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Preface

This thesis is written on the subject “Dominating Cycles in Graphs” to be

submitted for the degree in Doctor at Kobe University.

The basis of thesis is formed by papers written during these three years.

Some of the paper have been accepted for publication in graph theory-

oriented journals; for the others I hope this will happen in the future. The

papers that together underlie this thesis are listed at the end of this preface.

After two introductory chapters, the reader will find five chapters. Gen-

eral terminology can be found in Chapter 2. The order chapters can be read

independently from one another.

Roughly speaking, this thesis consists of three parts. In the first part

(Chapters 3 and 4), I will present my work about the edge-dominating cycle

in graphs with large connectivity. In this work, we show there is an analogy

between hamiltonian cycles and edge-dominating cycles on a degree condition

for graphs with large connectivity.

In the second part (Chapters 5 and 6), I will present my work about the

vertex-dominating cycle in tough graphs and bipartite graphs. Part of this

work is joint work with A. Saito. We make a comparative study of each

degree condition for the existence of hamiltonian cycles, edge-dominating

cycles and vertex-dominating cycles.

In the third part (Chapter 7), I will present my work about a cycle such

that every vertex is within the prescribed distance from the cycle. This work

i



is joint work with A. Saito. We give a generalization of several theroems

with the sufficient condition involving connectivity and stable number, called

Chvátal-Erdős condition.
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Chapter 1

Introduction

A hamiltonian cycle is a cycle passing through every vertex. We say that

a graph G is hamiltonian if G has a hamiltonian cycle. In contrast with

Eulerian cycle, the question whether a given graph is hamiltonian seems to

be much harder to answer. Up to now, no easily verifiable necessary and

sufficient condition is known. This fact gave rise to a number of sufficient

conditions. In particular, the following two sufficient conditions are well-

known. One is concerned with the minimum degree sum of two nonadjacent

vertices, and the other is concerned with the stability number and the con-

nectivity of a graph.

Theorem 1.1 (Ore [16]) Let G be a graph on n ≥ 3 vertices. If the mini-

mum degree sum of nonadjacent vertices is at least n, then G is hamiltonian.

Theorem 1.2 (Chvátal&Erdős [7]) Let k ≥ 2 be a positive integer, and

let G be a k-connected graph. If the stability number of G is at most k, then

G is hamiltonian.

In recent years, the study of dominating cycles has been in full flood. A

dominating cycle is defined as a cycle C such that every edge is incident with

some vertex of C. However, in some papers, a cycle C is also called a domi-
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nating cycle if every vertex is adjacent to some vertex of C. In this thesis, we

call the former an edge-dominating cycle and the latter a vertex-dominating

cycle. Each of dominating cycles is a generalization of hamiltonian cycles.

There may be sufficient conditions for a graph to have a dominating cy-

cle which correspond to that for hamiltonicity. In this thesis, I will discuss

sufficient conditions for each of dominating cycles.

In Chapter 3, we study a degree condition for a connected graph. Bondy

gave a degree sum condition for a connected graph to be hamiltonian. This

result is a common generalization of Ore’s Theorem (1.1) and Chvátal–Erdős

Theorem (1.2).

Theorem 1.3 (Bondy [4]) Let k ≥ 2 be a positive integer, and let G be a

k-connected graph on n vertices. If the minimum degree sum of a stable set

of order k + 1 is greater than (n− 1)(k + 1)/2 then G is hamiltonian.

We extend Theorem 1.3 as follows:

Theorem 1.4 Let G be a k-connected graph (k ≥ 2) on n vertices, and let

S be any stable set of order k + 1. If the maximum degree sum of a subset

of S of order 2 is at least n, then G is hamiltonian.

On the other hand, Bondy and Fan showed the result for a vertex-

dominating cycle.

Theorem 1.5 (Bondy&Fan [5]) Let k ≥ 2 be a positive integer, and let

G be a k-connected graph on n vertices. If the minimum degree sum of a

3-stable set of order k + 1 is at least n− 2k, then G has a vertex-dominating

cycle.

We consider a degree sum condition for a k-connected graph to have an

edge-dominating cycle. The degree sum condition for a 2-connected graph
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was already known. The result can be derived from the following theorem

due to Bondy. A graph is called k-path-connected if any two vertices are

connected by a path of length at least k.

Theorem 1.6 (Bondy [4]) Let k ≥ 2 be a positive integer, and let G be

a k-connected graph on n vertices, and let C be a longest cycle of G. If the

minimum degree sum of a stable set of order k + 1 is at least n + k(k − 1),

then G− C contains no (k − 1)-path-connected subgraph.

The case k = 2 of Theorem 1.6 implies the following:

Theorem 1.7 (Bondy [4]) Let G be a 2-connected graph on n vertices. If

the minimum degree sum of a stable set of order 3 is at least n+2, then any

longest cycle is an edge-dominating cycle.

On the other hand, Fraisse showed the following theorem for the existence

of a Dk-cycle.

Theorem 1.8 (Fraisse [10]) Let G be a k-connected graph on n vertices,

where n ≥ 3. If the minimum degree sum of a stable set of order k + 1 is at

least n + k(k − 1), then G has a Dk-cycle.

Neither Theorem 1.6 nor Theorem 1.8 implies a degree sum condition

for a k-connected graph (k ≥ 3) to have a dominating cycle. We show the

following result for an edge-dominating cycle.

Theorem 1.9 Let G be a k-connected graph (k ≥ 2) on n vertices, and let

S be any stable set of order k + 1. If the maximum degree sum of a subset

of S of order 3 is at least n + 2, then there exists a longest cycle which is an

edge-dominating cycle.

In Chapter 4, we focus the degree sum and connectivity condition. Mo-

tivated by the observation in Chapter 3, we can find there is an analogy
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between hamiltonian cycles and edge-dominating cycles on a degree con-

dition for a graph with large connectivity. Bauer, Broersma, Li and Veld-

man showed the following result concerning the degree sum and connectivity,

which is an extension of Ore’s Theorem (1.1).

Theorem 1.10 (Bauer et al. [2]) Let G be a 2-connected graph on n ver-

tices. If the minimum degree sum of a stable set of order 3 is at least n + κ,

then G is hamiltonian.

Motivated by the observation above, we give an extension of Theorem

1.7.

Theorem 1.11 Let G be a 3-connected graph on n vertices. If the minimum

degree sum of a stable set of order 4 is at least n + κ + 3, then G contains a

longest cycle which is an edge-dominating cycle.

By observing Theorems 1.8, 1.10 and 1.11, we propose the following con-

jecture. which has been verified for k = 2 (Theorem 1.10) and k = 3 (Theo-

rem 1.11).

Conjecture 1.12 Let G be a k-connected graph on n vertices, where n ≥

3. If the minimum degree sum of a stable set of order k + 1 is at least

n + κ + k(k − 2), then G has a longest cycle of which is a Dk−1-cycle.

In Chapter 5, we consider a degree condition for a tough graph. Jung

gave a degree sum condition for a tough graph to be hamiltonian.

Theorem 1.13 (Jung [12]) Let G be a 1-tough graph on n ≥ 11 vertices.

If the minimum degree sum of nonadjacent vertices is at least n− 4, then G

is hamiltonian.

Bauer, Veldman, Morgana and Schmeichel gave a degree sum condition

for edge-dominating cycles.
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Theorem 1.14 (Bauer et al. [3]) Let G be a 1-tough graph on n vertices.

If the minimum degree sum of a stable set of order 3 is at least n, then G

has an edge-dominating cycle.

We show the following result for a vertex-dominating cycle.

Theorem 1.15 Let k ≥ 2 be a positive integer, and let G be a k-connected

graph on n vertices such that the toughness of G is greater than k/(k + 1). If

the minimum degree sum of a 4-stable set of order k+1 is at least n−2k−2,

then G has a vertex-dominating cycle.

In Chapter 6, we shall study a degree condition for a bipartite graph

to have a vertex-dominating cycle. Moon and Moser gave a degree sum

condition for a hamiltonian cycle.

Theorem 1.16 (Moon&Moser [13]) Let G be a balanced bipartite graph

of order 2n with partite sets X and Y (|X | = |Y | = n). If the minimum

degree sum of nonadjacent vertices in different partite sets is at least n + 1,

then G is hamiltonian.

Ash and Jackson gave a minimum degree condition for an edge-dominating

cycle.

Theorem 1.17 (Ash&Jackson [1]) Let G be a 2-connected bipartite graph

with partite sets X and Y , and let max(|X |, |Y |) = n. If the minimum degree

of vertices is at least (n− 1)/3, then there exists a longest cycle which is an

edge-dominating cycle.

We give a minimum degree condition for a bipartite graph to have a

vertex-dominating cycles.
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Theorem 1.18 Let G be a 2-connected bipartite graph with partite sets X

and Y , and let max(|X |, |Y |) = n. If the minimum degree of vertices is at

least (n + 1)/3, then G has a vertex-dominating cycle.

In Chapter 7, we consider a cycle such that every vertex is within the

prescribed distance from the cycle. Let G be a graph and let f be a non-

negative integer-valued function defined on V (G). A cycle C is called an f -

dominating cycle if dG(v, C) ≤ f(v) holds for each v ∈ V (G), where dG(v, C)

denotes the distance between v and C. A set S is called an f -stable set

if dG(u, v) ≥ f(u) + f(v) holds for each pair of distinct vertices u, v in S,

and denote by αf(G) the order of a largest f -stable set in G. We prove the

following theorem.

Theorem 1.19 Let G be a 2-connected graph, and let f be a non-negative

integer-valued function defined on V (G). If αf+1(G) ≤ κ(G), then G has an

f -dominating cycle.

By taking an appropriate function as f , we can deduce a number of known

results (Chvátal–Erdős Theorem 1.2 etc.) from this theorem. Furthermore,

we consider a vertex-dominating cycle passing through prescribed vertices,

and give a further extension as follows. For a set of vertices X ⊂ V (G) and

a positive integer d, we define

α̂G,d(X) by

α̂G,d(X) = max{|S| : S ⊂ X, S is a d-stable in G}.

Note that α̂G,2(X) = α̂2(G[X ]) = α(X), but for d ≥ 3, α̂G,d(X) and α̂d(G[X ])

may take different values.

Corollary 1.20 Let G be a k-connected graph (k ≥ 2), and let X and Y

be disjoint subsets of V (G). If α(X) + α̂G,4(Y ) ≤ k, then G has a cycle C

which contains X and dominates Y .
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Chapter 2

Terminology, notation and

preliminary

2.1 Graphs

A graph G = (V, E) consists of a finite nonempty set V whose elements are

called vertices and a set E of 2-element subsets of V whose elements are

called edges. We denote the vertex set and the edge set of G by V (G) and

E(G) respectively. We denote by |X | the number of the elements of a finite

set X , called the orderorder!of a set of X . The order of a graph is the number

of vertices in the graph, and is written by |G|.

The edge e = {u, v} is said to join the vertices u and v. If e = {u, v} is

an edge of graph G, u and v are called adjacent, while u and e are incident,

as are v and e. It is convenient to henceforth denote an edge by uv or vu

rather than by {u, v}.

A graph is complete if every two of its vertices are adjacent. We denote

a complete graph of order n by Kn. A graph is bipartite if its vertex set

can be partitioned into subsets X and Y that each edge joins a vertex of

X and a vertex of Y . We denote a bipartite graph G with partition (X, Y )
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by G = (X ∪ Y, E). A graph G = (X ∪ Y, E) is balanced if |X | = |Y |

and complete if E(G) = {uv : u ∈ X, v ∈ Y } A complete bipartite graph

G = (X ∪ Y, E) in which |X | = n and |Y | = m is denoted by Kn,m.

2.2 Subgraph and operations on graphs

A graph H is a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G). Par-

ticularly if V (H) = V (G) then H is called a spanning subgraph of G. For

X ⊂ V (G), a graph G[X ] is an induced subgraph by X if V (G[X ]) = X and

E(G[X ]) = {uv ∈ E(G) : u, v ∈ X}.

Let G and H be two graphs. The union of G and H , denoted by G ∪H ,

is the graph with the vertex set V (G)∪V (H) and the edge set E(G)∪E(H).

If V (G) ∩ V (H) = ∅, then the join of G and H , denoted by G + H , is the

graph obtained from G∪H by joining each vertex in V (G) to each vertex in

V (H), notation G + H .

If X ⊂ V (G), we denote by G − X a graph induced by V (G) − X . If

X ⊂ E(G), we denote G′ = (V, E ∪ X) and G′′ = (V, E − X) by G + X

and G − X respectively. For v ∈ V (G) and e ∈ E(G), we denote G − {v}

and G−{e} simply by G− v and G− e respectively. Furthermore, if H is a

subgraph of a graph G, the subgraph G−V (H) is denoted simply by G−H .

2.3 Neighborhoods, degrees, stable sets

The neighborhood NG(x) of a vertex x in a graph G is the set of all vertices

adjacent to x in G. For X ⊂ V (G), NG(X) denote the set of vertices in

G−X which are adjacent to some vertex in X . Furthermore, for a subgraph

H of G, x ⊂ V (G) and X ⊂ V (G)− V (H), we sometimes write NH(x) and

NH(X) instead of NG(x) ∩ V (H) and NG(X) ∩ V (H), respectively.

The degree of a vertex x, denoted by dG(x), is the cardinality of the
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neighborhood of x. Similarly, we define the degree of a set of vertices X as

dG(X) = |NG(X)|, and the degree of a subgraph H as dG(H) = |NG(V (H))|.

A vertex of degree 1 is called an endvertex. The minimum degree of G is

the minimum degree among the vertices of G and is denoted by δ(G). The

maximum degree is defined similarly and is denoted by ∆(G).

We call X ⊆ V (G) a stable set in G if any two vertices x, y ∈ X are

not adjacent in G. A stable set is also called an independent set. The stable

number of G is defined to be the cardinality of a maximum stable set in G,

denoted by α(G).

