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Chapter 1

Introduction

The mathematical theory of percolation started in 1957, when Broadbent
and Hammersley[10] studied the behaviour of fluids penetrating into porous
media. Percolation theory contains many interesting problems, and at the
same time it is very powerful for studying phase transitions of various mod-
els. In this paper, we investigate limit theorems for the number of percola-
tion clusters in a finite region and the phase structure of the two-dimensional
Widom-Rowlinson model. We review related existing results.

First let us explain the Bernoulli percolation model. Consider an infinite
connected graph G = (V,E). The following types of problems are mainly
studied:

• Bond problem : Each bond e ∈ E is independently declared to be
open with probability p and closed with probability 1− p.

• Site problem : Each site v ∈ V is independently declared to be open
with probability p and closed with probability 1− p.

Let us concentrate to the bond problem for a while. We write Pp for the
Bernoulli measure on {open, closed}E . The expectation and the variance
with respect to Pp are denoted by Ep and varp, respectively. The open
cluster containing v ∈ V , denoted by Cv, is the set of sites which can be
reached from v via open bonds. There is a critical probability pc(G) such
that for any v ∈ V ,

Pp{|Cv| =∞}
{

= 0 if p < pc(G),

> 0 if p > pc(G).

The central limit theorem (CLT) for some quantities related to percola-
tion are studied by many authors (see e.g. [23] §11.6 and [17]). The CLT for
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martingale differences turns out to be useful at the critical point, as in [39].
For Bernoulli bond percolation problem on the d-dimensional hypercubic
lattice Z

d (d ≥ 2), Zhang[65] proved a CLT for the number of open clusters
in a finite box for all p ∈ (0, 1), that is, including the case p = pc(Z

d).
His proof is based on McLeish’s martingale CLT[43]. Using this method
together with the ergodic theorem, Penrose[49] proved a general CLT which
can be applied to several models.

In Chapter 2, by using the argument in [65], we study a CLT for per-
colation problems on regular trees and Sierpiński carpet lattices, where the
ergodic theorem is not available. This result is contained in

Nobuaki Sugimine and Masato Takei ; Remarks on central limit
theorems for the number of percolation clusters, to appear in
Publications of the Research Institute for Mathematical Sciences.

The Sierpiński carpet is a self-similar set. The construction is the following:
We divide a unit square into 3 × 3 smaller squares and delete the cen-
ter square. We repeat the same procedure for each of the remaining eight
squares. Then we get 82 smaller squares, and so on. This construction can
be generalized as follows: We divide a unit square into L×L smaller squares
and delete the squares not corresponding to T ⊂ TL ≡ {0, · · · , L− 1}2, and
repeat the same procedure for smaller squares (the Sierpiński carpet corre-
sponds to the case L = 3 and T = T3 \ {(1, 1)}). The resulting self-similar
set is denoted by KT . We can construct an infinite graph GT (⊂ Z

2) corre-
sponding to KT , which is called a Sierpiński carpet lattice (see Figure 2.1 in
section 2.1.3).

Theorem A. Let L ≥ 3. We assume that T ⊂ TL satisfies the following
conditions:

• KT is connected,

• (i, j) ∈ T =⇒ (j, i) ∈ T, (i, L− 1− j) ∈ T ,

• {(0, j), (1, j); 0 ≤ j ≤ L− 1} ⊂ T .

We consider Bernoulli bond percolation on GT . Let GT
n = GT ∩ [0, Ln]2

(with abuse of notation). The number of bonds and sites of GT
n are denoted

by ||GT
n || and |GT

n |, respectively. Let Kn be the number of open clusters in
GT

n . Then, for all p ∈ (0, 1) the following statements hold:
(i) The limits

m(p) ≡ lim
n→∞

EpKn

||GT
n ||

and m̂(p) ≡ lim
n→∞

EpKn

|GT
n |
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exist and with probability one

lim
n→∞

Kn

||GT
n ||

= m(p) and lim
n→∞

Kn

|GT
n |

= m̂(p).

(ii)
Kn − EpKn√

varpKn

L−→ N (0, 1) as n→∞, where
L−→ denotes the conver-

gence in law and N (0, 1) denotes the standard normal distribution.
(iii) For any ε1 ∈ (0, 1− m̂(p)) and ε2 ∈ (0, m̂(p)), there exists positive

constants σ1(ε1, p) and σ2(ε2, p) such that

lim
n→∞

−1

|GT
n |

logPp

{
Kn

|GT
n |
≥ m̂(p) + ε1

}
= σ1(ε1, p),

lim
n→∞

−1

|GT
n |

logPp

{
Kn

|GT
n |
≤ m̂(p)− ε2

}
= σ2(ε2, p).

Remark. The conditions of Theorem A imply that pc(GT ) < 1 (see Lemma
2.1.3 below). Our proof can be applied to some cases where pc(GT ) = 1.
For example, we can treat (a variant of) the pre-Sierpiński gasket (i.e. GT

with T = {0, 1}2 \ {(1, 1)}).
As for trees, we have the following

Theorem B. We consider the Bernoulli (site or bond) percolation problem
on (d+ 1)-trees with d ≥ 2. Fix an arbitrary point as the origin. Let B(n)
be the sites whose distance from the origin is within n. For all p ∈ (0, 1),
the central limit theorem holds for the number of open clusters in B(n).

Next we turn to explain the Widom-Rowlinson model. In 1970, Widom
and Rowlinson[60] invented a model on R

d. Lebowitz and Gallavotti[41]
introduced its lattice version, which is somewhat similar to the Ising model.
We compare these two models:

• The Ising model (one of lattice spin systems) :
There is a + spin or a − spin on each site.
A configuration where different + spin and − spin sit next to each
other is discouraged.

• The lattice Widom-Rowlinson model (one of lattice gas models) :
Each site is occupied by either a + particle or a − particle, or it is
vacant.
A configuration where a + particle and a − particle sit next to each
other is prohibited.
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Let us consider these models on a graph G = (V,E). We say that
x, y ∈ V is adjacent if {x, y} ∈ E. Let Λ be a finite region. It is known
that the probability that a configuration σ in Λ appears is proportional to
exp{−βH(σ)}, where H(σ) is the corresponding energy to σ and β > 0
denotes the inverse temperature. This is called the finite volume Gibbs
distribution. Energies for the above models are given as follows:

• The Ising model : For σ ∈ {−1,+1}Λ, h ∈ R,

H(σ) = −
∑

x,y∈Λ;adjacent

σ(x)σ(y)−
∑

x∈Λ

hσ(x).

• The Widom-Rowlinson model : for σ ∈ {−1, 0,+1}Λ, a, h ∈ R,

H(σ) =
∑

x,y∈Λ;adjacent

U(σ(x)σ(y))−
∑

x∈Λ

{
aσ(x)2 + hσ(x)

}
,

U(s) =

{
∞ if s = −1,

0 otherwise.

Without loss of generality, we may assume that β = 1 for the Widom-
Rowlinson model by a simple change of variables βa→ a, βh→ h.

In order to study phase transitions, we consider infinite particle systems
as an idealized version of ‘sufficiently large systems’. Probability measures
satisfying the Dobrushin-Lanford-Ruelle equation (see section 3.1), which
are called Gibbs measures, describe equilibrium states of infinite particle
systems. For example, the accumulation points of the finite volume Gibbs
distribution as Λ tends to the whole lattice are Gibbs measures. The set of
all Gibbs measures is non-empty, compact and convex. There may be two
cases: One case is that there is a unique Gibbs measure, and the other case
is that there are multiple Gibbs measures. Transition from unique Gibbs
measure case to multiple Gibbs measures case is called the phase transition.
At this transition point, expectations of several random variables exhibit
singularities.

On the other hand, appearance of an infinite cluster in Bernoulli site
percolation problem is a kind of phase transition, which we call the perco-
lation transition. This problem can be rephrased as follows: Each spin is
+ with probability p and − with probability 1 − p with no interaction. At
p = pc, the character of typical configurations are dramatically changed:
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typical spin configurations

p < pc Each + cluster is finite with probability 1,

p > pc A + cluster with infinite sites exists with probability 1
(we say that + spins ‘percolate’).

Phase transitions in the two-dimensional (2D) Ising model is closely re-
lated to the change of the geometric character of typical configurations:

Ising model typical spin configurations

β small Both + clusters and − clusters
(unique Gibbs measure) are small

β large The majority of spins
(multiple Gibbs measures) have the same direction.

Each Gibbs measure is characterized
by percolation of spins of same sign

Indeed, in the 2D Ising model, the critical temperature of the phase transi-
tion is equal to that of the percolation transition. This relation was proved
by Coniglio, Nappi, Peruggi and Russo[14], on the basis of the works of
Harris[30] and Miyamoto[44].

Russo[52] introduced the infinite cluster method for studying the phase
structure of the 2D Ising model. Exploiting this method, Aizenman[1] and
Higuchi[31] independently proved the absence of the non-translationally in-
variant Gibbs states. In 2000, Georgii and Higuchi[20] simplified the proofs
of Aizenman and Higuchi. The structure of Gibbs states is described in
terms of percolation, and possible extensions, for example to the 2D antifer-
romagnetic Ising model with arbitrary external field and to the 2D hard-core
lattice gas model, are given. Although the 2D Widom-Rowlinson model is
generally thought to be similar to the 2D Ising model, the proof in [20] does
not work.

The main part of Chapter 3 is published in

Yasunari Higuchi and Masato Takei ; Some results on the phase
structure of two-dimensional Widom-Rowlinson model,
Osaka Journal of Mathematics 41-2 237-255, (2004).

We study the phase structure of the lattice Widom-Rowlinson model by us-
ing percolation method. To describe our results, we prepare some notations.
For Bernoulli site percolation on the d-dimensional hypercubic lattice, we
consider two critical probabilities: Let pc(d) be the critical probability when
we connect pairs of distinct sites with the Euclidean distance 1 and p∗c(d)
be the one when we connect the sites with the Euclidean distance not larger
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than
√
d. It is well-known that p∗c(d) < pc(d) and pc(2) + p∗c(2) = 1. Let

λ = ea.

Theorem C. Let d ≥ 2. For the d-dimensional Widom-Rowlinson model, if
h = 0 and λ > 22d−1pc(d)/(1−pc(d)), then there exist two different extremal
Gibbs measures µ+

λ and µ−λ which are invariant under spatial shifts. If λ >
22d−1(1 − p∗c(d))/p

∗
c(d), then the limiting Gibbs measure with a boundary

condition in which particles of different kinds do not coexist is a convex
combination of µ+

λ and µ−λ .

Theorem D. For the two-dimensional Widom-Rowlinson model, if h =
0 and λ > 8(1 − p∗c(2))/p∗c(2) = 8pc(2)/(1 − pc(2)), then for every Gibbs
measure µ which is invariant under horizontal shifts or vertical shifts, we
have µ = αµ+

λ + (1− α)µ−λ for some α ∈ [0, 1].

Theorem E. For each λ > 0, there exists hc = hc(λ) ∈ [0,∞) such that the
set of Gibbs measures is a singleton if |h| > hc(λ). Especially, if there are
multiple Gibbs measures with parameter (λ, 0), then hc(λ) = 0.

Remark. It is shown up to now that the d-dimensional Widom-Rowlinson
model admits no phase transition when h = 0 and 0 < λ < pc(d)/(1−pc(d)).

Acknowledgment. The author would like to thank Professor Yasunari
Higuchi for his advice and encouragement. The author also would like
to thank Professor Rahul Roy, Professor Hideki Tanemura and Professor
Masato Shinoda for discussions. Professor Munemi Miyamoto, Professor
Joushin Murai and Masaki Takeshima gave the author useful advice at the
Tuesday seminar, Statistical Mechanics in Kobe. The author thanks Nobuaki
Sugimine and Kenshi Hosaka for careful reading of the manuscript.
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Chapter 2

Percolation

2.1 Bernoulli bond percolation

Let G = (V,E) be an infinite connected graph. We fix an arbitrary point
as the origin. Each bond e ∈ E is independently declared to be open with
probability p and closed with probability 1 − p. We denote the Bernoulli
measure on {open, closed}E by Pp. The expectation, the variance and the
covariance relative to Pp are denoted by Ep, varp and covp, respectively.
The open cluster containing the origin is denoted by C. The percolation
probability θ(p) = Pp(|C| = ∞) is an increasing function in p, where |C|
denotes the number of vertices in C. We define the critical probability
pc(G) = pc(G, bond) ≡ sup{p; θ(p) = 0}. We introduce some typical exam-
ples of graphs below.

2.1.1 d-dimensional hypercubic lattice Z
d

Let d ≥ 1. We write Z for the set of all integers, and put

Z
d = {(x1, · · · , xd);x1, · · · , xd ∈ Z}.

We add edges between all pairs x, y ∈ Z
d with the Euclidean distance one.

We also write Z
d for the resulting graph.

If d = 1, then no percolation occurs for p < 1. It is well-known that
pc(Z

2) = 1/2 (see e.g. [23] or [33]). Generally, pc(Z
d+1) < pc(Z

d) for any
d ≥ 1 ([24]). For d ≥ 2, when p > pc(Z

d) there exists the unique infinite
cluster almost surely. Periodicity under spatial shifts plays an important
role for proving these facts. So it is natural to ask when we can obtain
similar results for more general periodic graphs. A systematic investigation
of planar periodic percolation problems is found in [38].
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2.1.2 (d + 1)-regular trees T
d

This is one of graphs which we are interested in. An infinite connected graph
containing no cycles is called a tree. For an integer d ≥ 1, let T

d = (V d, Ed)
be the tree in which each vertex has (d + 1) edges. We call this graph the
(d + 1)-regular tree. We fix an arbitrary point as the origin, denoted by
O ∈ V d. For the Bernoulli bond percolation problem on T

d with d ≥ 2, It is
well-known that pc(T

d) = 1/d and there are infinitely many infinite clusters
when p ∈ (pc(T

d), 1). One of the main tools for analyzing the percolation
problems on trees is the branching process argument (see e.g. [23] §10.1),
and another is the mass-transport technique (see e.g. [27]).

2.1.3 Sierpiński carpet lattices GT

We are also interested in a class of pre-fractal graphs, which are lacking of
periodicity.

Generalized Sierpiński carpets. Let L ≥ 2. For 0 ≤ i1, i2 ≤ L − 1, let
Ψ(i1,i2) : R

2 → R
2 be an affine map which maps [0, 1]2 to [i1/L, (i1 +1)/L]×

[i2/L, (i2 + 1)/L], preserving the directions. For T ⊂ TL ≡ {0, · · · , L− 1}2,
there exists a unique compact set KT ⊂ [0, 1]2 such that KT =

⋃

t∈T

Ψt(K
T ).

This is called a generalized Sierpiński carpet.
Sierpiński carpet lattices. Hereafter we assume that (0, 0) ∈ T and KT

is connected. Let

F T
n =

⋃

t1,··· ,tn∈T

Ψt1 ◦ · · · ◦Ψtn([0, 1]2).

A sequence of graphs GT
n = (V T

n , E
T
n ) (n = 1, 2, · · · ) are defined by

V T
n = LnF T

n ∩ Z
2, ET

n = {〈u, v〉;u, v ∈ V T
n , |u− v| = 1},

where | · | denotes the usual Euclidean norm. The graph GT = (VT , ET )
which is defined by

VT =

∞⋃

n=1

V T
n , ET =

∞⋃

n=1

ET
n

is called the Sierpiński carpet lattice corresponding to KT .
We consider the bond percolation on GT . Shinoda[56] obtained a suffi-

cient condition for T to satisfy pc(GT ) < 1.
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Figure 2.1: The pre-Sierpiński carpet (GT with T = T3 \ {(1, 1)}).

Theorem 2.1.1 ([56]). For T ⊂ TL, put

Tu = {i; (i, L− 1) ∈ T}, Td = {i; (i, 0) ∈ T},
Tl = {j; (0, j) ∈ T}, Tr = {j; (L− 1, j) ∈ T}.

If the following conditions hold, then we have pc(GT ) < 1:

• For any t ∈ T , T \ {t} is connected,

• |Tu ∩ Td| ≥ 2 and |Tl ∩ Tr| ≥ 2.

However, since GT is in general not periodic, it is difficult to know further
properties, e.g. whether the infinite cluster is unique or not.

