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Preface

This thesis is written on the subject “Dominating Cycles in Graphs” to be
submitted for the degree in Doctor at Kobe University.

The basis of thesis is formed by papers written during these three years.
Some of the paper have been accepted for publication in graph theory-
oriented journals; for the others I hope this will happen in the future. The
papers that together underlie this thesis are listed at the end of this preface.

After two introductory chapters, the reader will find five chapters. Gen-
eral terminology can be found in Chapter 2. The order chapters can be read
independently from one another.

Roughly speaking, this thesis consists of three parts. In the first part
(Chapters 3 and 4), I will present my work about the edge-dominating cycle
in graphs with large connectivity. In this work, we show there is an analogy
between hamiltonian cycles and edge-dominating cycles on a degree condition
for graphs with large connectivity.

In the second part (Chapters 5 and 6), I will present my work about the
vertex-dominating cycle in tough graphs and bipartite graphs. Part of this
work is joint work with A. Saito. We make a comparative study of each
degree condition for the existence of hamiltonian cycles, edge-dominating
cycles and vertex-dominating cycles.

In the third part (Chapter 7), I will present my work about a cycle such

that every vertex is within the prescribed distance from the cycle. This work



is joint work with A. Saito. We give a generalization of several theroems
with the sufficient condition involving connectivity and stable number, called

Chviatal-Erdos condition.

Papers underlying on the thesis

[1] A.Saito, T. Yamashita, A Note on Dominating Cycles in Tough Graphs,
Ars Combinatoria 69, 2003, 3-8 (Chapter 5)

[2] A. Saito, T. Yamashita, Cycles within Specified Distance from Each
Vertex, to appear in Discrete Mathematics. (Chapter 7)

[3] T. Yamashita, Vertex-dominating cycles in 2-connected bipartite graphs,

submitted. (Chapter 6)

[4] T. Yamashita, Dominating cycles in k-connected graphs, submitted.
(Chapter 3)

[5] T. Yamashita, Degree Sum and Connectivity Conditions for Dominat-

ing Cycles, submitted. (Chapter 4)
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Chapter 1
Introduction

A hamiltonian cycle is a cycle passing through every vertex. We say that
a graph G is hamiltonian if G has a hamiltonian cycle. In contrast with
Eulerian cycle, the question whether a given graph is hamiltonian seems to
be much harder to answer. Up to now, no easily verifiable necessary and
sufficient condition is known. This fact gave rise to a number of sufficient
conditions. In particular, the following two sufficient conditions are well-
known. One is concerned with the minimum degree sum of two nonadjacent
vertices, and the other is concerned with the stability number and the con-

nectivity of a graph.

Theorem 1.1 (Ore [16]) Let G be a graph on n > 3 vertices. If the mini-

mum degree sum of nonadjacent vertices is at least n, then G is hamiltonian.

Theorem 1.2 (Chvatal&Erdés [7]) Let k > 2 be a positive integer, and
let G be a k-connected graph. If the stability number of G is at most k, then

G is hamiltonian.

In recent years, the study of dominating cycles has been in full flood. A
dominating cycle is defined as a cycle C' such that every edge is incident with

some vertex of C'. However, in some papers, a cycle C' is also called a domi-



nating cycle if every vertex is adjacent to some vertex of C'. In this thesis, we
call the former an edge-dominating cycle and the latter a vertex-dominating
cycle. Each of dominating cycles is a generalization of hamiltonian cycles.
There may be sufficient conditions for a graph to have a dominating cy-
cle which correspond to that for hamiltonicity. In this thesis, I will discuss

sufficient conditions for each of dominating cycles.

In Chapter 3, we study a degree condition for a connected graph. Bondy
gave a degree sum condition for a connected graph to be hamiltonian. This
result is a common generalization of Ore’s Theorem (1.1) and Chvétal-Erdds

Theorem (1.2).

Theorem 1.3 (Bondy [4]) Let k > 2 be a positive integer, and let G be a
k-connected graph on n vertices. If the minimum degree sum of a stable set

of order k + 1 is greater than (n — 1)(k + 1)/2 then G is hamiltonian.

We extend Theorem 1.3 as follows:

Theorem 1.4 Let G be a k-connected graph (k > 2) on n vertices, and let
S be any stable set of order k + 1. If the maximum degree sum of a subset

of S of order 2 is at least n, then G is hamiltonian.

On the other hand, Bondy and Fan showed the result for a vertex-

dominating cycle.

Theorem 1.5 (Bondy&Fan [5]) Let k > 2 be a positive integer, and let
G be a k-connected graph on n vertices. If the minimum degree sum of a
3-stable set of order k + 1 is at least n — 2k, then G has a vertex-dominating

cycle.

We consider a degree sum condition for a k-connected graph to have an

edge-dominating cycle. The degree sum condition for a 2-connected graph



was already known. The result can be derived from the following theorem
due to Bondy. A graph is called k-path-connected if any two vertices are
connected by a path of length at least k.

Theorem 1.6 (Bondy [4]) Let k > 2 be a positive integer, and let G be
a k-connected graph on n vertices, and let C' be a longest cycle of G. If the
minimum degree sum of a stable set of order k + 1 is at least n + k(k — 1),

then G — C' contains no (k — 1)-path-connected subgraph.

The case k = 2 of Theorem 1.6 implies the following:

Theorem 1.7 (Bondy [4]) Let G be a 2-connected graph on n vertices. If
the minimum degree sum of a stable set of order 3 is at least n+ 2, then any

longest cycle is an edge-dominating cycle.

On the other hand, Fraisse showed the following theorem for the existence

of a Dy-cycle.

Theorem 1.8 (Fraisse [10]) Let G be a k-connected graph on n vertices,
where n > 3. If the minimum degree sum of a stable set of order k + 1 is at

least n + k(k — 1), then G has a Dy-cycle.

Neither Theorem 1.6 nor Theorem 1.8 implies a degree sum condition
for a k-connected graph (k > 3) to have a dominating cycle. We show the

following result for an edge-dominating cycle.

Theorem 1.9 Let G be a k-connected graph (k > 2) on n vertices, and let
S be any stable set of order k + 1. If the maximum degree sum of a subset
of S of order 3 is at least n + 2, then there exists a longest cycle which is an

edge-dominating cycle.

In Chapter 4, we focus the degree sum and connectivity condition. Mo-

tivated by the observation in Chapter 3, we can find there is an analogy
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between hamiltonian cycles and edge-dominating cycles on a degree con-
dition for a graph with large connectivity. Bauer, Broersma, Li and Veld-
man showed the following result concerning the degree sum and connectivity,

which is an extension of Ore’s Theorem (1.1).

Theorem 1.10 (Bauer et al. [2]) Let G be a 2-connected graph on n ver-
tices. If the minimum degree sum of a stable set of order 3 is at least n + k,

then G is hamiltonian.

Motivated by the observation above, we give an extension of Theorem

1.7.

Theorem 1.11 Let G be a 3-connected graph on n vertices. If the minimum
degree sum of a stable set of order 4 is at least n + k + 3, then G contains a

longest cycle which is an edge-dominating cycle.

By observing Theorems 1.8, 1.10 and 1.11, we propose the following con-
jecture. which has been verified for £ = 2 (Theorem 1.10) and k£ = 3 (Theo-
rem 1.11).

Conjecture 1.12 Let G be a k-connected graph on n vertices, where n >
3. If the minimum degree sum of a stable set of order k + 1 is at least

n+ k+ k(k — 2), then G has a longest cycle of which is a Dy_q-cycle.

In Chapter 5, we consider a degree condition for a tough graph. Jung

gave a degree sum condition for a tough graph to be hamiltonian.

Theorem 1.13 (Jung [12]) Let G be a 1-tough graph on n > 11 vertices.
If the minimum degree sum of nonadjacent vertices is at least n — 4, then G

is hamiltonian.

Bauer, Veldman, Morgana and Schmeichel gave a degree sum condition

for edge-dominating cycles.



Theorem 1.14 (Bauer et al. [3]) Let G be a 1-tough graph on n vertices.
If the minimum degree sum of a stable set of order 3 is at least n, then G

has an edge-dominating cycle.

We show the following result for a vertex-dominating cycle.

Theorem 1.15 Let k > 2 be a positive integer, and let G be a k-connected
graph on n vertices such that the toughness of G is greater than k/(k + 1). If
the minimum degree sum of a 4-stable set of order k+1 is at least n — 2k — 2,

then G has a vertex-dominating cycle.

In Chapter 6, we shall study a degree condition for a bipartite graph
to have a vertex-dominating cycle. Moon and Moser gave a degree sum

condition for a hamiltonian cycle.

Theorem 1.16 (Moon&Moser [13]) Let G be a balanced bipartite graph
of order 2n with partite sets X and Y (|X| = |Y| = n). If the minimum
degree sum of nonadjacent vertices in different partite sets is at least n + 1,

then G is hamiltonian.

Ash and Jackson gave a minimum degree condition for an edge-dominating

cycle.

Theorem 1.17 (Ash&Jackson [1]) Let G be a 2-connected bipartite graph
with partite sets X and Y, and let max(|X|,|Y|) = n. If the minimum degree
of vertices is at least (n — 1)/3, then there exists a longest cycle which is an

edge-dominating cycle.

We give a minimum degree condition for a bipartite graph to have a

vertex-dominating cycles.



Theorem 1.18 Let G be a 2-connected bipartite graph with partite sets X
and Y, and let max(|X|,|Y|) = n. If the minimum degree of vertices is at

least (n + 1)/3, then G has a vertex-dominating cycle.

In Chapter 7, we consider a cycle such that every vertex is within the
prescribed distance from the cycle. Let G be a graph and let f be a non-
negative integer-valued function defined on V(G). A cycle C' is called an f-
dominating cycle if dg(v, C') < f(v) holds for each v € V(G), where dg(v, C)
denotes the distance between v and C. A set S is called an f-stable set
if dg(u,v) > f(u) + f(v) holds for each pair of distinct vertices u, v in S,
and denote by a;(G) the order of a largest f-stable set in G. We prove the

following theorem.

Theorem 1.19 Let G be a 2-connected graph, and let f be a non-negative
integer-valued function defined on V(G). If ay11(G) < k(G), then G has an

f-dominating cycle.

By taking an appropriate function as f, we can deduce a number of known
results (Chvatal-Erdés Theorem 1.2 etc.) from this theorem. Furthermore,
we consider a vertex-dominating cycle passing through prescribed vertices,
and give a further extension as follows. For a set of vertices X C V(G) and

a positive integer d, we define
aa.q(X) by
Gea(X) =max{|S]: S C X, S is a d-stable in G}.
Note that g2 (X) = d2(G[X]) = a(X), but for d > 3, &g q(X) and aq(G[X])

may take different values.

Corollary 1.20 Let G be a k-connected graph (k > 2), and let X and Y
be disjoint subsets of V(G). If a(X) + aga(Y) < k, then G has a cycle C

which contains X and dominates Y.



Chapter 2

Terminology, notation and

preliminary

2.1 Graphs

A graph G = (V, E) consists of a finite nonempty set V' whose elements are
called vertices and a set E of 2-element subsets of V whose elements are
called edges. We denote the vertex set and the edge set of G by V(G) and
E(QG) respectively. We denote by | X| the number of the elements of a finite
set X, called the orderorder!of a set of X. The order of a graph is the number
of vertices in the graph, and is written by |G].

The edge e = {u, v} is said to join the vertices u and v. If e = {u,v} is
an edge of graph G, u and v are called adjacent, while u and e are incident,
as are v and e. It is convenient to henceforth denote an edge by wv or vu
rather than by {u,v}.

A graph is complete if every two of its vertices are adjacent. We denote
a complete graph of order n by K,. A graph is bipartite if its vertex set
can be partitioned into subsets X and Y that each edge joins a vertex of

X and a vertex of Y. We denote a bipartite graph G with partition (X,Y)



by G = (X UY,E). A graph G = (X UY,E) is balanced if |X| = |Y|
and complete if F(G) = {uwv: u € X,v € Y} A complete bipartite graph
G = (X UY,E) in which |X| =n and |Y| = m is denoted by K, .

