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Introduction

Let us develop a real number z into the binary expansion, take the sum of
the first m digits under the decimal point, divide the sum by 2, and denote
the remainder by X (z). Sugita [5] proposed that, when « is irrational and
m is large, we can use the sequence X ™ (z), X™ (z + o), X™(z + 2a), . ..
as a pseudo-random number and showed the following theorem. Let X{™ be
the {0, 1}-valued function on [0,1)? defined by Xz, 0) = X™(z + na).

Theorem A. For any normal number o € [0, 1), the process {X,(lm)(‘, a)}e,
on ([0,1),B, P) converges in law to {0,1}-valued fair i.i.d. when m — oo
where P is the Lebesgue measure on [0,1).

Note that the process {X,i’”( -, 0)}22, is generated by the a-rotation or
Weyl transformation and has strong dependence. Theorem A claims that the
dependence vanish when m — oo. ‘

We say that a is “good” when the process {X{™ (-, a)}32, on ([0, 1), B, P)
converges in law to {0, 1}-valued fair i.i.d. when m — co. It is easy to see
that any rational number is not “good”. Sugita [5] conjectured that any
irrational number « is “good”.

Since the proof of Theorem A in Sugita [5] is very complicated, Sugita [6]
tried to give a simple proof based on ergodic theory. He showed the fol-

lowing theorem, which has a simple proof but its assertion is weaker than
Theorem A.

Theorem B. The process {X£m>},;“:0 on ([0,1)2,B(]0,1)?), P) converges in
law to {0, 1}-valued fair i.i.d. when m — oo where P is the Lebesgque measure
on [0,1)2.

Takanobu [7] studied on this theorem in detail. We see an outline of these
result in Chapter 1.



In Chapter 2, we modify the idea of Sugita [6] and prove a theorem
asserting that almost every « is “good”. Although the theorem is stronger
than Theorem B, it does not decide whether each given a is “good” or not
since « is regarded as a random variable.

In Chapter 3, we give an alternative proof of Theorem A. The method is
an application of a standard technique of Markov chain. I believe that the
method is enough simple to understand the nature of the phenomenon.

Let us recall Theorem A and see that any normal number « is “good”.
There exist enough normal numbers, indeed, the set of all normal numbers
in [0,1) have Lebesgue measure 1. We can even construct some normal
numbers, e.g. 0.11011100101110111.... But we do not know any concrete
number, m, €, \/5, V3, and so on, is normal or not, and hence we can not
know what « is “good” in practice. For the purpose of application, it is
necessary to know at least one “good” «, and his conjecture is fulfill this
need if it is proved affirmatively.

In Chapter 3, we prove that any irrational « is “good” and give the
affirmative answer to the conjecture. We apply the technique of Markov
chain from a different point of view and prove the final result.

Notation

We introduce some notation for following chapters. Let b > 2 be a natural
number, d™(z) be the m-th digit of z > 0 in decimal part of its base-b
expansion, and X\™ be the {0,...,b— 1}-valued function on [0, 1)? defined
by

m
XM (z )= Z d®(z +na) (modb).
k=1

Let us identify {0,...,b — 1} with the group Z/bZ.

We say that a measure y on [0,1) is a Bernoulli measure iff {d™}%_, is
an i.i.d. with respect to u and that a Bernoulli measure u is non-degenerate
iff u(d® = s) # 0 for all s € Z/bZ. Note that the Lebesgue measure is a
non-degenerate Bernoulli measure.

For real number x > 0, let |z] be the integral part of z ie., |x] =
max{n € Z | x > n}.



Chapter 1

Skew product and Sugita’s
proof

In this chapter, we see a sketch of proof of the following result by Sugita [6]:

Theorem B. The process {X{™}22, on ([0,1)2, B([0,1)2), P) converges in
law to {0, 1}-valued fair i.i.d. when m — oo where P is the Lebesgue measure
n ([0,1)%,B(]0,1)%)) and b = 2.

By harmonic analysis on (Z/27Z)", it is sufficient to prove the Theorem B

to see
n—1

/exp(iﬂ Z aX™ (z,0))dedo — 0 (m — oo)
1=0

for any n € N and a; € Z/2Z (I < n). This is equivalent to

/exmeX(m)xa ))dzda — 0 (m — o0)
1=0

forany k € Nand 0 < [j <] < --- <l _;. By taking l; = I} — [, the shift
invariance of Lebesgue measure implies that it is also equivalent to

k-1 k-1
/exp(iﬂ ZXl(im) (z,)) deda = /exp(z’ﬂ' Z Xl(;"_%(:v, a))dxdo — 0  (m — o0)
=0 i=0

forO:l0<ll<~--<lk_1.



Note that exp(inl(m)(a;‘ +1/2,a)) = — eXp(iﬂXl(m)(x, a)) by the defini-
tion of X l(m). Then the shift invariance of Lebesgue measure implies

k-1

/exp(iﬂ' Z Xl(im) (z,a))drda =0
=0
forany 0 =1p <ly <--- <lg_1 and m if k is odd.
If £k =2, since X z(om) does not depend on «,

k-1

/ exp(im Z Xl(im)(x, o)) dxda

1=0

= //exp(inl(:n)(x, a))da exp(iﬂXl(Om) (z,0))dx = 0.

From now on, we fix even k > 4 and 0 = [y < l; < --- < l;—; and let
f(z,a) = exp(in Ei:ol dM(z + l;a)). Then we need is to show that

/Hf(2j_1:t, 2 o) drda — 0 (m — o).
j=1

We introduce a skew product T by

Tr:[0,1)* x {=1,1} 3 (2, ¢)
— (22 — |2z],2a — |2a],ef(z,a)) € [0,1)* x {-1,1}.

Let us define a measure x on ([0,1)? x {—1,1}, B([0,1)?) x 2{-11}) by p :=
Px1(6_1+61). Then T} is a measure preserving transformation with respect
to u and

/H (27,277 ) drda = /<I> (®oTf")du
j=1

where ®(z, a, €) = e.

Sugita [6] showed the ergodicity of T and, in a similar way, the ergodicity
of Ty x Ty which implies the weak mixing property of T7.

We introduce a Markov Chain Y™ which can describe ®. Let {Ey,..., E;}
be the connected component of [0, 1)?\ {discontinuity of f} and Y (z,a) := j
for (z, @) € E; where we regarded [0, 1)? as the two dimensional torus. Then



there exist ® such that ® = $ oY ae. and Y™ =Y o I7" is a Markov
Chain.

Then the ergodicity or weak mixing property of Ty implies the irreducibil-
ity or aperiodicity of Y™ respectively. Therefore the Markov Chain Y (™
converge to equilibrium hence Y™ is strongly mixing. Thus

/ &-(®oT}) dp = / (DoY)(PoY oTF") dp — ( / oY du)? = ( / ®du)? = 0.

which complete the proof.
If T} itself is strongly mixing, we immediately have that

/(D-((DoT}”)d,u—»(/CI)du)zzo.

Takanobu [7] show this mixing property by a cancellation method used in
Theorem A.

In the view of ergodic theory, stronger property of T} is essentially proved
in Sugita [6]. By noting that {J, Tf_ka(Y) generates B([0,1)%) x 2{=11 | we
have T is a Markov transformation. This is a kind of powerful property. In-
deed, the weak mixing property is equivalent to the weak Bernoulli property
for any Markov transformation. Thus we can see that T} is a weak Bernoulli
transformation and hence strongly mixing.

As we have surveyed, the Markov property has big weight in this method,
and it is more natural to begin our proof with a Markov Chain instead of
the skew product. In the next chapter we discuss from this point of view.



Chapter 2

Markov Chain and a result for
almost every o

2.1 Result

In this Chapter, we show that the set of “good” as has measure 1 for any
non-degenerate Bernoulli measure y, i.e.,

Theorem 1. Let y and v be non-degenerate Bernoulli measures. For p-a.e. a,
the process {X™ (-, @)}, on ([0,1),v) converges in law to the {0, ... ,b—1}-
valued fair i.i.d. when m — oo, i.e., for allm € N and sg, ..., Sp-1 €

{0,...,6—1},

m m 1
V(Xé )(-,a)=so,...,X,§_)1(-,a)=sn_1)———»b—n (m — o0).