Example 2.1.2. When L = 3 and T = T3 \ {(1, 1)}, KT is the Sierpiński
carpet. We call corresponding GT the pre-Sierpiński carpet (see Figure
2.1). By Theorem 2.1.1, we can see that pc(GT ) < 1. Using the rescaling
argument in [2], which can be applied to higher dimensional cases, Wu[63]
proved the uniqueness of the infinite cluster when p is sufficiently close to 1.
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Figure 2.2: Sponge G2,[2,3].

From now on, we treat a class of planar Sierpiński carpet lattices, which
was considered by Kumagai[40]. We consider the following conditions for
T ⊂ TL:

KT is connected. (2.1)

(i, j) ∈ T =⇒ (j, i) ∈ T, (i, L− 1− j) ∈ T. (2.2)

{(0, j); 0 ≤ j ≤ L− 1} ⊂ T. (2.3)

We consider sponge percolation problems on GT . Hereafter we sometimes
omit T and we write Gn also for the graph congruent to the “original”
Gn = GT

n . Let Gn,[l,m] be the rectangle which is defined by placing m Gn’s
horizontally and l Gn’s vertically. We also consider a dual graph G∗n,[l,m] of

Gn,[l,m] (see Figures 2.2 and 2.3. The precise definition is found in [40]). We
define the following crossing probabilities:

Qn,[l,m](p)

= Pp(there is an open crossing from the bottom to the top in Gn,[l,m]),

Q∗n,[l,m](p)

= Pp(there is an closed crossing from the bottom to the top in G∗n,[l,m]).

Note thatQn,[l,m](p)+Q
∗
n,[m,l](p) = 1. We define the following critical points:

ps = sup{p; lim sup
n→∞

Qn,[1,3L](p) = 0}, p∗s = inf{p; lim sup
n→∞

Q∗n,[1,3L](p) = 0}.

Lemma 2.1.3 ([40]). Let L ≥ 2. Suppose that T ⊂ TL satisfies (2.1),
(2.2) and (2.3).

(i) We have 0 < ps ≤ pc ≤ p∗s < 1.
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(ii) When p < ps, there exist n0 ∈ N, θ < 1 and C > 0 such that

Qn0+m,[1,3L](p) ≤ Cθ2m
for all m ≥ 0.

(iii) (an RSW-type lemma) For k ≥ m ≥ 2,

lim sup
n→∞

Qn,[m,m](p) = 1⇐⇒ lim sup
n→∞

Qn,[k,m](p) = 1,

which also holds for dual crossing probabilities.

Theorem 2.1.4 ([40]). Let L ≥ 2. Suppose that T ⊂ TL satisfies (2.1),
(2.2) and (2.3). We assume that

sup{p; lim sup
n→∞

Qn,[3L,2](p) < 1} = sup{p; lim sup
n→∞

Qn,[3L,1](p) < 1}(= p∗s).

(2.4)

(It is noted in [40] that a sufficient condition for (2.4) is that T satisfies
(2.1), (2.2) and {(0, j), (1, j); 0 ≤ j ≤ L − 1} ⊂ T .) Then, the following
statements hold.

(i) ps = pc = p∗s.
(ii) θ(pc) = 0.
(iii) The uniqueness of the infinite cluster holds for p > pc.

Shinoda[55] studied the correlation length in Bernoulli bond percola-
tion on the pre-Sierpiński gasket and obtained some hyperscaling relations
involving the Hausdorff dimension of the Sierpiński gasket.

For d ≥ 2, we can define d-dimensional Sierpiński carpet lattices corre-
sponding to T ⊂ Td

L ≡ {0, · · · , L− 1}d.

Example 2.1.5. Let d ≥ 2 and γ be a positive integer strictly less than d.
Put

T (d, γ) = {(t1, · · · , td) ∈ Td
3;

d∑

k=1

1{tk=1} ≤ d− γ}.

We call GT (d,γ) the d-dimensional γ-cavity Menger sponge lattice. Note
that GT (d,1) is the d-dimensional Sierpiński carpet. Murai [47] studied an
asymptotic behavior of pc(GT (d,γ)) as d → ∞: Let ε = ε(d) = o(1) with

εd1/3 →∞ as d→∞. For sufficiently large d,

1

2d− 1
≤ pc(GT (d,γ), bond) ≤ pc(GT (d,γ), site) ≤

1 + ε

2(d− γ) .
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Figure 2.3: ’Dual sponge’ G∗2,[1,1].

It is shown in [28] that pc(G, bond) < 1 is a necessary and sufficient
condition for the existence of the phase transition in the Ising model on G.
Ising models on fractal-like lattices are studied in several references. Among
them, we refer to [13], [37], [62] and [59].

For some classes of Sierpiński carpet lattices, it is shown in [57] that
the critical probability of the oriented percolation equals 1 (for oriented
percolation problems, we refer to [23] §12.8).

2.2 Bernoulli site percolation

In the site percolation problem, each site v ∈ V is declared to be open or
closed. Corresponding Bernoulli measure on {open, closed}V is denoted by
P̂p. A sequence p = (x1, · · · , xk) of distinct points of V is a (finite) path
from x1 to xk if {xi, xi+1} ∈ E (i = 1, · · · , k − 1). We similarly define
an infinite path p = (x1, x2, · · · ). A region C ⊂ V is said to be connected
if for any x, y ∈ C there exists a path in C from x to y. A cluster in
S ⊂ V is a maximal connected component of S. A cluster which contains
infinitely many points is called an infinite cluster. We use the notations

14



Êp, v̂arp, Ĉ, θ̂(p), pc(G, site) and so on.

Theorem 2.2.1 ([24]). Let G = (V,E) be an infinite connected graph with
countably many edges and maximum vertex degree ∆ < ∞. The critical
probabilities of G satisfy

1

∆− 1
≤ pc(G, bond) ≤ pc(G, site) ≤ 1− (1− pc(G, bond))∆−1.

2.3 The number of open clusters

Let us consider the Bernoulli bond percolation problem on G = (V,E). We
fix an arbitrary site as the origin. Let {B(n)} be an increasing sequence of
finite regions containing the origin. The number of open clusters in B(n) is
denoted by Kn = Kn(ω). We can see that

Kn =
∑

x∈B(n)

1

|Cn(x)| ,

where Cn(x) = {y ∈ B(n); there is an open path in B(n) from x to y}. In-
deed,

∑

x∈B(n)

1

|Cn(x)| =
∑

C:a cluster in B(n)

∑

x∈B(n):Cn(x)=C

1

|Cn(x)|

=
∑

C:a cluster in B(n)

|C| × 1

|C| = Kn.

In the site problem, we write the number of open clusters in B(n) for K̂n.
In this case,

K̂n =
∑

x∈B(n)

1

|Ĉn(x)|
1{|Ĉn(x)|>0}.

As an analogue of this, in the bond problem we also consider

K̃n =
∑

x∈B(n)

1

|Cn(x)|1{|Cn(x)|>1},

In other words, when we regard isolated points as clusters, we denote the
number of open clusters in B(n) by Kn. Otherwise we denote it by K̃n.

15



Example 2.3.1. Let us consider Bernoulli bond percolation on trees. We
can see that

Kn = |B(n)| − ||ω|B(n)|| = ||B(n)||+ 1− ||ω|B(n)||, (2.5)

where || · || denotes the number of the bonds.
When G is a regular tree, we can obtain the exact form of κ(p). For

example, when G = T
2,

κ(p) =
1 + 2ε

1− 2ε

∞∑

n=1

1

n2

(
2n

n− 1

)
1

4n
(1− 4ε2)n,

where ε = 1/2 − p (see e.g. [23] §10.1). We can see that κ′′′(p) has a jump
discontinuity at p = pc(T

2) = 1/2.

Example 2.3.2. We consider Bernoulli bond percolation on Z
d with d ≥ 2.

Assume that 0 < p < 1. The number of open clusters in B(n) = [−n, n]d∩Z
d

is denoted by Kn = Kn(ω). Put κ(p) ≡ Ep(|C|−1). Note that 0 < κ(p) < 1.
The strong law of large numbers for Kn holds:

1

|B(n)|Kn −→ κ(p) a.s. and in L1.

It is the reason why κ(p) is called the number of open clusters per vertex
(see [23] §4.1 for details).

Sykes and Essam[58] derived ‘exact’ calculations of the critical probabil-
ities of some planar graphs, under the assumption that κ(p) has a unique
singularity at the critical point. It is conjectured that κ(p) is not thrice dif-
ferentiable at p = pc(Z

2). For the site percolation on the triangular lattice,
Zhang[66] gave an affirmative answer to this conjecture.

It is widely believed that the phase transition for large d is qualitatively
similar to that of a binary tree. Yang and Zhang[64] studied the differentia-
bility of κ(p) near the critical point for sufficiently large d.

2.4 CLT for martingale differences

We quote the central limit theorem for the martingale difference array,
proved by McLeish[43].

Let (Ω,F , P ) be the basic probability space. We consider a family of
random variables {Xj,n; j = 1, · · · qn} with EX2

j,n < ∞ and put Sn =∑qn

j=1Xj,n. Let {Fj,n; j = 1, · · · qn} be a family of sub σ-field of F with

16



Fj−1,n ⊂ Fj,n. We call {Xj,n} a martingale difference array with respect to
{Fj,n} if Xj,n is Fj,n-measurable and it holds that E[Xj,n|Fj−1,n] = 0 a.s.
for all j and n.

Theorem 2.4.1 ([43] (2.3)). Let {Xj,n} be a martingale difference array
with the following conditions:

max
1≤k≤qn

|Xk,n| is bounded under L2-norm, uniformly over n, (2.6)

max
1≤k≤qn

|Xk,n|
p−→ 0 as n→∞, (2.7)

qn∑

k=1

X2
k,n

p−→ 1 as n→∞, (2.8)

where
p−→ denotes the convergence in probability. Then, it holds that Sn

L−→
N (0, 1) as n→∞.

2.5 CLT for the number of open clusters on trees

The uniqueness of the infinite cluster plays an important role in [65], but we
do not need the uniqueness for proving the following theorem, due to the
geometric character of trees.

Theorem 2.5.1. We consider the Bernoulli bond percolation problem on
T

d (d ≥ 2). Let B(n) = {x; d(O, x) ≤ n}, where d(·, ·) denotes the graph
distance. For any p ∈ (0, 1), the central limit theorems for {Kn} and {K̃n}
hold.

Some remarks are in order. We note that the CLT for {Kn} follows from
the CLT for i.i.d. sequences, using (2.5). We can obtain the CLT for the
number of open clusters in Bernoulli site percolation by a similar proof as
for K̃n. Our proof is valid for trees for which we can verify (2.11) and (2.12),
e.g. trees of bounded degree.

Our proof is based on the argument in [65]. We enumerate the elements
of Ed as e1, e2, · · · according to the following rule:

Let A(n) = B(n) \B(n− 1), where B(0) = ∅.
1) If m < n, then for any ei ∈ A(m) and ej ∈ A(n) we have
i < j.

2) For any i, {e1, e2, · · · , ei} is connected.
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Let qn = ||B(n)||. We write Ω = {0, 1}Ed 3 ω = (ω1, ω2, · · · ). We define
σ-fields F0 = {∅,Ω} and Fk = σ[ω1, · · · , ωk] (k ≥ 1). Let fn = Kn or K̃n.
Noting that fn depends only on the first qn coordinates, we can write

fn −Epfn =

qn∑

k=1

{Ep[fn|Fk]−Ep[fn|Fk−1]} .

Let ∆k,n = Ep[fn|Fk] − Ep[fn|Fk−1] (1 ≤ k ≤ qn). These are martingale

differences : Ep[∆k,n|Fk−1] = 0. This implies that varpfn =

qn∑

k=1

Ep∆
2
k,n.

Thus we have

fn − Epfn√
varpfn

=

qn∑

k=1

Xk,n, where Xk,n =
∆k,n√∑qn

k=1Ep∆2
k,n

.

Since ∆k,n(ω) is Fk-measurable, we regard ∆k,n(ω) as a function of the first
k coordinates of ω. We have

∆k,n(ω1, · · · , ωk−1, α)

=
∑

ω′k+1,··· ,ω′qn
=0,1

δkfn(ω1, · · · , ωk−1, α, ω
′
k+1, · · · , ω′qn

)

× Pp{(ωk+1, · · · , ωqn) = (ω′k+1, · · · , ω′qn
)},

where α ∈ {0, 1} and

δkfn(ω1, · · · , ωk−1, α, ω
′
k+1, · · · , ω′qn

) (2.9)

= p1−α(1− p)α{fn(ω1, · · · , ωk−1, α, ω
′
k+1, · · · , ω′qn

)

− fn(ω1, · · · , ωk−1, 1− α, ω′k+1, · · · , ω′qn
)}.

We will check that {Xk,n} satisfy the conditions (2.6)-(2.8) of Theorem
2.4.1. To verify the conditions (2.6) and (2.7), it is sufficient to check (2.10)
and (2.11):

There exists M > 0 such that |∆k,n| ≤M for all n and k. (2.10)

There exists σ = σ(p) > 0 such that

qn∑

k=1

Ep∆
2
k,n ≥ σqn for all n. (2.11)

To prove (2.8), we have only to show that

1

qn

qn∑

k=1

(∆2
k,n − Ep∆

2
k,n)

p−→ 0 as n→∞, (2.12)
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thanks to (2.11). This says that the weak law of large numbers for {∆2
k,n}

implies the central limit theorem for {Xk,n}.

Proof of Theorem 2.5.1. We consider the case fn = K̃n only. Since { } in
RHS of (2.9) is the difference of K̃n caused by changing only the state of ek,
we can see that |δkK̃n| ≤ 1 and |∆k,n| ≤ 1, which proves (2.10).

Next we prove (2.11) (our method is similar to the proof of (3.5) in [15]).
Fix an integer k ∈ {1, 2, · · · , qn}. We denote the set of the indices of edges
which contain at least one endpoint of ek by N(ek). Let

D(k) = {ω = (ω1, · · · , ωk);ωi = 1 for i ∈ N(ek) ∩ {1, · · · , k − 1} and ωk = 0},
D′(k) = {ω′ = (ω′k+1, · · · , ω′qn

);ω′i = 1 for i ∈ N(ek) ∩ {k + 1, · · · , qn}}.

Noting that T
d has no cycles and {e1, · · · , ek} is connected, we can see that

δkK̃n(ω1, · · · , ωk, ω
′
k+1, · · · , ω′qn

) ≥ 0 if ω ∈ D(k)

and δkK̃n(ω1, · · · , ωk, ω
′
k+1, · · · , ω′qn

) = p if ω ∈ D(k) and ω′ ∈ D′(k). For
any ω ∈ D(k),

∆k,n(ω1, · · · , ωk) ≥
∑

ω′∈D′(k)

pPp{(ωk+1, · · · , ωqn) = (ω′k+1, · · · , ω′qn
)}

≥ p · p2d(1− p) = p2d+1(1− p).

Thus we have

Ep∆
2
k,n ≥ Ep[{∆k,n(ω1, · · · , ωk)}2;D(k)]

≥ {p2d+1(1− p)}2 · p2d = p6d+2(1− p)2 ≡ σ(p).

Finally we verify (2.12). We write e = 〈x1(e), x2(e)〉 when d(O, x1(e)) <
d(O, x2(e)). For e1, e2 ∈ E, let d(e1, e2) = min

i,j=1,2
d(xi(e1), xj(e2)). Since

there are no cycles on T
d, we can see that δkK̃n depends only on the state of

N(ek). So ∆i,n and ∆j,n are independent if d(ei, ej) > 1. Now (2.12) easily
follows from Chebyshev’s inequality.

2.6 LLN for the number of open clusters
on Sierpiński carpet lattices

Theorem 2.6.1. We consider Bernoulli bond percolation on a Sierpiński
carpet lattice GT . We assume that T satisfies (2.1), (2.2) and (2.3). Let
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B(n) = GT
n (with abuse of notation). For all p ∈ [0, 1], the limit m(p) ≡

lim
n→∞

EpKn

||B(n)|| exists and

lim
n→∞

Kn

||B(n)|| = m(p) a.s.

For the proof, we prepare some notations. For x = (x1, x2) ∈ Z
2
+ ≡

{0, 1, 2, · · · }2, we define GT
m(x) = (V T

m (x), ET
m(x)) with

V T
m (x) = VT ∩ {[x1L

m, (x1 + 1)Lm]× [x2L
m, (x2 + 1)Lm]} ,

ET
m(x) = {〈u, v〉 ∈ ET ;u, v ∈ V T

m (x)}.

