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Abstract

In this thesis, I introduce a lattice polymerization model for the dynamics of cy-
toskeletal filaments including physical ingredients of (a) random motion in space, (b)
short range interaction with a threshold length, and (c) internal state dynamics. I
also introduce an effective kinetic model for linear polymerization with a threshold
length in a finite volume system. Using the lattice model, I simulate the character-
istic behavior of a single filament called dynamic instability which is a phenomenon
repeating slow growth phases and rapid shrinkage phases of a single microtubule
length observed in wvivo and in wvitro. 1 calculate the probability distribution func-
tions of short-time mean velocities with different time lags of a single filament in
several low concentration in the case of parameters showing the dynamic instability
and I found that the probability distribution functions have a peak in the positive
velocity region which is essentially independent of time lags. I also define a critical
concentration balancing the growth and shrinkage. I analyze the length behavior of
a single filament in the two limiting cases of a interaction parameter in the lattice
polymerization model without internal state variables which are corresponding to the
lattice gas model and the diffusion limited aggregation model. As a result, the growth
velocity is dependent on the concentration linearly (i.e a diffusive growth) and the
shrinkage velocity is almost dependent on the interaction parameter and independent
of the concentration. I also found some kind of shifted peak in the length distribution
of linear polymers which are longer than the threshold length in the lattice model
without the internal state dynamics. To understand the property of this shifted peak,
I construct an effective kinetic model with a threshold length in a finite volume sys-
tem. The effective kinetic model shows a shifted peak of the distribution over the
threshold length in each concentration like the shifted peak simulated in the lattice
polymerization model. I also found that the average length of filaments in the ki-
netic model depends on the threshold length exponentially and these peaks relax with
time. These suggests that the nucleation is a critical factor to the cellular dynamics.
The lattice model and the kinetic model is somewhat artificial but important for the

understanding of cellular process and the nature of cytoskeletal subunits.
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Chapter 1

Introduction

In this chapter, I state a need for a specified stochastic model for the understanding of
the recent phenomena observed in vivo and in vitro. 1 briefly review the experimental
background of cell and cytoskeleton and the theoretical background of polymerization
dynamics for cytoskeletal filaments. And I state the purpose and the structure of the

thesis.

1.1 Motivation

Recently the microscopic observation of the dynamics of a single macromolecule such
as a large protein or a supramolecule (i.e. a self-assemble chemical aggregate) has
become possible in vivo (i.e. in a living cell) or in vitro (i.e. in a test tube) in many
laboratories [1, 2, 3, 4, 5]. Many new features have emerged in the works of many
authors (for a review see [6]). To understand the phenomena and their mechanisms,
we need more specified models than that of macroscopic thermodynamics or chemical
reaction kinetics and we should treat the reaction kinetics more appropriately like
Oosawa et al.[7] (in which they discuss the linear and helical polymerizations of
macromolecules and treat not only a polymer concentration but also a monomer
concentration explicitly (see the subsection 1.3.1)). It is observed that the motions
of single macromolecules are rather stochastic and irregular. However they are also
energetically controlled and not completely random. On the other hand, these objects
are quite large compared to the atomic scale so that the microscopic approach starting

from an atomic Hamiltonian is still a formidable task. Therefore we need a new



CHAPTER 1. INTRODUCTION 2

model, which is essentially stochastic but containing necessary energetics in order
to understand the observed dynamical phenomena. Such a new model would build
a cross bridge between the protein scale and the cell scale and may be called as a
mesoscopic model.

Here I review the experimental background of the cell, in particularly, cytoskeletal

filaments briefly.

1.2 Experimental background of cytoskeletal fila-
ments

1.2.1 Cell

The basic unit of life is a biological cell [6]. Among the many events that occur in a
living cell, specific chemical transformations provide the cell with usable energy and
the molecules needed to form its structure and coordinate its activities. Water is
the most abundant molecule in a cell though there exist many small molecules (e.g.
ions, sugars, vitamins, fatty acids) and organic macromolecules (e.g. DNA, proteins,
polysaccharides). Here if I assume a cell size to be 0.001 cubic mm which is 0.1 mm
in the linear dimension (though there are various sizes in cells such as the size exceeds
10 cm in linear scale like the egg of an ostrich) and assume this small box filled up
with water. Then there exists about 3 x 10'® water molecules (H,O) which is derived
from the relationships between weight and volume i.e. 1 cm?® water weighs 1 g and
the relationships between the molecular weight and the Avogadro’s number i.e. 18
g water corresponds to 6.02 x 10?* molecules. To think of water freezing as one of
physical phanomena, this number is too large to simulate freezing using the molecular
dynamics method in the present super computer [8] where 512 water molecules are
freezed. So the biological cell is not easy to understand the whole instead of its
smallness. The biological cell also does not consists of only water (described in the
next paragraph) so that it is so complex a world like a jungle. Though there exist
some tremendous simulation models like E-Cell which simulate whole cell processes
including metabolism, gene expression, etc.[9], the model ignore the spatial effect. I

think the spatial effect is important for the cellular processes.
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The biological universe consists of two types of cells: prokaryotic cells, which lack
a defined nucleus and have a simplified internal organization, and eukaryotic cells,
which have a more complicated internal structure including a defined, membrane-
limited nucleus. Here I abstract five major subcellular systems (subsystems) which
exist commonly in nearly all the eukaryotic cells. Major five subsystems are as fol-
lows: (i) (information) storage subsystem consisting of nuclei including DNA, RNA,
proteins, ions, water, nuclear membrane, etc., (ii) boundary (or interface) subsys-
tem consisting of cell membrane (and cell wall in the case of plant) including Golgi
vesicles, ion channels and pumps, ions, water, etc., (iii) fuel-factory subsystem
of mitochondria including intracellular membranes, proteins, ions, water, etc., (iv)
material-factory subsystem of the rough and smooth endoplasmic reticula includ-
ing ribosomes, plasma membranes, ions, water, etc., and (v) network subsystem
of cytoskeletons and centrosomes including cytoskeletal filaments, their subunit pro-
teins, their associating proteins like motor proteins, ions, water, etc..

Next I describe the functions of above five subsystems. The storage subsystem,
(i), preserves genetic information and expresses genes appropriately i.e. synthesizes
mRNAs and ships off mRNAs appropriately. And in this subsystem there exists
the central dogma of molecular biology that DNA directs the synthesis of RNA, and
RNA then directs the synthesis of proteins. However, the one-way flow of information
posited by the central dogma (DNA — RNA — protein) does not reflect the role of
proteins in facilitating the information flow. The boundary subsystem, (ii), plays a
role as the interface between cellular and external world and in this system Golgi vesi-
cles direct membrane constituents to appropriate places in the cell. The fuel-factory
subsystem, (iii), synthesizes ATPs as energy of life and much of the cell’s energy
metabolism is carried out in this subsystem. The material-factory subsystem,(iv),
synthesizes proteins in cooperation with tRNA on the basis of mRNA information
from nuclei and also synthesizes lipids. And the network subsystem,(v), devises an
important strategy of life, i.e. disperses their subunits in the cytoplasm as electrolyte
solution for the cell motility, cell division and morphogenesis. It constructs and de-
stroys “rails” not only for the transport but also for the motion and shape of a cell.

The motor proteins walk on these “rails” of cytoskeletal filaments stochastically. I
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list some typical motor speeds in Tablel.1 (based on [10]).

Motor Speed in vivo [nm/s] | Speedin vitro [nm/s]
Myosin II 6,000 8,000
Myosin V 200 250
Cytoplasmic Dynein -1,100 -1,250
Kinesin 1,800 840

Table 1.1: Motor speeds in vivo and in vitro A positive speed denotes motion toward
the plus (rapidly polymerizing) end of the filament. A negative speed denotes motion
toward the minus end. Myosin walks on an actin filament and Dynein and Kinesin
walk on a microtubule.

This thesis deals with components of (v) network subsystem i.e. cytoskeletal

filaments. So I briefly review the cytoskeletal filaments in the next section.

1.2.2 Cytoskeletal filaments

Functions of cytoskeletal filaments

Cytoskeletal filaments are the multi-functional and dynamic objects in the biological
cells [6]. There are three major classes of cytoskeletal filaments: actin filaments
(also called microfilaments), microtubules, and intermediate filaments. I state
the functions of cytoskeletal filaments below briefly. Myosins’ walkings on the actin
filament make the muscle contraction which is so important in the animals (a myosin is
a linear motor protein). Microtubules constitute spindles from two centrosome origins
in the process of cell division and constitute cytoskeletal structures to make cellular
transport in the other interval from one centrosome origin, where a centrosome itself
consists of 9 + 2 structure microtubules: 9 microtubule triplets and 2 microtubule
singlets. Motor proteins such as kinesin and dynein walk on the microtubule. Other
9 4+ 2 microtubules: 9 microtubule doublets and 2 microtubule singlets constitute
flagellum and cilia which make the rotating motion by the F;F, protein complex
[11]. Microtubules also maintain the function and structure of neurons by lining in
parallel in cooperation with microtubule associating proteins (MAPs). Intermediate

filaments give elasticity in the biological cells.
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Structures of cytoskeletal filaments

The structure of a microtubule is a cylinder consisting of 13 protofilaments® , in outer
diameter of about 25 nm and in inner diameter of about 18 nm [12]. The structure
of an actin filament is double helix consisting of 2 protofilaments in diameter of 8 nm
[13]. These structures of two types of cytoskeletal filaments have been analyzed by the
technology of the X-ray crystallography in 1970’s. The structure of an intermediate
filament is quadplex of double helix consisting of 8 protofilaments, in diameter of
10 nm [14] which is like the ether cable of the present computer network. The
structure of an intermediate filament has not been determined completely at present.
The lengths of these cytoskeletal filaments span the scale from molecular to cellular

scale (~ 100pm (=0.1 mm)). I summarize the structure of cytoskeletal filaments in

Tablel.2.
Cytoskeletal filament Microtubule Actin filaments Intermediate filament
Number of Protofilaments 13 (9-17)* 2 8 (6-10)*
Diameter [nm] 25 8 10
Subunit af-tublin dimer | actin monomer keratin, vimentin, lamin
dimers, etc.(called IF proteins)

Table 1.2: Structures of Cytoskeletal Filaments. * The number of protofilaments
range in several value depending on their environment.

