
Kobe University Repository : Kernel

PDF issue: 2024-07-14

Artificial evolution on fitness landscapes with
neutral networks

(Degree)
博士（工学）

(Date of Degree)
2004-09-30

(Date of Publication)
2013-03-26

(Resource Type)
doctoral thesis

(Report Number)
甲3202

(URL)
https://hdl.handle.net/20.500.14094/D1003202

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Katada, Yoshiaki



ARTIFICIAL EVOLUTION ON FITNESS LANDSCAPES

WITH NEUTRAL NETWORKS

a dissertation

submitted to the graduate school of science and technology

and the committee on graduate studies

of kobe university

in partial fulfillment of the requirements

for the degree of

doctor of engineering

Yoshiaki Katada

August 2004



c© Copyright by Yoshiaki Katada 2004

All Rights Reserved

ii



I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Engineering.

Toshiharu Taura
(Principal Co-Advisor)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Engineering.

Kazuhiro Ohkura
(Principal Co-Advisor)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Engineering.

Kanji Ueda

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Engineering.

Fumio Kojima

iii



I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Engineering.

Hidefumi Sawai

Approved for the University Committee on Graduate

Studies.

iv



Preface

Neutral networks, which occur in fitness landscapes containing neighboring points of

equal fitness, have attracted much research interest in the evolutionary computation

community in recent years. Neutral networks have been found in many real-world

applications of artificial evolution, such as the evolution of neural network controllers

in robotics and on-chip electronic circuit evolution. Although around ten years have

passed since the importance of neutral networks was pointed out, the progress in this

research field is stagnating due to the difficulties of applying the traditional theories

of artificial evolution. Therefore, several researchers have been attempting to develop

new theories of artificial evolution on fitness landscapes with neutral networks.

Following these research trends, this thesis has established some theoretical guide-

lines of artificial evolution on fitness landscapes with neutral networks. This thesis can

be divided into foundations and applications; In foundations, evolutionary dynamics

were investigated in test functions of fitness landscapes with neutral networks as well

as efficient genetic algorithms for them were proposed. The measure of neutrality in

fitness landscapes, which originates from population genetics, was also proposed. In

applications, it was investigated whether the results obtained in the test functions are

applicable to real-world problems, particularly evolution of artificial neural networks

for robot control. It is confirmed that their fitness landscapes includes neutral net-

works and the evolutionary dynamics obtained in these problems are consistent with

the dynamics in the test functions. Finally, some conclusions are given.
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Chapter 1

Introduction

1.1 Open-ended Evolution

In the evolutionary algorithm (EA) community, evolutionary dynamics of genetic al-

gorithms (GA) have been described based on the schema theory and the building block

hypothesis (Holland, 1975; Goldberg, 1989); The utilization of the initial diversity in

a population generated randomly can make a global search. Through the successive

application of selection, recombination and mutation, the population gradually loses

its variation and focuses its genetic search into a small region of high fitness, that

is, shifts to local search. At last, the population converges completely to a certain

point in the genotype space, which would be a good solution. This is an ideal end

of artificial evolution considered in the EA community. Especially in problems that

include so-called GA difficulty, GA researchers and practioners have been trying to

make the convergence speed slow with keeping genetic materials gained before in or-

der to have enough generations for finding appropriate building blocks without being

stuck at local optima. Within this framework, crossover is a major genetic operator

because it generates innovation by combining building blocks. On the other hand,

mutation would be a local search operator.

While, when people shift the focus of attention to natural evolution, they suspect

whether artificial evolution should be as the canonical GA, because natural evolution

never ceases or converges. It does not seem to be stuck on local optima at all. How

1



2 CHAPTER 1. INTRODUCTION

can an evolving population avoid being trapped on them? From this point of view,

there are recently becoming novel research trends where it is considered that artifi-

cial evolution should be open-ended as natural evolution is (Harvey, 1997; Barnett,

1997; Nolfi and Floreano, 2000). It might be claimed that open-ended evolution is

caused by several factors; The first candidate would be environmental change. If the

environment changes and the individual is not selected according to the predefined

environment, the trail of evolution is dictated by environmental changes and its adap-

tations. The second one would be coevolution. In the case of competitive coevolution,

competing individuals interact each other then the environment is not static but dy-

namic for an individual due to the opposite one. Consequently, a population does

not cling to a certain point in the genotype space due to their dynamics. However,

it would be passive or not efficient for an evolving population to wait an innovation

until environmental change occurs. In addition, it is likely that artificial evolution

might be initialized by environmental changes and coevolution due to that the genetic

materials obtained before would not be reusable in new environments. Thus, another

possibilities must be considered. One of them would be neutral evolution. This will

be discussed by considered as a necessary condition for open-ended evolution in the

remainder of this thesis.

1.2 Landscape Structure and Problem Difficulties

The fitness landscape, introduced by Wright (1932)1, is described as the multidimen-

sional space which is composed of the set of several dimensions per genotype locus

and an additional dimension, or ”height” of the landscape, for the fitness value of

the particular genotype. Each point on it corresponds to a single genotype and the

fitness value. Thus, a genetic operation means a movement from an original point to

neighbors of it, and selection means the fixation or elimination of the points. The

process of evolution is described as the transition of points on a fitness landscape.

In early works of the theoretical GA community, problem difficulties for a GA

1Wright viewed evolution as optimization process on a fitness landscape.



1.3. REDUNDANT REPRESENTATIONS AND NEUTRALITY 3

have been discussed in terms of the geography of a fitness landscape: isolation, de-

ception and multimodality. Their factors affecting the performance of the GA to solve

optimization problems are still contentious issues. However, several counterexamples

on the latter two factors were found, showing that they are neither necessary nor

sufficient to make a problem difficult (Jones and Forrest, 1995; Horn and Goldberg,

1995; Kallel, 1998).

Another attempt to characterize difficulty has been done by measuring the feature

of a fitness landscape, epistasis or ruggedness. Most of the works in this area are based

on the fitness correlation between the original individual and its mutant to describe a

fitness landscape (Kauffman, 1993; Weinberger, 1990; Manderick et al., 1991; Hordijk,

1994; Jones and Forrest, 1995; Stadler, 1996). Therefore, they are derived from the

average of fitness correlations between parents and offspring or the fitness distance

autocorrelation function obtained by using a random walk. In the GA community,

the majority of fitness landscape descriptions have based on ruggedness since then.

However, the existence of problem domains has been reported where the traditional

theories based on the schema theory and the building block hypothesis does not

hold (Mitchell et al., 1992; van Nimwegen et al., 1999). Those kinds of problem

mainly show equilibrium period, neutral evolution in their evolutionary dynamics. If

equilibrium periods seem dominative in the process of evolution, ruggedness is not

enough to measure the search difficulty.

1.3 Redundant Representations and Neutrality

Selective neutrality has been found in many real-world applications of artificial evo-

lution, such as the evolution of neural network controllers in robotics (Harvey, 1997;

Smith et al., 2001b,a, 2002b) and on-chip electronic circuit evolution (Thompson,

1996; Vassilev et al., 2000; Vassilev and Miller, 2000). This characteristic is caused

by highly redundant mappings from genotype to phenotype or phenotype to fitness.

With these kinds of problems, redundancy is inevitable although it is customary

among GA practioners deliberately to avoid redundancy in the genetic coding of ar-

tificial evolution problems. Even for problems where redundancy is largely absent,
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however, it may be useful to introduce it. A number of researchers have been try-

ing to improve the performance of artificial evolution on more traditional problems

by incorporating redundancy in genotype to phenotype mappings(Ohkura and Ueda,

1999; Knowles and Watson, 2002; Shipman et al., 2000; Shackleton et al., 2000; Ebner

et al., 2001; Rothlauf and Goldberg, 2003).

Some formal definitions about redundant mappings are given according to the

notation in (Rothlauf and Goldberg, 2003) in the following; All fitness landscapes in

this thesis are based on fixed length binary bit-string genotypes with the length, N .

Φg is defined as the set of genotypes, the genotypic search space where the genetic

operations are applied. Thus, the size of the genotypic search space is |Φg| = 2N . Φp

is defined as the phenotypic search space. The size of the phenotypic search space is

|Φp|. A mapping fg : Φg → Φp determines which genotypes xg ∈ Φg are assigned to

which phenotypes xp ∈ Φp. A mapping fg is called redundant if fg is surjective2 and

not injective. Then, there exists Φ′
p(6= φ) s.t.

Φ′
p = {xp|∃xg∃yg ∈ Φgs.t.x

p = fg(x
g), xp = fg(y

g), xg 6= yg}. (1.1)

Ohkura and Ueda (1999) designed the mapping motivated by the genetic mechanisms

of operon found in microbial organisms: A genotype includes a large amount of re-

dundancy with respect to a phenotype. In addition, any locus is always included in a

certain cluster called an operon to make a hierarchal structure of two layers, i.e., an

operon layer and a locus layer. For the redundant genotype and hierarchal structure,

new genetic operators were developed (see the details in Appendix B). Shackleton

et al. (2000), Shipman et al. (2000) and Ebner et al. (2001) proposed to use the cellu-

lar automaton mapping, the boolean network mapping and the trivial voting mapping

for designing redundant mappings from genotype to phenotype.

Rothlauf and Goldberg (2003) proposed the necessary condition for efficient evolu-

tionary search which a redundant mapping should satisfies by introducing the concept,

“synonymity.” A mapping fg is called a “synonymously redundant” if the genotypic

distances between all xg which represent the same phenotype xp are small for all

2It can be assumed that each phenotype xp is assigned to at least one genotype xg.
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different xp. Then, there exists Φ′
p,syn s.t.

Φ′
p,syn = {xp| ∃xg∃yg ∈ Φgs.t.x

p = fg(x
g), xp = fg(y

g),

yg = E(xg), h(xg, yg) ≤ d, d 6= 0}, (1.2)

where E is a genetic operator, h is Hamming distance, precisely, h(xg, yg) =
∑N

i=1 δ(xg,

yg) and d should be reasonably small. Here, a genotype yg is called, “a (d-bit)

neighbour to the genotype xg or a (d-bit) mutation of xg.” Note that the genetic

operators define the neighborhood in landscapes. Rothlauf and Goldberg (2003)

classified the cellular automaton mapping and the boolean network mapping as non-

synonymously redundant mappings and the trivial voting mapping as a synonymously

redundant mapping.

These definitions can also be extended to redundant mappings from phenotype to

fitness. Let ΦF be defined as the set of fitness values, the fitness search space where

the genotype xg is evaluated. The size of the fitness search space is |ΦF |. A mapping

fp : Φp → ΦF determines which phenotypes xp ∈ Φp are assigned to which fitness

values xF ∈ ΦF . For the explanation, it is assumed that fg is bijective, that is, there

is no redundant mapping from genotype to phenotype. Here, a mapping fp is called

redundant if fp is surjective and not injective. Then, there exists Φ′
F (6= φ) s.t.

Φ′
F = {xF | ∃xg∃yg ∈ Φgs.t.x

F = (fp ◦ fg)(x
g), xF = (fp ◦ fg)(y

g), xg 6= yg}. (1.3)

Neutrality is also found in natural systems. In molecular biology, it is clear that

there is often a high degree of redundancy in the coding from genotype to phenotype.

Thus, there are redundancy on several levels; e.g. many nucleotide sequences may

code for the same amino acid, while many amino acid sequences may code for func-

tionally equivalent proteins. Therefore, neutrality has been of particular interest to

evolutionary theorists (Kimura, 1983; Ohta, 1992) and molecular biologists (Schuster

et al., 1994; Forst et al., 1995; Gruner et al., 1996; Huynen et al., 1996; Reidys et al.,

1997; Babajide et al., 1997).

The concept of neutrality in artificial evolution originates from Kimura’s neutral
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theory in population genetics. Kimura (1983) developed the neutral theory in order

to give the explanation for the various observations in the amino acid substitution

rate. Ohta (Ohta, 1992, 1998) extended the neutral theory under selective constraints

as the nearly neutral theory. According to Kimura’s neutral theory and Ohta’s nearly

neutral theory, the following five assertions have been made (Kimura and Ohta, 1974):

1. For each protein, the rate of evolution in terms of amino acid substitutions is

approximately constant per year per site for various lines, as long as the function

and tertiary structure of the molecule remain essentially unaltered.

2. Functionally less important molecules or parts of a molecule evolve (in terms of

mutant substitutions) faster than more important ones.

3. Those mutant substitutions that disrupt less the existing structure and function

of a molecule (conservative substitutions) occur more frequently in evolution

than more disruptive ones.

4. Gene duplication must always precede the emergence of a gene having a new

function.

5. Selective elimination of definitely deleterious mutants and random fixation of

selectively neutral or very slightly deleterious mutants occur far more frequently

in evolution than positive Darwinian selection of definitely advantageous mu-

tants.

1.4 Neutral Networks

Fitness landscapes which include neutrality have been conceptualized as containing

neutral networks (Harvey and Thompson, 1996; Smith et al., 2002a; Ebner et al.,

2001). This concept is central to the majority of research in this field. Harvey

(1996) first introduced the concept of neutral networks into the GA community. His

definition is as follows:
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A neutral network of a fitness landscape is defined as a set of connected

points of equivalent fitness, each representing a separate genotype: here

connected means that there exists a path of single (neutral) mutations

which can traverse the network between any two points on it without

affecting fitness.

The word, “connected” in this definition corresponds to a synonymously redundant

mapping from genotype to phenotype. Therefore, a neutral network of a fitness

landscape is defined more formally by extending Equation 1.2 to redundant mappings

from phenotype to fitness as follows:

Φ∗
F = {xF | ∃xg∃yg ∈ Φgs.t.x

F = (fp ◦ fg)(x
g), xF = (fp ◦ fg)(y

g),

yg = E(xg), h(xg, yg) ≤ d, d 6= 0}, (1.4)

where d should be reasonably small. Here, a genotype yg is called a (d-bit) mutation

of xg. Also note that the genetic operators, E, define the neighborhood in the land-

scapes. This relationship partitions the fitness space ΦF , as a result, the genotypic

space Φg. Barnett (1998) defined Φ′
F (Equation 1.3) as neutral sets. Thus, the neutral

networks are the connected components of the neutral sets, Φ∗
F ⊆ Φ′

F .