Let m < n. For e ∈ ET , let xm(e) = (xm
1 (e), xm

2 (e)) ∈ Z
2
+ be such that e

belongs toGT
m(e) ≡ GT

m(xm(e)). For x = (x1, x2) ∈ Z
2
+, let ||x||1 = |x1|+|x2|

and ||x||∞ = max{|x1|, |x2|}. When we regard Gn as a union of Gm’s, we
often index these Gm’s by Tn−m. For fixed m, we identify an element of
Tn−m as that of Z

2
+ in obvious fashion.

For a region S of GT , the border points of S is defined by the inner
boundary sites when we regard S as a subset of Z

2. For m > 0, intGm

denotes the graph obtained by deleting the border points of Gm and the
edges connecting them. For m > l > 0, let

∂lGm = {Gl(x) : x ∈ Tm−l, Gl(x) contains some of border points of Gm}

(see Figure 2.4). We often use the following facts.

Lemma 2.6.2. We assume that T satisfies (2.1), (2.2) and (2.3).
(i) For m > l > 0, ||Gm|| ≥ |T |m−l × || intGl||.
(ii) || intGm||/||Gm|| → 1 as m→∞.

(iii) sup
l≥1

||∂lGl+j ||
||Gl+j ||

→ 0 as j →∞.

Proof. (i) is obvious. By (2.3), we have |T | ≥ 4(L− 1) and || intG1|| ≥ 4L.
Noting that || intGm|| = ||Gm|| − 4Lm and ||Gm|| ≥ {4(L− 1)}m−1 · 4L, we
can prove (ii). Using (i) and (ii), we have

sup
l≥1

||∂lGl+j ||
||Gl+j ||

≤ 4(Lj − 1)

{4(L− 1)}j sup
l≥1

||Gl||
|| intGl||

→ 0 as j →∞,

which proves (iii).

Noting that | intGl| = |Gl| − 4Ll and | intG1| ≥ 4(L− 2), we obtain the
following
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Figure 2.4: The shaded region indicates ∂1G3.

Corollary 2.6.3. We assume that T satisfies (2.1), (2.2) and (2.3).
(i) For m > l > 0, |Gm| ≥ |T |m−l × | intGl|.
(ii) | intGm|/|Gm| → 1 as m→∞.

Proof of Theorem 2.6.1. We generalize the definition of Kn. For a finite
subgraph S of GT , K(S) denotes the number of open clusters in S. Note
that K(S1 ∪ S2) ≤ K(S1) +K(S2). Suppose that n > m > 0. Noting that

Kn ≤
∑

x∈T n−m

K(GT
m(x)) and EpK(GT

m(x)) = EpKm for any x ∈ Tn−m, we

have EpKn ≤ |T |n−mEpKm. Dividing by qn ≡ ||B(n)|| and using Lemma
2.6.2 (i), we can see that

EpKn

qn
≤ |T |

n−mEpKm

qn
≤ EpKm

|| intB(m)|| =
EpKm

qm

qm
|| intB(m)|| .

This implies the existence of the limit of EpKn/qn.
Let En = {|(Kn − EpKn)/qn| ≥ |T |−n/4}. Noting that |∆2

k,n| ≤ 1, we
have

Ep

(
Kn −EpKn

qn

)2

=
varpKn

q2n
=

1

q2n

qn∑

k=1

Ep∆
2
k,n ≤

1

qn
.
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It follows from Chebyshev’s inequality and Lemma 2.6.2 (i) that

P (En) ≤ |T |n/2 · 1

qn
≤ |T |n/2

4L|T |n−1
=

1

4L|T |n/2−1
.

By Borel-Cantelli’s lemma, we can show the almost sure convergence of
Kn/qn.

Noting that |B(n)| ≤ 2qn, we can prove the following theorem in a similar
manner.

Theorem 2.6.4. We consider Bernoulli bond percolation on a Sierpiński
carpet lattice GT . We assume that T satisfies (2.1), (2.2) and (2.3). For

all p ∈ [0, 1], the limit m̂(p) ≡ lim
n→∞

EpKn

|B(n)| exists and

lim
n→∞

Kn

|B(n)| = m̂(p) a.s.

2.7 CLT for the number of open clusters
on Sierpiński carpet lattices

Theorem 2.7.1. We consider Bernoulli bond percolation on a Sierpiński
carpet lattice GT . We assume that T satisfies (2.1), (2.2) and (2.3). Let
B(n) = GT

n . We can prove the CLT for {Kn} for p ∈ (0, 1) \ [ps, p
∗
s].

Moreover, if (2.4) is satisfied, then the CLT for {Kn} holds for all p ∈ (0, 1).

We remark that similar results can be proved for {K̃n}.
Let L ≥ 2. Fix T ⊂ TL which satisfies (2.1), (2.2) and (2.3). In the

same way as in section 2.5, we define ET = {e1, e2, · · · }, qn, {Fk}, ∆k,n and
Xk,n.

We can easily check the condition (2.10) for fn = Kn or K̃n as in section
2.5. While we can verify (2.11) forKn by using the FKG inequality as in [65],
we cannot apply this method to K̃n. So we prove (2.11) for K̃n by the same
argument as in section 2.5. Fix an integer k ∈ {1, 2, · · · , qn}. Let N̄(ek) =
{i ∈ {1, 2, · · · , qn}; ei ∈ ET

n \ N(ek) and ei ∩ ej 6= ∅ for some j ∈ N(ek)}.
Note that ||N (ek)|| ≤ 7 and ||N̄(ek)|| ≤ 16. We modify the definitions of
D(k) and D′(k):

D(k) =

{
ω = (ω1, · · · , ωk);

ωi = 1 for i ∈ N(ek) ∩ {1, · · · , k − 1}, ωk = 0,
ωj = 0 for j ∈ N̄(ek) ∩ {1, · · · , k − 1}

}
,

D′(k) =

{
ω′ = (ω′k+1, · · · , ω′qn

);
ω′i = 1 for i ∈ N(ek) ∩ {k + 1, · · · , qn},
ω′j = 0 for j ∈ N̄(ek) ∩ {k + 1, · · · , qn}

}
.
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Figure 2.5: The thick-lined box is ḠT
1,·(e).

Now we can prove (2.11) for K̃n along the same line as in section 2.5.
The condition (2.12) will be checked in the following three subsections.

We shall give a proof only for Kn. Almost the same proof works for K̃n.

2.7.1 Subcritical regime : p < ps

Let n > m. We define ḠT
m,n(e) = (V̄ T

m,n(e), ĒT
m,n(e)) by

V̄ T
m,n(e)

= V T
n ∩ {[(xm

1 (e)− 1)Lm, (xm
1 (e) + 2)Lm]× [(xm

2 (e)− 1)Lm, (xm
2 (e) + 2)Lm]} ,

ĒT
m,n(e) = {〈u, v〉 ∈ ET

n ;u, v ∈ V̄ T
m,n(e)}

(see Figure 2.5). The (inner) boundary of ḠT
m,n(e) is defined by

{
u ∈ V̄ T

m,n(e); 〈u, v〉 ∈ ET for some v ∈ V T
n \ V̄ T

m,n(e)
}
.

For e ∈ ET
n , let

D(e,m, n) =





each endpoints of edge e belong to
different open clusters in ḠT

m,n(e)

which are connected to the boundary of ḠT
m,n(e)



 .
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Noting that Pp(D(e,m, n)) ≤ 4Qm,[1,3], we can see the following by Lemma
2.1.3(ii).

Lemma 2.7.2. If p < ps, then for given ε > 0 we can take a sufficiently
large m0 such that Pp(D(e,m, n)) ≤ ε for all n > m ≥ m0 and e ∈ ET

n .

Now we prove Theorem 2.7.1 for p < ps. We shall verify (2.12). Fix
ε > 0. We take sufficiently large m so that the statement of Lemma 2.7.2
holds. Let n > m. We compare ∆k,n with ∆′

k,n = m∆′
k,n ≡ ∆k,n1D(ek,m,n)c .

We have

1

qn

∣∣∣∣∣

qn∑

k=1

(∆2
k,n −Ep∆

2
k,n)

∣∣∣∣∣

≤ 1

qn

∣∣∣∣∣

qn∑

k=1

{∆2
k,n − (∆′

k,n)2}
∣∣∣∣∣+

1

qn

∣∣∣∣∣

qn∑

k=1

{(∆′
k,n)2 − Ep(∆

′
k,n)2}

∣∣∣∣∣

+
1

qn

∣∣∣∣∣

qn∑

k=1

{Ep(∆
′
k,n)2 −Ep∆

2
k,n}

∣∣∣∣∣ = SI + SII + SIII.

Noting that |∆k,n| ≤ 1 and Ep|∆k,n −∆′
k,n| ≤ Pp(D(ek,m, n)), we have

Ep(SI) ≤
1

qn

qn∑

k=1

Ep|∆k,n + ∆′
k,n||∆k,n −∆′

k,n|

≤ 1

qn
qn · 2 · ε = 2ε.

Similarly, we have Ep(SIII) ≤
1

qn

qn∑

k=1

Ep|(∆′
k,n)2 −∆2

k,n| ≤ 2ε.

Next we show that Ep(S
2
II)→ 0 as n→ ∞. To this end, we shall prove

∆′
i,n depends on the states of the edges in ḠT

m,n(ei), so that ∆′
i,n and ∆′

j,n

are independent if ||xm(ei)− xm(ej)||∞ > 3. We split D(ei,m, n)c into two
disjoint events:

G(ei,m, n) =

{
in ḠT

m,n(ei), endpoints of ei is connected to each other

by an open path not traversing ei

}
,

H(ei,m, n) =





each endpoints of edge ei belong to different
open clusters, but not both of these clusters are

connected to the boundary of ḠT
m,n(ei)



 .
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When G(ei,m, n) occurs, the number of open clusters are independent of
the state of ei. Hence δiKn1G(ei,m,n) = 0. On the other hand, we can see
that

δiKn1H(ei,m,n) =

{
−(1− p) if ωi = 1,

p if ωi = 0.

Thus ∆′
i,n is measurable with respect to the states of edges in ḠT

m,n(ei). Now
we have

Ep(S
2
II) =

1

q2n

qn∑

i=1

qn∑

j=1

covp

(
(∆′

i,n)2, (∆′
j,n)2

)

≤ 1

q2n

qn∑

i=1

∑

j:||xm(ej)−xm(ei)||∞≤3

4 ≤ 1

q2n
qn · 49 · 4 =

196

qn
.

Using Markov’s and Chebyshev’s inequalities, we can prove (2.12). This
completes the proof.

2.7.2 Critical regime : p ∈ [ps, p
∗
s]

Once we prove the following lemma, we can obtain the CLT for p ∈ [ps, p
∗
s]

by the same argument as in the preceding subsection.

Lemma 2.7.3. We assume that (2.4) holds. If p ≤ p∗s, then for given ε > 0
we can take a sufficiently large m0 such that Pp(D(e,m, n)) ≤ ε for all
n > m ≥ m0 and e ∈ ET

n .

Proof. Since T = T2 (i.e. GT = Z
2) is the only case that T ⊂ T2 satisfies

(2.1), (2.2) and (2.3), we consider the case L ≥ 3. Using the duality equation,
(2.4) and Lemma 2.1.3(iii), we can prove that there exists a positive constant
δ such that Q∗n,[3L,1] ≥ δ for all n. For e ∈ ET and i ≥ 1, let Di(e) be the

union of four Gi’s (or Li × Li holes), which are connected to the corner
closest to e among the corners of GT

i (e). Let Ai(e) be Gi−1’s (or Li−1×Li−1

holes) which contain the border points of Di(e). Note that for all i there is
an dual closed circuit in Ai(e) with probability ≥ δ4. We take m0 such that
(1− δ4)m0 ≤ ε. For m > m0, we have

Pp(D(e,m, n))

≤ Pp


 ⋂

i=2,··· ,m0+1

{there is no dual closed circuit in Ai(e)}




≤ (1− δ4)m0 ≤ ε.
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This completes the proof.

2.7.3 Supercritical regime : p > p∗s

First we note that by Lemma 2.6.2, for given η > 0 we can find j0 such that
||∂lGl+j ||/|| intGl+j || ≤ η for all l ≥ 1 and j ≥ j0.

Lemma 2.7.4. Suppose that p > p∗s. For fixed j, we have

α(l) = α(l, p) ≡ Pp(there exists an open circuit in ∂lGl+j)→ 1 as l →∞.

Proof. By the FKG inequality, we have

α(p) ≥ [Ql,[Lj ,1](p)]
4 ≥ [{Ql,[3,1](p)}Nj ]4, where Nj = 2d(Lj + 1)/3e − 1.

Since lim sup
l→∞

Ql,[3,1](p) = 1 for p > p∗s, we get the conclusion.

Now we check (2.12). We fix an integer l. Suppose that n > m >

l + j0. We regard B(n) = GT
n as

⋃

x∈T n−m

GT
m(x). For x ∈ Tn−m, let 1(x)

be the indicator function of {there exists an open circuit in ∂lGm(x)}. Let
Sk = ∆2

k,n − Ep∆
2
k,n and S̃k = Sk1(xm(ek)). Note that |S̃k| ≤ |Sk| ≤ 1

and |EpS̃k| = |Ep(Sk − S̃k)| = |EpSk(1 − 1(xm(ek)))| ≤ 1 − α(l). For
i, k ∈ {1, 2, · · · , qn}, we have

Ep[SiSk] = Ep[S̃iS̃k] + Ep[Si(Sk − S̃k)] + Ep[S̃k(Si − S̃i)]

≤ Ep[S̃iS̃k] + 2(1− α(l)).

Let U(n) =
⋃

x∈T n−m

∂lGm(x). Note that by the choice of m and Lemma 2.6.2

(i),

||U (n)|| ≤
∑

x∈T n−m

||∂lGm(x)|| ≤
∑

x∈T n−m

η|| intGm(x)|| ≤ ηqn.

Let In = {(i, k); 1 ≤ i, k ≤ qn} and În = {(i, k); ei, ek /∈ U(n) and ||xm(ei)−
xm(ek)||1 ≥ 2}. Note that |In \ În| ≤ 2qn||U (n)||+ qn · 5qm ≤ 2ηq2n + 5qmqn.
By the same argument as in section 2.7.1, we can see that if (i, k) ∈ În, then
S̃i and S̃k are independent and Ep[S̃iS̃k] = Ep[S̃i]Ep[S̃k] ≤ (1−α(l))2. Thus
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we have

1

q2n

∑

(i,k)∈In

Ep[SiSk] ≤
1

q2n

(
|În| · (1− α(l))2 + |In \ În| · 1 + q2n · 2(1− α(l))

)

≤ (1− α(l))2 +

(
2η +

5qm
qn

)
+ 2(1− α(l)).

For fixed l and m we have

lim sup
n→∞

1

q2n
Ep

{
qn∑

k=1

(∆2
k,n − Ep∆

2
k,n)

}2

≤ (1− α(l))2 + 2η + 2(1− α(l)).

Letting η ↘ 0 and l →∞, we get the desired result by Lemma 2.7.4.

2.7.4 Some extensions

Our proof of the above CLT for p ∈ (0, ps) is based on the fact that
Qn,[1,3](p) → 0 as n → ∞ (see section 2.7.1). Even if T does not satisfy
(2.1), (2.2) or (2.3), we obtain the CLT for p when we can show that suit-
able analogues of Qn,[1,3](p)→ 0 as n→∞. We give some examples.

Example 2.7.5. When L = 2 and T = T2 \ {(1, 1)}, KT is the Sierpiński
gasket. We call corresponding GT (a variant of) the pre-Sierpiński gasket.
Since KT is a finitely-ramified fractal, it is easily checked that pc(GT ) = 1.
Since T has a reflection symmetry and Qn,[1,3](p) → 0 as n → ∞, we can
prove the CLT for p ∈ (0, 1) by using the argument in section 2.7.1.

Example 2.7.6. Let L = 2l + 1 with l ≥ 1 and

T = {(0, j), (L− 1, j), (j, l); 0 ≤ j ≤ L− 1}.

