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Chapter 1

Introduction

1.1 Introduction to set theory

For a set X, we write | X| for the cardinality of X, and P(X) for the power
set of X, that is the collection of all subsets of X. (Under the axiom of choice,
any set has a cardinality. Throughout this dissertation, we always consider
Zermelo-Fraenkel set theory with Choice ZFC.) Cantor proved that |X]| is
less than |P(X)| for any set X. It follows that the size of the continuum
¢, which is equal to the size of the collection of all subsets of the natural
numbers, is necessarily larger than the size of the collection of the natural
numbers, denoted by w. The Continuum Hypothesis CH says that the size of
the continuum is just X;, which is the least uncountable cardinal. It has been
studied whether or not the Continuum Hypothesis can be deduced from ZFC,
but this problem has been solved by Kurt Godel and Paul Cohen. Godel has
proved that we cannot prove the negation of the Continuum Hypothesis from
ZFC and Cohen has proved that we cannot prove the Continuum Hypothesis
if ZFC is assumed consistent. This means that the Continuum Hypothesis
is independent from ZFC. We should note that to understand such results,
we necessarily need to formalize mathematics. For this reason, we consider
mathematics in ZFC or some other formal system.

To prove the independence of CH, Godel has introduced the notion of the
constructible universe, and Cohen has introduced the forcing method. The
forcing method is often used to show that some statement cannot be deduced
from ZFC assuming that ZFC is consistent.

Set theory of the reals is one of the areas of set theory. In ZFC, we
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10 CHAPTER 1. INTRODUCTION

can identify the real numbers with the subsets of the natural numbers, the
infinite sequences of the natural numbers, and so on. The following are
aims of studying set theory of the reals: to investigate what statements
about the real numbers may be proved from ZFC and to do research on the
combinatorics of the real numbers. By continuing these studies, we hope to
find a new axiom which is consistent with ZFC and decides the cardinality
of the continuum. (We believe this is in contrast to Godel’s program, which
is that the size of the continuum should be decided from “strong axioms of
infinity”, so-called “large cardinal axioms”. [19])

We often consider cardinal invariants which are cardinals expressing some
combinatorial structure. For example, we define a relation <* on functions
on the natural numbers as follows:

f<rg &= Imewvnewhn>2m = f(n) < g(n))
for functions f and g. And we give one example of a cardinal invariant b:
b := min {|F|; F Cw* & Vg € w3f € F(f £* 9)},

where w* denotes the set of all functions from w into w. By a diagonal
argument, we can show from ZFC that b is an uncountable cardinal and
clearly b is less than or equal to the size of the continuum. The author has
studied some cardinal invariants, e.g. the cofinality of the strong measure
zero ideal [52] and the covering number of the Marczewski ideal [53].

Theorem ([52]). It is consistent with ZFC that the cofinality of the strong
measure zero ideal is less than the power of the continuum.

Theorem ([53]). In the extension with finite support iteration of Hechler
forcing of length k, where k is a reqular cardinal, the covering number of the
Marczewski ideal is N;.

I think that finding lots of statements on the reals consistent with ZFC as
above gives us clues on new axioms deciding the continuum.

In this thesis, we concentrate on one topic in set theory: gaps in P(w)/fin.
This has been studied by many mathematicians in many areas. In particu-
lar, the study of gaps from the set theoretic aspect has grown up. We will
especially look at the relationship between gaps and forcing extensions.
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1.2 Introduction to gaps

Gaps, which are the main topic of this thesis, had been studied in areas
other than set theory, for example topology or algebra. Gaps had been first
studied by du Bois-Reymond in the 1870’s [14]. And in the first half of 20th
century, Hausdorff and Rothberger had studied gaps from the set theoretic
point of view. The important results due to Hausdorff and Rothberger are
the existence of (wy,w)-gaps and (w, b)-gaps ([22], [40]). After that, in the
1970’s Kunen has studied gaps and their destructibility by forcing.

It follows from Kunen’s research that the gap discovered by Hausdorff
still forms a gap in any forcing extension preserving X;. Moreover, it follows
that any (w;,w;)-gap is indestructible under MAy, (ccc). Around the same
time, Laver has built a forcing notion which generically adds a destructible
gap by finite approximations and has proved that it is consistent with ZFC
that ¢ > N, and every linear ordering of cardinality < ¢ is embeddable in
w“. The study of the relationship between gaps and forcing extensions-has
two fields: the existence of a destructible gap and gap spectra under Martin’s
Aziom.

The first field has been particularly studied by Todoréevi¢, Farah, Hirschorn
and others ([2], [24], [25], [46]). Todorcevi¢ has constructed a destructible
gap from a diamond sequence and from adding a Cohen real (see chapter 3),
and Hirschorn has studied the existence of a destructible gap in the extension
with random forcing.

The other field was firstly studied by Kunen, and later by Kamo, Rabus,
Scheepers, Todoréevié, Woodin and others ([9], [31], [33], [39], [41], [45]).
Todoréevié introduced the Open Coloring Axiom and proved that the axiom
decides the value of the bounding number to R;. To show this, he thought of
the gap spectrum under the Open Coloring Axiom. We notice that Martin’s
Axiom plus the Open Coloring Axiom decides the size of the continuum. This
is one example of deciding the continuum from new axioms consistent with
ZFC using an argument on gaps. And Woodin has used a gap to do research
on the Automatic Continuity Hypothesis ([9], [51]). He proved that the
Automatic Continuity Hypothesis is consistent with ZFC by forcing Martin’s
Axiom and a stronger statement on gaps.
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1.2.1 Parametrized diamond principles

The diamond principle < introduced by Ronald Jensen is the following state-
ment:

3 (Aqs; @ < wq) with A, C « such that

VX Cwu,{a<w; XNa= A,} is stationary.
In [10], Devlin and Shelah presented the following axiom, called the weak
diamond principle, which is formulated as a weaker version of the diamond
principle:

VF: 2% — 239 :w; — 2Vf 1wy — 2,

{a <wy;; F(fla)=g(a)} is stationary,

which is equivalent to the inequality 2%¢ < 2%1, Parametrized diamond prin-

ciples have been designed by Moore, Hrusdk and Dzamonja as weak diamond
principles parametrized by cardinal invariants in the following form:

Definition 1.1 ([38]). 1. An invariant is a triple (A, B, E) such that

e both A and B have cardinality at most c,
e £ C Ax B is a relation,

e Ya € 3b e B({(a,b) € E), and

e Vbec Bia€ A({(a,b) ¢ E).

2. For an invariant (A, B, E), define its evaluation (A, B, E) by
(A,B,E) == min{|X|; X C B & Va € Adb € X((a,b) € E)}.

3. For an invariant (A, B, E), define the diamond principle for (A, B, E)
as follows:

O(A,B,EY=VY Borel F:2<“1 — Adqg:wy — BYf :w; — 2,
{a <wi; (F(fla),g(a)) € E} is stationary.

In this notation, b = (w*,w®, 2*) and the covering number of the meager
ideal is equal to the evaluation of the invariant (w*, M, €). To simplify, we
write {(b) instead of O(w®,w”, 2*), etc. In [38], there are many applications
of parametrized diamond principles. In particular, a Suslin tree has been
constructed from {(non(M)). The author constructs a destructible gap from
the same parametrized diamond principle, which is one of the main results
of the thesis. This answers Question 5.8 in [38].
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1.2.2 Martin’s Axiom

Martin’s Aziom MA is the following statement:

For any forcing notion P with the countable chain condition and
x many dense subsets {Dq; a < k} in P for any k < ¢, there exists
a filter G in P which meets D, for all a < &.

Solovay and Tennenbaum had proved that this can be forced by a finite
support iteration of forcing notions with the countable chain condition. There
are many variations of this axiom. For a collection P of forcing notions and
a cardinal k¥ < ¢, MA,(P) is the following statement:

For any forcing notion P € P with the countable chain condition
and A many dense subsets {D,;a < A} in P for any A < k, there
exists a filter G in P which meets all D, for all o < A.

In this notation, Martin's Axiom is the statement A, . MA.(ccc) and the
Proper Forcing Aziom PFA is the statement MAy, (proper). Scheepers has
studied the gap spectra under several versions of Martin’s Axiom and pro-
vided some problems ([41]).

Under Martin’s Axiom, if there exists a (x, A\)-gap, then it is necessarily
satisfied that either Kk = A = w; or k = ¢ or A = ¢. Moreover if & is a regular
cardinal less than ¢ and not wy, then there exists a (k, ¢)-gap. But we cannot
deduce the existence of (w1, ¢)-gaps and (¢, ¢)-gaps from Martin’s Axiom. In

fact, Kunen proved that both of the following statements are consistent with
ZFC+ MA +-CH:

e Both (w;, ¢)-gaps and (¢, ¢)-gaps exist.
e Neither (wy, ¢)-gaps nor (¢, ¢)-gaps exist.

The following statement, which answers a question addressed in Scheepers’
survey article (Problem 13 in [41]), is the other main result of this thesis:

It is consistent with ZFC that Martin’s Axiom holds and there
are (¢, ¢)-gaps but no (wy, ¢)-gaps.

Our notation is quite standard. In particular, we refer to [3] and [34] for
undefined symbols and notation.



Chapter 2

Preliminaries on gaps

The notion of gap can be defined for any transitive order. But whenever we
consider gaps on the real numbers, we do not need to care what order we
think of. At first, we explain such results.

Definition 2.1. Let (X, <) be a transitive order, i.e. forz,y and z in X, if
x4y and y< z, then x <z holds. And let A and B be subsets of X.

1. (A, B) is called a pregap if a<b holds for every a € A and b € B.

2. (A,B) is called separated if there exists ¢ € X such that a<c<b for
everya € A andb € B. This c is called a separation or an interpolation
of this pregap.

3. (A, B) is called a gap if it is a pregap and not separated.

4. If ot(A,<) = k and ot(B,>) = A, then (A,B) is called linear, and a
(K, A)-pregap (or a (k,\)-gap) if it is a pregap (or gap).

In the thesis, we write a pregap in many forms: (A, B), (aa,bs; @ < k,8 < A)
Or (Gu, bo; a < k). If we write (aq,bg; a < k,8 < A), we necessarily mean a
(k, \)-pregap with this order, i.e.
VE < &l < KVn < 77' < )\(d&QaEran'an & Qg A Qg & bT) }él b"l')‘
Ezxamples of transitive orders.

(W, <) f<g : <= lim, o g(n) — f(n) = +oo.

15



16 CHAPTER 2. PRELIMINARIES ON GAPS

(W, K): f<g 1= V*n(f(n) < g(n)).
W, <) f <t g s = Vn(f(n) < g(n)).
(29,<%): f<hg 1= Von(f(n) < g(n)).
(P(w),C*): aC*b : <= a~ bis finite.

The gap spectrum Gap(X, <) for a transitive order (X, <) is the collection
of pairs of infinite regular cardinals (x, A) whose type of gaps exists.

Lemma 2.2 (Folklore). Let k and A be infinite regular cardinals. If a
(K, A)-gap exists in one of the structures (W, <), (w*, K), (w*, <*), (2¥,<*)
and (P(w),C*), it also exists in all of those structures.

Proof. Tdentifying infinite subsets of w with their characteristic functions, it
is trivial to see Gap(2¥, <*) = Gap(P(w),C*). Other trivial cases are

e Gap(w”, <) € Gap(w”, <) € Gap(w*,<”)

e Gap(2¥,<*) € Gap(w*,<*).

Assume (aq,bg;a < k,8 < M) is a gap in (w”, <*). For x € w¥, we let
p(x) :={{,n);i<z(n)} Cwxw.

Then ({p(aa),p(bs);a < k,B8 < A) forms a gap in (P(w?), C*) which is equiv-
alent to (P(w), C*) and (2¥,<*). Thus Gap(w®, <*) C Gap(2¢¥, <*).
,E*)-

-
Assume (an, bg; @ < k,3 < A) is a gap in (P(w),C*). For z € [w]*, let

-
t€xMn
Then <Zf;, l;;;a <K (< )\> is also a gap in (w”, <), which completes the
proof of Gap(w*, <*) C Gap(w®, <). d
Therefore we can concentrate on just one structure. In this thesis, we

adopt the following framework to consider gaps because it simplifies. For a
Boolean algebra, we can consider the notions of pregaps and gaps as follows.

Definition and Notation 2.3. Let a and b be elements of P(w), and A
and B subsets of P(w).
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1. a L b denotes that aNb is finite.
2. At ={cCw;Vace Ala L c)}.

3. (A,B) is called a pregap if for any a € A and b € B, a L b, i.e.
BC AL

4. A pregap (A, B) is separated if there is c € At such that b C* ¢ for all
b e B. This c is called a separation or an interpolation of this pregap.

5. (A, B) is called a gap if it is a pregap and not separated.

6. If ot(A,C*) = K and ot(B,C*) = A, then (A, B) is called a linear gap,
and a (k, A)-pregap (or a (k,\)-gap) if it is a pregap (or gap).

If (A, B) is a gap in the above sense, then (A, {w \ b;b € B}) is a gap in

the structure (P(w), C*). When we let (a4, bg;a < k,3 < A) be a pregap in
the above sense, it means that

V€< <a¥n<n < Mag T ag & by C* by & ag L by).

By the above definition, it is trivial that (k, A\)-gaps exist iff (), k)-gaps ex-
ist. For a (k,\)-(pre)gap, if k = A, it is called symmetric, otherwise, it’s
called asymmetric. The following proposition is an easy test whether a given
symmetric pregap (@a,ds; @ < %) forms a gap or not.

Proposition 2.4 (Folklore). Assume that {aa,ba; @ < k) forms a pregap
satisfying that a,Nb, is empty for every o < k. Then the following statements
are equivalent:

1. {aa,ba; @ < K) is a gap.
2. VX € [k]"Fa # B € X((aaNbg) U (agNba) # 0).

Proof. 1f it is not a gap, letting c be its interpolation, thereare n € w, s,t C n
and X € [k]® such that ‘

o Vo€ X(aoNn=3s& b,Nn=1t) (so sNtisempty),
e Vae X(aoNecCn&by~nCec).

Then for any distinct o and 8 in X, (aq Nbg) U (ag Nba) = 0.

Conversely, assume there exists X € [k|* such that for any o and 8
in X, (aa Nbg) U(ag Nby) is empty. Let ¢ := |J,cx @a, then c separates
(@ay ba; @ € X). Therefore it also separates (aq, ba; @ < K). O

This gives a hint of a condition on indestructible gaps. (See next chapter.)
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2.1 Classical results

In this section, we review three classical results. All of them had been proved
before modern set theory appeared.

Lemma 2.5 (Hadamard, [21]). There are no (w,w)-gaps.

Proof. Assume that (an,b,;n € w) forms a pregap. Then we can recursively
construct an increasing sequence (kn; 7 € w) of natural numbers such that

e (anNby) \ ky is empty for all n € w,
e a;,~k,Canand b;\k, Cb, foralln € wand i <n, and

e by, N (knt1 N k) is not empty for infinitely many n € w.

Letting ¢ := |J,ep, bnN (kns1 \ kn) which is an infinite subset of w, ¢ separates
(n,bp;n € W), ie. ap L cand b, C* cfor all n € w. O

Theorem 2.6 (Rothberger, [40]). There ezist (w,b)-gaps.
Proof. For a € |w]“, let @ be a function on w such that
an) = » 2
i€ann
for every n € w. For a pregap (aqa,bn; 0 < K,n < ,‘i)) satisfying that b, C bp4q

for all n € w and a function f € w* with f <* b,° for all n € w, where b° is
a complement of b (b := w \ b), define

hy(n) = max {k € w; b (k) < f(k) }
for every n € w. Then the following statements are equivalent;:
(i) (@a,bn;a < k,n < w) forms a gap, and
(ii) {haz; @ < k} is unbounded (with respect to <* in w*).

This says that there always exists (w, b)-gaps because we can always find an
increasing chain in (w*, <*) of length b.

Assume (i) holds and a function h € w* dominates all hszz, a < k. With-
out loss of generality, we may assume that n < h(n) < h(n + 1) holds for all
n € w. Define p € w” by

p(n) = b’,\n/c(n) where m = min{k € w; h(k + 1) > j}

for every n € w.
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Claim 1. p <* b;:c foranym e w.

For m € w and n > h(m + 1), letting k € w be so that p(n) = l;;z(n),
since m < k holds, p(n) < b::c(n).
Claim 2. a, <* p for any a < k.

For a < k, there is N € w such that hg(n) < h(n) for all n > N. Then
for all n > h(N), letting | = max{k € w;n > h(k)} (= N),n = h(l) > haz ()
hold and p(n) = bl+1 (n). So @a(n) < bl (n) < bl+1°(n) p(n).

Define ¢ € [w]|“ by
kec < pk) >Z2i.
i<k

Then this ¢ separates (aq,bn;a < k,n < w). (We note that for a,b € [w]¥,
alb < aC*l < a<*be)

Assume that (i) doesn’t hold and let ¢ € [w]* separate (aq, by @ < K, < W).

Then we can define hz which dominates all hz-, o < k. O
From the above proof, we can conclude

Corollary 2.7.
b = min {x;3 (w, k)-gaps }.

O

And this proof gives us a condition on destructibility of Rothberger gaps.
(See also next chapter.)

Theorem 2.8 (Hausdorff, [22]). There exist (w1, w1)-gaps.

Proof. By recursion on o < w;, we construct a, and b, in [w]“ so that a,Nby
is empty, w \ (aq U by) is infinite and letting

Cla, {be; € < a),n) = {6 < aj;aaNb CTn}

for any n € w, a € [w]* and an increasing sequence {b¢; & < a), C(aq, (be; € < @),

is finite for all n € w.

At first, we put ap = bp = 0. And given a, and b,, we let a1 and b4 be
any a and b such that a, C a, b, C b, and both ax a,, b\by and w~ (aUb) are
infinite. Then since C(aq, (be; € < @), n) is finite, C(aat1, (bg; € < a4+ 1) ,n)
is also finite for any n € w.

n)
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In the limit stage, assuming that we have already constructed (ag, be; £ < a),
there exists its interpolation ¢o. By the inductive hypothesis, C(co, (be; € < 8) ,n),
which is a subset of C(ag, (be; € < B) ,n), is finite for every § < a and n € w.