2.2 Proof of the Theorem

Let Q:=[0,1)*and P:=v X v X p.

We define two {0, ...,b—1}"-valued processes {X§m>}gg=1 and {X{™}_,
on (2, P) as

Xg.m)(:z:l, To, ) = Z(d(k>(xj), d®(z; + a),...,d"(z; + (n — a)).

k=

[y

Note that, for any z; and z2, the {0, ..., b—1}"-valued functions Xgm)(',:cz, )
X{(z1, -, -), and (Xém), .. ,X,(ff)l) are equal on [0,1)2.

7



To prove Theorem 1, we show that

V(XYn)( L, T2,Q, ) = S) — —  jra.e.x (m — o)

bn
for any s € {0,...,b—1}"
Thus, it is sufficient to show that

o) 1 2
Z / {V(Xgm)( Ty, ) =) — b_”} u(da) < oco. (2.1)
m=1
Let 8 be the base-b transformation on [0, 1), i.e., Bz := bz — |[bx]|. We
define a Z***'-valued process Z(™;
Z™ = (Z{9), ..., 200, 280 Zamns Z8™)
Z0 (21,2, @) 1= [b(B™ 2 + 1B ),
Z§m>(.’131,l'2,a) = [ e .
We will prove the following proposition in the next section.

Proposition 2. {(Z™,X™ X1 s an irreducible and aperiodic Markov
chain, and its stationary initial distribution {myes} satisfies

1
Tuse = P(ZW = W)

Now, let us show the formula (2.1). By noting that Xgm)( -, %9, - ) and
Xgm)(:vl, -, - ) are identically distributed, that Xgm) does not depend on z,

and X{™ does not depend on z;, and that X™ and X{™ are independent
when « is fixed, we have

/{V(Xgm)( T, @) =) — bin}z,u(da)

B / v(X{V(+,22,0) =8 (XTV (21, -, @) = s)u(da) - o

oL o ) = shuto) - )

=/(y>< V) (XT(-, - a) =8) (v x ) (XSV(-, - a) = s)p(da) _b2in
2 [x & e = sude) - 1
A



By Proposition 2, we have

> DY 1
Tuss — s Tust — 7+
»y bzn (g bn

u u,t

Therefore, by noting the following theorem, we see that there exist C' > 0
and p < 1 such that

/ {V (Xﬁm)( © T2, @) = S) - %}QM(da) < Cp™,

i.e. the summand in (2.1) converges to 0 in exponential order and is summable
inm. O

Theorem C. (Billingsley [1, Theorem 8.9]) For an irreducible and aperiodic

Markov chain which have a finite state space and transition probability pg-n),
there exists a stationary distribution {m;} such that

P — i < Ap™
for some A>0, and 0 < p < 1.

Remark: We can estimate the order of convergence. Let p’ be as p < p? < 1

and
o= {3 o (e =0) -2} ()]

m=1

Then, M is square integrable and

m 1
V(Xg )(’x27a)=S)_2—niSM(a)plm H-a.e. .

2.3 Proof of Lemmas

In this section, we prove Proposition 2.

Lemma 1. {Z(™1}>_  is an irreducible Markov chain.



Proof. By the definition of Z(™), we have
ZU (1,22, ) = ZW (B 2y, B o, BN 2).

Therefore we can define ImZ as Im Z := Im Z(™.
Let us calculate the probability of a cylinder set A := {Z(’“) =uP 1<k< m}

for u®) = (ugkg, . u§’2 L uékg, . uék,)l 1 u3k)) € Im Z such that P(4) > 0.
First, we put

A= {Z{fi} —u®) Z8 = u® 2 = uPfor1 <k < m, 2 = u(m)}

and show A = A’. A C A’ is clear. Note the definition of Z ](’? and bz =
Bx + |bz|. Then we have that, for any w = (x1, 22, @) € Q,

Z\ P (w) = [b(8* %z, + 1)
= |8 tz; + |08 2z;| + 185 Lo + 1| 035 2a|
= |8 z; + 18 a + |87 x| + 1685 2|

= 1228 @)] + 24 w) +128V W)

Because P(A) > 0 or A # ¢, we have

(kl [-b 5]3)J+u(kl+l (k—1)
for 1 < k < m. Therefore Z(™ = u™), Z](jg_l) = u(-78"1), and Z?(,m_l) =

3,
w{™™ imply Zm=1 = u™-1_ Thus, in the same way, we have that Z*)(w) =

u® for all k < m 1fw €A ie, ADA.

Note that Z;f))(xl,xg,a) = [b8% V| = d®(z;) and Zék)(xl,a:g,a) =
d®(a). Therefore, by the independence of {(d(k)(azl), ), d®) (o )} 1
and the fact that Z™ can be written as a function on
{(d(k)(xl) d(k) (x2), d(k) )}k , we have

m—1 d®)(z,) = (k)

U0
P(4) = P(4) = P(z™ =u™) [ P | d®(zs) = ulf)
k=1 d(k)(a) _ u:()’k)

10



Since P(B) > 0 by the assumption P(A) > 0, in the same way as A, we can
show the following;:

m—1 d(k) (1’1) = ué’fg
P(B) = P(z™V =u™) 20 = ™) TT P | d® (1) = uf)
k=1 d®) () = ugk)

Therefore we have shown
P(B | A) - p(z(m+1) = nm+D | 7m) — u(m)),

ie., {Z(m)}ﬁ=1 is a Markov chain. The mixing property of the transforma-
tion (z1,x92, @) — (Bx1, Bz, fa), which is a Cartesian product of mixing
transformations, implies irreducibility. O

Let ¢ be the canonical surjection Z — Z/bZ. We define two (Z/bZ)"-
valued functions d; and d; on Im Z as

o~

dj(u1,0> cees Uln—1, U205 - -, U2,n—1, ’U,3) = (L(uj,O)a ce ;L<uj,n—1)>a
By noting that
(to Zy ) (@, 22,0) = o[B8 'z; + 1™ a)))

dV(B™ z; +18™ )
d(m) (.Z‘j + lOé),

I

we have

X™=%"d;oz®  (modb). (2.2)
k=1

We introduce some additional notation:

G := (Z/bZ)*"
¢:ImZ 35 ur— (di(u),ds(u)) € G
wm . (Xgm), Xgm)).

Let O¢ be the unit element of the finite group G. By the definitions of X§m),
Xé’”), d;, and dy, we have that W™ = Y7 o(Z®).

11



Lemma 2. {(Z™) W)Y is a Markov chain.

Proof. For u*) = (ugk(),, ey §’2 l,ugkg, . ug’“,i 1,u§k)) €ImZ and ¢® € G,
we put

A={(2ZP,W®) = @9, g¥), 1<k <m},
B = {(Z®,W®) = (a®,¢®), 1 <k <m+1}.

Let us calculate the conditional probability of B that A has occurred. We put
g© = 0g, 69 := 1, and 6§ := 0 when g # h. Because W® = o(Z*)+Wk-1)
and W© = 0, we have

p(]l) — p(z(k) = u® g® = pu®) £ g*D 1 <k < m)

m
= P(2® =u®,1 <k <m) [ o5,

k=1
Similarly, we can prove the following:
- e D
P(B) =P(Z® =u®,1 <k <m+1) [] 655
k=1

Thus, when P(A) > 0,

P(E ‘ AV) = P(Z(m-l-l = u{mtl) | 7&) — u(k) 1<k< m)(S(p((,:LliT;l))—’-g(m)
= P(Z(2) — umtD | 71 — u(m))5¢(“(m+l))+g<m)

(m+1)

= P((Z 2 W(2)) = (um+1’g(m+1)) | (Z(l), W 1)) — (u(m)’g(m))).