For a graph G, let σk(G) be the minimum degree sum of a stable set of k

vertices:

σk(G) =















min{
∑

x∈X

dG(x) : X is a stable set of G of order k} if α(G) ≥ k

+∞ if α(G) < k.

If no ambiguity can arise, we omit the index G, hence we denote N(x),

d(x), etc. We often simply write δ, α and σk instead of δ(G), α(G) and

σk(G), respectively.

For S ⊂ V (G) with S 6= ∅, let ∆k(S) denote the maximum degree sum

of a subset of S of order k:

∆k(S) = max{
∑

x∈X

dG(x) : X is a subset of S of order k}

2.4 Walks, paths and cycles

A sequence of vertices W = x0x1 . . . xl is called a walk of G if xi ∈ V (G),

xl ∈ V (G) and xixi+1 ∈ E(G) for 0 ≤ i ≤ l − 1. Let W = x0x1 . . . xl be a

walk in a graph G. Then l is called the length of W and denoted by l(W ).

A walk W is said to join x0 and xl. The vertices x0 and xl are called the
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starting vertex and the terminal vertex of W , respectively. For i, j with

0 ≤ i ≤ j ≤ l, we denote the subwalk xixi+1 . . . xj by xi
−→
Wxj and its reverse

xjxj−1 . . . xi by xj
←−
Wxi. For X , Y ⊂ V (G), if x0 ∈ X and xl ∈ Y , then W

is said to be a walk from X to Y . If (W − {x0, xl}) ∩ X = ∅, we say that

W is internally disjoint from X . For x, y ∈ V (G), a walk from {x} to {y} is

called an x-y walk. Let P = x0x1 . . . xk and Q = y0y1 . . . yl be walks in G. If

xk = y0, the walk x0x1 . . . xky1y2 . . . yl is denoted by x0PxkQyl. If P and Q

have no common vertices, P and Q are called disjoint.

A walk is called a path if its vertices are distinct. If x, y ∈ V (G), then we

denote by xPy a path from x to y. For X, Y ⊂ V (G), a path xPy is called

an X-Y path if V (P ) ∩ X = {x} and V (P ) ∩ Y = {y}. We abbreviate an

{x}-Y path by an x-Y path. For a subgraph H of G, a path xPy is called

an H-path if V (xPy) ∩ V (H) = {x, y} and E(H) ∩ E(P ) = ∅.

A path is called a cycle if the endvertices are the same. Let C be a cycle

of G and u, v ∈ V (C). We denote C with a given orientation by
−→
C . We

denote by u
−→
C v a path from u to v on

−→
C . The reverse sequence of u

−→
C v is

denoted by v
←−
C u. For u ∈ V (C), we denote the h-th successor and the h-th

predecessor of u on
−→
C by u+h and u−h respectively. We abbreviate u+1 and

u−1 by u+ and u− respectively. For a cycle
−→
C and X ⊂ V (C), we define

X+ = {x+ : x ∈ X} and X− = {x− : x ∈ X}.

2.5 Connectivity and toughness

A graph G is connected if any two vertices of G are joined by a path. A

maximal connected subgraph is called a component of G. We denote the

number of components of G by ω(G). S ⊂ V (G) is a cutset in G if G is

connected and G−S is not connected. The cardinality of a minimum cutset

in G is called the connectivity of G, denoted by κ(G). A graph G is called

k-connected if k ≤ κ(G).
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A connected graph G is defined to be t-tough if |S| ≥ t·ω(G−S) for every

cutset S of V (G). The toughness of G, denoted by t(G), is the maximum

value of t for which G is t-tough (taking t(Kn) =∞ for all n ≥ 1).

2.6 Distance and d-stable

For a graph G and x, y ∈ V (G), the distance between vertices x and y,

denoted by dG(x, y), is the length of a shortest path in G joining them. For

a non-empty set of vertices S of G, we define the distance between x and S

by dG(x, S) = min{dG(x, s) : s ∈ S}. If H is a subgraph of G, we often write

dG(x, H) instead of dG(x, V (H)).

A set S of vertices in a graph G is said to be d-stable if the distance

between each pair of distinct vertices in S is at least d. We define α̂k(G) by

α̂k(G) = max
{

|S| : S is a k-stable set
}

. Note that a 2-stable set is a stable

set and α̂2(G) = α(G).

2.7 Hamiltonian and dominating cycles

A cycle containing all vertices of the graph is called a hamiltonian cycle in a

graph. We say that a graph G is hamiltonian if G has a hamiltonian cycle.

An edge-dominating cycle is defined as a cycle such that every edge in

G is incident with a vertex in C, that is, V (G − C) is a stable set. A cycle

C of a graph G is said to be a Dλ-cycle if |H | < λ for any component H

of G− C. Note that a D1-cycle is a hamiltonian cycle and a D2-cycle is an

edge-dominating cycle.

Let S and T be subsets of V (G). Then S is said to dominate T if every

vertex in T either belongs to S or has a neighbor in S. If S dominates

V (G), then S is called a dominating set. A cycle C is said to be a vertex-

dominating cycle if every vertex in G is adjacent to a vertex in C, that is,
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V (C) is a dominating set in G. A cycle C in a graph G is said to be a dλ-cycle

if dG(x, C) < λ for each x ∈ V (G). Note that a d1-cycle is a hamiltonian

cycle and a d2-cycle is a vertex-dominating cycle.
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Chapter 3

Edge-dominating cycles in

connected graphs

3.1 Introduction

The following is a classical result due to Dirac in hamiltonian graph theory.

Theorem 3.1 (Dirac [8]) Let G be a graph of order n ≥ 3. If δ ≥ n/2,

then G is hamiltonian.

In 1960, Ore introduced a degree sum condition for a graph to be hamil-

tonian.

Theorem 3.2 (Ore [16]) Let G be a graph of order n ≥ 3. If σ2 ≥ n then

G is hamiltonian.

For several sufficient conditions for hamiltonicity, it is observed that

weaker conditions guarantee the existence of a hamiltonian cycle for graphs

with large connectivity. In 1980, Bondy gave a degree sum condition for a

connected graph.
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Theorem 3.3 (Bondy [4]) Let k ≥ 2 be a positive integer, and let G be

a k-connected graph on n vertices. If σk+1 > (k + 1)(n − 1)/2, then G is

hamiltonian.

In Theorems 3.1–3.3, the degree sum conditions are sharp and cannot

be relaxed. We consider the graph G1 satisfying kK1 + (k + 1)K1 ⊂ G1 ⊂

Kk+(k+1)K1. Then G1 is a k-connected graph with δ(G1) = (|V (G1)|−1)/2

and σk+1(G1) = (k + 1)(|V (G1)| − 1)/2, but G1 is not hamiltonian.

For S ⊂ V (G) with S 6= ∅, let ∆k(S) denote the maximum degree sum

of a subset of S of order k:

∆k(S) = max{
∑

x∈X

dG(x) : X ⊂ S, |X | = k}.

The first purpose of this paper is to show that Theorem 3.3 admits the

following extension.

Theorem 3.4 Let k ≥ 2 be a positive integer, and let G be a k-connected

graph on n vertices. If ∆2(S) ≥ n for any stable set S of order k + 1, then

G is hamiltonian.

Since ∆2(S)
2
≥ ∆k+1(S)

k+1
for S ⊂ V (G) with |S| = k+1, it is easy to see that

Theorem 3.4 implies Theorem 3.3. On the other hand, Theorem 3.3 does not

imply Theorem 3.4. Let G2 = Kk + [(k − 1)K1 ∪ {K1 + (Km ∪Kn−2k−m)}],

where k ≥ 2 and n ≥ 2k + 4. Then G2 is a k-connected hamiltonian graph

with ∆2(S) = n for any stable set S of order k + 1, but σk+1(G2) ≤ (k +

1)(n− 1)/2.

Since an edge-dominating cycle is a generalization of a hamiltonian cycle,

there may be sufficient conditions for a graph to have an edge-dominating

cycle, which correspond to known sufficient conditions for hamiltonicity.

In 1971, Nash-Williams gave a minimum degree condition for an edge-

dominating cycle.
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Theorem 3.5 (Nash-Williams [14]) Let G be a 2-connected graph on n

vertices. If δ ≥ (n + 2)/3, then any longest cycle of G is an edge-dominating

cycle.

The second purpose of this paper is to show that Theorem 3.5 also admits

a similar relaxation under an additional assumption on connectivity. The

degree sum condition for a 2-connected graph is already known. The result

can be derived from the following theorem due to Bondy!%A graph is called

k-path-connected if any two vertices are connected by a path of length at

least k.

Theorem 3.6 (Bondy [4]) Let k ≥ 2 be a positive integer, and let G be

a k-connected graph on n vertices, and let C be a longest cycle of G. If

σk+1 ≥ n+k(k−1), then G−C contains no (k−1)-path-connected subgraph.

The case k = 2 of Theorem 3.6 implies the following (a generalization of

Theorem 3.5):

Theorem 3.7 (Bondy [4]) Let G be a 2-connected graph on n vertices. If

σ3 ≥ n + 2, then any longest cycle is an edge-dominating cycle.

On the other hand, Fraisse showed the following theorem for the existence

of a Dλ-cycle.

Theorem 3.8 (Fraisse [10]) Let k ≥ 2 be a positive integer, and let G be

a k-connected graph on n vertices. If σk+1 ≥ n + k(k − 1), then G has a

Dk-cycle.

Unfortunately, neither Theorem 3.6 nor Theorem 4.9 implies a degree

sum condition for a k-connected graph (k ≥ 3) to have an edge-dominating

cycle. So we show the following result.
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Theorem 3.9 Let k ≥ 2 be a positive integer, and let G be a k-connected

graph on n vertices. If ∆3(S) ≥ n + 2 for any stable set S of order k + 1,

then there exists a longest cycle which is an edge-dominating cycle.

Theorem 3.9 is best possible in a sense. Consider the graph G3 = Kk +

(k + 1)K2, where k ≥ 2 and n ≥ 3k. Then G3 is a k-connected graph with

∆3(S) = |V (G3)| + 1 for any stable set S of order k + 1, but any longest

cycle of G3 is not edge-dominating. On the other hand, Theorem 3.9 does

not assert that any longest cycle is an edge-dominating cycle. It remains

unresolved whether any longest cycle is an edge-dominating cycle under the

hypothesis of Theorem 3.9.

3.2 Proof of Theorem 3.4

In each lemma below we assume that G is a nonhamiltonian graph on n

vertices, C a longest cycle in G and H a component of G− V (C). Since the

first lemma is standard in hamiltonian graph theory, we do not prove them

in this paper.

Lemma 3.10 If uPv is a path with |V (P )| > |V (C)|, then uv /∈ E(G) and

dG(u) + dG(v) ≤ n− 1.

By Lemma 3.10, the following lemma is plain.

Lemma 3.11 Let u0 ∈ V (H) and u1, u2 ∈ NC(H)+. The following state-

ments hold:

(i) NC(H)+ ∪ {u0} is a stable set.

(ii) dG(u0) + dG(u1) ≤ n− 1.

(iii) dG(u1) + dG(u2) ≤ n− 1.
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Proof of Theorem 3.4. Suppose that G is a k-connected nonhamilto-

nian graph on n vertices satisfying the hypothesis. Hence there exists a

component H of G − C. Since G is k-connected, we have |NC(H)| ≥ k.

Let {u1, u2, . . . , uk} ⊂ NC(H)+ and u0 ∈ V (H). By Lemma 3.11 (i),

{u0, u1, u2, . . . , uk} is a stable set of order k + 1. By Lemmas 3.11 (ii) and

(iii), we have dG(ui) + dG(uj) ≤ n− 1 for any i, j with 0 ≤ i < j ≤ k. This

contradicts the hypothesis. �

3.3 Proof of Theorem 3.9

Let G be a graph on n vertices such that there exists no longest and edge-

dominating cycle. Choose a cycle C such that

(i) |V (C)| is as large as possible, and

(ii) |E(G− C)| is as small as possible, subject to (i).

We give an orientation to C. Let H0 be a component of G−C with |V (H0)| ≥

2.

Lemma 3.12 dG(u1) + dG(u2) + dG(u3) ≤ n + 1 for u1, u2, u3 ∈ NC(H)+.

Proof. Since C is a longest cycle, we can easily obtain the following claim.

Claim 1 For 1 ≤ i 6= j ≤ 3, the following statements hold:

(1) For any ui ∈ NC(H0)
+, ui /∈ NC(H).

(2) For any ui, uj ∈ NC(H0)
+, there exists no C-path joining ui and uj.

(3) For any ui, uj ∈ NC(H0)
+ and w ∈ ui

−→
C u−

j , if there exists a C-path

joining ui and w, there exists no C-path joining uj and w−.

17



Without loss of generality, we may assume that u1, u2 and u3 appear in

this order along
−→
C . Let xi = u−

i . Note that xi ∈ NC(H0). Let Ci := ui
−→
C xi+1

(indices are taken modulo 3) and x′

i ∈ NH0
(xi).

Claim 2 If v−2 ∈ NCi
(ui+1) and v ∈ NCi

(ui), then NG−C(v−) 6= ∅.

Proof. Suppose that v ∈ NCi
(ui) and v−2 ∈ NCi

(ui+1). Let x′

iPx′

i+1 be a

path in H0. Then C ′ = xi
←−
C ui+1v

−2←−C uiv
−→
C xi+1x

′

i+1Px′

ixi is a cycle. By

(i), xi+1Pxi contains only one vertex of H0, since V (C − C ′) = {v−}. Let

u ∈ NH0
(xi)∩NH0

(xj). Therefore |E(G−C ′)|− |E(G−C)| = |NG−C(v−)|−

|NH0
(u)|. By |V (H)| ≥ 2, we obtain |NH0

(u)| ≥ 1. By (ii), we have |E(G −

C ′)| ≥ |E(G− C)|. Hence |NG−C(v−)| ≥ 1, that is, NG−C(v−) 6= ∅. �

By Claim 2, for each vertex v ∈ NCi
(ui), we define v∗ as folllows: if v−2 ∈

NCi
(ui+1), then v∗ = w for an arbitrary vertex w ∈ NG−C(v−); otherwise

v∗ = v−2. For 1 ≤ i ≤ 3, we define Hi := {v∗ ∈ V (G− C) : v ∈ NCi
(ui)}.