By recursion on ¢ € w, we construct {c¢; € w such that

e (Ci,be;i € w, & < ) forms a pregap, and
o C(ciy1, {bg; € < @), 1) is finite for all i € w.

Given ¢;, if C(c;, (bg; € < ), + 1) is finite, then we let ¢;41 := ¢;. Oth-
erwise, we notice that C(c;, (be; € < @) ,i+ 1) has the order type w and its
suprimum is a. (Since C(c;, (be;€ < @), + 1) \ € is infinite, in particular
non-empty for every £ < a, C(c;, (be; € < @) ,i+1) is cofinal in a. If its order
type is larger than w, then there is 8 € C(ci, (be;€ < @) ,i + 1) such that
C(cs, (be; € < B) ,i + 1) is infinite, which is a contradiction.) Let ({n;n € w)
be an increasing enumeration of C(c;, (b¢;€ < @) ,i+ 1). We find a strictly
increasing sequence (n;;! €“) of natural numbers such that

c,-ﬂbgjCm&bgjﬂbgkgnl&bglﬂ(nl+1\nl)7é(l)

for all j < k < 1. Then letting
Cit1 = U U(bgj N Njt1 ™ nj),
=
Cit1 is as desired. After constructing {(c;;i € w), we take a separation a, of
(Ciy be; 1t € w,€ < a), which means that

Vie wVE < alc; C* aqy & a L b)),

and next we pick an interpolation b, of (@, be; € < @), which completes the
construction.

All we have to do is to check that (a.,bs; @ < wy) forms a gap. Assume
there exists a separation d of this pregap. Then by the counting argument,
we can find A € [w]*! and n € w so that a, Nd C n and by, C dUn hold for
every a € A. Let a € A be such that AN (o + 1) is infinite, then since

aaﬂbg(_i (aaﬂd)U(bg\d)gn

for all € € A, C(aa, (bs1;€ < a) ,n) is not finite which is a contradiction. O
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If an (wy,w1)-gap (a, be; @ < wy) satisfies that
{€ < aj;aaNbe Cn} is finite for all n € w and a < wy,

then it is called that Hausdorff gap. It can be proved that any Hausdorff gap
is indestructible (Lemma 3.7), but by a recent work of Hirschorn [26], the
reverse may not be true.



Chapter 3

Forcing destructibility and
survivability of gaps

3.1 Basic forcing notions on gaps

In this chapter, we consider the relationship between gaps and forcing exten-
sions. For a gap (A, B) and a forcing notion P, we call (A4, B) P-survivable if it
still forms a gap in the extension with P, otherwise it is called P-destructible.
In [41], Scheepers researched destructibility of gaps under forcing notions
having a stronger condition than the countable chain condition. We also
consider survivability under forcing notions not having the ccc like Sacks
forcing or Laver forcing.

Separating gaps by forcing

From Lemma 2.5, any gap is P-destructible for some P collapsing an enough
larger cardinal to Wp. So as usual, when we think of P-destructibility, we
assume P does not collapse any cardinals. A gap is called indestructible if it
is P-survivable for any forcing notion P collapsing no cardinals. Kunen and
Laver have defined the following forcing notions both of which generically
adds an interpolation and have similar conditions.

Definition 3.1 (Kunen). For a pregap (A,B) = (aa, b, < K, 8 < A), de-
fine

Kunen(A4, B) := {(p,q);p C k x w,q C A X w: finite partial functions
& Ya € dom(p)V8 € dom(g)((aa ~ p(a)) N (bs ~ q(8)) = 0)},

23
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(Po, o) < (p1,q1) <= P 2p1 & @ 2 ¢

Definition 3.2 (Laver). For a pregap (A,B) = {(aq,bg,a < K, < A), de-
fine

Laver(A, B) := {{L, R, s) € [k]<“ x [A|*¥ x 2<“;Va € LVY( € R(aa Nbs C |s|)},

<L0,R0,80> < (L],R],S]) e L 2 L] & Ry D Rl & S0 2 S1
& Va € Ll\V/ﬂ (S R] (aa N (|So| AN |81|) (_: So_l{l} N (|So| ~N |81|)
& 80_1{1} N bp N (lSol ~N lSll) = @)

As we see below, both of them have similar properties. But I don’t
know whether both are equivalent or not. Kunen(.A, B) adds an interpolation
indirectly, but on the other hand, Laver(.A, B) adds an interpolation directly.

Lemma 3.3 ([33],[41]). If a pregap (A,B) does not form a gap, then
Kunen(A, B) has strong property K, and Laver(A, B) has a o-centered dense
subset (so it also has the strong property K).

Proof. Let ¢ € |w]* interpolate it, i.e. a L cand b C* ¢ for all a € A and
be B. Let

Ck(s) == {(p,q) € Kunen(A4, B); Va € dom(p)V3 € dom(q),
(@a ~p@)) N (sTH{1}U (e |s])) =0 & bs ~ g(B) € s™ {1} U (e |s])},

and
Cr(s) = {({L, R, s) € Laver(A,B);Va € LYB € R(aaNc, bg~cC|s|)},

for any s € 2<“. Then J,co<. Ck(s) = Kunen(A,B) and [J,cp<. CL(8) is
dense in Laver(A, B). If (p.q) and (p',¢’) are in Cx(s) and p[dom(p) =p|
dom(p') and q [ dom(q) = ¢’ | dom(q’), then (p.q) and (¢/,q’) are compati-
ble. So it follows from a A-system argument that | J,.,<. Cx(s) has strong
property K. We note that each Cp(S) is o-centered. a

Lemma 3.4 ([41]). Let (A,B) = (aa,bg; 0 < 5,08 < A) be a (K, A)-gap (as-
suming that Kk < A).

e If Kk < A, then both Kunen(A, B) and Laver(.A, B) have the strong prop-
erty K.
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e Ifk = X > wy, then both Kunen(A, B) and Laver(A, B) have the property
K.

Proof. If kK = w, then Kunen(A, B) has strong property K, and Laver(A, B)
has a o-centered dense subset as above:

Kunen(A, B) = U Dk (E,p) where
E e [w]<w
pPE w®

Dk (E,p) :={(p,q) € Kunen(A, B);q C A x w is a finite partial function},

Laver(A, B) = U Dr(L, s) where
L e [w]<¥
s € w<w

Dr(L,s) := {{L,R,s) € Laver(A,B); R € [\|*“}.

So we may assume that x > w.

Case of Kunen(A, B). Take any {(pa,qa);a < u} C Kunen(A, B), where p is
uncountable and regular. To show the lemma, we have only to consider the
following two cases:

ou <A Find § < X with {J,.,dom(ga) C 6. We denote (bs; 8 < 4) by
Bé. Then {(pa,ga);a < p} C Kunen(A, B[ ¢§) which has the strong
property K because (A, B[4d) doesn’t form a gap.

ok <A< pu. FindI € [u]#, p € [kxw]<“ and such that p, = pforany oo € I
and {ga; @ € I} forms a A-system. Then {(pa, ¢a);a € I} is pairwise
compatible.

Case of Laver( A, B). Take any {(Lq4, Ra, Sa);a < p} C Laver(A, B), where u
is uncountable and regular. We have only to consider the following two cases
as above:

opu<A Find § < A with ,, Ra € 0. Then {{La, Ra,sa);a < p} C
Laver(A, B ¢) which is o-centered.

ok <ALy Find I € [p*, L € [k]<¥ and s € w<¥ such that L, = L
and s, = s for any @ € I. Then {(La, Ra, sq);a € I} is pairwise
compatible.
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O

Theorem 3.5 (Kunen [33], Todorcevié [46], Woodin [51]). For an
(w1, wr)-pregap (A, B) = {(aa, bg; o, 8 < w1) with axNbs = B for every a < wy,
the following statements are equivalent:

1. (A, B) is P-destructible for some forcing notion P which does not col-
lapse Ny,

2. VX € [wi]**3a # B € X ((aa N bg) U (agNba) = B),
8. the partition [A® B]? = LoUL;, where
[A® B)? := {(a,b) € Ax B;anb=0},
{{ao, b0}, (a1,b1)} € Lo <= (a0 Nb1) U (a1 Nbg) = 0,

is Suslin, i.e. for every uncountable collection F of finite Ly-homogeneous

subsets of [A® B]’, there are F # G € F so that F U G is also Lo-
homogeneous,

4. Kunen(A, B) has the countable chain condition,

5. Laver(A, B) has the countable chain condition.

Proof. Both 4 = 1 and 5 = 1 are trivial. Proofs of -4 = -1 and
-5 == -1 are the same way: Assume X C Kunen(A, B) is an uncount-
able antichain. Then IFp“ X is also an uncountable antichain ” because P
preserves ;. By Lemma 3.3,

IFp“ Kunen(.A, B) doesn’t have the ccc, so (A, B) is a gap ”.

For a proof of 4 —> 2, let X C w; be uncountable. For each a € X,
we let e, = (Pa, ¢o) be a condition of Kunen(A4, B) such that p, := {(a,0)}
and g, = {{a,0)}. Then we consider the collection {eo @ € X}. By the
cce-ness of Kunen(A, B), there are distinct o and 8 in X so that e, and eg
are compatible, which means that (aq Nbg) U (ag N by) is empty.

For a proof of 2 = 3, we assume that there exists an uncountable
collection {F,; a < wi} of finite Lo-homogeneous subsets of A ® B such that
for any distinct o and 8 in wy, F, U Fj is not Lo-homogeneous. For each
a < wp, we fix an ordinal §, < w; such that a C* a¢, and b C* b, for all
(a,b) € F, and all & are distinct ordinals. By shrinking if need, we may
assume that there exists n € w such that
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o Vo <wV{a,b) € Fola~nCae, &b~n Cbe),
o Va,B <wilag, Nn=agNn & b, Nn = bg, N1).

Let X = {£{a;a < w;}. We note that X is L;-homogeneous, which means
that for any distinct £,7 € X, (ag N by) U (a, N be) is not empty, i.e. -2
holds: If (ag, Nbe,) U (ag, Nbe,) is empty for some a # B € wi, then for any
(a,b) € Fy and (a',V') € Fp,

(a N b/) U (a' N b) CnuU ((aga N bgﬂ) U (Clgﬁ N bga)) = 0.

(We should remember that a,Nb, = 0 for all @ < w;.) It follows that F,,U Fg
is Lo-homogeneous, which is a contradiction.

For a proof of 3 = 5, assume that there exists an uncountable an-
tichain X = {pa;a <wi} C Laver(A,B). Letting po := (La, Ra, Sa), as the
argument above, we can find and assume that there are &, < w; for a < w,
and n € w such that

o Va < wi(n > |[sq|)
o Vo <wVy € LoV € Ry(ay~n Cag, & bs~n Cbe,),
e Vo,B <wilag, Nn=ag; Nn & b, Nn = by Nin),

e Vo,B <wi({ayNn;y € Lo} = {ayNn;y € Lg} & {byNn;7 € Ra} =
{by N'm;y € Rg}).

Since {pq; @ < w1} is pairwise incompatible, by conditions above, ((G,ga Nbg,;)U

(ag; Nbe,)) \ n is non-empty. Let Fy, := {£,} for every a < wy, then all F,

are Lo-homogeneous but any union F, U Fg with a # 3 is L;-homogeneous,
which leads that —3 holds. O

Corollary 3.6 (Kunen [33], Todor&evié [46], Woodin [51]). For an
(w1, w1)-pregap (A, B) = (aa, bg; a, B < w1} with aaNbs = B for every a < wy,
the following statements are equivalent:

1. (A, B) is indestructible,
2. 3X € [w]“'Va # B € X ((aa Nbg) U (ag Nba) # 0),

3. AQ®B has an uncountable Ko-homogeneous subsets in the open partition
[A® B* = KoUK,

{{ao,bo) , (a1,b1)} € Ko <= (aoNb1) U (a1 Nbo) # 0,
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4. Kunen(A, B) doesn’t have the countable chain condition,
5. Laver(A, B) doesn’t have the countable chain condition.

O

2 = 1 is trivial from Lemma 2.4. If an (w;,w;)-gap has a condition
2, then (A X,B [ X) = (a4, ba; @ € X) is also a gap and still forms a gap
in any forcing extension collapsing no cardinals because (A [ X, B [ X) still
satisfies a condition 2 of Lemma 2.4.

Lemma 3.7 ([41]). Every Hausdorff gap is indestructible.
Proof. Assume that (aq,bs; @ < wq) is Hausdorff gap, i.e. the set
{{ <a;aaNbe Cn}

is finite for any n € w and o < w;. We define a function f : w; — [wi]<¥
with

fla) :={{ <ajaaNbs=0}.
(It is well defined.) Now we use the following combinatorial theorem:

Theorem 3.8 (Lazar,see e.g. (27]). Let k be a regular cardinal and X a
(finite or infinite) cardinal with A < k. Assume that A is a set with size k
and a function K : A — P(A) satisfies that |K(z)| < A for every z € A.
Then there is a subset B C A of the cardinality x which is independent with
respect to K, i.e. for any distinct x andy in B, z & K(y). 4

Let X be an uncountable subset of w, with respect to f, which satisfies
the condition 2 of Corollary 3.6. O

Freezing gaps by forcing

We have a forcing notion which freezes a given (wi,w;)-gap, that is, which
makes it indestructible. As seen above, if a type of a gap is not (w;,w), then
it can be destroyed by a forcing notion with the countable chain condition.
As seen in the next section, it is consistent with ZFC that there exists an
destructible (w1, w1)-gap. In general, (A, B) is called a destructible gap if it
has a type (w1, w;) and is not indestructible. As seen above, if an (wy,w)-gap
is destructible, then it can be destroyed by a ccc forcing notion.
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Definition 3.9 (Kunen). For an (w1, w;)-pregap (A, B) = (@q, bg; ¢, f < w1),
define

Freezingy,pen (A, B) := {0 € [w1]**; {{{{e,0)}, {{a,0)}) ;@ € 0}
is an antichain in Kunen(A,B)},

oo < 01 &= 09 2 01.

Definition 3.10 (Woodin). For an (w1, w:)-pregap (A, B) = (aa, bg; o, 8 < wy),
define

Freezingwoodin (A, B) := { Y5 g Cwr x 2<¥: finite partial functions
& do (f) dom(g) & Va € dom(f)VG € dom(g),

either ((aa ~ [f(@))) U f(@)7' [{1}]) N ((bs ~ 9(B)) U g(B) " [{1})

r ((as ~ 1F(B)) U £(B)H{13]) N ((ba N lg()]) U g() T [{13])

18 non-empty},

(fo,90) < {f1,1) = fo290 & f1 2 g1.

Lemma 3.11 (Kunen, [33], [41]). For an (w1, w1)-pregap (A, B), the fol-
lowing statements are equivalent:

1. (A,B) forms a gap,
2. Freezingk,nen(A, B) has the countable chain condition,
3. Freezingyoodin (A, B) has the countable chain condition.

Proof. For a proof of 1 = 2, let X C Freezingx,nen (A, B) be uncountable.
Without loss of generality, we may assume that X forms a A-system with
root p and there exists n € w such that

Voe XVE<nea~plag~nCa,~n&b ~nCb,\n).
For o € X, let v, := min(o \ p). Since X is uncountable,
(@y, N 1,0y, N nj0 € X)

is equivalent to (A, B) hence it is a gap. By Lemma 2.4, there are distinct o
and 7 in X so that (ay, Nb,,) U (a,, Nb,,) is not empty. It follows that c U
is a condition of Freezingy,..,(A, B), i.e. ¢ and 7 are compatible.
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For a proof of 2 = 3, we assume that
X = {pa; a < wl} g FreeZingWoodin(A7B)

is an uncountable antichain. Let ps := (fa, ga) for @ < w;. Without loss of
generality, we may assume that

e {dom(fa);a < w} forms A-system with root A C wy,
o Va,8<wi(fal A= fslA& ga|A=gg|A), and

e letting v, := min (dom(fs) N\ A) for a < wy, there exists n € w such
that for all o < wy,

U f(8) £n & Vo € dom(fa) (ay, ~n C a5\ n)
dedom(fa)

and for any a, 8 < wy,

Uy, NN =a,, Nn & b,, Nn=">,Nn.

Moreover we may assume that all v, are pairwise distinct. Since X is pairwise
incompatible, for any distinct ¢ and n in w, there are a € dom(f) and
B € dom(f,) such that either

((aa (£ (@)D U fla) [{13]) 0 ((Bs ~ |g(B)) L 9(B) ' [{1})

((as 1B U FB) T {IH) N (B Ig(a)]) U (@) [{1}])

is empty. It follows that (a,, Nb,,) U (ay, Nb,,) is also empty. Let Y :=
{{Ya}; @ < w1} C Freezingyynen (A, B) which is an uncountable antichain.
For a proof of 3 = 1, assume that (A, B) is separated. Let ¢ be its
separation, then there are n € w and X € [w4]“* so that a,Nc C nand cxn C
ba \ 1 for every a € X. For each @ € X, we let p, := ({{a,n)}, {(a,n)}>
and consider {p,; @ € X} which is an uncountable antichain. a
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Adding gaps by forcing

We present a forcing notion adding an embedding map from some partially
ordered set (F,<g) into (P(w),C*) by finite approximations (see [15] and

y =

[41]). A forcing notion adding an embedding map by finite approximations
is Hechler’s forcing notion without rank (see [7], [23]).

Definition 3.12 ([15], [41], etc). Let (E, <g) be a partial order. H({E, <g))
consists of conditions p = (Fp,nyp, fp), where Fp € [E]<“, np € w and f, is a
function from F, x ny, into 2. For conditions p,q € H({E, <g)), define p < ¢

of
o I, D Fy, np > ng and fp o) fq, and
e Fora,be€ Fy, ifa<g b then fy(a,1) < fq,(b,1) for every i € [ng,ny).
We list basic theorems below. For their proofs, see [15].