Structures of subunits of cytoskeletal filaments

The subunits of cytoskeletal filaments are proteins. The subunit of microtubule is a
af tubulin heterodimer which consists of 8-nm-dumbbell-shape proteins dimerized of
slightly-different 4-nm-globule proteins [15]. The subunit of actin filament is an actin
monomer which is a 5-nm-globule protein [16]. And the subunit of an intermediate
filament consists of several protein dimers such as a vimentin dimer, a lamin dimer,
a keratin dimer and so on (these are called IF proteins), these are helical (i.e.
not globular) several-nm proteins. The structures of a tubulin and a actin were
analyzed by the cooperations of the technology of the electrocrystallography and the

DNA sequencing. The subunit proteins constitute protofilaments (linear filament)

Lwhere a protofilament stands for the number of lines which subunits are arranged linearly.
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described above. But I state again the number of protofilaments in relation to the
growth of a filament by a subunit addition. A microtubule has 13 protofilaments, so
the growth of a filament by one tubulin dimer addition is 8 nm / 13 ~ 0.62 nm. An
actin filament has 2 protofilaments, so the growth of a filament by one actin addition
is 5 nm / 2 = 2.5 nm. And I estimate the growth of a filament by one IF protein as
20 nm / 8 ~ 2 nm.

Hydrolysis in cytoskeletal subunits

Hydrolysis occurs in the subunit proteins of cytoskeletal filaments. The binding
nucleotide GTP at the 5 (exchangeable) site of a a3 tubulin hetero dimer hydrolyze
to GDP more frequently in the microtubule than that in a dispersed tubulin dimer.
The binding nucleotide ATP binding to an actin filament (F-actin) hydrolyze to
ADP (G-actin) more frequently than that in an dispersed actin monomer. The head
domain of a IF protein belonging to a intermediate filament also hydrolyze more
frequently than that in a dispersed IF protein. I speculate that GTP plays a role of

information and ATP plays a role of energy in cellular processes.

Four hierarchical structure of proteins

The structure of proteins commonly is described in terms of four hierarchical levels
of organization. The primary structure of a protein is the linear arrangement, or
sequence, of amino acid residues that constitute the polypeptide chain. Secondary
structure refers to the localized organization of parts of a polypeptide chain, which
can assume several different spatial arrangements (so called an « helix, a 3 sheet, a
turn or a random coil). Tertiary structure, the next-higher level of structure, refers
to the overall conformation of a polypeptide chain, that is, the three-dimensional
arrangement of all the amino acids residues. This tertiary structure is stabilized
by hydrophobic interactions between the non polar side chains and determines its
function. Multimeric proteins contain two or more polypeptide chains, or subunits,
held together by non-covalent bonds. Quaternary structure describes the number
(stoichiometry) and relative positions of the subunits in a multimeric protein.

From the viewpoint of the above hierarchical structure, cytoskeletal filaments are

quaternary structures of proteins. Cytoskeletal filaments also called macromolecular
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assemblies or supramolecules [17]. The understanding of tertiary (three-dimensional)
structures of proteins from the primary structures (sequence) is one of the most
interesting topic so called foldings of proteins. And the understanding of cytoskeletal
filaments would lead to the mesoscopic phenomena in cellular processes and also build
a cross bridge between the protein scale and the cell scale.

I summarize the structure and properties of cytoskeletal subunits in Tablel.3.

Subunit af-tublin dimer Actin Keratin, vimentin, lamin, etc.
Shape dumbbell globule double helix

Size of subunit [nm] 8 (=4+4) 5 ~ 20

Growth of filament by 0.61 2.5 ~ 2

one subunit addition [nm]

Molecular mass [kDa] 100 (=50+50) 45 40 ~ 180
Hydrolysis GTP — GDP on 8 | ATP — ADP | occurs on the head domain
Nucleotide exchange GDP — GTP on g | ADP — ATP non

Table 1.3: Structure and Properties of cytoskeletal subunits

Polymerizations of cytoskeletal filaments

Polymerizations of cytoskeletal filaments have three major phases: (I) nucleation
(lag) phase, (IT) growth (polymerizing) phase, and (III) steady-state (equilibrium)
phase. In the nucleation phase, (I), assembly and disassembly of cytoskeletal filaments
depend on the critical concentration, ¢, of their subunits. Above the c., the assembly
occurs; below the c., the disassembly occurs. Addition and loss of subunits occur
at both ends in the case of actin filaments. Addition and loss of subunits occur
preferentially at one end, the barbed end (the plus end, see the next paragraph) in
the case of microtubules. Both in vivo (i.e. in a living cell) and in vitro (i.e. in a
test tube), subunits of cytoskeletal filaments could form nuclei in a concentration ¢
over the critical concentration ¢.. In the growth phase, (II), the nucleated filaments
grow until the surrounding concentration become the critical concentration c¢.. And
in the steady-state phase, (III), the filaments reserve its steady-state length, as the
surrounding concentration stays equal to the critical concentration. This steady state

is a non equilibrium state with the energy dissipation.
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Polarity of cytoskeletal filaments

Actin filaments grow faster at one end than the other end. Microtubules also grow
faster at one end than the other end. Faster growing end is called plus end or
barbed end and the other end is called minus end or pointed end. So actin filaments
and microtubules are polar. The difference of growth between one end and the
other is caused by the reason that their subunits are arranged head-to-tail in the
protofilaments. But intermediate filaments may not be polar because its coiled-coil

subunits are arranged in parallel in the protofilaments.

Treadmilling of cytoskeletal filaments

Cytoskeletal filaments exhibit dynamic phenomena that are pronounced at c.: tread-
milling, the addition of subunits at one end (i.e. a barbed end ) and their loss at the
other end (i.e. a pointed end). This phenomena has been observed in vivo [18] and
in vitro [19] in the case of the actin filaments. And it has been also observed in vivo

[20] and in vitro [21] in the case of microtubule.

Dynamic instability of cytoskeletal filaments

A steady-state filament is either growing, shrinking, or undergoing small diffusive
fluctuations in length. In contrast, microtubules in vitro [1, 22] and in vivo [3] are
observed to switch between phases of growth and shrinkage. Such behavior has been
termed dynamic instability [22]. The switching from shrinkage to growth is called
rescue and the switching from growth to shrinkage is called catastrophe. The growth
velocity (~ 1 pm/min) is more slowly than the shrinkage velocity (~ 10xm/min).

Here I summarize the polymerization of cytoskeletal filaments in Table 1.4.

cytoskeletal filament microtubule actin filament | intermediate filament
in vitro | in vivo | in vitro | in vivo | in vitro in VIvo
Polarity O O O O - -
Treadmilling O O O O - -
Dynamic instability O O - - - -

Table 1.4: Polymerizations of Cytoskeletal Filaments
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1.3 Theoretical background of cytoskeletal filaments

1.3.1 The Oosawa’s equilibrium and kinetic theories

F. Oosawa was a pioneer of the polymerization of a helical polymer and a polyhedral
polymer. Using a simple mathematical model of polymerization similar to that used
in polymer chemistry conventionally, he and his co-workers were able to accurately
model the assembly of a number of self-assembling proteins. Much of their work
concentrated on actin and bacterial flagella, but they also reproduced a variety of

other, less easily modeled, self-assembling protein structures.

Equilibrium theory of linear polymerization

I consider the equilibriums describing the addition of a monomer (A;) onto a i-mer
(A;). Each addition takes place with the same standard-state free energy, given by
the dissociation constant K (The equilibrium theory is based on the law of mass
action (to see Appendix 3.1)).

on

koff

AN v _ il
Ai + Al S Ai+1, — D41 — on (11)
k?+1 Ci+1 )

where ¢; stand for the concentration 2 of i-mer, k°" and k°T are the rate constants of
the association and the dissociation, respectively. From the above equation, if K; is

independent of i, the -mer concentration is related with monomer concentration as

G=K (%)1 (1.2)

The total concentration ¢ is as below (see Appendix A),

below,

Ctot = ZiCi
i=1
o ) Cz 7
- £3i(%)

S — (1.3)

2Though the concentration is denoted by [A4;] conventionally, I consistently denote the concen-
tration as ¢; through this thesis in order to avoid misunderstanding.
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And the average degree of polymerization is defined by,

00
Z iCi
=1

(i) = (1.4)
> ci
i=1
and becomes to be
) 1
(1) = T (1.5)
K

This doesn’t say the behavior of the polymerization such as cytoskeletal filaments.
This behavior is that the average degree of polymerization increases slowly as the

total concentration increases.