The evolutionary dynamics on neutral networks is similar to punctuated equilibria

described by Gould and Eldredge (1977). That is, it can be classified into transient

periods and equilibrium periods (Fig. 1.1) (van Nimwegen et al., 1999; Barnett, 2001).

During an equilibrium period, the population is clustered in genotype space around

the dominant phenotype, analogously to quasi-species (Eigen et al., 1989), and moves

around until it finds a portal to a neutral network of higher fitness. The discovery of

a portal leads to a transient period, which is expected to be very short in comparison

to an equilibrium period3.

The evolutionary dynamics on neutral networks is clearly different from the tradi-

tional explanations based on the schema theory. First, the convergence of a population

3These concepts originate from molecular evolution (Schuster et al., 1994; Forst et al., 1995;
Gruner et al., 1996; Huynen et al., 1996; Reidys et al., 1997; Babajide et al., 1997).
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Figure 1.1: Typical evolutionary dynamics on a fitness landscape featuring neutral
networks, which can be classified into transient periods and equilibrium periods: In-
stead of being stuck in a local optimum, a population is exploring in the genotype
space during the equilibrium period.

imply not an end of artificial evolution but a formation of a cluster, that is, a begin-

ning of open-ended evolution (Harvey, 1997). Secondly, the building block hypothesis

does not hold (Mitchell et al., 1992) and crossover does not make sense in equilib-

rium periods (van Nimwegen et al., 1999) in the Royal Road Functions, which were

designed to demonstrate the building block hypothesis. This is because Royal Road

Functions includes neutral networks (van Nimwegen et al., 1999). Thus, in fitness

landscapes with neutral networks, crossover would not be a major genetic operator

even if it is useful as a complementary operator. Mutation should be considered as a

major genetic operator in such fitness landscapes.

1.5 Problems and Approaches

It has been shown that there is a clear transition in evolutionary dynamics for pop-

ulations on neutral networks over the mutation rate range. At a very low mutation

----------------_ ... _-----------
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rate, the population is maintained in a cluster on the neutral network. As the muta-

tion rate increases, the population gradually loses the current network. That is, some

individuals fall to lower neutral networks. At a certain critical mutation rate, the

whole population will lose the current neutral network. Then the search will become

random. This mutation rate is called the phenotypic error threshold (Huynen et al.,

1996; Reidys et al., 1997; Barnett, 1997; van Nimwegen and Crutchfield, 1998; van

Nimwegen et al., 1999).

Generally, the error threshold sets the upper limit for a mutation rate that will

enable efficient search. This implies that if a constant mutation rate strategy is

adopted, a relatively low mutation rate should be set so as to avoid any error threshold

effects during the process. From a practical point of view, however, it would be

efficient to shorten the equilibrium periods which dominate the whole computation

(Fig. 1.1).

Additionally, in landscapes which include ruggedness, individuals can easily get

trapped on local optima if there is a low mutation rate and high selection pressure.

Since the concept of neutrality or neutral networks was introduced into the EA com-

munity, EA researchers have expected that increasing neutrality makes the surface of

rugged landscape smoother to prevent a population from getting trapped on local op-

tima. However, it has been demonstrated in tunably neutral NK landscapes(Barnett,

1997; Newman and Engelhardt, 1998) that increasing neutrality does not affect the

ruggedness, although it does reduce the number of local optima (Barnett, 1997; New-

man and Engelhardt, 1998; Smith et al., 2002a). This means that the effects of

ruggedness must be taken into account even if landscapes include neutral networks.

Using a high mutation rate can shorten equilibrium periods and help a population

avoid becoming trapped on local optima. However, as noted above, using a high mu-

tation rate can be counterproductive because of the effects of error thresholds. One

approach to overcoming these problems would be to adopt variable mutation rate

strategies, which change the effective mutation rate adaptively during the process of

evolution.
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In this thesis, a standard GA4 (Goldberg, 1989), which employs a constant muta-

tion rate, and the operon-GA (Ohkura and Ueda, 1999), which can change its effective

mutation rate are employed. The influences of GA parameters, especially, the muta-

tion rate and selection pressure on the speed of population movement on very simple

test functions with different levels of neutrality are investigated. The performance of

both GAs are also examined in more complex test functions with different levels of

ruggedness.

One of another research directions to advance in this field would be establishing

the measure of neutrality of fitness landscapes as well as ruggedness. The above

discussions demonstrate that ruggedness alone might be inadequate as a principal

feature of a fitness landscape, especially with neutrality. However, the majority of

such descriptions has focused solely on ruggedness of landscapes. Neutrality in land-

scapes has not been taken into account. If equilibrium periods seem dominative in

the process of evolution, ruggedness is not enough to measure the search difficulty.

Another measure, i.e., neutrality is required.

To the best of my knowledge, statistical measurements with respect to neutrality

are found only in the references (Vassilev et al., 2000; Smith et al., 2002a). Vassilev

et al. (2000) studied the structure of on-chip electronic circuit evolution landscapes.

They proposed the information analysis of fitness landscapes, which is defined over

a time series obtained by a walk on a landscape. Their entropic measure of the

time series makes it possible to confirm the existence of neutrality5 in a landscape

and which feature, neutrality or ruggedness is dominant in the landscape. Smith

et al. (2002a) proposed a method for measuring neutrality of a landscape as one of

the fitness evolvability portraits. This is defined as the probability that an offspring

fitness is equal to the parent fitness. In their measurement, a certain distinctive

difference, ε, between two fitness values considered to be neutral must be set by GA

practioners, that is, |(fp ◦fg)(x
g)− (fp ◦fg)(y

g)| ≤ ε. It has been reported by Vassilev

et al. (2000) that Smith’s measure is very sensitive to the value, ε. A great influence

of the value on the measure of neutrality would be predicted especially in the case

4The details are described briefly in Appendix A.
5Vassilev et al. (2000) call it as plateaus.
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that the fitness is evaluated as a real value or in a noisy environment. For these

problems, Smith proposed the use of neutral fitness band (Smith et al., 2001b) or

the significance level for the Student t-test (Smith, 2002) as the value. However, he

declared that no significant difference between two fitness landscapes was detected by

introducing such statistical neutrality in his thesis (Smith, 2002). This implies the

difficulty to use fitness data for measuring neutrality. Therefore, this thesis focuses

on the genotype data for measuring it.

According to the assertions (Kimura and Ohta, 1974) on the neutral theory (1983)

and the nearly neutral theory (Ohta, 1992, 1998) mentioned earlier in this chapter, the

number of gene substitutions of each genotype increases with the increase of neutral-

ity. The number of gene substitutions is a scale of genetic distance, which shows the

degree of difference between populations or species. From the viewpoint of measuring

neutrality, a genetic distance could be an index of neutrality. In population genet-

ics, there are several statistical methods for measuring the genetic distance between

populations or species because population geneticists have been trying to explain

evolutionary change quantitatively, that is, the change of gene frequency in the pop-

ulation. This idea would be beneficial in artificial evolution because there is no need

to treat any fitness values. Thus, this thesis proposes the use of the Nei’s standard

genetic distance (Nei, 1972), which is one of such statistical methods for measuring

genetic distances, for estimating the degree of neutrality in fitness landscapes.

1.6 Thesis Overview

This thesis can be divided roughly into two parts: foundations (Chapter 2 and Chap-

ter 3) and applications (Chapter 4).

Chapter 1 introduced the theoretical background and methodology necessary to

read this thesis.

Chapter 2 investigates the evolutionary dynamics in simple test functions and

complex test functions for obtaining some guidelines for tuning the performance of

GAs. Two types of GA are used. One is the standard GA, where the mutation rate

is constant, and the other is the operon-GA, whose effective mutation rate at each



12 CHAPTER 1. INTRODUCTION

locus changes independently according to the history of genetic search. Section 2.2

investigates the effect of selection pressure and the variable mutation rate strategy

on the evolutionary dynamics on an abstract model of very simple neutral networks,

called the Balance Beam Function. Then, Section 2.3 examines the evolutionary

dynamics on a more complex test function, called the terraced NK landscape, which

incorporates both neutrality and ruggedness. Section 2.3.3 discusses the effect of error

thresholds and the variable mutation rate strategy on smooth and rugged landscapes.

Chapter 3 introduces the second main direction of this thesis, describing fitness

landscapes with neutral networks. The use of the Nei’s standard genetic distance is

proposed for estimating the degree of neutrality in fitness landscapes. Section 3.2

describes the Nei’s standard genetic distance and modifies it in order to apply it to

GAs. Section 3.3 investigates the characteristics of the Nei’s genetic distance in a

tunably neutral landscape to validate the use of the Nei’s standard genetic distance

for estimating the degree of neutrality in fitness landscapes. Section 3.4 examines the

measure of ruggedness as well as the genetic distance, considering real-world problems.

Section 3.5 discusses the error threshold on the population size and the mutation rate

based on the obtained results.

Chapter 4 explores how well the obtained results in Chapter 2 and Chapter 3 ap-

ply to several real-world problems, particularly evolution of artificial neural networks

for robot control. Section 4.2 and Section 4.3 investigate simulated real-world prob-

lems, a discrimination problem and a pursuit problem. Section 4.4 analyses a single

evolutionary run for each GA in a real-world problem, a goal reach problem. In these

problems, the Nei’s genetic distance is applied to estimate and compare the neutrality

of the fitness landscape among the neural network controllers. Then, based on these

features of the fitness landscape, both GAs are applied for examining whether the

evolutionary dynamics obtained in these problems are consistent with the dynamics

in the test functions. Finally, the best evolved controllers of the neural networks are

evaluated in both the simulated and the real environment.

Conclusions are given in the last chapter.



Chapter 2

Foundation: Neutral Evolution

2.1 Introduction

Considering that equilibrium periods dominate the whole computation in the evolu-

tionary dynamics on neutral networks, A hypothesis is generated that tuning GAs

for maximizing the speed of a population’s movement on a neutral network is very

effective for accelerating the evolution. Based on this, computer simulations are con-

ducted using simple neutral networks, called the Balance Beam Function in Section

2.2. Additionally, it is interesting to investigate whether the observations on the

Balance Beam Function are consistent with more complex problems with neutrality

and ruggedness. This is because this research effort aims at solving complex real-

world problems. However, because of their complexity, investigating such problems

is unlikely to lead to generalizable conclusions. Therefore, Section 2.3 investigates

the effect of ruggedness by employing a more complex and popular test function, the

terraced NK landscape (Newman and Engelhardt, 1998).

13
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2.2 Simple Test Function

2.2.1 Balance Beam Function

The Balance Beam Function, proposed by Yasuda et al. (2001), is employed as the

test function. It is relatively easy to investigate evolutionary dynamics with this

function, because it has a landscape composed of only two neutral networks, each of

a different fitness—one of which has the shape of a “balance beam”. The BBF is

formulated as follows:

W =





1.0 if(A ≤
N∑

i=1

si ≤ B)

ε (¿ 1) otherwise,

(2.1)

where W , N , si ∈ {0, 1} and ε are the fitness value, the length of the genotype,

the value of the i-th locus and the positive real number, respectively. A and B

(0 < A < B ≤ N) are constant integers. The abstract width, w, of a neutral pathway

is calculated as B − A. Based on the hypothesis mentioned in the beginning of this

chapter, this experiment focuses on how to maximize the moving speed of individuals

on the neutral network with W = 1.0.

As the initial setting, all individuals in the population are placed on a particular

point1 on the higher neutral network, for instance, si = 1, i = 1, . . . , d and si = 0, i =

d+1, . . . , l, where d is a constant integer between A and B. This would be a situation

similar to a population just after a transition period. In the process of evolution, each

individual moves along the pathway by flipping the values of loci. Distance is defined

as the number of 0s between the 1st locus and the d-th locus if the individual is on

the higher neutral network. Distance is not defined for an individual on the lower

neutral network. Therefore, the moving speed of a population can be measured as

the number of generations (for generational GAs), or the number of evaluations (for

steady state GAs) for one of individuals to reach the furthest distance, d. For the

BBF, the optimal mutation rate, qo, is identified as the mutation rate which results in

the fastest speed over the mutation rate range. The phenotypic error threshold, qerr,

1The similar initial setting is found in (Ochoa et al., 1999)
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is identified as the mutation rate at which no individual reaches the furthest distance

by the final generation.

2.2.2 Computer Simulations

Simulation Conditions

Computer simulations were conducted by setting the population size to 50 and the

length of the genotype to 200. The standard GA (SGA) and the extended GA,

called the operon-GA (OGA)(Ohkura and Ueda, 1999) were employed to evolve a

population. The genetic operation for the SGA was standard bit mutation. For both

GAs, the per-bit mutation rate, q, was set between 0.0001 and 0.1 with step sizes

of ∆q = 0.0001 (if q < 0.001), 0.001 (if 0.001 ≤ q ≤ 0.01) and 0.01 (if 0.01 <

q ≤ 0.1). Crossover was not used for either GA, following Nimwegen’s suggestion

(van Nimwegen et al., 1999). The OGA uses not only standard bit mutation but

also five additional genetic operators: connection, division, duplication, deletion and

inversion (The details are described briefly in Appendix B). The probabilities for

genetic operations were set at 0.3 for connection and division, 0.1 for duplication and

0.05 for deletion and inversion, as recommended by Ohkura and Ueda (Ohkura and

Ueda, 1999). The length of the value list in a locus was 6. Tournament selection

was adopted. Elitism2 was optionally applied. The tournament size was set at s =

2, 4 and 6. A generational GA was used. Each run lasted 10,000 generations3. 50

independent runs were conducted for each problem with the parameters (A,B) =

(19, 20), (19, 24), (19, 29) and (19, 39); that is, with neutral pathways of width w =

1, 5, 10 and 20. d was set at 19. All results were averaged over 50 runs.