2.2 Subgraph and operations on graphs

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). Par-
ticularly if V(H) = V(G) then H is called a spanning subgraph of G. For
X C V(G), a graph G[X] is an induced subgraph by X if V(G[X]) = X and
E(G[X]) ={w € E(G): u,v € X}.

Let G and H be two graphs. The union of G and H, denoted by GU H,
is the graph with the vertex set V(G)UV (H) and the edge set E(G)UE(H).
If V(G)NV(H) = 0, then the join of G and H, denoted by G + H, is the
graph obtained from G U H by joining each vertex in V(G) to each vertex in
V(H), notation G + H.

If X C V(G), we denote by G — X a graph induced by V(G) — X. If
X C E(G), we denote G' = (V,EUX) and G" = (V,E - X) by G+ X
and G — X respectively. For v € V(G) and e € E(G), we denote G — {v}
and G — {e} simply by G — v and G — e respectively. Furthermore, if H is a
subgraph of a graph G, the subgraph G —V (H) is denoted simply by G — H.

2.3 Neighborhoods, degrees, stable sets

The neighborhood Ng(x) of a vertex x in a graph G is the set of all vertices
adjacent to z in G. For X C V(G), Ng(X) denote the set of vertices in
G — X which are adjacent to some vertex in X. Furthermore, for a subgraph
Hof G,z C V(G) and X C V(G) — V(H), we sometimes write Ny (x) and
Ng(X) instead of Ng(z) NV (H) and Ng(X) N V(H), respectively.

The degree of a vertex z, denoted by dg(x), is the cardinality of the



neighborhood of x. Similarly, we define the degree of a set of vertices X as
dg(X) = |[Ng(X)|, and the degree of a subgraph H as dg(H) = |[Ng(V (H))].
A vertex of degree 1 is called an endvertex. The minimum degree of G is
the minimum degree among the vertices of G and is denoted by 6(G). The
maximum degree is defined similarly and is denoted by A(G).

We call X C V(@) a stable set in G if any two vertices z, y € X are
not adjacent in G.. A stable set is also called an independent set. The stable
number of G is defined to be the cardinality of a maximum stable set in G,
denoted by a(G).

For a graph G, let 04(G) be the minimum degree sum of a stable set of k

vertices:

min{ng(:v): X is a stable set of G of order k} if a(G) > k

00 if 0(G) < k.

If no ambiguity can arise, we omit the index G, hence we denote N(z),
d(x), etc. We often simply write 6, a and oy, instead of 6(G), a(G) and
o,(Q), respectively.

For S C V(G) with S # 0, let Agx(S) denote the maximum degree sum
of a subset of S of order k:

Ag(S) = max{Zd(;(z): X is a subset of S of order k}

rzeX

2.4 Walks, paths and cycles

A sequence of vertices W = xgxy ... 2; is called a walk of G if z; € V(G),
r € V(G) and z;x;41 € E(G) for 0 < ¢ <[ —1. Let W = zgz1...2; be a
walk in a graph G. Then [ is called the length of W and denoted by (V).

A walk W is said to join xy and x;. The vertices zy and x; are called the

9



starting vertex and the terminal vertex of W, respectively. For ¢, 7 with
0 <i < j <, we denote the subwalk z;z;41...2; by xinj and its reverse
T;xTj_q...T; by ijxz For X, Y C V(G), if g € X and z; € Y, then W
is said to be a walk from X to Y. If (W — {x¢,z;}) N X = ), we say that
W is internally disjoint from X. For z, y € V(G), a walk from {z} to {y} is
called an z-y walk. Let P = xoxy ... 2 and Q = yoy: . .. y; be walks in G. If
Tr = Yo, the walk zoxy ... xpy1ys ...y is denoted by xoPriQy;. If P and @
have no common vertices, P and () are called disjoint.

A walk is called a path if its vertices are distinct. If z,y € V(G), then we
denote by Py a path from z to y. For X, Y C V(G), a path zPy is called
an X-Y path if V(P)NX = {z} and V(P)NY = {y}. We abbreviate an
{z}-Y path by an z-Y path. For a subgraph H of G, a path xPy is called
an H-path if V(zPy) NV (H) ={z,y} and E(H) N E(P) = 0.

A path is called a cycle if the endvertices are the same. Let C' be a cycle
of G and u,v € V(C). We denote C' with a given orientation by . We
denote by uCv a path from u to v on C'. The reverse sequence of uClv is
denoted by v'Cu. Foru € V(C), we denote the h-th successor and the h-th
predecessor of u on c by u*" and u~" respectively. We abbreviate u*! and
uw~! by u™ and u~ respectively. For a cycle C and X C V(C), we define
Xt={est:zeX}and X~ ={z7: 2z € X}.

2.5 Connectivity and toughness

A graph G is connected if any two vertices of G are joined by a path. A
maximal connected subgraph is called a component of G. We denote the
number of components of G by w(G). S C V(G) is a cutset in G if G is
connected and G — S is not connected. The cardinality of a minimum cutset
in G is called the connectivity of G, denoted by k(G). A graph G is called
k-connected if k < k(G).

10



A connected graph G is defined to be t-tough if |S| > t-w(G—S) for every
cutset S of V(G). The toughness of G, denoted by t(G), is the maximum
value of ¢ for which G is t-tough (taking ¢(K,) = oo for all n > 1).

2.6 Distance and d-stable

For a graph G and z,y € V(G), the distance between vertices = and y,
denoted by dg(z,y), is the length of a shortest path in G joining them. For
a non-empty set of vertices S of GG, we define the distance between x and S
by dg(z,S) = min{dg(x,s): s € S}. If H is a subgraph of G, we often write
dg(x, H) instead of dg(z, V(H)).

A set S of vertices in a graph G is said to be d-stable if the distance
between each pair of distinct vertices in S is at least d. We define 4 (G) by
dx(G) = max{|S| : S is a k-stable set}. Note that a 2-stable set is a stable
set and &2(G) = a(G).

2.7 Hamiltonian and dominating cycles

A cycle containing all vertices of the graph is called a hamiltonian cycle in a
graph. We say that a graph G is hamiltonian if G has a hamiltonian cycle.

An edge-dominating cycle is defined as a cycle such that every edge in
G is incident with a vertex in C, that is, V(G — C') is a stable set. A cycle
C' of a graph G is said to be a Dy-cycle if |H| < A for any component H
of G — C. Note that a D;-cycle is a hamiltonian cycle and a Dy-cycle is an
edge-dominating cycle.

Let S and T be subsets of V(G). Then S is said to dominate T if every
vertex in 7' either belongs to S or has a neighbor in S. If S dominates
V(G), then S is called a dominating set. A cycle C' is said to be a vertex-

dominating cycle if every vertex in G is adjacent to a vertex in C, that is,

11



V(C) is a dominating set in G. A cycle C' in a graph G is said to be a dy-cycle
if dg(xz,C) < X for each x € V(G). Note that a dj-cycle is a hamiltonian

cycle and a ds-cycle is a vertex-dominating cycle.

12



Chapter 3

Edge-dominating cycles in

connected graphs

3.1 Introduction
The following is a classical result due to Dirac in hamiltonian graph theory.

Theorem 3.1 (Dirac [8]) Let G be a graph of order n > 3. If § > n/2,

then G is hamiltonian.

In 1960, Ore introduced a degree sum condition for a graph to be hamil-

tonian.

Theorem 3.2 (Ore [16]) Let G be a graph of order n > 3. If 0o > n then

G is hamiltonian.

For several sufficient conditions for hamiltonicity, it is observed that
weaker conditions guarantee the existence of a hamiltonian cycle for graphs
with large connectivity. In 1980, Bondy gave a degree sum condition for a

connected graph.

13



Theorem 3.3 (Bondy [4]) Let k > 2 be a positive integer, and let G be
a k-connected graph on n vertices. If opy1 > (k+ 1)(n — 1)/2, then G is

hamiltonian.

In Theorems 3.1-3.3, the degree sum conditions are sharp and cannot
be relaxed. We consider the graph G, satisfying kK, + (k + 1)K; € Gy C
K+ (k+1)K;. Then G is a k-connected graph with §(G1) = (|V(G1)|—1)/2
and oy41(G1) = (k+ 1)(|[V(G1)| — 1)/2, but Gy is not hamiltonian.

For S C V(G) with S # 0, let Aj(S) denote the maximum degree sum
of a subset of S of order k:

Ag(S) = max{z da(z) - X C S,|X| = k}.

zeX

The first purpose of this paper is to show that Theorem 3.3 admits the

following extension.

Theorem 3.4 Let k > 2 be a positive integer, and let G be a k-connected
graph on n vertices. If Ay(S) > n for any stable set S of order k + 1, then

G is hamiltonian.

Since AQQ(S) > A’“ﬁfs) for S C V(G) with |S| = k+1, it is easy to see that
Theorem 3.4 implies Theorem 3.3. On the other hand, Theorem 3.3 does not
imply Theorem 3.4. Let Gy = Ky + [(k — 1) K3 U{K| + (K, U Ky —ok—m) },
where £k > 2 and n > 2k + 4. Then G5 is a k-connected hamiltonian graph
with Ay(S) = n for any stable set S of order k + 1, but o441(G2) < (k +
1)(n—1)/2.

Since an edge-dominating cycle is a generalization of a hamiltonian cycle,

there may be sufficient conditions for a graph to have an edge-dominating
cycle, which correspond to known sufficient conditions for hamiltonicity.
In 1971, Nash-Williams gave a minimum degree condition for an edge-

dominating cycle.
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Theorem 3.5 (Nash-Williams [14]) Let G' be a 2-connected graph on n
vertices. If § > (n+2)/3, then any longest cycle of G is an edge-dominating
cycle.

The second purpose of this paper is to show that Theorem 3.5 also admits
a similar relaxation under an additional assumption on connectivity. The
degree sum condition for a 2-connected graph is already known. The result
can be derived from the following theorem due to Bondy! 9% graph is called
k-path-connected if any two vertices are connected by a path of length at

least k.

Theorem 3.6 (Bondy [4]) Let k > 2 be a positive integer, and let G be
a k-connected graph on n vertices, and let C' be a longest cycle of G. If

o1 > n+k(k—1), then G—C contains no (k—1)-path-connected subgraph.

The case k = 2 of Theorem 3.6 implies the following (a generalization of

Theorem 3.5):

Theorem 3.7 (Bondy [4]) Let G be a 2-connected graph on n vertices. If

03 > n + 2, then any longest cycle is an edge-dominating cycle.

On the other hand, Fraisse showed the following theorem for the existence

of a Dy-cycle.

Theorem 3.8 (Fraisse [10]) Let k > 2 be a positive integer, and let G' be
a k-connected graph on n vertices. If op11 > n+ k(k — 1), then G has a
Dy-cycle.

Unfortunately, neither Theorem 3.6 nor Theorem 4.9 implies a degree
sum condition for a k-connected graph (k > 3) to have an edge-dominating

cycle. So we show the following result.
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Theorem 3.9 Let k > 2 be a positive integer, and let G be a k-connected
graph on n vertices. If A3(S) > n + 2 for any stable set S of order k + 1,

then there exists a longest cycle which is an edge-dominating cycle.

Theorem 3.9 is best possible in a sense. Consider the graph G5 = K +
(k 4+ 1)K3, where k > 2 and n > 3k. Then Gj is a k-connected graph with
A3(S) = |[V(G3)| + 1 for any stable set S of order k + 1, but any longest
cycle of G3 is not edge-dominating. On the other hand, Theorem 3.9 does
not assert that any longest cycle is an edge-dominating cycle. It remains
unresolved whether any longest cycle is an edge-dominating cycle under the

hypothesis of Theorem 3.9.

3.2 Proof of Theorem 3.4

In each lemma below we assume that G is a nonhamiltonian graph on n
vertices, C' a longest cycle in G and H a component of G — V(C'). Since the
first lemma is standard in hamiltonian graph theory, we do not prove them

in this paper.

Lemma 3.10 If uPv is a path with |V(P)| > |V (C)|, then uwv ¢ E(G) and
dg(u) +dg(v) <n—1.

By Lemma 3.10, the following lemma is plain.

Lemma 3.11 Let ug € V(H) and uy,uy; € No(H)". The following state-

ments hold:
(i) Ne(H)' U {ug} is a stable set.
(ii) dg(ug) + de(ur) <n—1.

