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Neutral networks, which occur in fitness Jandscapes containing neighboring points of
equal fitness, have attracted much research interest in the evolutionary computation
community in recent years. Although around ten years have passed since the
importance of neutral networks was pointed out, the progress in this research field is
stagnating due to the difficulties of épplying the traditional theories of artificial
evolution. Therefore, several researchers have been attempting to develop new theories
of artificial evolution on fitness landscapes with neutral petworks. Following these
research trends, this thesis has established some theoretical guidelines of artificial
evolution on fitness landscapes with neufral networks.

Chapter 1 introduced the theoretical background of neutral networks and pointed
out the intrinsic problems arising from them. Then, the approaches in this thesis to
these problems were shown. Finally, the outline of this thesis was deseribed.

Chapter 2 investigated the evolutionary dynamics of GAs in the simple test function
and complex test functions, where their fitness landscapes includes neutral networks.
Two types of GA were used. One is the standard GA, which employs a constant
mutation rate strategy and.the other is the operon-GA, which employs a variable
mutation rate strategy. A simple test function, called the Balance Beam Function‘ was
defined for examining the effect of selection pressure and the variable mutation rate
strategy on the evolutionary dynamics in it. The results demonstrate that speed has an
optimal mutation rate and an error threshold since plotting speed against mutation
rate results in a concave curve. The variable mutation rate strategy of the operon-GA
improved the efficiency of the search. In order to investigate whether the results in the
simple test function generalize to more complex functions, the terraced NK landscape
incorporating both neutrality and ruggedness was introduced. In this function, the
standard GA prefers low selection pressure while the operon-GA prefers high selection
pressure. It is found that the variable mutation rate strategy is also beneficial with this
more complex test function, and that these benefits increase as the fitness landscape
becomes more rugged.

Chapter 3 introduced the second main direction of this thesis, describing the fitness
landscape with neutral networks. The Nei's standard genetic distance, which
originates from population genetics, was proposed after minor modifications and then
the characteristics of it were investigated in tunably neutral landscapes. The results
suggest that the genetic distance can provide a guideline for estimating the degree of
neutrality in fitness landscapes combined with the measure of ruggedness. It was also
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confirmed that the results were consistent with the neuiral theory and the nearly
neutral theory in population genetics.

Chapter 4 explored how well the results obtained in the previous chapters apply to
the real-world problems: a discrimination problem, a pursuit pr_oblem and a goal reach
problem. The Nei's genetic distance was used to estimate and compare the degree of
neutrality in the fitness landscapes. By using the features of the fitness landscape of a
test function as baselines, the proposed method can estimate and compare indirectly
the features of the fitness landscape of the EANNSs. According to the obtained features
of the fitness landscapes, the standard GA and the operon-GA were applied to these
problems. They do show phases of neutral evolution for each run, which are consistent
with the description of the fitness landscapes. The standard GA with low selection
pressure and the operon-GA were able to continually find better regions of the search
space. But the standard GA can easily 'get trapped on local optima under conditions of
high selection pressure and a low mutation rate. The benefits of the variable mutation
rate strategy used by the operon-GA were more pronounced as the ruggedness of the
landscapes increases or with a larger genotypic search space. These results are
consistent with the results obtained using éimple neutral networks and terraced NK
landscapes. The best evolved controllers of the neural networks by the operon-GA
showed more efficient behavior for each problem than the ones by the standard GA. In
the goal reach problem, the best evolved controllers of the neural networks in the
simulation were evaluated in the real environment, then successfully accomplished
their task.

From these results, it can be concluded that this thesis has established the
theoretical guidelines of artificial evolution on the fitness landscapes with neutral
networks and they can be successfully applied to real-world problems.
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