Simulation Results

Fig. 2.1 and 2.2 show the average generations to reach the furthest distance, d, for

s = {2, 4, 6} and w = 1, with and without elitism, for the SGA and the OGA,

2An individual, randomly selected from those individuals whose fitness value is 1.0, is passed
unmutated to the next generation.

3If no individual reaches the furthest distance by the final generation, the number of generations
to reach the furthest distance is taken to be 10, 000.
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Figure 2.1: Average generations to reach the furthest distance in 50 runs for the SGA
with w = 1
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respectively. The curves are U-shaped as a function of the mutation rate, q, and have

an optimal mutation rate and an error threshold.

Without elitism, the speed falls sharply when q exceeds qo. Moreover, the optimal

mutation rate is just below the error threshold (Fig. 2.1(a), 2.3(a) and Fig. 2.2(a),

2.4(a)). With elitism, both the optimal mutation rate and the error threshold increase,

and so does the distance between them (Fig. 2.1(b), 2.3(b) and Fig. 2.2(b), 2.4(b)).

Increasing the tournament size increases the optimal mutation rate and the error

threshold. It also results in improved speeds over the mutation rate range qo < q <

qerr (Fig. 2.1(a), 2.1(b) and Fig. 2.2(a), 2.2(b)). This had the same effect for all the

widths (Appendix C).

Fig. 2.3 and 2.4 show the average generations to reach the furthest distance, d, for

s = 6 and w = {1, 5, 10, 20}, with and without elitism, for the SGA and the OGA,

respectively. Increasing the width of the neutral pathway improves speeds over the

mutation rate range qo < q < qerr, and q < qo except w = 10 and 20 (Fig. 2.3(a),

2.3(b) and Fig. 2.4(a), 2.4(b)). This had the same effect for all the tournament sizes

(Appendix C). This may be considered as follows; With the larger width, individuals

move more freely on a neutral network. If the width exceeds a certain threshold, it

takes more time for individuals to reach the furthest distance.

Fig. 2.5 shows the average generations to reach the furthest distance for the SGA

and the OGA. The SGA produced higher speeds than the OGA when q was larger

than qo. However, the OGA produced higher speeds than the SGA when q was below

qo. This would be due to the effect of the variable mutation rate strategy.
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Figure 2.3: Average generations to reach the furthest distance in 50 runs for the SGA
for s = 6
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Figure 2.4: Average generations to reach the furthest distance in 50 runs for the OGA
for s = 6



2.2. SIMPLE TEST FUNCTION 21

0

2000

4000

6000

8000

10000

1.0e-04 1.0e-03 1.0e-02 1.0e-01

G
en

er
at

io
n

Mutation rate

sga
oga

elitism-sga
elitism-oga

(a) s = 2

0

2000

4000

6000

8000

10000

1.0e-04 1.0e-03 1.0e-02 1.0e-01

G
en

er
at

io
n

Mutation rate

sga
oga

elitism-sga
elitism-oga

(b) s = 6

Figure 2.5: Average generations to reach the furthest distance in 50 runs for the SGA
and the OGA (w = 1)



22 CHAPTER 2. FOUNDATION: NEUTRAL EVOLUTION

2.2.3 Error Threshold and Selection Pressure

The results obtained in the previous subsection suggest that optimal mutation rates

and error thresholds are strongly correlated with selection pressure. Without elitism,

the optimal mutation rate will be just below the error threshold. If the mutation rate

is set by estimating the optimal mutation rate, a misjudgement could result in the

error threshold being exceeded, and thus lead to poor performance. With higher se-

lection pressure, the optimal mutation rate and error threshold both increase. Elitism

improves the moving speed when q is larger than qo. Note that extreme elitism (e.g.

50% of offspring are identical to their parents) will reduce the moving speed, since

the population will tend to repeatedly sample the same genotypes (Bullock, 2002).

This may be related to the effects of sampling fluctuation. Nimwegen et al. (1999)

have suggested that there is an appreciable chance that all individuals on higher neu-

tral networks will be lost through sampling fluctuations4. These results demonstrate

that high selection pressure decreases the probability with which the individuals are

lost through sampling fluctuation, with the result that the optimal mutation rate

and error threshold are shifted to higher mutation rates. This would explain why,

when q exceeds qo, the moving speed improves if (relatively) high selection pressure

is applied.

4Higher neutral networks will tend to have narrower neutral pathways, with more bits on the
genotype being subject to selective constraints.



2.3. COMPLEX TEST FUNCTION 23

2.3 Complex Test Function

2.3.1 Terraced NK Landscape

A terraced NK landscape is the tunably neutral NK landscape proposed by Newman

et al. (1998). A terraced NK landscape has three parameters: N , the length of the

genotype; K, the number of epistatic linkages between genes; and w, the contribution

of a locus to the fitness of the entire genotype.

The fitness value is calculated as follows: The fitness contribution of the i-th

locus, wi, is an integer, generated randomly in the range 0 ≤ wi < F, i = 1, · · · , N .

To calculate the fitness, W , of a genotype, the fitness contribution of each locus is

averaged, and then divided by F − 1, normalizing W to the range 0.0 to 1.0. More

formally:

W =
1

N(F − 1)

N∑

i=1

wi. (2.2)

The neutrality of the landscape can be tuned by changing the value of F . The

neutrality of the landscape is maximized when F = 2, and is effectively non-existent

as F → ∞.

2.3.2 Computer Simulations

Simulation Conditions

Computer simulations were conducted using a population size of 50. The OGA uses

the same genetic operators as in Section 2.2: connection, division, duplication, deletion

and inversion. The probabilities for genetic operations were set at 0.3 for connection

and division, 0.6 for duplication and 0.3 for deletion and inversion (in the cases that

K ≥ 5 for s = 6 with elitism), and 0.3 for connection and division, 0.2 for duplication

and 0.05 for deletion and inversion (in the other cases). The length of the value list

in a locus was 6. The genetic operation for the SGA was standard bit mutation. For

both GAs, the per-bit mutation rate, q, was set at 0.01, according to Mühlenbein’s

suggestion (Mühlenbein, 1993). Crossover was not used with either GA. Tournament
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selection was adopted. Elitism5 was optionally applied. The tournament size, s, was

set at {2, 6} because low selection pressure is generally preferable with the SGA,

whereas high selection pressure is preferable with the OGA. A generational GA was

used. 50 independent runs were conducted for each problem under the landscape

parameters, N = 100, K = {0, 5, 15, 25}, F = 2. Each run lasted 3,000 generations.

All results were averaged over 50 runs.

Simulation Results

Fig. 2.6 to 2.9 show the maximum fitness at each generation for the SGA and OGA,

with and without elitism, and for different values of K and s.

For K = 0, there is no ruggedness, and the landscape is similar to simple neutral

networks of the BBF. Fig. 2.6(a) and 2.6(b) show the results for the four GA con-

ditions for s = 2 and 6 respectively. No significant differences in performance were

observed. This is consistent with the results obtained with simple neutral networks

using the BBF in Chapter 2.2.

For K = 5, both GAs performed better with elitism than without it for s = 2

(Fig. 2.7(a)). However, for s = 6 there was no significant difference between the four

GA conditions (Fig. 2.7(b)). Fitness increased faster for s = 6 than for s = 2.

For K = 15 and K = 25, differences between the SGA and the OGA were much

more pronounced than at K = 0 and K = 5. As with K = 5, both GAs performed

better with elitism than without it for s = 2 (Fig. 2.8(a), 2.9(a)). The OGA was

outperformed by the SGA for s = 2, however, the OGA outperformed the SGA for

s = 6 (Fig. 2.8(b), 2.9(b)). A closer examination reveals that the OGA performed

better for s = 6 than the SGA did for s = 2 with elitism.

5An individual, randomly selected from those individuals with the highest fitness value, is passed
unmutated to the next generation.
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2.3.3 Variable Mutation Rate Strategy against Ruggedness

The obtained results can be summarized as follows:

- the effect of the error threshold

Without elitism, both types of GA search inefficiently when landscapes are rugged

and selection pressure is low. The OGA performs slightly worse than the SGA, as

shown in Fig. 2.7(a), 2.8(a) and 2.9(a). This is due to the fact that the effective

mutation rate is more likely to exceed the error threshold when selection pressure

is low (van Nimwegen and Crutchfield, 1998). This is consistent with the results

obtained using the BBF (Fig. 2.5).

- the variable mutation rate strategy

The variable mutation rate strategy of the OGA is a better approach on highly

rugged landscapes when selection pressure is high. For s = 6 and, with elitism for

s = 2, the SGA is easily trapped on local optima when the landscape is highly rugged

(K = 15 and K = 25); in contrast, on the same landscapes, for s = 6, the OGA

continues to find better regions. This improvement is due to the online adaptation

of mutation rates during the process of evolution.
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2.4 Summary

This chapter investigated the effect of selection pressure and mutation rate on the

speed of population movement on very simple neutral networks with different levels

of neutrality. Then, examined the performance of GAs in the terraced NK landscapes

with different levels of ruggedness and different selection pressures. Two types of GA

were used. The results can be summarized as follows:

• For a given population size, the speed of a population plotted as a function of

the mutation rate yields a concave curve with an optimal mutation rate and an

error threshold.

• Increasing the selection pressure will improve the speed at which a population

moves on a neutral network.

• The benefits of the variable mutation rate strategy become increasingly clear

as the ruggedness of the landscapes increases.

These results suggest some guidelines for tuning the performance of GAs. Chapter

4 will investigate how well these tuning guidelines apply to real-world problems, such

as the evolution of artificial neural networks for robot control.



Chapter 3

Foundation: Estimating Neutrality

3.1 Introduction

This chapter investigates systematically the characteristics of the Nei’s standard ge-

netic distance in fitness landscapes with neutrality in various conditions to validate

the use of the standard genetic distance for estimating the degree of neutrality in

fitness landscapes.

Section 3.2 describes the Nei’s standard genetic distance. Section 3.3 applies the

Nei’s genetic distance to a tunably neutral landscapes and shows the results. Section

3.4 examines the measure of ruggedness as well as the genetic distance, considering

real-world problems. Finally, Section 3.5 discusses the error threshold on the popula-

tion size and the mutation rate based on the obtained results and the chapter closes

with a summary of the main points.

3.2 The Nei’s Standard Genetic Distance

Genetic distance is a term of population genetics used for estimating gene differences

per locus between populations. Although there are several definitions for this, the

Nei’s standard genetic distance (Nei, 1972), which is often used for that sake in

population genetics, is adopted in this thesis.

31
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The Nei’s standard genetic distance is defined as follows. Consider two popula-

tions, X and Y . Let xik and yik be the frequencies1 of the k-th alleles (i = 1, · · · , N ,

k ∈ {1, 2} in a binary coded GA) in X and Y , respectively. The probability of iden-

tity of two randomly chosen genes is jxi = x2
i1 + x2

i2 in the population X, while it is

jyi = y2
i1 + y2

i2 in the population Y . The probability of identity of a gene from X and

a gene from Y is jxyi = xi1yi1 + xi2yi2. The normalized identity of genes between X

and Y with respect to a locus is defined as

Ii =
jxyi√

jxi

√
jyi

(3.1)

where, Ii = 1.0 if the two populations have the same alleles in identical frequencies,

and Ii = 0.0 if they have no common alleles. The normalized identity of genes between

X and Y with respect to the average in all loci is defined as

I =
JXY√
JX

√
JY

(3.2)

where, JX =
∑N

i=1 jxi/N , JY =
∑N

i=1 jyi/N and JXY =
∑N

i=1 jxyi/N . The genetic

distance between X and Y is defined as

D = − loge I (3.3)

under the assumption that the mutation rate per locus is sufficiently small. However,

the above definition cannot be applied to the standard GA directly, because popula-

tion genetics assumes that a new allele always appears on a locus when a mutation

occurs, while “back mutations (Ohta, 1992)” frequently occur in the standard GA,

due to the binary coding scheme. Therefore, the genetic distance for GAs is extended

as follows:

D =
T−1∑

1

Dt,t+1 (3.4)

where T is the number of the final generation and Dt,t+1 is the genetic distance

between the populations in the t-th and the (t + 1)-th generation.

1The term, “frequency” often means a proportion in population genetics.
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3.3 The Genetic Distance in a Test Function

3.3.1 Simulation Conditions

Two genetic algorithms were employed: the SGA and the (random-sampling, q)-

algorithm. The (random-sampling, q)-algorithm employs standard bit mutation at

the rate of q as the genetic operation and random sampling as a selection method

where M offsprings are sampled from M ancestors with replacements. This model

was used to investigate the effect of random sampling with mutation on a genetic

distance. This is approximately equivalent with Kimura’s stochastic genetic models

to study random genetic drift and the expected time of fixation of a mutant gene

(Kimura, 1983).

Computer simulations were conducted by varying the population size, M , and

the mutation rate, q. The SGA was applied to terraced NK landscapes (Section 2.3)

varying the landscape parameters. The SGA used standard bit mutation as the ge-

netic operation. Crossover was not employed. Tournament selection was adopted for

the SGA. The tournament size was set at 2 for the SGA. Each run lasted 2,000 gen-

erations. 50 independent runs were conducted for each problem under the landscape

parameters, N = 20, K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4, 6,∞2}. By using the genotype

data obtained in 50 runs, the Nei’s standard genetic distance were calculated.