Claim 3 If v1 6= v2, then v∗

1 6= v∗

2.

Proof. Suppose that v1 6= v2 and v∗

1 = v∗

2. Then we know that v∗

1 ∈ V (G−C).

Let v1 ∈ V (Ci) and v2 ∈ V (Cj). If i = j, then, without loss of generality, we

may assume that v1 and v2 appear in this order along
−→
C1, and let xh = x2. If

i 6= j, then, without loss of generality, we may assume that v1 ∈ V (C1) and

v2 ∈ V (C2), and let xh = x3. By (i), v1 and v2 are not consecutive vertices.

Let x′

1Px′

h be a path in H0. Then x1
←−
C uhv

−

2
←−
C v+

1 u1
−→
C v1v

∗

1v2
−→
C xhx

′

hPx′

1x1 is

a cycle longer than C, a contradiction. �

Let NCi
(ui)

∗ := {v∗ : v ∈ NCi
(ui)}. By Claim 3, note that |NCi

(ui)| =

|NCi
(ui)

∗|. Clearly, we have NCi
(ui)

∗ ∪NCi
(ui+1) ∪NCi

(ui+2)
− ⊂ (Ci ∪Hi ∪

{ui+1}). By Claim 1 (3), NCi
(ui)

∗, NCi
(ui+1) and NCi

(ui+2)
− are pairwise

disjoint. By Claim 3, we have |NCi
(ui)

∗| + |NCi
(ui+1)| + |NCi

(ui+2)
−| ≤
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|V (Ci)|+ |V (Hi)|+ 1. Thus, we obtain that

dCi
(ui) + dCi

(ui+1) + dCi
(ui+2) = |NCi

(ui)|+ |NCi
(ui+1)|+ |NCi

(ui+2)|

= |NCi
(ui)

∗|+ |NCi
(ui+1)|+ |NCi

(ui+2)
−|

≤ |V (Ci)|+ |V (Hi)|+ 1.

Therefore the following inequality holds:

dC(u1) + dC(u2) + dC(u3) ≤
3
∑

h=1

(|V (Ch)|+ |V (Hh)|+ 1)

≤ |V (C)|+
3
∑

h=1

|V (Hh)|+ 3. (3.1)

Claim 4 For any 1 ≤ i, j ≤ 3, NHi
(uj) = ∅.

Proof. We consider only the case i = 1 and j = 2. The other cases can be

proved similarly. Suppose that w ∈ V (H1) and v ∈ NC(w). Since u1v
+ ∈

E(G), by Claim 1 (3), we obtain that wu2 /∈ E(G). �

Let i, j be integers satisfying 0 ≤ i ≤ 3, 1 ≤ j ≤ 3. By Claim 1(1),

we have NH0
(uj) = ∅. By Claim 1 (1) and Claim 3, we have Hi ∩ Hj = ∅.

By Claim 1 (2), we have NG−C(ui) ∩ NG−C(uj) = ∅. Since
⋃3

h=0 V (Hh) ⊂

V (G− C), we obtain that

dG−C(u1) + dG−C(u2) + dG−C(u3)

≤ |V (G− C)−
3
⋃

h=0

V (Hh)|

≤ |V (G− C)| −
3
∑

h=0

|V (Hh)|

≤ |V (G− C)| −
3
∑

h=1

|V (Hh)| − 2. (3.2)
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Thus, by the inequality (3.1) and (3.2), we obtain

dG(u1) + dG(u2) + dG(u3) ≤ |V (G)|+ |V (G− C)|+ 1 = n + 1.

�

Lemma 3.13 dG(u0) + dG(u1) + dG(u2) ≤ n + 1 for any u0 ∈ V (H0) and

u1, u2 ∈ NC(H0)
+.

Proof. By using the similar argument as in the proof of Lemma 1, we can

prove this lemma. �

Proof of Theorem 3.9. Suppose that G is a k-connected graph on

n vertices satisfying the hypothesis, and there exists no longest and edge-

dominating cycle. Hence there exists a component H0 of G−C with |V (H0)| ≥

2. Since G is k-connected, we have |NC(H0)| ≥ k. Let {u1, u2, . . . , uk} ⊂

NC(H0)
+ and u0 ∈ V (H0). By Lemma 3.11 (i), {u0, u1, u2, . . . , uk} is a stable

set of order k+1. By Lemmas 3.12 and 3.13, for any h, i, j, 0 ≤ h < i < j ≤ k,

we have dG(uh) + dG(ui) + dG(uj) ≤ n + 1. This contradicts the hypothesis.

�

3.4 Remarks

Remark 1.

In 1987, Bondy and Fan proved that a much weaker degree sum condition

guarantees the existence of a vertex-dominating cycle.
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Theorem 3.14 (Bondy&Fan [5]) Let G be a k-connected graph (k ≥ 2)

on n vertices. If
∑

x∈S

dG(x) ≥ n− 2k for every 3-stable set S of order k + 1,

then G has a vertex-dominating cycle.

Under an additional assumption on connectivity, the relaxation of the

degree condition for a dominating cycle is similar to that for a hamiltonian

cycle but not that for a vertex-dominating cycle.

Remark 2.

In 1983, Veldman studied the relation between the edge degree and the exis-

tence of an edge-dominating cycle. The edge degree dG(e) of the edge e = uv

is defined as the number of neighbours of e, i.e., |N(u) ∪ N(v)| − 2. Two

edges are called remote if they are disjoint and there is no edge joining them.

Veldman proved the following result.

Theorem 3.15 (Veldman [18]) Let k ≥ 2 be a positive integer, and let

G be a k-connected graph on n vertices. If
∑k

i=0 dG(ei) > k(n − k)/2 for

any k + 1 mutually remote edges e0, e1, . . . , ek of G, then G has an edge-

dominating cycle.

Wang and Zhang proved the following fact which was conjectured by

Veldman.

Theorem 3.16 (Wang&Zhang [20]) Let G be a k-connected graph on n

vertices. If
∑k

i=0 dG(ei) > (k + 1)(n − 2)/3 for any k + 1 mutually remote

edges e0, e1, . . . , ek of G, then G has an edge-dominating cycle.

Theorem 3.16 also admits the following extension. For F ⊂ E(G) with

S 6= ∅, let ∆k(F ) denote the maximum value of the edge degree sums of the

subset of S of order k:

∆k(F ) = max{
∑

e∈X

dG(e) : X ⊂ F, |X | = k}.
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Theorem 3.17 Let G be a k-connected graph on n vertices. If ∆3(F ) ≥

n − 1 for every set F of k + 1 mutually remote edges, then G has an edge-

dominating cycle.

Theorem 3.17 can be proved by a similar approach of the proof of Theorem

3.9.
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Chapter 4

Degree sum and connectivity

for edge-dominating cycles

4.1 Introduction

In 1960, Ore gave a degree sum condition for the existence of a hamiltonian

cycle.

Theorem 4.1 (Ore [16]) Let G be a graph of order n ≥ 3. If σ2 ≥ n, then

G is hamiltonian.

In 1989, Bauer, Broersma, Li and Veldman showed the following result

concerning the degree sum and connectivity.

Theorem 4.2 (Bauer et al. [2]) Let G be a 2-connected graph on n ver-

tices. If σ3 ≥ n + κ, then G is hamiltonian.

Theorem 4.2 is a generalization of the following result.

Theorem 4.3 (Haggkvist&Nicoghossian [11]) Let G be a 2-connected

graph on n vertices. If δ ≥ (n + κ)/3, then G is hamiltonian.
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Theorem 4.2 is best possible in a sense. Let 2 ≤ κ and n+κ−1
3
≤ m ≤ n−1

2
.

We consider the graph G1 = Km +mK1∪Kn−2m by joining κ vertices of Km

and each vertex of Kn−2m. Then κ(G1) = κ, σ3(G1) = n + κ − 1 and G1 is

not hamiltonian.

In 1980, Bondy showed the following theorem for an edge-dominating

cycle.

Theorem 4.4 (Bondy [4]) Let G be a 2-connected graph on n vertices. If

σ3 ≥ n + 2, then each longest cycle of G is an edge-dominating cycle.

Motivated by the above observations, we extend Theorem 4.4 just as

Theorem 4.1 is extended to Theorem 4.2. However, the extension of Theorem

4.4 was already established by Sun, Tian and Wei.

Theorem 4.5 (Sun et al. [17]) Let G be a 3-connected graph on n ver-

tices. If σ4 ≥ n + 2κ, then G contains a longest cycle which is an edge-

dominating cycle.

Theorem 4.5 is best possible for κ = 3, but is not best possible for κ ≥ 4

by considering the following graph G2. Let 3 ≤ κ and n+κ−2
4
≤ m ≤ n−2

3
. We

consider the graph G2 = Km +mK2∪Kn−3m by joining κ vertices of Km and

each vertex of Kn−3m. Then κ(G2) = κ, σ4(G2) = n + κ + 2 and any longest

cycle of G2 is not an edge-dominating cycle. So we prove the following:

Theorem 4.6 Let G be a 3-connected graph on n vertices. If σ4 ≥ n+κ+3,

then G contains a longest cycle which is an edge-dominating cycle.

The following corollary can be derived easily.

Corollary 4.7 Let G be a 3-connected graph on n vertices with σ4 ≥ n +

κ + 3. If α ≤ δ, then G is hamiltonian.

Corollary 4.7 is a generalization of the following theorem.
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Theorem 4.8 (Nikogosyan [15]) Let G be a 3-connected graph on n ver-

tices. If δ ≥ max{(n + 2κ)/4, α}, then G is hamiltonian.

Fraisse showed the following theorem for the existence of a Dk-cycle.

Theorem 4.9 (Fraisse [10]) Let G be a k-connected graph on n vertices,

where n ≥ 3. If σk+1(G) ≥ n + k(k − 1), then G contains a Dk-cycle.

In [17], Sun et al. proposed the following question: Replacing the con-

dition σk+1(G) ≥ n + k(k − 1) of Theorem 4.9 by the stronger condition

σk+1(G) ≥ n + (k − 1)κ, can we replace k of the conclusion of Theorem 4.9

by k − 1? However, we propose the following conjecture.

Conjecture 4.10 Let G be a k-connected graph on n vertices, where n ≥ 3.

If σk+1(G) ≥ n + κ + k(k − 2), then G contains a longest cycle of which is a

Dk−1-cycle.

Conjecture 4.10 has been verified for k = 2 (Theorem 4.2) and k = 3

(Theorem 4.6), and, if it is true, is best possible in a sense. Let k ≤ κ and

n+κ−k+1
k+1

≤ m ≤ n−k+1
k

. We consider the graph G3 = Km + mKk−1 ∪Kn−km

by joining κ vertices of Km and each vertex of Kn−km. Then κ(G3) = κ,

σ4(G3) = n + κ + k(k − 2) and any longest cycle of Gk is not a Dk−1-cycle.

4.2 Claims

Let G be a graph on n vertices satisfying the hypothesis of Theorem 4.6.

Assume that there exists no longest and edge-dominating cycle in G. Choose

a cycle C such that

(C1) C is a longest cycle of G, and

(C2) |E(G− C)| is as small as possible, subject to (C1).
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Since C is not an edge-dominating cycle, there exists a component H of

G − C such that u, v ∈ V (H). Let NC(H) = {x1, x2, . . . , xt}. We give an

orientation to C. Let ui = x+
i and T = NC(H)+. Furthermore, let S be any

vertex cut set with |S| = κ, and B1, B2, . . . , Bp the components of G − S,

where p is the number of components of G− S.

By (C1), we obtain the following claim.

Claim 1 (Sun et al. [17] Claim 2)

(1) For any ui ∈ T , ui /∈ NC(H).

(2) For any ui, uj ∈ T , there exists no C-path joining ui and uj.

(3) For any ui, uj ∈ T and w ∈ ui
−→
C xj, if there exists a C-path joining ui

and w, there exists no C-path joining uj and w−.

By Claims 1 (1) and (2), the following facts are plain.

Fact 1 T ∪ {u} is a stable set.

Fact 2
∑

ui∈T dG−C(ui) ≤ n− |C| − |H |.

Furthermore, by (C2), we obtain the following claim.

Claim 2 (Sun et al. [17] Claim 3)

(1) For any ui ∈ T , u+
i /∈ NC(H).

(2) For any ui, uj ∈ T , there exists no C-path joining ui and u+
j .

(3) For any ui, uj ∈ T and w ∈ u+
i

−→
C xj , if there exists a C-path joining ui

and w+, there exists no C-path joining uj and w−.

Claim 3 Let ui, uj, uk ∈ T and X ⊆ (NC(u) ∩ NC(v)) − NC({ui, uj, uk}).

Then dG(ui) + dG(uj) + dG(uk) ≤ n− |X | − |H |+ 3.
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Proof. Without loss of generality, we may assume that ui, uj and uk appear

in the consecutive order along
−→
C . Let C1 = ui

−→
C xj , C2 = uj

−→
C xk and

C3 = uk
−→
C xi. First we show that for h = 1, 2, 3,

dCh
(ui) + dCh

(uj) + dCh
(uk) ≤ |Ch| − |X ∩ Ch|+ 1.

We consider only the case h = 1. The case h = 2, 3 can be proved similarly.

Since X ⊆ (NC(u) ∩ NC(v)) − NC({ui, uj, uk}), we have w1 6∈ NC1
(ui)

−2 ∪

NC1
(uj) ∪ NC1

(uk)
− for any w1 ∈ C1 ∩ X . Thus NC1

(ui)
−2 ∪ NC1

(uj) ∪

NC1
(uk)

− ⊆ C1 − (C1 ∩ X) ∪ {xi}. By Claims 1 (3) and 2 (3), NC1
(ui)

−2,

NC1
(uj) and NC1

(uk)
− are pairwise disjoint. Hence we have dC1

(ui)+dC1
(uj)+

dC1
(uk) ≤ |C1| − |C1 ∩X|+ 1. Thus we obtain

dC(ui) + dC(uj) + dC(uk) ≤
3
∑

h=1

(|Ch| − |X ∩ Ch|+ 1) = |C| − |X |+ 3.