Equilibrium theory of helical polymerization

Oosawa’s idea is that the polymer adds a small number of monomers ( I denote this
n.) in the usual linear scheme (with linear dissociation constant K), but then the
polymer curls around on itself to start a helix. Once the first turn has been made
(where he introduce a critical size 3 which make a turn), the subsequent additions of
monomer are much more favorable because they interact with the monomer bellow
them. I denote this more favorable dissociation constant of monomer subtractions
beyond the first turn as K} and assume that K;, > K (Typically, K;,/K ~ 10 or

100). Then the i-mer concentration is as below (as same as the above paragraph),

i—1
C;, = O'KhK (;{—1) s (16)

where 0 = (K/Ky,)"™" < 1. And the total concentration is derived as below (refer to
Appendix A),

o0
Ctot = Zici
i=1
n o0
= Zici—i- Z ¢
i=1 i=n+1

n C: 7 o0 C: )
= ¢+ K 2<—l> + oK z(—’)
' ; K izzn;rl Ky

3This critical size is an analogy of that in the classical nucleation theory [23].
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n C'i o8] C: 7 n C,i
R ¢<i>+aK ¢QL>—0K i(J)
R i) oL ilg) TR AR,

2
= a+—0 4 <001 T 206—1> (1.7)
oy b
K

This says that as ¢; is increased from zero, first, all the monomers stays as monomer.
But at a certain critical concentration c., suddenly all additional monomer goes into
helical polymer, and the concentration of monomer stays essentially constant i.e. c..

And the average degree of polymerization of helical polymer is as below,

izc,
(i) = =— (1.8)

The behavior of this resembles the polymerization of cytoskeletal filaments so much.
The average length (i) becomes so large as the total concentration goes over the
critical concentration. And the result resemble the gas-liquid transition expressed by
the van der Waals equation of state [24]. Dispersed monomers (and linear polymers)

correspond to gas molecules and helical polymers correspond to liquid.

Kinetic theory of linear and helical polymerization

The Oosawa’s kinetic theory, in essence, treats the growth rate of a polymer as being
independent of its length, once the polymer is larger than a certain critical size,
known as the stable nucleus size. For a polymer larger than this size, the growth of
the polymer can be expressed as a combination of a growth rate, multiplied by the
concentration of available free monomers that can be bound, minus the dissociation
rate (or off rate) of bound monomers breaking away from the polymer.

For a given polymer of sufficient size, the growth rate v is
v = k¢, — k°F, (1.10)

where k°" stands for the binding rate of free monomers to the polymer, k°% stands for
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the loss rate of bound monomers from the polymer, ¢; stands for the concentration
of free monomers to be bound.

Applied to a single polymer, the above equation must be interpreted in terms of
probabilities, since the binding and loss rates are only accurate in aggregate. However,
this equation can be used to provide a description of the change in the population of
all polymers with subunits of size ¢, and hence a description of the population of all
polymers;

% = +kT cip — kcier + K e — KT, (1.11)
where ¢; stands for the concentration of polymers of size ¢ subunits, ¢ stands for
time, £°" stands for the binding rate of free monomers to the polymer, £°" stands for
the loss rate of bound monomers from the polymer ¢; stands for the concentration
of free monomers to be bound. This equation tells that the number of polymers of
a particular size i subunits increases as polymers of size i + 1 shrink to size i (the
first term), decreases as polymers of size i grow to a larger size (the second term),
increases as smaller polymers of size i — 1 grow to size i (the third term) and decreases
as polymers of size i lose monomers and sink to size i — 1 (the last term). Since the
rate constants are assumed under this model to be independent of polymer size, they
are constant for all size ¢ > 73, where 7, stands for a critical size of a nucleus.
A similar equation is used to describe the production of nuclei, that is polymers
of critical size, that are assumed to have different on and off rates:
dc;,
dt

off on on* i off*
+hipiCior1 — K ciger + KT e — KT ey, (1.12)

where, in addition to the variables described above, k°™" is the creation rate of nuclei
from free monomers, k°f" is the destruction rate of nuclei to free monomers.

By fitting these two equations with experimentally observed data, they conclude
that the polymerization in the case of actin filament is a helical polymerization with
1o = 3.5. For some other proteins the Oosawa’s kinetic theory produces accurate

results.
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1.3.2 Kinetic model for the treadmilling

A. Wegner observed the exchange of subunits at the ends of actin filaments using
the radioactively labeled actin monomers and found a polymerization mechanism in
which the filaments grow at one end and shrink simultaneously at the other end (head

to tail polymerization) [19].

Critical concentration for bidirectional polymerization

Consider the simple case of bidirectional growth from a polar polymer not involving

nucleotide hydrolysis. We can write the rates at the barbed and pointed ends as:

d?’LB

= kS — koff (1.13)
and
%” = ke — ko (1.14)

where dnp/dt and dnp/dt are the net rates of elongation in units of number of sub-
units, n, added per second per polymer at the barbed and pointed ends respectively;
on

on and k%' are respective association rate constants, k% and k%! are respective

association rate constants, ¢ stands for the monomer concentration. In the steady

state,
k.off koff
B - _ K, (1.15)
kg kEp

where K stands for the dissociation constant, both ends has the same critical con-

centration, c. (here ¢, = K) *.

Critical concentration for the treadmilling

In the treadmilling scheme of Wegner, assembly is coupled to nucleotide triphosphate
hydrolysis to allow pathways of monomer addition and removal in which certain steps
can be made to proceed at a negligible rate. I call a monomer binding triphosphate
and a monomer binding diphosphate T and D monomers, respectively. There are four
major pathways: T monomers attachings at both ends (I denote the rate constants

of association at barbed end and pointed end as k% and k%Y, respectively) and D

4For this simple relation of the polymerization, I adopt the dissociation constant as for the equi-
librium constant in this thesis instead of the association constant though I do not state heretofore.
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filamentous monomers dettachings at both ends (I denote these rate constants as k%

and k%), The net rates at each end are given by:

dnB .

o = Fere - k%D (1.16)
and

an on O

ar kpire = kpp, (1.17)

Although the equations are the asame form as those given above for bidirectional
polymerization, eqs 1.13 and 1.14, the pairs of rate constants k%%, k%% and k%%, kT,
are no longer the association and dissociation rates of the same reactions. Therefore
ko /k%%. need not in general be equal to k%5, /k%%.. The overall growth rate is the sum
of eqs 1.16 and 1.17, and it defines a critical concentration. This critical concentration

is given by Wegner [19]:
_ k% +kpp
o+ ki

This scheme allows the critical concentration to be different for each end. The critical

c (1.18)
concentrations for the barbed and pointed ends are given by:
_ kD

on
BT

(1.19)

Cep

and "
O

_ kpp

Cep = Ton

PT

(1.20)

1.3.3 Reaction-diffusion model for the dynamic instability

M. Dogterom and S. Leibler analyzed the dynamic instability using a stochastic model

expressed by the following reaction-diffusion equations [25]:

Op. (i oo (i
% = —U+% — fepi (i) + fip- (i 1), (1.21)

Op_(1 on_(i
: a(tl, t) - U = a(;, t) + f—l——p-l- (7:7 t) o f—-l—p— (7:7 t)a (1.22)

where p, (i,t), py(i,t) stand for the probability that a polymer is growing or shrink-
ing i-mers, respectively, v, ,v_ stand for the growth and shrinkage rates, respectively,
fi—,f—+ stand for the catastrophe and rescue rates, respectively. The model pre-

dicts a sharp conversion between bounded growth and unbounded growth pending
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on whether f,_v_ — f_ v, is greater than or less than zero. Under conditions that
lead to bounded growth, the length of the microtubules are distributed exponentially

with mean length:
V_V4

0 = v_fyo —vpfoy

This equation has a simple interpretation: ignoring rescue (i.e., setting f . = 0), it

(1.23)

says that the mean length equals the growth rate (vy) times the average duration of

the growth phase (1/f,_).

1.4 Purpose of the thesis

On the basis of the above background, one of the purpose of this thesis is to construct a
self-continued stochastic models for the dynamics of cytoskeletal filaments; the model
should have some intrinsic connections with the macroscopic as well as the microscopic
models. In particular, the model should reproduce, in statistical average, the result of
Oosawa’s theory. On the other hand, the model should reflect suitable symmetry and
conservation laws of microscopic physics. Furthermore I expect that the model should
perform the microtubule’s dynamical phenomena such as the dynamic instability.
And another purpose is to reveal the characteristic properties of the growth-
shrinkage dynamics by using the constructed two-dimensional mesoscopic model, to
analyze the growth-shrinkage dynamics and to clarify the relations between the con-

centration and the velocity of the growth and shrinkage phases.

1.5 Structure of the thesis

In this thesis, I introduce a lattice polymerization model for the dynamics of cytoskele-
tal filaments in Chapter II and introduce an kinetic model of linear polymerization
with a threshold length in a finite volume system in Chapter III. And I show the
results of the lattice model without internal state dynamics and the results of the
kinetic model in Chapter IV. Also I show the results of the lattice model with internal
model in Chapter V. Finally, I summarize this thesis in Chapter VI.