Theorem 3.13. 1 (Folklore). H({E, <g)) has the countable chain condi-
tion.

2 (Farah). A pair(aq,bg;a < k,8 < A) of subsets of E is called tight (x, \)-
gap if {aa,bg;a < Kk, 8 < A\) forms a gap in (E,<g) and is tight, i.e.
there are no ¢ € E such that one of the following happens:

e a,<pcandbgLgc foralla <k and B < A, or
e cLpa, andc<g bg foralla <k and B < A

If (E,<Eg) has a tight (k, \)-gap, then H({E,<g)) adds a (k, \)-gap in
(P(w), C*).

3 (Farah). If k > ¢ and H({E,<g)) adds a (K, \)-gap in (P(w),C*), then
either a (K, \)-gap or a (), k)-gap exists in (E,<g). O

3.2 Destructibility and survivability under sev-
eral forcing notions
In the last section, we saw basic forcing notions one type of which adds a

separation of a given gap, the other type of which forces a given (wy, w:)-gap
to be indestructible. In this section, we consider other forcing notions and
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investigate whether they destroy gaps. To do this, we must distinguish two
types of gaps: Rothberger gaps and non-Rothberger gaps.

Definition 3.14. 1. A subset A of P(w) is called o-directed if for every
countable subset X of A there exists its upper bound a € A, i.e. x C* a
forallz e X.

2. A pregap (A, B) is called Rothberger if either A or B is not o-directed.
In particular, if (A,B) is linear, then the order type of either A or B

has countable cofinality. If a pregap is not Rothberger, then it is called
non-Rothberger gap.

The proof of Theorem 2.6 gives a condition of a destructibility of Roth-
berger gap.

Corollary 3.15. Under the notation of Theorem 2.6, for a forcing notion P

and a gap (aq, bn; @ < K,n € W) with byy1 C by, for every n € w, the following
statements are equivalent:

(i) (Ga,bn;a < K,n € w) does not form a gap in the extension with P, and
(ii) P adds a real which dominates all hg, a < k. O

Thus adding a dominating real, for example Laver forcing or Mathias
forcing (both of which are not ccc), collapses any Rothberger gap in the
ground model.

In the rest of this section, we will consider destructibility of non-Rothberger

gaps. At first, we will present two proofs using facts of basic forcing notions
in the previous section.

Lemma 3.16 ([41]). Assume that (A, B)is a (k, \)-gap where k, A > w; and
P is a o-centered forcing notion. Then (A, B) is P-survivable.

Proof. By Lemma 3.3, Laver(.A, B) is not o-centered (in the ground model).
Since P * Laver(A, B) and P x Laver(A, B) are equivalent and now P is o-
centered, Laver(.A, B) is not o-centered in the extension with P. Therefore
by Lemma 3.3 again, (A, B) is still a gap in the extension with P. O

Lemma 3.17 ([41]). Assume that (A, B)is an (w1,w1)-gap and P has the
productive ccc. Then (A, B) is P-survivable.
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Proof. By Lemma 3.11, Freezingy,en (A, B) has the ccc. Since
P * Freezingynen (A, B) = P x Freezingkynen (A, B)

also has the ccc, Freezingy,,..(A, B) still has the ccc in the extension with P,
hence (A, B) still forms a gap. O

The following lemma can be adopted for forcing notions having other
variations of the property K. For example, if P has the strong property K for
cardinality k > N;, any (k, x)-gap is P-survivable.

Lemma 3.18 ([41]). Assume that (A, B)is an (wi,w:1)-gap and P has the
property K. Then (A, B) is P-survivable.

Proof. Assume (a4, ba; ¢ < wi) is a gap and there is a P-name & such that
I & separates {aa,bo; 0 < wy).”
For a < wy, we can find p, € P and n, € w such that

Do IF€ dy NG C 1ig & ba N\ 7ia S & 7.

By the property K of P, there is an uncountable X of w; such that {p,; a € X}
is linked and all n, for « € X are equal to n. Then for any o,8 € X,
((@aUag)N(baUbg))~n is empty. Thus (J,cx ba 7 separates (Ga, ba; o < w)
which is a contradiction. O

From now on we will look at survivability of non-Rothberger gaps. Then
we will use the following notation.

Notation 3.19. Let P be a forcing notion, p € P and & a P name for a real
(an infinite subset of natural numbers). We let

up(&,p)( or u(z,p)) == {k € w;pl-*« kei”},

and :
vp(Z, p)( or v(z,p)) = {k cwIg<plgt“ked 77)}‘

We remark that the following statements hold:
e If p < g, then u(#,p) 2 u(#,q) and v(z,p) € v(,q).

o plF“u(z,p) C = C o(z,p) ”.
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o H &=, ce@@,r) = Nead&,r) "

Lemma 3.20 ([41]). Let P be a forcing notion of size < k and (A, B) a gap
such that either A or B is < xkt-directed, i.e. for any subfamily F of A (or
B) of size < k%, thereis a c € A (or B) so that x C* ¢ for all x € c. Then
(A, B) is P-survivable.

Proof. Assume that A is < k¥-directed and (A, B) does not form a gap in
the extension with [P, i.e. there exists a P-name & such that

F<Vae Avbe Bla L& & bC* 4) .

By the above remark, we note that for all conditions p of P, v(x,p) ¢ AL
(Because if v(x,p) € At for some p € P, then b €* v(z,p) holds for some
b € B since (A,B) forms a gap. Hence then p I “ b €* # " which is a
contradiction.) So for p € P, we can find a, € A with v(&,p) L ap. By the
< k*-directedness of A, there exists a € A such that a, C* a for all p € P.
Then for all p € P, v(&,p) L a holds. Therefore IF“ £ £ @ ” holds because if
not, i.e. for some q € P which forces that“ N a C 7 for some n € w, then it
follows that v(,q) L a which is a contradiction. O

Lemma 3.21 ([41]). Any o-linked forcing notion does not collapse any non-
Rothberger gap.

Proof. Suppose that (A, B) = (@, bg; a0 < Kk, < A) is a gap with w < kK < A
regular, P is o-linked, and ¢ is a P-name for a real such that

IF“Vae AVbe B(aLéc& bC*eé)”.

There are | € w, X € [«]* and p, € P for each v € X such that for all
v€ X, 5
p k< a, necio.
After that, for each v € X we choose m* > 1, Y € [\]* and ¢{ < p, for every
€ € Y such that forall £ € Y,

G be~m?Cén.

Then there are X’ € [X]* and n > | with m” < n for every v € X'.
Let P = ;¢ P, where all Py is o-linked. For each v € X ' we can find
ky € wand Y', € [Y]* such that ¢} € P, for any £ € Y). Then there is
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X" e [X']® and k € w with kK = k7 for all v € X”. Then for any 7,0 € X"
and £ € Y',, ps and ¢ are compatible because both ¢; and q‘g are in Py, i.e.
both of them are compatible and qg < ps. It follows that for every § € X”

and § € U exn Y'y, asNbe Cn. Then welet d =w ( U ay Un) which
’YGX”
separates the gap, so it contradicts. O

In [35], Laflamme has pointed out that Mathias forcing and Matet forcing
do not collapse any (w;,w;)-gap by the argument from Baumgartner (see also
[11]). We give two proofs: for Sacks forcing and Laver forcing. Both proofs
are similar to Baumgartner’s argument, but the proof for Sacks forcing is
simpler than the original one. Both of them consist of trees, so to explain
the proofs below, we give some notation.

Definition and Notation 3.22. 1. For a subset T of 2<“ (or w<¥), T
s called a tree if it is closed under taking initial segments.

2. Foratree T C 2<% (or w<¥) and o € 2<% (orw<¥), let
To ={teT;tCo Ao Ct},
where [o] := {x € 2¥;0 C x} (or [o] = {x € w¥;0 C z}) and
[T]:={f € 2“(or w*);Yn € w(fIn € T)},
where f[n= fN(nxw).

3. ForatreeT C 2<%, o € T is called a splitting node if both o~ (0) and
0(1) areinT. Fora tree T C w<¥, 0 € T is called a splitting node if
o~ (k) € T for at least two k’s in w. In both of cases, split,(T) denotes
the set of n-th splitting nodes and Split(T) denotes|J,,, split,(T). For
all t € Split(T"), succ(T,t) denotes the set {k € w;t™(k) € T'}.

4. Atree T C 2<% is called perfect if Vo € TAr,v € T{(c C T,y AT L),
where 7 L v means that 7 € v and v € T, that is, T and v are incom-
parable.

Sacks forcing S consists of perfect trees on 2<¥, ordered by inclusion.

5. A tree T C w<¥ is called Laver if there exists a node s € T, called its
stem stem(T'), such that
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(a) forallt € T, either s Ct ort Ct, and
(b) for all t € T with s Ct, succ(T,t) is infinite.

Laver forcing I consists of Laver trees on w<*, ordered by inclusion.
Lemma 3.23. Sacks forcing does not collapse any gap.

Proof. By Corollary 3.15, Sacks forcing does not collapse any Rothberger
gap because Sacks forcing is w*-bounding.

In this proof (and the proof of the next Lemma) we identify [w]“ with 2¢,
i.e. identify an infinite subset of w with a characteristic function. Let (A, B)
be a gap and both A4 and B are o-directed and assume that S collapses it,
i.e. there are T € S and an S-name # such that T I+ “ & separates (A, B)”.
For t € T, write T; := {s € T;s Ct or t C s}. By strengthening T if need,
we may assume that there is an order preserving ¢ : 2<“ — 2<“ such that

Theie= [ @),

teSplit(T)NN G

that is, T; decides the value of Z [ |p(t)| to ¢(t) for every t € Split(T).

Claim 3. There are T' < T, a € A and b € B such that for any n € w and
t € split, (T"), either (aNu(z,Tt)) ~ n or b~ (v(z,T:) Un) is not empty.

Proof of claim. Since Split(T') is countable and both A and B are o-directed,
there are a € A and b € B so that for every t € Split(T), either a L v(z,T)
or b Z* v(x,T:) holds. We note that

a L v(z,Ty) <= 3%°k3Is Dtk € anu(z,T))

and
bZ*v(x,Ty) <= I%k(k e b~Nv(z,Ty)).

Recursively, we can construct ¢, € Split(T) and k, € w for each o € 2<“ such
that

e if o C 7, then t, Ct,,
e k; > |o|, and

e either k, € anu(z,Ty,) or k, € b~ u(z,Ty,).
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Let T’ be the downward closure of all T,’s, which is an extension of 7" and
as desired. (We notice that split,,(T") = {ts;0 € 2"} for all n € w.) =

Therefore by strengthening T if need again, we may assume that there
are a € A and b € B such that for every n € w and t € split,(T) either
(aNu(z,Ty)) ~ nor b~ (v(x,T:) Un) is not empty.

Take a stronger condition S < T and n € w such that S F“ana& C
i & b~ C 7. Take any t € SNsplit, (T), then either (aNu(z, Ts))~n or b~
(v(z,T:) Un) is not empty. Look at S; which leads us to a contradiction. O

We notice that the above proof can be adopted for other non-ccc forcing
notions: Miller forcing, Silver forcing and their countable support iterations.
So we have the following statement:

Corollary 3.24. Assume that the ground model satisfies CH. Then in iis
extensions with countable support iterations of Sacks forcing, Silver forcing
or Miller forcing, the gap spectra are {(w,w1), (w1,w), (wW1,w1)}-

Proof. In the ground model, there are only three types of gaps as the corol-
lary. Since both of these forcing notions and these iterations preserve un-
bounded families, it follows from a standard Léwenhime-Skolem argument.

U

Lemma 3.25. Laver forcing does not collapse any non-Rothberger gap.

Proof. Assume (A, B) be a gap, both A and B are o-directed and there are
T € L and an L-name & such that T I-“ & splits (A, B) ”.

Without loss of generality, we may assume that T consists of strictly
increasing finite sequences of natural numbers. For ¢ € Split(T) and n € w,

Tem = {Te~py; k € Suce(T,t) & k > n}.

Claim 4. There is an extension T' of T such that for all k € w and an
extension S < T, if S decides “k € £ 7, then there exists m € w so that
T’ stem(s),m decides“k € &7,

Proof of clatim. For a given T € L and t € T with ¢t D stem(T), we
can find S <o T such that for any k € w there exists n € w so that S;,

decides“ k € & ”. Because we can construct (a;;i € w) C succ(T,t) and
T >0 T() _>_0 T] Zo .-+ such that

e a; = min(succ(T3;,t)) for every i € w,
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® a; < a;y for every i € w, and
o T; decides“ k €z ”.

Then S := ¢, (Tn)t~an) is as desired.
Using this, we construct a fusion sequence (T;n € w) such that

o To>20Tp>1T1 22T >3-+, and

o for every n € w, t € split,(T») and k € w, there exists m € w so that
T;m decides“ k € & .

Letting T’ be a fusion of (T,,;n € w) which is as desired. =

So without loss of generality, we may assume that T satisfies the above
claim.

Claim 5. There is an extension T' of T such that for all t € Split(T"),
Fi = Upeo W(Ttm, ) is finite.

Proof of claim. Assume that for any S < T we can find t € S with F; finite.
Since there are only countably many different Fi’s and both A and B are
o-directed, there are a € A and b € B such that either a X F; or b Z* F; for
any possible t € T' with F; infinite. Let S < T and n € w be such that

SkFaniCn&b~nci”,

and let t € S satisfy that F; infinite. Then we have two cases: a £ F} or
bZ* F..
If a L F;, then there exists k € a N F;. Then there is m € w such that

T't,m F¢ ke n,

hence
SimlFCke(@anz)y~n?”,

which is a contradiction.
Ifbg* F;, The for all m € w,

Tt,m Iyu ];: ci”.

Since L
Sk keb~nCz”,
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by the condition of Claim 4, there is m € w such that
Tstem(S),m I k €T ”7

which is a contradiction because S and Tgem(T),m are compatible. —

So without loss of generality, we may assume that T also satisfies the
above claim.

Claim 6. There is an extension T' of T such that for all t € Split(T"),
T,t ”_ (:};‘lt g CE ”’
Proof of claim. We can construct a fusion sequence (T,;n € w) such that
for every n € w and t € split, (1),
(Tn): F¢ Fy C 27,

This can be done because all F; are finite. Then its fusion is as desired. -

So without loss of generality again, we may also assume that T satisfies
the above claim.

Claim 7. There is an extension T' of T' such that for all t € Split(T"),
either (i) Ym € succ(T”, t)(Fi~my = Ft)

or (ii) da € AJb € BVn € wIm € succ(T',t) : either (a N Fi~my) N1 #
0 or b~ (Fe~my Un) # 0.

Proof of claim. We recursively construct a fusion sequence (t,;n € w) with
To := T such that every t € split,,(T,,) satisfies either (i) or (ii) forall n € w
as follows:

Having constructed T, we let split,  ;(Tn) = {si;¢ € w}. We consider
following two cases.

Case 1. Assume
I:= {7' € w; UmEsucc(tn,si) Fsi"("‘) is ﬁnlte}

is infinite. For each i € I and k € | Foi~my, let

mesucc(ty,s;)

Bik := {m € succ(Ty, si); k € Fomimy } »



40 CHAPTER 3. FORCING DESTRUCTIBILITY AND SURVIVABILITY
and let
As 1= succ(Tn, ) | { Biki b € Unessecins) Formtm & Bi is finite

By the condition of Claim 6, Fy, C |U,,c4, Fsi~my. And if k € Fy,~pmy for
some m € A;, then also m € Bk, hence B, is infinite. So

Si= ] (T)a~m

meB; i

is an extension of T' and forces that“ k € & ”. Thus, by the condition of Claim
4, there is | € w such that Tem(s); forces it. Now stem(S ) = 84, so it follows
that k € F;,. Therefore, it can be concluded that |J,,c 4, Fs;~om) = Fl,, that
is Fy; = Fy;~my holds for all m € A;. Let

Tn+1 = U U (Tn)si"‘(m)-

i€l meA;

Case 2. Assume [ is finite. Let | € w satisfy that for all i > I, U cquec(tn, o) Foimtm)
is infinite. Then we can find a € A and ¢ € B such that either a £
Umesucc(tmsi) Fy;~my o b Z* Unesuce (tmrs) Fy~my for all ¢ > I. For each i > [,
we choose A; € [succ(T,, s;)]“ so that for any j € w and the j-th element m
of A;, there exists k > j such that k is in either a N Fg;~m) or b~ Fg,~m).

Let
Tn+1 = U U (Tn)si"(m)-
i>l mEA;
Let T’ be its fusion which is as desired. .

Since T is a countable set and both A and B are o-centered, there exist
a € A and b € B such that for t € Split(T) satisfying (ii), a pair {(a,b)
witnesses it for this ¢.

Take S<Tandnc€wsuchthat SF“anNzCnrn&b~nCz”. Ifall
t € Split(S) satisfy (i), then S IF“ & C F;” which is a contradiction because
F, is finite. So there is t € Split(S) satisfying (ii). Take m € succ(T,t) such
that either (a N Fi~gmy) ~n # 0 or b\ (Fi~my Un) # 0. Look at Si~my, for
some large enough ! € w which leads us to a contradiction. O

The above proof can be adopted for Miller forcing, Mathias forcing, and
their countable support iterations.
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Corollary 3.26. Assume that the ground model satisfies CH. Then in its
extensions with countable support iterations of Laver forcing or Mathias forc-
ing, the gap spectra is {(w,ws), (we,w), (wi,w1)}.