3.3.2 Simulation Results

Existence and Non-existence of Neutrality

The first experiments were conducted to investigate the effect of the existence of

neutrality on the transition of the genetic distance. Fig. 3.1 shows the genetic distance

of the SGA for F = ∞, where q was set at 0.008 based on the assumption of Equation

3.3. They leveled off in the very early generations. This means that the population

converged to a certain point in the genotype space then the genetic distance between

the generations (Dt,t+1 in Equation 3.4) became zero. In contrast, the genetic distance

2For F = ∞, the NK fitness landscape (Kauffman, 1993) was employed instead of the terraced
NK landscape as (Smith et al., 2002a), which results in practically non-existence of neutrality.
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Figure 3.1: Genetic distance at each generation for the SGA with q = 0.008 and
M = 50 for F = ∞ in 50 runs



3.3. THE GENETIC DISTANCE IN A TEST FUNCTION 35

0

2

4

6

8

10

0 500 1000 1500 2000

G
en

et
ic

 d
is

ta
nc

e

Generation

(a) K = 0

0

1

2

3

4

5

0 500 1000 1500 2000

G
en

et
ic

 d
is

ta
nc

e

Generation

(b) K = 2

0

1

2

3

4

5

0 500 1000 1500 2000

G
en

et
ic

 d
is

ta
nc

e

Generation

(c) K = 6

0

1

2

3

4

5

0 500 1000 1500 2000

G
en

et
ic

 d
is

ta
nc

e

Generation

(d) K = 12

0

1

2

3

4

5

0 500 1000 1500 2000

G
en

et
ic

 d
is

ta
nc

e

Generation

(e) K = 19

Figure 3.2: Genetic distance at each generation for the SGA with q = 0.008 and
M = 50 for F = 2 in 50 runs
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Figure 3.3: Genetic distance at each generation for the (random-sampling, q)-
algorithm with q = 0.008 and M = 50 in 50 runs

of the SGA for F 6= ∞ (for instance, the results for F = 2 are shown in Fig. 3.2.) and

the (random-sampling, q)-algorithm (Fig. 3.3) with q = 0.008 increased approximately

linearly over generations in all runs. This differentiates between the existence and the

non-existence of neutrality in a fitness landscape. That is, the increase of the genetic

distance over generations indicates the presence of neutrality in a fitness landscape.

In the remainder of this experiment, the gradient of the genetic distance over

generations, α, for the (random-sampling, q)-algorithm and the SGA for F 6= ∞ are

shown by using the method of least squares on the results of all the runs.

Neutrality and Selective Constraint

With respect to the assertions 1, 2 and 3 mentioned in Chapter 1, Kimura (1983) has

suggested that the rate of gene substitution is largest when the selective advantage of

a new mutation over the original allele is zero except that the new mutation is delete-

rious in a small population. Thus, it seems likely that the genetic distance increases

with the increase of neutrality and that for the (random-sampling, q)-algorithm is

largest, because random-sampling can be considered completely neutral for selection.

In addition to this, according to Ohta’s nearly neutral theory (Ohta, 1992, 1998), the

stronger the selective constraint on the molecule is, the lower its rate of evolution be-

comes. That is, the genetic distance is likely to decrease with the increase of selective

constraint, K.
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Table 3.1 and Fig. 3.4(a) show α for the SGA with q = 0.008 and M = 50. Notice

first that α increased with the decrease of F for all Ks. This means that the genetic

distance increases with the increase of neutrality as predicted. Secondly, α decreased

with the increase of K for all F s. This means that not only neutrality but also

ruggedness has an influence on the genetic distance. This tendency is consistent with

Ohta’s results for NK landscapes with weak selection based on the nearly neutral

theory, where the number of substitutions decreases with the increase of K (Ohta,

1997, 1998). Similar behavior to M = 50 is shown for each population size M =

{100, 200, 400} (Table 3.2, 3.3 and 3.4, and Fig. 3.4(b), 3.4(c) and 3.4(d)).

α for the (random-sampling, q)-algorithm with each M is shown in Table 3.5. It

is confirmed that for each M , α for the (random-sampling, q)-algorithm was always

larger than any others for the SGA with K and F (from Table 3.1 to 3.4 ). This agrees

with the above prediction.

Varying the Population Size

In the next experiments, the analysis was extended by varying the population size.

According to Ohta’s nearly neutral theory (Ohta, 1992, 1998), population movement

depends on the population size. That is, mutant dynamics becomes slower by increas-

ing the population size. Fig. 3.5(a) to 3.5(d) show α for the SGA with each M . With

the increase of the population size, α decreased for each K and F . Therefore, the

larger the population size becomes, the slower the population moves. This tendency

is also consistent with Ohta’s results for NK landscapes with weak selection based

on the nearly neutral theory, where the number of substitutions decreases with the

increase of the population size (Ohta, 1997, 1998).

Table 3.5 shows α for the (random-sampling, q)-algorithm with each M . α also

decreased with the increase of the population size.
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Table 3.1: α for the SGA with q = 0.008 and M = 50

HHHHHHF
K

0 2 6 12 19

2 0.002042 0.000666 0.000220 0.000131 0.000106
3 0.001307 0.000421 0.000173 0.000102 0.000104
4 0.001063 0.000318 0.000130 0.000099 0.000087
6 0.000738 0.000235 0.000128 0.000090 0.000087

Table 3.2: α for the SGA with q = 0.008 and M = 100

HHHHHHF
K

0 2 6 12 19

2 0.001370 0.000401 0.000148 0.000079 0.000068
3 0.000843 0.000255 0.000096 0.000051 0.000050
4 0.000607 0.000164 0.000073 0.000057 0.000050
6 0.000405 0.000128 0.000056 0.000048 0.000044

Table 3.3: α for the SGA with q = 0.008 and M = 200

HHHHHHF
K

0 2 6 12 19

2 0.000781 0.000263 0.000086 0.000040 0.000026
3 0.000486 0.000161 0.000051 0.000039 0.000028
4 0.000359 0.000119 0.000041 0.000029 0.000027
6 0.000238 0.000067 0.000031 0.000025 0.000026

Table 3.4: α for the SGA with q = 0.008 and M = 400

HHHHHHF
K

0 2 6 12 19

2 0.000434 0.000146 0.000043 0.000032 0.000024
3 0.000261 0.000087 0.000032 0.000025 0.000013
4 0.000193 0.000062 0.000019 0.000014 0.000019
6 0.000127 0.000050 0.000017 0.000017 0.000015
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Table 3.5: α for the (random-sampling, q)-algorithm with q = 0.008 for each popula-
tion size

M 50 100 200 400
rate 0.004576 0.003194 0.001971 0.001120

Varying the Mutation Rate

In population genetics, it is assumed that the mutation rate per locus is sufficiently

small as mentioned in Section 3.2. In the last series of experiments, the tran-

sition of the Nei’s genetic distance were observed by varying the mutation rate,

q = {0.005, 0.006, · · · , 0.010, 0.020, · · · , 0.05, 0.07, 0.1}, from relatively small one to

large one for the SGA with M = 50.

Fig. 3.6 shows the results with q = {0.005, · · · , 0.010}. In this range, α increased

with the increase of the mutation rate for each K and F . For each q, similar behaviors

were observed to the results with q = 0.008 (mentioned in the previous subsections).

In contrast, there became less significant differences between the graphs of different

F s with the increase of the mutation rate from q = 0.02 to 0.1 (Fig. 3.7). Surprisingly,

at q = 0.1, α increased with the increase of K for all F s (Fig. 3.7(f)).

α for the (random-sampling, q)-algorithm with q = 0.1 was 0.0135733. Thus, α

for the SGA was higher than that for the (random-sampling, q)-algorithm for K > 2

and all F s. This implies that artificial evolution has changed into random search,

caused by the mutation rate which is larger than the error threshold (van Nimwegen

et al., 1999).

From the above, it was confirmed that the Nei’s genetic distance depends on the

mutation rate, and can be used as long as the mutation rate is sufficiently small

compared with the error threshold.
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Figure 3.6: α for the SGA with M = 50 at q = {0.005, 0.006, · · · , 0.010}
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Figure 3.7: α for the SGA with M = 50 at q = {0.02, · · · , 0.05, 0.07, 0.10}
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3.4 Estimating Ruggedness

In real-world problems, ruggedness of a fitness landscape is predicted by the fitness

correlation (Smith et al., 2002a; Weinberger, 1990). In this thesis, therefore, the

Smith’s measurement (Smith et al., 2002a) is employed for the measure of ruggedness

because its fitness correlation can be expressed as one dimensional value.

The average fitness of the offspring solutions, called the Smith’s Eb, is given by

Eb(k) =

∑
g∈G(k) F (g)

|G(k)|
(3.5)

where, G(k) is the set of offspring from parents with the fitness k, g is an offspring

genotype and F (·) is the fitness function. For instance, on the same settings in

the previous section, Ebs in TNK(N = 20, F = 2, K ∈ {0, 2, 6, 12, 19}) are shown

in Fig. 3.8 by using the method of least squares on 50 runs. It is found that the

gradient, Ėb, decreases with the increase of K. It has been known that this gradient

is proportional to the autocorrelation function for the mutation operator applied, and

that Ėb ' 1.0 when K = 0 and Ėb ' 0.0 when K = N − 1.

Figure 3.9 shows α at each correlation (Ėb) corresponding to K with all F s in

TNK (N = 20, K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4, 6} and the other parameters were

the same as in the previous section). It is confirmed that α increased with the increase

of Ėb for all F s, and increased with the decrease of F for all Ėbs. As a result, a set of

points (Ėb, α) composes a curve, which increases with the increase of the correlation

when F is constant. A set of curves are also found with different levels of neutrality.

This demonstrates that α would predict the increase of neutrality combined with the

measure of ruggedness.
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M = 50

o 
---E)---

----8-

.7(. 

, , , 

w , , 
/I?' 

// X 
! I ,/ 

I' i 
J' :' 

0 / 
/// Ai' 

/<·X 



46 CHAPTER 3. FOUNDATION: ESTIMATING NEUTRALITY

3.5 Discussion

In the previous section, it has been shown that population movement depends on

the population size. If the population size is small, the population for the SGA

moves quickly. This would have the advantage of flexibility. As pointed out in (Ohta,

1998), evolution would become more flexible for a small population size than for a

large population size, particularly when the environment is not static, that is, the

fitness landscape changes occasionally. On the other hand, it has been reported that

as the population size becomes too small, it becomes easier for the population to

lose the current best individuals through random sampling or mutation and fall to

lower neutral networks (van Nimwegen and Crutchfield, 1998). This phenomenon

is due to the effects of the error threshold on the population size3. This would be

more understandable by considering the population movement. Due to the small

population size, the population on the neutral networks moves too quickly to keep

the current neutral network. This implies that there exists the optimal population

size that keeps the fastest speed as well as avoids the influence of the error threshold.

The same discussion can be applied to the error threshold on the mutation rate

(van Nimwegen et al., 1999; Barnett, 2001) mentioned in Section 3.3.2.

3It has been known that there are two kinds of error threshold: on the mutation rate and on the
population size (van Nimwegen and Crutchfield, 1998; van Nimwegen et al., 1999).
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3.6 Summary

This chapter investigated the characteristics of the Nei’s standard genetic distance

by applying it to terraced NK landscapes, and confirmed the validity of the use of

the Nei’s standard genetic distance for estimating the degree of neutrality in fitness

landscapes. It was confirmed that the results were consistent with the neutral theory

and the nearly neutral theory in population genetics. The influence of the error

threshold on the population size was discussed.

The characteristics of the Nei’s standard genetic distance can be summarized as

follows:

When the mutation rate per locus is sufficiently small,

• The genetic distance increases approximately linearly over generations in fitness

landscapes with neutrality.

• Random sampling with mutation results in the largest genetic distance.

• The genetic distance increases with the increase of neutrality.

• The genetic distance decreases with the increase of ruggedness in landscapes

with neutrality.

• The genetic distance decreases with the increase of the population size.

These results suggest that the genetic distance can provide a guideline for esti-

mating the degree of neutrality combined with the measure of ruggedness. The next

chapter will investigate how well the proposed method applies to describe real-world

problems whose fitness landscape includes neutral networks, such as the evolution of

artificial neural networks for robot control.



Chapter 4

Applications

4.1 Introduction

The previous chapters showed some guidelines based on the experimental results for

tuning the performance of GAs on fitness landscapes with neutral networks and for

estimating the degree of neutrality in fitness landscapes. The remainder of this thesis

investigates how well those guidelines apply to real-world problems, especially to

the evolution of artificial neural networks for robot control on several evolutionary

robotics tasks.

Evolutionary robotics aims at providing autonomous robots with high adaptabil-

ity by employing artificial evolution (Nolfi and Floreano, 2000). This is because au-

tonomous robots should be adaptable to environments, which the system of a robot

is developed through the interaction with (Pfeifer and Scheier, 1999). In evolutionary

robotics, genetic algorithms and neural networks are the most used techniques. How-

ever, useful theories or methodologies for them have not been discussed enough. This

would be due to landscapes with neutral networks in the problems where traditional

theories are not useful, as mentioned in Chapter 1. If the proposed guidelines suc-

cessfully apply to the problems, great breakthroughes are expected in that research

field .

Section 4.2 and 4.3 investigate such simulated real-world problems, a discrimina-

tion problem and a pursuit problem. In both problems, it is investigated whether the

48



4.1. INTRODUCTION 49

Nei’s genetic distance can be used to estimate and compare the degree of neutrality

in the fitness landscape among the neural network controllers (varying the number

of hidden neurons in the discrimination problem) and whether the evolutionary dy-

namics observed in these problems are consistent with those of the test functions

in Chapter 2. Section 4.4 investigates a single evolutionary run for each GA in a

real-world problem, a goal reach problem. The features of the fitness landscape are

estimated by using the proposed method. Based on these features, the SGA and

the OGA are applied to the problem. The best evolved controllers of the neural

networks are evaluated as the controller of an autonomous mobile robot in the real

environment. Finally, the chapter closes with a summary of the main points.
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4.2 Discrimination Problem

Catch? Avoid?

Long Period
[12 Steps]

Catch

Short Period
[4 Steps]

Avoid 

Figure 4.1: Experimental setup for a discrimination of the motion patterns. Two
kinds of period used in the discrimination experiments (left) and the agent in the
arena with its array of the proximity sensors (right).