Chapter 2

A lattice polymerization model

In this chapter, I introduce a lattice toy model which simulates the dynamics of the
cytoskeletal filaments, which T and K. Ebina proposed in [26, 27]. T am particularly
interested in the polymerization of tubulin dimers into microtubules and their behav-
ior called dynamic instability. The goal is to construct a self-contained mesoscopic
model of the dynamics of cytoskeletal filaments; the model should have some intrinsic
connections with the macroscopic as well as the microscopic models. In particular,
the model should reproduce, in statistical average, the result of Oosawa’s theory[7],
where a thermodynamic and kinetic discussion of linear assemblies are given. On
the other hand, the model should reflect suitable symmetry and conservation laws
of microscopic physics. Furthermore I expect that the model should perform the

dynamical phenomena of cytoskeletal filaments such as the dynamic instability.

2.1 Essential physical ingredients for the dynamics
of cytoskeletal filaments

Though there are some kinetic explanations to the phenomenon of dynamic instabil-
ity (such as the cap model [22] etc.), it is important to construct a quantitative model
of the cytoskeletal filaments taking account of the spatial effects, having an ability
to show dynamic instability. In order to construct a reasonable toy model for the
dynamic instability, I assume that the next three physical ingredients play essential
roles in these phenomena: (a) random motion of subunits in space, (b) short range

and electrostatic interaction between subunits with a threshold length, and (c) in-
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ternal state dynamics of each subunit !, though other fluid dynamical effects such as
the convection and/or electromagnetic interaction effects might play some important
roles. T extract the ingredient (a) because the molecular weight of a cytoskeletal sub-
unit is around 10° much larger than atoms and much smaller then visible particles so
that a subunit takes a Brownian motion by the thermal fluctuation in an electrolyte
(cytoplasm or simply water) if existing freely. This shows a diffusion phenomena
macroscopically. T extract the ingredient (b) because it is important to take of struc-
tural changes such as the change from a linear structure to a helical structure for
proper understanding of the growth of helical object, according to Oosawa’s theory
[7]. And I extract the ingredient (c) because a subunit takes two state: GDP-binding
state and GTP-binding state in the case of a tubulin, ATP-binding state and ADP-
binding state in the case of a actin and non-hydrolyzed state and hydrolyzed state in
the case of a intermediate filament. I mainly focus my attention to phenomena of the
time scales of seconds or minutes; it is practical to adopt a lattice model (not a con-
tinuous model) for simulations. I ignore the detailed geometrical (helical) structure
of a cytoskeletal filament: T make up a linear (one dimensional) growth/shrinkage

model in two dimensions simply.

2.2 A lattice polymerization model for the dynam-
ics of cytoskeletal filaments

In the two-dimensional lattice model, I treat cytoskeletal subunit as a particle. A
particle occupy one lattice site. For the random motion in space, (a), I use a random
walk model. The excluding volume effects are taken into account (i.e. an extended
lattice gas model[29]). The concentration ¢ in the two-dimensional lattice system is
defined as ¢ = N/XY, where N is the total number of particles, X and Y are, the
horizontal and vertical linear dimensions of the system, respectively. The time scale
for one step of polymerizations 7, is related with the concentration as 7, ~ ¢=2/¢ (d

= 2 for two dimensions) for dilute systems.

In the articles[26, 27, 28], I treat random motion of subunits in space, (a), as (a’) diffusion; I
treat short range and electrostatic interaction with a threshold length, (b), dividing to (b’)short
range and electrostatic interaction and (c’) structural change; and I treat internal state dynamics,
(c), as (d’) chemical reaction.
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By short range interaction, (b), two particles in the nearest neighbor sites in the
specific direction become lower energy state and tend to polymerize. Because of the
electrostatic dipole interaction two molecules tend to align. At the present stage, I
simply ignore the detailed form of the long-range part of the electrostatic interaction
because of the Debye shielding of ionic cytoplasm. I assume that particles which
occupy sites side-by-side relation to each other in the specific (horizontal) direction
belong to the same polymer. Then I define a length of polymer as the number of
particles which belong to the same polymer. Though the nucleation process has not
been understood, the linear structure of polymerized subunits could tend to become
a helical structure. To mimic this effect, I introduce a threshold length /;;,: a particle
belonging to and being at the edge of a linear polymer will easily detach if the length
[ of the linear polymer is shorter than the threshold Iy, (i.e. < ly,), while it tends to
stick more tightly if [ > [;;,. So I assume that a length of a cytoskeletal filament, [,
exceed some threshold value [, the helical structure should be more stabilized.

I treat the internal dynamics in each subunit, (c), as one inner degree of freedom
of two states: GDP-binding state and GTP-binding state in the case of a tubulin,
ATP-binding state and ADP-binding state in the case of a actin and non-hydrolyzed
state and hydrolyzed state in the case of a intermediate filament. Though some
structural change would take place in a subunit, we could consider that this inner
degree of freedom corresponds to a chemical reaction coordinate A. I take the discrete
coordinate for simplicity. In this model I assume that the state of a tubulin is GTP
if A > 0 and that the state of a tubulin is GDP if A < 0 and I assume that those
in the cases of an actin and an IF protein. I then call the state of a particle with
GTP(ATP) the T state, GDP(ADP) the D state, respectively though in the case
of IF' protein the non-hydrolyzed and hydrolyzed states correspond to these. The
value of this coordinate decreases deterministically by one in one step for particles
in a polymer of [ > Iy, (I call them P particles where P is named after polymer) and
increases deterministically by one in one step for particles in a polymer of [ < [,
including isolated ones (I call them M particles where M is named after monomer).
I restrict that the value of the coordinate has an upper bound 7p(> 0) and lower

bound 71 (< 0). These upper and lower bounds are parameters which determines the
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attach-detach time scales.

As for the effect of the short range interaction, I incorporate all the effect in the
probability of a particle transfer to unoccupied sites, the environment of the consid-
ered particle is shown in Table4.44. The parameters pGp in Table4.44 determines
the probability of depolymerizations. Sub- and super- scripts A, B, C' stands for the

ends, the internal states and the P or M states, respectively.

‘ Occupation of Sides ‘ Mt ‘ Mp ‘ Pt ‘ Pp ‘
T T T T

> 1+
ce- p]]?}“ p]]?/[D pI%T p}%D
- 00 Per | Ppp | PpT | PPD
0eo 0 0 0 0

Table 2.1: The probability of a particle transfer depending on various situations. T
and D stand for the inner state of a particle in the time, The considered particle is
denoted as e, while “empty” site is denoted as - and “occupied” site as o.

2.3 Measurement of length

I measure the lengths of polymers by the polymer labeling method which I modify the
cluster multiple method of J. Hoshen and R. Kopelman [30] for the lattice polymer-
ization model. I assign polymer labels to sites beginning at the upper left corner in
the two dimensional lattice and continue from left to right checking the occupancy of
each site along each row. If a site is occupied, I check the occupancy of its left nearest
neighbor. If the left neighbor is unoccupied, I assign the next available polymer label.
If the left neighbor is occupied, the site is assigned the label of its occupied neighbor.

And I use the periodic boundary condition.



Chapter 3

An effective kinetic model

In this section, I introduce an effective kinetic model for linear polymerization of
cytoskeletal filaments with a threshold length in a finite volume system in order to
show the importance of the threshold length in the nucleation phase and understand
the kinetic constant accurately and to understand the shifted peak shown in the
lattice polymerization model (to see the section 4.2). T analyze this model numerically.

Finally, I discuss the relationship between this model and the real biological system.

3.1 Polymerization

Polymerization processes for cytoskeletal filaments could be classified to three phases:
(I) a nucleation phase (also called lag phase), (II) a growth phase (also called poly-
merization phase) and (III) a steady-state phase (also called equilibrium phase). In
(I) the nucleation phase, subunits create a stable nucleus by the thermal fluctuation
in the concentration ¢ which is larger than a critical concentration c.. The time of
this nucleation phase is a few minutes. The mechanism of the nucleation has not been
resolved yet. But the existence of a threshold length is important for the nucleation
in the linear polymerization as same as the critical size is important in the case of
droplets on the classical nucleation theory [23].

In (IT) the growth phase, monomers polymerizes to a filament so that the monomer
concentration continues to decrease to the balancing concentration (so called critical
concentration). In the experiments, the growth velocity, v, is measured in this growth

phase. From the result of v in several initial concentration, ¢, the kinetic constants of
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on-reaction, k°", and off-reaction, k°F, are derived on the basis of the linear equation
as below,

v =k"cy — k1 (3.1)

Sometimes this equation causes a misunderstanding: ¢, is the initial concentration
and the concentration after the nucleation is not equal to ¢y. This equation is very
simple. So the kinetic constants are determined by this equation conventionally.

In (IIT) the steady-state phase, the monomer concentration and the polymer con-
centration keep constant values approximately. The monomer concentration in this
phase is thought to be the critical concentration. Even if these concentrations have
little change, we need to recognize that this is the non equilibrium state with the
energy flow (in the case of actin filament, the hydrolysis of ATP on the subunits in

filament and the nucleotide exchange on the monomer subunits).