(ili) dg(uq) + dg(uz) <n—1.
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Proof of Theorem 3.4. Suppose that G is a k-connected nonhamilto-
nian graph on n vertices satisfying the hypothesis. Hence there exists a
component H of G — C. Since G is k-connected, we have |No(H)| > k.
Let {uy,ug,... ,uxy C Ne(H)" and uwy € V(H). By Lemma 3.11 (i),
{ug, uy,ug, ... ,ux} is a stable set of order £ + 1. By Lemmas 3.11 (ii) and
(iii), we have dg(w;) + de(u;) < n —1 for any ¢, with 0 < i < j < k. This

contradicts the hypothesis. U

3.3 Proof of Theorem 3.9

Let G be a graph on n vertices such that there exists no longest and edge-

dominating cycle. Choose a cycle C' such that
(i) |V(C)]| is as large as possible, and
(i) |E(G — C)| is as small as possible, subject to (i).

We give an orientation to C. Let Hy be a component of G—C with |V (Hy)| >
2.

Lemma 3.12 dg(uy) + dg(usg) + dg(us) < n+ 1 for uy, us, us € No(H)™".
Proof. Since C' is a longest cycle, we can easily obtain the following claim.
Claim 1 For 1 < i # j < 3, the following statements hold:

(1) For any u; € Neo(Ho)", u; ¢ No(H).

(2) For any u;,u; € No(Hy)™", there exists no C-path joining u; and u;.

(3) For any w;,u; € Ne(Hy)" and w € uzﬁu;, if there exists a C-path

joining u; and w, there exists no C-path joining u; and w™.
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Without loss of generality, we may assume that u;, us and us appear in
this order along O Let x; = u; . Note that x; € No(Hy). Let C; := uiﬁxiﬂ

(indices are taken modulo 3) and z, € Ny, (x;).

Claim 2 Ifv=2 € Ng,(u;11) and v € Ng,(u;), then Ng_c(v™) # 0.

Proof. Suppose that v € Ng,(w;) and v™2 € Ng,(uip1). Let aiPaf, | be a
path in Hy. Then C' = xiﬁuiﬂv_fﬁuw695“195;“]395;95@- is a cycle. By
(1), @41 Px; contains only one vertex of Hy, since V(C' — C’) = {v™}. Let
u € Ny, (x;) "Ny, (z;). Therefore |[E(G —C")|—|E(G—C)| = [Ng—c(v™)| —
|Ng, (u)|. By |V(H)| > 2, we obtain |Ng,(u)| > 1. By (ii), we have |E(G —
C")| > |E(G — C)|. Hence |Ng_c(v™)| > 1, that is, Ng_c(v™) # 0. O

By Claim 2, for each vertex v € N¢,(u;), we define v* as folllows: if v=2 €
Ne,(ui1), then v* = w for an arbitrary vertex w € Ng_¢(v™); otherwise

v* =072 For 1 <i <3, we define H; := {v* € V(G — C): v € Ng,(u;) }-

Claim 3 If vy # vq, then v # vj.

Proof. Suppose that v; # vy and v} = v;. Then we know that v; € V(G—C).
Let v; € V(C;) and vy € V(C}). If i = j, then, without loss of generality, we
may assume that v; and vy appear in this order along C—’l) , and let xj, = zq. If
i # j, then, without loss of generality, we may assume that v; € V(C}) and
vg € V(Cy), and let x;, = x3. By (i), v1 and vy are not consecutive vertices.
Let &, P}, be a path in Hy. Then z; C upvy C v uy Coyvtvy Capah Paay |
et z} Pz}, be a path in Hy. Then 21 Cupvy C v uy Cvivjve Capa) Paxy is

a cycle longer than C'; a contradiction. U

Let N¢,(u;)™ := {v*: v € Ng,(u;)}. By Claim 3, note that |Ng,(u;)| =
|Ng, (u;)"|. Clearly, we have Ng,(u;)" U Ng,(u;i11) U N, (uire)” C (C; U H; U
{u;11}). By Claim 1 (3), N¢,(u;)", Ne,(uiy1) and N, (uirg)” are pairwise
disjoint. By Claim 3, we have |Ng,(w;)"| + |Ne, (uiv1)] + |Ng,(ui2) | <
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[V(Cy)| + |V(H;)| + 1. Thus, we obtain that

de,(u;) +do,(wiv1) +do,(uiva) = |Neg(us)| + [Ny (wiv1)| + [ Neg (wigo)]
= |N¢,(w:)"| + [Ne, (wir1)| + [ Ne, (wig2) |
< [V(C)+|V(H:)| + 1.

Therefore the following inequality holds:

do(ur) + de(uz) + do(us) < Y (IV(CW)| + [V(Hy)| + 1)
V(O + > [V(H)| +3. (3.1)

h=1

IN

Claim 4 For any 1 <1i,j <3, Ny, (u;) = 0.

Proof. We consider only the case i = 1 and j = 2. The other cases can be
proved similarly. Suppose that w € V(H;) and v € Ng(w). Since ugv™ €
E(G), by Claim 1 (3), we obtain that wuy ¢ E(G). O

Let i,7 be integers satisfying 0 < i < 3,1 < j < 3. By Claim 1(1),
we have Np,(u;) = 0. By Claim 1 (1) and Claim 3, we have H; N H; = (.
By Claim 1 (2), we have Ng_c(u;) N Ne_o(u;) = 0. Since | J;_, V(Hy) C
V(G — C), we obtain that

da—c(ur) + da—c(uz2) + dg—c(us)
< V(G-0) = JV(H)
h=0
< V(G=-0) = [V(H,)
h=0
< V(G-0) = [V(H)| -2 (3.2)

h=1
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Thus, by the inequality (3.1) and (3.2), we obtain
da(u) + dg(ug) + da(us) < V(G| +|V(G-C)|+1=n+1.

0

Lemma 3.13 dg(ug) + de(ur) + da(ug) < n+ 1 for any uy € V(Hp) and
U, Ug € Nc(H0)+.

Proof. By using the similar argument as in the proof of Lemma 1, we can

prove this lemma. ([l

Proof of Theorem 3.9. Suppose that G is a k-connected graph on
n vertices satisfying the hypothesis, and there exists no longest and edge-
dominating cycle. Hence there exists a component Hy of G—C with |V (Hy)| >
2. Since G is k-connected, we have |Ngo(Hg)| > k. Let {uy,ug,... ,ux} C
Ne(Hy)" and ug € V(Hp). By Lemma 3.11 (i), {ug, u1, ug, . .. ,us} is a stable
set of order k+1. By Lemmas 3.12 and 3.13, for any h,7,7,0 < h <i < j <k,
we have dg(up) + de(u;) + da(uj) < n+ 1. This contradicts the hypothesis.
U

3.4 Remarks

Remark 1.

In 1987, Bondy and Fan proved that a much weaker degree sum condition

guarantees the existence of a vertex-dominating cycle.
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Theorem 3.14 (Bondy&Fan [5]) Let G be a k-connected graph (k > 2)

on n vertices. If Z dg(x) > n — 2k for every 3-stable set S of order k + 1,

zeS
then G has a vertex-dominating cycle.

Under an additional assumption on connectivity, the relaxation of the
degree condition for a dominating cycle is similar to that for a hamiltonian

cycle but not that for a vertex-dominating cycle.

Remark 2.

In 1983, Veldman studied the relation between the edge degree and the exis-
tence of an edge-dominating cycle. The edge degree dg(e) of the edge e = uv
is defined as the number of neighbours of e, i.e., |[N(u) U N(v)| — 2. Two
edges are called remote if they are disjoint and there is no edge joining them.

Veldman proved the following result.

Theorem 3.15 (Veldman [18]) Let k > 2 be a positive integer, and let
G be a k-connected graph on n vertices. If Zf:o da(e;) > k(n —k)/2 for
any k + 1 mutually remote edges eg,e1,... ,e, of G, then G has an edge-

dominating cycle.

Wang and Zhang proved the following fact which was conjectured by
Veldman.

Theorem 3.16 (Wang&Zhang [20]) Let G be a k-connected graph on n
vertices. If S°F  da(e;) > (k+ 1)(n — 2)/3 for any k + 1 mutually remote

edges ey, €1, ... ,e, of G, then G has an edge-dominating cycle.

Theorem 3.16 also admits the following extension. For F' C E(G) with
S # 0, let Ag(F) denote the maximum value of the edge degree sums of the
subset of S of order k:

A(F) = max{z dg(e) : X C F,|X| = k}.

eeX

21



Theorem 3.17 Let G be a k-connected graph on n vertices. If As(F) >
n — 1 for every set F' of k 4+ 1 mutually remote edges, then G has an edge-

dominating cycle.

Theorem 3.17 can be proved by a similar approach of the proof of Theorem

3.9.
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Chapter 4

Degree sum and connectivity

for edge-dominating cycles

4.1 Introduction

In 1960, Ore gave a degree sum condition for the existence of a hamiltonian

cycle.

Theorem 4.1 (Ore [16]) Let G be a graph of order n > 3. If o5 > n, then

G is hamiltonian.

In 1989, Bauer, Broersma, Li and Veldman showed the following result

concerning the degree sum and connectivity.

Theorem 4.2 (Bauer et al. [2]) Let G be a 2-connected graph on n ver-

tices. If 03 > n + K, then G is hamiltonian.

Theorem 4.2 is a generalization of the following result.

Theorem 4.3 (Haggkvist&Nicoghossian [11]) Let G be a 2-connected
graph on n vertices. If 6 > (n + k)/3, then G is hamiltonian.

23



Theorem 4.2 is best possible in a sense. Let 2 < k and %’H <m <ozt

We consider the graph Gy = K,,, + mK; U K,,_,, by joining x vertices of K,,
and each vertex of K, _o,,. Then k(Gy) = K, 03(G1) =n+k — 1 and G, is
not hamiltonian.

In 1980, Bondy showed the following theorem for an edge-dominating

cycle.

Theorem 4.4 (Bondy [4]) Let G be a 2-connected graph on n vertices. If

03 > n + 2, then each longest cycle of G is an edge-dominating cycle.

Motivated by the above observations, we extend Theorem 4.4 just as
Theorem 4.1 is extended to Theorem 4.2. However, the extension of Theorem

4.4 was already established by Sun, Tian and Wei.

Theorem 4.5 (Sun et al. [17]) Let G be a 3-connected graph on n ver-
tices. If 04 > n + 2k, then G contains a longest cycle which is an edge-

dominating cycle.

Theorem 4.5 is best possible for kK = 3, but is not best possible for Kk > 4
by considering the following graph G5. Let 3 < k and %""2 <m < %2 We
consider the graph Gy = K,,, + mKyU K,,_3,, by joining x vertices of K,, and
each vertex of K,,_3,. Then k(G2) = K, 04(G2) = n+ k4 2 and any longest

cycle of G5 is not an edge-dominating cycle. So we prove the following:

Theorem 4.6 Let G be a 3-connected graph on n vertices. If 0, > n+k-+3,

then GG contains a longest cycle which is an edge-dominating cycle.

The following corollary can be derived easily.

Corollary 4.7 Let G be a 3-connected graph on n vertices with o4 > n +
k+ 3. If a < ¢, then GG is hamiltonian.

Corollary 4.7 is a generalization of the following theorem.
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Theorem 4.8 (Nikogosyan [15]) Let G be a 3-connected graph on n ver-
tices. If § > max{(n + 2k)/4, a}, then G is hamiltonian.

Fraisse showed the following theorem for the existence of a Dy-cycle.

Theorem 4.9 (Fraisse [10]) Let G be a k-connected graph on n vertices,
where n > 3. If 0311(G) > n+ k(k — 1), then G contains a Dy-cycle.

In [17], Sun et al. proposed the following question: Replacing the con-
dition ox41(G) > n + k(k — 1) of Theorem 4.9 by the stronger condition
0k+1(G) > n+ (k — 1)k, can we replace k of the conclusion of Theorem 4.9

by k — 1?7 However, we propose the following conjecture.

Conjecture 4.10 Let G be a k-connected graph on n vertices, where n > 3.
If 0341(G) > n+ x4+ k(k — 2), then G contains a longest cycle of which is a
Dy_1-cycle.