For animals with vision, information of figures plays the main role in discriminating

an object. It is also known that those animals discriminate an object not only by its

figure but also by its motion pattern (von. Uexküll, 1926; Jörg-Peter, 1976). Thus,

it is interesting to investigate whether an artificial agent can discriminate an object

either by its figure or by its motion pattern, or both. Beer (1996) has demonstrated

that an agent controlled by evolved dynamical neural networks can discriminate an

object by its figure. Moreover, an agent must be able to discriminate an object by

its motion pattern (Katada et al., 2003). For this experiment, the control task was

motion pattern discrimination, and is based on a task originally implemented by Beer

(1996). The agent must discriminate between two types of vertically falling object

based on the object’s period of horizontal oscillation; it must catch (i.e., move close

to) falling objects that have a long period whilst avoiding those with a short period

(see Fig. 4.1). An array of proximity sensors allow the agent to perceive the falling

objects. If an object intersects a proximity sensor, the sensor outputs a value inversely

proportional to the distance between the object and the agent. The agent can move

horizontally along the bottom of the arena. For this experiment, the agent of diameter

30 had 7 proximity sensors of maximum range 220 uniformly distributed over a visual

angle of 45 degrees. The horizontal velocity of the agent was proportional to the sum

• • 
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of the opposing horizontal forces produced by a pair of effectors. It has maximum

velocity of 8. Each falling object was circular, with diameter 30, and dropped from

the top of the arena with a vertical velocity of 4, a horizontal amplitude of 30 and an

initial horizontal offset of ±50. An object’s horizontal velocity was ±10 (12 steps in

a period) for a long period and ±30 (4 steps in a period) for a short period.

The performance measure to be maximized was as follows:

Fitness = 1000
NumTrials∑

i=1

Pi

NumTrials
, (4.1)

where Pi = 1 − di for a long period and Pi = di for a short period, di = 1 when

hdi > 60 and di = hdi/60 when hdi ≤ 60, hdi is the final horizontal distance between

the center of the agent and the object, and NumTrials is the number of trials for an

individual (8 trials for each period).

4.2.1 Describing the Fitness Landscapes

Simulation Conditions

For this experiment, the agent controller was a PNN with 7 sensory neurons, 2 fully

interconnected motor neurons and Nh fully interconnected hidden neurons, where

Nh ∈ {0, 1, 5, 10, 15} in order to estimate and compare the features among the fitness

landscape with each Nh. The network’s connection weights and the firing threshold

for each neuron were genetically encoded and evolved. The total number of param-

eters is equal to {20, 33, 105, 240, 425} corresponding to each Nh. The parameters

were mapped linearly with the following ranges: connection weights ω ∈ [−1.0, 1.0],

thresholds θ ∈ [0.0, 3.9]. The parameters of the neurons and synapses (see Appendix

D) were set as follows: τm = 4, τs = 10, ∆ax = 2 for all neurons and all synapses in

the network following the recommendations given in (Floreano and Mattiussi, 2001).

Computer simulations were conducted using populations of size 50. Each indi-

vidual was encoded as a binary string with 10 bits for each parameter. Therefore,

the total length of the genotype was L = {200, 330, 1050, 2400, 4250}. The SGA were

adopted to evolve PNN parameters. The genetic operation for the SGA was standard
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bit mutation. Based on the assumption of Equation 3.3 in Chapter 3, two types of

mutation rate were set as follows:

a) q = 1/LNh=15, which is constant for each landscape, corresponding to 1/L for the

longest length in Ls.

b) q = 1/L, following the recommendation in the evolutionary computation commu-

nity.

According to the characteristics of the Nei’s standard genetic distance investi-

gated in Chapter 3, all the parameters of the SGA must be the same among fitness

landscapes to compare the features. Thus, the other parameters were set as follows.

Tournament selection was adopted. Elitism was applied. The tournament size was set

at 2 because the SGA generally prefers low selection pressure. A generational model

was used. Each run lasted 6,000 generations. 10 independent runs were conducted

for each PNN controller.

As the genetic distance depends on both neutrality and ruggedness (Chapter 3),

the features of test functions, which were obtained in the complementary computer

simulations with the same parameters of the SGA as those of the EANNs, were

used as baselines for estimating and comparing indirectly the features of the EANNs.

This is because in the case of a) there are cases that it is not possible to estimate

and compare the degree of neutrality between fitness landscapes even if combined

with the measure of ruggedness (will be described in the next subsection), and in

the case of b) there is no theoretical meaning to compare directly the features of

the EANNs due to the different mutation rates. As the test functions, TNK and

TNKp were adopted. TNKp is an extended form of TNK for F = 2 in order to

increase neutrality of TNK. For TNKp, following the way to involve neutrality in

NKp fitness landscapes (Barnett, 1997, 1998), the probability P (0 ≤ P ≤ 1) is

introduced to make the fitness contribution of each locus (wi in Equation 2.2) 0.

In this experiment, the landscape parameters of TNK(p) were set as follows: N =

20, K ∈ {0, 2, 6, 12, 19}, F ∈ {2, 3, 4}, (P ∈ {0.9, 0.99}).
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Figure 4.2: Genetic distance at each generation for the SGA with q = 1/L for Nh = 15
in 10 runs

Simulation Results

a) q = 1/LNh=15

Fig. 4.2 shows the genetic distance at each generation for Nh = 15. The approxi-

mately linear increases were observed in all runs. For other Nhs, the same transition

were observed. From the results in Chapter 3, this indicates the presence of neutrality

in the fitness landscape of the EANNs. Thus, α is shown by using the method of least

squares on the results of all the runs in the following parts.

Fig. 4.3, 4.4 and 4.5 show the features of the fitness landscape for each Nh. Fig. 4.3

plots the correlation (Ėb) for each Nh. In this experiment, the correlation increased

with the increase of Nh except of Nh = 15. That is, ruggedness decreased with the

increase of Nh. In Fig. 4.4, α increased with the increase of Nh. When the fitness

landscape for Nh = 1 was compared with the one for Nh = 0, there was no significant

differences in the correlation but α increased so much. For another instance, when the

fitness landscape for Nh = 15 was compared with the one for Nh = 10, the correlation

decreased but α increased. In these cases, the increase of neutrality can be estimated

based on the results obtained in Chapter 3. Note that the increase of neutrality

cannot be estimated when the fitness landscape for Nh = 5 was compared with the
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one for Nh = 1 or the fitness landscape for Nh = 10 was compared with the one for

Nh = 5, because the increase of α coincided with the increase of the correlation.

By using the Ėb-α curves obtained in the TNK(p) landscape (F, P are constant)

as baselines, the neutrality of all the EANNs were estimated indirectly (Fig. 4.5). It

was observed that neutrality increased in order of Nh = 10 → {5, 15} → 0 → 1 by

using the curve for P = 0.9 as a baseline. The increase of neutrality was observed in

the cases of Nh = 0 → 1, 10 → 15, which are consistent with the results of the direct

comparison between the landscapes mentioned above. Additionally, the decrease of

neutrality was also observed in the cases of Nh = 1 → 5, 5 → 10 although it was not

possible to estimate them by the direct comparison.

Fig. 4.6 shows the maximum fitness at each generation for Nh. Except of Nh = 1,

the fitness increased faster as the decrease of Nh, that is, the decrease of the genotypic

search space. The poor performance in the SGA for Nh = 1 cannot be predicted by

only the correlation. It would be predicted by the increase of neutrality observed in

Fig. 4.5 where the genetic search would become inefficient due to large neutrality.
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b) q = 1/L

Fig. 4.7 plots the correlation (Ėb) for each Nh. As observed in a), the correlation

increased with the increase of Nh except of Nh = 15. Because of different q among

the landscapes, neutrality of the EANNs were estimated indirectly by using the Ėb-α

curves obtained in the TNK(p) landscape (F, P are constant) as baselines (Fig. 4.8).

By using the curve for P = 0.9 as a baseline, it was observed that neutrality increased

in order of Nh = 10 → 5 → {1, 15} → 0.

Fig. 4.9 shows the maximum fitness at each generation for Nh. The fitness in-

creased faster as the decrease of Nh, that is, the decrease of the genotypic search

space. This would be explained as follows; In the process of evolution, no error thresh-

old effects were observed. This implies that the effective mutation rate at q = 1/L

would be below the error threshold under each condition. Therefore, neutrality of the

landscapes would not explicitly have any influences on the performances of the SGA

but the size of the genotypic search space would have influences on them.
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Figure 4.7: Correlation (Ėb) for each Nh at q = 1/L
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4.2.2 Evolutionary Dynamics

Simulation Conditions

For this experiment, an agent’s controller was a PNN with 7 sensory neurons, 2 fully

interconnected motor neurons and Nh fully interconnected hidden neurons, where

Nh ∈ {1, 10}. The network’s connection weights and the firing threshold for each

neuron were genetically encoded and evolved. The total number of parameters was

either 33 (Nh = 1) or 240 (Nh = 10). The parameters were mapped linearly onto the

following ranges: connection weights, ω ∈ [−1.0, 1.0], and thresholds, θ ∈ [0.0, 3.9].

The parameters of the neurons and synapses (see Appendix D) were set as follows:

τm = 4, τs = 10, ∆ax = 2 for all neurons and all synapses in the network following

the recommendations given in (Floreano and Mattiussi, 2001).

Computer simulations were conducted using populations of size 50. Each individ-

ual was encoded as a binary string with 10 bits for each parameter. Therefore, the

total length of the genotype was either L1 = 330 (Nh = 1) or L10 = 2400 (Nh = 10).

The SGA and the OGA were employed to evolve the PNN parameters. The OGA

uses standard bit mutation and five additional genetic operators: connection, divi-

sion, duplication, deletion and inversion. The probabilities for genetic operations were

set at 0.3 for connection and division, 0.2 for duplication and 0.05 for deletion and

inversion, based on the previous results in Chapter 2. The length of the value list in

a locus was 6. The genetic operation for the SGA was standard bit mutation. For

both GAs, the per-bit mutation rate, q, was set at 1/L (0.003 for L1 and 0.000416 for

L10). Crossover was not used for either GA, following Nimwegen’s suggestion (van

Nimwegen et al., 1999). Tournament selection was adopted. Elitism was optionally

applied. The tournament size, s, was set at {2, 6} because the SGA prefers low selec-

tion pressure while the OGA prefers high selection pressure. A generational model

was used. Each run lasted 6,000 generations. 10 independent runs were conducted

for each of the sixteen conditions (i.e., with each GA, with and without elitism, with

each tournament size, and for each of the two PNN configurations). All results were

averaged over 10 runs.
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Simulation Results

Fig. 4.10 shows the maximum fitness at each generation for the SGA and OGA, with

and without elitism, for controllers with Nh = 1. Fig. 4.10(a) and 4.10(b) show the

results for the four GA conditions for s = 2 and 6, respectively. For s = 2, fitness

increased faster with the OGA than with the SGA in the early generations. In the

final generation, there was no significant difference between the SGA and the OGA.

For s = 6, the SGA was trapped on local optima, whereas the OGA continued to find

better regions of the search space. In addition, the SGA performed better without

elitism than with it. These results are consistent with the results obtained using

terraced NK landscapes in Section 2.3. With respect to final generation fitnesses,

there was no significant difference between the SGA with s = 2 and the OGA for

s = 6. However, a closer examination reveals that during the process of evolution the

OGA with s = 6 performed better than the SGA with s = 2 and elitism (Fig. 4.11).

Fig. 4.12 shows the maximum fitness at each generation for the SGA and OGA,

with and without elitism, for s = 2 and 6 with Nh = 10. With Nh = 10, differences

between the SGA and the OGA were much more pronounced than with Nh = 1. Even

for s = 2, fitness increased faster for the OGA than for the SGA (Fig. 4.12(a)). This

is consistent with the results obtained using the Balance Beam Function when the

mutation rate is below the optimal mutation rate in Section 2.2. As with Nh = 1,

for s = 6, the SGA with elitism was trapped on local optima (Fig. 4.12(b)), whereas

the OGA continued to find better regions; also as before, the SGA performed better

without elitism than with it. The OGA for s = 6 also outperformed the SGA for

s = 2 (Fig. 4.13).

Under all conditions, the OGA performed better than the SGA on this task, either

by achieving higher final fitnesses, or by achieving high fitnesses faster, or both. This

shows that the OGA’s variable mutation rate strategy was beneficial on this problem.
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Figure 4.10: Maximum fitness at each generation for Nh = 1
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Figure 4.11: Comparison between the SGA for s = 2 and the OGA for s = 6 for
Nh = 1
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Figure 4.12: Maximum fitness at each generation for Nh = 10
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Figure 4.13: Comparison between the SGA for s = 2 and the OGA for s = 6 for
Nh = 10
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Discussion

The evolutionary dynamics observed in this experiment can be explained in the same

way as in Chapter 2.

The evolutionary dynamics that were observed showed phases of neutral evolution

for each run (Appendix E) and the average one (Fig. 4.10 and 4.12), implying that

the fitness landscapes include neutral networks. However, large fluctuations that

sometimes cause the best individuals to be lost were not observed under any of the

four GA conditions. That is, there was no influence of the error threshold at the

mutation rate q = 1/L. Therefore, it can be assumed that the effective mutation rate

of q = 1/L was below the error threshold under each condition.

The correlation of the landscapes was analyzed in order to investigate overall GA

performance. It has been shown in Fig. 4.7 that the landscape with Nh = 10 was

more correlated than the one with Nh = 1. In addition to this, Fig. 4.14(a) and

4.14(b) show the larger correlation coefficients as a function of the Hamming distance

between parents and offspring (Manderick et al., 1991) for the SGA, with and without

elitism, with Nh = 10 than those with Nh = 1. They suggest high fitness correlation

in both landscapes, with the Nh = 10 landscape being more highly correlated that

the Nh = 1 landscape.
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Figure 4.14: Correlation coefficient as a function of the Hamming distance between
parents and offspring for the SGA
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As predicted, with s = 6, the SGA with and without elitism was trapped on local

optima when Nh = 1, due to the low mutation rate and high selection pressure. With

s = 6 and Nh = 10, the SGA with elitism was also trapped on local optima. However,

the SGA without elitism for s = 6 and Nh = 10 was not obviously trapped. Based on

the analysis of ruggedness shown in Fig. 4.14(b), it seems likely that fitnesses would

continue improving if the runs were extended beyond their final generation. Further

computer simulations were therefore conducted in order to observe the SGA runs

over additional 4,000 generations. Fig. 4.15 shows the maximum fitness for 10,000

generations of the SGA with Nh = 10. The SGA without elitism continued to find

better regions of the search space. This indicates that the SGA without elitism can

escape from local optima with this level of ruggedness.