By Fact 2, we have dG(ui) + dG(uj) + dG(uk) ≤ n− |X | − |H |+ 3. �

Claim 4 dC(u) ≥ κ + 1.

Proof. Let ui, uj, uk ∈ T . By Claim 3, we obtain dG(ui)+dG(uj)+dG(uk) ≤

n − |H | + 3 letting X = ∅. By Fact 1 and the degree condition, we have

dG(u) ≥ κ + |H |. From dH(u) = |H | − 1, we have dC(u) ≥ κ + 1. �

Claim 5 |T − S| ≥ 3.

Proof. By Claim 4, we have |NC(H)| ≥ κ+1. This implies |NC(H)+−S|+

|NC(H)− − S| ≥ |NC(H)+| + |NC(H)−| − |S| ≥ 2(κ + 1) − κ = κ + 2 ≥ 5.

Thus either |NC(H)+ − S| ≥ 3 or |NC(H)− − S| ≥ 3 holds. Without loss of

generality, we may assume that |T − S| = |NC(H)+ − S| ≥ 3. �

Let |B1 ∩ T | ≥ |B2 ∩ T | ≥ · · · ≥ |Bp ∩ T |.

Claim 6 T ⊂ B1 ∪ S.
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Proof. First, we show that T ⊂ B1 ∪ B2 ∪ S. By Claim 5, we may assume

that Bh ∩ T 6= ∅ for h = 1, 2, 3. By Claims 1 (1), (2) and 2 (2), we have

dG(yh) ≤ |Bh|+ |S| − |(Bi ∪ S) ∩ (H ∪ T ∪ T+ − {y+
h })|

for yh ∈ Bi ∩ T , h = 1, 2, 3. By Claim 4, |S| + 1 ≤ |T |. Since NG(u) ⊂

T ∪H − {u}, we have dG(u) ≤ |T |+ |H | − 1. Thus we obtain

dG(y1) + dG(y2) + dG(y3)

≤
3
∑

h=1

|Bh|+ 3|S| −
3
∑

h=1

|(Bh ∪ S) ∩ (H ∪ T ∪ T+ − {y+
h })|

≤ n + 2|S| −

p
∑

h=4

|Bh| −
3
∑

h=1

|(Bh ∪ S) ∩ (H ∪ T ∪ T+ − {y+
h })|

≤ n + 2|S| −
(

|H |+ |T |+ |T +| − 3
)

≤ n + κ− dG(u) + 1.

Hence dG(y1) + dG(y2) + dG(y3) + dG(u) ≤ n + κ + 1, a contradiction.

Next, we show that T ⊂ B1 ∪ S. Suppose that Bh ∩ T 6= ∅ for h = 1, 2.

By Claim 5, suppose that y1, y2 ∈ B1 ∩ T and y3 ∈ B2 ∩ T . Without loss of

generality, we may assume that y1, y2 and y3 appear in the consecutive order

along
−→
C . Let C1 = y1

−→
C y−

2 , C2 = y2
−→
C y−

3 , C3 = y3
−→
C y−

1 , Wh = B2 ∩ Ch and

Th = T ∩ Ch. By Claims 1 and 2, we obtain the following statement.

(i) NC1
(y1)

− and NC1
(y2) are disjoint, and NC1

(y1)
− ∪ NC1

(y2) ⊆ (C1 −

(W1 ∪ (T1 − {y1})) ∪ C ′

1, where C ′

1 = {w ∈ W1 : w+ ∈ NC1
(y1)}.

(ii) NC2
(y2)

− and NC2
(y1) are disjoint, and NC2

(y2)
− ∪ NC2

(y1) ⊆ (C2 −

(W2 ∪ (T2 − {y2})) ∪ C ′

2, where C ′

2 = {w ∈ W2 : w+ ∈ NC2
(y2)}.

(iii) NC3
(y1)

+ and NC3
(y2) are disjoint, and NC3

(y1)
+ ∪ NC3

(y2) ⊆ (C3 ∪

{y1} − (W3 ∪ T+
3 )) ∪ C ′

3, where C ′

3 = {w ∈ W3 : w− ∈ NC3
(y1)}.
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By (i)-(iii), the following inequality holds:

dC(y1) + dC(y2) ≤ |C ∪ {y1}| − |B2 ∩ C| − |T1 ∪ T2 ∪ T+
3 − {y1, y2}|

+|B2 ∩ (T1 ∪ T2 ∪ T+
3 )|+

3
∑

h=1

|C ′

h|

≤ |C| − |B2 ∩ C| − |T |+ 3

+|B2 ∩ (T1 ∪ T2 ∪ T+
3 )|+

3
∑

h=1

|C ′

h|.

By Claim 1 (3), we have NC(y3)∩C ′

h = ∅ for h = 1, 2, 3. By the definition of

C ′

h and Claims 1 (2) and 2 (2), we have
⋃3

h=1 C ′

h ⊆ B2 ∩C − (T1 ∪T2 ∪ T3
+).

This implies

dC(y3) ≤ |B2 ∩ C|+ |S ∩ C| − |B2 ∩ (T1 ∪ T2 ∪ T+
3 )| −

3
∑

h=1

|C ′

h|.

Thus we obtain

dC(y1) + dC(y2) + dC(y3) ≤ |C|+ |S ∩ C| − |T |+ 3 ≤ |C|+ κ− |T |+ 3.

By Fact 2, we have

dG(y1) + dG(y2) + dG(y3) ≤ n + κ− |T | − |H |+ 3 ≤ n + κ− (dG(u) + 1) + 3.

Therefore dG(y1) + dG(y2) + dG(y3) + dG(u) ≤ n + κ + 2, a contradiction.

�

Claim 7 V (H) ∩B2 = ∅.

Proof. Suppose that u ∈ V (H)∩B2. By Claim 6, we have NC(u)+ ⊆ B1∪S.

Hence (NC(u)+ ∩ B1)
−

∪ (NC(u)+ ∩ S) ⊆ S. By Claim 4, we have κ + 1 ≤

|NC(u)+| ≤ |S| = κ, a contradiction. �
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4.3 Proof of Theorem 4.6

Suppose that Theorem 4.6 fails to hold, then none of the longest cycles in

G is an edge-dominating cycle. Let C and H be chosen as in Section 2. Let

NC(H) = {x1, x2, . . . , xt}. We give an orientation to C. Let ui = x+
i and

T = NC(H)+.

Let S be any vertex cut set with |S| = κ, and B1, B2, . . . , Bp the com-

ponents of G − S, where p ≥ 2 is the number of components of G − S. By

Claims 5 and 6, we may assume that ui, uj ∈ B1 ∩ T and
⋃p

h=2 Bh ∩ T = ∅.

Let C1 = ui
−→
C xj , C2 = uj

−→
C xi, Wh = B2 ∩ Ch, Th = T ∩ Ch, D1 = {w ∈

W1 : w+ ∈ NC1
(ui)} and D2 = {w ∈ W2 : w+ ∈ NC2

(uj)}. By Claims 1 and

2, we obtain

(i) NC1
(ui)

−, NC1
(uj) are disjoint and NC1

(ui)
− ∪ NC1

(uj) ⊆ C1 − (W1 ∪

T1 − {ui}) ∪D1.

(ii) NC2
(uj)

−, NC2
(ui) are disjoint and NC2

(uj)
− ∪ NC2

(ui) ⊆ C2 − (W2 ∪

T2 − {uj}) ∪D2.

By (i) and (ii), we have dC(ui) + dC(uj) ≤ |C| − |B2 ∩ C| − |T | + 2 +
∑2

h=1 |Dh|. On the other hand, by Fact 2 and ui, uj ∈ B1, we have dG−C(ui)+

dG−C(uj) ≤ n− |C| − |H | − |B2 ∩ (G− C)|. Thus we obtain

dG(ui) + dG(uj) ≤ n− |B2| − |T | − |H |+
2
∑

h=1

|Dh|+ 2

≤ n− |B2| − (dG(u) + 1) +
2
∑

h=1

|Dh|+ 2,

and so

dG(ui) + dG(uj) + dG(u) ≤ n− |B2|+
2
∑

h=1

|Dh|+ 1. (4.1)
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We consider two cases.

Case 1. B2 − (NG(u) ∩NG(v)) 6= ∅.

We divide into three subcases.

Case 1.1. Dh = ∅ for any h = 1, 2.

By the inequality (4.1), we have dG(ui) + dG(uj) + dG(u) ≤ n− |B2|+ 1.

Without loss of generality, we may assume y ∈ B2 − NG(u). By Fact 1 and

y ∈ B2, {ui, uj, u, y} is a stable set. Since dG(y) ≤ |B2| + |S| − 1, we have

dG(ui) + dG(uj) + dG(u) + dG(y) ≤ n + |S| ≤ n + κ, a contradiction. �

Case 1.2. Dh 6= ∅ for any h = 1, 2.

Without loss of generality, we may assume that |D1| ≥ |D2|. For each

vertex x ∈ V (C), we define x∗ as follows: if NG−C(x) 6= ∅ then x∗ = w for

an arbitrary vertex w ∈ NG−C(x); otherwise x∗ = x−. We define D∗

h :=

{x∗ : x ∈ Dh}. Let y2 ∈ D2. By Claim 1 (1), we have y2 /∈ NG(u). Hence

{ui, uj, u, y2} is a stable set.

Claim 8 NC(y2) ⊂ B2 ∪ S − (D1 ∪D∗

1).

We shall show (D1 ∪ D∗

1) ∩ NC(y2) = ∅. Let x1PHx2 be a path in

H . First, we show that D1 ∩ NG(y2) = ∅. If y1 ∈ D1 ∩ NG(y2), then

x1
←−
C y+

2 uj
−→
C y2y1

←−
C uiy

+
1
−→
C x2PHx1 is longer than C, contradicting (C1). Next,

we show that D∗

1∩NG(y2) = ∅. Suppose that y1 ∈ D∗

1∩NG(y2). If y1 ∈ V (G−

C), then the cycle x1
←−
C y+

2 uj
−→
C y2y1

←−
C uiy

+
1

−→
C x2PHx1 is longer than C, a con-

tradiction. If y1 ∈ V (C), then C ′ = x1
←−
C y+

2 uj
−→
C y2y1

←−
C uiy

+2
1
−→
C x2PHx1 is a

cycle with |V (C ′)| = |V (C)|. Since V (C)−V (C ′) = {y+
1 } and NG−C(y+

1 ) = ∅,

we have |E(G − C ′)| < |E(G − C)|. This contradicts (C2). Thus we have

(D1 ∪D∗

1) ∩NC(y2) = ∅. �
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By the definition of D∗

h, we have Dh ∩ D∗

h = ∅ and |Dh| = |D∗

h|. Fur-

thermore, since Dh ⊂ B2, we get D∗

h ⊂ B2 ∪ S. Thus, by Claim 8, we

have

dG(y2) ≤ |B2|+ |S| − (|D1 ∪D∗

1|)

≤ |B2|+ |S| − 2|D1|

≤ |B2|+ |S| −
2
∑

h=1

|Dh|.

Hence, by the inequality (4.1), we obtain dG(ui) + dG(uj) + dG(u) +

dG(y2) ≤ n + |S|+ 1 ≤ n + κ + 1, a contradiction.

Case 1.3. Dh 6= ∅ and D3−h = ∅ for h = 1, 2.

By symmetry, we may assume that D1 6= ∅ and D2 = ∅. We define

D̃1 = {w ∈ V (C −B2) : y ∈ D1, V (w+−→C y) ⊆ B2}.

Note that |D1| = |D̃1|, since (T ∪D+
1 )∩B2 = ∅. Since D̃+

1 ⊆ B2, we have

D̃1 ∩NC(ui)
− = ∅. This implies (D̃1 −NC(uj)) ∩ (NC1

(ui)
− ∪NC1

(uj)) = ∅.

Thus, since NC(uj) ∩ T = ∅, we obtain

dC(ui) + dC(uj) ≤ |C| − |B2| − |T |+ 2 + |D1| − |D̃1 −NC(uj)|+ |D̃1 ∩ T |

= |C| − |B2| − |T |+ 2 + |D̃1 ∩NC(uj)|+ |D̃1 ∩ T |

= |C| − |B2| − |T |+ 2 + |D̃1 ∩ (NC(uj) ∪ T )|.

Let T ′ = {uh ∈ T : NG−C(uh) = ∅, 1 ≤ h ≤ t}. By Claims 1 (1) (2), we

have NG−C(T − T ′)∩ (V (H)∪NG−C(ui) ∪NG−C(uj)) = ∅. Thus, by Fact 2,

we have

dG−C(ui) + dG−C(uj) ≤ n− |C| − |H | − |NG−C(D̃1 ∩ (T − T ′))|.

Let y1, y2 ∈ T − T ′. By Claim 1 (2), NG−C(y1) ∩ NG−C(y2) = ∅. Hence
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we have |NG−C(T − T ′)| ≥ |T − T ′|. Thus we obtain

dG(ui) + dG(uj) + dG(u)

≤ n− |B2|+ 1 + |D̃1 ∩ (NC(uj) ∪ T )| − |NG−C(D̃1 ∩ (T − T ′))|

≤ n− |B2|+ 1 + |D̃1 ∩ (NC(uj) ∪ T )| − |D̃1 ∩ (T − T ′)|

= n− |B2|+ 1 + |D̃1 ∩ (NC(uj) ∪ T ′)|. (4.2)

Suppose that y ∈ B2 − NG(u). Since dG(y) ≤ |B2| + |S| − 1, we have

dG(ui) + dG(uj) + dG(u) + dG(y) ≤ n + κ + |D̃1 ∩ (NC(uj) ∪ T ′)|. By Fact

1 and y ∈ B2, {ui, uj, u, y} is a stable set. Thus, by the degree condition,

we have |D̃1 ∩ (NC(uj) ∪ T ′)| ≥ 3, that is, D̃1 ∩ (NC(uj) ∪ T ′) 6= ∅. Choose

z ∈ D̃1 ∩ (NC(uj) ∪ T ′) such that |ui
−→
C z| is as large as possible.