Conjecture 4.10 has been verified for k& = 2 (Theorem 4.2) and k = 3
(Theorem 4.6), and, if it is true, is best possible in a sense. Let k£ < x and
%”f“ <m< "’T’““ We consider the graph G35 = K, + mK,_1 U K,, g
by joining k vertices of K,, and each vertex of K, j,,. Then k(G3) = k,

04(G3) =n+ k + k(k — 2) and any longest cycle of Gy, is not a Dy_;-cycle.

4.2 Claims

Let G be a graph on n vertices satisfying the hypothesis of Theorem 4.6.
Assume that there exists no longest and edge-dominating cycle in G. Choose

a cycle C such that
(C1) C is a longest cycle of G, and

(C2) |E(G — ()] is as small as possible, subject to (C1).
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Since C' is not an edge-dominating cycle, there exists a component H of
G — C such that u,v € V(H). Let No(H) = {1, 22,... ,2:}. We give an
orientation to C. Let u; = ;7 and T = No(H)™. Furthermore, let S be any
vertex cut set with |S| = k, and By, B, ..., B, the components of G — S,

where p is the number of components of G — S.

By (C1), we obtain the following claim.

Claim 1 (Sun et al. [17] Claim 2)
(1) For any u; € T, u; ¢ No(H).
(2) For any u;,u; € T, there exists no C-path joining u; and u;.

3) For any u;,u; € T and w € uiﬁx-, if there exists a C-path joining u;
j j

and w, there exists no C-path joining u; and w~.

By Claims 1 (1) and (2), the following facts are plain.
Fact 1 T'U {u} is a stable set.

Fact 2 Z dG_C(ui) S n — |C| - |H|

u; €T

Furthermore, by (C2), we obtain the following claim.
Claim 2 (Sun et al. [17] Claim 3)
(1) For any u; € T, u; ¢ Nc(H).
(2) For any u;,u; € T, there exists no C-path joining u; and uj

(3) For any u;,u; € T and w € ujﬁxj, if there exists a C'-path joining wu;

and w*, there exists no C-path joining u; and w™.

Claim 3 Let w;,uj,uy € T and X C (Ng(u) N Ne(v)) — Ne({us, uj, ur}).
Then dg(ul) + dg(’LLj) + dg(uk) <n-— |X‘ — |H‘ + 3.
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Proof. Without loss of generality, we may assume that u;, v; and u; appear
in the consecutive order along . Let C, = uiﬁxj, Cy = ujﬁxk and
Cs = ukﬁxz First we show that for h =1, 2, 3,

dch(ui) + dch(uj') + dch(uk) < ‘Ch‘ — ‘X N Ch‘ + 1.

We consider only the case h = 1. The case h = 2,3 can be proved similarly.
Since X C (N¢(u) N Ne(v)) — Ne({uws, uj, u}), we have wy & N, (u;) > U
Ney (u;) U Ne, (ug)™ for any wy € Cy N X. Thus Ne, (us) "> U N, (u) U
Ne, (ug)” € Cy — (Cy N X) U {z;}. By Claims 1 (3) and 2 (3), Ng, (u;) >,
Ne¢, (u;) and N, (ug)~ are pairwise disjoint. Hence we have d¢, (u;)+de, (u;)+
de, (ug) < |Cy| = |Cy N X| + 1. Thus we obtain

3
de(us) + do(uy) + de(ur) < (ICh] = [X NGyl +1) =|C| = |X| +3.
h=1

By Fact 2, we have dg(u;) + de(uj) + da(ug) <n —|X| —|H| + 3. O

Claim 4 d¢(u) > k+ 1.

Proof. Let u;,u;j,u; € T. By Claim 3, we obtain dg(u;) +da(u;) +de(ux) <
n — |H| + 3 letting X = (). By Fact 1 and the degree condition, we have
dg(u) > k + |H|. From dy(u) = |H| — 1, we have do(u) > k + 1. O

Claim 5 |T'— S| > 3.

Proof. By Claim 4, we have | N¢(H)| > x+ 1. This implies |[No(H)™ — S|+
|Nc(H)™ — S| > [Ne(H)| + |[Nc(H)"| = |S| > 2(k+1) =k = +2 > 5.
Thus either [No(H)" — S| > 3 or [No(H)™ — S| > 3 holds. Without loss of
generality, we may assume that [T — S| = |[No(H)" — S| > 3. O

Let |[BiNT|>|B.NT|>--->|B,NT]|.
Claim 6 T'C B;US.
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Proof. First, we show that 7' C B; U B, U S. By Claim 5, we may assume
that B, NT # 0 for h =1,2,3. By Claims 1 (1), (2) and 2 (2), we have

de(yn) < |Bu| +[S| = (BiUS)N(HUTUTT — {y,})]

for y, € B;NT, h = 1,2,3. By Claim 4, |S| +1 < |T|. Since Ng(u) C
TUH — {u}, we have dg(u) < |T'|+ |H| — 1. Thus we obtain

da(y1) + da(y2) + da(ys)

3 3
DBl 315 =D I(ByUS)N(HUTUTT — {y})]
h=1 h=1

IN

P 3
< n+2lS| =D [Bul =) [(BhUS)N(HUTUT —{y;})|
h=4 h=1

< n+2S| = (|H|+|T|+|T" = 3) <n+k—dg(u) + 1.

Hence dg(y1) + dg(ya) + da(ys) + dg(u) < n+ k + 1, a contradiction.

Next, we show that T C B; U S. Suppose that B, N'T # () for h = 1, 2.
By Claim 5, suppose that y;,y, € B1 T and y3 € B, NT. Without loss of
generality, we may assume that y;, y» and y3 appear in the consecutive order
along . Let C) = ylﬁyz’, Cy, = ygﬁyg, Cs = ygﬁyf, Wy = Bo N (Y and
T, =T NCY. By Claims 1 and 2, we obtain the following statement.

(i) Ne,(y1)” and Ng, (y2) are disjoint, and Ne, (y1)” U Ne, (y2) € (Cy —
(WL U (Th —{y1})) Uy, where C] = {w € Wi: wt € N¢, (y1)}

(i) Ney(y2)” and Ne,(y1) are disjoint, and Ne, (y2)” U Ney(y1) € (Co —
(Wo U (T — {y2})) U C%, where C, = {w € Wy: w' € Ng,(y2) }-

(iii) NC3(y1)+ and Ng,(y2) are disjoint, and Ncg(y1)+ U Ney(y2) € (C3 U
{y1} — (W3 UTy)) UCS, where C%, = {w € W3: w™ € Ny (y1)}-
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By (i)-(iii), the following inequality holds:

de(yi) +do(y2) < [CU{p} = [BaNCl = [Th U T, UTS — {y1, y2}]
3
""Bzﬂ(TlUTzUT;)’WLZWM
h=1
< |Cl=|BenNC|—|T|+3

3
+HBy N (T U T, UTH[+ ) |G-
h=1

By Claim 1 (3), we have N¢(y3) NC} = 0 for h = 1,2, 3. By the definition of
¢y and Claims 1 (2) and 2 (2), we have |J;_, C) € BN C — (T UT, UTY).
This implies

de(ys) < |BoNCl+SNC| = |[BoN (T UT, UTS )| — i |Cyl.
h=1
Thus we obtain
de(yr) + do(y2) +do(ys) < |Cl+[SNCI = [T+ 3 < [Cl 4k —|T| +3.
By Fact 2, we have
da(y1) +da(ys) +da(ys) <n+r —|T|— |H|+3 <n+k— (dg(u) + 1) + 3.
Therefore dg(y1) + da(y2) + da(ys) + da(u) < n+ x + 2, a contradiction.

4

Claim 7 V(H)N By = 0.

Proof. Suppose that v € V(H)NB,. By Claim 6, we have No(u)™ C B;US.
Hence (Ne(u)™ N By) U (Ne(u)™ N S) € S. By Claim 4, we have x4 1 <
|Nc(u)*| <|S| = &, a contradiction. O

29



4.3 Proof of Theorem 4.6

Suppose that Theorem 4.6 fails to hold, then none of the longest cycles in
G is an edge-dominating cycle. Let C' and H be chosen as in Section 2. Let
N¢(H) = {x1,2,... ,2¢}. We give an orientation to C. Let u; = z; and
T = Ne(H)™.

Let S be any vertex cut set with |S| = «, and By, By, ..., B, the com-
ponents of G — S, where p > 2 is the number of components of G — S. By
Claims 5 and 6, we may assume that u;,u; € By NT and | J;_, B,NT = 0.
Let C, = uiﬁxj, Cy = ujﬁxi, Wy=BNCy T, =TNCy, Dy ={w €
Wi:wt € Ne, (u;)} and Dy = {w € Wa: wt € Ng,(uj)}. By Claims 1 and

2, we obtain

(i) Ne,(ui)™, Ne,(u)) are disjoint and Ne, (w;)” U Ney (uj) € Cp — (Wi U
Tl — {ul}) U Dl-

(ii) Ney(uj)™, Ne,(w;) are disjoint and Ne,(uj)” U Ne,(u;) € Cy — (W U

By (i) and (ii), we have dc(u;) + de(u;) < |C| = |BoNC| =T+ 2 +
S 2 |Dul. On the other hand, by Fact 2 and u;, u; € By, we have dg_ ¢ (u;)+
de—c(u;) <n—|C|—|H|—|B2N (G — C)|. Thus we obtain

2
do(w) + de(u;) < n—|Be| —|T| — [H| + Y |Dy| +2
h=1
2

< n—|By| = (do(u) + 1) + > [Dal +2,

h=1

and so

de(u;) + de(uy) + da(u) <n —[Ba|+ Y | Dyl + 1. (4.1)

h=1
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We consider two cases.

Case 1. By — (Ng(u) N Ng(v)) # 0.
We divide into three subcases.
Case 1.1. D;, = () for any h =1, 2.

By the inequality (4.1), we have dg(u;) + dg(u;) + da(u) <n —|Bs| + 1.
Without loss of generality, we may assume y € By — Ng(u). By Fact 1 and
y € By, {u;,uj,u,y} is a stable set. Since dg(y) < |Bs2| + |S| — 1, we have
de(u;) + da(u;) + da(u) + da(y) < n+ 15| < n+ K, a contradiction. O

Case 1.2. Dy # () for any h = 1, 2.

Without loss of generality, we may assume that |D;| > |Dsy|. For each
vertex x € V(C'), we define x* as follows: if Ng_c(x) # () then 2* = w for
an arbitrary vertex w € Ng_c¢(x); otherwise 2* = z=. We define D} :=
{z*: x € Dp}. Let yo € Dy. By Claim 1 (1), we have yo ¢ Ng(u). Hence

{u;, uj, u,y2} is a stable set.
Claim 8 N¢(y2) C BoUS — (D, U Dy).

We shall show (D; U Di) N Ne(y2) = 0. Let x1Pyxy be a path in
H. First, we show that D; N Ng(y2) = 0. If y; € Dy N Ng(ys), then
xlﬁy;uj ﬁygylﬁuiyfﬁmPle is longer than C| contradicting (C1). Next,
we show that DN Ng(y2) = (. Suppose that y; € DiNNg(y2). Ify; € V(G—
("), then the cycle z; ?y;ujﬁygylﬁuiyfﬁngH:pl is longer than C, a con-
tradiction. If y; € V(C), then " = xlﬁy;ujﬁygylﬁuiy#ﬁ@PH:pl is a
cycle with |V (C")| = |[V(C)|. Since V(C)—=V (C") = {y; } and Ng_c(y;) =0,
we have |E(G — C")| < |E(G — C)|. This contradicts (C2). Thus we have
(D UDY) N Ne(ys) =0. O
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By the definition of Dj, we have D, N Dy = 0 and |Dy| = |Dj|. Fur-
thermore, since D;, C By, we get Dy C By US. Thus, by Claim 8, we

have

da(y2) < |Bo| +[S|— (D1 U DY)
< |Bs| + S| — 2|D;|
2
< |B2‘+‘S‘—Z|Dh|.

h=1
Hence, by the inequality (4.1), we obtain dg(w;) + da(u;) + da(u) +
da(y2) <n+|S|+1<n+k+ 1, a contradiction.