Proof. By an argument similar to Corollary 3.24 and remarks of Theorem
2.6 and Corollary 3.15. O

3.3 Destructible gaps

In [2], Abraham and Todoréevié¢ pointed out that a destructible gap is anal-
ogous to a Suslin tree. An w,-tree is called an Aronszajn tree if it has
no uncountable chains, and called a Suslin tree if it has no uncountable
chains and antichains. Let (a4, bo; @ < wi) be an (wi, wy)-pregap with a,Nb,
empty for every a < w;. Letting a and § in w; be called compatible when
(aa Nbg) U (ag N by) is empty, (@q,ba; o < wy) forms a gap if there are no
uncountable chains in w; under this compatibility relation, and it is a de-
structible gap if there are no uncountable chains and antichains in w;. So
there are similar theorems about them, e.g. both of Suslin trees and destruc-
tible gaps can be constructed from the diamond principle and by adding a
Cohen real, and both of them do not exist under Martin’s Axiom.

In [10], Devlin and Shelah presented an axiom called the weak diamond
principle, which is formulated as a weaker version of the diamond principle
and which is equivalent to the inequality 2% < 2. Parametrized diamond
principles have been designed by Moore, Hrusdk and DzZamonja in [38] as
weak diamond principles parametrized by cardinal invariants. Parametrized
diamond principles can be deduced from the diamond principle and some of
them are really weaker than the original one.

The diamond principle has many applications, e.g. it implies the Con-
tinuum Hypothesis, the existence of an Ostaszewski space, a Suslin tree or
a destructible gap. Parametrized diamond principles also have many ap-
plications. For example, Suslin trees can be constructed from the diamond
principle for the uniformity of the meager ideal {(non(M)). But it was left
open which parametrized diamond principle can be used to construct a de-
structible gap. The main result in this section says that, as for a Suslin tree,
a destructible gap can also be constructed from the diamond principle for
the uniformity of the meager ideal.
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3.3.1 Remarks on Suslin trees and destructible gaps

In [2], Abraham and Todoréevié¢ pointed out that there are many analogies

between (wi,w)-gaps and Aronszajn trees. In this section, we look at such
things.

Definition 3.27. 1. An w;-tree is.a tree of height wy such that all levels
are countable.

2. An Aronszajn tree is an wy-tree having no uncountable chains.
3. A Suslin tree is an Aronszagn tree having no uncountable antichains.
The following tables show characteristics of trees and (w;,w;)-gaps.

T C w;<* : w;-tree

Aronszajn tree VX eT“'3As#te X(sLt&tZs)
Suslin tree T is Aronszajn tree and

VX e [T|*1ds#£te X(sCtortCs)

(G, ba; @ < w1) (w1, wr)-pregap with aq Nby, = 0
a gap VX € [w]“13da # 8 € X((aa Nbg) U (ag N by) # 0)
a destructible gap | (aq,ba; @ < wi) is a gap and

VX € [w]“'3a # B € X((aa Nbg) U (agNby) = B)

As seen above, if we define compatibility of & and 3 by
(aa Nbp) U (ag Nba) =0,

then (a4, bo; @ < wy) should be called a gap when there are no uncountable
chains, and a destructible gap when there are no uncountable chains and no
uncountable antichains when we consider a chain as a pairwise compatible
set, and an antichain as a pairwise incompatible. But in the sense of trees,
compatibility agree with comparability, on the other hand, this is not the

case in the sense of gaps. This is why constructing gaps is more difficult
than constructing trees.

We list classical results about w;-trees:

Theorem 3.28. 1 (Baumgartner—Malitz—Reinhardt). Under MAy, (ccc),
every Aronszajn tree is special.
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2 (Shelah, Todorcevié). Cohen reals add Suslin trees.

3 (Jensen, Moore-Hrusak-Dzamonja).  implies the existence of Suslin
trees. Moreover {(non(M)) implies the existence of Suslin trees.

Special trees are not Suslin at all. Similar statements as above are true for
gaps. It follows form Lemma 3.11 that every (w;,w;)-gaps is indestructible
under MAg, (ccc). Other theorems will prove in the rest of this chapter.

3.3.2 Todorcevi¢’s results on destructible gaps

In this section, we present two classical results due to Todoréevié similar to
2 and 3 of Theorem 3.28.

Theorem 3.29 (Todorcevié, [46]). Let (an,ba; @ < wi) be a gap with a,N
b, empty for every a < w;. and ¢ a Cohen real over the ground model V.
Then in Vc|, {(aa Nc,ba Ncja <wi) is a destructible gap.

Proof. Let p € C and X a C-name for an uncountable subset of wy.
Claim 8. There are g < p and Y € [w1]“* such that
gF“Y C X,

Proof of claim. By recursion on vy < w;, we can construct ¢, < p and 0, < wy
such that

o if vy <+ < wi, then 0, < 0y, and

e ¢, 0, e X
We choose I € [wy]“* and ¢ € C so that g, = g forall vy € I. Let Y :=
{0’7§7€I}. =

By shrinking Y if need, there are s,t € 29°™@ with a, N dom(q) = s and
bo Ndom(q) = t for every a € Y. (We notice that then sNt is empty.) Since
Y is uncountable and (a, ~ dom(q), b, ~ dom(q);a € Y) is also a gap, we
can find distinct £ and n € Y with

u = ((ag N by) U (an N be)) \ dom(g) is non-empty.
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Let r < g be with (i) = 1 for some ¢ € u. Then
r ¢ ((de Nby) U (dy Nbe)) Ne#D 7.
Therefore we can conclude that
- {da e, ba Néa < w;) forms a gap ”.
Let r < g be with (i) = 0 for all 4 € u. Then
r I ((de Nby) U (dy Nbe)) Ne=0".
Therefore we can also conclude that
IH {da N, be Néa < wi) is destructible ”.

O

Theorem 3.30 (Todorcevié, see e.g. [12]). < implies the existence of
destructible gaps.

Proof. Let (Dqa;a < wi) and (D,; a < wy) be diamond sequences on w; and
[w1]<“ respectively, i.e.

e Dy Caforal a <w and for all E C wy, {a € wi; ENa= D,} is
stationary on wj, and

e D, C [a]<*forall @ < w;and forall £ C [w]<¥, {a € wi;E N [a]<¥ = Dy}
is stationary on wj.

We recursively construct (@, ba; @ < wy) such that
1. aaNby =0 and w \ (aq U b,) is infinite for all o < wy,
2. if 8 £ a < wy, then both ag C* a, and bg C* ba,
3. for a limit ordinal 8 < «, if Dg satisfies that
()a ¥y < B30 € Da(ay Nbs) U (asNb,) #B),

then for all | € w and 0 € Dg such that

((aa ~ 1) Nbs) U (as N (ba N 1)) # 0,
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4. for a limit ordinal 8 < «, if Dy satisfies that
(xx)g VF € [B]~“(Ar N Br = 0 = 3G € Ds(Aruc N Brue = 1)),

(where Ap :=J,cr ay and Bp := J,¢p by) then for any F € [a]<* and
H I, J,K € [0]<* with

(Ac UH U (ap N I))N(BcUJU(by \ K)) =0,
there is G € Dg such that

(Apug U HU (ag ~ 1)) N (Bpug U J U (b \ K)) = 0,

5. if o is a limit ordinal and 8 < a, then for any H and J € [w]|<¥ with
HnJ=0and any i > max(H U J), we can find £ < « such that

acNi=H&a~Ni=ag\1 &
beNi=J &bet=0bg\ 1.

Construction. Let ap := {3n;n € w} and by := {3n + 1;n € w}. For a limit
ordinal a < w;, we construct ag4n and b4, satisfying conditions 1,2 and
5. (For example, letting ((Hp, Jn);n € w) enumerate {(H,J)) € [w]< x
[w]<“; HN J = B}, we put

Ooin = H U (ag \ J)

and
botn := J U (b ~ H).)

Then conditions 3 and 4 also holds for every a +n, n € w:

For 3. Let 8 < a (a+n) be a limit ordinal and suppose that (*)s holds. We
can find £ € w so that ag4n N~ k = aq N k and byyn N k = ba \ k. By
the inductive hypothesis, for any [ > k, we can find é such that

((aa N 1) Nbs) U (as N (ba 1)) # 0.

Then this 4 is also a witness for a + n.
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For 4. Let 8 < a (a + n) be a limit ordinal and suppose that (**)g holds.
Moreover assume that (ApUHU(ag4n 1)) N{BrUJU(batn~K)) = 0
where F € [a+n]<“,L,M € [w]<, ag4n = (aa U L) \ M and by, =
(bo UM) N L. Then (ApU(HU(L~N (TUM)))U(aa~{TUM)))N
(BPU(JU(M N (KUL)))U (ba~ (KUL))) = 0, so there exists G € Dg
such that

(Arpoc U (HU (L~ (IUM))) U (ae ~ (IU M))

- s

—

HU(aa4n~1)

N(Bruc U (JU (M~ (KUL))) U (ba ~ (KUL))=0.

N ——

-
JU(batn~K)

Let o € w; be a limit ordinal. At first we enumerate
(LimNe) x [a]* x ([w]<*)* = {(Bk, Fr, Hi, I, Jx, Ki) 1 k € w}.

To construct a, and b,, we construct a cofinal sequence ((x;k € w) of «
and natural numbers ¢, jk, with ix < jr < k41 as follows, then we define
Qo = Ukew a¢, and by := Ukew be,:

Assume that we have already constructed (;, j < k and let 8= Gk, F =
Fk, H= Hk, I= Ik, J= Jk and K = K. (We put C—l = O, -1 Ij_l = 0)
If (**)g does not hold or (Ap U H U (a¢,_, ~I))N(BpUJU(b_, ~K)) #0,
then let (x := (k-1 and ji := jr_1. And moreover if (x)s holds, then by the
inductive hypothesis for 3, there is § € Dg such that

((agk_l ~ ik—l) N b5) U (a,,s M (bCk—l ~ ik_l)) 75 0.

We let tx > ix_1, Jk—3 be so that

(((ag,c_1 N ik-1) Nbs) U (as N (be,_, ~ ik_l))) Nig # 0.

If (*)s does not hold, then let if := ix—_;.
Assume that Dy satisfies (xx)g and (Ap U H U (a¢,_, ~I))N(BFUJU
(bep_, ~ K)) = 0. If (%) holds, then we choose iy > ix_1,jk—1 such that

° Vj <k— 1(agj ~ Uk - ag,_, & ij N C bCk—1)7

o |ir~ (ac,_, Ube_,)| >k, and
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. (((ag,c_1 N ik—1) Nbs) U (as N (be,_, ~ ik_l))) Mk # O holds for some
0 € Dg.
If (x)g does not hold, then choose #x > ix—1, jk—1 such that
o Vj<k—1(ag ~ix Cag_, & b, N ik C b, _,), and
e |ir~ (ag_, Ube_ )| > k.

By the condition 4 for 8 < max(F U {(x—1}), F, H, I, J and K, there exists
Gr = G € Dg such that

(Apuc UHU (a":k—l ~ I)) n (BFUG UJu (bgk_1 ~ K)) = 0.

Let nx = n > max(F U G U {(k—1}) be large enough less than «. Then we
choose jx > ik, max(H U I U J U K) such that

o (ArugUag. )\ Jjk € an, and (Brug Ubg,_,) N jk & by,
After that, using the condition 5, we choose (x < «a such that

° agkﬂik = a¢,_, Nk, a¢, N [ik,jk) = (AFUcUaCk_l)rl [ik,jk) and Qg N1k =
Ay ™ g, and

e by, Nik = b, Nik, be, N[ik, jx) = (Bruc Ubg, ) N[ik, jk) and bg, Ntk =
b",k ~ ik.

which completes the construction.
We check it works:

1. If there exists m € a, N ba, then choosing k € w with m < i, it leads
a contradiction because

m € ag Nbe Nig = ag Nbe, Nik S ag, Nbe, = 0.
So aq N b, is empty. And since
Vk € w(|ix~ (ag Ube )| = k & aa Nix = a¢, Nk & ba Nig = be, Nig)
w N (aq U b,) is infinite.

2. It follows from the fact that ao = |J,c, ac, and ((; k € w) is cofinal in
a.
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3. It follows from the construction.

4. Assume 8 < « is a limit ordinal, Dg satisfies (¥*)g and F € [a]<¥,

H,I,J K € [w]<“ satisfy that
(AFUHU (ap ~1))N(BFrUJU (bs ~ K)) =0.

Let k e wbesuchthat o =06, Fr =F, H,=H, I)y =1, J = J and
Ky =K. Since a¢,_, C a, and bg,_; C ba,

(AFUHU (ae,_,~INN(BrUJU(b,_,~K))=0.
So, letting G := G,
(Apue U HU (ag,_, N 1)) N (Brug U J U (bg,_, \ K)) = 0.
Now we have
Qo 1k D ag, N ik 2 (Arug U ag,_ ) N ik & ba Nig = b Nk
Thus if there is an m € Ag N (ba \ K), then

either m € (AgNix) N K
or me€ Ag N\ ik C Qa,

both of which leads contradictions. So AgN (bo ~ K) is empty, similarly
we have Bg N (aq \ I) empty which conclude

(Apsc U HU (ag ~ D)) N (Brug U J U (by ~ K)) = 0.

5. We have nothing to do.

From now on we check that (as,bs; @ < w;) forms a gap, ie. for all

uncountable X C w, there exist distinct 7,0 € X with (a, N bs) U (as N b,)
non-empty:

Assume that X C w; is uncountable and pairwise compatible with the

maximal sense, i.e.

V7,8 € X({a,Nbs) U (asNby) =0), and

Vv € wi3d € X((ay Nbs) U (asNby) # 0).
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Then we define f : w; — wy such that
Va € wiVy < 38 € X N fa)((ay Nbs) U (as Nby) # 0).

We note that {a € w; V0 < af(8) < @)} is club on wy, so there exists « in
this set with X Na = D,.

Take v € X \ (a+ 1), and then we can find | € w with
Go+1 N1 C ay & boy1 N1 C b,
Then by the condition 3, since now (%), holds, there is § € D, such that

((@agr N 1) Nbs) U (@5 N (bagr N 1)) # 0.

Then
(a, Nbg) U (as N b,) # 0,

which is a contradiction because both v and ¢ are in X.

By the similar argument, we show that {(a,,bs; @ < w;) is destructible.
To prove this, we denote

C:= {F € [w1]<“’; ArN Bp = @}

Then it suffices to show that for all uncountable A C C, there exist distinct
F,G € A with Apye N Brue empty:

Assume that there exists an uncountable A C C so that for any distinct
F,G € A with Apue N Bpuc nonempty. Without loss of generality, we may
assume that A is maximal with this property, i.e. A satisfies that

VF # G € A(Apuc N Bpug # 0), and

VF € C3G € A(Aruc N Brug = 0).
We note that

{a € ,VF € CN [a]*3G € AN [a]“ so that Apug N Brug = 0}
is club on w;y. Thus there is « in this set with 4N [a]<Y = D,. It follows
that

VEe(Cn [a]<“’3G € D, so that Arpug N Brug = Q),
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i.e. (#%)q holds.

Take any F € A\ [a]<“, then by the construction (applying the condition
4 for a < max(F), F \ {max(F)}, §, 0, @ and @), we can find G € D, such
that Apue N Brug = @ which is a contradiction because both F and G are
in A.

Therefore (aq, ba) is a destructible gap. O

acwy

3.3.3 The diamond principle for the uniformity of the
meager ideal implies the existence of a destruc-
tible gap

In this section, we prove the title of this section, which answers a question
addressed in [38], Question 5.8.

Theorem 3.31. {(non(M)) implies the existence of destructible gaps.
Proof. We recall that ¢(non{M)) is the following statement:

V Borel F : 2<“1 —» Mg : w) — (wXTw)“Vf :wi — 2,
{a € w; F(fla) # g(a)} is stationary.

Here for any countable ordinal ¢, we let
(exTw)= := {z € (e x w)=;¥m < n(proj, (x(m)) < proj;(z(n)))},
and consider M as the set of codes of F,-meager sets in (wxw)*.

cnwd := {T C (wxw)<“;Vs € TVn < |s|(sIneT) & Vse TR eT(sCt) &
VseT3tDs(t¢T)}

is the set of codes of closed nowhere dense sets. 2(«*¥)*) is the product
space of 2 which has the discrete topology. cInwd is Borel and in this paper,
consider

M= {U To; (Th;n € w) C clnwd}.

n€w

We call that a function F : 2<“t — M is Borel when F | « is a Borel function
for every a € w;.
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For each a € w;, define

Pregap® := {f € 20 wx2,
Vy < aV¥n € w(f(y,n,0) =1 = f(v,n,1) =0)
& Vv < aVm € wian > m(f(v,n,0) = f(v,n,1) =
& Vy < aVm € w3n > m(f(y,n,0) = 1)
& Vy < aVm € wan > m(f(vy,n,1) = 1)
&Vy<éd<aaMewvn > M(f(y,n,0)=1= f(§,n,0)=1

& flrn,1) =1 f(&n,1) = 1)},

0)

which is Borel in 2%*“*2 (which is equivalent to the Cantor space 2*). For
f € Pregap® and £ < a, we let a¢ := {n € w; f(§,n,0) =1} and b :=
{n € w; f(§,n,1) = 1}. Then (ag, be), ., isreally an (@, a)-pregap in P(w)/ fin
with w \ (ag U be) infinite for all £ < a. We call that a pregap (ae, be)

E<a
admits any finite change if

V0B < a with 8 =1+ k for some n € LimNa and k € w
VH,J € [w]<* with HNJ =0 Vi > max(HU J)dn € w

such that ap4nNi=H & apnNi=ag\1
& bppnNi=J & by Ni=0bsg\ i

We fix bijections 74 : w — a for all @ < w and for a pregap (as, b¢), ., which

admits any finite change, recursively define a function T’ ((ag, be), <a) (=T):
(WxTw)< — (axfw)< by
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N

=N
) =
SF
ICACS
i

T (¢~ ((m,p))) =
(m=>1)

{(ma(n),p)),

= T~ (v, p))

where v € a ~ {proj, (T'(t)(3)) ;i < k} such that
Aproio(T(t)(t1-1)) N Projy (T (£)(It] — 1)) = a N proj (T'(t)(Jt] — 1))
& Qprog(riay(e-1) & @y _
& bprojo(T(2)(1e1-1)) N Projy (T'(2)(t] = 1)) = by N projy (T(t)(|t] — 1))
& bprojo(T()(1tI-1)) & by and
for any § € a ~ {proj,(T'(t)(3));i < k} with
Aprojo(T(t)(1t1-1)) NV Proja (T (t)([t] — 1)) = as O projy (T (t)([t| — 1))
& Qprojo((ey(jel-1)) & a5 '
& bprojo(T(t)(jt-1y) N Projy (T (t)([t] — 1)) = bs N projy (T'()(|t] — 1))
beroio(T(t)(It-1)) < b3,
Ta(Y) < mo(d) holds,
TE) ({7, p)
where v € a ~ {projo(T'(t)(1)),
projo (Tt~ (L, p))) ([t));3 < k,1 < m}
such that
Aprojo(T(2)([tl-1)) N Proj (T (@) (Jt| — 1)) = a N proj, (T ()([t| — 1))
& aprojy(re)iel-1) E ay .
& bprojo(1(t)(1e1-1)) N Projy (T () (t] — 1)) = by N proj (T (£)([t] — 1))
& bprojo(r(t)(jt1-1)) & by and
for any 6 € a ~ {proj(T'(t)(3))
, Projo (Tt~ ({1, p)))([t))); i < k, 1 < m}
with
Aproio(T(t)([t1-1)) N Projy (T () (|t] = 1)) = as N projy (T'(¢)([t] — 1))
& Gprojg(r(e)(e1-1)) S a5 .
& bprojo(T(e)(1t1-1)) N Projy (T (#)([t] — 1)) = bs N proj, (T (t)(|t| — 1))
& bprojo(T(t)(1t1-1)) < be,
Ta(Y) < 7a(8) holds.