When compared on the same landscapes, the OGA continued to find much better

regions of search space than the SGA. The continued improvement observed with

the OGA was due to the online adaptation of mutation rates during the process of

evolution. In addition to this, with the OGA, the effective mutation rate will have

been below the error threshold even with low selection pressure (i.e. when s = 2).

This is why the variable mutation rate strategy of the OGA was a better approach

on this problem with both high and low selection pressure.
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Figure 4.15: Maximum fitness over 10,000 generations for the SGA for s = 6 and
Nh = 10
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Agent’s Behavior

Fig. 4.16 shows typical behaviors of the best evolved agent for Nh = 10 by the SGA

with elitism for s = 2. Fig. 4.16(a) and 4.16(b) show the motion trajectories relative

to the agent of objects falling vertically with the long period and the short period

from several different initial horizontal offsets, respectively. It is found that the best

agent can discriminate between the long and short period on all the trials.
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Figure 4.16: Behaviors of the genetically determined controller by the SGA with
elitism for Nh = 10
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Fig. 4.17 shows typical behaviors of the best evolved agent for Nh = 10 by the

OGA with elitism for s = 6. It is also found that the best agent can discriminate

between both the long and short period on all the trials. The best evolved agent by

the OGA can discriminate between both the periods faster on each trial than the one

by the SGA. That is, the best evolved agent by the OGA can avoid the object at a

further distance, then get a higher fitness value.
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Figure 4.17: Behaviors of the genetically determined controller by the OGA with
elitism for Nh = 10
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4.3 Pursuit Problem

PursuerEvader

Figure 4.18: Experimental setup for a pursuit problem. The initial starting positions
for the pursuer and the evader are given in the arena. The initial orientation is set
at random.

In the previous section, it has been shown that the fitness landscape of the discrimina-

tion problem is relatively smooth. In this section, a pursuit problem is studied, which

is expected to have more rugged landscapes than the discrimination problem (will be

described in Section 4.3.1). The simulated environment is shown in Fig. 4.18, where

a pursuer seeks to hit (capture) an evader. The pursuit problem is often investigated

in embodied cognitive science (Pfeifer and Scheier, 1999; Nolfi and Floreano, 2000)

as a metaphor for predator-prey. Generally, predators and preys are set belonging to

different species which have different sensors and motors. Following this setting, two

kinds of agent were employed, one (the pursuer) is equipped with an omni-directional

vision (Fig. 4.19(a)) while the other (the evader) is equipped with 10 infrared prox-

imity sensors (eight on the front side and two on the back in Fig. 4.19(b)). The

pursuer’s behavior was controlled by a PNN. On the other hand, the evader’s one

was controlled by “Braitenberg vehicle(Braitenberg, 1996)” in which the type 2a and

3b are combined for evasions (Fig. 4.20).

• • 
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(a) Omni-directional sensor for a pursuer

IR Sensor

IR Sensor Range

(b) IR sensors for an evader

Figure 4.19: Simulated models of sensors for each agent

Figure 4.20: Architecture of a Braintenberg vehicle
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Figure 4.21: Model of a mobile robot

Employing a mathematical model of a mobile robot (Fig. 4.21), the displacement

of the agent was computed as follows:

xk+1 = xk +
VR + VL

2
cos θk + ωxk+1

yk+1 = yk +
VR + VL

2
sin θk + ωyk+1 (4.2)

θk+1 = θk +
VR − VL

2R
+ ωθk+1,

where VR and VL are the velocities applied to the right and left wheel respectively,

R is the radius of an agent, 2R is the interval between the wheels and ω[·]k is the

system error. It has been known that the system error in Equation 4.2 is modeled as

the normal distribution N(0, σ) with mean zero and standard deviation, σ (Komoriya

et al., 1993). For this experiment, σ was set at the 10 percent of the displacement at

the current step.

For this experiment, an omni-directional vision was assumed to be used for the sen-

sory inputs of the pursuer (Fig. 4.19(a)). The simulated model of an omni-directional

vision1 were computed as follows. Assuming the binarized image taken from the omni-

directional image, the direction of the center of gravity of the closest object around

1The algorithm for detecting the presence of an object by a real omni-directional camera is
referred in Section 4.4.

8 
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Figure 4.22: Simulated omni-directional image plane

the pursuer and the nearest point of the object to the pursuer are first calculated,

where the center of the image is identified with the center of the pursuer (Fig. 4.22).

Next, the image is divided into I individual cells in a circumferential direction and J

individual cells in a radial direction. Then, the presence of the object is judged for

each cell (qij = {0, 1}, i = 1, . . . , I;j = 1, . . . , J) by using the above two values, where

qij signifies the presence or absence of the object. According to the characteristic of

the omni-directional image, if the presence of an object whose height is almost the

same as the one of the camera is detected in the j-th cell, the one is also detected in

the (j + 1)-th cell (Right in Fig. 4.22). In this simulation, the pursuer is not able to

detect walls.

The evader was provided with 10 infrared proximity sensors which have a max-

imum detection range in the environment (Fig. 4.19(b)). If a pursuer or a wall

intersects a proximity sensor, the sensor outputs a value inversely proportional to the

distance between the pursuer and the sensor.

At the beginning of each trial, the pursuer and evader were always positioned on

a horizontal line at the random orientation in the middle of the environment at a

distance corresponding to half the environment width (Fig. 4.18). One trial ended

either when the pursuer hits the evader or when 400 steps are performed without the

hit. Based on the fitness function used by Floreano and Nolfi (1997), the performance
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measure to be maximized was as follows:

Fitness =
1

NumTrials

NumTrials∑

i=1

(1 − Step

MaxStep
) (4.3)

where NumTrials is the number of trials for an individual (pursuer) (10 trials for

each individual) and MaxStep is set at 400. The fitness function increases as the

pursuer catches the evader more quickly.

4.3.1 Describing the Fitness Landscape

Simulation Conditions

The predator controller was a PNN with 64 sensory neurons corresponding to the

number of cells I × J (Fig. 4.22), 2 fully interconnected motor neurons and 3 fully

interconnected hidden neurons. The network’s connection weights and the firing

threshold for each neuron were genetically encoded and evolved. The total number

of parameters was equal to 350. The other parameters of the neurons and synapses

were the same as in Section 4.2.2.

Computer simulations were conducted using populations of size 50. Each individ-

ual was encoded as a binary string with 10 bits for each parameter. Therefore, the

total length of the genotype was L = 3500. The SGA were adopted to evolve PNN

parameters. The genetic operation for the SGA was standard bit mutation. The ge-

netic distance was used for estimating the degree of neutrality in the fitness landscape.

Based on the assumption of Equation 3.3 in Chapter 3, the per-bit mutation rate, q,

was set at 1/L = 0.000286. Tournament selection was adopted. Elitism was applied.

The tournament size was set at 2. A generational model was used. Each run lasted

6,000 generations. 10 independent runs were conducted for each PNN controller.

The features of the TNK(p) landscapes for N = 20, K ∈ {0, 2, 6, 12, 19}, F =

2, (P = 0.99), which were obtained in the complementary computer simulations with

the same parameters of the SGA as those of the EANNs, were used as baselines for

estimating indirectly the features of the EANNs in the same way as in Section 4.2.1.
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Simulation Results

Fig. 4.23 shows the genetic distance at each generation. The approximately linear

increases were observed in all runs. This indicates the presence of neutrality in the

fitness landscape of the EANN. Thus, α was calculated by using the method of least

squares on the results of all the runs in the following parts.

Neutrality of the EANN was estimated indirectly by using the Ėb-α curves in the

TNK(p) landscape (F, P are constant) as baselines (Fig. 4.24). By using the curve

for P = 0.99 as a baseline, it was observed that neutrality of this landscape was much

larger than those of the landscapes in the discrimination problem in Section 4.2.1

as well as larger than those of the TNK(p) for P = 0.99. Note that the TNK(p)

was defined in order to increase neutrality in the TNK (Section 4.2.1). This means

that the landscape of this problem includes relatively large neutrality. In addition,

the fitness landscape was more rugged than those of the discrimination problem as

predicted in the beginning of this section.
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Figure 4.23: Genetic distance at each generation for the SGA at q = 1/L in 10 runs
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4.3.2 Evolutionary Dynamics

Simulation Conditions

The parameters of a PNN were the same as in the previous section 4.3.1. Computer

simulations were conducted using populations of size 50. Each individual was encoded

as a binary string with 10 bits for each parameter. Therefore, the total length of the

genotype was L = 3500. The SGA and the OGA were employed to evolve the PNN

parameters. The OGA uses the same genetic operators as in Section 2.3: connection,

division, duplication, deletion and inversion. The probabilities for genetic operations

were set at 0.3 for connection and division, 0.6 for duplication and 0.3 for deletion

and inversion (in the case of s = 6 with elitism), and 0.3 for connection and division,

0.2 for duplication and 0.05 for deletion and inversion (in the other cases), based on

the previous results in Section 2.3 due to the rugged landscape described in Section

4.3.1. The length of the value list in a locus was 6. The genetic operation for the

SGA was standard bit mutation. For both GAs, the per-bit mutation rate, q, was

set at 1/L = 0.000286. Tournament selection was adopted. Elitism was optionally

applied. The tournament size s was set at {2, 6}. A generational model was used.

Each run lasted 6,000 generations. 10 independent runs were conducted for each of

the eight conditions. All results were averaged over 10 runs.

Simulation Results

Fig. 4.25 shows the maximum fitness at each generation for the SGA and OGA, with

and without elitism. Note that the transition of the average maximum fitness did not

clearly show phases of neutral evolution, compared with the results obtained in Sec-

tion 4.2.2. However, phases of neutral evolution were found for each run (Appendix

F). In Section 4.3.1, it was confirmed that the landscape of this problem includes

relatively large neutrality. These indicate that the average maximum fitness at each

generation does not necessarily show phases of neutral evolution even in fitness land-

scapes with neutrality.

Fig. 4.25(a) and 4.25(b) show the results for the four GA conditions for s = 2

and 6, respectively. For s = 2, fitness increased faster for the OGA than for the SGA
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Figure 4.25: Maximum fitness at each generation
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Figure 4.26: Comparison between the SGA for s = 2 and the OGA for s = 6

in the early generations. In the final generation, there was no significant difference

between the SGA with elitism and the OGA with elitism. For s = 6, the SGA was

trapped on local optima as predicted by the ruggedness in Section 4.3.1. In contrast,

the OGA for s = 6 continued to find better regions of the search space. Note that

the probabilities for genetic operations in the OGA with elitism for s = 6 were set at

0.3 for connection and division, 0.6 for duplication and 0.3 for deletion and inversion.

In the preliminary runs, it has been confirmed that the OGA with elitism for s = 6

setting the probabilities for genetic operations at 0.3 for connection and division,

0.2 for duplication and 0.05 for deletion and inversion was outperformed by the SGA.

These are consistent with the results obtained using terraced NK landscapes in Section

2.3. The OGA for s = 6 also outperformed the SGA for s = 2 in Fig. 4.26. These

results show that the OGA’s variable mutation rate strategy with the probabilities

for genetic operations tuned for rugged landscapes with high selection pressure is also

beneficial to this problem.
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Agent’s Behavior

Fig. 4.27 shows the typical behaviors of the best evolved agent by the SGA with

elitism for s = 2. They show approximately two kinds of behavior: One is positive

where the pursuer approaches to the evader as soon as the trial begins, follows the

evader and then catches it. The other is negative where the pursuer stays around

the initial position waiting for the evader approaching to the pursuer for a while and

then catches it as soon as the evader enters the range in which the pursuer can catch

the evader at the current speed.

Fig. 4.28 shows the typical behaviors of the best evolved agent by the OGA with

elitism for s = 6. They show approximately a single behavior, positive one. This can

be explained as follows. The fitness function employed in this experiment increases

as a pursuer catches an evader more quickly. Thus, the negative behavior is not

preferable even in the case that a pursuer can catch an evader because the negative

one is time-consuming. This is why the positive behavior would become well suited

in the process of evolution. Note that the OGA for s = 6 outperformed the SGA for

s = 2 in Fig. 4.26. As a result, the positive behaviors would be selected more than

the negative behaviors.
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(a) Positive behavior

(b) Negative behavior

Figure 4.27: Behaviors of the genetically determined controller by the SGA with
elitism: Red is pursuer, blue is evader
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(a) Positive behavior 1

(b) Positive behavior 2

Figure 4.28: Behaviors of the genetically determined controller by the OGA with
elitism: Red is pursuer, blue is evader
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4.4 Goal Reach Problem

Figure 4.29: Mobile robot with omni-directional camera

In this section, a goal reach problem is studied. The real robot used in this experiment

(Fig. 4.29) was equipped with an omni-directional camera (see the details in Appendix

G). The real and simulated environments are shown in Fig. 4.30, where a robot

approaches to an object (goal). In the following part, first, the algorithm for detecting

the presence of an object around the robot is described. Second, the methodology to

model the real environment is explained.

The binarized image is taken from the omni-directional image. In an omni-

directional image, the direction of the center of gravity of the closest object around

the robot and the nearest point of the object to the robot are first calculated by using

the pixel informations, where the center of the image is identified with the center of

the robot (Fig. 4.31(a)). Next, the image is divided into I individual cells in a circum-

ferential direction and J individual cells in a radial direction (Fig. 4.31(b)). Then, the

presence of the object is detected for each cell (qij = {0, 1}, i = 1, . . . , I;j = 1, . . . , J)

by using the above two values, where qij signifies the presence or absence of the ob-

ject. According to the characteristic of the omni-directional image, if the presence of

the object whose height is almost the same as the one of the camera is detected in

the j-th cell, the one is also detected in the (j + 1)-th cell. In the experiment, the

robot is not able to see walls.