Case 1.3. D, # 0 and Ds_p, =0 for h =1,2.
By symmetry, we may assume that D; # 0 and Dy = (). We define
Dy ={weV(C - By):ye Dy, V(w Cy) C By}

Note that |Dy| = | Dy|, since (T'UD{)N By = 0. Since Df C B,, we have
Dy N Ne(u;)™ = 0. This implies (Dy — Ne(u;)) N (Ne, (u;)”~ U Ney (1)) = 0.
Thus, since N¢(uj) NT = @, we obtain
de(ui) +de(u;) < |C| = |Bs| = |T|+2+|Di| = | Dy = Ne(u)| + Dy N T

= |C| = |By| = |T| +2+ |Di N Ne(w)| + |Di N T|
= |C| = |Ba| = |T|+2+ Dy N (Ne(uy) UT)|.
Let 7" = {up, € T: Ng_c(up) = 0,1 < h < t}. By Claims 1 (1) (2), we

have Ng_c(T —T") N (V(H) U Ng_c(u;) U Ne—c(u;)) = 0. Thus, by Fact 2,

we have
dg—c(u;) + da—c(u;) <n —|C| = |H| — |[Ng—c(D1 0 (T = T"))].

Let y1,y2 € T —T". By Claim 1 (2), Ne_c(y1) N Ng—c(y2) = 0. Hence
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we have |[Ng_o(T —T")| > |T — T'|. Thus we obtain

d(;(uz) + dg(Uj) + d(;(u)
< n—|By|+1+|D;N (Ne(u;) UT)| = |Ng_c(Dy 0 (T = T'))|
< n—|By| +1+|Dy N (Ne(u;) UT)| = |Dy N (T =T

= n—|By| +1+|Dy N (Ne(u;) UT). (4.2)

Suppose that y € By — Ng(u). Since dg(y) < |B2| + |S] — 1, we have
de(u;) + de(u;) + da(u) + daly) < n+ K+ |Dy N (Ne(u;) UT')|. By Fact
1 and y € By, {u;,uj,u,y} is a stable set. Thus, by the degree condition,
we have | Dy N (Ne(uy) UT')| > 3, that is, Dy N (Ne(u;) UT') # @. Choose
2 € Dy N (Ng(uj) UT') such that |uzﬁz| is as large as possible.

Claim 9 {w;, u;,u,z"} is a stable set.

Proof. Suppose that v € Ng(z*). Then 2™ € T. By Claim 6, we have
272 € By U S. This contradicts the definition of Dl. Hence we have u ¢
Ng(z1). On the other hand, since u;,u; € By and z* € B,, we obtain

u;, u; & Na(zT). Thus, by Fact 1, {u;, u;,u, 27} is a stable set. O
) J¢ ( ) y ) y Yy By

Claim 10 Ng(zt) C (By — {z*H)US — (D1 Nu; C ).

Proof. Suppose that y € No(21)N(D; ﬂuiﬁz). By the definition of Dy, we

have y* € Ne(w;). If 2 € Ne(uy), then the cycle xi?ujz?eruiﬁerﬁijxi

is longer than C, contradicting (C1). If z € T”, then C" = 2, C 2ty Cuyt Tz~
Pz; is a cycle with |[V(C")| = |[V(C)| and |E(G — C")| < |E(G — ()], since

Ng_c(z) = (. This contradicts (C2). Thus we have N¢(z)N(D; ﬂulﬁz) #

0. O

By the choice of z, we obtain |D; N uzﬁz| > |Dy N (Ne(u;) UTY)| — 1.
Thus, by Claim 10, we have dg(z%) < |Bs| — 14 |S| — |D1 N ulﬁz| <
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|By| + |S| — | D1 N (Ne(uy) UT')|. Hence, by the inequality (4.2), we obtain
da(u;) + da(u;) + da(u) + de(zt) <n+ S|+ 1 <n+r+1,
a contradiction. This completes the proof of Case 1.

Case 2. By — (Ng(u) N Ng(v) = 0.

By Claims 5 and 6, |By NT| > 3. Let u;,uj,u, € By NT. By Claim
7, By C (Ne¢(u) N Ne(v)) — Ne({wi, u;,u,}). Hence we obtain de(u;) +
de(uj) +de(u,) < n—|Bg|—|H|+3 letting X = B in Claim 3. Let y € Bs.
Since de(y) < |Ba| + S| — 1, we have dg(u;) + da(uj) + da(ug) + da(y) <
n+ kK —|H|4+2 < n+ k, a contradiction. This completes the proof of Case
2 and the proof of Theorem 4.6. U
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Chapter 5

Vertex-dominating cycles in

tough graphs

5.1 Introduction

There are a number of sufficient conditions for a graph to have a hamiltonian
cycle. Since a vertex-dominating cycle is a generalization of a hamiltonian cy-
cle, there may be sufficient conditions for a graph to have a vertex-dominating
cycle, which correspond to known sufficient conditions for hamiltonicity. One
such example was obtained by Bondy and Fan [5]. Bondy [4] proved the fol-

lowing theorem concerning degree sums and hamiltonicity.

Theorem 5.1 (Bondy [4]) Let k be a positive integer, and let G be a k-
connected graph. If Y _cdg(z) > $(p — 1)(k + 1) for every stable set S in
G of order k + 1, then G has a hamiltonian cycle.

In 1987, Bondy and Fan proved that a much weaker degree sum condition

guarantees the existence of a vertex-dominating cycle.

Theorem 5.2 (Bondy&Fan [5]) Let k > 2 and let G be a k-connected
graph of order p. If )" _odg(x) > p — 2k for every 3-stable set S of G of
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order k + 1, then GG has a vertex-dominating cycle.

In Theorem 5.1 and Theorem 5.2, the degree sum conditions are sharp
and cannot be relaxed. For example, for Theorem 5.1, G = Ky + (k + 1)K,
satisfies Y o da(z) = 3(|[V(G)|—1)(k+1) for the unique stable set S of order
k41 (which is the largest stable set), but G is not hamiltonian. For Theorem
5.2, Bondy and Fan gave the following example. Let H = Kj + (k + 1)K,
where [ > k. Then for each K;, we introduce a new vertex and join each
new vertex and every vertex in the corresponding K; by an edge. Let G be
the resulting graph. Then |V(G)| =k+ (k+1)(l+ 1) and G is k-connected.
Let S = V(G) — V(H). Since each vertex in S has neighbors only in the
corresponding K, S is a 3-stable set (actually, S is a 4-stable set). Since
each vertex in S has degree [, Y _cda(x) = (k+ 1)l = |[V(G)| — 2k — 1.
However, G has no vertex-dominating cycle.

Note that both sharpness examples in the previous paragraph have tough-
ness k/(k+1). Actually, for several sufficient conditions for hamiltonicity, it
is observed that weaker conditions guarantee the existence of a hamiltonian
cycle for graphs with large toughness. For example, the case k = 1 of Theo-
rem 5.1, known as Ore’s theorem, admits a weaker degree sum condition for

1-tough graphs.

Theorem 5.3 (Ore [16]) Every graph G of order p > 3 which satisfies
dg(z) +dg(y) > p for every pair of distinct nonadjacent vertices x and y has

a hamiltonian cycle.

Theorem 5.4 (Jung [12]) Every 1-tough graph of order p > 11 which sat-
isfies dg(z) + da(y) > p — 4 for every pair of distinct nonadjacent vertices

and y has a hamiltonian cycle.

Like a hamiltonian cycle, some sufficient conditions for the existence of

an edge-dominating cycle can be relaxed if we put a further assumption on
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toughness. One such example is the following.

Theorem 5.5 (Bondy [4]) Let G be a 2-connected graph of order p. If
Y sesda(x) > p+ 2 for every stable subset S of V(G) of order 3, then any

longest cycle of G is an edge-dominating cycle.

Theorem 5.6 (Bauer et al. [3]) Let G be a 1-tough graph of order p. If
Y sesda(x) > p for every stable subset S of V(G) of order 3, then any

longest cycle of G is an edge-dominating cycle.

The purpose of this paper is to show that Theorem 5.2 also admits a

similar relaxation under an additional assumption on toughness.

Theorem 5.7 Let k > 2, and let G be a k-connected graph of order p with
t(G) > k/(k+1). If Y gda(x) > p — 2k — 2 for every 4-stable subset S of
V(G) of order k + 1, then G has a vertex-dominating cycle.

The example of sharpness for Theorem 5.2 shows that the toughness
k/(k+1) in Theorem 5.7 is sharp. On the other hand, we know the sharpness
of degree condition only for k = 2. Let m > 3 and take three complete graphs
Hy, Hy and Hj; of the same order m. Take three distinct vertices x;, y; and
w; in each H; (1 <1 < 3). Let K3 be a complete graph of order three with
V(K3) = {v1,v2,v3}. Let vy be a new vertex. Then construct G by

Then G is a 2-connected graph with ¢(G) =1 > % and S da(u) > |G| -7
for the 4-stable set S of order three, but G has no vertex-dominating cycle.
This example shows that even under a stronger condition ¢(G) > 1, we cannot
relax the condition on the degree sum. For k£ > 3, we do not know whether

the degree bound p — 2k — 2 is best possible.
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5.2 Proof of Theorem 1

To prove Theorem 5.7, we use two known results. Chvétal-Erdés [7] showed
that for k > 2, a k-connected graph G with independence number at most k
and order at least three is hamiltonian. Broersma [6] proved a Chvatal-Erdds

type theorem for the existence of a vertex-dominating cycle.

Theorem 5.8 (Broersma [6]) Let G be a k-connected graph (k > 2). If
G4(G) < k, then G has a vertex-dominating cycle.

We also use a degree sum condition for a balanced bipartite graph to be

hamiltonian.

Theorem 5.9 (Moon&Moser [13]) Let G be a balanced bipartite graph
of order 2n with partite sets X and Y (|X| = 1|Y| =n). If dg(z) + dg(y) >
n+1 for each x € X and y € Y with xy ¢ E(G), then G has a hamiltonian
cycle.

Proof of Theorem 5.7. Assume that G has no vertex-dominating cycle.
By Theorem 5.8, we have é4(G) > k. Let S = {x¢,x1,..., 2} be a 4-stable
set in V(G), and let B; = {x;} U Ng(z;) (0 < i < k). For each i, j with
0<i<j<k,wehave B;NB; =0 and eq(B;, B;) = 0 since dg(z;, ;) > 4,
where eg(X,Y) is the number of edges which have one endvertex in X and
the otherin Y. Let R = V(G) _Uf:o B;. Then G—R is disconnected, and the
components of G — R are By, ..., By. Since t(G) > k/(k+ 1), |R| > k + 1.
On the other hand, since Ng(S) N (RU {zo,...,zx}) = 0, p — 2k — 2 <
S da(z) = |Na(S)| = p— |R| — (k + 1), which implies |R| < k + 1.
Therefore, we have |R| =k + 1. Let R = {yo,v1,.-.,Yx}-

Now contract each B; into a single vertex b; (0 < i < k) and remove all
the edges in G[R]. Let H be the resulting graph. Then H is a balanced
bipartite graph with partite sets {by, ..., bx} and R. Since G is k-connected,
|INo(B;) N R| > k. This implies dy(b;) > k. If du(y;) < 1 for some i,
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0 < i <k, then Ng(y;) C RU B; for some j with 0 < j < k. Without loss
of generality, we may assume j = 0. Let R = R — {y;}. Then G — R’ has
k41 components By U {y;}, Bi, ..., Bg. Since |R'| = k, this contradicts the
assumption that ¢(G) > k/(k +1). Thus, we have dy(y;) > 2 for each y;
0<i<k).

Now since we have dy (b;) +dy(y;) > k+2 for each i, j with 1 <14,5 <k,
H has a hamiltonian cycle C’ by Theorem 5.9. Without loss of generality,
we may assume C’ = yoboy1b1 . . . yrbryo. For each i, 0 < ¢ < k, and each
y;b; and b;y; 1, there exist vertices 21(1), ZZ-(Q) € B; with yizz(l), zfg)yiﬂ € E(G)
(indices modulo k). If ZZ-(I) # ZZ-(Q), let P, = yizfl):pizl-@)yiﬂ. If ZZ-(I) = ZZ-(Q), let
P, = yizlgl)yiﬂ. Then C' = yoPoy1 Py . . . yr Pryo is a cycle in G.