3.2 An Effective Kinetic Model

I consider that subunit monomers polymerize linearly. I denote the polymers of length
las A)(l =1,2,...,L) where L is the maximum length of polymers and consider the

reaction kinetics of polymers as follow,
kon
A+ A #ﬁr Apiq, (3.2)
1
where k™ and kffT, stand for the rate constant of a linear polymer from length [ to
[+1 and from [+1 to [, respectively. I treat a monomer concentration ¢; explicitly in
order to understand the polymerization with the conservation of total concentration.
I denote the concentration of polymers with length [ as ¢;. The kinetic equation of

the concentration of polymers with length [ is expressed as follows,

dc
d_tl = —l—k?flclﬂ — kerey + ke — k?ﬁcl. (3.3)
Monomers polymerize to and depolymerize from aggregates of all length i.e. 2 <
[ < L. So the kinetic equation of the concentration of monomers ¢; is expressed as

follows,

dCl L—1 L
- = - ST ke + Y ke (3.4)
=1 =2
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The conservation of the total number of subunits is derived from above equations 3.3

and 3.4 by treating the boundary condition appropriately.

d L L—-1 L—-1 L L
pr Sl = + > ke — Yk e + Y1k e — Y 1k ¢
=1 =1 =1 =2 =2
L-1

L
+1>° ke, —1 > ke
=2

=1

— 0 (3.5)

Next I introduce a threshold length [;,. Helical or tubular filament such as mi-
crotubule or actin filament has a critical concentration of polymerization [10]. So I
treat polymers with length I(> [y,) is more stable than polymers of length (< ly)

energetically. T define the kinetic constant (kf™, kP™) depending on length as follows,

kon 1< 1< Iy,

k=14 kM Ly <U< L (3.6)
0 I=1L
0 I=1

T =0 ko 1<l <ty (3.7)

kel <1< L,
where k7', k)", kot kgﬂ are the positive values corresponding to the rate constants for

linear polymer (the subscripts p and m is named after monomer and polymer.) and

H‘ . H‘ . . . .
kp, 1s larger than k)" because of the energetics and I assume k' = k)" for simplicity.



Chapter 4

Results I: models with threshold
length

In this chapter I show the results in the lattice polymerization model without the
internal state dynamics and I also show the results in the effective kinetic model
for linear polymerization. First of all, I show the results in two limiting cases of
the lattice polymerization model in low concentration. Next I show the results in
the several possible cases of the lattice polymerization model. Then I show the
characteristic result of length distribution of polymers in the specific case of the
lattice polymerization model with the detach probability. Finally I show the some
results in the effective kinetic model in order to understand the above characteristic

distribution.

4.1 Results in the lattice polymerization model
without the internal state dynamics

In the most general form, the lattice polymerization model contains three physical
ingredients (a) — (c) described in chapter 2. Then I have to assign several parameters
such as the detach probability to the nearest neighbor sites for each particle, the rate
of the chemical reaction and the polymerization threshold length.

Here I simplify the lattice polymerization model by neglecting the internal state
dynamics of subunits (7" <» D) and the polarity (B or P) [28]. Therefore the set
of parameters reduces to be as shown in Table 4.1 , where I assume that the detach

probability of monomer p™ is 1/4 naturally and describe the detach probability of
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polymer subunit p* as pq.

‘ Occupation of Sides‘ M ‘ P ‘

-o- 1/4 1 1/4
0Ce-0r-eo0 1/4 | pa
ceo 0 0

Table 4.1: The parameter pq stands for the detach probability of
a particle transfer depending on various situations and can have a
value of 0 < pg < 1/4. M and P stand for the states of a particle:
monomer and polymer respectively in the time. The considered
particle is denoted as e, while “empty” site is denoted as - and
“occupied” site as o.

4.1.1 Two limiting cases: DLA and LGM in low concentra-
tions

The parameter py(0 < pg < 1/4) in Table 4.1 stands for the detach probability of a
polymer subunit to the nearest neighbor sites. The limiting case pg = 0 corresponds
to the DLA [31], while the other limiting case pq = 1/4 corresponds to the LGM with
a constraint of the vertical motion. In simulations I use a system of N particles in the
two dimensional lattice with width Y and length X so that the total concentration ¢
becomes N/XY. I use the periodic boundary condition.

I perform simulations in the above two limiting cases (DLA & LGM) in the region
of low concentrations ¢ < 0.05 with the initial condition of a prepared polymer of
length [=100 in the lattice of X = 300 and Y = 100.

The time series of the length [ of a polymer in DLA in low concentrations c
are shown in Fig.4.1 and the values of the growth velocity v, = dl/dt of a polymer
and its averages are shown in Fig.4.2. In Fig.4.1 we see that the length increases
as the concentration increases. From Fig.4.2 T conclude that the growth velocity
of a polymer increases linearly with the concentration. The line which connects the
averaged growth velocity v, at each concentration is expressed by v, = a(c—c¢g), where
¢ — ¢o plays a role as effective concentration with ¢g ~ 0.0033 and the coefficient a is

estimated to be 0.45 with standard deviation of 0.02. The reason why the point of
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intersection of the above line and the concentration axis is shifted from the origin is

partly because of the particles consisting a polymer is also counted in the definition

of concentration.

0 2000 4000 6000 8000 10000

Figure 4.1: The time series of the length [
of a DLA single polymer for 10,000 steps
period in several low concentrations: ¢
stand for the steps per particle in the sys-
tem and c stands for the concentration of

" data'
average ———

0.025 -

0.005

0 n n n n n n n n n
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Figure 4.2: The growth velocity v, of a
DLA single polymer and its average as a
function of the concentration c. The aver-
age growth velocity is connected with the

dotted line: v, = 0.45(c — 0.0033)
a system.

The time series of the length in LGM in low concentrations ¢ are shown in Fig.4.3
and the values of the shrinkage velocity vy = dl/dt of a polymer and its averages
are shown in Fig.4.4. In Fig.4.3 I see that the length decreases similarly in all the
concentrations. From Fig.4.4 I conclude that the shrinkage velocity vg of a polymer
is almost constant; i.e. mainly dependent of the detach probability. The line which
connects the averaged shrinkage velocity 75 at each concentration is expressed by

7, = —0.97 % 0.10.

Summary and discussions

I perform simulations of the lattice polymerization model in two limiting cases of
a diffusion-limited aggregation model and a simple lattice gas model. These cases
show important features in the cytoskeletons’ dynamics: in low concentrations, the
growth velocity of a polymer increases linearly as the concentration increases, while

the shrinkage velocity of a polymer mainly depends on the detach probability. These
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data +
average -——

Figure 4.3: The time series of the length [ Figure 4.4: The shrinkage velocity vs of
of a LGM single polymer for 200 steps pe-  LGM single polymer and its average vs.
riod in several low concentrations: ¢ stand  concentration ¢. The average shrinkage ve-
for the steps per particle in the system and  locity is connected with the dotted line:
c¢ stands for the concentration of a system. v, = —0.97 = 0.10

results will be important for the understanding of the growth-shrinkage dynamics of
cytoskeletal filaments such as dynamic instability.

In DLA, the both ends of a polymer may be considered to be sinks of subunits. The
problem of diffusion with a sink is described by the Laplace equation in the stationary
state [32]. A basic solution in two dimensions is expressed by ¢(r) = alog(r/ry), where
¢ is concentration, r is distance from the sink and a and ry are constants. The six
nearest neighbor sites have a effective concentration ceg then the growth velocity
should be vy = (6/4)cer. I estimate by using the simulation result of v, = 0.45¢ that
the concentration reaches the uniform value at the distance of about r ~ 3 sites. This
estimation is based on the idea that the both ends of polymer grow up slowly by the
diffusion with the logarithmic distribution of concentration around the ends.

In the simulations of LGM, I found that the shrinkage velocity is determined essen-
tially by the detach probability. The both ends of polymer are the source of subunits
in contrast to DLA. Applying a similar argument as above with sinks replaced by
sources, I estimate that at the distance of about r ~ 3 sites the concentration reaches
the uniform value, though in this case the process may not be stationary due to the

large shrinkage velocity of v ~ —1.
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4.1.2 Several cases: possible concentrations and detach prob-
abilities

In the lattice polymerization model without the internal state dynamics, the detach
probability could take values between 0 and 0.25 and the concentration also could
take values between 0 and 1. So I simulate the lattice polymerization model without
the internal state dynamics with several detach probability pq (0 ~ 0.25) in the
concentration ¢ (0.1 ~ 0.9) in two dimensional lattice of X = 500 and ¥ = 250 with
the threshold length I, = 10.

I show the results of time series of length of a prepared polymer for 10,000 steps
period in the several cases in Figs.4.5-4.40. We could see many features in these
figures.

In the DLA case i.e. pg =0 ¢ = 0.1 ~ 0.6 (shown in Figs.4.5-4.10), figures show
clear growth phases with each growth velocity and all the values of lengths reach
the maximum value of 500. These mean that all the prepared polymers reach the
lattice size (X = 500). And growth velocity becomes larger as the concentration
becomes larger. These correspond to some large concentration regions in the cases of
the previous section (DLA).

In the case with pg = 0.05 ¢ = 0.1 ~ 0.6 (shown in Figs.4.11-4.16), we cloud
see both growth and shrinkage phases in different concentrations. In Fig.4.12, the
growth /shrinkage phases are almost balancing each other for long steps period (>10,000)
so that prepared polymers keeps steady-state length in this case. Also in Fig.4.16,
some value of length reach the maximum i.e. 500 and the other value of length
couldn’t reach the maximum, where the maximum is based on the system size
(X = 500). These things indicate that many other polymers nucleate and they
decrease the free monomer concentration. This is some relationship with the situa-
tion that the concentration i.e. ¢ = 0.6 is larger than the critical concentration in
percolation i.e. ¢. = 0.5.