(That is,  is the m-th element with respect to the order by 7, satisfying that
Aprojo(T(e)(It1-1)) M Projy (T (t)([t] — 1)) = a, N proj, (T'(¢)(|t] — 1))

& Gprojy(T(t)(1t1-1)) © Gy

& bprojo(rr)(tl-1y) N Projy (T (@) ([t] — 1)) = by N projy (T () (|t — 1))

& bproio(x(t)(12l-1) < br)
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- We note that for z € (wxTw)¥, letting
a4 (<a5’b€ £<a’ ) U apro,o( ({aebe), )(zr(k—l»l))(k))
(: U (aprojo(T(<as,be>E<a) (:zf(k+1))(k)> " pro; (T (<a5’ bg>€<a) (21 (k+1)) (k)))> :

k€w

and
b ((ag,bs de<a ) U bp,ojo( ((eerbe),_.) (z[(k+1))(lc))
(: U (bprojo(T(<ae,be>e<a) (xr(k+1))(k)) M projy (T (<a€’ b5>5<a) (=1 (k+ 1) (k))))'

k€w

a ((ag,b§>£<a ,x) Nb ((ag,b§>§<a , T ) is empty. For o € wi, apregap (ag, be), ., €
Pregap® which admits any finite change and a subset A C «, define
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D, ((ag,bs>§<a ,A) = {x € (wxTw)*;

either

or

or

or

36 < aVk € w, proj, (T ((ag,bg>§<a) (x [(k.—l— 1))(k)) < B,
dn € wVk > n,
€ (0, (7((eeted ) (k) 10) i (7). (wﬂkﬂ))(k)))

N projy (T ((ae,bedecs ) (210 + 1) ()
dn € wVy € AVk € w,

proj, (T ((ag,b§)€<a> (x [ (k+ 1))(k)) <n

or (( (aprojo (T((ae,be)«a) (szH))(k)) ~ n) N b—y)

| N
Y (a’y (bprojo (T(<a5’b5>e<a) (:r[(k+1)) (Ic)) h n) ) )

N proiy (T ((ae,bedecy ) (21 (6 + 1) (k) =0
dm € w3K,L C m such that 36 € A with as N K =b;NL = and

Vv € AVk € w, either proj, (T (<a5,b5>5<a) (216 +1)(k)) <m

ora,NK #0ora,~m¢g aprojo (T((aE’bf>§<a) (z[(k+1))(k)>

orbyNL#Porby~mg bP'°jO (T(<a5’b5>f<a) (xr(k“))(k)) -

We note that D, ((ag,b€>€<a ,.A) (= D,) is in M if A is non-empty, i.e.
a countable union of closed nowhere dense in (wx Tw)* and D, is a Borel

function:
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Do ({ae,be)gea s A)

Xp

N

= UN{oe @xtoiT (laeboee,) @+ D) (k) < 5}

B<a k€Ew

Y,

N\

\

ulJN {x € (wxlw)*; k € (aprOJQ(T(<a¢,b5>e<a) (xr(k—{-l))(k))

ne€w k>n

- b"'°"°(T(<ae,be>e<a) (mr(k+1>)(k))) nprojy (T ((ae,bedeca ) (@1 (6 1) () }

Zn

N

U U ﬂ ﬂ{x € (wxlw)“; proj, ( ((ag,b5)€<a) (z!(k+ 1))(k))

new vy€A k€w

o (((“pmjo(:r((as,be) ) (atte+1) ) ) )

Y (ay7 4 (bprOJo (T( a5 bE zi(k+l) (k)) h 'N/)))

ﬂproh( (ag,bg E<a) [(k+1)) ):@}

~N

Wi,k L
' d & Y
v U N N

K,L Cm with ayNK=10
Jv € A so that &b,NL=0
ayNK=10

&b,NL=0

{x € (wxw)iay~m&a (7(feete).....) (=+0) )

b b .
Or 0y \ 1M Z proij, (T((ae,bg)KQ) (z[(k+l))(k)) }
It can be proved that all Xg, Y,, Z, and W,, k1 are closed in (wxTw)“.

Xs is nowhere dense in (wWx]w)“: Given s € (Wxw)<, we let | € w be
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such that mo(l) >> [ (i.e. Je € LimNa(8 < e < m4(l)) and find v <
such that

Toroio (T({oete), ) (5) 1s1-D) M proj, (T (<%be ) (s)(Is| -1 )
— a, N proj, (T ((ag,bgm) (s)(Is] - 1))

* i foce),) () s-)

Do (1((ace) ) () t-0) P (7 ({ae:be)eca) ()15l = 1))
= by Nproj; (T <a€»b£>g<a) (s) (sl — 1))

&b Cbh
projg (T(<a5’b5>g<a) (s)(|s|—1)> =
& ary@y =" ay & br,q) =" b,.

We note that v > 3. Then there exists m € w (and large enough ¢ € w)
with

proig (T ({ae, be)eca ) (™ (m, @) (s)) = 7.
Let t := s~ ({(m,q)), then
[t] := {z € (wxTw)¥;t C x},

which is a (basic) open set in (wx]w)“ contained in [s]|, does not meet
Xz

Y, is nowhere dense in (wxjw)¥: Given s € (wx Tw)<¥, (without loss,
assuming that |s| > n,) take [, k € w with

mal) >> projo (T ({ae,be)eca ) () (sl - 1)
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and k > |s| +1, proj, (T (<a€,b€>£<a) (s)(Is] — 1)) such that

apmm( ((oebe), ) (3) s 1)) N proj, (T (<a€7b€>§<a) (s)(Is| — 1))
= Qr@ N pTO_h (T ( Qg, 5>€<a) |S| - 1 )

& aprOJo( ((aebe) <o ) s)(lsl- 1)) & an
pmjo( (octe),.) (<) -1 ﬂpfoh( (a57b5>5<a> (8)(|8|—1))

&b )
= br, 1y N proj, (T ( ag,b£>£<a) |s| -1 )
) b

&b
projg (T( "'E be (|s|
&k & ar,qVU bm,(l)

Letting t := s {((na(l), k + 1)), [t] does not meet Y,, because for any
z € (wxw)* with t C z, since

11 <k < proiy (T ((ag,bedeca) (@1 Gk + D)(B))

(apmj“ (T(<“€’b€ )e<a) (H054+D) (k)) - b"'°j° (T(<ae’be>¢<a) (zr(k+1))(k))) Nk +1)
= (Ao Y bra@y) N (k + 1).

Zn is nowhere dense in (wxw)*: Given s € (wx]w)<¥, we take any v €
A and find § < a and p > n, proj; (T ((ag,b5)€<a) (s)(Isl - 1)) such
that

(1 (o)) (i) " P (7 (4aebedeca ) ()11 = 1)
T ({ae, bedeca ) (5)(Isl = 1))
% oo (1((oete) ) () t-0) =
b, (i) (Yon) PP (7 ((ae, bdeca ) (s)(Isl = 1))
= bs N projy (T <ag,be>g<a) (5)(Isl - 1))

b
& p,-ojo(T(<a5,b5>E< )( )(lsi— 1)) C bs
& (as~n)NbyNp#D or (bs ~n)Na,Np# 0.

= as N proj;
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Then
Vi < Js| (proiy (T ({ae, bedeca ) (5)(0)) #7)
holds. And then there exists m € w with
proio (T ({ae, be)eca ) (5™ (m, p1)) (Is)) = 6.
Letting t := s~ {({m, p)), [t] does not meet Z,.
Wik, is nowhere dense in (wxTw)“: Let v € A be such that
ayNK=0orb,NL=0.
(Note that W, k1 is defined when such a +y exists.)
Given s € (wxlw)<¥, we find 8 < a with proj, (T ((a§7b5>§<a) (s)(|s] - 1)),
v << B and n > m, proj, (T ((ag,bg>€<a) (s)(Is] - 1)) such that

<a"'°"° (7(focte) ) ()10 aﬁ) \ne o

After that, we find § < a such that

asNn=(a )U(aw\m))ﬂn

projy (T((af,b5>€<q) (s)(sl-1)

&as~n=ag~n

& bsNn =
sl1n (bprojo (T(<Q€’b€>§<a) (8) (|3|“1)>
& bs~n=bg~\n.

Uby~m))Nn

Then there exists | € w with
proio (T ((ae,bedeca ) (740 m0) (IsD) = .
and we let ¢ := s™({l,n}), then [t| does not meet W, x r.

D, is Borel: For s € (wxTw)<Y, (ag, b)), € Pregap® and A C «, define

¢<a
the following predicates:
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P1 ((ag,beeca  B,5) = Yk < Isl, projo (T ((ag,beecs ) (5)(R)) <
Py ((ag,b§>5<a ,n,s) = Vk < |s| with k > n,
€ (o 10) s ) ()
N proj, (T( ag, be) §<a) (s)(k )

Pa ((ag,bg>£<a VAN, s) = Vy € AVk < |3,
proiy (T ({ae,be) oo ) () (B)) <

(et~ *)

U <a~, N (bpmj0 (T(<a5,be> e<a) (s)(k)) N n) ))
N proj, (T ((ag,b§>5<a) (s)(k)) = {.
Py ((ag,bg)gm,A,m,K,L,s) = Vy € Ak < ||,
proj, (T ((ag,b§>5<a) (s)(k)) <mora,NK#Porb,NL#D
or a,~m & aP’°jo(T(<ae>be>E<a) (s)(k)) or byxm & bp,ojo(T(<a5,bE>$<a) (s) (k))-

For s € (wxTw)<¥ and <(a§,b§)§<a ,A> € 2lexwx2)xa gych that (ag, be)eca
admits any finite change,
<(a5,b§)§<a ,A> € D, ! [[s]] <= dxr with s Cx € D, ((ag,b§)£<a ,A)

<= either 38 < a such that P, ((ag,b§>5<a , 3, s)
and V¢ D s with P, (<a5, be)eca » By t) Ju D t with P, ((ag, be) e <a ﬁu)

or dn € w such that P, ((ag,bg>5<a ,n,s)
and Vt 2 s with P, ((ag, be)ecar ,n,t) Ju 2 t with P, ((ag, be)e <o ,n,u),

or dn € w such that P3 ((ag,b§>§<a A n, s)

and Vt D s with Py (<a§, be)eca s A n,t) Ju D t with Ps ((ag, be)eca » A nu)
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or dm € w3K,L C m such that 36 € A withas N K =bsNL = 0,
P4 ((ag,b§)€<a JAm K L, s) and Vt D s with Py ((ag,b§>€<a ,A,m, K,L,t)

Ju D t with P, ((ag,b5)5<a ,A,m,K,L,u).

This is a Borel set in 2(*«*2)%e T see it, we see the following basic relations.
For v € (wxfw)<¥,

proio (T ((ag, be)ec, ) (4)(0)) = B <= malu(0) = 6.

Here we define a formula with parameters {,7 < o and M € w:
S, M)=“aNM=a,N"M&a:Can& bsNM=>b,NM & b C b,".

Then for u € (wWxTw)<¥, k < |u| and (G;;¢ < k) C « with §; # §; for any
distinct 2,5 < k,

Vi< k (projo (7 ((ae,be)eca) (w) (@) = m)
= ma(u(0)) = Go
&Vi<kwithi>1 (5i is (projo(u(i)) + 1)-th element

satisfying that ®(Bi-1,, proj; (u(i — 1))))
- = ma(u(0)) =fo
& Vi < k with i > 1, @(Bi—y, B, projy (u(i — 1)))
& 31 € [ra™ (B~ {ma™ (B3); 4 < Y7
so that VI € I(<I> (Bi-1, Ta(l), proj; (u(i — 1)))) and

Ym e (ra 71 (3:) N I) (—"I’(ﬂi—hﬂa(m),Pth(u(i - 1))))7

which is a Borel relation. And we notice that for u € (wxTw)<“ and k < |u|

projy (T ((ae, bedee ) () (k) = projs (u(k).
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Therefore, for example, we can see that the following statement is Borel:

P ((ag,b§>£<a VA, n, s)

= N i

Y€a k< |s| & (Bii<k+1l)€aktl
proj (s(k)) > n

(’Y ¢ AorJi<k+ 1(projo (T ((aﬁab§>g<a) (s) (i)) + @)

or (((ag, ~ m) N by) U (a, N (bg, ~ 1)) N proj; (s(k)) = w) ) -
We stop here explaining that D, is a Borel function.

We notice that for all x € (wxTw)* with x & D, (((Zg, be)eca ,A),
e a ((ag,b§>£<a ,x) and b((ag,bg)£<£¥ ,x) separate (ae, be)e s

LIAEN (a ((ag, be)eca ,x) Ub ((ag, b¢)¢can ,x)) is infinite,

e Vn € widy € A so that

((a ((ag,b§>£<a ,:1:) ~ n) ﬂby) N (aA, N (b ((ag,b§>€<a ,x) ~ n)) # 0,

o if A satisfies that
VK,L € |[w]<“Jy € Aso that a, N K =0 and b, N L = B,

then Vm € wVK,L C m3y € Asothata, N K = 0, a, ~m C
a((ag,bg)§<a,x),b7ﬂL:(Z), and b.,\mgb((ag,bg)sm,:c).

For sets A and B, we write AUB for a disjoint union of A and B. We
define a Borel function F : U 2((‘”“"’(2)0"‘) — M by

a<w]

D, ((ag,bg>5<a ,A) if (ag, b¢), ., € Pregap®
F ((a £06) ¢ <o A) _ admits any finite change and
A is not empty,
0 otherwise.
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By {(non(M)), there exists a function g : w3 — (wxTw)* such that for
all f: (w; xw X 2)Uw; — 2, {a €wy; F(fla)Z g(a)} is stationary (where
fla:= fn(((a xwx 2)Ua) x 2)). Then we can construct (aq,ba) by

a€w)
recursion on « € w; such that

1. aaNby =0 and w \ (a, U by,) is infinite,
2. VB < alag C* aq & bg C* by),

3. if o is a limit ordinal, then (ag, b¢), ., admits any finite change, recall
that for any 8 < a with 8 = n+ k for some n € Lim N« and k € w,
H,J € [w|<¥ with HNJ = 0 and ¢ > max(H U J) there exists n € w
so that

pnNi=H & apm~Ni=ag\1

4. if o is a limit ordinal and

{Proio (T ({ae, bedeca) (9(0) 1 G+ 1)) (R)) 1k € w},

is cofinal in ¢, then let

Gq '=a ((ag,b€>€<a ,g(a)) and b, :=b ((ag,bg>£<a ,g(oz)) ,

otherwise let a, and b, be any elements in [w]<“ such that a, Nby = 0,
w N\ (@a U by) is infinite and both a, and b, separate (ae, b¢) ie.

E<a?
as C* aq and b C* b, for all £ < a.

From now on we check that for all uncountable A C wj, there exist
distinct v, 4 € A with (a, N bs) N (as Nb,) non-empty, i.e. {@a,bq)
a gap:

Assume that A C w; is uncountable such that for any distinct 7,4 € A
(ayNbs)N(asNb,) is empty. Without loss of generality, we may assume that
A is maximal with this property, i.e. A satisfies that

acw, fOrms

Vv # 6 € A((ay Nbs) U (as Nby) = 0), and

Vv € w36 € A((ay Nbs) U (ag N by) # B).
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We note that
{a € LimNuw;Vy € add € ANa((ay Nbs) U (asNby) #0)}

is club on w;. Thus there is o in this set with

F (e, be)gea AN @) # 9(@).
It follows that, in particular

e (ag, be)e, admits any finite change,

o aa=a((ag,be)eca9(c)) and ba = b (o, be)eca  9(a) ), and
e Vn € wiy € A so that
((ae ~7n) Nby) U (ay N (bo \ 1)) # 0.

Take any v € A \ @, then there exists n € w such that a, ~n C a, and
bo ~n C b,. Then we can find ¢ € A such that

((ae ~ m) N bs) U (as N (bs ~ 1)) # 0.
Then
(ayNbs) U (asNby) # 0,

which is a contradiction because both v and § are in A.

By the argument as above, we can show that for all uncountable B C wy,
there exist distinct «y,d € B with (a, Nbs) U (as N by) empty, i.e. (aa;ba)
is destructible:

Assume that there exists an uncountable B C « so that

Vv # 6§ € B((ayNbs) U (as Nby) #0), and
Vy € w136 € B((a,Nbs) U (as Nby) = 0).

acw)

We note that
{a € LimNwy;Vy € 036 € BNna((ay, Nbs) U (asNb,) = 0)}
is club on w;. Thus there is o in this set with
F ((ag, be)eco s BN a) Z g(a).