Since T is anisotropic, we have to consider both left-right and top-bottom
crossing probabilities. While KT is an infinitely-ramified fractal, it is known
that these crossing probabilities tend to zero as n → ∞ (see [40] and [56]).
Thus we can obtain the CLT for p ∈ (0, 1).

2.8 Large deviations for the number of open clus-
ters on Sierpiński carpet lattices

We derive large deviation estimates for Kn, using a slight modification of
the argument in [65].
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Theorem 2.8.1 (Azuma-Hoeffding’s inequality). (cf. [3], [25] §12.2,
[61] Exercise 14.2) Let {Mk} be a martingale with M0 = 0 and |Mk −
Mk−1| ≤ ck (k ≥ 1) a.s. For any x > 0, we have

P

{
sup
k≤n

Mk ≥ x
}
≤ exp

(
− x2

2
∑n

k=1 c
2
k

)
.

Proof. Fix θ ∈ R. Since {Mk} is a martingale and x 7→ eθx is convex, we
can see that {eθMk} is a submartingale. By Doob-Kolmogorov’s inequality,
we have

P

{
sup
k≤n

Mk ≥ x
}
≤ P

{
sup
k≤n

eθMk ≥ eθx

}
≤ E[eθMn ]

eθx
.

To estimate E[eθMn ], we use the following lemma.

Lemma 2.8.2. Let Y be a random variable with E[Y ] = 0 and |Y | ≤ c a.s.
It holds that

E[eθY ] ≤ cosh(θc) ≤ exp

(
1

2
(θc)2

)
.

Proof of Lemma. Since x 7→ eθx is convex, for y ∈ [−c, c]

eθy ≤ c− y
2c

e−θc +
c+ y

2c
eθc =

1

2

(
eθc + e−θc

)
+

y

2c

(
eθc − e−θc

)

= cosh(θc) +
y

c
sinh(θc).

Thus we have

E[eθY ] ≤ E
[
cosh(θc) +

Y

c
sinh(θc)

]

= cosh(θc) +
sinh(θc)

c
E[Y ] = cosh(θc).

The second inequality follows from

coshx =
1

2

(
ex + e−x

)
=

1

2

∞∑

k=0

{
xk

k!
+

(−x)k

k!

}

=
∞∑

k=0

x2k

(2k)!
=

∞∑

k=0

(x2)k

2k · (2k − 1) · · · (k + 1) · k!

≤
∞∑

k=0

(x2)k

2k · k! = exp

(
1

2
x2

)
.
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By this lemma, we can see that E[eθ(Mk−Mk−1)|Fk−1] ≤ eθ2c2k/2 a.s. for
k = 1, 2, · · · . We have

E[eθMn ] = E[eθMn−1eθ(Mn−Mn−1)] = E[eθMn−1E[eθ(Mn−Mn−1)|Fn−1]]

≤ E[eθMn−1 ]eθ2c2n/2

≤ · · · ≤ exp

(
θ2

2

n∑

k=1

c2k

)
.

This estimate gives that

P

{
sup
k≤n

Mk ≥ x
}
≤ exp

(
θ2

2

n∑

k=1

c2k − θx
)

= exp

{∑n
k=1 c

2
k

2

(
θ − x∑n

k=1 c
2
k

)2

− x2

2
∑n

k=1 c
2
k

}
.

Letting θ = x/(
∑n

k=1 c
2
k), we can get the best estimate.

Theorem 2.8.3. (cf. [65] Theorem 3) We consider Bernoulli bond perco-
lation on GT , where T satisfies (2.1), (2.2) and (2.3). For all p ∈ (0, 1),
there exists a positive constant C1 such that

Pp

{ |Kn − EpKn|√
qn

≥ x
}
≤ 2e−x2

.

Proof. Let Yk = Ep[Kn|Fk]−EpKn. Noting that {Yk} is a martingale with

Y0 = Ep[Kn|F0]− EpKn = 0, |Yk − Yk−1| = |∆k,n| ≤ 1 a.s.,

it follows from Azuma-Hoeffding’s inequality that

Pp{Yqn = Kn − EpKn ≥ x
√
qn}

≤ Pp

{
sup
k≤qn

Yk ≥ x
√
qn

}
≤ exp

{
− (x
√
qn)2∑qn

k=1 12

}
= exp

(
−x2

)
.

A similar argument for {−Yk} gives that

Pp{−Yqn = −(Kn − EpKn) ≥ x√qn} ≤ exp
(
−x2

)
.
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Theorem 2.8.4 (Large deviations for Kn). (cf. [65] Theorem 2) We
consider Bernoulli bond percolation on a Sierpiński carpet lattice GT . We
assume that T satisfies (2.1), (2.2) and (2.3). Let p ∈ (0, 1).

(i) There exists a positive constant σ1(ε, p) such that for all ε ∈ (0, 1 −
m̂(p)),

lim
n→∞

−1

|B(n)| logPp

{
Kn

|B(n)| ≥ m̂(p) + ε

}
= σ1(ε, p).

(ii) There exists a positive constant σ2(ε, p) such that for all ε ∈ (0, m̂(p)),

lim
n→∞

−1

|B(n)| logPp

{
Kn

|B(n)| ≤ m̂(p)− ε
}

= σ2(ε, p).

Proof. We prove (ii) first. Let S1 and S2 be subgraphs of GT such that S1

and S2 are edge-disjoint. Since K(S1) and K(S2) are mutually independent,
we have

Pp{K(S1 ∪ S2) ≤ |S1 ∪ S2|(m̂(p)− ε)}
≥ Pp{K(S1) +K(S2) ≤ |S1|+ |S2|(m̂(p)− ε)}
≥ Pp{K(S1) ≤ |S1|(m̂(p)− ε), K(S2) ≤ |S2|(m̂(p)− ε)}
= Pp{K(S1) ≤ |S1|(m̂(p)− ε)}Pp{K(S2) ≤ |S2|(m̂(p)− ε)}.

Let n > m. We can see that

Pp{Kn ≤ |B(n)|(m̂(p)− ε)} ≥ Pp{Km ≤ |B(m)|(m̂(p)− ε)}|T |n−m
.

Noting that if all bonds in S are open, then K(S) = 1 and 1 ≤ |S|(m̂(p)−ε)
for ε < m̂(p) and sufficiently large |S|, we have Pp{K(S) ≤ |S|(m̂(p)−ε)} ≥
p||S||. We can see that

− logPp{Kn ≤ |B(n)|(m̂(p)− ε)}
|B(n)|

≤ −|T |
n−m logPp{Km ≤ |B(m)|(m̂(p)− ε)}

|B(n)|

≤ − logPp{Km ≤ |B(m)|(m̂(p)− ε)}
| intB(m)| ,

where we used Corollary 2.6.3(i). By Corollary 2.6.3(ii), we have

lim sup
n→∞

− logPp{Kn ≤ |B(n)|(m̂(p)− ε)}
|B(n)|

≤ lim inf
m→∞

− logPp{Km ≤ |B(m)|(m̂(p)− ε)}
|B(m)| .
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So we set

σ2(ε, p) ≡ lim
n→∞

−1

|B(n)| logPp{Kn ≤ |B(n)|(m̂(p)− ε)} < +∞.

By the definition of m̂(p), we have

(m̂(p)− ε/2)|B(n)| ≤ EpKn ≤ (m̂(p) + ε/2)|B(n)|
for sufficiently large n. By Theorem 2.8.3, we have

Pp{Kn ≤ |B(n)|(m̂(p)− ε)}
≤ Pp

{
|Kn − EpKn| ≥

ε

2
|B(n)|

}

≤ 2 exp
{
− (ε|B(n)|/(2√qn))2

}
≤ 2 exp

(
−ε2|B(n)|/16

)
,

where we used qn ≤ 4|B(n)|. This implies that σ2(ε, p) > 0.
Next we prove (i). Let S1 and S2 be subgraphs of GT such that S1 and

S2 are edge-disjoint. Put V (S1) = {all edges in ∂S1 are closed}, where ∂S1

denotes the edge boundary of S1. Noting that K(S1∪S2) = K(S1)+K(S2)
on V (S1), we have

Pp{K(S1 ∪ S2) ≥ |S1 ∪ S2|(m̂(p) + ε)}
≥ Pp{K(S1 ∪ S2) ≥ |S1 ∪ S2|(m̂(p) + ε), V (S1)}
≥ Pp{K(S1) ≥ |S1|(m̂(p) + ε), K(S2) ≥ |S2|(m̂(p) + ε), V (S1)}
≥ Pp{K(S1) ≥ |S1|(m̂(p) + ε)}Pp{K(S2) ≥ |S2|(m̂(p) + ε)}(1− p)||∂S1||.

In the last inequality, we used the FKG inequality since V (S1) and {K(Si) ≥
|Si|(m̂(p) + ε)} (i = 1, 2) are decreasing events.

Let n > m. We can see that

Pp{Kn ≥ |B(n)|(m̂(p) + ε)}
≥ Pp{Km ≥ |B(m)|(m̂(p) + ε)}|T |n−m · {(1− p)||∂B(m)||}|T |n−m

.

Noting that if all bonds in S are closed, then K(S) = |S| and |S| ≥
|S|(m̂(p) + ε) for ε < 1 − m̂(p), we have Pp{K(S) ≥ |S|(m̂(p) + ε)} ≥
(1− p)||S||. By Corollary 2.6.3, we can see that

− logPp{Kn ≥ |B(n)|(m̂(p) + ε)}
|B(n)|

≤ −|T |
n−m logPp{Km ≥ |B(m)|(m̂(p) + ε)}

|B(n)| +
−|T |n−m||∂B(m)|| log(1− p)

|B(n)|

≤ − logPp{Km ≥ |B(m)|(m̂(p) + ε)}
| intB(m)| +

−4|∂B(m)| log(1− p)
| intB(m)| ,
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and

lim sup
n→∞

− logPp{Kn ≥ |B(n)|(m̂(p) + ε)}
|B(n)|

≤ lim inf
m→∞

− logPp{Km ≥ |B(m)|(m̂(p) + ε)}
|B(m)| .

So we set

σ1(ε, p) ≡ lim
n→∞

−1

|B(n)| logPp{Kn ≥ |B(n)|(m̂(p) + ε)} < +∞.

As before, for sufficiently large n, it follows from Theorem 2.8.3 that

Pp{Kn ≥ |B(n)|(m̂(p) + ε)}
≤ Pp

{
|Kn − EpKn| ≥

ε

2
|B(n)|

}

≤ 2 exp
{
− (ε|B(n)|/(2√qn))2

}
≤ 2 exp

(
−ε2|B(n)|/16

)
.

This implies that σ1(ε, p) > 0.
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Chapter 3

Widom-Rowlinson models

3.1 Definition of the model

We define the Widom-Rowlinson model on an infinite connected graph G =
(V,E). We write x ∼ y if x, y ∈ V are adjacent, namely {x, y} ∈ E. Let Ω =
{−1, 0,+1}V be the configuration space with product topology. The Borel
σ-algebra of Ω is denoted by F . For Λ ⊂ V , we consider ΩΛ = {−1, 0,+1}Λ
and its Borel σ-algebra FΛ. A configuration ω ∈ ΩΛ is said to be feasible if
ω(x)ω(y) 6= −1 for all adjacent x, y ∈ Λ. We write Λ ⊂⊂ V if Λ is a finite
subset of V . For Λ ⊂⊂ V and a feasible boundary condition ω ∈ Ω, the
finite volume Gibbs distribution µω

Λ,λ,h is defined by

µω
Λ,λ,h(σ) =

1

Zω
Λ,λ,h

1{σ∗ω:feasible}

∏

x∈Λ

λσ(x)2ehσ(x) (σ ∈ ΩΛ).

Here λ > 0 is a parameter called activity, and h ∈ R is a parameter which
plays a similar role as the external field in the Ising model. The normalizing
constant Zω

Λ,λ,h is called the partition function. The configuration σ ∗ω ∈ Ω
is defined by

σ ∗ ω(x) =

{
σ(x) if x ∈ Λ,

ω(x) if x ∈ Λc.

A probability measure µ on (Ω,F) which satisfies the DLR equation

µ (·|FΛc) (ω) = µω
Λ,λ,h(·) µ-a.a.ω (Λ ⊂⊂ V )

is said to be a Gibbs measure with parameter (λ, h). The set of all Gibbs
measures with parameter (λ, h) is denoted by G(λ, h). It is well-known that
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G(λ, h) is a non-empty compact convex set. We write Gex(λ, h) for the set
of all extremal Gibbs measures.

3.2 Basic properties of Gibbs measures

Let us consider the Widom-Rowlinson model on a graph G = (V,E). For
ω, ω′ ∈ Ω and Λ ⊂ V , we write ω = ω′ on [off] Λ if ω(x) = ω′(x) for all x ∈ Λ
[x ∈ Λc]. Let ∂Λ and ∂−Λ be outer and inner boundaries of Λ, respectively:

∂Λ = {y /∈ Λ; y ∼ x for some x ∈ Λ},
∂−Λ = {x ∈ Λ; y ∼ x for some y /∈ Λ}.

A cylinder function is a function which is F∆-measurable for some ∆ ⊂⊂
V . For a cylinder function f , supp f denotes the smallest ∆ such that f is
F∆-measurable, i.e.

supp f =
⋂
{∆ ⊂⊂ V ; f is F∆-measurable}.

An event E is called a cylinder event if its indicator function 1E is a cylinder
function.

3.2.1 Strong Markov property

By definition, µω
Λ,λ,h enjoys the Markov property, namely µω

Λ,λ,h(σ) depends
only on the values of ω on ∂Λ. Moreover we can state the strong Markov
property as follows. Let µ ∈ G(λ, h). We say that a random subset Γ of V
is determined from outside if {Γ = Λ} ∈ FΛc for any Λ ⊂⊂ V . We consider
a σ-algebra

FΓc = {A ∈ F ;A ∩ {Γ = Λ} ∈ FΛc for any Λ ⊂⊂ V }.

Lemma 3.2.1 (Strong Markov property). Each Gibbs measure µ en-
joys the strong Markov property: If Γ is finite µ-a.s. and determined from
outside, then

µ (·|FΓc) (ω) = µω
Γ(ω),λ,h(·) µ-a.a.ω.

Remark 3.2.2. Let A be a cylinder event. If Γ(ω) = ∅, then we set
µω

Γ(ω)(A) = 1A(ω). If Γ(ω) contains infinitely many points, then we set

µω
Γ(ω)(A) = µ(A).

The proof is elementary and we omit it.
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3.2.2 Stochastic domination

First we state the Holley-FKG inequality for rather general settings.
Let Λ be a finite set and S be a finite subset of R. We set Ω̃Λ = SΛ.

For σ, σ′ ∈ Ω̃Λ, we write σ ≤ σ′ if σ(x) ≤ σ′(x) for all x ∈ Λ. We say
σ ∼ σ′ if there exists x ∈ Λ such that σ(x) 6= σ′(x) and σ = σ′ off x. Let
µ, µ′ be probability measures on Ω̃Λ. We write µ ≤ µ′ if µ(f) ≤ µ′(f) for
any increasing function f on Ω̃Λ. For a probability measure µ on Ω̃Λ, we
define Ω̃µ

Λ = {σ ∈ Ω̃Λ;µ(σ) > 0}. We say that µ is nice if there exists
M = M(µ) ∈ Ω̃µ

Λ such that σ ≤ M for all σ ∈ Ω̃µ
Λ. We can define the

connectedness of a subset of Ω̃Λ with respect to the relation ∼. We call µ
irreducible if Ω̃µ

Λ is connected in this sense.

Theorem 3.2.3. !
(i) (Holley’s inequality) Let µ, µ′ be nice and irreducible probability mea-

sures. In addition we assume that M(µ) ≤M(µ′). If for any x ∈ Λ, a ∈ S,
η, η′ ∈ Ω̃Λ\{x} such that η ≤ η′ , µ(σ = η off x) > 0 and µ′(σ = η′ off x) > 0,

µ(σ(x) ≥ a|σ = η off x) ≤ µ′(σ(x) ≥ a|σ = η′ off x)

holds, then µ ≤ µ′.
(ii) (the FKG inequality) Let µ be a nice and irreducible probability mea-

sure on Ω̃Λ. If for any x ∈ Λ, a ∈ S, η, η′ ∈ Ω̃Λ\{x} such that η ≤ η′,
µ(σ = η off x) > 0 and µ(σ = η′ off x) > 0,

µ(σ(x) ≥ a|σ = η off x) ≤ µ(σ(x) ≥ a|σ = η′ off x)

is satisfied, then µ has positive correlations, i.e. µ(fg) ≥ µ(f)µ(g) holds for
increasing functions f, g on Ω̃Λ.