Claim 9 {ui, uj, u, z+} is a stable set.

Proof. Suppose that u ∈ NG(z+). Then z+2 ∈ T . By Claim 6, we have

z+2 ∈ B1 ∪ S. This contradicts the definition of D̃1. Hence we have u /∈

NG(z+). On the other hand, since ui, uj ∈ B1 and z+ ∈ B2, we obtain

ui, uj /∈ NG(z+). Thus, by Fact 1, {ui, uj, u, z+} is a stable set. �

Claim 10 NC(z+) ⊂ (B2 − {z
+}) ∪ S − (D1 ∩ ui

−→
C z).

Proof. Suppose that y ∈ NC(z+)∩(D1∩ui
−→
C z). By the definition of D1, we

have y+ ∈ NC(ui). If z ∈ NC(uj), then the cycle xi
←−
C ujz

←−
C y+ui

−→
C z+−→C xjPxi

is longer than C, contradicting (C1). If z ∈ T ′, then C ′ = xi
←−
C z+y

←−
C uiy

+−→C z−

Pxi is a cycle with |V (C ′)| = |V (C)| and |E(G − C ′)| < |E(G − C)|, since

NG−C(z) = ∅. This contradicts (C2). Thus we have NC(z+)∩(D1∩ui
−→
C z) 6=

∅. �

By the choice of z, we obtain |D1 ∩ ui
−→
C z| ≥ |D̃1 ∩ (NC(uj) ∪ T ′)| − 1.

Thus, by Claim 10, we have dG(z+) ≤ |B2| − 1 + |S| − |D1 ∩ ui
−→
C z| ≤
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|B2|+ |S| − |D̃1 ∩ (NC(uj) ∪ T ′)|. Hence, by the inequality (4.2), we obtain

dG(ui) + dG(uj) + dG(u) + dG(z+) ≤ n + |S|+ 1 ≤ n + κ + 1,

a contradiction. This completes the proof of Case 1.

Case 2. B2 − (NG(u) ∩NG(v) = ∅.

By Claims 5 and 6, |B1 ∩ T | ≥ 3. Let ui, uj, uk ∈ B1 ∩ T . By Claim

7, B2 ⊂ (NC(u) ∩ NC(v)) − NC({ui, uj, uk}). Hence we obtain dG(ui) +

dG(uj)+ dG(uk) ≤ n−|B2|− |H |+3 letting X = B2 in Claim 3. Let y ∈ B2.

Since dG(y) ≤ |B2| + |S| − 1, we have dG(ui) + dG(uj) + dG(uk) + dG(y) ≤

n + κ− |H |+ 2 ≤ n + κ, a contradiction. This completes the proof of Case

2 and the proof of Theorem 4.6. �
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Chapter 5

Vertex-dominating cycles in

tough graphs

5.1 Introduction

There are a number of sufficient conditions for a graph to have a hamiltonian

cycle. Since a vertex-dominating cycle is a generalization of a hamiltonian cy-

cle, there may be sufficient conditions for a graph to have a vertex-dominating

cycle, which correspond to known sufficient conditions for hamiltonicity. One

such example was obtained by Bondy and Fan [5]. Bondy [4] proved the fol-

lowing theorem concerning degree sums and hamiltonicity.

Theorem 5.1 (Bondy [4]) Let k be a positive integer, and let G be a k-

connected graph. If
∑

x∈S dG(x) > 1
2
(p − 1)(k + 1) for every stable set S in

G of order k + 1, then G has a hamiltonian cycle.

In 1987, Bondy and Fan proved that a much weaker degree sum condition

guarantees the existence of a vertex-dominating cycle.

Theorem 5.2 (Bondy&Fan [5]) Let k ≥ 2 and let G be a k-connected

graph of order p. If
∑

x∈S dG(x) ≥ p − 2k for every 3-stable set S of G of
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order k + 1, then G has a vertex-dominating cycle.

In Theorem 5.1 and Theorem 5.2, the degree sum conditions are sharp

and cannot be relaxed. For example, for Theorem 5.1, G = Kk + (k + 1)K1

satisfies
∑

x∈S dG(x) = 1
2
(|V (G)|−1)(k+1) for the unique stable set S of order

k+1 (which is the largest stable set), but G is not hamiltonian. For Theorem

5.2, Bondy and Fan gave the following example. Let H = Kk + (k + 1)Kl,

where l ≥ k. Then for each Kl, we introduce a new vertex and join each

new vertex and every vertex in the corresponding Kl by an edge. Let G be

the resulting graph. Then |V (G)| = k + (k + 1)(l + 1) and G is k-connected.

Let S = V (G) − V (H). Since each vertex in S has neighbors only in the

corresponding Kl, S is a 3-stable set (actually, S is a 4-stable set). Since

each vertex in S has degree l,
∑

x∈S dG(x) = (k + 1)l = |V (G)| − 2k − 1.

However, G has no vertex-dominating cycle.

Note that both sharpness examples in the previous paragraph have tough-

ness k/(k +1). Actually, for several sufficient conditions for hamiltonicity, it

is observed that weaker conditions guarantee the existence of a hamiltonian

cycle for graphs with large toughness. For example, the case k = 1 of Theo-

rem 5.1, known as Ore’s theorem, admits a weaker degree sum condition for

1-tough graphs.

Theorem 5.3 (Ore [16]) Every graph G of order p ≥ 3 which satisfies

dG(x)+ dG(y) ≥ p for every pair of distinct nonadjacent vertices x and y has

a hamiltonian cycle.

Theorem 5.4 (Jung [12]) Every 1-tough graph of order p ≥ 11 which sat-

isfies dG(x) + dG(y) ≥ p− 4 for every pair of distinct nonadjacent vertices x

and y has a hamiltonian cycle.

Like a hamiltonian cycle, some sufficient conditions for the existence of

an edge-dominating cycle can be relaxed if we put a further assumption on
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toughness. One such example is the following.

Theorem 5.5 (Bondy [4]) Let G be a 2-connected graph of order p. If
∑

x∈S dG(x) ≥ p + 2 for every stable subset S of V (G) of order 3, then any

longest cycle of G is an edge-dominating cycle.

Theorem 5.6 (Bauer et al. [3]) Let G be a 1-tough graph of order p. If
∑

x∈S dG(x) ≥ p for every stable subset S of V (G) of order 3, then any

longest cycle of G is an edge-dominating cycle.

The purpose of this paper is to show that Theorem 5.2 also admits a

similar relaxation under an additional assumption on toughness.

Theorem 5.7 Let k ≥ 2, and let G be a k-connected graph of order p with

t(G) > k/(k + 1). If
∑

x∈S dG(x) ≥ p− 2k − 2 for every 4-stable subset S of

V (G) of order k + 1, then G has a vertex-dominating cycle.

The example of sharpness for Theorem 5.2 shows that the toughness

k/(k+1) in Theorem 5.7 is sharp. On the other hand, we know the sharpness

of degree condition only for k = 2. Let m ≥ 3 and take three complete graphs

H1, H2 and H3 of the same order m. Take three distinct vertices xi, yi and

ui in each Hi (1 ≤ i ≤ 3). Let K3 be a complete graph of order three with

V (K3) = {v1, v2, v3}. Let v0 be a new vertex. Then construct G by

V (G) = V (H1) ∪ V (H2) ∪ V (H3) ∪ V (K3) ∪ {v0}, and

E(G) = E(H1) ∪ E(H2) ∪ E(H3) ∪ E(K3) ∪ {v0y1, v0y2, v0y3, v1x1, v2x2, v3x3}

Then G is a 2-connected graph with t(G) = 1 > 2
3

and
∑3

i=1 dG(ui) ≥ |G|−7

for the 4-stable set S of order three, but G has no vertex-dominating cycle.

This example shows that even under a stronger condition t(G) ≥ 1, we cannot

relax the condition on the degree sum. For k ≥ 3, we do not know whether

the degree bound p− 2k − 2 is best possible.
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5.2 Proof of Theorem 1

To prove Theorem 5.7, we use two known results. Chvátal-Erdős [7] showed

that for k ≥ 2, a k-connected graph G with independence number at most k

and order at least three is hamiltonian. Broersma [6] proved a Chvátal-Erdős

type theorem for the existence of a vertex-dominating cycle.

Theorem 5.8 (Broersma [6]) Let G be a k-connected graph (k ≥ 2). If

α̂4(G) ≤ k, then G has a vertex-dominating cycle.

We also use a degree sum condition for a balanced bipartite graph to be

hamiltonian.

Theorem 5.9 (Moon&Moser [13]) Let G be a balanced bipartite graph

of order 2n with partite sets X and Y (|X | = |Y | = n). If dG(x) + dG(y) ≥

n + 1 for each x ∈ X and y ∈ Y with xy /∈ E(G), then G has a hamiltonian

cycle.

Proof of Theorem 5.7. Assume that G has no vertex-dominating cycle.

By Theorem 5.8, we have α̂4(G) > k. Let S = {x0, x1, . . . , xk} be a 4-stable

set in V (G), and let Bi = {xi} ∪ NG(xi) (0 ≤ i ≤ k). For each i, j with

0 ≤ i < j ≤ k, we have Bi ∩Bj = ∅ and eG(Bi, Bj) = 0 since dG(xi, xj) ≥ 4,

where eG(X, Y ) is the number of edges which have one endvertex in X and

the other in Y . Let R = V (G)−
⋃k

i=0 Bi. Then G−R is disconnected, and the

components of G − R are B0, . . . , Bk. Since t(G) > k/(k + 1), |R| ≥ k + 1.

On the other hand, since NG(S) ∩ (R ∪ {x0, . . . , xk}) = ∅, p − 2k − 2 ≤
∑k

i=0 dG(xi) = |NG(S)| = p − |R| − (k + 1), which implies |R| ≤ k + 1.

Therefore, we have |R| = k + 1. Let R = {y0, y1, . . . , yk}.

Now contract each Bi into a single vertex bi (0 ≤ i ≤ k) and remove all

the edges in G[R]. Let H be the resulting graph. Then H is a balanced

bipartite graph with partite sets {b0, . . . , bk} and R. Since G is k-connected,

|NG(Bi) ∩ R| ≥ k. This implies dH(bi) ≥ k. If dH(yi) ≤ 1 for some i,
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0 ≤ i ≤ k, then NG(yi) ⊂ R ∪ Bj for some j with 0 ≤ j ≤ k. Without loss

of generality, we may assume j = 0. Let R′ = R − {yi}. Then G − R′ has

k + 1 components B0 ∪ {yi}, B1, . . . , Bk. Since |R′| = k, this contradicts the

assumption that t(G) > k/(k + 1). Thus, we have dH(yi) ≥ 2 for each yi

(0 ≤ i ≤ k).

Now since we have dH(bi)+dH(yj) ≥ k +2 for each i, j with 1 ≤ i, j ≤ k,

H has a hamiltonian cycle C ′ by Theorem 5.9. Without loss of generality,

we may assume C ′ = y0b0y1b1 . . . ykbky0. For each i, 0 ≤ i ≤ k, and each

yibi and biyi+1, there exist vertices z
(1)
i , z

(2)
i ∈ Bi with yiz

(1)
i , z

(2)
i yi+1 ∈ E(G)

(indices modulo k). If z
(1)
i 6= z

(2)
i , let Pi = yiz

(1)
i xiz

(2)
i yi+1. If z

(1)
i = z

(2)
i , let

Pi = yiz
(1)
i yi+1. Then C = y0P0y1P1 . . . ykPky0 is a cycle in G.

We claim that C is a vertex-dominating cycle of G. Assume, to the

contrary, that there exists a vertex v in G which is not dominated by C.

Since R ⊂ V (C) and NG(xi) ∩ V (C) 6= ∅ for each i, 0 ≤ i ≤ k, every vertex

in R ∪ {x0, . . . xk} is dominated by C. Therefore, v ∈ NG(xi0) for some i0,

0 ≤ i0 ≤ k. Since v is not dominated by C, xi0 /∈ V (C) and hence z
(1)
i0

= z
(2)
i0

.

Since R ∪ {z
(1)
i0
} ⊂ V (C), NG(v) ∩ (R ∪ {z

(1)
i0
}) = ∅. This implies NG(v) ⊂

Bi0 −{z
(1)
i0
} and, if i 6= i0, dG(v, xi) ≥ 4. Let S ′ = (S−{xi0})∪{v}. Then S ′

is a 4-stable set of G of order k + 1 and since NG(S ′)∩ (R∪ S ′ ∪ {z
(1)
i0
}) = ∅,

we have
∑

x∈S′ dG(x) ≤ p− |R| − (k + 1)− 1 = p− 2k − 3. This contradicts

the assumption, and hence G has a vertex-dominating cycle C of G. �
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Chapter 6

Vertex-dominating cycles

in 2-connected bipartite graphs

6.1 Introduction

In 1953, Dirac studied that the minimum degree and hamiltonian cycles.

Theorem 6.1 (Dirac [8]) Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2,

then G is hamiltonian.

In 1960, Ore showed the following theorem, which is a generalization

Theorem 6.1.

Theorem 6.2 (Ore [16]) Let G be a graph on n ≥ 3 vertices. If dG(x) +

dG(y) ≥ n for any nonadjacent vertices x and y, then G is hamiltonian.

In 1963, Moon and Moser gave a degree sum condition for a bipartite

graph to be hamiltonian.

Theorem 6.3 (Moon&Moser [13]) Let G be a bipartite graph with par-

tite sets V1 and V2, where |V1| = |V2| = n. If dG(x) + dG(y) ≥ n + 1 for each

pair of nonadjacent vertices x ∈ V1 and y ∈ V2, then G is hamiltonian.
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In 1971, Nash-Williams showed the following result for an edge-dominating

cycle.