Let p*)((u, ), (0, ¢')) be the k-step transition probability from (u, g) to

(1, ¢') of the Markov chain {(Z(™, W™)}>_ = and pgc)(u, u’) be the k-step
transition probability from u to u’ of {Z(™}%_,. Then, the formula (2.3)
can be simply written by

PV ((u,9), (W', ¢) = p’ (0, 0)6%, 1, - (2.4)

12



Especially the transition probability is determined on only by u, u’, and
h=g¢g —g,ie,

PP ((u,9), (0, g+ h)) =pP((u,06), (0, h)).
Thus we can easily show
p* ((u,9), (W, g+ h)) =p®((u,00), (W, h)).
For u € Im Z, we put
H, := {h | There exists a k such that p(k)((u, 0g), (u, h)) > 0}.
Note, by the irreducibility of {Z™}

Lemma 3. H, is a subgroup of G.
Proof. For h € H, and m € N,

H, is not empty.

m=11

p'™ ((u,0¢), (u, mh)) Hp’“) u, jh), (u, (j + 1)h))

={r ’“)(( a), (u,h))}™.

Therefore there exists a k such that p(mk)((u, 0c), (u,mh)) > 0, i.e., mh €
H,. Thus, since G is finite, H, is a subgroup of G. O

Lemma 4. H,, does not depend on u.

Proof. We show that H, C Hy for any u,u’ € ImZ. By the irreducibility
of {Z(™}%_ | there exist ki, ko € N and g1, g» € G such that

p*((u,06), (W, g1)) >0,  p*((u',06), (u,g2)) > 0.
For all h € H,, there exists a k; such that
plkn) ((u,0g), (u, h)) > 0.
Therefore
plkrtkethn) (0, 0¢), (W, g1 + g2 + R))
> p*) (W, 0c), (u, g2))p* ((u, g2), (u, g2 + 1))
x p*)((u, g2 + k), (0, g2 + h + g1))

= ) (o, 06), (1, 92))p™ ((u,Oc), (u, 7)p™ ((u,0c), (o', g1))
> 0,

ie, g1+ g2+ h € Hy. In the same way, we have g; + go € Hy. Thus
HuCHu’—(gl +g2):Hu’- O

13



Now, we put H := Hyand D:={u€ImZ| p(zl)(u, u) > 0}. Then,
Lemma 5. {(Z™) Wm™)}°_ s irreducible when p(D) generates G.

Proof. By formula (2.4), for u € D,

PP ((u,00), (u, p(w))) = 3’ (w, )% . = p%’ (u,u) >0,

ie., (D) C Hy = H. Since ¢(D) generates G and H is a subgroup, we have
H=G.

For all (u,g) and (W, ¢’), by the irreducibility of {Z(™}°_, . there exist
h € G and k € N such that

p® ((u,0¢), (W, r)) >0,

and by H = G, there exist ¥’ € N such that

p* (W', 06), (W', g — g’ — h)) > 0.
Thus,we have
P ((u, 9), (W', ¢)) = p®((u, g), (0, g+ h)p* (W, g + h), (W, ¢'))

:p(k) ((ua OG)’ (ul’ h))p(kl) ((u/’ OG)’ (u/, g— gl - h))
> 0.

a

Lemma 6. {(Z(™, W{m™)}®_ is irreducible.

m=1

Proof. We show that ¢(D) generates G. For 1 < ny,n, < n, let us define
€ny.n, € Z2"! by the following:

€nm =(—1,...,b—1b,...,5b—1,...,b—1,b,...,b,0).

Then, by the definition of ¢ = (81, 32), we have that

o(emm) = ((b=1,...,6—1,0,...,0),(b—1,...,6—1,0,...,0))

- v - 7

14



and {p(en; n,) }n, np=1 generates G. Therefore, it is sufficient to show that
{enl»nZ}zl,ngzl - D
By the definitions of Z() and e,,, ,.,, we have that
1—%§xj+la<1 for 0 <1 <n;
ZW (21, 29,0) = €, 0, © 1<zj+la<l+zi forn;<l<n
0<a<s;
—3<z;<1—(n; —1a
@ l-noe<e;<l-(n—-la+3i ifnj<n
0<a<i
For the sake of simplicity, we investigate a stronger condition. By replacing
the condition 0 < a < # Wlth 0 < a < 7=, we have that

{(I17$27a) i Z( ) = enl,nz}

1-— <z, <l—(n;—1
) {(wl,xz,a) nJa l‘] (nJ )a }

b(n 1)’

O<ac<

b(n 1)

Therefore {(z1,z2,a) | Z") = ey, », } has non-empty interior, and hence its
Bernoulli measure is positive, and thereby e, ,, € ImZ. In a similar fashion,
we can easily show that

{(wl’xz’ a) I Z(l) — Z(2) — en1’n2}

l—-naoa<z;, <1—(n; — 1o
D{(xl,xg,a) 0<a.7< J ( 7 ) }

i
b2(n—1)

Thus Py (€nymz» €nine) = P (Z0) = Z® = ey, 1) >0, i€, €4y, €D, O
Lemma 7. {(Z™) Wm)}®_ s aperiodic.

Proof. Because we showed the irreducibility, it is enough to show that there
exists at least one aperiodic state. Let 0 := (0,...,0) € Z*"*!. By simple
calculation, we have

0<z;<gp—(n-1
{(l'l’x%a) | zM =7% = 0} - {(1171,1‘2,04) snswsnmde }

O§a<-b—2-(_r%_——1-)-

In the same way as in the proof of Lemma 6 one shows that 0 € D. Note
that ¢(0) = Og, thus

pM((0,9), (0, 9)) = py(0,0)52)+s
= p3’(0,0) > 0.

15



a

Lemma 8. Letu € ImZ and g € G. Then, the stationary initial distribution
Tug Of the Markov chain {(Z™, W™™)}%_, is given as follows:

1

7Tu,g P(Z(l) = U) an

Proof. Let us verify the stationarity of my 4:

Z 7"'u,g-P(l) ((u’ g)’ (u,v g,))

= Z P(z® =) P(z<2> =o' | ZO = u)sF*

- ZP 71 — =u) _p(z(2) u | 71 — u)

1
= P(Z )b2n 7ru’,g"

Because the Markov chain is irreducible and aperiodic, the stationary initial
distribution is unique. Thus, we have completed the proof. O

2.4 Absolutely continuous measures

In this section we show that the Theorem 1 is valid when v is replaced with a
measure @’ which is absolutely continuous with respect to a Bernoulli measure
v. Let h be the density function of / with respect to v. It is sufficient to
show that

m 1
V'(Xg '+ z0,0) = s) = / 1{x§m)(m1,zg,a)=s}h<x1)y(d$1) — 5 Haea

(2.5)
Let h; be a F(dY, ..., d?)-measurable simple functions such that [ |h; —

hldv — 0. For A € Fy, := Uf(d(l), .. .,d(“), in a similar fashion to the

16



proof in section 2, we have that

/{I/(Xim)( Ty, a) =8, A) — %?}%u(da)

v(A)?
= / l{xgm)=s}1Ax[0,I)x[0,1)1{x§m)___s}1[0,1)><,4><[Oyl)dP — 5)273

v(A) V(4)
B {/1{x§m>=s}1Ax[o,1>x[o,1>dP— o }

m m I/A2
:P(Xg ):S,X—(z ):S,AXAX[O’]_))_ ézn)
v(A) m) V(A)
-2 o {P(Xl ——S,AX [0,1) X [O’]_))__ W }’

and this converges to 0 in exponential order (cf. Billingsley [2, Example
19.3.]). Thus there exists a Dy C [0,1) such that u(D4) = 1 and for all
a € Dy,

A
V(Xgm)( . ’x2’a) = S,A) _ Vgn) — 0.
Let D := ﬂ D 4. Note that F, is countable. Then u(D) = 1 and for all

A€Fs
a €D,

v(4)
/].{xgm)(zl,a;z,a):s}1{m1€A}V(d$1) - b — 0 for Ae Foo.

Therefore, because h; is a simple function, we have that, when m — oo,

hidV
/1{x§m)(zl,xz,a)=s}hz‘($1)’/(d$1) - / T 0 u-a.e .

For all ¢ > 0, there exists an N, such that f |h; — hldv < ¢ if i > N.. Thus,

1
‘/ 1{X§m)(xlymz,a)zs}h<x1)y(dx1) - b_n

hidV
= (/1{X§m>(x1,wg,a)=s}hi(x1)y(dxl) - f -

+ ‘/ 1{X§m)(z1,z‘2,a):s}(h’i(xl) - h’(xl))y(dxl)

hidV
/ L) (g1 2 oy i (2D (d21) — / =

We conclude the proof of the formula (2.5).