We claim that C' is a vertex-dominating cycle of G. Assume, to the
contrary, that there exists a vertex v in G which is not dominated by C.
Since R C V(C') and Ng(z;) N V(C) # 0 for each i, 0 < i < k, every vertex
in RU {xg,...x;} is dominated by C. Therefore, v € Ng(x;,) for some i,
0 <ig < k. Since v is not dominated by C, z;, ¢ V(C) and hence zf()l) = zl-(f).
Since RU {z} € V(C), Ne(v) N (RU {2{"}) = 0. This implies Ng(v) C
B, — {zz(;)} and, if ¢ # g, dg(v,z;) > 4. Let S" = (S — {=z;,}) U{v}. Then &’
is a 4-stable set of G of order k+ 1 and since N (') N (RUS U {z"}) =0,

0
we have Y o dg(x) <p—|R|—(k+1) —1=p—2k— 3. This contradicts

zeSs’

the assumption, and hence G has a vertex-dominating cycle C' of G. U
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Chapter 6

Vertex-dominating cycles

in 2-connected bipartite graphs

6.1 Introduction
In 1953, Dirac studied that the minimum degree and hamiltonian cycles.

Theorem 6.1 (Dirac [8]) Let G be a graph of ordern > 3. If §(G) > n/2,

then G is hamiltonian.

In 1960, Ore showed the following theorem, which is a generalization

Theorem 6.1.

Theorem 6.2 (Ore [16]) Let G be a graph on n > 3 vertices. If dg(z) +

dg(y) > n for any nonadjacent vertices x and y, then G is hamiltonian.

In 1963, Moon and Moser gave a degree sum condition for a bipartite

graph to be hamiltonian.

Theorem 6.3 (Moon&Moser [13]) Let G be a bipartite graph with par-
tite sets Vi and Vs, where |Vi| = |Va| = n. If dg(z) + dg(y) > n+ 1 for each

pair of nonadjacent vertices x € V|, and y € Vs, then G is hamiltonian.
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In 1971, Nash-Williams showed the following result for an edge-dominating

cycle.

Theorem 6.4 (Nash-Williams [14]) Let G be a 2-connected graph on
n vertices. If §(G) > (n — 2)/3, then any longest cycle of G is an edge-

dominating cycle.

In 1984, Ash and Jackson showed the following theorem for a bipartite

graph to have an edge-dominating cycle.

Theorem 6.5 (Ash&Jackson [1]) Let G be a 2-connected bipartite graph
with partite sets Vi and Va, where max(|Vy], |Va]) = n. If §(G) > (n —1)/3,

then there exists a longest cycle which is an edge-dominating cycle.

In 1987, Bondy and Fan [5] proved the following theorem for a vertex-

dominating cycle.

Theorem 6.6 (Bondy&Fan [5]) Let k > 2 and let G be a k-connected
graph on n vertices. If ) o dg(x) > n — 2k for every 3-stable set S of G of

order k + 1, then G has a vertex-dominating cycle.

Theorem 6.6 implies the following corollary.

Corollary 6.7 Let G be a 2-connected graph on n vertices. If 6(G) >
(n —4)/3, then G has a vertex-dominating cycle.

In this paper, we give a minimum degree condition for a bipartite graph

to have a vertex-dominating cycle.

Theorem 6.8 Let G be a 2-connected bipartite graph with partite sets V}
and Vy, where max(|Vy|, |Va|) = n. If §(G) > (n+1)/3, then G has a vertex-

dominating cycle.
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Figure 6.1: Fj

In Theorem 6.8, the degree condition is sharp in the following sense.
By adding new two vertices v, and v, to the graph K, U K;, U Kj,, where
(l,m,n) = (k+1,k, k), (k+1,k+1,k), (k+2,k, k), (k+2,k+1,k), (k+2,k, k+
1), (k+2, k+2, k), and joining both v; and v, with every vertex of three partite
sets of order [, we obtain a 2-connected bipartite graph G. Let Vi and V5 be
partite sets of G. It is easy to see that 6(G) = max(|Vi], |V2])/3. However,
since any cycle does not contain all vertices of at least one of three complete

bipartite subgraphs K ,,, K;, and K;,, G has no vertex-dominating cycle.

6.2 Proof of Theorem 6.8

We define the following sets Fj and Hj, of graphs for each odd integer k > 5.
Let n,by, b, ..., b, be integers with n > 3 and b; > (k+1)/2 (1 < i < n).
Let U?:l K (1:—3)/2,6, denote the vertex-disjoint union of Kj_3)/2s, for all i €
{1,2,...,n}. Then the graph Fj,. .. s, is obtained from J; | K(_3)/25 by
adding two new vertices x and y, and joining both x and y with every vertex
of U Kk—3)/2,5, Whose degree in | J;_; K(z—3)/24, is (k—3)/2. Let Fj, be the
set of all such graphs (Figure 6.1).

To define Hy, let m, ci,..., ¢, be integers at least (kK + 1)/2. The
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Figure 6.2: Hy

graph Hy., .. is obtained from (J", K;., by adding (k — 1)/2 new ver-

7Cm
tices 1,... ,T(-1)/2, and joining each x; with every endvertex of U:L Kig,.

Let Hj be the set of all such graphs (Figure 6.2.).

To prove Theorem 6.8, we use the following result due to Wang.

Theorem 6.9 (Wang [19]) Let k be an integer with k > 2. Let G be a 2-
connected bipartite graph with partite sets Vi and V,, where min(|Vy], [V2|) =
a. If dg(z) + dg(y) > k + 1 for every pair of non-adjacent vertices x and v,
then G contains a cycle of length at least min(2a, 2k), unless a > k > 5, k is
odd and G € Fj, UH,,.

Proof of Theorem 6.8.

Let |Vi| = n1, |Va| = ne and ny < ny. Let G be a graph satisfying the
hypothesis, and let C' a longest cycle in G.

Claim 1 |[V(C)| > min (2n, 2(2n, — 1)).

Proof. First, suppose that G € F. Since 6(G) = 1(k+ 1) and n > 3, we

have

S+ 1) = (Zb+1>z%((k;l)“):g(“%)”s‘
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This contradicts the degree condition. Hence G ¢ Fj. Next, suppose that
G € Hy. Since §(G) = 2(k + 1) and m > 3, we have

;n2+ :%<ch+1> (%H):%(M%)m&

contradiction. Therefore G ¢ Hj,.
Thus, since 6(G) > 5(n2 +1), we have dg(z) + da(y) >
1(2ny — 1) 4+ 1. By Theorem 6.9, we obtain [V(C)| > min (2n, 2(2n, — 1)),
since G ¢ Fj, U Hy. O

If min (2ny, 2(2n, — 1)) = 2n4, then V; C V(C). This implies N¢(v2) #
() for any vy € Vo — V(C). Hence C' is a vertex-dominating cycle. Thus
we may assume min (2n;,2(2ny — 1)) = 2(2n, — 1). Therefore we obtain
Vi =V(O) < [Va=V(O) < ma—§(2n2 = 1) < 3(n2 +1). If [V = V(C)] <
+(n2 + 1), then we have No(v;) # 0 for any v; € V; — V(C) for i = 1,2,
since 6(G) > +(ng + 1). Hence C' is a vertex-dominating cycle. Thus we may

assume that
1 2
Vi = V(O)] <|Va=V(C)| = g(ng +1) and |V(C)| = §(2n2 —1). (6.1)
Note that §(ny + 1) is an integer. For i = 1,2, we define as follows:

Xi = {ZEZ - ‘/z — V(C) Nc(l'l) 7& @, NG_C(ZL‘Z‘) 7é @},
{y: € Vi=V(C): Ng—c(yi) = 0} and
Z; = {z€V;=V(C): Nc(z)=0}.

~
I

Claim 2 |Ng(Xs)| > |Y3.

Proof. By the definition of X;, Y; and Z; and (6.1), we have |No(xq)| >
5(G) — (1] +1Za]) > 3+ 1) — (K(na + 1) — [Yi]) = Y3 for any 2, € Xo.
U
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Claim 3 If Z; # (), then Ng(z;) = V3_; —V(C) for any z; € Z; and Y3_; = ().
In particular, if Zy # () then |Vy| = |V4.

Proof. Suppose that Z; # (), say z; € Z;. By the degree condition and
the definition of Z;, we have 3(ny +1) < dg(z) < [V — V(C)|. Thus,
by (6.1), we obtain dg(z;) = |Vs—; — V(C)|, that is, Ng(z;) = Vi, — V(C).
Furthermore, if Z5 # () then we have |V;| = |V3l. O

If Z, = 0 and Z, = (), then C is a hamiltonian cycle, that is, a vertex-
dominating cycle. Therefore by Claim 3, we may assume, without loss of

generality,
Zy#0 and Yo=1 (6.2)

Now, we choose two vertices z, and x; as follows: if Xy = 0, choose
Zq,p € Xq such that a and b as close as possible on C; otherwise, choose
Tq € X1 U X5 and z, € X5 such that a and b as close as possible on C', where
a € No(x,), b € No(xp) and a # b.

We give an orientation on C such that |[a™ C'b~| < |b¥ Ca~|. By the
choice of =, and x;, we obtain

1t T | < %|0| 1= %(2@ ) —1=2 (%(ng +1) - 1) C (63)

Claim 4 There exists a path x,Pyx, in G — C. In particular, if x, # x,
then there exists a path x,Pyx, in G — C' which dominates Z, and Zs.

Proof. First, suppose that x, = x;, then z, is a path of order one in G — C.
Next, suppose x4, xp, € X; (x4 # xp) for ¢ = 1,2, If z,,x, € X;, then, by
the choice of x, and =z, note that X, = 0, that is, Z, # (. By Claim 3,
we have z,, 7, € Ng(23_;) for any z3_; € Z3_;. Hence z,23_;x; is a path in
G — C' which dominates Z; and Z,. Finally, suppose z, € X; and x;, € X5.
If z,2, € E(G), then z,z3 is a path in G — C' which dominates Z; and Z,
by Claim 3. If z,z, ¢ E(G), then there exists a vertex ve € Ng_c(x,).
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Since ve, 7, € Ng_c(z1) for any z; € Zy, x,v2217 is a path in G — C' which

dominates Z; and Z,. O

By Claim 4, we obtain Cy = xaa?bmbPoxa isa cycle. Let U; = V(a*ﬁb*)ﬂ
V; and U] = V(b*ﬁa*) NnV,.

Claim 5 X, X5, Y] and U; are dominated by aCh.

Proof. By the choice of x, and x;, we have Ng(z;) N V(aCb) # 0 for any
7 € X;. By (6.3), we obtain |Us| < 1a*Cb7| = L(ng+1) — 1. Hence
Ne(y1) NV (a'Cb) # 0 for any y; € V;. Moreover, Ng(u) NV (aC'b) # 0 for
any u; € Uy, since Yo = (). O

Case 1. |at C'b| is even.

Note that x, € X; and x, € X5. By Claim 4, z,FPyx, dominates Z; and
Zy. If Cy dominates U,, then Cj is a vertex-dominating cycle, by Claim 5.
Thus, suppose that Cy does not dominate Us, that is, there exists uy € Uy
such that Ng(us) C Uy UY;. From us # at,b™, we have |a* C'b~| # 2, and

S0
0t Ch| > 4. (6.4)
Since 5(ny + 1) < dg(us) < |Ui] + V1] = %\cﬁﬁb‘\ + |Y1], we obtain
ny < gwﬁu 43— 1. (6.5)

By (6.3) and (6.5), we have |Y;] > 1. We first show that |Y;| = 1. Sup-
pose that |Y;] > 2. Since C'— N¢({x,} U X>) consists of at least |[Neo(X3)|+1
paths of order at least [a™ C'b~|, we have |C| > (|Ne(X2)| +1)(Jat Cb|+1).
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On the other hand, by Claim 2, (6.4) and (6.5), we obtain

(INe(X1 U Xo)| 4+ 1)(lat T |+ 1) — |C]

= (W ) T+ 1)~ (2~ 1)

> (V|4 0)(a" T +1) - % {2 (;a*?bl 3|y — 1) - 1}

= (M| +D(latTb|+1) = (2lat To | +4|Y1] — 2)

= (V[ =1)(|a"Tb7|=3) >0.