Theorem 6.4 (Nash-Williams [14]) Let G be a 2-connected graph on

n vertices. If δ(G) ≥ (n − 2)/3, then any longest cycle of G is an edge-

dominating cycle.

In 1984, Ash and Jackson showed the following theorem for a bipartite

graph to have an edge-dominating cycle.

Theorem 6.5 (Ash&Jackson [1]) Let G be a 2-connected bipartite graph

with partite sets V1 and V2, where max(|V1|, |V2|) = n. If δ(G) ≥ (n− 1)/3,

then there exists a longest cycle which is an edge-dominating cycle.

In 1987, Bondy and Fan [5] proved the following theorem for a vertex-

dominating cycle.

Theorem 6.6 (Bondy&Fan [5]) Let k ≥ 2 and let G be a k-connected

graph on n vertices. If
∑

x∈S dG(x) ≥ n− 2k for every 3-stable set S of G of

order k + 1, then G has a vertex-dominating cycle.

Theorem 6.6 implies the following corollary.

Corollary 6.7 Let G be a 2-connected graph on n vertices. If δ(G) ≥

(n− 4)/3, then G has a vertex-dominating cycle.

In this paper, we give a minimum degree condition for a bipartite graph

to have a vertex-dominating cycle.

Theorem 6.8 Let G be a 2-connected bipartite graph with partite sets V1

and V2, where max(|V1|, |V2|) = n. If δ(G) ≥ (n + 1)/3, then G has a vertex-

dominating cycle.
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Figure 6.1: Fk

In Theorem 6.8, the degree condition is sharp in the following sense.

By adding new two vertices v1 and v2 to the graph Kl,m ∪Kl,n ∪Kl,n, where

(l, m, n) = (k+1, k, k), (k+1, k+1, k), (k+2, k, k), (k+2, k+1, k), (k+2, k, k+

1), (k+2, k+2, k), and joining both v1 and v2 with every vertex of three partite

sets of order l, we obtain a 2-connected bipartite graph G. Let V1 and V2 be

partite sets of G. It is easy to see that δ(G) = max(|V1|, |V2|)/3. However,

since any cycle does not contain all vertices of at least one of three complete

bipartite subgraphs Kl,m, Kl,n and Kl,n, G has no vertex-dominating cycle.

6.2 Proof of Theorem 6.8

We define the following sets Fk and Hk of graphs for each odd integer k ≥ 5.

Let n, b1, b2, . . . , bn be integers with n ≥ 3 and bi ≥ (k + 1)/2 (1 ≤ i ≤ n).

Let
⋃n

i=1 K(k−3)/2,bi
denote the vertex-disjoint union of K(k−3)/2,bi

for all i ∈

{1, 2, . . . , n}. Then the graph Fk,b1,... ,bn
is obtained from

⋃n
i=1 K(k−3)/2,bi

by

adding two new vertices x and y, and joining both x and y with every vertex

of
⋃n

i=1 K(k−3)/2,bi
whose degree in

⋃n
i=1 K(k−3)/2,bi

is (k−3)/2. Let Fk be the

set of all such graphs (Figure 6.1).

To define Hk, let m, c1, . . . , cm be integers at least (k + 1)/2. The

42



Figure 6.2: Hk

graph Hk,c1,... ,cm
is obtained from

⋃m
i=1 K1,ci

by adding (k − 1)/2 new ver-

tices x1, . . . , x(k−1)/2, and joining each xi with every endvertex of
⋃m

i=1 K1,ci
.

Let Hk be the set of all such graphs (Figure 6.2.).

To prove Theorem 6.8, we use the following result due to Wang.

Theorem 6.9 (Wang [19]) Let k be an integer with k ≥ 2. Let G be a 2-

connected bipartite graph with partite sets V1 and V2, where min(|V1|, |V2|) =

a. If dG(x) + dG(y) ≥ k + 1 for every pair of non-adjacent vertices x and y,

then G contains a cycle of length at least min(2a, 2k), unless a ≥ k ≥ 5, k is

odd and G ∈ Fk ∪Hk.

Proof of Theorem 6.8.

Let |V1| = n1, |V2| = n2 and n1 ≤ n2. Let G be a graph satisfying the

hypothesis, and let C a longest cycle in G.

Claim 1 |V (C)| ≥ min
(

2n1,
2
3
(2n2 − 1)

)

.

Proof. First, suppose that G ∈ Fk. Since δ(G) = 1
2
(k + 1) and n ≥ 3, we

have

1

3
(n2 + 1) =

1

3

(

n
∑

i=1

bi + 1

)

≥
1

3

(

n(k + 1)

2
+ 1

)

=
n

3

(

δ +
1

n

)

> δ.
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This contradicts the degree condition. Hence G /∈ Fk. Next, suppose that

G ∈ Hk. Since δ(G) = 1
2
(k + 1) and m ≥ 3, we have

1

3
(n2 + 1) =

1

3

(

m
∑

i=1

ci + 1

)

≥
1

3

(

m(k + 1)

2
+ 1

)

=
m

3

(

δ +
1

m

)

> δ,

contradiction. Therefore G /∈ Hk.

Thus, since δ(G) ≥ 1
3
(n2 + 1), we have dG(x) + dG(y) ≥ 2

3
(n2 + 1) =

1
3
(2n2 − 1) + 1. By Theorem 6.9, we obtain |V (C)| ≥ min

(

2n1,
2
3
(2n2 − 1)

)

,

since G /∈ Fk ∪ Hk. �

If min
(

2n1,
2
3
(2n2 − 1)

)

= 2n1, then V1 ⊂ V (C). This implies NC(v2) 6=

∅ for any v2 ∈ V2 − V (C). Hence C is a vertex-dominating cycle. Thus

we may assume min
(

2n1,
2
3
(2n2 − 1)

)

= 2
3
(2n2 − 1). Therefore we obtain

|V1 − V (C)| ≤ |V2 − V (C)| ≤ n2 −
2
3
(2n2 − 1) ≤ 1

3
(n2 + 1). If |V2 − V (C)| <

1
3
(n2 + 1), then we have NC(vi) 6= ∅ for any vi ∈ Vi − V (C) for i = 1, 2,

since δ(G) ≥ 1
3
(n2 + 1). Hence C is a vertex-dominating cycle. Thus we may

assume that

|V1 − V (C)| ≤ |V2 − V (C)| =
1

3
(n2 + 1) and |V (C)| =

2

3
(2n2 − 1). (6.1)

Note that 1
3
(n2 + 1) is an integer. For i = 1, 2, we define as follows:

Xi := {xi ∈ Vi − V (C) : NC(xi) 6= ∅, NG−C(xi) 6= ∅},

Yi := {yi ∈ Vi − V (C) : NG−C(yi) = ∅} and

Zi := {zi ∈ Vi − V (C) : NC(zi) = ∅}.

Claim 2 |NC(X2)| ≥ |Y1|.

Proof. By the definition of Xi, Yi and Zi and (6.1), we have |NC(x2)| ≥

δ(G)− (|X1|+ |Z1|) ≥
1
3
(n2 + 1)−

(

1
3
(n2 + 1)− |Y1|

)

= |Y1| for any x2 ∈ X2.

�
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Claim 3 If Zi 6= ∅, then NG(zi) = V3−i−V (C) for any zi ∈ Zi and Y3−i = ∅.

In particular, if Z2 6= ∅ then |V1| = |V2|.

Proof. Suppose that Zi 6= ∅, say zi ∈ Zi. By the degree condition and

the definition of Zi, we have 1
3
(n2 + 1) ≤ dG(zi) ≤ |V3−i − V (C)|. Thus,

by (6.1), we obtain dG(zi) = |V3−i − V (C)|, that is, NG(zi) = V3−i − V (C).

Furthermore, if Z2 6= ∅ then we have |V1| = |V2|. �

If Z1 = ∅ and Z2 = ∅, then C is a hamiltonian cycle, that is, a vertex-

dominating cycle. Therefore by Claim 3, we may assume, without loss of

generality,

Z1 6= ∅ and Y2 = ∅ (6.2)

Now, we choose two vertices xa and xb as follows: if X2 = ∅, choose

xa, xb ∈ X1 such that a and b as close as possible on C; otherwise, choose

xa ∈ X1∪X2 and xb ∈ X2 such that a and b as close as possible on C, where

a ∈ NC(xa), b ∈ NC(xb) and a 6= b.

We give an orientation on C such that |a+−→C b−| ≤ |b+−→C a−|. By the

choice of xa and xb, we obtain

|a+−→C b−| ≤
1

2
|C| − 1 =

1

3
(2n2 − 1)− 1 = 2

(

1

3
(n2 + 1)− 1

)

. (6.3)

Claim 4 There exists a path xaP0xb in G − C. In particular, if xa 6= xb,

then there exists a path xaP0xb in G− C which dominates Z1 and Z2.

Proof. First, suppose that xa = xb, then xa is a path of order one in G−C.

Next, suppose xa, xb ∈ Xi (xa 6= xb) for i = 1, 2. If xa, xb ∈ X1, then, by

the choice of xa and xb, note that X2 = ∅, that is, Z2 6= ∅. By Claim 3,

we have xa, xb ∈ NG(z3−i) for any z3−i ∈ Z3−i. Hence xaz3−ixb is a path in

G − C which dominates Z1 and Z2. Finally, suppose xa ∈ X1 and xb ∈ X2.

If xaxb ∈ E(G), then xaxb is a path in G − C which dominates Z1 and Z2,

by Claim 3. If xaxb /∈ E(G), then there exists a vertex v2 ∈ NG−C(xa).
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Since v2, xb ∈ NG−C(z1) for any z1 ∈ Z1, xav2z1xb is a path in G− C which

dominates Z1 and Z2. �

By Claim 4, we obtain C0 = xaa
←−
C bxbP0xa is a cycle. Let Ui = V (a+−→C b−)∩

Vi and U ′

i = V (b+−→C a−) ∩ Vi.

Claim 5 X1, X2, Y1 and U1 are dominated by a
←−
C b.

Proof. By the choice of xa and xb, we have NG(xi) ∩ V (a
←−
C b) 6= ∅ for any

xi ∈ Xi. By (6.3), we obtain |U2| ≤
1
2
|a+−→C b−| = 1

3
(n2 + 1) − 1. Hence

NG(y1)∩ V (a
←−
C b) 6= ∅ for any y1 ∈ Y1. Moreover, NG(u1) ∩ V (a

←−
C b) 6= ∅ for

any u1 ∈ U1, since Y2 = ∅. �

Case 1. |a+−→C b−| is even.

Note that xa ∈ X1 and xb ∈ X2. By Claim 4, xaP0xb dominates Z1 and

Z2. If C0 dominates U2, then C0 is a vertex-dominating cycle, by Claim 5.

Thus, suppose that C0 does not dominate U2, that is, there exists u2 ∈ U2

such that NG(u2) ⊂ U1 ∪ Y1. From u2 6= a+, b−, we have |a+−→C b−| 6= 2, and

so

|a+−→C b−| ≥ 4. (6.4)

Since 1
3
(n2 + 1) ≤ dG(u2) ≤ |U1|+ |Y1| =

1
2
|a+−→C b−|+ |Y1|, we obtain

n2 ≤
3

2
|a+−→C b−|+ 3|Y1| − 1. (6.5)

By (6.3) and (6.5), we have |Y1| ≥ 1. We first show that |Y1| = 1. Sup-

pose that |Y1| ≥ 2. Since C−NC({xa}∪X2) consists of at least |NC(X2)|+1

paths of order at least |a+−→C b−|, we have |C| ≥ (|NC(X2)|+1)(|a+−→C b−|+1).
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On the other hand, by Claim 2, (6.4) and (6.5), we obtain

(|NC(X1 ∪X2)|+ 1)(|a+−→C b−|+ 1)− |C|

= (|Y1|+ 1)(|a+−→C b−|+ 1)−
2

3
(2n2 − 1)

≥ (|Y1|+ 1)(|a+−→C b−|+ 1)−
2

3

{

2

(

3

2
|a+−→C b−|+ 3|Y1| − 1

)

− 1

}

= (|Y1|+ 1)(|a+−→C b−|+ 1)− (2|a+−→C b−|+ 4|Y1| − 2)

= (|Y1| − 1)(|a+−→C b−| − 3) > 0.

Thus we get a contradiction. Therefore we have |Y1| = 1.

By (6.3) and (6.5), note that |a+−→C b−| = |b+−→C a−| = 2
(

1
3
(n2 + 1)− 1

)

.

By the choice of xa and xb, we have NC(x) ⊂ {a, b} for any x ∈ X1 ∪ X2.

This implies that X1 and X2 are dominated by {a, b}.

On the other hand, since Y2 = ∅, NG(u′

1) ∩ V (a
−→
C b) 6= ∅ for any u′

1 ∈ U ′

1,

that is, a
−→
C b dominates U ′

1. Thus, if a
−→
C b dominates U ′

2, then xaa
−→
C bxbP0xa

is a vertex-dominating cycle. Thus, suppose that a
−→
C b does not dominate

U ′

2, that is, there exists u′

2 ∈ U ′

2 such that NG(u′

2) ⊂ U ′

1 ∪ Y1.

Since |U1| =
1
3
(n2 + 1)−1, we have y1 ∈ NG(u2), where y1 ∈ Y1. Similarly,

y1 ∈ NG(u′

2). By the existence of the C-path u2y1u
′

2, there exists a C-path

wP1w
′ joining V (a+−→C u2) and V (b+−→C u′

2). Choose P1 such that V (a+−→C w)∪

V (b+−→C w′) is inclusion-minimal. Then C1 = xaa
←−
C w′P1w

−→
C bxbP0xa is a

cycle.