+ 2e.

<
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Chapter 3

Approximation by Markov
Chains and a result for normal
Qo

3.1 Result

We assume that P is a measure on [0,1) such that {d®}; is independent
with respect to it, and that

liminf min P(d® =¢) > 0.

i 0<e<d
Our main result is the following:

Theorem 3. Any normal number o to base b is “good”, i.e., the process
(X o)y, on ([0,1),B([0,1)), P) converges in law to {0,...,b— 1}-

n=0
valued fair i.i.d. when m — oo.

Sugita [5] actually showed Theorem 3 in case b = 2 and P is the Lebesgue
measure. In fact, we show the following stronger statement:

Proposition 4. For each n € N, let A, C [0,1) be the set of all « € [0,1)
whose base-b erpansion contains a finite sequence

0---00---010---01---0---010---0
k+r K+2 K+2 K+2 k+k

N s

~
M

18



infinity many times for every k, where k := min{j € N | ¥/ > n — 1} and
M :=n(b- 1)1+ (b—1)b%). Then any o € N, A, is “good”, i.e., the
process {X,S’"’(-, )}, on([0,1), P) converges in law to {0, ..., b—1}-valued
fair i.i.d. when m — oo.

3.2 Proof of the Theorem

We prove Proposition 5.

Proof. To show Proposition 5, it is sufficient to see
P((XM(,a),... . X\ (+,0))=0) 5 b (m—>o0)  (3.1)

for any n and ¢ € {0,...,b—1}" =: X. Therefore we fix n and a € A, from
now on, and define X™ by

XM = (XM a), .., XM a).

Let us consider m as a new time parameter. Then, we can see that for
a certain increasing sequence {m;};, the {X(™}, is ‘almost’ a strong irre-
ducible Markov chain whose unique stationary distribution is the uniform
distribution on . From this observation, (3.1) will be derived.

We use two lemmas. Lemma 9 claims that P(X™ = ¢) is ‘almost’ a
Markov kernel on ¥. By the assumption of measure P, we can find p > 0
and m as inf min P(d(i) = ¢) > p. Let = mean modb equality for any

i>m ¢

component on .

Lemma 9. Let m>m, m' > m+k+x, and dP(a) =0 form <i < m'.
Then, for any o’ € &,

P(X™) =¢) =" P(X™ = ) P(X™) - XM = ¢’ — )| < 2(1 - p)*.
ogen

Lemma 10 claims ‘strong irreducibility’. Let * denote any one of 0, 1,
o, b—1.

Lemma 10. There exists € > 0 such that

min P(X™ — XM =o' —¢) > ¢

19



for any o’ € &, k> 2, m > m such that

m k+x K+2 K+2 K+2 k+r

- S

"
M

andm:=m+k+k+ M(K+3).

Now, we show (3.1) by using Lemma 9 and Lemma 10. Let m; > m be
as
a=0.%+%0---00---010---01---0---010---0%---
m; ki+k \n+2 K+2 K+2 . ki+k
M
My = m; + k; + Kk + M(k +3), and EV(0) := P(XY = ¢) —b". Then, by
Lemma 9, for m’ > m; + k; + &,

E(m') Z E m’) m) _ X ™) = 5 _ o)l < 2(1 —p)ki.

L))

Therefore, because P(X™) — X(™) = ¢/ — ) > 0,

’E(m’)(gf)

< Z 'E(ﬁ“)(aﬂ p(X(m’) X)) = 4 o) +2(1 — p)*~.

ceX
Note that 3, s P(X(™) — X(M) = ¢/ — o) = 1. Thus

(m) < @) Y A
max [E"™(0)] < max |[E™(a)] +2(1 - p)™. (3.2)

Again, by Lemma 9

E™)(¢") = > EM) (o) P(X™) — Xm) = ¢/ — 0)| < 2(1 —p)*.

gEX

Noting ¢ 3 E™(5) = 0 and that P(X™) — X(m) = ¢’ —¢) —e > 0 by
Lemma 10, we have

|[E® ()| < Y [E™ ()| (PX™) — XM = 5" — 5) —&) + 2(1 — p)*.

cex
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Thus
max [E™)(0)] < (1~ b"e) max |[E™(0)| + 2(1 - p)*. (3.3)

o€X

By the assumption of «, we can define {m;, k;} as m;y; > m; + k; + k and
k; > ilog((1 —b™)e271)/log(1 — p). Therefore, by (3.2) and (3.3), we have

max [E™#+ (o) < (1-b"%) mgglE(’”")(a)l +4(1—p)*
oc o

< (1-te) (max|E™(0)| + DIELEAt -p))

—pr (m)
< (1-b (maX]E : |+422])

= (1-b") ( ax |E™)(q) |+4) (3.4)
Since k; —»oowhenz—»oo by (3.2) and (3.4), for m > M1 + kiy1 + K, we

have

max |E™(0)| < max|E™)(0)] +2(1—p)"t = 0 (i = o0)
4 [24S]

3.3 Proof of Lemmas

Let the symbol L - |™ be the number which is rounded down to the m-th
digit and (- ), =™ ie = - — Z._m+1b id@(.) and
(Y = 2-_m+1b d0( ). For m < m, define (- D by (- )i

L dml™ = (L ™) = e 67O ).

The main idea of Lemma 9 is as follows. The dependence of X and
X)) — XM s caused by the carry at m-th digit which arises from the
addition x + la. Therefore, intuitively, the ’dependence’ is ’little’ if (a),, is
enough less.

Proof of Lemma 9. Let

A= {z€[0,1) | (@) < %%}.
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Since {aymt % = 0 by the assumption of o, m and «, we have

mtkere l 1 n—-1 1
Koym = l((LaJ)m+k+ + (W) mtk+n) < pm+k+r < ptk pe < Gtk

(3.5)

for | < n—1. Therefore, (), +{a), < 1/b™ for x € A, and hence no carry
arises from the addition z +la at m-th digit, i.e., [{(Z)m +{(0)m]™ = 0. Thus
lz+ia]™ = |z]"+|a|" + [(2)m+Ua)m|™ = |z]" +l|a]™ = [z+|a]™|™,
ie, XM(. a) = XM™(. |a|™) on A. We let A denote the symmetric
difference. Then

{X™ = g}A{XM™ (., |a]™) = 0o} C A°.

Note that X (., |a|™) depend only on d, ..., d™ and that B, :=
{X") X = ¢’ — 5} depend only on d™*1), d™+2) . By the indepen-
dence of base-b expansion,

P(Xt™) = ¢') = Y " P(X™ = g)P(X™ - X = ¢’ — o)

<y lP({XW) = ;’Tﬂ B,) — P(X™ = o) P(B,)
< U‘:; ‘P({X“"') =0’} N B;) = PUX™(-,|a|™) = 0} N B,)
fz |PUX™ (-, la]™) = 0} N B,) = P(X'™ = 0) P(B,)|
- iiodm) =0, XM - XM =o' — ) - P{X™ (-, |a]™) =0} N B,)
:GEZ P(B,) |[PX™(-, |a|™) = 0) = P(X™ =0)|
< ie; A°NB,)+ Y _ P(B,)P(A°) = 2P(A°)
By thzejeﬁnition of A, -
P(A®) = PO<Vi<k, d™(z)=b-1)
— ﬁ Pd™(z) =b—-1) < (1-p).
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To prove Lemma 10 we use following lemma. For u € N, let

K+3
U

Y(u):= Z d(i)(b"+3) (mod b), Y(u):=(Y(w),Y(u+1),...,Y(u+n-—1)).

Lemma 11. For any o € &, there exist 0 < ¢ < b and 0 < u; < b3 — prtl
such that

M
c=¢1+ ZY(ui).
i=1

Now we can see the proof of Lemma 10.