It follows that, in particular
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e {(a¢, be), ., admits any finite change,

®ea,=a ((ag,bg>£<a ,g(a)) and b, = b ((ag,b§>§<a ,g(a)), and

e Yme wvVK,LCmiyeBewsothat a,NK =0, ay ~m C aqa, byN
L=0,and by ~ m C b,.

(Since {(aq, ba)qe,, admits any finite change and Vy € o360 € B((a, N
bé)ﬂ(aaﬂbq) =0),Yme wWK,L Cm3d € BlasNK =0 & b;NL =)
holds.)

Take any v € B \ ¢, then there exists m € w such that a, ~ m C a, and
bo ~m C b,. Then we can find § € B such that asNb,Nm =0, as~m C
o, bsNayNm = 0,and bs ~ m C bs. Then

(ay Nbs) U (as Nby) =0,

which is a contradiction because both v and ¢ are in B.
Therefore (aa; ba)qe,, is a destructible gap. O



Chapter 4

Gap spectra under Martin’s
Axiom

In this chapter, we study specific types of gaps in P(w)/fin, namely (w, ¢)-
gaps and (¢, c)-gaps. As seen in previous chapters, it is one of the classical
results that there always exist some types of gaps: (wi,w;)-gaps and (w, b)-
gaps. Concerning the existence of (k, A)-gaps, we know that it is consistent
with ZFC that if there exists a (k, A)-gap where x and A are regular cardinals
with K < A, then either (k = wand A = ¢) or Kk = A = w;. In the last
section of this chapter, we give one result on the existence of (k, \)-gaps
under Martin’s Axiom for regular cardinals x and A. This subject has also
been studied in the past.

It is one of the classical results that any (w,w)-pregap is separated. And
if k and X are regular cardinals so that k or A is not wj, then for any (k, A)-
gap (A, B) there is a ccc forcing notion which forces that (A, B) is separated.
Therefore under Martin’s Axiom if (A4, B) is an (x, A)-gap, then k = A = w;
or (k= ¢V A= c) holds. In fact, we know that there is a (w, b)-gap, so under
MA there always exists an (w, ¢)-gap. In [22], Hausdorfl has proved that there
always exists an (wq,w;)-gap. In particular, his proof gives that there exists
an indestructible (wy, w;)-gap, hence under MA, there exists an (w, w;)-gap.
(In fact under MA, every (w;,w;)-gap is indestructible.) Moreover, we can
prove the following proposition.

Proposition 4.1 (Kunen, [33]). Assume Martin’s Aziom and that there
exist (k, \)-gaps where wy < k < A, then A = c. Conversely, under Martin’s
Aziom if k 1is regular less than ¢ and not wy, then there exists a (k, ¢)-gap.

65
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Proof. The first statement follows from Lemma 3.4.

For the second statement, we fix an increasing chain (a.;a < k) C [w]*.
Let B := A*, recall that

B:={bCw;Vae A(b L a)}.

By Martin’s Axiom and x < ¢, B is not empty. We choose any unbounded
increasing sequence (bg; 8 < A\) of members of B. Then (aq, bg; o < K, 8 < A)
forms a gap and by Lemma 3.4 and k # w, this A must be just c. O

So the remaining problems are about the existence of (wy, ¢)-gaps and
(¢, ¢)-gaps under MA.

In [33], Kunen has proved that the following statements are consistent
with ZFC:

1. MA +3(c, ¢)-gaps + (w1, ¢)-gaps, and
2. MA +-3(c, ¢)-gaps + —3(wr, ¢)-gaps.

Todorcevié has proved that under the Proper Forcing Axiom, if a (&, A)-
gap exists for regular cardinals k < A, then either k = w < A= wy(=b = ¢)
or Kk = A = wj, i.e. there are no (w1, ¢)-gaps and (¢, ¢)-gaps under PFA.

The main theorem of this chapter is the following theorem which gives a
positive answer to one of the open problems in [41] (Problem 13):

Theorem 4.2. It is consistent with ZFC that Martin’s Aziom holds and there
are (¢, c)-gaps but no (wi, c)-gaps.

As we see from the above, we cannot distinguish (w;, ¢)-gaps and (c, ¢)-
gaps as types of gaps by only considering Kunen’s results and the result
under PFA. Theorem 4.2 says that under MA, (w, ¢)-gaps and (¢, ¢)-gaps
can be distinguished.

This chapter consists of three parts. In the first section, we will consider
the gap spectrum under MA + OCA. This is also due to Todorcevié.

In next section, we will prove Kunen’s theorems and in the last section,
we will show the Theorem 4.2. To prove it, we will use proper forcing notions
with models as side conditions, a method which is also due to Todoréevié.
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4.1 Martin’s Axiom plus the Open Coloring
Axiom

The Open Coloring Axiom first appeared in [1]. After that, in [45], Todoréevié
presented another form of the Open Coloring Axiom, which is different from
the one due to Abraham, Rubin and Shelah, but now, Todoréevié’s Open Col-
oring Axiom is more popular than the other. (Recently, it was proved that
both of them decides the power of the continuum. [37]) In [45], Todorcevié
has proved that under the Proper Forcing Axiom, if a (k, A)-gap exists for
regular cardinals k < A, theneitherk =w < A=wa(=b=c)ork = X = wy,
i.e. there are no (wi, ¢)-gaps and (¢, ¢)-gaps under PFA (see also [5]). In [45],
this was shown in the following way. PFA implies the Open Coloring Axiom
and OCA +c¢ = N, implies the conclusion. At first, we show that OCA implies
that b = N;. Then since MA implies that b = ¢, it completes the proof.

Definition 4.3 (Todor&evié, [45]). The Open Coloring Aziom OCA is the
following statement:

Let X be a subset of the real line. For any open partition [ X2 =
CoUC, (i.e. Cy is a open subset of [X]?), either there exists an
uncountable Cyo-homogeneous subsets or X can be decomposed by
countably many C)-homogeneous subsets.

Definition 4.4. Let A and B be subsets of P(w).
1. Bt :={cCw;3be B(cC*b)}.
2. A®B:={{a,b) € Ax B;anb=0}.
3. (Todorcevié [45]) Coloring: A ® B]* = Ky U K, where
{{a,b),{a’,b}} € Ky : &= (anb)U(a'Nb)#D.
4. A pregap (A, B) is countably separated if there is a sequence {G,;n € w)

of elements of P(w) such that for all {a,b) € A x B thereisann € w
witha 1 ¢, and b C* ¢,.

P(w) is identified with the Cantor space. Now we fix a recursive linear
order <p(,) in P(w) and then we identify [A ® B]? with the topological
space {{a,b) € P(w) x P(w);a <p) b}. Then we notice that [AQ B]* =
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(AxBUB x A)N {{a,b) € P(w) x P(w);a <p(,) b} and Ky is open in this
topology. For A C P(w), A is called o-directed if for every countable subset
X of A, thereis a € Aso that forallz € X, x C* a.

The next two propositions are basic facts about this coloring.

Proposition 4.5 (Folklore, [17]). For a pregap (A,B), A® B can be de-
composed by countably many Ki-homogeneous subsets iff (A, B) is countably
separated. So if AQB can be decomposed by countably many K;-homogeneous
subsets and both A and B are o-directed, then (A, B) does not form a gap.

Proof. 1t suffices to consider the following translations:

XCPw) xPw)=>cex:= |J b

{a,b)eX

cePlw) = X.:={(a,b) € P(w) x Pw)jaNc=0& b C c}.
Then if X C A ® B is K;-homogeneous, then any (a,b) € X is separated by
cx and if ¢ separates (a,b) € A® B, then (a,b) € X..
For the last statement, we assume that (A, B) is countably separated by
(¢n;n € w) and both A and B are o-directed. For each n and k € w, we let

Crp:={(a,b} e A®B;aNc, Ck&b~NkCecn}.

Then AQ B = Un,kew Cn,k-

Claim 9. For some n and k € w, Cpx is cofinal in A® B, i.e. for any
(a,b) € AQ B, there is (a/,b') € Cp such that a C* a' and b CT* V.

Proof of claim. Assume not, then for each (n, k) € w?, we can find {(ank, bo k) €
A ® B such that either a,x €* a or by €* b for every (a,b) € Cp. Since
both A and B are o-directed, there are a € A and b € B so that a,x C* a
and by, C* b hold for every (n, k) € w?. But then {a,b) & |, re., Cnx Which
is a contradiction. =

Assume that Cy is cofinal in A® B and let ¢ := [, pec, 0~ k. Then
c separates Cp, x and so separates (A, B). O

Proposition 4.6 (Folklore, [17]). If (A, B) is a pregap and A® B has an
uncountable Ko-homogeneous subset, then (A, B) forms a gap, in particular
if (A,B) is linear, then it forms an (wy,wy)-gap.
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Proof. 1t follows from Proposition 2.4. O

From now on, we show that the gap spectrum is decided by Martin’s

Axiom plus the Open Coloring Axiom. For the argument below, I refer to
[18].

Lemma 4.7 ([18]). Under the Open Coloring Aziom, any uncountable X C
P(w) contains an uncountable antichain with respect to C.

Proof. We consider the following open partition [X]? = IoUI; where

{r,y}elhy <= z2Z€y&yZzx.
By OCA, it follows that either

(a) there exists an uncountable Ip-homogeneous subset Y

or

b) X can be decomposed by countably many I 1—hom0geneous subsets }/n;
new.

In the case (a), Y is an uncountable antichain and in the case (b), some Y,
is an uncountable chain but this case have never occurred. ]

Lemma 4.8 (Todorcevié, [6], [45]). Under the Open Coloring Axiom,
b>N,;.

Proof. Assume that b = R;. Then there exists an unbounded and strictly

increasing sequence (fa; o < w;) with respect to <* and all f, is also strictly
increasing.

Claim 10. For any unbounded and strictly increasing sequence (fo; < K)
with every fo strictly increasing and k > Ny, and any I € [k]*, there are
a < f el with fo < fz everywhere.

Proof of clarm. Without loss of generality, we may assume that I = k. For
s € S = {tew;tC f, for some a < k}, let a; := min{y < k;s C f,}
and let G := sup {as;s € S}. Then 8 < k (because k has an uncountable
cofinality and S is countable) and for s € S, f,, <* fs. We can find cofinal
ICk,lewandte w"suchthat forall y € I, ¢t C f, and for every k£ > [,
fs(k) < fy(k). Since {f,;7v € I} is unbounded, there exists m € w so that
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for all @ < k and k € w, we can find v € I with a < such that k < f,(m).
We may assume that this m is such a least number. By the minimality of
m, there are t’ € w™ and § < k with § < § such that f,[m < ¢ everywhere
for v € I with § < . Then we choose t” € w™ and I’ C I so that t" C f,
for any v € I' and {f,(m);y € I'} is unbounded in w. After that, we pick
n > m with f,, [ [n,w) < fs [ [n,w) everywhere and take ¢ € I' with
fe(m) > fa,,(n). Then we can check that fa,, < f. everywhere:

If k <m, then f,, (k) =t"(k) = f(k).
If k € n~m, then fo, (k) < fa, (n) < fe(m) < fe(k).
If k > n, then fa,, (k) < falk) < fo(k). 4

For a < wy, let x4 := {{n,m) € w X w; fo(n) < m}. And we put X :=
{Za; @ < wy}. By Lemma 4.7, X contains an uncountable antichain Y. Then
there are distinct z, and zs in Y, letting @ < 3, such that f, < fz. But
then x, 2 zp holds, which is a contradiction. O

Corollary 4.9. Under the Open Coloring Aziom, there are no (w,w)-gaps.
a

Lemma 4.10 (Todoréevié, [6], [45]). Under the Open Coloring Aziom, if
(k, A)-gap exists and both k and A have uncountable cofinality, then k = A =
Wi .

Proof. Assume that (A, B) = (aa,bs; a < k,3 < A) forms a gap. We consider
the open coloring A ® B = KoUK, in the definition of 4.4. By OCA, either
A ® B has an uncountable Ky-homogeneous or A ® B can be decomposed
by countably many k;-homogeneous subsets. So by propositions 4.5 and 4.6,
(A, B) is an (w1, w1 )-gap. O

Lemma 4.11 (Todorcevié, [6], [45]). Under the Open Coloring Aziom,
b=N,.

Proof. Assume b > R,. Fixing a strictly increasing sequence A := (fq; 0 < we) C
w*, we take a maximal linearly ordered set C C w* with respect to <* con-
taining \A. We choose a coinitial subset B of {g € C;Vf € A(f <* g)}. By
Corollary 2.7, the order type of B has an uncountable cofinality. But this
contradicts to Lemma 4.10. O
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Theorem 4.12 (Todorcevié, [6], [45]). Under Martin’s Aziom and the
Open Coloring Axiom, if there ezists a (k, A)-gap, then either k = w & A= b
or k = X =w. (It is also holds under the Proper Forcing Aziom.)

Proof. Under the Martin’s Axiom, b = ¢ holds, so the theorem follows from
4.9, 4.10 and 4.11. O

4.2 Kunen’s unpublished work

This section consists of Kunen’s unpublished note [33]. We already have
tools to prove the theorems.

Theorem 4.13 (Kunen, [33]). It is consistent with ZFC that Martin’s Az-
iom holds and there exist both (c,c)-gaps and (w, ¢)-gaps.

Proof. Without loss of generality, we may assume that the ground model V
has both (¢, ¢)-gaps and (w1, ¢)-gaps and ¢ = k = 2<* is a regular cardinal
larger than w;. (See section 3.1.) Let P be a finite support iteration of ccc-
forcing notions of size < & of length « to force MA by a standard book-keeping
argument. Then in VF, Martin’s Axiom holds, ¢ = s and both (c,c)-gaps
and (w, ¢)-gaps survive by Lemma 3.20. O

Theorem 4.14 (Kunen, [33]). It is consistent with ZFC that Martin’s Az-
iom holds and there exist neither (c,c)-gaps nor (w, ¢)-gaps.

Proof. Assume that the ground model V satisfies ¢,(Lim N k), i.e. there
exists a sequence (D,; a € LimN k) such that

1. Dy C o for all o € LimnN k, and
2. {a € k; ENa = D,} is stationary on & for every £ C k,

and k is larger than w;. We construct a finite support iteration <]P’a, Qu; a0 < m>
of length « as follows:

Basic and successor stages. Construct to force MA by a standard book-
keeping argument.

Limit stages. If D, codes a Py-name (A, B) for an (w;,w;)-gap, then let

Q. be a P,-name for Freezingy,,..(A, B), otherwise let Q, be a trivial
forcing notion.
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We note that in the extension with P, Martin’s Axiom holds and ¢ = &.

Assume that in the extension, there exists a (k,k)-gap (@a,ba; @ < K).
From now on we lead a contradiction using a standard Lowenhime-Skolem
argument. (In the case of the existence of (w;, k)-gaps, we can lead a con-
tradiction by the same way.)

Claim 11. {a < k; (ay,by; ¥ < @) forms a gap in VF=} is wi-club.

Proof of claim. wi-closedness is trivial because if (y¢; € < wy) is strictly in-
creasing in x and 4 := sup;,,, V¢, then

2 VP = U 2% VE%,

£<wy

Taking a < k, we construct (yg; € < wi) C k by recursion on £ < w; such
that

e a<yand % <y for § <p<uwy,
e in VE%er1, any € [w]* N'VE does not separate (a,, by; 7 < Yet1) -

Then sup,,, 7 is in that set. -

Therefore we have an « < k such that D, codes (a,,b,;y < a) andisisa
gap in the extension with P,. By the construction, Q, forces {(a, by;v < @)
to be indestructible. But in fact, (a4, b,;y < @) is separated by e.g. baq1 in
the extension with P, which is a contradiction. O

4.3 Distinguishing types of gaps in P(w)/fin

In this section, we prove Theorem 4.2. The main idea of this proof is the
same as Kunen's proof, i.e. forcing (w;, w;)-gaps to be indestructible as far as
possible. One of the differences is that to freeze (w1, w;)-gaps, we use non-ccc
proper forcing notions, namely the method with models as side conditions.
Forcing notions with models as side conditions are one of the types of proper
forcing notions which has been introduced by Stevo Todorcevié ([45]). A
condition of a forcing notion of this type consists of two parts: a working
part D and a side part A which is a finite €-chain of countable elementary
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submodels of some large enough structure H(f#). To define such a forcing
notion, we always require that N separates D, i.e.

Vz #y € DIN € N({z,y} N N has exactly one element).

(See also [32], [65].) Todoréevié used the method to show that the conjecture
(S) is true under the Proper Forcing Axiom. We use an open coloring in the
proof, but we cannot simply apply the Open Coloring Axiom (see section
4.3.1). Our freezing forcing notions are designed based on these facts.

Before giving the proof of Theorem 4.2, we show the following theorem
which is the motivation for the proof of the previous theorem:

Theorem 4.15. Under the Proper Forcing Axiom, there exists a forcing
notion which forces that Martin’s Aziom holds and there are (c,c¢)-gaps but
no (w, ¢)-gaps.

(After proving this theorem, we consider removing PFA. This strategy
was used in e.g. [8].)

In [48], Todorécevié has proved that under PFA there exists a o-closed, wo-
Baire forcing notion which adds a non-trivial almost coinciding family. Since
we can construct a (c,c)-gap from a non-trivial almost coinciding family
([13]), it adds a (¢, ¢)-gap, hence it is enough to prove that it does not add
(wi, ¢)-gaps (Main Lemma 4.17, section 4.3.1).

In section 4.3.1, we prove Theorem 4.15, and in section 4.3.2, we prove
Theorem 4.2.