By the choice of P1, w
−→
C b ∪ w′

−→
C a dominates Y1. By u2 6= a+, we have

|a+−→C w−| ≤ |a+−→C u2| ≤ 2
(

1
3
(n2 + 1)− 1

)

− 2. By the choice of P1 and the

fact that |Y1| = 1 and Y2 = ∅, we have N(va) ∩ (w
−→
C b ∪ w′

−→
C a) 6= ∅ for

any va ∈ a+−→C w−, that is, w
−→
C b ∪ w′

−→
C a dominates V (a+−→C w−). Similarly,

w
−→
C b∪w′

−→
C a dominates V (b+−→C w′−). Hence C1 is a vertex-dominating cycle.
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This completes the proof of Case 1.

48



Case 2. |a+−→C b−| is odd.

Note that xa ∈ Xi and xb ∈ Xi for i = 1, 2.

Case 2.1. Z2 = ∅.

If X2 = ∅, then V (G) − V (C) = ∅. Hence C is a hamiltonian cycle,

that is, a vertex-dominating cycle. Thus, we may assume X2 6= ∅. By the

choice xa and xb, we have xa, xb ∈ X2. By Claim 3, C0 dominates Z1. If

C0 dominates U2, then C0 is a vertex-dominating cycle, by Claim 5. Thus,

suppose that C0 does not dominate U2, that is, there exists u2 ∈ U2 such

that NG(u2) ⊂ U1 ∪ Y1. From u2 6= a+, b−, we have |a+−→C b−| 6= 3, and so

|a+−→C b−| ≥ 5. (6.6)

Since |a+−→C b−| is odd and a+, b− ∈ V2, we have |U1| =
1
2
(|a+−→C b−| − 1).

Hence we obtain 1
3
(n2 + 1) ≤ dG(u2) ≤

1
2
(|a+−→C b−| − 1) + |Y1|, and so

n2 ≤
3

2
(|a+−→C b−| − 1) + 3|Y1| − 1. (6.7)

By (6.3) and (6.7), we have |Y1| ≥ 2. Now we show that |Y1| = 2 or |Y1| =

3. Assume that |Y1| ≥ 4. Since C −NC(X1 ∪X2) has at least |NC(X1 ∪X2)|

paths of order at least |a+−→C b−|, we have |C| ≥ |NC(X1∪X2)|(|a
+−→C b−|+1).

On the other hand, by Claim 2, (6.6) and (6.7), we obtain

|NC(X1 ∪X2)|(|a
+−→C b−|+ 1)− |C|

≥ |Y1|(|a
+−→C b−|+ 1)−

2

3

{

2

(

3

2
(|a+−→C b−| − 1) + 3|Y1| − 1

)

− 1

}

= |Y1|(|a
+−→C b−|+ 1)− (2|a+−→C b−|+ 4|Y1| − 4)

= (|Y1| − 2)(|a+−→C b−| − 3)− 2 > 0,

a contradiction. Therefore we have |Y1| = 2 or |Y1| = 3.
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Suppose that |Y1| = 2. By (6.3), we have |a+−→C b−| ≤ 2
(

1
3
(n2 + 1)− 1

)

−

1, since |a+−→C b−| is odd. Thus, by (6.7), we obtain |a+−→C b−| = 2
(

1
3
(n2 + 1)− 1

)

−

1, |b+−→C a−| = 2
(

1
3
(n2 + 1)− 1

)

+1 and Y1 ⊂ NG(u2). By the choice of xa and

xb, we have X1 6= ∅ and X2 is dominated by {a, b}. Since |U2| =
1
3
(n2 + 1)−1

and a, b ∈ V1, there exists y1 ∈ Y1 such that N(y1) ∩ V (b+−→C a−) 6= ∅, say

u′

2 ∈ N(y1) ∩ V (b+−→C a−). By (6.6) and |b+−→C a−| = |a+−→C b−| + 2, either

|b+−→C u′

2
−| ≤ |a+−→C b−| or |u′

2
−−→C a−| ≤ |a+−→C b−| holds. Without loss of

generality, we may assume |b+−→C u′

2
−| ≤ |a+−→C b−|. By the existence of the C-

path u2y1u
′

2, there exists a C-path wP2w
′ joining V (a+−→C u2) and V (b+−→C u′

2).

Choose P2 such that (i) |V (b+−→C w′)| is as small as possible, and (ii) subject

to (i), |V (a+−→C w)| is as small as possible. Then C2 = xaa
←−
C w′P2w

−→
C bxbP0xa

is a cycle.

First, we show that V (a+−→C w−) is dominated by w
−→
C b∪w′

−→
C a. From u2 6=

b−, note that |a+−→C w−| ≤ |a+−→C u−

2 | ≤ |a
+−→C b−| − 2 ≤ 2

(

1
3
(n2 + 1)− 1

)

−

3. By the choice of P2 and the fact that |Y1| = 2 and Y2 = ∅, we have

N(va) ∩ V (w
−→
C b ∪ w′

−→
C a) 6= ∅ for any va ∈ V (a+−→C w−). This implies that

V (a+−→C w−) is dominated by w
−→
C b ∪ w′

−→
C a. Next, we show that V (b+−→C w′)

is dominated by w
−→
C b ∪ w′

−→
C a. By the choice of P2 and Y1 ⊂ NG(u2),

we have N(vb) ∩ (Y1 ∪ V (a+−→C w−)) = ∅ for any vb ∈ V (b+−→C w′−). Since

|b+−→C u′

2| ≤ |b
+−→C w′| ≤ |a+−→C b−|, we have N(vb) ∩ V (w

−→
C b ∪ w′

−→
C a) 6= ∅

for any vb ∈ V (b+−→C w′−). This implies that V (b+−→C w′) is dominated by

w
−→
C b ∪ w′

−→
C a. Hence C2 is a vertex-dominating cycle.

Suppose that |Y1| = 3. By Claim 2, C−NC(X2) has at least three paths of

order at least 5. Therefore |a+−→C b−| ≤ 1
2
(|C| − 6)− 1 ≤ 2

(

1
3
(n2 + 1)− 1

)

−

3. Thus, by (6.7), we have |a+−→C b−| = 2
(

1
3
(n2 + 1)− 1

)

− 3, |b+−→C a−| =

2
(

1
3
(n2 + 1)− 1

)

+3 and Y1 ⊂ NG(u2). Since |b+−→C a−| = 2
(

1
3
(n2 + 1)− 1

)

+

3, by (6.6) and the choice of xa and xb, we have |NC(X1 ∪ X2)| ≤ 3. If

|NC(X1 ∪X2)| = 3, then let c ∈ NC(X1 ∪X2)−{a, b}. Note that X1 ∪X2 is

dominated by {a, b, c}. Since |U2| =
1
3
(n2 + 1)− 2 and a, b ∈ V1, there exists

50



y1 ∈ Y1 such that N(y1) ∩ V (b+−→C a−) 6= ∅, say u′

2 ∈ N(y1) ∩ V (b+−→C a−).

We show that |b+−→C u′

2| ≤ |a
+−→C b−| and c /∈ V (b+−→C u′

2). Suppose that

|NC(X1∪X2)| = 2. By (6.6) and |b+−→C a−| = |a+−→C b−|+6, either |b+−→C u′

2
−| ≤

|a+−→C b−| or |u′

2
+−→C a−| ≤ |a+−→C b−| holds. Without loss of generality, we

may assume |b+−→C u′

2
−| ≤ |a+−→C b−|. If |NC(X1 ∪ X2)| = 3, then either

c /∈ V (b+−→C u′

2
−) or c /∈ V (u′

2
+−→C a−). Without loss of generality, we may

assume that c /∈ V (b+−→C u′

2). By (6.6) and |b+−→C a−| = |a+−→C b−|+ 6, we have

|b+−→C u′

2| ≤ |a
+−→C b−|.

Thus, using the same argument as in the case of |Y1| = 2, we get a

vertex-dominating cycle. This completes the proof of Case 2.1. �

Case 2.2. Z2 6= ∅.

By Claim 3, note that Y1 = ∅. Since |U1| ≤
1
3
(n2 + 1) − 1, we have

N(u2)∩V (b
−→
C a) 6= ∅ for any u2 ∈ U2, that is, C0 dominates U2. Since Z1 6= ∅

and Z2 6= ∅, we may assume xa = xb; otherwise C0 is a vertex-dominating

cycle, by Claim 4.

By the 2-connectivity of G and the choice of xa and xb, there exists

xd ∈ X1 ∪ X2 such that xd 6= xa and NC(xd) ∩ V (b+−→C a−) 6= ∅. Choose xd

such that a− as close to d on C as possible, where d ∈ NC(xd)∩ V (a−
←−
C b+).

Note that a
−→
C d dominates X1 and X2. By Claim 4, there exists a path

xaP4xd in G − C which dominates Z1 and Z2. Since |a
−→
C b| ≥ 3, we have

|d+−→C a−| ≤ 1
2
(|C|−4) ≤ 2

(

1
3
(n2 + 1)− 1

)

−1. Define U ′′

i = V (d+−→C a−)∩Vi.

Since |U ′′

1 |, |U
′′

2 | ≤
1
3
(n2 + 1) − 1 and Y1 = Y2 = ∅, a

−→
C d dominates U ′′

1 and

U ′′

2 . Hence xa
−→
C dxdP4xa is a vertex-dominating cycle. This completes the

proof of Case 2.2 and the proof of Theorem 6.8. �
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Chapter 7

Cycles within specified distance

from each vertex

7.1 Introduction

Let f be a non-negative integer-valued function defined on V (G). Then a cy-

cle C is called an f -dominating cycle if dG(x, C) ≤ f(x) for every x ∈ V (G).

By taking an appropriate function as f , we can give a unified view to many

cycle-related problems. If f is a constant function taking the value 0 (resp.

1), then an f -dominating cycle is a hamiltonian cycle (resp. a dominating

cycle) of G, respectively. Furthermore, given a prescribed set S ⊂ V (G), if

we set

f(v) =











0 if v ∈ S

diam(G) if v ∈ V (G)− S,

where diam(G) is the diameter of G, then an f -dominating cycle is a cycle

passing through every vertex in S.

The purpose of this chapter is to give a Chvátal-Erdős type theorem for

a graph to have an f -dominating cycle. Then we show that this theorem is

a generalization of a number of known results.
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A set of vertices S ⊂ V (G) is said to be an f -stable set if dG(u, v) ≥

f(u) + f(v) holds for each pair of distinct vertices u, v ∈ S. If we take

a constant function taking the value one as f , an f -stable set is an ordi-

nary stable set. The f -stability number, denoted by αf(G), is defined by

αf (G) = max{|S| : S is an f -stable set}. For an integer constant c, we de-

fine the function f + c by (f + c)(v) = f(v) + c (v ∈ V (G)).

We prove the following theorem.

Theorem 7.1 Let G be a k-connected graph (k ≥ 2) and let f be a non-

negative integer-valued function defined on V (G). If αf+1(G) ≤ k, then G

has an f -dominating cycle.

Before we prove Theorem 7.1, we give its application. By setting f(v) = 0

for each v ∈ V (G), we immediately obtain Chvátal-Erdős’ theorem. Let α(G)

be the independence number of a graph G.

Theorem 7.2 (Chvátal&Erdős [7]) A k-connected graph (k ≥ 2) G with

α(G) ≤ k is hamiltonian.

Bondy and Fan [5] gave a degree sum condition for a graph to have a dom-

inating cycle. Later Broersma [6] proved the following theorem and showed

that it extends the result of Bondy and Fan.

Theorem 7.3 (Broersma [6]) Let G be a k-connected graph (k ≥ 2) and

let λ be a positive integer. If α̂2λ(G) ≤ k, then G has a dλ-cycle.

It is easy to see that if f is a constant function taking the value λ − 1,

then Theorem 7.1 coincides with Theorem 7.3.

Theorem 7.1 also generalizes previous results on cycles passing through

specified vertices. The following is a classical result by Dirac [8].

Theorem 7.4 (Dirac [8]) Every set of k vertices in a k-connected graph

(k ≥ 2) lies in a cycle.
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Theorem 7.4 was later extended by Fournier [9]. For a set of vertices

X ⊂ V (G), we define the independence number of X , denoted by α(X), by

α(X) = α(G[X ]), where G[X ] is the subgraph of G induced by X .

Theorem 7.5 (Fournier [9]) Let G be a k-connected graph (k ≥ 2), and

let X ⊂ V (G). If α(X) ≤ k, then G has a cycle which contains X .

In order to demonstrate the usefulness of the Theorem 7.1, we give a

further extension as a corollary. For a set of vertices X ⊂ V (G) and a

positive integer d, we define α̂G,d(X) by

α̂G,d(X) = max{|S| : S ⊂ X, S is a d-stable in G}.

Note that α̂G,2(X) = α̂2(G[X ]) = α(X), but for d ≥ 3, α̂G,d(X) and α̂d(G[X ])

may take different values.

Corollary 7.6 Let G be a k-connected graph (k ≥ 2), and let X and Y be

disjoint subsets of V (G). If α(X)+ α̂G,4(Y ) ≤ k, then G has a cycle C which

contains X and dominates Y .

Corollary 7.6 coincides with Theorem 7.5 if Y = ∅.

Proof of Corollary 7.6. Define an integer-valued function f on V (G) by

f(v) =























0 if v ∈ X

1 if v ∈ Y

diam(G) if v ∈ V (G)− (X ∪ Y ).

Then an f -dominating cycle is a required cycle. Let S be a maximum (f +1)-

stable set, i.e. an (f +1)-stable set of cardinality αf+1(G). We claim |S| ≤ k.

First, suppose S 6⊂ X ∪ Y . If |S| ≥ 2, then we can take a pair of distinct

vertices u, v such that u ∈ S − (X ∪ Y ) and v ∈ S. Then dG(u, v) ≥ f(u) +

f(v) + 2 ≥ diam(G) + 2, a contradiction. Therefore, we have |S| ≤ 1 < k.
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Next, suppose S ⊂ X ∪ Y . Then by the definition of f , S ∩X is a stable

set contained in X and Y ∩ S is a 4-stable set of G contained in Y . Thus,

|S ∩X| ≤ α(X) and |S ∩Y | ≤ α̂G,4(Y ). Therefore, |S| = |S ∩X|+ |S∩Y | ≤

α(X) + α̂G,4(Y ) ≤ k. Now in either case, we have αf+1(G) = |S| ≤ k, and G

has an f -dominating cycle by Theorem 7.1. �

7.2 Lemmas

Let f : V (G) → N . Then for a vertex x ∈ V (G) and X ⊂ V (G), we define

Nf (x) and Df (X) by

Nf (x) = {v ∈ V (G) : dG(x, v) ≤ f(x)}, and

Df(X) = {v ∈ V (G) : dG(v, X) ≤ f(v)}.