The proof of this theorem is obtained by a slight modification of the
argument in [19] §4.2.

Now we return to the Widom-Rowlinson model. For ω, ω′ ∈ Ω, we write
ω ≤ ω′ if ω(x) ≤ ω′(x) for all x ∈ V , regarding {−1, 0,+1} ⊂ R. Let µ
and ν be probability measures on (Ω,F). We say µ ≤ ν if µ(f) ≤ ν(f) for
any increasing cylinder function f on Ω. The finite Gibbs distribution in
Λ ⊂⊂ V with the boundary condition ω ≡ +1 (resp. 0, −1) is denoted by
µ+

Λ,λ,h (resp. µ0
Λ,λ,h, µ

−
Λ,λ,h).

Lemma 3.2.4. The finite Gibbs distributions have following properties:
(i) The FKG inequality holds for µω

Λ,λ,h.

(ii) µω
Λ,λ,h ≤ µω′

Λ,λ,h if ω ≤ ω′.
(iii) µω

Λ,λ,h ≤ µω
Λ,λ,h′ if h ≤ h′.

(iv) If Λ ⊂ ∆, then µ+
Λ,λ,h ≥ µ+

∆,λ,h and µ−Λ,λ,h ≤ µ−∆,λ,h.
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Proof. We can see that the set of feasible configurations is connected, i.e.
µω

Λ,λ,h is irreducible. It is clear that both µω
Λ,λ,h and µω′

Λ,λ,h are nice. Indeed,

M(µω
Λ,λ,h) =

{
0 on {x ∈ ∂−Λ;ω(y) = −1 for some y ∈ ∂Λ with y ∼ x},
+1 otherwise,

and M(µω′

Λ,λ,h) is similar. We note that M(µω
Λ,λ,h) ≤ M(µω′

Λ,λ,h) because
ω ≤ ω′.

Fix any x ∈ Λ. For η ∈ Ω̃Λ\{x} such that η ∗ ω is feasible, we can easily
see that µω

Λ,λ,h(σ(x) = +1|σ = η off x) is equal to





0 if η ∗ ω(y) = −1 for some y ∼ x,
λeh

λeh+1+λe−h if η ∗ ω(y) = 0 for all y ∼ x,
λeh

λeh+1
otherwise.

It turns out that this conditional probability is increasing in ω, η and h.
Similarly, we can see that µω

Λ,λ,h(σ(x) ≥ 0|σ = η off x) is increasing in ω,
η and h (but not in λ!). Hence (i)-(iii) follows from Theorem 3.2.3. (iv) is
proved by a standard application of (i).

Remark 3.2.5. Since the above conditional probability is not increasing in
λ, the monotonicity of phase transition depends on the underlying graph
(see section 3.4.1 below).

3.2.3 Extremal Gibbs measures

Let µ+
λ,h and µ−λ,h be the limiting Gibbs measures of µ+

Λ,λ,h and µ−Λ,λ,h as
Λ ↗ V . These exist by virtue of Lemma 3.2.4(iv). It is well-known that
limiting Gibbs measures satisfy the DLR equation. Both µ+

λ,h and µ−λ,h are
invariant under any graph automorphism of G. It follows from Lemma
3.2.4(ii) that

µ−λ,h ≤ µ ≤ µ+
λ,h

for any µ ∈ G(λ, h). From this, it is easy to see that µ+
λ,h, µ

−
λ,h ∈ Gex(λ, h).

Let T =
⋂

Λ⊂⊂V FΛc , which is called the tail σ-algebra. The following lemma
is well-known.

Lemma 3.2.6. Following conditions (i)-(iii) are equivalent.
(i) µ ∈ Gex(λ, h)
(ii) µ is tail-trivial, which means that µ(A) = 0 or 1 for any A ∈ T .
(iii) lim

Λ↗V
µω

Λ,λ,h = µ for µ-a.a.ω.
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From this lemma, we can find that every extremal Gibbs measure sat-
isfies the FKG inequality. It is also well-known that any Gibbs measure is
uniquely represented as a convex combination of extremal Gibbs measures.
For details, we refer to [18] and [46].

The following criterion of the uniqueness of Gibbs measure is useful (see
[19] Theorem 4.17).

Proposition 3.2.7. Following conditions (i)-(iii) are equivalent.
(i) G(λ, h) is a singleton.
(ii) µ+

λ,h = µ−λ,h

(iii) For all x ∈ V , µ+
λ,h(σ(x)) = µ−λ,h(σ(x)).

3.2.4 Differentiability of the pressure and uniqueness of Gibbs
measures

In this section, we consider the Widom-Rowlinson model on Z
d with d ≥ 2.

We review the relation between the differentiability of the pressure and the
uniqueness of Gibbs measures, which will be used in section 3.6.

We set

p(Λ, λ, h, ω) =
1

|Λ| logZω
Λ,λ,h.

Differentiating twice by h, we can see that p(Λ, λ, h, ω) is a convex function
of h.

Lemma 3.2.8. Let Λn be a box in Z
d with centre at the origin and side

length 2n+ 1. The limit

P (λ, h) = lim
n→∞

p(Λn, λ, h, ω)

exists and is independent of ω. It is also a convex function of h, therefore
it is differentiable except at most countably many h’s. We call P (λ, h) the
pressure.

Proof. By a standard subadditive argument, we can show that p(Λn, λ, h, 0)
converges as n → ∞. We write P (λ, h) for the limit. For any feasible
boundary condition ω, we can see that Z0

Λn,λ,h ≥ Zω
Λn,λ,h ≥ Z0

Λn−1,λ,h for all
n ≥ 3, which implies that p(Λn, λ, h, ω)→ P (λ, h) as n→∞.

The following result is well-known.

Theorem 3.2.9 ([11]). |G(λ, h)| = 1 if and only if P (λ, x) is differentiable
at x = h.
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Together with the preceding lemma, for each λ > 0, except at most
countably many h’s, there is a unique Gibbs measure for (λ, h).

Zeros of the partition function are studied in [51] and [16].

3.3 Percolation and phase transition in the Widom-
Rowlinson model

We consider the Widom-Rowlinson model on a graph G = (V,E).

3.3.1 Percolation in the Widom-Rowlinson model

For ω ∈ Ω, we set

S+(ω) = {x ∈ V ;ω(x) = +1},
S0(ω) = {x ∈ V ;ω(x) = 0},
S−(ω) = {x ∈ V ;ω(x) = −1},
S0+(ω) = {x ∈ V ;ω(x) ≥ 0},
S0−(ω) = {x ∈ V ;ω(x) ≤ 0}.

A path in S+(ω) is called a (+)path in ω. In the analogous way, we define a
(+)circuit and a (+)cluster. We say that x, y ∈ V are (+)connected in ω if
there is a (+)path from x to y in ω. The event that x and y are (+)connected

is denoted by {x +←→ y}. For C ⊂ V , we write {x +←→ C} for the event
that x and some point in C are (+)connected. Let E+ be the event that
there exists an infinite (+)cluster. The event that x belongs to an infinite

(+)cluster is denoted by {x +←→ ∞}. Let I+ = I+(ω) = {x ∈ V ;x
+←→

∞ in ω}, which is equal to the union of all infinite (+)clusters in ω. There
correspond in obvious fashion analogous notions for S0(ω), S−(ω), S0+(ω)
and S0−(ω) as well.

3.3.2 Site random-cluster representation

In this subsection we assume that h = 0 and omit h. The site random-cluster
representation of Widom-Rowlinson model is used in several papers; e.g. [9],
[19], [28] and [29]. Here we introduce the site random-cluster representation
of Gibbs distribution with an arbitrary boundary condition.

Fix Λ ⊂⊂ V . For ξ ∈ {0, 1}Λ, let

S̃1(ξ) = {x ∈ Λ; ξ(x) = 1} , S̃0(ξ) = {x ∈ Λ; ξ(x) = 0}.
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A path in S̃1(ξ) is called a (1)path in ξ. Analogously, we define a (1)circuit
and a (1)cluster. We say that x, y ∈ V are (1)connected if there is a (1)path
from x to y in ξ. The event that x and y are (1)connected is denoted by

{x 1←→ y}. For C ⊂ V , {x 1←→ C} denotes the event that x and some point
in C are (1)connected.

Let ω ∈ Ω be a feasible boundary condition. We set

W+
Λ (ω) = {x ∈ ∂Λ;ω(x) = +1} , W−

Λ (ω) = {x ∈ ∂Λ;ω(x) = −1}.
For ξ ∈ {0, 1}Λ, let

1D(ω,ξ) =

{
1 if there is no (1)path connecting W+

Λ (ω) and W−
Λ (ω) in ξ,

0 otherwise.

Let λ > 0. The site random-cluster distribution Rω
Λ,λ is a probability mea-

sure on {0, 1}Λ which is defined by

Rω
Λ,λ(ξ) =

1

Z̃ω
Λ,λ

1D(ω,ξ)

∏

x∈Λ

λξ(x) · 2k(ξ,ω,Λ) (ξ ∈ {0, 1}Λ),

where k(ξ, ω,Λ) is the number of (1)clusters in ξ which touch neither W+
Λ (ω)

nor W−
Λ (ω), and Z̃ω

Λ,λ is a normalizing constant.

Lemma 3.3.1 (Site random-cluster representation). !
The finite volume Gibbs distribution µω

Λ,λ is related to the site random-
cluster distribution Rω

Λ,λ as follows.

(i) First we pick Y ∈ {0, 1}Λ according to Rω
Λ,λ. For x ∈ Λ with Y (x) =

0, we set X(x) = 0. For each (1)cluster C of Y , we assign +1 or −1 to all
the sites of this cluster as follows. If C is connected to W+

Λ (ω), then we set
X ≡ +1 on C. If C is connected to W−

Λ (ω), then we set X ≡ −1 on C.
Otherwise we toss a fair coin to determine the sign. Then, the distribution
of X ∈ ΩΛ is µω

Λ,λ.

(ii) We choose X ∈ ΩΛ according to µω
Λ,λ and set Y (x) = X(x)2 for each

x ∈ Λ. Then, the distribution of Y ∈ {0, 1}Λ is Rω
Λ,λ.

The proof is straightforward and we omit it. Note that the distribution
of S̃0(σ2) = S0(σ) with respect to µω

λ,Λ is equal to the distribution of S̃0(ξ)

with respect to Rω
λ,Λ. For example, we have µω

Λ,λ(x
0←→ y) = Rω

Λ,λ(x
0←→ y)

for any x, y ∈ Λ.

Using the site random-cluster representation, we can prove the following
characterization of the phase transition of Widom-Rowlinson model in terms
of percolation.
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Proposition 3.3.2. (cf. [19] Theorem 4.17 and 8.13, [29] §3) Following
(i)-(v) are equivalent.

(i) G(λ) is a singleton.
(ii) µ+

λ = µ−λ
(iii) µ+

λ (σ(x) = +1) = µ−λ (σ(x) = +1) for all x ∈ V .

(iv) lim
Λ↗V

R+
Λ,λ(x

1←→ ∂Λ) = 0 for all x ∈ V .

(v) µ+
λ (x

+←→∞) = 0 for all x ∈ V .

Remark 3.3.3. An analogue of the equivalence between (i) and (v) holds
for the 2D Ising model, but fails for the Ising model on Z

d with d ≥ 3.

For any x ∈ Λ, we shall calculate the conditional probability Rω
Λ,λ(ξ(x) =

1|ξ = η off x), where η ∈ {0, 1}Λ\{x} satisfies Rω
Λ,λ(ξ = η off x) > 0. For

s ∈ {0, 1}, we define ηx,s ∈ {0, 1}Λ by

ηx,s(y) =

{
η(y) if y 6= x,

s if y = x.

Then we have

Rω
Λ,λ(ξ(x) = 1|ξ = η off x) =

Rω
Λ,λ(ξ = ηx,1)

Rω
Λ,λ(ξ = ηx,1) +Rω

Λ,λ(ξ = ηx,0)
.

From Rω
Λ,λ(ξ = η off x) > 0, it follows that

1D(ω,ηx,0) = 1.

Thus we have

Rω
Λ,λ(ξ = ηx,1)

Rω
Λ,λ(ξ = ηx,0)

= λ · 1D(ω,ηx,1) · 2k(ηx,1,ω,Λ)−k(ηx,0,ω,Λ).

The values of 1D(ω,ηx,1) and k(ηx,1, ω,Λ)− k(ηx,0, ω,Λ) are closely related to
the number of (1)clusters in η each of which contains a site adjacent to x.
The number of such (1)clusters is denoted by N , and the number of ones
which touch neither W+

Λ (ω) nor W−
Λ (ω) is denoted by n. It is clear that

0 ≤ n ≤ N ≤ 4. We define κ(η, ω, x,Λ) as follows: If there are two disjoint
(1)clusters containing sites adjacent to x, of which one touches W+

Λ (ω) and
another touches W−

Λ (ω), then we set κ(η, ω, x,Λ) = −∞. Otherwise, we set

κ(η, ω, x,Λ) =

{
1− n if N = n,

−n if N > n.
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Noting that Rω
Λ,λ(ξ = ηx,1)/R

ω
Λ,λ(ξ = ηx,0) = λ · 2κ(η,ω,x,Λ), we have

Rω
Λ,λ(ξ(x) = 1|ξ = η off x) =

λ · 2κ(η,ω,x,Λ)

λ · 2κ(η,ω,x,Λ) + 1
.

Remark 3.3.4. By the definition of κ, it turns out that Rω
Λ,λ does not

satisfy the conditions of Theorem 3.2.3.

3.3.3 Uniqueness region

The disagreement percolation method (see [19] §7.1) gives the following es-
timate.

Proposition 3.3.5. (cf. [19] Example 7.5) If λ(eh + e−h) < pc(Z
d, site),

then G(λ, h) is a singleton. In particular, this holds if λ < pc(Z
d, site)/2(1−

pc(Z
d, site)) and |h| is sufficiently small.

We quote another uniqueness result. It has already been mentioned in
[32] that the proof given below is also valid for Z

d with d > 2. In fact, this
proof works for an arbitrary infinite locally finite connected graph (see e.g.
[29]).

Theorem 3.3.6 ([32]). For the Widom-Rowlinson model on Z
2, |G(λ, 0)| =

1 if λ < pc(Z
2, site)/(1 − pc(Z

2, site)).

Proof. The mapping ϕ : Ω = {−1, 0,+1} 2 → {0, 1} 2
is defined by

(ϕ(σ))(x) =

{
1 if σ(x) ∈ {+1, 0},
0 if σ(x) = −1

(σ ∈ Ω, x ∈ Z
2).

Let Λ ⊂⊂ Z
2. We abbreviate ϕ|ΩΛ

to ϕ and pc(Z
2, site) to pc.

For a feasible boundary condition ω ∈ Ω, we consider the probability
measure µω

Λ,λ ◦ ϕ−1 on {0, 1}Λ. For x ∈ Λ and η ∈ {0, 1}Λ\{x}, we can see
that

µω
Λ,λ ◦ ϕ−1(ξ(x) = 1|ξ = η off x) =





1
λ+1 if η ∗ (ϕ(ω)) = 0 for all y ∼ x,
c1 if η ∗ (ϕ(ω)) = 1 for all y ∼ x,
c2 otherwise,

where the constants c1, c2 satisfy that

λ+ 1

2λ+ 1
< c1 < 1,

1

λ+ 1
< c2 < 1.
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Noting that 1/(λ+1) < (λ+1)/(2λ+1) for all λ > 0, it follows from Holley’s
inequality that

P 1
λ+1
≤ µω

Λ,λ ◦ ϕ−1 ≤ Pc3 ,

where c3 = c1 ∨ c2. Note that (λ+ 1)/(2λ+ 1) < c3 < 1.
Assume that 1−1/(λ+1) < pc i.e. λ < pc/(1−pc). For x ∈ Z

2, we have

P 1
λ+1

(x
0←→∞) = 0.

For ε > 0, we can choose a sufficiently large Λ ⊂⊂ Z
2 so that

P 1
λ+1

(x
0←→ ∂Λ) < ε.