4.3.1 Proof of Theorem 4.15
For subsets A and B of P(w) and subsets X,Y C A ® B, we write

XxY ={{z,y}c[A@B}zec X &ycY &z #y}

For an (wy,w;)-gap (A, B),“ freezing (A, B) ” means adding an uncountable
Ko-homogeneous subset of A ® B by some forcing notion.

Suppose that PFA holds in the ground model V. Then ¢ = X; and there is
a decreasing sequence (X,; o < wsp) of elements of P(w) which is a generator
of an ultrafilter, i.e.

1. Va< B < wa(Xg C Xo)
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2. VY Cwda<w(Xa 'Y VX, C*w\Y)

Let U be the ultrafilter generated by (Xa; @ < ws), and U* the dual ideal of
U. We define a forcing notion PU)(= P) := |Jygy. 2%, for conditions f,g
inP f <pgiff g C* f. And we let P'(U)(= P') := Uxey~ 2% be Grigorieff
forcing ([20]), i.e. for conditions f,g in P, f <p, g iff g C f. (P and P have
the same underlying set. The only difference is the ordering, but 1(= 0) is
the strongest condition in both P and ’.) We must note that P'(I/) is proper
if U is a fat p-filter (by Shelah, see [42]). Now, since U satisfies the properties
of fat-ness and p-filter, (/) is a proper forcing notion.
The following proposition is very similar to [48] and [50].

Proposition 4.16. P is o-closed, we-Baire and adds an (w2, w2)-gap (under
PFA).

Proof. (For the first two statements, see [48]) o-closed-ness is trivial. Assume
that D, C P is open dense in P for o« < w; and f € P. We note that
Dy, := [,<q Dy is also open and dense in ' for o < wy. By MAy,(P), we
can find a filter G C P’ which meets all D, for a < wy, say fo € GN D), and
f € G. Since the length of the generating sequence of U is wy, there is an
X € U* with dom(f,) C* X for all @ < w;. By the counting argument, there
are n € w and I € [w;]“* such that dom(f,) C X Un for every a € I. Since
G is a filter in P, (J,¢; fa is a function. So we can find g € 2XUn C P with
9 € Uaes fa, then g € N,y Dy, ice. g € [yeo, Do and g is an extension of
f (in both P and P).

For the last statement, let G be a P-generic filter over V. Then we
may take a condition f, € G N 2%« for every o < wy, and let a, := {n €
Xo; fa(n) = 0} and b, 1= {n € X,; fa(n) = 1}. We show that ({as; 0 <
wa}, {ba; @ < w2}) is an (w2, ws)-gap in V[G]. By the o-closedness of P (so P
adds no new reals), it suffices to show that

Ve e [w]* NVVp € PIg < pda < we (q I & does not separate <a,,, l}a> ”) .

Given such ¢ and p, we have cases:

cNdom(p) is finite. Then we can find @ < wy and ¢ < p which forces that
“ & g* aa ”

cNp~t {0} is infinite. Then we can find o < wp and g < p which forces that
[{ 3 * XN
o €* 7.
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cNp {1} is infinite. Then we can find a < w; such that p forces that
[13 é l ba 77‘

O

Therefore in the extension with P over V, there are no new reals and MA
holds. The next lemma completes the proof of theorem 4.15.

Freezing gaps by a non-ccc proper forcing

Main Lemma 4.17. P adds no (w1, ws2)-gaps (under PFA).

We devote the rest of the section to prove Lemma 4.17, so this subsection
completes the proof of Theorem 4.15.

Assume that in the extension with P, there exists an (wy,w;)-gap, whose
P-name is (A, B), i.e.

IFp¢ (A, B) is an (w1, ws)-gap”.

Since P is wp-Baire in V, there are A € V and f € P such that f I-p
“A=A".So by the homogeneity of P, without loss of generality, we may
assume that Fp“ A =A".

We recall that
IFp¢ BY = {c Cw;3b e B(c C* b)} .

Then .
IFp“ (A, B*) also forms a gap 7.
In 'V, for all f € P, let B¥(f) := {bC w;3g <p f(glFp“ be B+ ")}. Tt is

trivial that for conditions f,g in P, f IFp“ Bt(f) 2 BT ” and if f <p g, then
B*(f) € B*(g).

Proposition 4.18. For every f € P, AQ B*(f) is not a union of countably
many K;-homogeneous subsets.

Proof. Assume not, i.e. AQBT(f) = Uneo Hn and every H, is K1-homogeneous.
For n € w, let cu == U, pyen, b Let G be a P-generic filter over V containing

f. We show that {c,;n € w} separates (A, Bt[G]) in V[G].
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To prove this, taking a paira € Aand b € B*[G] with anb = 0, we pick
n € w with {(a,b) € H,. Since b € BY[G], f € G and P does not add new
reals, b is in BT(f). HenceanNc, =0 and b C ¢,.

Since both A and B*(f) are o-directed, (A, B*[G]) is separated, which
is a contradiction. O

We will find f € P and X € A® B+(1) such that
1. X is uncountable and Kjy-homogeneous, and
2. for all {a,b) € X, fIrp“be BT,
which completes the proof of Main Lemma 4.17, because then
f IFp“ X forms an (wy, w; )-indestructible gap in (A, B) .

which is a contradiction.

In fact we can get an uncountable Ko-homogeneous subset of A ® B*(1)
applying OCA. But now we need the condition f as above to get a contradic-
tion. To get the desired objects, we consider the extension by the following
forcing notion Q(A, B,U) (which is the freezing forcing with models as side
conditions). It is similar to forcing notions in [45]. The difference is that in

this definition both P and I’ appear, in particular we use the proper-ness of
P to define it.

Definition 4.19. A condition of Q(A, B,U) is a triple p = (fp, Xp, M)
satisfying the following statements:

(a) fp is a member of Uygy» 2%,
(b) X, is a finite Ko-homogeneous subset of A® BT(1),

(c) M, is a finite €-chain of countable elementary submodels of H(¢")(=
H(X3)) containing everything we need for our discussion, e.g. A, B,
U, etc -+~ (i.e. M, can be enumerated by {N;;1 < n} such that for all

i <n-—1, N; € Niy1 and N; is an elementary submodel of Niy1 (say
N; < Nit1)),

(d) for any x (= (az, b)) € Xp, fp Fp“by, € B,
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(e) foranyx,y € X, with x # y there exists N € M, so that [NN{z,y}| = 1,
(definex<y: <= IN e N(x € N& y ¢ N)),

(f) forall N e™,, fp is (N,IP')-generic, and
(g) for everyxz € X, and N € M, withx & N,

e “VY e N[GIY CARBH1) & Y*Y C K = 8 ¢ Y)".

For conditions p,q € Q(A, B,U),

P<quswd: = r2/ (i.e. fp<p fo) & Xp 2 Xg &0, 2N,

We note that 9%, is an element of H(R3) because every element of I, is a
countable subset of H(X3) and 91, is finite. We must show that Q(A, B,U)
adds desired objects. To show this, we need two lemmata:

Lemma 4.20. Under m(P’) = ¢ = Ry (in particular under PFA),

kg A®B+v(1) is not a union of countably many K;-homogeneous subsets ”.

More explicitly, for any P-names X, for K,-homogeneous subsets, n € w
and f € P, there exist f' <p' [ and {(a,b) € AQ B*(1) such that

fE“be BT & (a,b) ¢ X, for everynew .
Lemma 4.21. For A, B and U, Q(A, B,U) is proper.

Lemma 4.20 says that Q(._A,B,Ll) is non-atomic, and Lemma 4.21 is
needed to apply PFA to Q(A, B,U).

Proof of Lemma 4.20. For a P'-name ¢ for an infinite subset of w and a
condition f € P, let ¢(f) :={k € w;3g <ps f (g Fp-“ k € ¢ ”)}. Then for a
P'-name ¢ for an infinite subset of w,

e for conditions f,g € P’ with f <p/ g, ¢(f) C ¢(g), and

o e &= Myeaelf) .
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For P'-name ¢ for an infinite subset of w and an infinite subset a of w, let
D(¢,a) .= {f € P;Vg <pr f (c(g) L a)or c(f) L a}. Then we note that
D(¢, a) is dense open in P'.
To finish the proof of Lemma 4.20, by Proposition 4.5, it suffices to show
that 5
I-p/“ (A, B+(1)) is not countably separated .

We enumerate A by (a¢; £ < wi) with ag C* a, for each £ <7 < w;. Let
(én;n € w) be countable P'-names for infinite subsets of w and f € P'. We'll
find an extension f” of f in ' so that

F"Fp“ (én;n € w) does not separete (A, B+(1)) 7,

which completes the proof.

By induction on n € w, we construct g, € P’ such that
® go = f and gnt1 <p' gn, and

o for ¢t < m,t € 2™ and almost all £ < w; (i.e. all & > 7 for some %),
tU g, [n,00) € D(¢&,ae).

Construction : n — n+1. Let {t;;7 < N(= 2"*1)} enumerate 2"*! (the set

of binary sequences of length n+1). We recursively define h; € P for j < N
such that '

e h_y =gy and hj;1 <p hy
e for i <n+1 and almost all £ < wy, t; Uh;[[n+1,00) € D(é;,ae).

Assume that we have already constructed h;_, and let hg-—l) =1t;Uhj_1 ]
[n 4+ 1,00) € P'. Since P is proper, by PFA, we can find a filter G on P
containing hg-_l), which meets all D(¢éo,a¢) for £ < w;. We pick a condition
le € GN D(&,ae) for every £ < wy. Since the generator of U is a decreasing
sequence of length w, again, there exists an X € U* such that dom(l) C* X
for all £ < wy. By a counting argument, there are an uncountable subset A
of wy and n € w such that dom(l) C X Un for all £ € A. Since G is a filter
in P, (e le is a function with the domain which is a subset of X Un. So

we can find a condition hgo) € P with the domain X Un and hgo) ) Use 4 le.
(This hg-o) is like a fusion of (I¢;§ < wq) in P'.) Then for almost all £ < wy,
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hgo) is in D(¢o, ae):

If 3¢ € AV <p/ le(co(l) L ag), then Vn > &V <p hgo)(co(l) £ ay) because
(ag; € < wy) is increasing and hgo) is an extension of /¢ in P

If not, i.e. V& € A(colle) L ag) (by le € D(Co,ac)), then VE € A(co(h{) L
ag). Thus V€ < w; (co(hgo)) 1L a¢) because (a¢; &€ < wy) is increasing again and
A is uncountable in w;.

Repeating this argument (n+ 1) many times, we get conditions hg."ﬂ) <ps
hg.") <pr -+ <pr hgo) such that for i < n and almost all £ < wy, hg-i) is in
D(¢;,ae). Let hj:=hj_, U hg-nH) [[n+1,00) € P'. Since any D(¢,a) is open,
h; is as desired, and let gp4+; := hy—1 which completes a construction.

Since the generator of U is a decreasing sequence of length ws, there is
X € U* such that for any n € w, dom(g,) C* X. Without loss of generality,
we may assume that dom(f) = dom(gy) C X. For all 4 > 1, we pick m; > 1
such that dom(g;)\m; C X. Since ! is an ultrafilter (in particular U is fat, see
[42]), there is an increasing sequence (I(n);n < w) of natural numbers such
that X U, [l(n),mu@m)) € U*. Then let f':= f U, c.(gim) | [1(n),00)),
which is a condition of P’. (This f’ is also like a fusion of {g;;i < w) in P.)
Then for every n € w, i < I(n), t € 2™ and almost all £ < w,

tU f'1[i(n),00) € D(&, ag)

(since t U f' | {{(n),00) <pr t U iy [ [I(n),00) € D(Ci,ae) and D(é;, ae) is
open), i.e.

Case 1. for some & < wy, Vh <p: tU f'[[l(n),o0)(ci(h) L a¢)
(denote such a € by &(n,i,1)) or,

Case 2. for all £ < wy, ;(tU f'[[l(n),00)) L a¢
(say d(n,i,t) == c;(t U f'[[l(n),o0)), in this case d(n,3,t) is in A™1).
Let n := sup{&(n, i,t); (n,i,t) satisfies case 1} (which is < w;) and a:=
.
Let {d;;j € w} enumerate {d(n,i,t); (n,i,t) satisfies case 2}. We recur-
sively construct g}, € P and b, C w for n € w such that
o 91’1+1 <p g, and b, C* by,

o g, lFp“ b, € Bt” and
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® bp Z*dn

Construction : n — n+1. (Let g—; := 1.) Since dn41 € AL and (A4, B1(g)))
forms a gap (by Prop031t10n 4.18), there is byt € B¥(g),) such that b,y1 €*

dnt1. We pick g/, <p g, such that g}, Fp“ boy1 € BT ” which completes
the construction.

Since P is o-closed, there exists a condition g, of P which is an extension
of every g, for n € w.
Then there are f” <p g and ¥ C w such that f” IFp* ¥ € Bt ” and
b, CV foralln € w. Letb:=b\ (anN¥). Then {(a,b) € AR B(1). We
show that
f" Ik (éa;n € w) does not separate (d,b)”,

which completes the proof of Lemma 4.20.

Assume not, there are i € w and g <p f” such that g lFp“ a L ¢ & b C*
¢ ”. Let n € w be such that i < I(n) and ¢ := g | |I(n)| € 2. Then for
almost all £ < wy, tU f'[[l(n),00) € D(¢é, ag).

If (n,1,t) satisfies case 1, for any h <p/ g, c;(h) £ a holds, so g IFp“ & L a7,
which is a contradiction.

If (n,4,t) satisfies case 2, since ci(g) C c;(t U f' [[l(n), 00)) = d(n,i,t) =: d;
and b; C* b/ =* b and b, ,Q_* d;, b Z* ci(g) holds, so g lFp“ b  ¢&; ”, which is
a contradiction. O

Proof of Lemma 4.21. Let 6 be a large enough regular cardinal, M <
H(6) a countable elementary submodel containing everything needed for our
discussion, e.g. A, B,U, H(R3) etc, and p = {fp, Xp, My) € M a condition of
Q(4, B,U)(= Q).

Since P’ is proper, we can choose an extension f, <p/ f, such that f; is
(MNH(X3),P)-generic. (We note that M N H(N3) is an elementary submodel
of H(X3).) Then let q := (fy, Xp, 9 U {M N H(X3)}), which is a condition
of Q. (We note that M, C M N H(X3), in fact N, € M N H(N3) holds since
p € M and M, € H(X;).) Show that q is (M, Q)-generic, i.e. for every dense
open subset D € M in Q and an extension r € Q of ¢ there exists a condition
s € DN M such that r and s are compatible in Q (i.e. DN M is predense in
Q).

Taking such D € M and r <g ¢, without loss of generality, we may
assume that r is in D. Let X, \ M = {x;;¢ < n} where z; <x;4; fori <n
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and Ny := M N H(X3), and pick N; € M, such that x;_; € N; but z; ¢ N;
for 1 <14 < n. We choose rational open intervals U; C A ® B*(1) such that

o x; €U for i <mn,
o U;NU; =0 and U; *U; C K, for every i,j < n with i # j.

(We recall that Ky is open, so this can be done.) We note that all rational
open intervals are in any model of ZFC because those codes consists of finite
elements. Let G be P’-generic over H(0) with f. € G.

Claim 12. In H(6)[G], there are rational open intervals V2, V! C U; and
€ VANV fori<nand s € DNV such that

1. ;€ VP foralli <mn,
2.VEINVE=0 and V2 x V! C Ko for alli < n,
3. fs€G,

4. Xs= (X, N M)U{y;;i1<n}and foranyxz € X, NM and i< j < mn,
and x <y; <yj,

5. N is an end extension of M. N M.

Proof. By induction on i < n, we construct rational open intervals V.2, V.1 . C
Uni, Yn_i € Vo_; NV for j <iand sp—; € DNV such that

0
1 ’- Tn—i S ‘/'I'L—‘l’

2. VO VL. =0and VO, %V, C Ko,

3" fsn-—i € G’
4 X, o = (X, N Npy) U {y,’::f;j < i} and for any x € X, , N Np_;

and j < k <n, z <y~ F <y’ and
5. My, _, is an end extension of N;,_, ., N Np_;.

Construction. Assume that we have already constructed V2 , V1. o7
Sn—j for all j < 1.
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Let

Yosii={z€UniNV; 2, €V, NV---32L eV, ,,NVIseDNVsit.
e f€(q
o Xo=(Xep_is1 N Noi) U{z} U{znji7 < i}
o Vze X, . N NpiVj <k <2 <7 Q2p—k < 2n—;j)
e M, is an end extension of M,,_,., N Ny }.

Then Y,,—; € N,—;|G] and z,,—; € Y,_; by 8’, 4’ and 5. Since x,—; € Y,_;,
by (g), Yn—i is not K;-homogeneous. Let Yo ={r € Yoy € Yoi\
{x}({z,y} € Ko)}. Then Y,_; \ Y,_; is in N,_;[G] and K;-homogeneous,
hence z,,_; belongs to Y,,_; by (g) again. Therefore there exists y7~% € Y,,_; \
{Zn_;} such that {z,_;, "'} is in K. Then We take rational open intervals
V2, Vi, C Unssuchthat zns € V2, V2NV, = Band V2_xVl , C K.

n—1

By yi~; € Yo, there are y?_, € VINV, ...y € V1, NV and
sn—i € DNV satisfying 3’, 4’ and 5’, which completes a construction. Put
yi == y¢ for i < n and s := sg, then these are as desired. -

Since M is an elementary submodel of H(0), M[G]| is an elementary
submodel of H(6)[G]. So by the previous claim, there are y; € V1N M[G]|NV
for it < mand s € DN M[G] NV satisfying 8, 4 and 5 of the claim. Then
we take a condition g € G which decides all values of V2, V! y; for alli < n
and s. By the separability of P, ¢g is an extension of f; in P'. We may
assume that g <ps f, because both g and f, are in a filter G. Then we note
that ¢ is also a common extension of f, and f; in P. By the construction,
(9, Xs U X, M. UNM,) is a condition of Q and a common extension of r and

s. Ol
To get f and X, we take any countable elementary submodel M of H ()
containing A, B, U, H(R3), etc. Let My := M N H(N;3) and pick a (My,P')-

generic condition f € P'. We notice that P(w) N My = P(w) N M. Then by
Lemma 4.20,

flrp A@BH)\ | JY € Mo[G,Y CA®BH1) &Y xY C K} #0.
So by Lemma 4.20, there are £ € A ® B*(1) and g <p/ f such that

glhp“ by e Bt &z ¢| J{Y € Mo[G;Y C A@BH(1) & Y Y C K1},
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Let p := (g, {z}, {Mo}) which is a condition of Q and we can show that p
is (M, Q)-generic by the same argument as in the proof of Lemma 4.21. The
following lemma indicates the density argument of Q.