Thus we get a contradiction. Therefore we have |Y;| = 1.

By (6.3) and (6.5), note that |[a* C'b~| = |b* Ca~| = 2 (3(na+1)—1).
By the choice of x, and x;, we have No(z) C {a,b} for any z € X; U Xs.
This implies that X; and X5 are dominated by {a, b}.

On the other hand, since Y3 = 0, Ng(u}) NV (a C'b) # 0 for any v, € U,
that is, a C'b dominates U;. Thus, if a C'b dominates U, then xaaﬁbmbPoxa
is a vertex-dominating cycle. Thus, suppose that a C'b does not dominate
U, that is, there exists uy € Uj such that Ng(uy) C U UY].

Since |U;| = £(ng 4+ 1)—1, we have y; € Ng(us), where y; € Y;. Similarly,
y1 € Ng(ub). By the existence of the C-path ugyjub, there exists a C-path
wPw' joining V(a* Cus) and V(b C'ul). Choose Py such that V(at Cw)U
V(b+ﬁw’) is inclusion-minimal. Then C; = xaa?w’leﬁbbeoxa is a
cycle.

By the choice of P, wC'bUw' Ca dominates Y1. By uy # a™, we have
|a+ﬁw*| < |a+ﬁu2| < 2(3(np +1) — 1) — 2. By the choice of P; and the
fact that |Yi| = 1 and Y3 = 0, we have N(v,) N (wCbUw' Ca) # 0 for
any v, € a*ﬁw*, that is, wC'bUw' Ca dominates V(a*ﬁw*). Similarly,
w C'bUw' C a dominates V(b*ﬁw’ 7). Hence C is a vertex-dominating cycle.
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This completes the proof of Case 1.
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Case 2. |at C'b| is odd.
Note that z, € X; and x, € X, for i =1, 2.

Case 2.1. 7, = ().

If Xo =0, then V(G) — V(C) = 0. Hence C is a hamiltonian cycle,
that is, a vertex-dominating cycle. Thus, we may assume X, # (). By the
choice z, and x;,, we have z,,z, € X5. By Claim 3, Cy dominates Z;. If
Cy dominates Us,, then Cj is a vertex-dominating cycle, by Claim 5. Thus,
suppose that Cy does not dominate Us, that is, there exists uy € U, such

that Ng(us) C Uy UY;. From up # a™,b~, we have [a* C'b~| # 3, and so
ot C'b7| > 5. (6.6)

Since |a™ C'b7| is odd and at, b~ € Vi, we have |Uy| = %(\cﬁﬁbﬂ —1).
Hence we obtain 3(ny + 1) < dg(up) < %(!cﬁﬁb‘\ — 1) + |Y3], and so

3
ny < §<\a+mf| —1)43V3| — 1. (6.7)

By (6.3) and (6.7), we have |Y;| > 2. Now we show that |Y;| =2 or |Y;| =
3. Assume that |Y;| > 4. Since C'— N¢(X; U X5) has at least | No (X7 U Xy)|
paths of order at least |a* C'b~|, we have |C| > |Ne(X1UXo)|(la* Cb|+1).
On the other hand, by Claim 2, (6.6) and (6.7), we obtain

)
)

[Ne(X1 U Xo)|(|la" T | +1) = [C]
> Vil(lat T |+ 1) — g {2 (g(wﬁm S )43y — 1) _ 1}
= [Vi[(Ja* Cb7[+1) — (2la® Tb| +4|y3| - 4)
= (V| =2)(la" T | =3)—2>0,

a contradiction. Therefore we have |Y;| =2 or |Y;| = 3.
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Suppose that |Y7| = 2. By (6.3), we have |a+ﬁb*| <2(3(na+1)—1) -
1, since |a+ﬁb*| is odd. Thus, by (6.7), we obtain |a+ﬁb*| =2(3(n2+1)—1)—
1, |b+ﬁa*| =2(3(n2 +1) = 1)+1and Y C Ng(us). By the choice of z, and
xp, we have X # () and X, is dominated by {a,b}. Since |Us| = £(ns +1)—1
and a,b € V;, there exists y; € Y; such that N(y;) NV (b* Ca~) # 0, say
Wy € N(y) N V(b*Ca™). By (6.6) and |b* C'a~| = |a* Cb~| + 2, either
b+ Cuy | < |at Co| or |u," Ca=| < |a*C'b~| holds. Without loss of
generality, we may assume |b+ﬁu’2_\ < \a+ﬁb_ |. By the existence of the C-
path usyiub, there exists a C-path wPyw’ joining V(o Cus) and V (b* Cub).
Choose P, such that (i) |V(b+ﬁw’)| is as small as possible, and (ii) subject
to (i), |V(a+ﬁw)| is as small as possible. Then Cy = 2,a'C w' Pyw C by, Pyz,
is a cycle.

First, we show that V (a™ ﬁw*) is dominated by w C' bUw' C a. From us #
b=, note that |[a* Cw~| < |a* Cuy| < [a* Cb~| —2 < 2 (3(ne+1)—1) —
3. By the choice of P and the fact that |Y;] = 2 and Y, = (), we have
N(ve) N V(wCbUw Ca) # 0 for any v, € V(at Cw~). This implies that
V(a* C'w) is dominated by wC'bUw' Ca. Next, we show that V(b Cw')
is dominated by wCbUwCa. By the choice of P, and Y} C Ng(us),
we have N(vp) N (Y7 U V(a*ﬁw*)) = () for any v, € V(b*ﬁw’_). Since
b+ Cul| < |6 Cw'| < |a* Cb=|, we have N(v) N V(wCbU w Ca) # 0
for any v, € V(b*ﬁw’_). This implies that V(b*ﬁw’) is dominated by
wCbUw' Ca. Hence (s is a vertex-dominating cycle.

Suppose that |Y;| = 3. By Claim 2, C'— N¢(X3) has at least three paths of
order at least 5. Therefore |a+ﬁb_\ <2(C)=6) —1<2(5(na+1)—1) —
3. Thus, by (6.7), we have |at C'b~| = 2 (3(ne+1)—1) — 3, b+ Cla| =
2 (3(n2+1) —1)+3and ¥; C Ng(up). Since b+ Cla| =2 (3(no+1)—1)+
3, by (6.6) and the choice of =, and z;, we have |No(X; U Xo)| < 3. If
|No(X1 U Xs)| =3, then let ¢ € No(X; U Xs) — {a,b}. Note that X; U X, is
dominated by {a,b,c}. Since |Us| = 1(nz 4+ 1) — 2 and a,b € Vi, there exists
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y1 €Y, such that N(y;) NV (b+ Ca~) #£ 0, say u) € N(y1) NV (b+ Ca).

We show that |b+ﬁu’2| < |a+ﬁb*| and ¢ ¢ V(b*ﬁug). Suppose that
|Ne(X1UX5)| = 2. By (6.6) and |b* C'a~| = |a* C'b~|+6, either |b+ Cul ™| <
la* C'b | or |u,tCa~| < |a* Cb| holds. Without loss of generality, we
may assume |b* Cu,”| < |at Cb|. If [No(X; U Xs)| = 3, then either
cé¢ V(b+ﬁu’27) or ¢ ¢ V(u’;ﬁa_). Without loss of generality, we may
assume that ¢ ¢ V(b* C'u}). By (6.6) and |b* C'a~| = |a* C'b~| + 6, we have
b+ Cul| < |at Ch .

Thus, using the same argument as in the case of |Yi| = 2, we get a

vertex-dominating cycle. This completes the proof of Case 2.1. U

Case 2.2. Z, # 0.

By Claim 3, note that ¥; = 0. Since |U;| < 3(n2 + 1) — 1, we have
N(ug)ﬂV(bﬁa) = () for any uy € U,, that is, Cy dominates Us,. Since Z; # ()
and Z, # (), we may assume z, = 13; otherwise () is a vertex-dominating
cycle, by Claim 4.

By the 2-connectivity of G and the choice of x, and x;, there exists
xrq € X1 U X, such that x4 # z, and Ng(z4) N V(b*ﬁa*) # (). Choose x4
such that a™ as close to d on C as possible, where d € N¢(x4) N V(a*?lfr)_
Note that a C'd dominates X; and X;5. By Claim 4, there exists a path
2oPyry in G — C which dominates Z; and Z,. Since \aﬁb\ > 3, we have
At Ca| < L(|C]—4) <2 (4(ng +1) — 1) —1. Define U} = V(d* Ca™)NV,.
Since |UY|, |U5] < 5(na+1) —1 and ¥} = Y5 = 0, a C'd dominates U} and
Uy. Hence xaﬁdxd&xa is a vertex-dominating cycle. This completes the

proof of Case 2.2 and the proof of Theorem 6.8. U
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Chapter 7

Cycles within specified distance

from each vertex

7.1 Introduction

Let f be a non-negative integer-valued function defined on V(G). Then a cy-
cle C'is called an f-dominating cycle if dg(z, C') < f(z) for every z € V(G).
By taking an appropriate function as f, we can give a unified view to many
cycle-related problems. If f is a constant function taking the value 0 (resp.
1), then an f-dominating cycle is a hamiltonian cycle (resp. a dominating
cycle) of G, respectively. Furthermore, given a prescribed set S C V(G), if

we set

0 ifvelsS
fv) =
diam(G) ifv e V(G) - S,

where diam(G) is the diameter of GG, then an f-dominating cycle is a cycle
passing through every vertex in S.

The purpose of this chapter is to give a Chvatal-Erdés type theorem for
a graph to have an f-dominating cycle. Then we show that this theorem is

a generalization of a number of known results.
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A set of vertices S C V(G) is said to be an f-stable set if dg(u,v) >
f(u) + f(v) holds for each pair of distinct vertices u, v € S. If we take
a constant function taking the value one as f, an f-stable set is an ordi-
nary stable set. The f-stability number, denoted by a(G), is defined by
ap(G) = max{|S]: S is an f-stable set}. For an integer constant ¢, we de-
fine the function f 4+ ¢ by (f +¢)(v) = f(v) + ¢ (v € V(G)).

We prove the following theorem.

Theorem 7.1 Let G be a k-connected graph (k > 2) and let f be a non-
negative integer-valued function defined on V(G). If a1 (G) < k, then G

has an f-dominating cycle.

Before we prove Theorem 7.1, we give its application. By setting f(v) = 0
for each v € V(G), we immediately obtain Chvatal-Erdds’ theorem. Let a(G)

be the independence number of a graph G.

Theorem 7.2 (Chvatal&Erdés [7]) A k-connected graph (k > 2) G with

a(@) < k is hamiltonian.

Bondy and Fan [5] gave a degree sum condition for a graph to have a dom-
inating cycle. Later Broersma [6] proved the following theorem and showed

that it extends the result of Bondy and Fan.

Theorem 7.3 (Broersma [6]) Let G be a k-connected graph (k > 2) and
let X be a positive integer. If Go\(G) < k, then G has a dy-cycle.

It is easy to see that if f is a constant function taking the value A — 1,
then Theorem 7.1 coincides with Theorem 7.3.
Theorem 7.1 also generalizes previous results on cycles passing through

specified vertices. The following is a classical result by Dirac [8].

Theorem 7.4 (Dirac [8]) Every set of k vertices in a k-connected graph
(k > 2) lies in a cycle.
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Theorem 7.4 was later extended by Fournier [9]. For a set of vertices
X C V(G), we define the independence number of X, denoted by a(X), by
a(X) = a(G[X]), where G[X] is the subgraph of G induced by X.

Theorem 7.5 (Fournier [9]) Let G be a k-connected graph (k > 2), and
let X C V(G). If a(X) < k, then G has a cycle which contains X .

In order to demonstrate the usefulness of the Theorem 7.1, we give a
further extension as a corollary. For a set of vertices X C V(G) and a

positive integer d, we define é¢ 4(X) by
Gg.a(X) =max{|S|: S C X, S is a d-stable in G}.

Note that g2 (X) = Ga(G[X]) = a(X), but for d > 3, d¢q(X) and é4(G[X])

may take different values.