Proof of Lemma 10. Let m_y :=m, m; := m+k+x+i(k+3)for0<i < M

and
Acyul,"qu = { x

First, by the independence of {d®};, we have

o M
> d) =g (a)Et =t
’ o - bmz .

i=m_1+1 1=

Mo mp+1 M ”
P(Ac,ul»'",uM) = P Z d(Z)(:C) =9 H P <d(J)(.’E) = d(])( -67%—11)>
i=_141 j=fo+1 i=1
mo—1
> pM(~+3)+1 ZP Z d(i)(x) =J|p (d(ﬁzo) —c— g/)
s’ i=m_1+1
mg—1
> pM(n+3)+2 ZP Z d® (z) = d | = pM(n+3)+2 — £
¢’ i=m_1+1

Note that £ > 0 does not depend on 0 < ¢ < bor 0 < u; < b3 — petl,
Thus, by Lemma 11, it is sufficient to prove Lemma 10 to see that

{ 2| X™(2) = X™(2) =261+ M Y(w) } D Ao suar (3.6)

for any 0 < ¢ < band 0 < u; < b3 — protl, )
We will see that X(™-1) — X(™) i5 determined only by (x]m: , on
Ac iy, up- Note the assumption of k, o, and m, i.e., k > 2 and

m k+x Kk+2 K+2 Kk+2 k+x

(. 7

M
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Since <Laj);’x+“+2 = 0, we have

l(a)%i<%— for0<i< M

in the same way as (3.5). .
Let 2 € Aquy, - Since (z)™ = w1 /6™ for 0 < i < M and
(z)7M+l = 0, we have

may
(@m, = (zDa™ + (@)
w1 B 11 |
< bmz+1 - bﬁ’bi+1 - W - bﬁi+2 for O S 1< M’
(@ = (DB + @yt € s < 12 —
mra T mum mar+1 = me_H me bﬁml'f'?'

Thus, no carry arises from the addition z + la at m;-th digit, i.e. |{(z)m, +
l(a}m M = ( for 0 <7 < M. Therefore

(z+ia)Zi = (=™ +1a)™)m_, = (=) +{e)Z Da_,
Thus

my;

Xl(ﬁn)<x>_Xl(T7n—1)(x) _ Z d(j)(<,.$+laJ>n’fZ_l)
= Z dP((zm +1adr ).

Since (La])% =1/b™ for 1 <i < M and <Laj)g =0,

m;

Xl(ﬁli)(l') - Xl(fﬁi—l)(l') = Z d(])(u;nj_ l) Y(“z + l) for 1 << M’
J=m;_1+1
i . Mo ] -
Xl(mo)(ﬂi) - Xl(m—l)(@ = Z d(J)(<|_73J>g(il) =5
j=m_1+1

Therefore



Now we have the inclusion relation (3.6) and complete the proof of Lemma 10.
O

Finally, we see Lemma 11.

Proof. (Proof of Lemma 11) We begin with some properties of the function
Y. Let J := (b — 1)b* + b**2 and

Then, we have that for 0 < 7 < b*,

J J
si—sic1 = Y Y([+i) =D Y([i—-1+1i)
i=1 i=1

= Y(@§+J)-Y(@)

= Y (@™ bt 1y gy

£ b3 b3 bl pr+3
K+3 _] ]
_ Ry N _ gy _ _
= ;(d (bn+3) d (b“+3))+b 1+1=0 (modb)

and that

J

J
S = Speo1 = 3 Y05 +4) =Y V(6" —1+1)
i=1 3

i=1

= YO+ J) =Y ()

K+3
= Y (P +67) —dP(E ) =1 (modb)
h=1
Thus, we have s := s_; = -++ = spx_1 (mod d) and s = s+ 1 (mod b).

Then, for 1 <1 < n,

J J
MY —l+4) = > (YO —140),... .Y —l+n—1+1)

i=1 i=1
= (Sb"—lv o va"‘—-H-n—l)
(S, e, 8,8+ 1, Sprg1y .-, Sb"i—l—f—n—l)-
i, e’
{
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Therefore,

—sl-}-ZY F—14+4)=(0,...,0,1, 841 = S, ..., Sor—iyn-1 — ) =: 0.
!

Let 09 := 1. Then, for any o € X, there exist M; > 0 such that ¢ =
Mooo + -+ + My_10,—1 and My + --- + M,_; < n(b— 1). Therefore, since
0, =0,0= Moo+ -+ Mp_10n-1+ Myo, and M1 +---+ M, =n(b—1)
where M,, :=n(b—1) — (M +---+ M,_1). Thus, we have

n J
o = Myl+ }:Ml(—ﬂ + ZY(b"”" —1+1))

= O—SZMll-f-ZMZZY P —141)
Let

¢ = My— SZM[ (mod b)
=1
uJZ1§l’<z My+jJ+i = b -1+

for1<i<J,1<1<mn,and 0 <j < M, Then, since M = (b**2 + (b —
DY )n(b—1) = J > ., M;, we have

M
o=c¢l+ ZY(U’)
i=1

and 0 < w; < b+ J —1 =54t 4 pt2 — 1 < prt3 — prtl, O
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Chapter 4

Nonhomogeneous Markov
Chain and a result for
irrational «

4.1 Result: Main Theorem

In this chapter, we apply the technique of Markov chain from a different
point of view and prove the final result.

We assume that p is a probability measure on ([0, 1), B([0, 1))) such that
{dW} 5 is independent random variable under u with

liminf min u(d9 = s) > 0.

j—ooo 0<s<b

Theorem 5. If b is prime and « is irrational, then the distribution of the
process {X l(m)};’io on ([0,1), u) converges weakly to the distribution of Z/bZ-
valued fair i.1.d. when m tends to oo.

When b = 2 and p is the Lebesgue measure, Theorem 5 reduce to the
conjectured result. We use the condition on b only in Section 4.3 to show
‘strong irreducibility’.

27



4.2 Proof of the Main Theorem

To prove Theorem 5, it is sufficient to verify the convergence of any finite
dimensional distribution, i.e., to verify

f(Xém%...,X,gm))d“_»bnil S fe) (4.1)

[0,1) ec(Z/bT)"+

for any n and complex function f on (Z/bZ)™*!.
We fix n and define (Z/bZ)"-valued functions d¢) and X™ by

d9w) = ([dVW),d(w+a),...,d9(w +na)),
Xm .= (Xém),Xl(m), e ,X,(lm)) = Zd(j) form > 1,
j=1

and X := 0 € (Z/bZ)"*1.

Since {d?)}; is an independent process, {X{™ } = {31 jemdP}m is a
Markov chain. But, since {d\)}; is not independent, we can not easily see
that {X™},, = {2 i<i<m d©},, is a Markov chain. Thus, we introduce a
symbol Z(™ to manage the dependence among {d"};. Define {0,...,2b —
1}"-valued function Z™ = (Z{™ ..., zi™) by

Zl(m) (W) = [0"w=b[b" tw]| +0™Ma —b[b™ al]
= [™w+la)] —b([b" 'w] + (0" Na]).

Then, we have that
ZM(w) = d™(w+la) +b([b" Hw + la)] — [0 w] — (6™ Ha))
= d(m)(w + la),

and d™ = (d™,Z(™). Furthermore, we can say that ZM,Z? .. . is a
backward Markov chain, i.e., ...,Z®,Z® is a Markov chain:

Proposition 6. The process {Z™}} __is a Markov chain.

Proof. By the definition of d¥),

m-—1
> dD(z) = (b ) — b o

j=m’
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for m’ < m.
Thus,

Zl(m/) (w)
= [y + la) JJ —b([b™ ] + [b™ " Na))

= ot 1)) — b5 ] + (57 a)|

= |y (Z,"">(w) +b([B"w] + b e )) —b([p" W] + (6™ a J)J

_ _bm’—le(m)<w> + mz— p =i (d(j)(w) +dv (la))J (4.2)
= | f: i (d<j)(w) + d(j)(la))J (4.3)

where 1 <1 < n.
Let us define ®™™) a random transformation on {0,...,2b —1}" by

& wiz) = {bm"mz+ > bml—j(d(j)(w)ﬂLd(j)(la))J and

m/<j<m

O (w2, z,) = ( Y’”” w; 25, 0™ (w; Zn))

where 2,21,...,2, € {0,...,2b—1}.