In the case with pg = 0.10 ¢ = 0.1 ~ 0.6 (shown in Figs.4.17-4.22), the values
of length decrease in the concentration ¢ (< 0.3) and the values of length increase
in the concentration ¢ (> 0.4). And in the case of large concentration (shown in

Fig.4.22), some values of length reach the maximum and the other increase initially
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Figure 4.11: Time series of length of a
prepared polymer for 10,000 steps pe-
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Figure 4.13: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.3,pq = 0.05
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Figure 4.15: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.5,pq = 0.05
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Figure 4.12: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.2,pq = 0.05
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prepared polymer for 10,000 steps pe-
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Figure 4.17: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0. 1 ,pqg = 0.10
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prepared polymer for 10,000 steps pe-
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Figure 4.21: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.5,pq = 0.10
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Figure 4.18: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0 2 ,pqg = 0.10
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Figure 4.20: Time series of length of a
prepared polymer for 10,000 steps pe-
rlodlnthe case: ¢ =04 pd—Ol
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Figure 4.22: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.6, pq = 0.10
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Figure 4.23: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0. 1 ,pqg = 0.15
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Figure 4.25: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = O.3,pd =0.15
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Figure 4.27: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.5,pq = 0.15
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Figure 4.24: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0. 2 ,pqg = 0.15
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Figure 4.26: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0. 4 ,pa = 0.15
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Figure 4.28: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.6,pq = 0.15
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Figure 4.29: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ =0.1,pq = 0.2
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Figure 4.31: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.3,pq = 0.2
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Figure 4.33: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.5, pq = 0.20
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Figure 4.30: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.2, pq = 0.20
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Figure 4.32: Time series of length of a

prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.4, pq = 0.20

500 T

"phase0.6_0.20 1" ——

450
400
350
300

i o
250 WA

length

200

150

100

Figure 4.34: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.6,pq = 0.20
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Figure 4.35: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ =0.1,pq = 0.2

500 T T T

phase0.3_0.25_1"
phase0.3 0.25 2" -
450 | “phase0.3.0.
“phase0.3.0.
phase0.3 0.
L phase0.3 0.
400 phase0.3 0.
phase0.30.
“phase0.3 0.
350 - "phase0.3_0.
300 [ 1
B 250
2

200

150

0 2000 4000 6000 8000 10000
steps

Figure 4.37: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.3,pq = 0.2
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Figure 4.39: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.5,pq = 0.25
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Figure 4.36: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.2, pq = 0.25
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Figure 4.38: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.4,pq = 0.25
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Figure 4.40: Time series of length of a
prepared polymer for 10,000 steps pe-
riod in the case: ¢ = 0.6,pq = 0.25
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until about 2,000 steps and then decrease till 10,000 steps. Also in the cases with
pa = 0.15 ¢ = 0.1 ~ 0.6 (shown in Figs.4.23-4.28), the behavior resembles those
in the cases of pg = 0.10. The difference between these cases are the balancing
concentration. In this case the concentration exists between ¢ = 0.4 and ¢ = 0.5.

And in two cases with pg = 0.20 ¢ = 0.1 ~ 0.6 (shown in Figs.4.29-4.34) and
pa = 0.25 ¢ = 0.1 ~ 0.6 (shown in Figs.4.35-4.40), the figures show the shrinkage
(except one case in Fig.4.40). These things mean that the detach probabilities are so
large that the net growth couldn’t occur in these cases.

Next I calculate the mean growth/shrinkage velocity in all the above cases in

Fig.4.41 and show the contour plot in Fig.4.42.

Pd

Figure 4.41: Mean growth/shrinkage ve-
locity in possible cases in the lattice
polymerization model without the inter-
nal state dynamics. System size: X =
500,Y = 250. Parameter [, = 10. Steps:
10,000. The curve on the base stands for
the zero mean growth/shrinkage velocity
in the lattice polymerization model and
the line on the base stands for the zero
mean growth /shrinkage velocity calculated
by the equation: v = ¢ — 4py

lin = 10. Steps: 10,000.

In the low concentration region ¢ ~ 0.1, the growth/shrinkage velocity is fitted
by the next equation,

v =c—4pq (4.1)

This equation is derived by the next speculation. To think the one lattice site of

Figure 4.42: Contour plot of the mean
growth /shrinkage velocity in possible cases
in the lattice polymerization model with-
out the internal state dynamics. System
size: X = 500,Y = 250. Parameter
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the end of polymer combined with the other end, the probability of transfer into this
site is given by the concentration ¢ and the probability of transfer from this site to
the nearest neighbor sites is given by the detach probability pq times the number of
the nearest neighbor sites 4 i.e. 4pq. So the net growth/shrinkage velocity becomes
eq.4.1.

In the region with the concentration ¢ > 0.3 and the detach probability near
0.25, the absolute value of the mean shrinkage velocity become smaller than those
derived from eq.4.1. I speculate that these thing occur because the motion of detached
monomers are suppressed by the exclusive volume effect.

Also the region with the concentration ¢ > 0.3 and the detach probability near
0, the values of the mean growth velocity become smaller, too. I speculate that
the many polymer nucleate in these region so that many monomers add to such a
polymer.

The zero growth /shrinkage velocity of the lattice model in the large concentration
region is shifted from the line derived from eg.4.1. The effective volume effect would
make the above thing.

Here 1 discuss briefly the role of the internal state dynamics. In the model
without the internal state dynamics, we see a sharp critical concentration for the
growth/shrinkage. The effect of the internal state dynamics may blur the critical
concentration to a finite range so that it helps to grow the polymer at a smaller
concentration. This implies that the internal state dynamics plays a very important

role to the state different from equilibrium.

4.2 Shifted peak of length distribution in the lat-
tice polymerization model without the inter-
nal state dynamics

I found some kind of shifted peak in the length distribution of linear polymers which
are longer than the threshold length in the lattice polymerization model without
(c)internal state change.

To understand both the microscopic and the macroscopic behavior accurately, I

have proposed a lattice polymerization model for the dynamics of cytoskeletal fila-
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ments [26, 27] . The model consists of N subunits in a volume of V" sites. This model
has three essential ingredients: (a) random motion of subunits in space, (b) short
range interaction between subunits with a threshold length, and (c) internal state
dynamics of each subunit. This model reveals a characteristic phenomena mimicking
the dynamic instability observed in real microtubules in vivo [3] and in vitro [1, 22] in
which a single microtubule alternates show growths and rapid shrinkage of its length.

I show the shift peak of the length distribution of a single filament to the right
(longer direction) (shown in Fig.4.43).
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20000 {1l !

A

Figure 4.43: Length Distribution of cytoskeletal filaments in several subunit numbers
N = 12,500, 25,000, 37,500, 50,000, 62,500 which correspond to the concentration
c=N/V =0.1, 0.2, 0.3, 0.4, 0.5 for 10,000 steps period in a lattice polymerization
model. [ stands for the length of a filament. n(l) stands for the filaments’ number of
length [. This figure shows an area of number: 0 < n(l) < 100,000

This phenomena would take place only in the non-equilibrium steady state and
cannot be explained in the conventional polymerization kinetics [10] which considers
the conservation of total number of subunits in the section of the equilibrium theory
but doesn’t consider it in the section of the kinetic theory. It’s important to treat the
monomer number explicitly like Oosawa et al. [7]. So I construct an effective kinetic
model for polymerization with a threshold length in a finite volume system (see the

chapter IIT).
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4.2.1 Length distribution of polymers with length [/ in the
effective kinetic model

I calculate the length distribution of polymers with length [ in several initial con-
centrations ¢y for the threshold length [y, = 1,3,5,10 with the maximum length
L = 5,000 in the finite volume V = 10'° numerically. I show the results in Fig.4.44-
4.47 at 100,000 steps.
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Figure 4.44: The length distribution of polymers with the threshold length [y, = 1
with the maximum length L = 5,000 in the volume V = 10 at 100,000 steps with
parameters: k%" = ko = k= 0.1,k1§jlcf = 0.001. [ stands for the length and ¢
stands for the concentration of polymers with length [. ¢y = 1,2,3 stand for the
concentration parameters. This figure shows the area of number: 0 < n; < 100 and
the concentration: 0 < ¢ < 0.01

Fig.4.44 corresponds to the case of the simple polymerization i.e. the case without
nucleation because the threshold length is 1 and all the kinetic constants of polymer
with length [ are the same value. The figure shows the exponential decay.

