerline for
the case of 6=0.1, Fr=20, Gr=10".

Table 6.1. Meshes of the numerical simulation

Gr 10° 10* 10° 10°
mesh 81x81 [ 101x101 [161x161 |161x161

6.4.2. The Grashof number effect
The effect of the Grashof number for the case of 8=0.1 and #7=20 1s shown on the

temperature contours in Figure 6.7, and on the stream function contours in Figure 6.8. As the
Grashof number increases, temperature vanation becomes concentrated next to the left and
right walls (temperature boundary layers: TBL). In the central region between these layers, the
fluid is in a stratified state as is typical in Figure 6.7(c) and (d); the upper fluid is warm and
thin, while the lower fluid 1s cool and dense.

The stream function contour indicates that, at Gr=10, the circulation has a single core.
However, as Gr increases the circulation becomes flattened and finally has two cores for Gr >
10°. Let us take as an example the flow near the right wall at Gr=10°. The down flow just
outside the TBL transports the heat downward. Thus, as shown in Figure 6.9, locally inverted
temperature distribution ( de/ dx > 0) is exerted. A reverse phenomenon occurs on the left wall.

This locally inverted temperature distribution induces secondary flows with closed streamlines

there.
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(b) Gr=10* (c) Gr=10° (d) Gr=10°

Figure 6.7. Temperature ( e ) contours for the case of 6=0.1, Fr=20.

-6.2400E-002 0.9
(a) Gr=10°

-7.0627E-002
(b) Gr=10"

-3.8?34E-002 0.0
(c) Gr=10°

0.0 -2.3640E-002 0.0

(d) Gr=10°

Figure 6.8. Stream function contours for the case of =0.1, Fr=20.
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Figure 6.9. Temperature distribution along mid-depth horizontal line

for the case of §=0.1, Fr=20. Inverted temperature distribution ( de/&x > 0) near

the walls are significant at Gr=10, 10°.
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6.4.3. Compressibility effect »
The temperature contour at various Fr numbers for the combination of #=0.1 and Gr=10’ is

shown in Figure 6.10. The temperature in the down flow near the right wall increases due to
compressibility, as the fluid is descending. On the contrary, the fluid in the up flow near the left
wall inflates to be cooled. Therefore, as Fr decreases (or the gravity increases), the gradient of
temperature in TBL becomes steeper and the width of TBL becomes thinner.

The stream function, shown in Figure 6.11, indicates that the flow near the béttom prevails

over the flow near the ceiling, as /¥ decreases.

3.5000E-001 1.0500E+000 9.SO00E-001 1.0500E+000 9.SO00E-001 1.0500E+000 9.S000E-001 1. 0500 +000
(a) Fr=100 (b) Fr=20 (c) Fr=5 (d) Fr=2
Figure 6.10. Temperature () contours for the case of 6=0.1, Gr=10".

-1. 9854€-002 0.0 -3.6794E-002 0.0  -4.4579E-002 0.0 -4.8135E-002 0.0
(a) Fr=100 (b) Fr=20 (c) Fr=5 (d) Fr=2

Figure 6.11. Stream function contours for the case of =0.1, Gr=10’.
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6.4.4. Temperature difference effect
The temperature difference is a source of convection. Therefore, as 8 increases, circulation

becomes stronger. At the same time, since the viécosity and heat conductivity are functions of
temperature, asymmetry of the flow becomes significant. At Gr=10° the temperature varies
more horizontally than vertically, therefore, honzontal asymmetry is significant as indicated in
the stream functions of Figure 6.12 (a). On the other hand, at Gr=10° where temperature varies
more vertically than horizontally, vertical asymmetry is significant (Figure 6.12 (b)).

-2. 1844E-001 8.0 -9.7678E-002 0.0
(a) Gr=10° (b) Gr=10°
Figure 6.12. Stream function contours for the case of #=0.8, Fr=20.
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6.4.5. Asymptotic behavi

or to Boussinesq fluid

As implied in Figure 6.5, the flow of small 8 and large Fr leads to the Boussinesq flow. The

simulation, varying Fr for combination of #=0.1 and Gr=10>, was conducted. The result was

compared with the Boussinesq solution, which was obtained by the HSMAC method.”’ The

peak speeds (maximum and minimum speeds) in the horizontal direction are shown in Figure
6.13. The peak speeds in the vertical direction are shown in Figure 6.14. These figures clearly

indicate that the flow approaches to the Boussinesq flow as Fr increases. The Boussinesq

assumption is considered valid when Fr 2100 and 6=0.1 .

4 ! 1
B 35k -
&
3
a 3 -
E
5 -
= 251 x Boussinesq |
- —O— /umax/
----- A----- fumin/
1 1
2 10 100

Froude number

1000

Figure 6.13. The peak speeds in the horizontal direction at different F numbers
for 6=0.1, Gr=10".
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Figure 6.14. The peak speeds in the vertical direction at different Fr numbers for

6=0.1, G=10".
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6.4.6. Heat transfer characteristics »

Heat transfer characterized by the averaged Nusselt number was calculated at the walls by
the following equation.

Lo T .,
Nu = -0 Z’,"a}?(ﬁ)dy (6.26)

The value at the left wall (higher temperature) is slightly larger than that at thé right wall. The
result at the left wall is shown, as a function of Gr and F7, in Figure 6.15 (a). In the figure, the
value of the Boussinesq approximation is also shown. The figure indicates that compressibility
assists the increase of heat transfer.

The result as a function of Gr and 4 is shown in Figure 6.15 (b). The Nusselt number is Iess
sensitive to 6, or it slightly decreases as 8 increases, which is the opposite result to the

simulation study by Leonardi et al.“’, who say the Nusselt number increases as 6 increases.

12
—+— Boussinesq P
10f --o- Fr=100 R
---a--- Fr=20 A
g§F ~-o- Fr=5 R

Nusselt number

O 1 L
10° 10* 10° 10°
Grashof number

(a) Functions of Gr and Fr

10 2
—+— theta=0.1
8F -0 theta=02
g ---A--- theta=0.4
£ 6F - - theta=0.8
g 4
Z 9
10° ¢ 5 1of
Grashof number

(b) Functions of Gr and é

Figure 6.15. Heat conductivity characteristics.
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6.5. Conclusions _
The effects of viscosity, gravity, and temperature difference, on natural convection in a square
cavity were investigated and the features were revealed in a systematic manner.

As the Grashof number increases, temperature boundary layers (TBLs) are formed on the
walls. In the central region between the layers, the fluid is in a stratified state. The circulation
has a single core for small Gr. As Gr increases the circulation becomes flattened and finally
has two cores for large Gr. These secondary flows with closed streamlines aré induced by
locally inverted temperature distribution.

As the Froude number decreases (or the gravity increases) the gradient of temperature in
TBL becomes steeper and the width of TBL becomes thinner due to compressibility. As Fr
decreases the flow near the bottom prevails over the flow near the ceiling

As the temperature difference increases, circulation becomes strbnger. At the same time,
since the viscosity and heat conductivity are functions of temperature, the asymmetry of the
flow becomes significant. For small Gr, horizontal asymmetry of the flow is significant. On
the other hand, for large Gr, vertical asymmetry is significant.

It was confirmed that the flow of small & and large Fr leads to the Boussinesq flow. The
Boussinesq assumption is considered valid when £ =100 and §=0.1.

The Nusselt number increases as Gr increases. The compressibility assists the increase of
heat transfer. The Nusselt number is less sensitive to & or it slightly decreases as 6 increases,

which is the opposite result to the simulation study by Leonardi et al.
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