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New multi-speed BGK thermal model in finite difference
lattice Boltzmann method.
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Chapter 1 briefly describes the history of lattice Boltzmann method and
its “sibling” methods. Lafttice gas automata (LGA), lattice Boltzmann
method (LBM), and finite difference lattice Boltzmann method (FDLBM),
which have historically evolved in this order, are currently used in
simulating wide variety of fluid flows. These methods have common
features; microscopic models and mesoscopic kinetic equations are used to
represent macroscopic continuum flow. The basic premise for these ideas is
that the macroscopic dynamics of fluid is the result of the collective
behavior of many microscopic particles, and that although microscopic
details, like an interaction law between particles, affect parameters such as
viscosity, the form of macroscopic dynamics is less sensitive to microscopic
details.

The LGA is constructed as a simplified,. fictitious molecular dynamic in
which space, time, and particle velocities are discretized. To describe the
state of particle’s condition at each node x and each time 7, a set of Boolean
variables m;(x,/) is assumed, where the suffix / is the direction of the
velocity particle. If the particle of ith direction is present the variable
ni(x,0)is set unity, whereas if absent the n,(x,r) is set zero. The evolution of
the variable wi(x,f) is calculated by two steps; convection and collision.
Since the velocity particle ¢; is selected as to link adjacent nodes,
convection calculation is performed by simple arithmetic operation.
Collision operator is designed to conserve mass and momentum. Because of
the variable n;(x,r)’s Boolean nature, it is necessary to take ensemble
averages to obtain macroscopic quantities. )

The main feature of the LBM is to replace the Boolean variable n,(x.,/) by
distribution function fi(x,r) (=< n; > ; < > denotes an ensemble average).
Same as LGA, the velocity particle ¢; is selected as to link adjacent nodes.
Therefore, the evolution equation for the distribution function is simitar to
that of LGA. However, as the distribution functions themselves are
variables of the problem, the LBM is free from statistical noise.
Macroscopic quantities, the density and the mamentum, are defined by
taking velocity moment summations. Collision operator is required to
satisfy conservations of mass and momentum.

Single relaxation time scheme proposed by Bhatnagar, Gross, and Krook
(BGK scheme) is assumed in my study. Although the BGK scheme fixes the
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Prandtl number constant (=unity), it makes the collision operator quite
simple and still has capability of wide application.

The FDLBM was proposed as an extended version of LBM in order to
secure numerical stability and to apply non-uniform grids. In place of the
evolution equation of LBM, differential equation is used in the FDLBM, In
the LBM, the velocity particle ¢;, time increment 47, and the lattice
configuration must have a close relationship; the velocity particle has to
link the lattice nodes in unit time. However, in the FDLBM this requirement
is no more necessary. Therefore, time increment 47 can be adjusted to
satisfy CFL requirement for stable simulation, and non-uniform grids, like
polar grid or variable pitch grid are available in the FDLBM.

My doctoral study is on models of LBM and FDLBM, especially focusing
on FDLBM.

Chapter -2 discusses the possibility to construct a LBM BGK thermal
model. There are two ways to handle thermal fluids. One is the so-called
“multi-component thermal model,” where heat is handled as different
component from fluid. This model characterizes the flow as a Boussinesq
fluid. Another is the so-called "multi-speed thermal model,” where velocity
particles that have different speeds are used. The LBM BGK thermal models
have been proposed by several authors. While these models are intended to
correctly represent heat characteristics and compressibility, none of these
existing models provides satistactory accuracy. This chapter discusses the
possibility of a correct model and how to construct it. To recover correct
fluid equations, up-to fourth orders of local flow velocity should be retained
in the local equilibrium distribution function and the velocity particles
should have up-to seventh rank isotropy. It is concluded that it is possible to
construct a thermally correct two-dimensional LBM BGK multi-speed
model. However, a correct three-dimensional LBM BGK multi-speed
thermal model is theoretically impossible. A correct two-dimensional LBM
multi-speed thermal model that has global weighting coefficients in the
local equilibrium distribution function was proposed. Being applied 10 a
Couette flow, this model showed exact agreement with analytical solution.
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Chapter 3 proposes a new two-dimensional multi-speed thermal model for
the FDLBM. In the FDLBM velocity particles can be selected independently
from the lattice configuration. Therefore, velocity particles of octagonal

‘directions, which have up-lto seventh rank isotropic tensors, are adopted.

Furthermore, as the local equilibrium distribution function is determined
such that it retains as much Maxwellian characteristic as possible, the
proposed model ‘has excelient numerical stability in addition to strict
accuracy. The model was verified being applied to three flow simulations.
All results showed exact agreement with analytical solutions.

Chapter 4 proposes a new three-dimensional multi-speed thermal model
for the FDLBM. It has been shown in Chapter 2 that a three-dimensional
LBM BGK multi-speed thermal model is theoretically impossible. Contrary
to the LBM, as the FDLBM can select velocity particles independently from
the lattice configuration, in the proposed model, a group of thirty-two
velocity particles is selected as a basic group of moving particles; which are
derived from vectors that point to vertexes of the dodecahedron’and the
icosahedron from the center. As the group of thirty-two velocity particles
has a quasi-isotropic sixth rank tensor, the model made up of a rest particle
and four speeds of the basic groups showed good agreement with the
analytical solutions when applied to two flow simulations.

-Chapter 5 discusses methods of boundary condition. A lot of studies have
been done to make clear the boundary conditions for the LBM. Most of them
are about boundary conditions for non-thermal models that have a limited
number of vijocity particles. Few studies are found that describe a clear
receipt of boundary conditions for the FDLBM, especially for thermal
models that have a lvarg,e number of velocity particles. In this chapter two
methods of boundary conditions for thermal FDLBM are presented. Their
performances were compared, being applied to benchmark tests. First
method, called “control node method,” can handle a wide variety of
boundary conditions and showed an excellent performance on the tests.
Control node method should be applied if accurate simulation is intended.
Second method, called “extrapolation method,” is simple and easy to make

compuling software. Although the performance of extrapolation method is
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not so high as the first method, it'is a viable method if it is not required
strict accuracy.

Chapter 6 presents an example of application simulated by proposed
model and proposed method of boundary condition. In the past, numerical
simulations have been extensively performed on natural convection in a
square cavity with ditferently heated walls. Most of these studies are for
Boussinesq fluids. Although some studies treat the flows as compressible
fluids, they do not clearly state how much the compressibility affects the
flows and how far the Boussinesq approximation is considered valid. Using
the two-dimensional model in Chapter 3 and the control node method in
Chapter 5, thermal cavity flow for compressible fluids was studied in a

systematic manner and whole features thoroughly revealed.
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