Then, we have that Z(™)(w) = &™) (w; Z(™(w)) by (4.2), that w —
®m) (w; ) is o (d™), . .., d™V)-measurable, and that Z(™ is ¢(d™, d™+D . )-
measurable by (4.3). Thus, the independence of d¥) implies the Markov
property. O

In heuristic words, we can say that “{(X() — X(m-1), Z(m))}]L is a

<y m=oo
Markov chain”:

Proposition 7. For any M € N, the (Z/bZ)"*! x {0,...,2b — 1}"-valued

gurs

probability

By =n( 3 (@9,809(@) = ¢ ~ e, @pla) = )

m/'<j<m

where 1 <m' <m < M, e,e € (Z/bZ)" and z,Z' € {0,...,2b—1}".
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Proof. Since ZU) = 9)(Z(™) we have that d¥) = (d0), @M (Z(M)).

Let B, be any o({(X®™) — XU=Y ZU)}. s ..)-measurable set. Since
ZY) is g(dY9),dU+) .. )-measurable, XM) - X (1) = Zj‘im ZY) and B,, are
o(d™ dV )-measurable. Noting that &™) is o(d™),. .., dm=1)-
measurable, we see that the independence of d) implies

p(XA - XM= = o Z0m) = g/ | {XM) — XD = e, Z(™ =2} N B,,)
— u( Z 49 = ¢ — e, Z) — 7 [ {XO) _ X(m-1) = ¢ 70" — 7} Bm)

m/' <j<m

= u( Z (dY), 0)(z)) = & — e, ®™™)(z) = 2/

m'<j<m

} {XOD - XD = &, Z0" = 2} 1 B, )

—u(( T @0z = —e, 6 (@) = 7).

m/<j<m

O

Note that P(imzm(e, ) dose not depend on M.

To give a rough sketch of our proof, let us temporarily assume that ‘the
Markov chain {(X(®) — X(m=1 7zm)\} _ | is strongly irreducible’, i.e.,
for an € > 0 and any N € N, there exists a pair (m,m’) with N <m’ <m
such that :

min P> . (4.4)

ez.e z/ (e,z),(e’,2')

Then, by a standard method of Markov chain, we have that, for any complex
function g on (Z/bZ)"*! x {0,...,2b - 1}",

(PMVg)(e,2) := 3 Bully, (e, 7) — bnﬂ 7 2 9(e7) (M — o).

ez’ ez’

Let w : (Z/bZ)"*! x {0,...,2b— 1} — (Z/bZ)"*! be the projection. Then,
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by Proposition 7,

O = [
[0,1) (Z/6ZY+1 % {0,...,2b—1}"

(f 0 @) dpX*2)
/ IB(M,I)(f o w) d,u(X(M)_x(M_l)’z(M))
(Z/¥Z)" 1 x{0,...,2b— 1}n

D ez(fow)(e 2)
B (2b) bn+1 Z fle) (M —oc0),

hence we have the convergence (4.1).

Unfortunately, the assumption (4.4) is not true. But, f o w dose not
depend on the second variable, and hence ‘strong irreducibility on (Z/bZ)"*’
is enough for our purpose.

Since the ‘state space’ (Z/bZ)"*! is still too big to show ‘strong irre-
ducibility’, we use following formulation.

For e = (60, cs€n), € = (€g,...,6n) € (Z/VZ)™*!, let e - € be the inner
product, i.e..e-e —El o €1€1-

Then, for any complex function f on (Z/bZ)"*!,

fle) = Z F(&)exp <i27r§-€), where

€(Z/bZ)"t1
~ 1 —i2me - €
f(e) = bn+1 Z f(e) exp ——b_ ’
ec(Z/bZ)"+1

by the Plancherel’s Theorem (cf. H. Dym - H. P. McKean(3]).
Since X . 0 is constant 0,

) =S fees (ZEE) 4 fo
ec(Z/vzy»+1\{0}
~ ; m) . g
- Y jee(ZES) L Y e

ee(z/bzyr+1\{0} ec(Z/bz)7+1

Thus, it is sufficient to see (4.1) to see that,

27X (™M) .8
/ exp (32%___e) dp — 0 (4.5)
[0,1) b

for any € € (Z/bZ)"** \ {0}. We fix @ from now on, and see ’strong irre-
ducibility’ of the following Markov chain to show (4.5).
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Lemma 12. For any M €N, the (Z/bZ) x {0,...,2b — 1}*-valued process

{(XM) — Xm=1)) . g ZmNY a1 45 a Markov cham with the transition
probability

P(g’:;’;’ly(z),’z,) — H( Z (dD, ™D (z)) . 8 = 2 — 2, dm™)(z) = z/)
m'<j<m
forz,2 € Z)VZ, z,z' € {0,...,26 — 1}, and 1 <m/ <m < M.
Proof. The same way as that of Proposition 7. a

For 0 < m’ < m and any complex function g on (Z/bZ) x {0, ...,2b—1}",
define a function P(Tf‘>m')g on (Z/bZ) x {0,...,2b—1}" by

(P(m’m/)g)(Z, Z) f Z P((;le;n(Z)I /)g(zl> Z/),

2z

and | - || be the max norm, i.e., ||gflc := max. ,|g(z,2)|.
Then, by Lemma 12,

/ (i27rX(m) . a>
exp| —— d,u’
[0.1) b

_ / 5 dﬂ(xm) 8,21
(Z/6Z)x{0,...,26—1}"

/ pmLp dﬂ((X(M)_x(m_l))'é’z(m))i
(Z/bZ) %10, ..., 2b—1}"
< |P™A,

where h(z,z) := exp(i2rz/b) for (z,2z) € (Z/bZ) x {0,...,2b—1}". Let

Go = {g:(Z/HZ)x{0,....26—1}" = C| ¥, ,9(2) =0}
||P(m’m/)g|ioo

plmm’) =
“ s 9€Go,lgllo0  ||9]loo

Then h € Gp. Similarly as (4.4), we temporarily assume that ‘the Markov
chain {((X(®) — X(Mm=Y).8 Z(")}, _o .1 is strong irreducible’, i.e., for an
e > 0 and any N € N, there exists a pair (m,m’) with N < m’ < m such
that

min, Pladan 2

(4.6)
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Then, we have that |[P™™)||g, < 1 — b(2b)"¢, and hence

o X (M) g
‘/ exp (i———e> du’ < PRl
[0.1) b

< [P gllhllee = 0 (M — o0).

Unfortunately, (4.6) is again not true. But, since h dose not depend on

the second variable, it is enough for our purpose to estimate the operator
norm || P™™)||g defined by

g = {g€go|ZZQ(Z,Z)=OforanyZ€{Oa""%_l}n}’
m,m’ P(m’m,)g oo
[P g = 17 |
9€G,lglio#0  ||g]loo

Clearly h € G and [|P™™)h||o < [|[P™™)|g||Rleo- The following lemma is
to iterate the estimate of || P(™™)||g.

Lemma 13. G is P™™) invariant, i.e., PG C G.
Proof. For any g € G,

> (P™™g)(z,2)

= Z /U< Z (d9), &I (z)) .8 = 2/ — 2, 8™ (z) = z’)g(z’, z')
szlazl m/S]<m
= Z N(@(m,m’)(z) — Z,)g(zl, Z/)

= Z p(®™)(z) = 2') Zg(z’, z') =0.

d

The following lemma claims that ‘strong irreducibility on Z/bZ’ is enough
for our purpose.

Lemma 14. Let m’ < m and ¢ > 0. Assume that, for any z € Z/bZ and
z € {0,...,2b— 1}, there exists z'(z,z) € {0,...,2b— 1}" such that
in P > 4.7
z’renZl}}JZ (2,2),(2',2/(2,2)) — € ( )
Then

|P™™))|g < 1 — be.
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Proof. By assumption, P(Z (2.2), (z), 2y €l{z=(2)} = 0. Hence, for g € G,

g am| = [P ae )

= Z(P ) — L c))9(2,2) + €Y g(2, 7
z/

2!,z
= Z(P((zmz;n(; /) el{z/=z,(z,z)})g(z', Z/)‘
< STE, = lg—realigloe = (1 b)llgll
Thus, we have || P7™)g|o < (1 - be)l|glls- O

Assumption of following proposition can be regarded as the ‘strong irre-
ducibility on Z/bZ’ and we show that in Section 4.3.