Corollary 7.6 Let G be a k-connected graph (k > 2), and let X and Y be
disjoint subsets of V(G). If a(X )+ éaga(Y) < k, then G has a cycle C' which

contains X and dominates Y .

Corollary 7.6 coincides with Theorem 7.5 if Y = ().

Proof of Corollary 7.6. Define an integer-valued function f on V(G) by

0 ifveX
flv)=41 ifvey
diam(G) ifveV(G)—(XUY).
Then an f-dominating cycle is a required cycle. Let S be a maximum (f+1)-
stable set, i.e. an (f 4 1)-stable set of cardinality a41(G). We claim |S| < k.
First, suppose S ¢ X UY. If |S| > 2, then we can take a pair of distinct

vertices u, v such that w € S — (X UY) and v € S. Then dg(u,v) > f(u) +
f(v) + 2 > diam(G) + 2, a contradiction. Therefore, we have |S| <1 < k.
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Next, suppose S C X UY. Then by the definition of f, SN X is a stable
set contained in X and Y NS is a 4-stable set of G contained in Y. Thus,
ISNX| <a(X)and [SNY| < aga(Y). Therefore, [S|=|SNX|+|SNY]| <
a(X)+aga(Y) < k. Now in either case, we have ayy1(G) = |[S| < k, and G
has an f-dominating cycle by Theorem 7.1. OJ

7.2 Lemmas

Let f: V(G) — N. Then for a vertex x € V(G) and X C V(G), we define
Ny(z) and Dy(X) by

Ni(z) ={v e V(G): dg(z,v) < f(z)}, and
D¢(X) ={v e V(G): da(v,X) < f(v)}.

Using this notation, we can say that an f-dominating cycle is a cycle C
satisfying D;(C) = V(G).
Although the following lemma is a trivial observation on D;(X), it is

frequently used in the subsequent arguments.

Lemma 7.7 Let G be a graph and let f: V(G) — N. Furthermore, let X,
Y c V(G).

(1) If X CY, then Dy(X) C Ds(Y).
(2) Dy(XUY) = Dy(X)UDy(Y)
(3) Dy(X) = Dy(Y) € Dy(X ~Y)
The next lemma is a simple but useful observation on a walk.

Lemma 7.8 Let G be a graph and let A, B C V(G). If G has a walk W
from A to B, Then G has a path P from A to B such that V(P) C V(W)
and that P is internally disjoint from AU B.

95



7.3 Proof of Theorem 7.1

In this section, we prove Theorem 7.1.

Proof of Theorem 7.1. Assume G has no f-dominating cycle. Then for
each cycle C in G, D;(C) # V(G), and hence there exists a vertex y, in
V(G) —Dy(C). Let H be the component of G —V(C') with yo € V(H). Now
choose such C and y, so that

(C1) |Ds(C)] is as large as possible, and
(C2) |V(H)| is as small as possible, subject to (C1).

The proof is divided into claims.

Claim 1 There exists no cycle C' with D¢(C') C Ds(C"), V(H)NV(C") # 0
and Ng(H) N (V(C) = V(C")) = 0. In particular, G has no cycle C' with
V(C)cV(C") and V(H)NV(C") # 0.

Proof. Assume there exists a cycle C" with D;(C') C Dy(C"), V(H)NV(C') #
® and Ng(H) N (V(C) — V(C") = 0. Then Dy(C) = Dy(C") by the
maximality of D;(C'), and hence yo € V(H) — Ds(C"). Since Ng(H) N
(V(C)-V(C") =0, G—V(C') has a component H' with yo € V(H') and
V(H') C V(H). This contradicts the minimality of H. O

Let No(H) = {x1,x2,..., 2y, }. We may assume x4, 3, ..., T, appear in
the consecutive order along C'. We consider x,,,1 = x1. Let I; = xiﬁxiﬂ
(1 <i<m). We call each I; (1 <1i <m) an interval. Let x; € Ny(x;) and
let P j be an zjz)-path in H (1 <4, j < m). Possibly, 2} = 2} and [(P; ;) =0
for some i and j (i # j).

Claim 2 Tit1 7é l';r

Proof. Assume ;.1 = 2. Let C' = 2} C a2, Pigrahyzf. Then V(C) C

V(C") and V(C") NV (H) # 0. This contradicts Claim 1. O
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at most f(y)

greater than f(y)

C

If v is an essential vertex, there exists a vertex y

such that d(y,x*ﬁ’u) < f(y) and d(y,vﬁxi) > f(y).

(2

Figure 7.1: Essential vertex

Since G is k-connected, we have m > 2k > k by Claim 2. A vertex v €
I —{z;} (1 <1< m)is called an essential vertex if Df(x;rﬁv) 7 Df(vﬁxi)

(Figure 7.1). If v is not an essential vertex, it is called a non-essential vertex.

Claim 3 For eachi (1 <i < m), x; is a non-essential vertex of I,.

Proof. Since :L‘:—ﬁl'j_ ={z} C :E;Lﬁxl, we have Df(xjﬁxf) C Df(:vfﬁxl)
by Lemma 7.7 (1). O

Claim 4 If v is a non-essential vertex of I;, then each u € xjﬁv* is a

non-essential vertex of I;.

Proof. Since z7 C'u C 7 Cv and vCa; € uCay, Dy(xf Cu) C Dy(xi Co)
and Df(vﬁxi) C Df(uﬁxi) by Lemma 7.7 (1). Since v is a non-essential
vertex, Dy(z C'v) € Dy(v'C'a;). Thus, we obtain Dy(z C'u) € Dy(uC ;).
U

Claim 5 For each i (1 <i <m), x;11 is an essential vertex of I;.
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Proof. Assume z;1 is a non-essential vertex. Then we have D (x; ﬁxiﬂ) C
Df(l’l_‘_lﬁl'l) Let Cl = :L‘z‘—l—lﬁxix;?i,i—i—lx;_ﬂxi—i—b Then V(C) - V(Cl) =
:E;Lﬁx;rl and xi+1ﬁxi C V(C"). Therefore, by Lemma 7.7,

Dy(C) = Dy(C") € Dy(af Cwyy) € Dylwf Cwgga) € Dy(wig C ) € Dy(C).

This implies D;(C) C Dy(C"). Furthermore, V(H)NV(C") # 0 and Ng(H)N
(V(C)—V(C")) = 0. However, this contradicts Claim 1. O

By Claims 3, 4 and 5, each interval I; has a unique vertex s; such that s;
is a non-essential vertex of I; but s;L is an essential vertex of I;. We call this

s; the border vertex of I;.

Claim 6 For each 1, j with 1 <1 < j < m, there does not exist a walk from
:E;Lﬁsl to xjﬁsj which is internally disjoint from C. In particular, there

does not exist an edge which joins :E;Lﬁsl and :Ejﬁsj

Proof. Assume there exists a walk from x;rﬁsz to :Ejﬁsj which is internally
disjoint from C'. Then by Lemma 7.8, there exists a path @) from x;rﬁsz to
:Ejﬁsj which is internally disjoint from C'. Let the starting vertex and the
terminal vertex of @ be u; and u;, respectively. Take such @ so that ;5 6uiu
x;rﬁuj is inclusion-minimal. By the definition of an interval, V(Q)NV (H) =
0. Let C' = ujﬁxlx;?”x;x]ﬁulau] Then V(C")NV(H) # 0 and
Na(H) N (V(C) = V(C")) = Ng(H) N ((z} Cuy) U (2 Cuj)) = 0. By
Claim 1, Df(C) ¢ Ds(C"). Let v € Dy(C) — Ds(C"). By Lemma 7.7,
Ds(C)=Dy(C") € Dy((a} Cuy )U(a; Cuy)) = Dy(xf Cuy )UDs(x} Cuy).
By symmetry, we may assume v € Df(:vfﬁu;). Since u; € xfﬁsi, u; is a
non-essential vertex by Claim 4, and hence Dj(z; ﬁuz) - Df(ulﬁxl) This
implies v € Df(uiﬁ:pi) — D¢(C") C Df(uiﬁxi - (') = Df(x;rﬁuj_) Now,
since v € Df(:c;rﬁui_) NDy(z; 6%_), there exist a vv;-path R; and vv;-path
R; for some v; € z} C'u; and v, € xjﬁu; such that I(R;) < f(v) and
I(R;) < f(v) (Figure 7.2).
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Figure 7.2: R; and R;

If V(R;)N ujﬁxi # (), then since I(R;) < f(v), we have dg(v, ujﬁxl) <
f(v). This implies v € Df(ujﬁxi) C Dy(C'), a contradiction. Therefore,
we have V(R;) Nu;C'a; = 0. Similarly, we have V(R;) Nu; C'z; = § and
V(R;) N (u; Cx; U, C ;) = 0.

Let W' = vi%ivﬁj. Then W is a walk from z; ﬁu; to :E;L ﬁuj_, which
is internally disjoint from u; ﬁinuiﬁx]u By Lemma 7.8, there exists a path
Q' from :E;Lﬁu; to x]ﬁuj_ such that V(Q') C V(W') and @’ is internally
disjoint from C. This contradicts the minimality of z; ﬁuz U IL‘;— ﬁuj, and

the claim follows. O

Claim 7 For each i, 1 <1i < m, there exists a vertex y; € Df(zfﬁsi) such
that N;(y;) NV (C) C 7 C's;.

Proof. Since s; is the border vertex, we have Df(x;rﬁsi) C Df(siﬁxl-) but
Dy(x7 C'sf) ¢ Dy(sf Cx;). Take y; € Dy(xf C'sf) — Dy(si Cx;). Since
yi ¢ Dp(st Ca), Ny(y) Nsf Cay = 0 and hence Ny(y;) NV(C) C 27 C s
Since s € Df(s;rﬁxi), if y; € Dy({s{}), then y; € Df(s;rﬁxi) by Lemma
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7.7 (1), a contradiction. Thus, we have y; € Df(:vjﬁsj) — Di({sf}) C
Df(xjﬁsi). O

Claim 8 For each i, j with 1 <@ < j <m, dg(vi,y;) > f(yi) + f(y;) + 2.

Proof. Let Q; be a shortest path from {y;} to V(C'), and let ; be a shortest
path from {y;} to V(C). Then both @; and @; are internally disjoint from
C. Let v; and v; be the terminal vertices of ); and @), respectively. Then
by Claim 7, v; € xjﬁsl and v; € xjﬁsj.

Let R be a shortest y;y;-path in G, and let W = viai yiﬁyjaj v;. Then
W is a walk from x;’ﬁsz to xjﬁsj. By Lemma 7.8, there exists a path
from xfﬁsz to x;rﬁsj such that V(Q') C V(W) and that @' is internally
disjoint from 2} C's; U :c;rﬁsj. If V(R) N (sf Czj U s;rﬁxl) = (), then
V(W) N (sf Cay U sjﬁxl) — @ and V(Q') N (s Ca; U sjﬁxl) = (). Thus,
(' is internally disjoint from C', which contradicts Claim 6. Thus, we have
V(R) N (sf Ca; U s;rﬁxz) #0. Let v e V(R)N (sf Cay U s;rﬁxz) Then
by Claim 7, l(yiﬁv) > f(y;) + 1 and l(vﬁyj) > f(y;) + 1. Therefore, we
obtain dg (i, y;) = U(R) > f(y:) + f(y;) + 2. O

Claim 9 For each i, 1 <14 <1, da(yo,yi) = f(vo) + f(vi) + 2.

Proof. Let R be a shortest yoy;-path in G. Then since yo € V(H), by the
definition of an interval, {z1,...,2,} NV(R) # 0. Let x; € V(R). Since
yo ¢ Dy(C), l(yoﬁxj) > f(yo) + 1. By Claim 5, s; ¢ {x1,...,z,}, and
hence by Claim 7 l(:vjﬁyi) > f(y;) + 1. Therefore, we obtain dg(yo,yi) =
[(R) = f(yo) + f(yi) + 2. O

Let Y = {vyo,%1,---,Ym}. Then by Claims 8 and 9, YV is an (f + 1)-
stable set of order m + 1 > k and hence ay41(G) > k. This contradicts the

assumption, and the theorem follows. 0
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vertex-dominating cycle, 11

walk, 9
of length, 9

65