We fix such a Λ. For a finite subset ∆ of Z
2 containing Λ, we have

µω
∆,λ(x

−←→ ∂Λ) = µω
∆,λ ◦ ϕ−1(x

0←→ ∂Λ) ≤ P 1
λ+1

(x
0←→ ∂Λ) < ε.

For any µ ∈ G(λ, 0), we can see that

µ(x
−←→ ∂Λ) =

∫
µω

∆,λ(x
−←→ ∂Λ)µ(dω) < ε.

Letting Λ ↗ Z
2 and ε ↘ 0, µ(x

−←→ ∞) = 0 for all x, which implies that
µ(E−) = 0.

Next we define the mapping ψ : Ω = {−1, 0,+1} 2 → {0, 1} 2
by

(ψ(σ))(x) =

{
1 if σ(x) ∈ {−1, 0},
0 if σ(x) = +1

(σ ∈ Ω, x ∈ Z
2).

In a similar way, we can see that

P 1
λ+1
≤ µω

Λ,λ ◦ ψ−1 ≤ Pc3 .

Using this, we can prove that µ(E+) = 0 if λ < pc/(1− pc).
When λ < pc/(1 − pc), µ(E+) = µ(E−) = 0 for all µ ∈ G(λ, 0). For

ε > 0, we can choose a sufficiently large box ∆ containing the origin such
that with µ-probability > 1−ε there is a subset Γ of ∆ containing the origin
with ω ≡ 0 on ∂Γ. Let Γ(ω) be the maximal one in ∆ among such Γ’s. We
have

µ(σ(0)) = µ(σ(0) · 1{Γ(ω)6=∅}) + µ(σ(0) · 1{Γ(ω)=∅})

= µ(µ0
Γ(ω),λ(σ(0)) · 1{Γ(ω)6=∅}) + µ(σ(0) · 1{Γ(ω)=∅}).
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The second equality follows from the strong Markov property. Noting that

µ0
Γ(ω),λ(σ(0)) = µ0

Γ(ω),λ(Tσ(0)) = −µ0
Γ(ω),λ(σ(0)),

we have µ0
Γ(ω),λ(σ(0)) = 0. This implies that −ε < µ(σ(0)) < ε. Letting

ε ↘ 0, we have µ(σ(0)) = 0. Since µ+
λ (σ(0)) = µ−λ (σ(0)), we have the

desired result by Proposition 3.2.7.

Remark 3.3.7. In [32], Russo’s comparison lemma[54] is used instead of
Holley’s inequality.

3.3.4 Phase coexistence region

Let us consider the Widom-Rowlinson model on G = (V,E) with h = 0.
In this subsection, we assume that G is of bounded degree. We denote
the maximum degree of vertices in G by ∆(G). Let Pp denote the Bernoulli
probability measure on {0, 1}V with density p. We consider the site random-
cluster model on G also. For x ∈ Λ and η ∈ {0, 1}Λ\{x} such that Rω

Λ,λ(ξ =
η off x) > 0, we can see that −∞ ≤ κ(η, ω, x,Λ) ≤ 1. Holley’s inequality
implies that Rω

Λ,λ ≤ P2λ/(2λ+1). Moreover, if ω ∈ Ω satisfies ω ≥ 0 or ω ≤ 0
on ∂Λ, then 1 − ∆(G) ≤ κ(η, ω, x,Λ) ≤ 1. Thus we obtain the following
lemma.

Lemma 3.3.8. If a feasible boundary condition ω ∈ Ω satisfies ω ≥ 0 or
ω ≤ 0 on ∂Λ, then we have

Pλ/(λ+2∆(G)−1) ≤ Rω
Λ,λ ≤ P2λ/(2λ+1).

Theorem 3.3.9. (cf. [32], [28]) We consider the Widom-Rowlinson model
on an infinite connected graph G = (V,E) of bounded degree with pc(G, site) <
1. If λ > 2∆(G)−1pc(G, site)/(1 − pc(G, site)), then µ+

λ 6= µ−λ .

Proof. When λ/(λ+2∆(G)−1) > pc(G, site) (i.e. λ > 2∆(G)−1pc(G, site)/(1−
pc(G, site))), Pλ/(λ+2∆(G)−1)(0

1←→∞) = θ > 0. For Λ ⊂⊂ V , it follows from
Lemmata 3.3.1 and 3.3.8 that

R+
Λ,λ(0

1←→ ∂Λ) ≥ Pλ/(λ+2∆(G)−1)(0
1←→ ∂Λ)

≥ Pλ/(λ+2∆(G)−1)(0
1←→∞) = θ > 0.

Thus we have lim inf
Λ↗V

R+
Λ,λ(0

1←→ ∂Λ) ≥ θ > 0. It follows from this and

Proposition 3.3.2 that µ+
λ 6= µ−λ .
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3.3.5 Widom-Rowlinson model and Bernoulli site percola-
tion

Theorem 3.3.10 ([28]). We consider the following classes of graphs:

G = {infinite locally finite connected graphs},
Gb = {infinite locally finite connected graphs with bounded degree},
GSP = {G ∈ G; pc(G, site) < 1},
GWR = {G ∈ G; the Widom-Rowlinson model on G exhibits phase transition},
Gb

SP = Gb ∩ GSP, Gb
WR = Gb ∩ GWR.

Then, it holds that GSP ⊃ GWR, GSP \ GWR 6= ∅ and Gb
SP = Gb

WR.

Proof. If G ∈ G \ GSP, then the proof of Theorem 3.3.6 shows that G ∈
G \ GWR. This proves that GSP ⊃ GWR. An example of the graph in
GSP \ GWR is found in [28]. It follows from Theorem 3.3.9 that Gb

SP ⊂ Gb
WR.

This completes the proof.

3.4 Phase structure

In the preceding section, we showed that phase transition occurs when h = 0
and λ is sufficiently large. In this section, we quote some examples where
the fine properties of the phase structure are studied. Here we assume that
h = 0 and omit ‘h’.

For the Widom-Rowlinson model on a graph G, the phase transition is
said to be monotonic if there exists λc = λc(G) ∈ (0,∞) such that

{
|G(λ)| = 1 if λ < λc,

|G(λ)| > 1 if λ > λc.

For the Ising models, we can show the monotonicity of the phase transi-
tion by virtue of Griffiths’ inequalities. However, the monotonicity for the
Widom-Rowlinson model depends on G.

3.4.1 The Widom-Rowlinson model on trees

As for (d+ 1)-regular tree T
d with d ≥ 2,

Theorem 3.4.1 ([9](1998)). The Widom-Rowlinson model on T
d (d ≥ 2)

is monotonic, and

λc(T
d) =

1

d− 1

(
d+ 1

d

)d

.
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Using this theorem, a class of graphs on which the Widom-Rowlinson
model is not monotonic can be constructed. To each site in T

d, we add
n ∈ N edges which terminate in a single site. We write T

d
n for the resulting

tree.

Theorem 3.4.2 ([9]). For the Widom-Rowlinson model on T
40
7 , there are

three thresholds λ1 ≈ 0.2179, λ2 ≈ 0.4013, λ3 ≈ 4.5519 such that
{
|G(λ)| = 1 if λ ∈ (0, λ1] ∪ [λ2, λ3]

|G(λ)| > 1 if λ ∈ (λ1, λ2) ∪ (λ3,∞).

On the other hand, Häggström[29] constructed a class of d-dimensional
periodic lattices on which the Widom-Rowlinson model is monotone.

3.4.2 The one-dimensional Widom-Rowlinson model

Miyamoto[45] treated the spatially-inhomogeneous Widom-Rowlinson model
on T

1 = Z
1.

Theorem 3.4.3 ([45]). We consider the one-dimensional Widom-Rowlinson
models with the finite volume Gibbs distribution

qω
Λ,{λx}

(σ) =
1

ZΛ,{λx}
1{σ∗ω:feasible}

∏

x∈Λ

(λx)σ(x)2 ,

where {λx} = {λx > 0;x ∈ Z
1}. For (τ ′, τ) ∈ {−1, 0,+1}2, we define a

boundary condition ω(τ ′, τ) by

ω(τ ′, τ)(x) = τ ′ (x < 0),= 0 (x = 0),= τ (x > 0).

For any {λx} and (τ ′, τ), limiting Gibbs measures

Q(τ ′,τ) ≡ lim
n→−∞
m→+∞

q
ω(τ ′,τ)
[n,m],{λx}

exist. Put

M+∞({λx}) =

{
{−1,+1} if

∑+∞
x=0 λ

−1
x < +∞,

{0} if
∑+∞

x=0 λ
−1
x = +∞,

M−∞({λx}) =

{
{−1,+1} if

∑0
x=−∞ λ−1

x < +∞,
{0} if

∑0
x=−∞ λ−1

x = +∞,
M({λx}) =M−∞({λx})×M+∞({λx}).

The set of all extremal Gibbs states Gex({λx}) is isomorphic to M({λx}).
The mapping M({λx}) 3 (τ ′, τ) 7→ Qτ ′,τ ∈ Gex({λx}) is the isomorphism.
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3.4.3 The Widom-Rowlinson model on Z
d (d ≥ 2)

It is widely believed that if d = 2 and h = 0, then each Gibbs measure is de-
scribed by a mixture of two translation-invariant extremal Gibbs measures,
as in the 2D Ising model.

Conjecture 3.4.4. Consider the Widom-Rowlinson model on Z
2. If h = 0,

then there exists a critical value λc ∈ (0,∞) such that
{
|G(λ)| = 1 if λ < λc,

Gex(λ) = {µ+
λ , µ

−
λ } if λ > λc.

We give a partial answer to this conjecture later.
For d = 2, the translation-invariance of the limiting Gibbs measure with

so-called Dobrushin boundary (see section 3.7.2 below) is analyzed by Bric-
mont, Lebowitz and Pfister[5]. Higuchi, Murai and Wang[36] studied a
Dobrushin-Hryniv type limit theorem for the fluctuation of the phase sep-
aration line, i.e. the central limit theorem for the fluctuation of the phase
separation line from the Wulff profile.

As for d ≥ 3, Bricmont et al.[6, 7] showed that the Dobrushin boundary
condition gives non-translation-invariant extremal Gibbs measures for the
Widom-Rowlinson model on Z

d, as in the Ising model. See [22] and [12] for
a similar phenomenon for the random-cluster models, including Bernoulli
bond percolation.

Recently, the structure of the set of the translation-invariant Gibbs mea-
sures for the Ising model on Z

d have been determined. We refer to [4].
It is conjectured in [19] §3.5 that the Widom-Rowlinson model on Z

d

with asymmetric activities (i.e. h 6= 0) admits no phase transition.

3.5 The infinite cluster method

In sections 3.5-3.7, we study the phase structure of the two-dimensional
lattice Widom-Rowlinson model.

Russo[52] created the infinite cluster method for determining the phase
structure of the 2D Ising model. As in [20], we state his key results in the
form of lemmata. In addition, we study the uniqueness of the infinite cluster
under periodic Gibbs measures in section 3.5.6.

3.5.1 Some notations for percolation on Z
2

We write x ∼ y if x, y ∈ Z
2 are adjacent, namely |x1−y1|+ |x2−y2| = 1. We

say that x and y are (∗)adjacent and write x
∗∼ y if max{|x1−y1|, |x2−y2|} =
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1.
We say p is a path in S ⊂ Z

2 if p ⊂ S. A path p is called circuit if
xk ∼ x1.

A sequence p = (x1, · · · , xk) of distinct points of Z
2 is a (∗)path from

x1 to xk if xi
∗∼ xi+1 (i = 1, · · · , k − 1). In the similar manner, we define a

(∗)circuit, a (∗)cluster and (∗)connectedness.
A (∗)path (resp. (∗)circuit, (∗)cluster) in S+(ω) is called a (+∗)path

(resp. a (+∗)circuit, a (+∗)cluster). We call a prefix such as ‘+∗’ the type
of this path. Note that E+ ⊂ E+∗ ⊂ E0+∗ and so on. Similarly, for site
random-cluster models, we define (1∗)connectedness and so on.

We abbreviate pc(Z
2, site) to pc.

3.5.2 Transformations of Ω

We consider the following transformations of Ω.

(i) The translations θs, s ∈ Z
2 : which are defined by

(θsω)(x) = ω(x− s) (x ∈ Z
2)

for ω ∈ Ω. Particularly, let θhor = θ(1,0) and θvert = θ(0,1). The collection
(θs)s∈ 2 is a group. For a, b ∈ N, let Z

2(a, b) = {(ak, bl) ∈ Z
2; k, l ∈ Z}. We

say that µ ∈ G(λ, h) is ((a, b)-)periodic if it is invariant under the subgroup
(θs)s∈ 2(a,b). In particular, it is called translation-invariant if this holds for
(a, b) = (1, 1). We say that µ is horizontally periodic if it is invariant under
θ(a,0) for some a ∈ N. Similarly, we define vertical periodicity.

(ii) The spin-flip transformation : For ω ∈ Ω, Tω ∈ Ω is defined by

(Tω)(x) = −ω(x) (x ∈ Z
2).

(iii) The reflections : For k ∈ Z, let

Rk,hor : Z
2 3 x = (x1, x2) 7→ (x1, 2k − x2) ∈ Z

2,

Rk,vert : Z
2 3 x = (x1, x2) 7→ (2k − x1, x2) ∈ Z

2.

Let R be a reflection, i.e. R = Rk,hor or Rk,vert for some k ∈ Z. We define
R : Ω→ Ω by

(Rω)(x) = ω(Rx) (ω ∈ Ω, x ∈ Z
2).
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3.5.3 Characterization of Gibbs measures by percolation

By the strong Markov property, the following lemma is easily obtained.

Lemma 3.5.1. (cf. [20] Lemma 2.1) Let µ ∈ G(λ, h). If µ(E0+) = 0, then
µ = µ−λ,h.

We need a variant of this lemma.

Proposition 3.5.2. Let µ ∈ G(λ, h). If µ(E0∗) = 0, then µ is a convex
combination of µ+

λ,h and µ−λ,h.

Proof. Fix Λ ⊂⊂ Z
2. By assumption, Λ is surrounded by either a (+)circuit

or a (−)circuit µ-a.s. In such a case, we will say that Λ is surrounded by a
(+/−)circuit. For any ε > 0, we can choose a large finite set ∆ ⊃ Λ such
that

µ (Λ is surrounded by a (+/−)circuit in ∆) > 1− ε.

For each circuit C surrounding Λ in ∆, we consider the events

A+
Λ,∆,C

= {C is the maximal (+/−)circuit surrounding Λ in ∆ and its type is +},
A−Λ,∆,C

= {C is the maximal (+/−)circuit surrounding Λ in ∆ and its type is −},

and

A+
Λ,∆ =

⋃

C

A+
Λ,∆,C , A

−
Λ,∆ =

⋃

C

A−Λ,∆,C , A
+/−
Λ,∆ = A+

Λ,∆ ∪A−Λ,∆,

where the union runs over all the circuit surrounding Λ in ∆. Clearly,

µ
(
A+

Λ,∆

)
+ µ

(
A−Λ,∆

)
= µ

(
A

+/−
Λ,∆

)
> 1− ε.

Let f be a nonnegative increasing function such that supp f ⊂ Λ. We
have

µ(f) = µ
(
f · 1A+

Λ,∆

)
+ µ

(
f · 1A−Λ,∆

)
+ µ

(
f · 1

(A
+/−
Λ,∆ )c

)

=
∑

C

{
µ
(
f · 1A+

Λ,∆,C

)
+ µ

(
f · 1A−Λ,∆,C

)}
+ µ

(
f · 1

(A
+/−
Λ,∆ )c

)
.
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The Markov property of µ implies that

µ(f) =
∑

C

{
µ
(
µ+
int(C),λ,h

(f) · 1A+
Λ,∆,C

)
+ µ

(
µ−int(C),λ,h

(f) · 1A−Λ,∆,C

)}

+ µ

(
f · 1

(A
+/−
Λ,∆ )c

)
,

where int(C) is the bounded (∗)connected component of Z
2 \ C. For any

circuit C surrounding Λ, we note that

µ+
λ,h(f) ≤ µ+

int(C),λ,h
(f) ≤ µ+

Λ,λ,h(f) , µ−Λ,λ,h(f) ≤ µ−int(C),λ,h
(f) ≤ µ−λ,h(f).