Proposition 8. Let € > 0. Assume that, for any N € N, there ezists a pair
(m,m') with N < m' < m satisfying the assumption of Lemma 14. Then
PMD|l o — 0 (M — o).
g

Proof. By the assumption, we can take a sequence mj < --- < m} < m; <
mj,, < --- such that all (m;,m}) sam/tisfying assumption of Fernnma 14.

By Lemma 13, we have ||[P(™™)|g < [|[P™™)||g||P™™")|¢ for m >
m’ > m”. Thus, thanks to that ||[P(™™)||g <1 for any m > m/, Lemma 14
implies that

J(M)
[P < [PSmacn g [T P ol Pl
j=1
J(M)
< T IPm™ g < (1=be)’™ -0 (M — oo)
where J(M) = max{j | M > m;} and mo :=0. O

4.3 Strong irreducibility

In this section, we show the assumption (4.7) of Proposition 8 for € =
(€0,...,€n) € (Z/VZ)"! \ {0}. We can assume €, # 0 without loss of
generality.
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Proof. Let lp :=min{0 <! <n|e #0}, € :=(€,...,€,) such that

/e\,.___ a+lo 1fl§n-l0
10 otherwise,

and p'(-) = pu(- — lpcr). Then, €, # 0 and
92X (m) . T
[ () - [ ()
[0,1) [0.1) 1=0

0 X(m) .
[0,1) b

() = g > | #AD =5 +dD (L) +1,d9) =0) i dTD(loa) # 0
= 1 w(d9 = 54 dD(lha),d9D) # 0) if UV (lya) = 0,

Since

we have that lim inf min z/(d¥) = s) > (liminf min w(d¥ = 3))2 >0. 0O
j—oo 1<s<bh j—oo 1<s<b
Thus, now we show the assumption of Proposition 4.7 for € = (&, ..., €,)
such that ey Z 0. To show that, we use the following proposition claims that
any irrational number « has infinite number of ‘irregular’ digits and is shown
in Section 4.4.

Proposition 9. For any irrational number o and n € N, there exist infinitely
many m satisfying the following condition:

CoONDITION A. For any 1 <1 < n, there ezist j; and j] withm —3n —1 <
Ji, j; < m such that

0<dW(la) and d9(la) <b-—1. (4.8)
We begin with to show that the chain can visit a neighborhood.

Lemma 15. Let m satisfy Condition A. Then, for any z € {0,...,2b—1}",
there exist m' € N withm —3n—-b—-1<m' <m, z €{0,...,2b—1}" and
y € Z/bZ such that

. m . . ; 3n+b+1
min P((Z:n;;n(z), ) 2 (_inf  min pdY =s)) :
2€Z /6L, 2’ =24y, z+y+1 WIS j>m—3n—b0<s<b
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Proof. Let m' <m —3n—1 and

= {d™) =0,d9) =b—1form' <j<m}
{d™) =1,dP = 0 for m’ < j < m}.

s

Then d*) and ®™*) are non random either on A or on A where m’ < k < m.
Let

Yo < jem (@9 (@), @) (; 2)) - € zZ =0 (5 2),
Y m<jem( @D (w), @™ (w;2)) -8, 2 =) (w;z)

e«
i

where @ € A and w € A. Then,

3 c{ Y @em).e=7,6m0) -7
m/<j<m
A C { 3 (d(j),(b(myj)(z)).’éEg,(I)(m,m’)(z):Z/}'
m/<j<m
Since
> (@D, 8™(2)) -8 =7,0™™)(2) =7) < PUS o
m/<j<m
#< S (@9, 0m)(z)) 5= g,qﬂm’"")(z):g) < PO e
m'<j<m

and min{u(A), u(A)} > (inf;>m mingcscp u(d9 = )™ it is sufficient to
show that there exists m’ with m —3n —b—1 < m’ < m such that Z’ = 2/
andy =y + 1.

Firstly, we show that Z' = 2’ for any m’ with m’ < m — 3n — 1. By the
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definition of ¢§m’m/) ,

" @:2)

™) (w; 2)

m/<j<m
b+ 1™ T Y I dY(la) |
m/'<j<m
d™(la) + [b" "z + 1= Y e a0 (la) ),
m/<j<m
b7+ > (D (w) + dD(la)))
m/<j<m
b1+ Y b dY(la))
m/<j<m
d™(la) + 14 ™"z 4+ Y 5 d9(la)].
m/<j<m

By Proposition 9, we can verify, for k < m — 3n — 1,

Therefore,

bk——m+l < Z bk—jd(j)(la) <1- 2bk—m+1_

k<j<m
[P+ 1= b 4 Y 6 dD(la)) = 1, (4.9)
k<j<m
[+ Y BdY ()] = 0. (4.10)
k<j<m

Thus, we have that

(m’m'>(w; 2)=d™(la)+1= l(m’m/) (w; 2),

and hence 7' = 7.
Secondly, we show that § = y + 1 for suitably chosen m'. For any m’ and
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k with m’ <k <m —3n— 1, we have
M @iz) = [ b— b S 6 d0(la))
k<j<m

= dP(a) +b—1+ [Pz 1= ST B0 (la)

k<j<m

Mwiz) = et Y 099 (la))

k<j<m

= d¥(la) + [Pz + D 6dY(la)).

k<j<m
Again, by (4.9) and (4.10), we have that
o™ (@;2) = d¥(la) + b= d¥(la) = 6™ (w; 2)
and hence

T-y = Y (([d9@),2")(@;2)) - (d9(w), 2™)(w;2)))

m—3n—1<j<m

+ ) (d9@) - dD(w)e

m/<j<m—3n—1

- Y (@@.0"@2) - (@), 2™ (2)

m—3n—-1<j<m
—eo+ (m—3n—2—m')(b—1)&.

o)

Therefore, since Z/bZ is a simple group and ey # 0, we can take m’' with
m—-3n—-b—1<m'<m-3n—landy=y+1. O

At last, we can show that the chain can visit everywhere.

Bntb+1 p—1 1 ,
b ) for e := 3 lirrbinf 11221)#((1(]) = 3s). The

assumption in Proposition 8 holds, i.e., for any N € N, there exists a pair
(m,m) with N < m/ < m satisfying (4.7).

Lemma 16. Let € := (

Proof. We can take N as inf min u(d¥) = s) > ¢ with out any loss of
N<j1<s<b

generality.
By Proposition 9, we can take a monotone decreasing sequence md . om® >
N such that mU*tY <« m@ —3n — b —1 and each m\¥ satisfies Condition A.
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Let z € {0,...,2b— 1}™.
Then, by Lemma 15, there exist m/™, 2Z® and @ with m® < m’® <
m® such that

. . O /@
min min (m m /(1)) > gdntb+l
ZGZ/bZ z’Ez+y’(1),z+y’(1)+1 (z,z),(z sZ )

Since the cardinal number of the state space is b(2b)", there exist y*) and
z such that

(m' @) @) 1
P(y/(l),z/(l)),(y(l),z(z)) 2 b(2b)n'

Noting that, by the definition, P((Q’z’ﬁ:; (w ) 1S shift invariant on Z/bZ,
ie., P((Qﬁ:i:;’(w,,w,) = P((ff;),w),(w,w’w,) where k > kK, w,w',v € Z/bZ and
w,w’ € {0,...,2b~ 1}", we see that, for any z € Z/bZ,

(mD m@) (mD mD) (m/®) m(2))
(z,z),(z+y(1)7z(2)) - (z’z)’(z-f-y’(l),z/(l)) (z-{-y’(l),z/(l)),(z-}-y(l),2(2))
(m® m/() (M) (@) gintotl

(), (D 20y L) 2100 (1) @) = b(2b)™

P(m(l) ;m2)) g3n+b+1

Since we can verify (o), (4 y D 412) = BEHT

in the same way,

X ) (m®),;m@) gintb+l
min min P Loy D ST
ZGZ/bZ z’Ez+y(1),z+y(1)+1 (z’z)’(z 2 ) b(2b)n

Hence, inductively, we have that there exist z®, ...,z® and y®, ... y®
such that

min min (m) mU+1) -&i@

2€L/BL 2! =24y(D)  z4+y(D 41 (z,200),(2/,zG+1)) & b(2b)n
where 7 = 1,...,b — 1. Again, using the shift invariance of plek) .