The robot’s controller was a PNN with 64 sensory neurons, 2 fully interconnected
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(a) Real environment

(b) Simulated environment

Figure 4.30: Experimental setup for a goal reach problem
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(a) Camera image

edge

(b) Binarized image

Figure 4.31: Omni-directional image plane

motor neurons and one fully interconnected hidden neurons. The controllers are

evolved in simulation, before being transferred to the real robot. It has been shown

that for a mobile robot with two wheels in flat environments there can be small

discrepancies between its behaviors in a simulated environment and those in the real

environment by sampling motor outputs and the displacements of the robot. Thus,

this methodology were employed in this experiment as follows; The motor outputs and

the displacements of the robot are sampled in advance without the case of collisions

with walls (If the simulated robot attempts to hit against a wall, its position and

orientation are not updated.). These values are then stored as the sampled data for

probabilistic models, the normal distribution given by Equation 4.2 in Section 4.3,

and accessed through a look-up table depending on the motor signal whenever the

displacement of the robot is calculated. Note that the simulator is based on real

motor outputs sampled from the robot, not on a mathematical model employed in

Section 4.3. The setting of simulated visual inputs are the same as in Section 4.3.

At the beginning of each trial, a robot is always positioned on the catercorner of

an object located at a corner (Fig. 4.30), at the upward orientation or the rightward

orientation (Fig. 4.32). One trial ends either when the robot reach the object or

when 40 steps are performed without the goal. Based on the fitness function used by
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(a) Upward (b) Rightward

Figure 4.32: Initial orientation for each trial

Floreano and Nolfi (1997), the performance measure to be maximized was as follows:

Fitness =
1

NumTrials

NumTrials∑

i=1

(1 − Step

MaxStep
) (4.4)

where NumTrials is the number of trials for a robot (2 trials for each robot) and

MaxStep is set at 40. The fitness function increases as the robot reaches the object

more quickly.

Experimental Conditions

The parameters of a PNN were the same as in the previous section. Computer

simulations were conducted using populations of size 50. Each individual was encoded

as a binary string with 10 bits for each parameter. Therefore, the total length of the

genotype was L = 2040. The SGA and the OGA were employed to evolve the PNN

parameters. The OGA uses the same genetic operators as in Section 2.3: connection,

division, duplication, deletion and inversion. The probabilities for genetic operations

were set at 0.3 for connection and division, 0.6 for duplication and 0.3 for deletion

and inversion, based on the previous results in Section 2.3 and the obtained features

of this fitness landscape (will be described in the next subsection). The length of

the value list in a locus was 6. The genetic operation for the SGA was standard bit
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mutation. For both GAs, the per-bit mutation rate, q, was set at 1/L = 0.00049.

Tournament selection was adopted. Elitism was applied. The tournament size was

set at 2 for the SGA and 6 for the OGA. A generational model was used. The run

lasted 1,000 generations.

The features of the TNK(p) landscapes for N = 20, K ∈ {0, 2, 6, 12, 19}, F =

2, (P = 0.99), which were obtained in the complementary computer simulations with

the same parameters of the SGA as those of the EANNs, were used as baselines for

estimating indirectly the features of the EANNs in the same way as in Section 4.2.1.

Experimental Results

Fig. 4.33 shows the genetic distance at each generation. The approximately linear

increase was observed in the run. This indicates the presence of neutrality in the

fitness landscape of the EANN.
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Figure 4.33: Genetic distance at each generation for the SGA at q = 1/L in 10 runs

α was calculated by using the method of least squares on the result. Table 4.1

shows the correlation (Ėb) and the α for the SGA. The landscape was more rugged

than those of the discrimination problem and the pursuit problem.
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Table 4.1: Correlation and α for the SGA

Correlation (Ėb) α
0.353505 0.000371056
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Figure 4.34: α as a function of the correlation (Ėb)

The neutrality of the EANN were estimated indirectly by using the correlation-

the number of substitutions curves in the TNK(p) landscape (F, P are constant) as

baselines (Fig. 4.34). By using the curve for P = 0.99 as a baseline, it was observed

that neutrality of this landscape is so large, compared with those of the discrimination

problem and the pursuit problem.

Fig. 4.35 shows the maximum and average fitness at each generation for the SGA

and the OGA. The SGA for s = 2 was not trapped on local optima although the

landscape was so rugged. In the final generation, there was no significant difference

between the SGA and the OGA. However, both the maximum and average fitness

increased faster for the OGA than for the SGA.

These would be due to large neutrality in the fitness landscape. In (Barnett, 1997;

Newman and Engelhardt, 1998; Smith et al., 2002a) mentioned in Chapter 1, it has

been reported that ruggedness is independent of neutrality in tunably neutral NK

1 • -+- 4-1 
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landscapes. However, the performance of the SGA in this real-world problem cannot

be explained enough with related to this assumption. Therefore, the GA employing

the variable mutation rate strategy, such as the OGA, which shows good performances

in both smooth and rugged landscapes is preferable to real-world problems where

fitness landscapes include neutrality.
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(b) OGA for s = 6

Figure 4.35: Maximum and average fitness at each generation for the SGA and the
OGA
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Agent’s behavior

The controllers evolved in simulation were transferred to the real robot. Fig. 4.36 to

4.39 show the typical behaviors from each initial orientation of the best evolved agent

by the SGA and the OGA, respectively. The controllers evolved by the SGA displayed

a single strategy for each initial orientation (Fig. 4.36 and 4.37); The robot stayed

at initial position turning left to direct toward the object, then he approached to it.

On the other hand, the controllers evolved by the OGA displayed more interesting

behaviors, that is, two kinds of strategy for each initial orientation (Fig. 4.38 and

4.39); At initial upward orientation, the robot displayed the same strategy as the

robot with the controller evolved by the SGA. At initial rightward one, the robot

stayed at initial position turning right to direct toward the object, then he approached

to it. This strategy is more efficient to reach the object than the strategy in which the

robot always turns left for both initial orientations. These difference would be due

to the difference of the fitness value obtained by the individual of the SGA and the

OGA in the last generation, because the fitness function employed in this experiment

induces the individuals to reach the object quickly.
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(a) Behavior in the simulated environment

(b) Behavior in the real environment

Figure 4.36: Behavior from the initial upward orientation of the best evolved agent
by the SGA
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(a) Behavior in the simulated environment

(b) Behavior in the real environment

Figure 4.37: Behavior from the initial rightward orientation of the best evolved agent
by the SGA
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(a) Behavior in the simulated environment

(b) Behavior in the real environment

Figure 4.38: Behavior from the initial upward orientation of the best evolved agent
by the OGA
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(a) Behavior in the simulated environment

(b) Behavior in the real environment

Figure 4.39: Behavior from the initial rightward orientation of the best evolved agent
by the OGA
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4.5 Summary

In this chapter, the Nei’s standard genetic distance were applied for describing the

fitness landscapes of evolution of artificial neural networks for robot control in the

simulated and the real problem to validate the use of it for estimating the degree of

neutrality. The results can be summarized as follows:

• In all the problems, the Nei’s standard genetic distance increased approximately

linearly over generations in all runs. This demonstrates the presence of neutral-

ity in the fitness landscape of those EANNs.

• There are some cases that it is not possible to estimate the increase of neutrality

between the landscapes even if combined with the measure of ruggedness.

• The complementary use of the features of a test function as baselines makes

possible for the proposed approach to estimate the degree of neutrality in the

fitness landscape in the real-world problems.

• The number of hidden neurons in evolutionary artificial neural networks for

robot control has a great influence on the features of the fitness landscape.

• The landscapes of the pursuit problem and the goal reach problem are more

rugged and more neutral than the one of the discrimination problem.

Based on those features of the fitness landscapes, the standard GA and the operon-

GA were applied to the problems to investigate their performances. The results can

be summarized as follows:

• The discrimination problem does show phases of neutral evolution. This is

consistent with the description by the Nei’s standard genetic distance. However,

the pursuit problem does not show such clear phases of neutral evolution in the

average run although the result estimated by the Nei’s standard genetic distance

tells the presence of neutrality in the fitness landscape.

• The standard GA with low selection pressure and the operon-GA were able to

continually find better regions of the search space.
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• The standard GA can easily get trapped on local optima under conditions of

high selection pressure and a low mutation rate.

• The benefits of the variable mutation rate strategy used by the operon-GA

increase as the ruggedness of the landscapes increases or with a larger genetic

search space.

• The best evolved controllers of the neural networks by the operon-GA was better

suited in the simulated and the real environment than those by the standard

GA.

These results are consistent with results using simple neutral networks and terraced

NK landscapes in Chapter 2. Therefore, this demonstrates that the proposed ap-

proaches are applicable to real-world problems.



Chapter 5

Conclusions

The objective of this thesis is to establish the theoretical guidelines of artificial evolu-

tion on fitness landscapes with neutral networks, describing fitness landscapes where

neutral evolution occurs, and analyzing the behavior of evolving populations on the

fitness landscapes under various conditions.

Chapter 1 introduced the theoretical background of neutral networks and pointed

out the intrinsic problems arising from them. Then, the approaches in this thesis to

these problems were shown. Finally, the outline of this thesis was described.

Chapter 2 investigated the evolutionary dynamics of GAs in simple test function

and complex test functions, where their fitness landscapes includes neutral networks.

Two types of GA were used. One was the standard GA, which employs a constant

mutation rate strategy and the other was the operon-GA, which employs a variable

mutation rate strategy. A simple test function, called the Balance Beam Function

was defined for examining the effect of selection pressure and the variable mutation

rate strategy on the evolutionary dynamics in it. The results demonstrate that speed

has an optimal mutation rate and an error threshold since plotting speed against

mutation rate resulted in a concave curve. Increasing selection pressure increased

the speed of a population’s movement on a neutral network. The variable mutation

rate strategy of the operon-GA improved the efficiency of the search. In order to

investigate whether the results in the simple test function generalize to more complex

functions, the terraced NK landscape incorporating both neutrality and ruggedness
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was introduced. In this function, the standard GA prefers low selection pressure while

the operon-GA prefers high selection pressure. It is found that the variable mutation

rate strategy is also beneficial with this more complex test function, and that these

benefits increase as the fitness landscape becomes more rugged.

Chapter 3 introduced the second main direction of this thesis, describing fitness

landscapes with neutral networks. The Nei’s standard genetic distance, which orig-

inates from population genetics, was proposed after minor modifications and then

the characteristics of it were investigated in tunably neutral landscapes. The results

suggest that the genetic distance can provide a guideline for estimating the degree

of neutrality in fitness landscapes combined with the measure of ruggedness. It was

also confirmed that the results were consistent with the neutral theory and the nearly

neutral theory in population genetics.

Chapter 4 explored how well the results obtained in the previous chapters apply

to real-world problems. Section 4.2 investigated a simulated real-world problem, a

discrimination problem. The Nei’s genetic distance was used to estimate and compare

the degree of neutrality in the fitness landscapes among the neural network controllers

varying the number of hidden neurons. By using the features of the fitness landscape

of a test function as baselines, the proposed method can estimate and compare indi-

rectly the features of the fitness landscape of the EANNs. It was confirmed that the

number of hidden neurons have a great influence on the features of the fitness land-

scape of neural networks. According to the obtained features of the fitness landscape,

the standard GA and the operon-GA were applied to this problem. This problem

does show phases of neutral evolution for each run, which is consistent with the de-

scription of the fitness landscape. The standard GA with low selection pressure and

the operon-GA were able to continually find better regions of the search space. But

the standard GA can easily get trapped on local optima under conditions of high

selection pressure and a low mutation rate. The benefits of the variable mutation

rate strategy used by the operon-GA were more pronounced with a larger genotypic

search space. These results are also consistent with the results obtained using sim-

ple neutral networks and terraced NK landscapes. Section 4.3 investigated another

simulated real-world problem, a pursuit problem. Neutrality of the problem was also
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estimated by the genetic distance with the features of a test function as baselines.

It was found that neutrality and ruggedness of this landscape were larger than those

of the landscapes in the discrimination problem. Both GAs tuned based on the fea-

tures of the fitness landscape were applied to this rugged problem. The standard GA

with high selection pressure was trapped on local optima as predicted. In contrast,

the operon-GA with high selection pressure continued to find better regions of the

search space and outperformed the standard GA with low selection pressure. The best

evolved controllers of the neural networks by the operon-GA showed more efficient

behavior for pursuiting the evader than the ones by the standard GA. These results

show that the operon-GA’s variable mutation rate strategy is also beneficial to this

problem. Section 4.4 analyzed a single evolutionary run for each GA in a real-world

problem, a goal reach problem. The controllers were initially evolved in simulation,

before being transferred to the real robot. The Nei’s genetic distance was applied to

estimate the degree of neutrality in the fitness landscape. Based on the features of

the fitness landscape, both GAs were applied. In the final generation, there was no

significant difference between the standard GA and the operon-GA. However, both

the maximum and average fitness increased faster for the operon-GA than for the

standard GA. The best evolved controllers of the neural networks in the simulation

were evaluated in the real environment, then successfully accomplished their task.

From these results, it can be concluded that this thesis has established the the-

oretical guidelines of artificial evolution on fitness landscapes with neutral networks

and they can be successfully applied to real-world problems.



Appendix A

The Standard GA

The framework of genetic algorithms (GAs) was proposed as one of artificial adaptive

systems. However, it is frequently employed as an optimization method. A general

problem to be solved by GAs can be formulated as follows:

max F (x) (A.1)

subject to x ∈ G (A.2)

G ∈ H (A.3)

where, F is the objective function, H is the defined space and G is the valid defined

space in H. Equation A.3 shows the constraints of the problem. For this problem, this

framework first map x which is called phenotype into a sequence of symbols which is

called genotype. In the standard GAs, the genotype is represented as a binary string.