So we have

µ(f) ≤
∑

C

{
µ+

Λ,λ,h(f)µ
(
A+

Λ,∆,C

)
+ µ−λ,h(f)µ

(
A−Λ,∆,C

)}
+ ε||f ||∞

= µ+
Λ,λ,h(f)µ

(
A+

Λ,∆

)
+ µ−λ,h(f)µ

(
A−Λ,∆

)
+ ε||f ||∞.

Similarly,

µ(f) ≥ µ+
λ,h(f)µ

(
A+

Λ,∆

)
+ µ−Λ,λ,h(f)µ

(
A−Λ,∆

)
− ε||f ||∞.

Take a sequence ∆ ↗ Z
2. Note that A

+/−
Λ,∆ is increasing in ∆. Since

finite subsets of Z
2 are countably many and µ

(
A+

Λ,∆

)
∈ [0, 1], by a diagonal-

sequence argument we can choose a subsequence of ∆ such that µ
(
A+

Λ,∆

)

converges for all Λ ⊂⊂ Z
2. We write αΛ for this limit. By letting ∆ ↗ Z

2

along this subsequence and ε ↘ 0, we have µ(A+
Λ,∆) → αΛ, µ(A−Λ,∆) →

1− αΛ, and

αΛµ
+
λ,h(f) + (1− αΛ)µ−Λ,λ,h(f) ≤ µ(f) ≤ αΛµ

+
Λ,λ,h(f) + (1− αΛ)µ−λ,h(f).

Next we take an increasing sequence Λ ↗ Z
2. As αΛ ∈ [0, 1], we can

choose a suitable subsequence of Λ such that αΛ converges to some α ∈ [0, 1].
By letting Λ↗ Z

2 along this subsequence, we have

µ(f) = αµ+
λ,h(f) + (1− α)µ−λ,h(f)

for any nonnegative increasing f . Because both µ+
λ,h and µ−λ,h are extremal

in G(λ, h), the extremal decomposition theorem implies that α is unique and
independent of the choice of subsequences. This completes the proof.
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Using the above proposition, we can determine the limiting Gibbs mea-
sure with free boundary condition, when activity is large.

Theorem 3.5.3. Assume that λ > 8pc/(1− pc) and h = 0. Then we have

µ0
λ,0 = lim

Λ↗ 2
µ0

Λ,λ,0 =
1

2

(
µ+

λ,0 + µ−λ,0

)
.

Proof. Take a sequence Λ ↗ Z
2. By taking a suitable subsequence {Λn},

µ0
Λn,λ,0 converges to a probability measure on Ω, say µ0

λ,0, as n→∞.

We shall prove µ0
λ,0(E

0∗) = 0 when λ > 8pc/(1 − pc). Let p∗c be the

critical probability of infinite (∗)cluster of Bernoulli site percolation on Z
2.

It is well-known that pc + p∗c = 1 ([53]). Now, as 1−λ/(λ+8) < p∗c , there is
no infinite (0∗)cluster P λ

λ+8
-a.s. Fix x ∈ Z

2. For any ε > 0, we can choose

a large N so that P λ
λ+8

(x
0∗←→ ∂Λn) < ε for all n ≥ N . By Lemmata 3.3.1

and 3.3.8, for m > n ≥ N we have

µ0
Λm,λ,0(x

0∗←→ ∂Λn) = R0
Λm,λ(x

0∗←→ ∂Λn) ≤ P λ
λ+8

(x
0∗←→ ∂Λn) < ε.

By letting m→∞ , n→∞ and ε↘ 0, we have µ0
λ,0(x

0∗←→∞) = 0 for all

x ∈ Z
2. Thus µ0

λ,0(E
0∗) = 0.

By Proposition 3.5.2, µ0
λ,0 = αµ+

λ,0 + (1 − α)µ−λ,0 for some coefficient

α ∈ [0, 1]. We note that µ0
Λn,λ,0(A) = µ0

Λn,λ,0 ◦ T (A) for each n and any

A ∈ FΛn . By letting n → ∞, we have µ0
λ,0(A) = µ0

λ,0 ◦ T (A). This implies

that α = 1/2. We can conclude that µ0
Λ,λ,0 converges to (µ+

λ,0 + µ−λ,0)/2,

independent of the choice of the subsequence of Λ↗ Z
2.

We remark that the above proofs are valid for any dimension. Let p∗c(d)
be the critical probability of Bernoulli site percolation on Z

d when we con-
nect the distinct sites with the Euclidean distance not larger than

√
d. We

can extend the above proofs to obtain the following

Corollary 3.5.4. We consider the d-dimensional Widom-Rowlinson model
with d ≥ 2. If λ > 22d−1(1− p∗c(d))/p∗c(d) and h = 0, then every limit point
of µω

Λ,λ,0 with ω ≥ 0 or ω ≤ 0 is a mixture of µ+
λ,0 and µ−λ,0.

3.5.4 Flip-reflection domination

If h = 0, then the interaction is invariant under the flip-reflection transfor-
mation R◦T , where R is any reflection. This implies that {ω;ω is feasible} =
{ω;R ◦ T (ω) is feasible}. Thus we can obtain the following lemma.
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Lemma 3.5.5 (Flip-reflection domination). (cf. [20] Lemma 2.3)
Let µ ∈ G(λ, 0) and R be any reflection. If µ-a.a.ω any Λ ⊂⊂ Z

2 is
surrounded by a (∗)circuit which is R-invariant and on which ω ≥ R◦T (ω),
then we have µ ≥ µ ◦R ◦ T .

3.5.5 Percolation in half-planes

A half-plane is the set of the form π = {x = (x1, x2) ∈ Z
2;xi ≥ (≤)n} for

some n ∈ Z and i ∈ {1, 2}. The line l = {x = (x1, x2) ∈ Z
2;xi = n} is called

the boundary line of this half-plane. Let

πup,n = {x ∈ Z
2;x2 ≥ n} , πdown,n = {x ∈ Z

2;x2 ≤ n}.

We simply write πup, πdown if n = 0. In the analogous way, πleft,n, πright,n,
πleft and πright are defined.

A path p = (x1, · · · , xk) is called a half-circuit of the half-plane π with
boundary line l if p ⊂ π and p ∩ l = {x1, xk}. For a half plane π, let E+

π be
the event that there exists an infinite (+)cluster in π. The union of infinite

(+)clusters in π is denoted by I+
π = I+

π (ω) = {x ∈ π;x
+←→ ∞ in ω|π}.

When π = πup, we write E+
up or I+

up for short. Analogous notations will be
used for infinite clusters of other types.

Lemma 3.5.6 (Shift lemma). (cf. [20] Lemma 3.4) Let π and π̃ be half-
planes. Assume that π is a translate of π̃. Then E+

π = E+
π̃ µ-a.s. for every

µ ∈ G(λ, h). This also holds for infinite clusters of any other types.

This lemma is proved by using so-called ‘random Borel-Cantelli’ argu-
ment(see [20]).

3.5.6 Percolation under periodic Gibbs measures

Proposition 3.5.7. If µ ∈ G(λ, h) is ((a, b)-)periodic, then there is at most
one infinite cluster of each type µ-a.s.

Proof. By the ergodic decomposition theorem([18] Chap.14), we can assume
that µ is (θs)s∈ 2(a,b)-ergodic. We want to apply the Burton-Keane unique-
ness theorem, but its proof requires the finite energy property to connect
different clusters with positive probability. In spite of lack of the finite en-
ergy property in our case, this is still possible in a similar manner as noted in
[26] and [20] for the hard-core lattice gas model. The (θs)s∈ 2(a,b)-ergodicity
is sufficient to show that in a finite box there exist encounter points whose
number has the same order as the volume of the box. Thus we can show
the uniqueness of the infinite cluster.
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By virtue of this proposition, we can establish the non-coexistence of
infinite clusters of different kinds by using Zhang’s argument.

Proposition 3.5.8 (Zhang’s argument). The following statements hold.
(i) (cf. [19] Theorem 5.18) If µ ∈ G(λ, h) is a periodic and rotation-

invariant probability measure with positive correlations, then we have µ(E+∩
E0−∗) = 0.

(ii) (cf. [20] Lemma 3.1) If µ ∈ G(λ, 0) has positive correlations and is
flip-reflection invariant (i.e. µ = µ ◦ R ◦ T for any reflection R), then we
have µ(E+ ∩ E−) = 0.

Corollary 3.5.9. If µ+
λ,h 6= µ−λ,h, then µ+

λ,h(E0−∗) = µ−λ,h(E0+∗) = 0.

Proof. If µ+
λ,h 6= µ−λ,h, then we have µ+

λ,h(E+) = µ−λ,h(E−) = 1 by Proposition
3.3.2. We get the conclusion from Proposition 3.5.8(i).

3.6 Number of phases in 2D : asymmetric case

Van den Berg and Steif conjectured that the hard-core lattice gas model on
Z

d with parity-dependent activities has no phase transition, and Häggström
proved it in the 2D case (see [19] §3.4 and [26]). In [19] §3.5, it is conjectured
that the Widom-Rowlinson model on Z

d with asymmetric activities (i.e.
h 6= 0) admits no phase transition. We expect that Häggström’s method
can be also adapted to the asymmetric Widom-Rowlinson model on Z

2. In
this section, we shall give a partial answer.

Theorem 3.6.1. For each λ > 0, there exists hc = hc(λ) ∈ [0,∞) such that

|h| > hc =⇒ |G(λ, h)| = 1.

Especially, hc(λ) = 0 when |G(λ, 0)| > 1.

Let us prove this theorem in several steps. We assume that h > 0. The
case h < 0 is treated analogously.

Lemma 3.6.2. If h > 0, then µ+
λ,0 ≤ µ−λ,h.

Proof. Since phase transition occurs at most countably many h’s as noted
in section 3.2.4, there exists some h′ ∈ (0, h) with µ+

λ,h′ = µ−λ,h′ . We can see

that µ+
λ,0 ≤ µ+

λ,h′ = µ−λ,h′ ≤ µ−λ,h.

Proposition 3.6.3. Let λ > 0. If µ+
λ,0 6= µ−λ,0, then we have |G(λ, h)| = 1

for all h > 0.
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Proof. We can show that µ+
λ,0(E

0−) = 0 if µ+
λ,0 6= µ−λ,0 (see Corollary 3.5.9).

So we have µ−λ,h(E0−) ≤ µ+
λ,0(E

0−) = 0. By Lemma 3.5.1, we can see that

µ−λ,h = µ+
λ,h. Proposition 3.2.7 gives the result.

Next, we fix λ > 0 such that µ+
λ,0 = µ−λ,0. For the unique Gibbs measure

µ0 ∈ G(λ, 0), we can show that µ0(E
+ ∪ E−) = 0 (see Proposition 3.3.2).

Therefore, for arbitrary µ ∈ G(λ, h) we have µ(E−) ≤ µ−λ,h(E−) ≤ µ0(E
−) =

0. We define

h+
c = h+

c (λ) = inf{h ≥ 0;µ+
λ,h(E+) = 1},

h−c = h−c (λ) = inf{h ≥ 0;µ−λ,h(E+) = 1}.

Because µ+
λ,h(E+) ≥ µ−λ,h(E+), we have h+

c ≤ h−c . When h+
c < h−c , µ+

λ,h(E+) =

1 and µ−λ,h(E+) = 0 for all h ∈ (h+
c , h

−
c ). This implies µ+

λ,h 6= µ−λ,h for un-

countable h’s, which is impossible. We can conclude h+
c = h−c , say hc. By a

standard Peierls argument, we can prove that hc is finite.

Proposition 3.6.4. If µ+
λ,0 = µ−λ,0, then |G(λ, h)| = 1 for h > hc(λ).

Proof. When h > hc, we have µ−λ,h(E+) = 1. It follows from Proposition

3.5.8(i) that µ−λ,h(E0−∗) = 0. Lemma 3.5.1 again shows that µ−λ,h = µ+
λ,h.

Remark 3.6.5. For λ with µ+
λ,0 = µ−λ,0 and hc(λ) > 0, any finite region

of Z
2 is surrounded by a (0∗)circuit when 0 ≤ |h| < hc. This implies

the uniqueness of Gibbs state when h = 0, while we cannot deduce the
uniqueness of Gibbs state when h 6= 0 by lack of symmetry.

In the 2D Ising model, the coexistence of ∞(∗)clusters occurs when β <
βc (see [34, 35]). An analogous problem remains open for the 2D Widom-
Rowlinson model.

3.7 Number of phases in 2D : symmetric and large
activity case

Now we turn to the symmetric case (i.e. h = 0). In this section we assume
that h = 0 and omit ‘h’. By Theorems 3.3.6 and 3.3.9, Gibbs measures are
unique when λ < pc/(1 − pc) and multiple when λ > 8pc/(1 − pc), where
pc = pc(Z

2, site). Although our result is restricted to the large activity
case, we can describe the structure of a class of Gibbs measures in which all
translationally invariant ones are contained.

We begin with the following proposition.
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Proposition 3.7.1. Suppose that λ > 8pc/(1 − pc). If µ ∈ G(λ) satisfies
that µ(E0∗) > 0, then µ(E+ ∩ E−) > 0.

Proof. Without loss of generality, we can assume that µ ∈ Gex(λ) and
µ(E0∗) = 1. We shall show that µ(E+ ∩E−) = 1.

Suppose that µ(E+) = 0, which implies that any finite set Λ of Z
2

is surrounded by a (0 − ∗)circuit µ-a.s. On the other hand, since λ >
8pc/(1−pc), for x ∈ Z

2 and ε > 0, we can choose a large Λ ⊂⊂ Z
2 containing

x such that P λ
λ+8

(x
0∗←→ ∂Λ) < ε. As Λ is surrounded by a (0 − ∗)circuit

µ-a.s., we can choose a large ∆ ⊂⊂ Z
2 such that with µ-probability> 1− ε

there is such a (0 − ∗)circuit in ∆. Let Γ be the region surrounded by the
maximal (0−∗)circuit in ∆ if it exists. Otherwise we set Γ = ∅. Because Γ is
determined from outside, we can show by using the strong Markov property
of µ that

µ(x
0∗←→ ∂Λ)

= µ(µω
λ,Γ(ω)(x

0∗←→ ∂Λ)1{Γ(ω)6=∅}) + µ({x 0∗←→ ∂Λ} ∩ {Γ(ω) = ∅}).

By Lemmata 3.3.1 and 3.3.8, we have

µω
λ,Γ(ω)(x

0∗←→ ∂Λ) = Rω
λ,Γ(ω)(x

0∗←→ ∂Λ) ≤ P λ
λ+8

(x
0∗←→ ∂Λ) < ε.

Thus we have µ(x
0∗←→ ∂Λ) < ε + ε = 2ε. By letting ∆ ↗ Z

2, ε ↘ 0 and

Λ ↗ Z
2, we can see that µ(x

0∗←→ ∞) = 0. Since x is arbitrary, we can
conclude µ(E0∗) = 0, which is a contradiction. Thus we have µ(E+) = 1.

In the same way, we can show that µ(E−) = 1.

3.7.1 Periodic phases in two dimensions

When λ is large, we can get the complete description of periodic Gibbs
measures.

Theorem 3.7.2. If λ > 8pc/(1 − pc), then any periodic µ ∈ G(λ) is a
mixture of µ+

λ and µ−λ .

Before proving this, we prepare a lemma. We say (π, π̃) is a pair of
conjugate half-planes if half-planes π, π̃ share only a common boundary line.
An associated pair of infinite clusters (I0+∗

π , I0+∗
π̃ ) or (I0−∗

π , I0−∗
π̃ ) is called

a butterfly. In particular, a butterfly in (πleft, πright) is called a horizontal
butterfly. A vertical butterfly is the one in (πup, πdown).
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Lemma 3.7.3 (Butterfly lemma). (cf. [20] Lemma 3.1) Suppose that
λ > 8pc/(1− pc) and µ ∈ G(λ). If µ(E0∗) > 0, then there exists at least one
butterfly with positive probability.

Proof. By the extremal decomposition theorem, there exists Q ∈ Gex(λ)
such that Q(E0∗) = 1. By Proposition 3.7.1, Q(E+ ∩ E−) = 1. If Q-a.s.
there is no butterfly, then it turns out that Q is flip-reflection invariant.
Because this is impossible by Proposition 3.5.8(ii), we can see that there
exists at least one butterfly Q-a.s. This gives the result.