(w,w),(w’ ,w')?

have that

P(m(l),m(s)) S <83n+b+1 >2
(2,2),(z/,2(3)) = b(zb)n :

Repeat that to m® and let m := m®, m/ ;== m® 20 .= 2 4O ... 4

min
z’:z+y(1)+y(2> ,z+y<1)+y(2)+1’z+y(1) +y(2) +2

y(b_l) and Z,(Z,Z) = z(b). Then, we have
min P = ] (m),m®) (53—n+b+l)b—1 -
2! (Z,Z)»(Z”z/(Z,z)) - z/=z(b)’1~1}:gl(b)+b_1 (2,2)7(2/’z(b)) - b(Zb)n = €.
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4.4 Proof of the Key Proposition

We use reduction to absurdity, i.e., we see that « is a rational number when
only finite number of m satisfies (4.8). Let

<] < i _ —1< .
N = max{m‘foranyl_l__n,thereemstm 3n _]l<jl<m}'

such that d¥)(la) # dU)(la)
Then, following lemma implies Proposition 9:
Lemma 17. If N is finite, o is a rational number.

We prepare two lemmas to see Lemma 17.

Lemma 18. The finite sequence d™ 2"V (a),...,d™ Y (a) is periodic and
the period is at most n, when there exists 1 < [ < n such that d™ 3V (la) =
R d(m‘l)(la).

The proof is the calculation by writing of dividing la by [ .

Proof. Let r; be the reminder of j-th decimal place, i.e.,

a; = max{0<a<b|la<|bla]},

ry = |bla] —lay,

a; = max{0<a<b|la<brj_;+ d(j)(la)} for 7 > 1,
r; = bri+d9(la) —la; for j > 1.

Then r; is determined by 7;_; and d¥(la). Since d™ 3 V(la) = ... =
d™1(la) and 0 < r; < I, r; must be periodic at m—3n+{—2 < j < m and
the period bounded by [ hence qa; is periodic at m —3n+{—1 < j <m and
the period bounded by {. By the definition of a;, we have a; = d¥(a). O

Next lemma is about the least periods of a sequence and a its subsequence.

Lemma 19. Let {aj}§;é be a sequence and its least period be k (2k < p).
The least period of a subsequence {aj}'j:f;l_l (0<qg<qg+p <p)isk when
p > 2k.

Proof. Let k' be least period of {aj}?:f;’_l. Then k' < k. Forany 1 <1 <
p — k’, there exist j € Z and 0 < r < k such that | — ¢ = kj + r. Since
r+k <2k <p,

a; = Qgtkj+r = Qgtr = Qgir+k! = Qgikj4+r+k! = A4k’-

hence k' is a period of {a;}_; and k' = k. O
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Now, we proof Lemma 17.

Proof. For any m > N, there exists 1 < [,, < n such that
dm=r=(a) = - = d™V(0).

Let m := N + 1. Then, by Lemma 18, {d¥)(a) )L N_on is periodic. Let the
least period be ky. Similarly, {d9 ()} %y, is periodic. Let the least
period be k3. Since kq,ky < n, Lemma 19 implies that both k; and k; are

same as the least period of {d¥ (@)} y_5, 1 hence ky = ky. Thus, by the
induction, {d¥)(a)}32 x_,, is periodic and « is a rational number. O
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Chapter 5

Appendix

In this chapter we see some properties of nonhomogeneous Markov Chain.

5.1 Definition

Let ¥ be at most countable set and T = Z N (a,b). We say that a ¥-valued
process {X ™}, .1 on a probability space (2, F,P) is a Markov Chain if it
satisfies the Markov property, i.e.,

PX™ =0 | XP keT,k<m—1)=PX™ =o | X)),

For m < m/, let Pmm) — (pfr”’;',ml))a,a,ez be as p™m™) .= P(X™) = ¢

0,0’/
X0 = g). We call P(™™) the transition matriz from time m to time m/.
Denote P(™) .= plmm+1),

Proposition 10. Let S be a set, {Y(m)} be an S-valued independent pro-
cess, and f™ : S x ¥ — X. Then the process {X™} defined by XV =
fOY D g4) and Xm+D) = fmth)(y(m+l) x (M) 4s o Markov chain.

Proof.

P(XD =™ XM = zm)
= P(f(l)(Y(l),ao) =z .. f(m)(y(m),x(m—l)) = x(m))
P(fO(YD g) = 20) - . P(F™ (Y™ gm=D) = z(m)
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Proposition 11. Let {X™},,cr be a Markov Chain with transition proba-
bility P. The Markov property valid for reversed time, i.e.,

P(X™ = | X, ke T,k >m+1) = P(X(™ = g | X™*D),
Proof. Let us see probability of a cylinder set. For m < m/,

P(x(m) — O.(m), . ,X(m’) — O_(m’)) — P(X(m) — o_(m))p(m) (m’—1)

om) gm+1) * " Pom/—1) 5(m)

Therefore

P(X™ = g . Xm) =gty P(X = g™ P my men
P(Xm+D) = g(mtD) X ) = g(m)) P(X (M) = g(m) '

Thus, by taking m’ = m + 1,
P(XW) = gm | X00) — gm)) (XM = glm) X (m+D) — g(mtD))

P(X(m+D) = glm+l) X)) = g(m)) P(X (m+)) = g(m+1))

and this is the Markov property for reversed time. a

For m < m/, let Pm'm) — (ﬁ((;,"l;’m))a/,aez be as ﬁ((:,'?;m) =P(X™ = ¢ '
X™) = o). We called P™™ as reversed-transition matriz from time m’ to
time m. P(™) .= pm'm'=1)

By the definitions, we have that

pg”;)/]p(X(m) — 0-) — P(X(m) — O’,X(m+1) _ 0_/) _ ﬁgT:l)P(X(m+l) _ 0,/).

5.2 Convergence to equilibrium

Let T := N. In this section, we show a convergence to equilibrium of non
time homogeneous Markov Chain.

Theorem 12. Let e > 0 and 7 be a probability measure on . If ﬂap((:;), =

7o for any m and there ezists infinity many pairs (m,m’) such that min, ,/cx pg;’,m/) >
. (m,m)
g, then limy o p,, / ° = o for any m and o.
By the assumption, mp™™) = 7p™ ...pM"=D = 7z je. 7 is the eigen-

vector of the eigenvalue 1 of p™™). And by ming /s p((:";fn ) > ¢, Perron-
Frobenius Theorem implies the uniqueness of 7.
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Proposition 13. min, ,/cx p( U’, ™) >eand ), Wapf:';fn ) = = m, tmplies that
12T™) fllmax < (1= &)|| fllmax for any complex valued function f on T where

| fllmax := max, | fo — (7, f)[-

Proof. Noting that (7, p™™) f) = (mp™™) f) = (7, f) and 5__ pf,"f,,m =1,
We have

p™™ fllmax = max | (P f), = (1, p™ 7 )
= max|(P™™ ), = (m, )|
= max!ZpM/ (for = (m, )]

= maxl Z pgnf,/m 577-0’)(.)‘.0’ - (Waf))|

< mgxz O — emg) for = (m, £)]
o
< (I —e)max|for — (7, f)].
O
Now, we see the proof of Theorem 12.
(mj,m7)

Proof. Let m < m; < mj < mgy < --- bethe sequence such that min, y/cx p
¢ and J be as J(m) := max{j | m} < m}.

It is easy to see that ||p™™) f|lmax < ||f|lmax for any m < m’. Therefore
we have

o0’ =

D) fllmae = [P £ o
< 1P ™) £l mas
= ™) £l
< (1= )P ™) £l mae
< (1 =)™ P ™) £
< (1_5)J(ml)||f”max

When m’ — oo, we have ||p(m’m/)f||max — 0 since J(m') — oo. Let f = xo

then we have max, |pa";,m = Tgr| — 0. g
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