Lemma 4.22.
plho“X = U{Xq; q € G} is uncountable Ko-homogeneous ”

Proof. 1t is trivial that II-Q“ X is Ko-homogeneous ”. From now on we show
that IFo“ X is uncountable ”

Assume not, then there is ¢ <g p so that g IFg“ X is countable ”. Now
glhg* & € X 7. Since Fo* G € MolG] ”, rg“ X € Mo[G] 7. Since
q F@“ X is countable ”, q IFo“ X C MO[G] So qlFQ“ T € X C M,[G] .
Now g is (M, Q)-generic, g IFq M[G] NV = M, so My[G] N P(w )nv =
M[GINPW) NV =MNPw) = MyNPw) ” Thus qo“ & & My[G] 7,
because of x & M, which is a contradiction. O

Applying PFA to Q, we can get a filter G C Q such that X' = [J{X,;p €
G} is uncountable and Kj-homogeneous. Let {z,;a < wi} list X' For
each a < w;, we choose p, € G with z, € X,,,. Then we take a fusion f
of (fp.; @ < wy), i.e. take X € U*, a natural number n and an uncountable
subset A of w; such that dom(f,,) € X Un for all @« € A and take a condition
f e 2X9n of P with f D U acA fpa: Then f is an extension of fro in P for
alla € A, so fIFp“b,, € BT 7. Put X := {z4;a € A}, then these are as
desired so we finish the proof of Main Lemma 4.17.

4.3.2 Proof of Theorem 4.2

Redefinition of the freezing forcing

The key-point of the proof of Theorem 4.2 is same as the proof of Theorem
4.15. To prove Theorem 4.2, we use a countable support iteration instead of
PFA. The problem is that in general Q(A, B,U) collapses X;, so we cannot
force by an iteration of Q(A, B,U). To overcome this problem, we redefine
the freezing forcing using the following objects:

Definition 4.23. 1. For a model N of ZFC (i.e. a model of sufficiently
large fragments of ZFC), denote the transitive collapse of N by N and
denote the unique isomorphism from N onto N by 7wy, i.e. forx € N,
mn(x) == {nn(y);y € N & y € x}. (This is defined by the €-recursion.)
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2. For A, B and U, let

T(A,B,U) := {—N-;N < H(c*) & N is countable & A,B,U € N}.

3. For A, B, U and M € (A, B,U), let

My = {N < H(c*); N is countable & A,B,U € N& N = M}
We note that
e forz € P(W)N N, nn(z) = x, 50 P(w)N'N = P(w) N N,

e for N,N' € My, N and N’ are isomorphic and 7mn~! o 7y is an iso-
morphism from N onto N/,

e for a countable elementary submodel N of H(ct), N is an element of
H(ct), so My C H(ch) for each M € T(A, B,U).

The following partial order Q'(A, B,U, f) is the new freezing forcing no-
tion designed for the iteration with countable support. This is similar to the
forcing notion due to Todorcevié ([44]).

Definition 4.24. For A, B, U and f € Uxeus 2%, define Q'(A, B,U, f)
whose conditions p are triples (fp, Xp, Np) such that

(a’) fp is a member of Uygy. 2% with f, 2 f,

(b) X, is a finite Ko-homogeneous subset of A® B*(1), )
(recall that for f € PU), BY(f) = {b C w;3g <pw) f(g Fpa) “b €
B+ ™)})

(c’) N, is a function so that
(c1) dom(N,) is a finite €-chain of elements of T(A,B,U),

(c2) for each M € dom(N,), Np(M) is a finite subset of My,

(c3) for all M, M' € dom(N,) with M € M’ and N € N,(M), there
exists N' e N(M') with N € N' and N < N’,

(d) for any x (= (az,bz)) € Xp, fo Fpan“bs € BT,
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(e’) for any x,y € X, with x # y there exists M € dom(N;) so that |[M N
{-T,y}i =1,
(define z <y : < IM € dom(N,)(x € M& y & M)),

(£) for all N € Jran(N,), fp is (N,P’)-generic, and
(g’) for every x € X,, M € dom(N,) withx ¢ M and N € N,(M),

folFpian “YY e N[GI(Y CAQBH(1) & YxY CK = 2 ¢Y).

For conditions p,q € Q(A, B,U),
P <quasw 4: = 2/ (i.e. fp <pr fo) & Xp 2 Xy & dom(N) 2
dom(N,) & VM € dom(N,) (NG (M) C N,(M)).

By an argument similar to the one of Lemma 4.21, we show the following
lemma.

Lemma 4.25. For A, B, U and f € Uxey: 2%, Q'(A, B,U, f) is proper.

Proof. Let 6 be a large enough regular cardinal, H < H(f) a countable
elementary submodel containing all relevant objects, e.g. A, B, U, H(c")
etc, and p = (fp, Xp, N,) € H a condition of Q'(A4, B,U, f)(= Q).

Since P/(U)(= ) is proper, there is an extension f; <p/ f, such that f,
is (H N H(ct),P')-generic. Let My := H N H(ct) and

q:= <fan:m'N;7 U {<M0’ {HnN H(c+)}>}>

Then q is a condition of Q'. We show that g is (H,Q')-generic.

Let D € H be dense open in Q' and r <g- ¢ We may assume that r is
in D. Let X, \ H = {x:;¢ < n} where z; < ;41 for i < n and take rational
open intervals U; C A4 ® BT(1) such that z; € U; for i < n, U;NU; = 0
and U; x U; C Ky for every 4,7 < n with ¢ # j. Let M; € dom(N;) for
1 <4 < nbesuch that z;_; € M; and z; ¢ M;. And let Ny :== H N H(c")
and recursively pick N; € N;(M;) with N;_; € N; for 1 < ¢ < n. Let G be
P-generic over H(f) with f, € G. By the same argument as in the proof
of claim 12, it is proved that in H()[G], there are rational open intervals
VO VICU, € VINV fori<nandse€ DNV such that

1. ;€ V2 for all i < n,

2. V2PNVi=0and VPx V! C K, forall i < n,
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3. f+€G,

4. X = (X, N H)U{y;;i <n}and forany x € X, N H and i < j < n,
and z Qy; < yj,

5. dom(N;) is an end extension of dom(N;)NH and for all M € dom(N;)N
H, N:(M) N H C N,(M).

By H < H(6) and the genericity of f,, we can find ¢ € G which decides all
values of V., V;! C U, y; € V!N H fori <nand s € DN H and is a common
extension of f, and f, in . It’s enough to find a common extension of r and
S.

To find it, let {L;;7 < I} enumerate N, (M) with Lo := HN H(ct) = Ny
and ¢; := 7z, ! for 1 < l. We notice that for each M € dom(N;) \ dom(N;),

e v;(M) € L; (because M € HN H(ct) = M),
e ¢;(M)= M (because M is transitive), and

o ;(M) < H(ct) (because @;(M) and N are isomorphic and N < H(c*)
for N € N,(M)).

We define a function N’ with domain dom(M) U dom(N) by:

N (M) UN(M) if M € dom(N,) N H
N'(M) = { N(M)YU {p:s(M);i <1} if M € dom(N) \ dom(N;)
N (M) if M € dom(N,) \ H

for every M € dom(N"). Then it can be checked that (g, X, U X;,N")
is a common extension of r and s if it is a condition of Q'. To check
{9, X, U X;,N") € Q, the only non-trivial requirement is that N’ satisfies
(¢3), in particular the case that M € dom(N,)NH, M’ € dom(N)\dom(N,;)
with M € M’ and N € N,(M)\ H. Then we can find L; € N,(M,) with
N € L;, because of r € Q' and M € M. Then N is in ¢;(M’) and an
elementary submodel of ¢;(M’), since M < M’ < My and ¢; | M = 73! C
T =i [ M O

If Iprgs A® B+(1) is not countably separated ”, (by the argument sim-
ilar to Lemma 4.22) X¢ := U{Xp;p € G} is uncountable The biggest
difference between Q(A, B,U) and Q' (A, B,U, f) is that Q'(A, B,U, f) has a
good chain condition. The following lemma says that it preserves cardmah-
ties under CH.
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Lemma 4.26. For A, B, and f € Uxewr 2%, Q' (A, B, U, f) has the c*t-c.c.

Proof. For conditions p and ¢ in Q'(A,B,U, f), if f, = f;, X, = X, and
dom(N,) = dom(N,), then (f,, X,, N} is a common extension of p and
g, where N has the domain dom(N,) and N”(M) = N,(M) U N, (M).
Therefore {p € Q'; f, = f & X, = X & dom(N,) = 91} is centered for every
feP X € [A® B(1)]<“ and a finite €-chain N of countable transitive
elementary submodels. O

Proof of Theorem 4.2

To prove Theorem 4.2, we assume that the ground model V is L. Let Sp and
S1 be stationary on wy with Sy N S; = 0 and Sp U S1 = Cof(w;1) N we, where
Cof(w1) = {a € On;cf(a) = w1}. Then V satisfies {,,,(S1). Let {Do;a €
S1} be a diamond sequence, i.e. for any subset F of ws, {a € S1; ENa = Dy}

is stationary. We define a countable support iteration <]P’a, Qa;a < w2> (and
pick a P,-generic filter G | a over V for a < wy recursively) as follows:

Stage 2a with 2a € Cof(w;). Construct an ultrafilter base (X,; @ < w2) (e.g.
using a o-centered Mathias forcing).

Stage 2a + 1. Construct to force MA by a book-keeping argument.

Stage o € Sp. Let Qo = PI(U((Xe;€ < @))), where U((Xe; € < a)) is the
ultrafilter generated by (X¢;€ < ). (We notice that

ke, U((Xe; € < @) is an ultrafilter ”

if & < w9 has the cofinality w;.)

Stage a € S;. If D, codes some <f, A, B>, where

e fis a Py-name for a condition of P(U({X¢; € < a))),
e Ais a Py-name for a family of infinite subsets of w, and

o BisaP,*PU((X:;€ < a)))-name for a family of infinite subsets
of w,
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such that

V[Gle] f[G K ”_]P’(u(<X5;§<a>))“ (A[G [al, B[G [al)

” N
?

forms an (w;, a)-gap

then let Qq := Q'(A[G | a], B[G | ], U({Xe; € < @), fIG | a]). Other-
wise, let Qq := {1}.

We write G [ws by G.

We note that P, is proper because proper-ness is closed under countable
support iterations. So the following lemma indicates that it does not collapse
cardinals. To show it, we use the following definition (see [42], [43] or [44]).
Definition 4.27 (Shelah). For a forcing notion X, X satisfies the Ra-
properness isomorphism condition (Rg-pic) if for all (some) large enough
reqular cardinal 60, o < B < wy, countable elementary submodels N, Ns of
H(6) and a function m : N, — Ng satisfying that

e € Ny, B€ Ng, NyNwo C B, NoyNa=NgN B, X NyN Np,

e 7 is an isomorphism, w(a) = w(0), and 7 [ (Nao N Np) is identity,

if p € XN N,, then there exists an (Ny, X)-generic condition q which is a
common extension of p and w(p) such that

glFx“7"(GN Ny) =GN Ng”.
Lemma 4.28. P, has the Nz-c.c.
Proof. Shelah has shown the following facts about the No-pic (see [43]):

e Under CH, any N,-pic forcing notion has the Ry-chain condition and
preserves N;.

e Under CH, Ns-pic-ness is closed under countable support iterations.

o If a forcing notion is proper and has size < V;, it has the R,-pic.



4.3. DISTINGUISHING TYPES OF GAPS IN P(w)/fin 89

Therefore it suffices to show that all Q'(A, B,U, f) have the Ry-pic. (I refer
to the proof of Lemma 6 in [44] for the argument below.)

Let 6 be a large enough regular cardinal, and @ < 8 < ws, countable
elementary submodels N,, Ng of H(f) and a function 7 : N, — Ng satisfy
the assumptions of N,-pic. And let p € Q'(A,B,U, f) N Ny. Because of
No NP(w) = NgNP(w) and N, = Ng, it is proved that 7(p) is a condition
of Q(A,BU, f), fr = frtw)y Xp = Xnp), and dom(N;) = dom(Nypy). So
{(fp, Xp, N} is a common extension of p and 7 (p), where dom(N') = dom(N})
and for M € dom(N,), N"(M) = Np(M) U Ny (M). We put

g = <f,,,X,,,N’ U {<Na A H(H), {Nan H(cH), N5 N H(c+)}>}>.

As before, we can prove that ¢ is also a condition of Q'(A, B,U, f) and an
(Na,Q’(.A B,U, f))-generic. So it is true that ¢ Forasun ™ ™(GNN,) =

G N Nz ” because the compatibility i in Q'(A, B,U) is simply decided by f,,
X, and dom(N,) for any p € Q'(A, B,U). O

In V[G], ¢ = X, and MA holds. By the standard Lowenheim-Skolem ar-
gument (see also [29]), since we iterate P'(U({X¢; & < a))) stationary many
times, it follows that m(P'(U((Xa; o < w2)))) = Rz in V[G], hence P(U((X,;
< weq))) is wo-Baire. So it suffices to show that P(U((Xas; & < wy))) adds no
(w1, ws)-gaps.

Assume not, i.e. in V there are P,,,-names f,Aand a P, *]I:”(Z,{ ((Xoya <
we)))-name B such that f[G](= f) € PU{Xa;a < w2))), AlGl(= A) C
P(w) and

F rp@(Xaacw) (A, BIG)) forms an (w1, ws)-gap ”

We may consider B[G] as a P(U({Xa; o < wy)))-name for a function from
we into P(w), i.e.

F b (X asacunyy “ Yo < B < w2(B[G](e) €* BIG](8))
& Va € AVa < wa(a L B[G)(a)) ”

We note that P(U((Xa; @ < w))) does not add new reals.
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Claim 13. C (.A, B,U (<Xa;a < w2>) ,f) = {a € Cof(wy) Nws;
ViGlal F* fePU{XgE <)),
ACVI[Gla], and
PP pu(xee<aly) (A, BIG]l @) forms an (w1, a)-gap ” }
18 wy-club.

Proof.* VIG 1 o] = * f € PU((Xsi€<a)) & A C VIG [ a] " is
upward closed with respect to @, and w;-closed-ness is trivial because for
a € Cof (w1) N wa,

V[Grajn2Y = VIGIgn2”.

E<a

So we check that it is unbounded.
We note that in V[G] for all z € A+ and g SPU((Xasa<ws))) S, there are
Yz,g € P(W), To,g SPU((Xasa<wr))) 9 a0d &g < Bz4 < wa such that

® T Z* Yo g,
® Y4 € V[G | fr,], and
® Tag FpU((Xasacun)) BIG](Ezg) = ¥ag -

Taking o < wsy, we recursively construct (ve; £ < wi) € Cof(wy) Nws such
that

e a<yand % < yfor{ <n<uw,

o V[G[Ye] F“Vz € AXNV[GT7%]Vg € PUX¢; ¢ < %)) with
9 Spwxecre))  (Tzg € PUKXG C < 7e41))) & &oyg < Yer1 7, and

e if 7 is limit, then let vy := supg., Ve
Then supg.,, ¥ is in C (.A, B,U (<Xa;a < w2>) ,f) O

Since m(P'(U((Xa; @ < w2)))) = N2, by Lemma 4.20, in V[G]

- . \Y2
f IFpu((Xasa<wa))) « A® (B[G]+(f))

is not a union of countably many K;-homogeneous subsets ”.



4.3. DISTINGUISHING TYPES OF GAPS IN P(w)/fin 91
By Proposition 4.5, this is equivalent to
. /o v
f IFpu(Xasacwa))) (A, (B[G]+(f)) ) is not countably separated ”

(in V[GY)), i.e. for all P'(U({Xa;a < wp)))-names & = {én;n < w) € (ALY
and g Spiu((Xaia<wa)) fr there are yzg, 259 € PW), Tag SPU(Xaja<wa))) 9
and &4 < Bz9 < we such that

o (229,Yzq) € A® B[G]+(f) NVI[G | Bzgl, and
o Tog IFBu((Xaiacwn) BIGN(Eag) = iag & VN < w(Zsg £ eaVileg T* éa) ™.
So by an argument similar to the one of the previous claim,
c’ (A,B,U (<Xa;a < w2>) ,f) = {a € Cof (wy) N ws;
VIGla] E*f e PU(Xe; € < @),
ACVI[Gal, and
-~ . Vv
F e (aecaly” (A ((Bra)GTa)*()))

is not countably separated ” ”}

is wy-club. Thus by the diamond sequence, there exists
ael (,A, BU (<Xa;a < w2>) ,f) nc' (A,B,L{ (<Xa;a < w2>) ,f)
such that D, codes <f,./l,8 [a>. So

Qa = QI('A7 (Bfa)[G [a]au(<X€;§ < Ot>),f)

and G(a) is Qq-generic over V[G [ a]. Then X' := | J{X,;p € G(a)} is
uncountable Kjy-homogeneous. We note that for all p € G(a), f, is in
P(U({Xa; @ < ws))). So by the same argument at the end of the proof of
Main Lemma 4.17, there are a fusion f of (f,;p € G(a)) and uncountable
Ko-homogeneous X C A®B[G]*(f) such that f IFpu((xaa<cwsy) “b € BY 7 for

all (a,b) € X, which is a contradiction and completes the proof of Theorem
4.2.
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