From the results in the case of ¢y = 3 in Fig.4.45 and in all the cases in Fig.4.46
and Fig.4.47, I found the shifted peaks of the length distribution over the threshold
lengths. To understand the cause of this shifted peaks, I calculate the time evolution
of the length distribution of the threshold length [;;, = 5 for 200,000 steps periods. I
show the result in Fig.4.48

From Fig.4.48, I found the relaxation of the shifted peak with time. I speculate

that the some polymers after nucleation grow more longer and the other polymers
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Figure 4.45: The length distribution of polymers with the threshold length l;;, = 3
with the maximum length L = 5,000 in the volume V = 10 at 100,000 steps with
parameters: k%" = ko = k)t = 0.1,k1§jlcf = 0.001. [ stands for the length and ¢
stands for the concentration of polymers with length [. ¢y = 1,2,3 stand for the
concentration parameters. This figure shows the area of number: 0 < n; < 100 and
the concentration: 0 < ¢ < 0.01
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Figure 4.46: The length distribution of polymers with the threshold length [, = 5
with the maximum length L = 5,000 in the volume V = 10 at 100,000 steps with
parameters: k%" = ko = k)t = 0.1,k1§jlcf = 0.001. [ stands for the length and ¢
stands for the concentration of polymers with length [. ¢y = 1,2,3 stand for the
concentration parameters. This figure shows the area of number: 0 < n; < 100 and
the concentration: 0 < ¢ < 0.01
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Figure 4.47: The length distribution of polymers with the threshold length /i, = 10
with the maximum length L = 5,000 in the volume V' = 10 at 100,000 steps with
parameters: k%" = ko — k= 0.1,k]2lcf = 0.001. [ stands for the length and ¢
stands for the concentration of polymers with length [. ¢y = 1,2,3 stand for the
concentration parameters. This figure shows the area of number: 0 < n; < 100 and
the concentration: 0 < ¢ < 0.01
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Figure 4.48: The time evolution of the length distribution of polymers with the
threshold length [;;, = 5 with the maximum length L = 5, 000 in the volume V' = 10'°
for 200,000 steps periods with parameters: ko = k°T = k= 0.1,k]2lcf = 0.001. [
stands for the length and ¢; stands for the concentration of polymers with length [.
co = 1,2, 3 stand for the concentration parameters. The word “steps” stands for the
steps in the calculation. This figure shows the area of number: 0 < n; < 100 and the
concentration: 0 < ¢ < 0.01
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vanish in our effective kinetic model. This speculation is reasonable in the real phe-
nomena. In the nucleation phase, abundant nuclei are created and some of them
could grow more longer. By the advance of technology these abundant nuclei in the

nucleation phase could be observed in the nucleation phase in the future.

4.2.2 Time evolution of the average length of polymers

Next I analyze the time evolution of the average length (I) of polymers and that of
the monomer concentration for different threshold lengths [, = 2,3,4,5 in order to
understand the behavior of the length distribution. I show the result of the time
evolution of the average length (I) in Fig.4.49.
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Figure 4.49: The time evolution of the average length of polymers with the threshold
length [, = 2,3,4,5 with the maximum length L = 5,000 in the volume V = 10!°
for 300,000 steps periods with parameters: k" = k°f = kpyt =0.1, kgff = 0.001¢y = 1.
(1) stands for the average length of polymers. The word “steps” stands for the steps
in the calculation. This figure shows the area of : 0 < (I) < 220

We could see that the average length of polymers are so sensitive to the threshold
length in Fig.4.49. I plot the dependence of the average length of polymers on the
threshold length at 300,000 steps in Fig.4.50. The average length of polymers depends
on the threshold length exponentially.
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Figure 4.50: The dependence of the average length of polymers on the threshold
length at 300,000 steps with the maximum length L = 5,000 in the volume V' = 10'°
at 300,000 steps with parameters: k0" = koff — k)t = 0.1,k1§jlcf = 0.001¢y = 1. jl;,
stands for the average length of polymers. The word ’steps’ stands for the steps in
the calculation. This figure shows the area of : 0 < (I) < 250

4.3 Time relaxation of the monomer concentration

I show the time relaxation of the monomer concentration in Fig.4.51. The behavior
of the time relaxation becomes almost two step processes which decay exponentially

depending on the k7' and k)".

Summary

I construct a effective kinetic model for the linear polymerization with a threshold
in a finite volume system treating the monomer number explicitly. This effective
model shows the shifted peaks of the distribution with several threshold lengths
lin = 1,3,5,10 in several concentration (¢g = 1,2, 3) like the distribution simulated
in our lattice polymerization model. I calculate the time evolution of the distribution
with a threshold i, = 5 for 200,000 steps periods. I found the relaxation of the
shifted peak. And I analyze the average lengths of polymers with threshold lengths
lin = 2,3,4,5 which are so sensitive to the threshold lengths. I also calculate the
time relaxations of the monomer concentration with threshold lengths Iy, = 2,3,4,5

those behavior show the two step processes which decay exponentially depending on
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Figure 4.51: The time relaxation of the monomer concentration with the threshold
length I, = 2,3,4,5 with the maximum length L = 5,000 in the volume V = 10'°
for 300,000 steps periods with parameters: k" = kT = kyr =0.1, k;’ff = 0.001¢y = 1.
¢(1) stands for the monomer concentration. The word “steps” stands for the steps in
the calculation. This figure shows the area of : 0 < ([) < 250.

the k' and £3".

This new simple kinetic model has an important meaning for the non equilibrium
state in a finite volume system, because this model could treat the monomer number
explicitly i.e. finite source system that is different from the conventional subunit bath

system 1i.e. infinite source system.



Chapter 5

Results II: a model with internal
state dynamics

I have examined the lattice polymerization model numerically in stochastic simula-
tions. I have investigated statistical behavior of samples containing many tubulin

dimers.

5.1 Dynamic instability in the lattice polymeriza-
tion model

In order to investigate the properties of phenomena like a dynamic instability, I
prepare a nucleus in the system and I trace the dynamics of the prepared nucleus
thereafter. The result shows many characteristics observed in experiments. Among
them, cytoskeletal filaments in this model perform oscillatory behavior resembling
the observed phenomena of dynamic instability as shown in Fig.5.1 where [ stands
for the length of a prepared filament. In this case, the velocity of growth is about
50x8 nm/1000 steps, which corresponds to about 24 p/min if estimated by using
the value 0.2 x107'* m?/sec of the diffusion constant in the case where a spherical
particle of 8 nm long and 55 kilodaltons exists in water. In actual experiments, the
typical velocities of growth is observed to be about 2 p/min (50 dimers/sec), while
the velocities of shortening are 10 times faster [6]. In our simulation, this velocity

becomes of the same order under a suitable set of parameters.

43
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Figure 5.1: Time series of the degree of
polymerization over 3000 steps period.

Discussion

At this stage this model is somewhat artificial, but as a first step, to construct
such a toy model of a system of many protein molecules is really invaluable for
understanding the phenomena in biological cells quantitatively. Such a model is
expected to fill the gap between the microscopic models based on the atomic behavior

and the macroscopic thermodynamic or chemical kinetic models.

5.2 A critical concentration in the lattice polymer-
ization model

In each simulation, I prepare a cytoskeletal filament in a system and observe its length
[ over 10,000 steps in order to investigate the growth-shrinkage dynamics especially
the dynamic instability. Fig.5.2 shows a snapshot of a simulation at 100 steps.

In order to investigate the dependence of the dynamics on concentrations, I per-
formed a series of simulations with this model for l;;, = 50, 7y = 250, 7p = —7p = 300,
(X =300, Y = 100), at relatively low concentrations ¢ = 0.05, 0.0625, 0.75, 0.0875,
0.1, corresponding respectively to 7, = 20, 16, 13.3, 11.4, 10, over 10,000 steps peri-
ods and calculate the length of the cytoskeleton prepared with the length of [ = 200;
some of the results are shown in Figs.5.3 to 5.5. These figures show that the growth

velocity averaged over long time interval increase with concentration. Fig.5.3 shows
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Figure 5.2: Snapshot of a simulation at 100 steps. Parameters: [y, = 50, 74 = 250,
n = —1p = 300, ¢ = 0.05 i.e. 7, = 20, (X = 300, Y = 100). There prepared a
cytoskeleton whose length is 200 and it is located in the center of the lattice in the
horizontal direction. Gray square and White square stand for D state and T state
particles’ sites severally.

that for ¢ = 0.05 the prepared chain of cytoskeleton is depolymerizing; polymers are
not stabilized in the equilibrium state. I calculate the mean long-time velocity vigng,
which is defined as the slope of the linear regression. The relation between the mean
long-time velocity vjong and the concentration ¢ are shown in Fig.5.8 and the average
values of vjong in each concentration are connected with lines as a guide for the eyes.
It is considered that the curve which connects these points crosses the line vjp,g = 0
at the concentration ¢y at around 0.065. This suggests that there exists a critical con-
centration of polymerizations, for this set of parameters so that the growth-shrinkage
dynamics continues for a long time without essential change of the length around
the concentration near ¢y. This concentration ¢y does not coincides with the critical

concentration for the growth to initiate[?].

5.3 Probability distribution function of the short-
time average velocity of the length in the lat-
tice polymerization model

Next I analyze the time series data for Iy, = 50,74 = 250,71 = —7p = 300, (X =
300,Y = 100), at the concentration ¢ =0.0625 nearest to ¢o. The simulation is done

20 times for different random numbers each starting from [ = 200. As is expected
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it shows a lasting dynamic instability as seen in Fig.5.9 where three samples of the
length change are displayed. From these results, I calculate the mean velocity over
several time intervals At: v = Al/At. Fig.5.10 shows the time series of the velocity
Ushort OVEr a short time intervals At = 100. It has observed in real experiments that
the growth velocity is smaller than the shrinkage velocity in the order of 10. The time
series of the velocity in Fig.5.10 has a small velocity component in positive region

and some large velocity components in negative region.
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Figure 5.9: Time series of the length of one cytoskeleton over 10,000 steps period. [
and t stand for the length and steps severally.
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Figure 5.10: Time series of the velocity of one cytoskeletons’ length over 10,000 steps
period. wvghory and ¢ stand for the velocity and steps respectively. vghory = Al/AL
(here At = 100)

I show the probability distribution functions (PDFs) of the velocity with some
time lags in Fig.5.11 over 10,000 steps periods for 20 trials with the time lag At from
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100 steps to 1,000 steps. Each curve of PDF has a shoulder at around vgo¢ = 0 and
a peak at around 0.02 and has the lower tail longer than the upper tail for large At.
The central part of the PDF of the length change Al widen linearly with the time
lags /At so that the central part of the PDF's of the velocity do not essentially depend
on At.

distribution
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01 =
0.05 E

Figure 5.11: Probability distribution functions of the mean short-time velocity.