The positions of the string are called loci of the genotype. The variable at a locus is

called gene, its value allele.

Similarly to biological species that evolve in environments by passing and modi-

fying their genetic codes through generations, this framework considers a population

of individuals, i.e., a group of search points. At the alternation of generations, they

can exchange their parts of genetic codes stochastically based on various predefined

rules, which are generally called genetic operations.

The canonical steps of GAs can be summarized as follows (Fig. A.1):
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STEP1 Create an initial population randomly.

STEP2 Compute phenotypes of all the individuals in the population.

STEP3 Evaluate all the individuals by the objective function.

STEP4 Compute fitness values based on the distribution of the objective values in

the population.

STEP5 Select individuals for the next generation.

STEP6 Apply genetic operations such as crossover and mutation, forming a new

population.

STEP7 Return to STEP2, until the termination condition is settled.

The objective function is a scalar function and the fitness function determines the

reproduction ratio by the method, such as scaling or ranking. The selection process

is often performed by the roulette wheel selection.

Genotype space

Initialization

Phenotype space

Selection and 
     ReproductionFitness values

Objective values

Genetic operation

     Reproduction

1

2

3

4

5

6

7

Figure A.1: Canonical steps of genetic algorithms



Appendix B

The Operon-GA

The operon-GA(Ohkura and Ueda, 1999) has the same computational steps as those

of the standard GA. The only differences from the standard GA are (1) a genotype

has redundant genetic information with respect to its phenotype, and (2) it uses five

new genetic operators for the redundant genotype.

Genotype and Phenotype: The genotype (string) can be written as follows:

string = {operoni | i = 1, . . . , l} (B.1)

operoni = {locusj | j ∈ Oi} (B.2)

locusj = {labelj, x1, x2, . . . , xn} (B.3)

where l is the number of operons and Oi is the set of indices of loci included in the

i-th operon. Assuming that S is the set of the indices of all the loci determined by

a problem, ∪iOi = S, Oi ∩ Oj = φ, i 6= j. A locus has a label (labelj) and a value

list (x1, x2, . . . , xn), where the first element (x1) is active and the others (x2, . . . , xn)

are inactive. The phenotype is defined as the vector of active values in the order of

labels.

Genetic Operations: The two genetic operations, gcon and gdiv, are defined as

follows:

gcon : operoni + operonj −→ operon′
i (B.4)
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(Oi ∪ Oj = O′
i)

gdiv : operoni −→ operon′
i + operon′

j (B.5)

(Oi = O′
i ∪ O′

j, O
′
i ∩ O′

j = φ)

The other three genetic operations introduce some genetic change through the

following procedure: (1) select an operon stochastically, and then (2) introduce the

same type of genetic change to all the loci in the operon. Assuming that locusj =

{labelj, x1, . . . , xn} is changed to locus′j = {labelj, x
′
1, . . . , x

′
n}, the three genetic op-

erations called gdup, gdel and ginv are defined as follows :

gdup : {x1 → x′
1 = x′

2, x2 → x′
3, . . . , xn−1 → x′

n} (B.6)

gdel : {x2 → x′
1, x3 → x′

2, . . . , random{0, 1} → x′
n} (B.7)

ginv : { xk → x′
1, x1 → x′

k},∃k 6= 1 (B.8)

Conventional genetic operations, mutations and crossovers, can also be defined for

the genotype.

locus1

locus2

locus3

locus4

locus5

locusn

Duplication Deletion Inversion

active inactive

Figure B.1: Genetic operations in an operon layer
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locus6

operon3

locus5locus1
locus4

operon1

locus3locus2

operon2

string

Operon Layer

Locus Layer

Locus1 value11 value12 value1n

active inactive

value list

Figure B.2: Representation of genotype in the operon-GA



Appendix C

Evolutionary Dynamics in the

Balance Beam Function
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Figure C.1: Average generations to reach the furthest distance in 50 runs by the SGA
for each w
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Figure C.2: Average generations to reach the furthest distance in 50 runs by the OGA
for each w
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Figure C.3: Average generations to reach the furthest distance in 50 runs by the SGA
for each s
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Figure C.4: Average generations to reach the furthest distance in 50 runs by the OGA
for each s



Appendix D

Neural Controller –Spike Response

Model–

The agent’s behavior is controlled by the spike response model network (Maass and

Bishop, 1998), which is a form of Pulsed Neural Network (PNN). The state of a

spiking neuron is described by the voltage difference across its membrane, which

is called, “membrane potential” u. Incoming spikes can increase or decrease the

membrane potential. A neuron emits a spike when the total amount of excitation

due to incoming excitatory and inhibitory spikes exceeds its firing threshold, θ. After

firing, the membrane potential of the neuron is set to a low negative voltage, it then

gradually returns to its resting potential; during this refractory period, a neuron

cannot emit a new spike (Fig. D.1). This recharging period is called the refractory

period. The membrane potential of a neuron i at time t is given by:

ui(t) =
∑

t
(f)
i ∈Fi

ηi(t − t
(f)
i ) +

∑

j∈Γi

∑

t
(f)
j ∈Fj

ωijεij(t − t
(f)
j ) (D.1)

where t
(f)
i is the firing time of neuron i, Fi is the set of firing times in a neuron i. The

neuron i may receive the input from presynaptic neurons j ∈ Γi. The weight ωij is

the strength of the connection from the j-th neuron.
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Figure D.1: Neuron model.

The function ηi, accounting for neuronal refractoriness, is given by:

ηi(r) = − exp(− r

τm

)H(r) (D.2)

Here r = t − t
(f)
i is the difference between the time t and the time of firing t(f) of

neuron i, τm is a membrane time constant and H(r) is the Heaviside step function

which vanishes for r < 0 and gives a value of 1 for r > 0.

The function εij describes the response to postsynaptic spikes:

εij(r) = [exp(−r − ∆ax

τm

)(1 − exp(−r − ∆ax

τs

))]H(r − ∆ax), (D.3)

where τs is a synaptic time constant, ∆ax is the axonal transmission delay. The

amplitude of the response is scaled via the strength of the connection ωij given in

Equation D.1. In this thesis, the parameters of the neurons and synapses are set as

follows: τm = 4, τs = 10, ∆ax = 2 for all neurons and all synapses in the network

following the recommendations given in (Floreano and Mattiussi, 2001).



Appendix E

Evolutionary Dynamics in a

Discrimination Problem
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Figure E.1: Maximum fitness at each generation in each run by the SGA without
elitism for s = 2 and Nh = 1
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Figure E.2: Maximum fitness at each generation in each run by the OGA without
elitism for s = 2 and Nh = 1
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Figure E.3: Maximum fitness at each generation in each run by the SGA with elitism
for s = 2 and Nh = 1
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Figure E.4: Maximum fitness at each generation in each run by the OGA with elitism
for s = 2 and Nh = 1

, ""1 
" '" I" 11"1' 'I '" 



118APPENDIX E. EVOLUTIONARY DYNAMICS IN A DISCRIMINATION PROBLEM

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(a)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(b)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(c)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(d)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(e)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(f)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(g)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(h)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(i)

800

900

1000

0 1000 2000 3000 4000 5000 6000

Fi
tn

es
s

Generation

(j)

Figure E.5: Maximum fitness at each generation in each run by the SGA without
elitism for s = 6 and Nh = 1
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Figure E.6: Maximum fitness at each generation in each run by the OGA without
elitism for s = 6 and Nh = 1
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Figure E.7: Maximum fitness at each generation in each run by the SGA with elitism
for s = 6 and Nh = 1
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Figure E.8: Maximum fitness at each generation in each run by the OGA with elitism
for s = 6 and Nh = 1
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Figure E.9: Maximum fitness at each generation in each run by the SGA without
elitism for s = 2 and Nh = 10
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Figure E.10: Maximum fitness at each generation in each run by the OGA without
elitism for s = 2 and Nh = 10
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Figure E.11: Maximum fitness at each generation in each run by the SGA with elitism
for s = 2 and Nh = 10
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Figure E.12: Maximum fitness at each generation in each run by the OGA with
elitism for s = 2 and Nh = 10
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Figure E.13: Maximum fitness at each generation in each run by the SGA without
elitism for s = 6 and Nh = 10
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Figure E.14: Maximum fitness at each generation in each run by the OGA without
elitism for s = 6 and Nh = 10
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Figure E.15: Maximum fitness at each generation in each run by the SGA with elitism
for s = 6 and Nh = 10
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Figure E.16: Maximum fitness at each generation in each run by the OGA with
elitism for s = 6 and Nh = 10
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Figure F.1: Maximum fitness at each generation in each run by the SGA without
elitism for s=2
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Figure F.2: Maximum fitness at each generation in each run by the OGA without
elitism for s=2
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Figure F.3: Maximum fitness at each generation in each run by the SGA with elitism
for s=2
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Figure F.4: Maximum fitness at each generation in each run by the OGA with elitism
for s=2
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Figure F.5: Maximum fitness at each generation in each run by the SGA without
elitism for s=6
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Figure F.6: Maximum fitness at each generation in each run by the OGA without
elitism for s=6
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Figure F.7: Maximum fitness at each generation in each run by the SGA with elitism
for s=6
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Figure F.8: Maximum fitness at each generation in each run by the OGA with elitism
for s=6



Appendix G

Specification of a Real Robot

A two-wheeled robot was used in the experiment. The robot is 0.35 m in diameter.

Two motor-driven wheels, made of foam-rubber, are located on either side of the

robot, providing locomotion through differential drive, giving the robot a top speed

of around 0.34 m/s. Two passive caster wheels, placed front-center and rear-center,

ensure stability. A robot’s source of sensory input comes from an omnidirectional

camera. The robot has a CPU board for low-level(motor/sensor) control and a laptop

computer(CPU: Pentium III 800 MHz, Memory: 376 MB) loaded on the robot for

high-level control(decision making).

The details of components are as follows.

Motor Every wheel is moved by a TAMIYA DC motor 3633K75 coupled with the

wheel directly. The theoretical maximum torque is 3.0 × 103 kg/m and the

number of revolutions is 156 rpm.

Servo controller The MiniSSC II from Scott Edwards Electronics is a servo motor

controller with a simple serial interface(2400 or 9600 baud). Each MiniSSC can

control up to 8 servos at once. MiniSSC has switchable range/resolution(90◦/0.36◦

or 180◦/0.72◦). MiniSSC converts motor control signals from a CPU board into

pulse waves and sends them to the motor controller.

Motor controller TAMIYA Digital Twin Motor Differential Control Unit T-01 re-

ceives the pulse waves from MiniSSC and controls the number of revolutions of
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motors. T-01 conducts the operation in two channels.

Omnidirectional camera SUEKAGE omnidirectional camera SOIOS 55-cam for

ROBOT has a hyperbolic mirror and a catadioptric panoramic camera(the num-

ber of pixels: 0.38M, the maximum frame rate: 30 fps, resolution: 640 × 480

pixels). The mirror is 55.0 × 10−3 m in diameter and the valid angle of view

is 12◦(elevation)/50◦(depression). The camera has IEEE1394 connection to a

laptop computer.

CPU board YellowSoft YS50-1 has a single-chip RISC(Reduced Instruction Set

Computer) with SH-2 core(26 MIPS, 20 MHz, 5.0 V). SH-2 has a built-in 32-bit

multiplier and a built-in flash memory (128K) with single power supply/RAM

(6K), and has enhanced peripheral functions(Timer:ATU(FRT: 10ch, DC: 8ch),

Compare match timer: 2ch, A/D converter: 10 bits × 16ch, Serial: 3ch, DMAC:

4ch).

Battery The robot is equipped with a 7.2V rechargable Nickel-hydrogen battery for

motors, and a 8.4V rechargable Nickel-Cadmium battery for a CPU board and

a servo controller. These batteries allow the robot to move without external

power supplies by wired connections.
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International Conferences

1. Y. Katada, Y. Yasuda, K. Ohkura and K. Ueda, ”Evolutionary Dynamics on Neutral Net-

works”, Proceedings of International Workshop on Emergent Synthesis (IWES), pp.35-40,

(2002).

2. Y. Katada, K. Ohkura and K. Ueda, ”The effect of population size on evolutionary speed on

the problems including neutral networks”, Proceedings of The 6th International Conference

on Complex Systems (CS02), pp.353-360, (2002).

3. Y. Katada,K. Ohkura and K. Ueda, ”Artificial Evolution of Pulsed Neural Networks on the

Motion Pattern Classification System”, Proceeding 2003 IEEE International Symposium on

Computational Intelligence in Robotics and Automation (CIRA), pp.318-323, (2003).

4. Y. Katada, K. Ohkura and K. Ueda, ”Tuning Genetic Algorithms for Problems Including
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Conference on Computational Intelligence and Natural Computing (CINC), Proceedings of

The 7th Joint Conference on Information Sciences, pp.1657-1660, (2003).
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on the Nei’s Standard Genetic Distance”, Proceedings of 2003 Asia Pacific Symposium on

Intelligent and Evolutionary Systems: Technology and Applications, pp.107-114, (2003).

7. Y. Katada, K. Ohkura and K. Ueda, ”An Approach to Evolutionary Robotics Problems from

the Genetic Algorithm with the Variable Mutation Rate Strategy”, Proceedings of The 5th

International Workshop on Emergent Synthesis (IWES), pp.117-124, (2004).

8. Y. Katada, K. Ohkura and K. Ueda, ”The Nei’s Standard Genetic Distance in Artificial Evo-

lution”, Proceedings of the 2004 IEEE Congress on Evolutionary Computation (CEC2004),

pp.1233-1239, (2004).

9. Y. Katada, K. Ohkura and K. Ueda, ”An Approach to Evolutionary Robotics Using the

Genetic Algorithm with Variable Mutation Rate Strategy”, Parallel Problem Solving from

Nature (PPSN VIII), (2004) (will be published).
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