Using this notation, we can say that an f -dominating cycle is a cycle C

satisfying Df(C) = V (G).

Although the following lemma is a trivial observation on Df (X), it is

frequently used in the subsequent arguments.

Lemma 7.7 Let G be a graph and let f : V (G)→N . Furthermore, let X ,

Y ⊂ V (G).

(1) If X ⊂ Y , then Df (X) ⊂ Df (Y ).

(2) Df (X ∪ Y ) = Df (X) ∪Df (Y )

(3) Df (X)−Df(Y ) ⊂ Df (X − Y )

The next lemma is a simple but useful observation on a walk.

Lemma 7.8 Let G be a graph and let A, B ⊂ V (G). If G has a walk W

from A to B, Then G has a path P from A to B such that V (P ) ⊂ V (W )

and that P is internally disjoint from A ∪ B.
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7.3 Proof of Theorem 7.1

In this section, we prove Theorem 7.1.

Proof of Theorem 7.1. Assume G has no f -dominating cycle. Then for

each cycle C in G, Df (C) 6= V (G), and hence there exists a vertex y0 in

V (G)−Df(C). Let H be the component of G−V (C) with y0 ∈ V (H). Now

choose such C and y0 so that

(C1) |Df(C)| is as large as possible, and

(C2) |V (H)| is as small as possible, subject to (C1).

The proof is divided into claims.

Claim 1 There exists no cycle C ′ with Df (C) ⊂ Df (C
′), V (H)∩V (C ′) 6= ∅

and NG(H) ∩
(

V (C) − V (C ′)
)

= ∅. In particular, G has no cycle C ′ with

V (C) ⊂ V (C ′) and V (H) ∩ V (C ′) 6= ∅.

Proof. Assume there exists a cycle C ′ with Df(C) ⊂ Df(C
′), V (H)∩V (C ′) 6=

∅ and NG(H) ∩
(

V (C) − V (C ′)
)

= ∅. Then Df(C) = Df (C
′) by the

maximality of Df(C), and hence y0 ∈ V (H) − Df(C
′). Since NG(H) ∩

(

V (C)− V (C ′)
)

= ∅, G− V (C ′) has a component H ′ with y0 ∈ V (H ′) and

V (H ′) ( V (H). This contradicts the minimality of H . �

Let NC(H) = {x1, x2, . . . , xm}. We may assume x1, x2, . . . , xm appear in

the consecutive order along C. We consider xm+1 = x1. Let Ii = xi
−→
C xi+1

(1 ≤ i ≤ m). We call each Ii (1 ≤ i ≤ m) an interval. Let x′

i ∈ NH(xi) and

let Pi,j be an x′

ix
′

j-path in H (1 ≤ i, j ≤ m). Possibly, x′

i = x′

j and l(Pi,j) = 0

for some i and j (i 6= j).

Claim 2 xi+1 6= x+
i

Proof. Assume xi+1 = x+
i . Let C ′ = x+

i

−→
C xix

′

i

−→
P i,i+1x

′

i+1x
+
i . Then V (C) ⊂

V (C ′) and V (C ′) ∩ V (H) 6= ∅. This contradicts Claim 1. �
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If v is an essential vertex, there exists a vertex y

such that d(y, x+
i

−→
C v) ≤ f(y) and d(y, v

−→
C xi) > f(y).

Figure 7.1: Essential vertex

Since G is k-connected, we have m ≥ 2k > k by Claim 2. A vertex v ∈

Ii−{xi} (1 ≤ i ≤ m) is called an essential vertex if Df(x
+
i

−→
C v) 6⊂ Df(v

−→
C xi)

(Figure 7.1). If v is not an essential vertex, it is called a non-essential vertex.

Claim 3 For each i (1 ≤ i ≤ m), x+
i is a non-essential vertex of Ii.

Proof. Since x+
i

−→
C x+

i = {x+
i } ⊂ x+

i

−→
C xi, we have Df(x

+
i

−→
C x+

i ) ⊂ Df (x
+
i

−→
C xi)

by Lemma 7.7 (1). �

Claim 4 If v is a non-essential vertex of Ii, then each u ∈ x+
i

−→
C v− is a

non-essential vertex of Ii.

Proof. Since x+
i

−→
C u ⊂ x+

i

−→
C v and v

−→
C xi ⊂ u

−→
C xi, Df (x

+
i

−→
C u) ⊂ Df(x

+
i

−→
C v)

and Df(v
−→
C xi) ⊂ Df (u

−→
C xi) by Lemma 7.7 (1). Since v is a non-essential

vertex, Df(x
+
i

−→
C v) ⊂ Df(v

−→
C xi). Thus, we obtain Df (x

+
i

−→
C u) ⊂ Df(u

−→
C xi).

�

Claim 5 For each i (1 ≤ i ≤ m), xi+1 is an essential vertex of Ii.
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Proof. Assume xi+1 is a non-essential vertex. Then we have Df(x
+
i

−→
C xi+1) ⊂

Df (xi+1
−→
C xi). Let C ′ = xi+1

−→
C xix

′

i

−→
P i,i+1x

′

i+1xi+1. Then V (C) − V (C ′) =

x+
i

−→
C x−

i+1 and xi+1
−→
C xi ⊂ V (C ′). Therefore, by Lemma 7.7,

Df (C)−Df (C
′) ⊂ Df(x

+
i

−→
C x−

i+1) ⊂ Df(x
+
i

−→
C xi+1) ⊂ Df(xi+1

−→
C xi) ⊂ Df(C

′).

This implies Df (C) ⊂ Df (C
′). Furthermore, V (H)∩V (C ′) 6= ∅ and NG(H)∩

(

V (C)− V (C ′)
)

= ∅. However, this contradicts Claim 1. �

By Claims 3, 4 and 5, each interval Ii has a unique vertex si such that si

is a non-essential vertex of Ii but s+
i is an essential vertex of Ii. We call this

si the border vertex of Ii.

Claim 6 For each i, j with 1 ≤ i < j ≤ m, there does not exist a walk from

x+
i

−→
C si to x+

j

−→
C sj which is internally disjoint from C. In particular, there

does not exist an edge which joins x+
i

−→
C si and x+

j

−→
C sj

Proof. Assume there exists a walk from x+
i

−→
C si to x+

j

−→
C sj which is internally

disjoint from C. Then by Lemma 7.8, there exists a path Q from x+
i

−→
C si to

x+
j

−→
C sj which is internally disjoint from C. Let the starting vertex and the

terminal vertex of Q be ui and uj, respectively. Take such Q so that x+
i

−→
C ui∪

x+
j

−→
C uj is inclusion-minimal. By the definition of an interval, V (Q)∩V (H) =

∅. Let C ′ = uj
−→
C xix

′

i

−→
P i,jx

′

jxj
←−
C ui
−→
Q uj. Then V (C ′) ∩ V (H) 6= ∅ and

NG(H) ∩
(

V (C) − V (C ′)
)

= NG(H) ∩
(

(x+
i

−→
C u−

i ) ∪ (x+
j

−→
C u−

j )
)

= ∅. By

Claim 1, Df(C) 6⊂ Df (C
′). Let v ∈ Df(C) − Df (C

′). By Lemma 7.7,

Df (C)−Df (C
′) ⊂ Df

(

(x+
i

−→
C u−

i )∪(xj
−→
C u−

j )
)

= Df(x
+
i

−→
C u−

i )∪Df (x+
j

−→
C u−

j ).

By symmetry, we may assume v ∈ Df(x
+
i

−→
C u−

i ). Since ui ∈ x+
i

−→
C si, ui is a

non-essential vertex by Claim 4, and hence Df(x
+
i

−→
C ui) ⊂ Df(ui

−→
C xi). This

implies v ∈ Df(ui
−→
C xi) −Df(C

′) ⊂ Df(ui
−→
C xi − C ′) = Df(x

+
j

−→
C u−

j ). Now,

since v ∈ Df(x
+
i

−→
C u−

i )∩Df (x
+
j

−→
C u−

j ), there exist a vvi-path Ri and vvj-path

Rj for some vi ∈ x+
i

−→
C u−

i and vj ∈ x+
j

−→
C u−

j such that l(Ri) ≤ f(v) and

l(Rj) ≤ f(v) (Figure 7.2).
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Figure 7.2: Ri and Rj

If V (Ri) ∩ uj
−→
C xi 6= ∅, then since l(Ri) ≤ f(v), we have dG(v, uj

−→
C xi) ≤

f(v). This implies v ∈ Df (uj
−→
C xi) ⊂ Df (C

′), a contradiction. Therefore,

we have V (Ri) ∩ uj
−→
C xi = ∅. Similarly, we have V (Ri) ∩ ui

−→
C xj = ∅ and

V (Rj) ∩ (uj
−→
C xi ∪ ui

−→
C xj) = ∅.

Let W ′ = vi
←−
R iv
−→
R j. Then W ′ is a walk from x+

i

−→
C u−

i to x+
j

−→
C u−

j , which

is internally disjoint from uj
−→
C xi∪ui

−→
C xj . By Lemma 7.8, there exists a path

Q′ from x+
i

−→
C u−

i to xj
−→
C u−

j such that V (Q′) ⊂ V (W ′) and Q′ is internally

disjoint from C. This contradicts the minimality of x+
i

−→
C ui ∪ x+

j

−→
C uj, and

the claim follows. �

Claim 7 For each i, 1 ≤ i ≤ m, there exists a vertex yi ∈ Df(x
+
i

−→
C si) such

that Nf(yi) ∩ V (C) ⊂ x+
i

−→
C si.

Proof. Since si is the border vertex, we have Df(x
+
i

−→
C si) ⊂ Df(si

−→
C xi) but

Df (x
+
i

−→
C s+

i ) 6⊂ Df (s
+
i

−→
C xi). Take yi ∈ Df(x

+
i

−→
C s+

i ) − Df(s
+
i

−→
C xi). Since

yi /∈ Df (s
+
i

−→
C xi), Nf(yi) ∩ s+

i

−→
C xi = ∅ and hence Nf(yi) ∩ V (C) ⊂ x+

i

−→
C si.

Since s+
i ∈ Df(s

+
i

−→
C xi), if yi ∈ Df({s

+
i }), then yi ∈ Df(s

+
i

−→
C xi) by Lemma
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7.7 (1), a contradiction. Thus, we have yi ∈ Df(x
+
i

−→
C s+

i ) − Df ({s
+
i }) ⊂

Df (x
+
i

−→
C si). �

Claim 8 For each i, j with 1 ≤ i < j ≤ m, dG(yi, yj) ≥ f(yi) + f(yj) + 2.

Proof. Let Qi be a shortest path from {yi} to V (C), and let Qj be a shortest

path from {yj} to V (C). Then both Qi and Qj are internally disjoint from

C. Let vi and vj be the terminal vertices of Qi and Qj, respectively. Then

by Claim 7, vi ∈ x+
i

−→
C si and vj ∈ x+

j

−→
C sj.

Let R be a shortest yiyj-path in G, and let W = vi
←−
Qi yi
−→
R yj
−→
Qj vj. Then

W is a walk from x+
i

−→
C si to x+

j

−→
C sj. By Lemma 7.8, there exists a path Q′

from x+
i

−→
C si to x+

j

−→
C sj such that V (Q′) ⊂ V (W ) and that Q′ is internally

disjoint from x+
i

−→
C si ∪ x+

j

−→
C sj. If V (R) ∩ (s+

i

−→
C xj ∪ s+

j

−→
C xi) = ∅, then

V (W ) ∩ (s+
i

−→
C xj ∪ s+

j

−→
C xi) = ∅ and V (Q′) ∩ (s+

i

−→
C xj ∪ s+

j

−→
C xi) = ∅. Thus,

Q′ is internally disjoint from C, which contradicts Claim 6. Thus, we have

V (R) ∩ (s+
i

−→
C xj ∪ s+

j

−→
C xi) 6= ∅. Let v ∈ V (R) ∩ (s+

i

−→
C xj ∪ s+

j

−→
C xi). Then

by Claim 7, l(yi
−→
R v) ≥ f(yi) + 1 and l(v

−→
R yj) ≥ f(yj) + 1. Therefore, we

obtain dG(yi, yj) = l(R) ≥ f(yi) + f(yj) + 2. �

Claim 9 For each i, 1 ≤ i ≤ l, dG(y0, yi) ≥ f(y0) + f(yi) + 2.

Proof. Let R be a shortest y0yi-path in G. Then since y0 ∈ V (H), by the

definition of an interval, {x1, . . . , xm} ∩ V (R) 6= ∅. Let xj ∈ V (R). Since

y0 /∈ Df (C), l(y0
−→
R xj) ≥ f(y0) + 1. By Claim 5, si /∈ {x1, . . . , xm}, and

hence by Claim 7 l(xj
−→
R yi) ≥ f(yi) + 1. Therefore, we obtain dG(y0, yi) =

l(R) ≥ f(y0) + f(yi) + 2. �

Let Y = {y0, y1, . . . , ym}. Then by Claims 8 and 9, Y is an (f + 1)-

stable set of order m + 1 > k and hence αf+1(G) > k. This contradicts the

assumption, and the theorem follows. �
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join of two graphs, 8

join of two vertices

by a edge, 7
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maximum degree, 9
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path, 10

64



k-path-connected, 15

remote, 21

spanning subgraph, 8

d-stable, 11

stable

number, 9

set, 9

subgraph, 8

t-tough graph, 11

toughness, 11

union of two graphs, 8

vertex, 7

vertex-dominating cycle, 11

walk, 9

of length, 9
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