Summary

Using our lattice model of cytoskeletons I analyze the behavior of linear polymers
made out of proteins which are continually polymerizing and depolymerizing in the
square lattice of 300 x 100 with the set of parameters: Iy, = 50,74 = 250, = —71 =
300. I observed that subunits of cytoskeleton do not polymerize in equilibrium at
very low concentrations. The analysis of the long-time velocity shows that there
exists a critical concentration of polymerizations in cytoskeletons’ dynamics for the
above set of parameters at around ¢ = 0.065. I also observed the phenomena with
slow growth and rapid shrinkage which are characteristic of the dynamic instability.
I calculate the probability distribution functions of the short-time velocity, which has
a shoulder and a peak and also a long lower tail. The central part of the distribution

is essentially invariant of the time lag At.



Chapter 6

Summary

In this thesis, I introduce a lattice polymerization model for the dynamics of cy-
toskeletal filaments including physical ingredients of (a) random motion in space, (b)
short range interaction with a threshold length, and (c¢) internal state variable and I
also introduce an effective kinetic model for linear polymerization with a threshold
length in a finite volume system.

I perform simulations of the lattice polymerization model in two limiting cases
of a diffusion-limited aggregation model and a simple lattice gas model. These cases
show important features in the cytoskeletons’ dynamics: in low concentrations, the
growth velocity of a polymer increases linearly as the concentration increases, while
the shrinkage velocity of a polymer mainly depends on the detach probability. These
results will be important for the understanding of the growth-shrinkage dynamics of
cytoskeletons such as dynamic instability.

In DLA, the both ends of polymer may be considered to be sinks of subunits. The
problem of diffusion with a sink is described by the Laplace equation in the stationary
state. A basic solution in two dimensions is expressed by ¢(r) = alog(r/ry), where
¢ is concentration, r is distance from the sink and a and rqy are constants. The six
nearest neighbor sites have a effective concentration c.g then the growth velocity
should be vy = (6/4)cer. I estimate by using the simulation result of v, = 0.45¢ that
the concentration reaches the uniform value at the distance of about r ~ 10 sites.
This estimation is based on the idea that the both ends of polymer grow up slowly
by the diffusion with the logarithmic distribution of concentration around the ends.

In the simulations of LGM, I found that the shrinkage velocity is determined essen-

20
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tially by the detach probability. The both ends of polymer are the source of subunits
in contrast to DLA. Applying a similar argument as above with sinks replaced by
sources, I estimate that at the distance of about r ~ 3 sites the concentration reaches
the uniform value, though in this case the process may not be stationary due to the
large shrinkage velocity of o5 ~ —1.

I discuss briefly the role of the internal state dynamics. In the model without the
internal state dynamics, I have a sharp critical concentration for the growth /shrinkage.
The effect of the internal state dynamics may blur the critical concentration to a finite
range so that it helps to grow the polymer at a smaller concentration. This implies
that the internal state dynamics plays a very important role to the state different
from equilibrium.

I construct a effective kinetic model for the linear polymerization with a threshold
in a finite volume system treating the monomer number explicitly. This effective
model shows the shifted peaks of the distribution with several threshold lengths
lin = 1,3,5,10 in several concentration (¢, = 1,2, 3) like the distribution simulated
in our lattice polymerization model. I calculate the time evolution of the distribution
with a threshold l;;, = 5 for 200,000 steps periods. I found the relaxation of the
shifted peak. And I analyze the average lengths of polymers with threshold lengths
lin = 2,3,4,5 which are so sensitive to the threshold lengths. I also calculate the
time relaxations of the monomer concentration with threshold lengths ly, = 2,3,4,5
those behavior show the two step processes which decay exponentially depending on
the k' and £3".

This new simple kinetic model has an important meaning for the non equilibrium
state in a finite volume system, because this model could treat the monomer number
explicitly i.e. finite source system that is different from the conventional subunit bath
system 1i.e. infinite source system.

I found some kind of shifted peak in the length distribution of linear polymers
which are longer than the threshold length in the lattice polymerization model with-
out (c)internal state change.

Also in order to investigate the properties of phenomena like a dynamic instability,

I prepare a nucleus in the system and I trace the dynamics of the prepared nucleus
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thereafter. The result shows many characteristics observed in experiments. Among
them, cytoskeletal filaments in this model perform oscillatory behavior resembling
the observed phenomena of dynamic instability.

Using our lattice model of cytoskeletons I analyze the behavior of linear polymers
made out of proteins which are continually polymerizing and depolymerizing in the
square lattice of 300 x 100 with the set of parameters: Iy, = 50,74 = 250, = —710 =
300. I observed that subunits of cytoskeleton do not polymerize in equilibrium at
very low concentrations. The analysis of the long-time velocity shows that there
exists a critical concentration of polymerizations in cytoskeletons’ dynamics for the
above set of parameters at around ¢ = 0.065. I also observed the phenomena with
slow growth and rapid shrinkage which are characteristic of the dynamic instability.
I calculate the probability distribution functions of the short-time velocity, which has
a shoulder and a peak and also a long lower tail. The central part of the distribution
is essentially invariant of the time lag At.

The lattice model and the kinetic model is somewhat artificial but important for

the understanding of cellular process and the nature of cytoskeletal proteins.



Appendix A

Two mathematical relations

In this appendix, I prove two simple mathematical relations which is used in the
Oosawa’s theory.
If z is a positive number (< 1), then the next two mathematical relations are

approved.
1

1—=z

(A1)

i=0
and .
. x
; it = - (A.2)
These mathematical relations are easy to prove. I call the infinite sum in eq.(A.1) S.
Then,
S=1+z+2°+.. (A.3)

zS=x+2*+2° + .. (A.4)
I sum up the above two equations (A.3) and (A.4),

1

Szgxi:1_$ (A.5)
And i take the x-derivative of S,
S'=1+2x+32%+ ... (A.6)
Then,
S =z +22% + 3% + .. zgmi = a _3795)2 (A.7)
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Appendix B

Law of mass action and Linear
response coefficient

In this appendix, I consider the linear response theory in the chemical reaction and
derive the law of mass action [33] and the linear response coefficient in the reaction.

I consider a chemical reaction expressed as following,

kOn
A—l—B#ﬁCjLD, (B.1)
kO
where k°" and k°" stands for the rate constants of the association and dissociation,

respectively. I assume the molecular concentrations of A,B,C,D as ¢y, ¢g, cc, cp,respectively

and the kinetic equation for ¢, is expressed as below,
dCA
dt

For the species B,C,D, the kinetic equations are like the above equation. In the

= —kcpcp + kM caep. (B.2)

equilibrium state, if I assume the solution of these equations as ¢3!, ci!, co, ¢y, the

kinetic equation for ¢, becomes as below,

CACp'
on
= —k°" [ cacB — —sgeqCccp | - (B.3)
Coeh

dea
dt

As the thermodynamic force for the chemical reaction is the chemical affinity, if I as-
sume the chemical potentials for A,B,C,D as ua, ug, fic, ip,respectively, the chemical

affinity A is defined as,
A = pa + pB — e — kb (B.4)
Here I consider the relationships between the kinetic equations and the chemical

affinity.

o4
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B.1 Law of mass action

In the case that the reactant is dilute, the chemical potential is expressed as follow
i = ksTlnc; + pl (P, T) (B.5)

where p)(P,T) stands for the standard chemical potential in the state of pressure
P and temperature 7" and kg is the Boltzmann constant. The equilibrium state

corresponds to A = 0. So substituting eqs.B.5 for A,B,C,D into A = 0,
cacy 0 0 0 0
A= kBT In &4 + pa g — Hc — Bp = 0 (BG)
c

Then the law of mass action which is expressed by the following relation is derived

from eq.B.6.
248 MO + NO _ MO _ MO
InAB _FCTPD FA FB — p(pT B.7
572 T (P, T), (B.7)

where K(P,T) is called the equilibrium constant. The law of mass action means
that the ratio of reactants and products becomes a constant depending only on the

temperature and pressure in the equilibrium state.

B.2 Linear response
From the law of mass action, the chemical affinity is expressed as below,

A= kT l("‘*”B') / (%)] . (B.8)

Also this is expressed as below,

eq.__eq
_ ncenpna n
e AlkBT — e 2B (B.9)
ANBNE N
In the case A/kgT < 1, I expand A in eq. B.9 with the Taylor series at A/kgT,
A
AT ] B.10
e T (B.10)
So the monomer concentration of A expressed as below,
dnA A
— ~ —k —. B.11
dt AT (B.11)
Then the linear response coefficient L is as following,
k rm
[, — MATrmB (B.12)

kgT
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