We can prove Theorem 3.7.2 by using Proposition 3.5.2 and the following
proposition.

Proposition 3.7.4. If λ > 8pc/(1 − pc), then µ(E0∗) = 0 for any periodic
µ ∈ G(λ).

Proof. By the ergodic decomposition theorem, it is sufficient to show that
µ(E0∗) = 0 for ergodic µ. So we assume that µ is ergodic.

Suppose that µ(E0∗) = 1. By Proposition 3.7.1, we have µ(E+∩E−) > 0.
By butterfly lemma, we can assume that there is a vertical (0 + ∗) but-
terfly with positive probability. We can find a large square Λ ⊂⊂ Z

2

such that with positive probability Λ intersects I0+∗
up , I0+∗

down and I−. With-

out loss of generality, we can assume that I− leaves on the right between
I0+∗
up and I0+∗

down with positive probability. For k ∈ Z, let Ak = {(k, 0) ∈
I0+∗
up ∩ I0+∗

down, (k + 1, 0) ∈ I−} and A∞ be the event that Ak occurs for in-
finitely many k ∈ Z. By changing the configuration in Λ suitably, we have
µ(A0) > 0. Poincaré’s recurrence theorem([18] Lemma(18.15)) shows that
µ(A∞) = 1. But on A∞ there exist infinitely many infinite (−)clusters. This
contradicts Proposition 3.5.7. Consequently µ(E0∗) = 0.

3.7.2 1-periodic phases in two dimensions

Let µ ∈ G(λ). We say that an infinite cluster in a half-plane has the line
touching property if the cluster touches the boundary line of the half-plane
infinitely many times µ-a.s.

We define ± ∈ Ω by

±(x) =





+1 if x2 > 0,

0 if x2 = 0,

−1 if x2 < 0.
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It follows from Lemma 3.2.4(iv) that µ±up = lim
Λup↗πup

µ±Λup exists and is

θhor-invariant.

Lemma 3.7.5. (cf. [20] Lemma 4.2) µ±up(E0+∗
up ) = 0 when λ > 8pc/(1−pc).

This lemma is proved by using Theorem 3.7.2 and flip-reflection domi-
nation. Now we are ready to derive the line touching property of infinite
clusters of several types. But note that the same argument as in the Ising
model do not give the line touching property of the infinite clusters of types
+, +∗, 0, 0∗, − and −∗.

Lemma 3.7.6 (Line touching lemma). (cf. [20] Lemma 4.1) Let λ >
8pc/(1 − pc) and µ ∈ G(λ). The infinite (0+)cluster in any half-plane π
have the line touching property µ-a.s. if it exists. The same holds for infinite
clusters of type 0 + ∗ or 0− or 0− ∗.

Corollary 3.7.7. Suppose λ > 8pc/(1− pc) and µ ∈ G(λ). In an arbitrary
half plane π, there exists at most one infinite (+)cluster µ-a.s. The same
holds for infinite clusters of types +∗ or − or −∗.

Lemma 3.7.8 (Orthogonal butterflies). (cf. [20] Lemma 4.3) Let λ >
8pc/(1 − pc) and µ ∈ G(λ). If µ(E0∗) > 0, then there exist both horizontal
butterflies and vertical butterflies with positive µ-probability.

Proof. We can see that µ(E+ ∩ E−) > 0 by Proposition 3.7.1. By the
extremal decomposition theorem, Q(E+ ∩ E−) = 1 for some Q ∈ Gex(λ).
By butterfly lemma, there exist at least one butterfly Q-a.s.

Assume that there is a vertical (0 + ∗)butterfly but no horizontal but-
terfly, for example. In this case, Q = Q ◦ Rk,vert ◦ T for any k ∈ Z.
Therefore Q is horizontally periodic. Fix n ∈ N. By shift lemma, we have
Q(E0+∗

up,n ∩ E0+∗
down,−n

) = 1. For k ∈ Z, we set

An
k =

{
ω ∈ Ω;

(k, n) ∈ I0+∗
up,n, (k,−n) ∈ I0+∗

down,−n
,

ω(k, l) = 0 for − (n− 1) ≤ l ≤ n− 1

}

and An
∞ = {An

k occurs for infinitely many k ∈ Z}. We can easily see that
Q(An

0 ) > 0. Poincaré’s recurrence theorem and tail-triviality of Q imply
that Q(An

∞) = 1 for all n. Thus we have Q (
⋂∞

n=1A
n
∞) = 1. If for some n

there is an infinite (−)cluster in πup,n, Poincaré’s recurrence theorem again
shows that infinitely many infinite (−)clusters appear, which contradicts
Corollary 3.7.7. Hence for any n there is a unique infinite (0 + ∗)cluster in
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πup,n. Similarly, the infinite (0 + ∗)cluster in πdown,−n is also unique. We

can find that any finite region in Z
2 is surrounded by a (0 + ∗)circuit in

ω ∈ ⋂∞
n=1A

n
∞, which contradicts Q(E+ ∩ E−) = 1.

Consequently, both vertical butterflies and horizontal butterflies exist
Q-a.s., which implies that this occurs with positive µ-probability.

Theorem 3.7.9. If λ > 8pc/(1 − pc) and µ ∈ G(λ) is either horizontally
periodic or vertically periodic, then

µ = αµ+
λ + (1− α)µ−λ

with some α ∈ [0, 1].

Proof. By the ergodic decomposition theorem, we can assume that µ is
horizontally ergodic and satisfies µ(E0∗) = 1. Because at least one vertical
butterfly must exist, as in the proof of Lemma 3.7.8, we can show that
µ(E+ ∩ E−) = 0. This is a contradiction, which implies that µ(E0∗) = 0.
Together with Proposition 3.5.2, we can find that µ is a mixture of µ+

λ and
µ−λ .

3.8 Miscellanea

3.8.1 Point-to-half-circuit lemma and Pinning lemma

In this and next subsections, we assume that d = 2 and h = 0, and omit ‘h’.
We prove two lemmata, which have their origin in Russo[52].

Let θ∗ = P λ
λ+8

(0
1∗←→∞). If λ/(λ+ 8) > p∗c (i.e. λ > 8(1− pc)/pc), then

θ∗ > 0. For a half-circuit σ in a half-plane π with its boundary line l, let
intσ be the unique subset of Z

2 such that it is invariant under the reflection
with respect to l and it satisfies that π ∩ ∂(intσ) = σ.

Lemma 3.8.1 (Point-to-half-circuit lemma). (cf. [20] Lemma 2.3) Let
π be a half-plane with its boundary line l and R be the reflection with respect
to l. For x ∈ l, let σ = σ(x) be a (∗)half-circuit in π with intσ 3 x. For a
feasible boundary condition ω ∈ Ω with ω ≡ +1 on σ, we have

µω
Λ,λ{x is (0 + ∗)connected to σ in intσ} ≥ θ∗

4
.

Proof. Put Λ = intσ. Since the above event is increasing, we can assume
that for x ∈ ∂Λ \ σ,

ω(x) =

{
0 if x is adjacent to some point on σ,

−1 otherwise.
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Noting that ω ≥ R ◦ T (ω) on ∂Λ, we have the flip-reflection domination
µω

Λ,λ ≥ µω
Λ,λ ◦R ◦ T .

Let us consider the following events:

Bx,σ = {there exists a (0 + ∗)path in Λ from x to σ},

Cx,σ =

{
x is surrounded by a (0 + ∗) circuit in Λ ∪ σ

which is (0 + ∗)connected to σ

}
.

Put Dx,σ = Bx,σ∪Cx,σ. We can easily see that µω
Λ,λ(Dx,σ∪R◦T (Dx,σ)) = 1

and µω
Λ,λ(Dx,σ) ≥ 1/2. On the other hand,

µω
Λ,λ(Bx,σ)

µω
Λ,λ(Dx,σ)

=
µω

Λ,λ(Bx,σ ∩ Cx,σ) + µω
Λ,λ(Bx,σ ∩ Cc

x,σ)

µω
Λ,λ(Cx,σ) + µω

Λ,λ(Bx,σ ∩ Cc
x,σ)

≥
µω

Λ,λ(Bx,σ ∩ Cx,σ)

µω
Λ,λ(Cx,σ)

,

where we used the fact that y = (b + x)/(a + x) is increasing in x when
b < a. From this, we can see that

µω
Λ,λ(Bx,σ) ≥ µω

Λ,λ(Bx,σ|Cx,σ)µω
Λ,λ(Dx,σ) ≥ µω

Λ,λ(Bx,σ|Cx,σ)/2.

When Cx,σ occurs, there exist a (0 + ∗)circuit in Λ which surrounds
x and is (0 + ∗)connected to σ. Let Γ be the region surrounded by the
maximal (0 + ∗)circuit which has the property mentioned above. By the
strong Markov property, we have

µω
Λ,λ(Bx,σ|Cx,σ) ≥ µω

Λ,λ(µω′

Γ,λ(x
+∗←→ ∂Γ)|Cx,σ).

Since ω′ ≥ 0 on ∂Γ, µω′

Γ,λ(x
+∗←→ ∂Γ) ≥ µ0

Γ,λ(x
+∗←→ ∂Γ) by the Markov

property and the stochastic monotonicity. Using the site random-cluster
representation, we can see that

µ0
Γ,λ(x

+∗←→ ∂Γ) = R0
Γ,λ(x

1∗←→ ∂Γ)/2

≥ P λ
λ+8

(x
1∗←→ ∂Γ)/2 ≥ P λ

λ+8
(x

1∗←→∞)/2 = θ∗/2.

Thus we have µω
Λ,λ(Bx,σ) ≥ θ∗/4.

If we can prove the line touching property of infinite (+∗)clusters in
half-planes, then the next lemma will be useful. Let lright = {x = (x1, 0) ∈
Z

2;x1 ≥ 0} and lleft = {x = (x1, 0) ∈ Z
2;x1 ≤ 0}.
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Lemma 3.8.2 (Pinning lemma). (cf. [20] Lemma 5.2) Suppose that λ >
8(1 − pc)/pc, µ ∈ G(λ) and that µ-a.s. there exists an infinite (+∗)cluster
I+∗
up in πup, which intersects lright infinitely many times. Then, for all n

and x ∈ lright located far enough to the right, we have

µ{x is (0 + ∗)connected to I+∗
up in (Λn ∪ lleft)c} ≥ θ∗/8(> 0).

Similar statements are valid for πdown, πleft and πright.

Proof. By the assumption, there is an infinite connected component in I+∗
up \

Λn which contains infinitely many points on lright. If we choose x ∈ lright
located far enough to the right, then with probability ≥ 3/4 at least one
such point can be found left from x, and another such point can be found
right from x. This implies that x is surrounded by a (+∗)half-circuit σ in
πup, which is a part of the infinite connected component in I+∗

up \ Λn. Note
that Λn ∩ intσ = ∅.

We can choose a large box ∆ containing x so that with probability ≥ 1/2
we can find a (+∗)half-circuit, like σ above, in ∆. The maximal one in ∆ is
again denoted by σ. Put Γ(ω) = intσ. By the strong Markov property and
the point-to-half-circuit lemma, we have

µ{x is (0 + ∗)connected to I+∗
up in (Λn ∪ lleft)c}

≥ µ({Γ 6= ∅} ∩ {x is (0 + ∗)connected to σ in Γ})
= µ(µω

Γ(ω),λ(x is (0 + ∗)connected to σ in Γ) · 1{Γ6=∅})

≥ θ∗

4
· µ{Γ 6= ∅} ≥ θ∗

8
.

3.8.2 Infinite (0∗) clusters in half-planes

We remark that the line touching property of the infinite (0∗)clusters in
half-planes cannot be obtained by the argument in [20] Lemma 4.1. Here we
give a possible statement about it. It seems that the next lemma suggests
the existence of the unique infinite (0∗)‘contour’.

Lemma 3.8.3. Let λ > 8pc/(1− pc) and µ ∈ G(λ). For a half-plane π with
µ(E0∗

π ) = 1, each infinite (0∗)cluster in π intersects the boundary line of π
at least once.
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Proof. For definiteness, we assume that π = πup. Put

G0∗
x =

{
x belongs to an infinite (0∗)cluster in πup
which does not intersect lhor

}
.

Fix k ≥ 1 and let

G0∗
x,k =

{
x belongs to a (0∗)cluster in πup
whose size ≥ k and which does not intersect lhor

}
.

Take a box ∆ ⊂ πup containing x and so large that there exists no path of
length k from x to ∆c. In ω ∈ G0∗

x,k, there exists a (+/−)path in ∆ which
separates x from lhor. For this ω, let Γ(ω) be a subset of ∆\ lhor containing
x such that ∂Γ(ω) \ (∂∆∩ πup) is a (+/−)path and it is maximal in ∆. We
put

E0∗
x,k = {x belongs to a (0∗)cluster in πup whose size ≥ k}.

For a path p in ∆, we consider the following events:

A+
∆,p

= {Γ 6= ∅} ∩ {∂Γ(ω) \ (∂∆ ∩ πup) = p is a (+/−)path and its type is (+)}
A−∆,p

= {Γ 6= ∅} ∩ {∂Γ(ω) \ (∂∆ ∩ πup) = p is a (+/−)path and its type is (−)}.

Note that these events are F∆-measurable. We can see that

µ(G0∗
x,k) ≤ µ({Γ 6= ∅} ∩ E0∗

x,k) =
∑

p

{
µ(E0∗

x,k ∩A+
∆,p) + µ(E0∗

x,k ∩A−∆,p)
}
,

where p in the summation runs over paths in ∆. Let ∓ = T±. We have

µ(E0∗
x,k ∩A+

∆,p) = µ(µΓ(ω),λ(E0∗
x,k)1A+

∆,p
)

≤ µ(µΓ(ω),λ(E0−∗
x,k )1A+

∆,p
) ≤ µ∓∆,λ(E0−∗

x,k )µ(A+
∆,p),

where we used the strong Markov property, the inclusion of events and the
stochastic monotonicity. Similarly,

µ(E0∗
x,k ∩A−∆,p) = µ(µΓ(ω),λ(E0∗

x,k)1A−∆,p
)

≤ µ(µΓ(ω),λ(E0+∗
x,k )1A−∆,p

) ≤ µ±∆,λ(E0+∗
x,k )µ(A−∆,p).

60



Thus we have

µ(G0∗
x,k) ≤

∑

p

{
µ∓∆(E0−∗

x,k )µ(A+
∆,p) + µ±∆(E0+∗

x,k )µ(A−∆,p)
}

= µ∓∆(E0−∗
x,k )

(∑

p

µ(A+
∆,p)

)
+ µ±∆(E0+∗

x,k )

(∑

p

µ(A−∆,p)

)

= µ∓∆(E0−∗
x,k )µ

(⋃

p

A+
∆,p

)
+ µ±∆(E0+∗

x,k )µ

(⋃

p

A−∆,p

)

≤ µ∓∆(E0−∗
x,k ) + µ±∆(E0+∗

x,k ).

Letting ∆↗ πup, we have µ(G0∗
x,k) ≤ µ∓up(E0−∗

x,k ) +µ±up(E0+∗
x,k ). Next letting

k → ∞, we have µ(G0∗
x ) ≤ µ∓up(E0−∗

up ) + µ±up(E0+∗
up ) = 0, by Proposition

3.7.5.

Remark 3.8.4. For example, if the type of the left ∞(+/−)cluster is +
and the type of the right∞(+/−)cluster is −, then we cannot connect them
in ∆.

3.8.3 The multitype Widom-Rowlinson model

Runnels and Lebowitz[50] introduced the multitype Widom-Rowlinson mod-
els with q(≥ 2) species and showed the existence of intermediate phases for
large q. More recently, Georgii and Zagrebnov[21] gave a new proof using
percolation and chessboard estimate (see [18] Chapter 17), which can be
easily generalized to a wider class of interactions.

We extend the definition of the Widom-Rowlinson model on G = (V,E)
to q ≥ 2 case in a natural way: Let Ω = {0, 1, · · · , q}V . For a ∈ {1, · · · , q},
we regard a as a site occupied by a particle with color a, while 0 stands for
a vacant site. For Λ ⊂ V , let ΩΛ = {0, 1, · · · , q}Λ. A configuration ω ∈ ΩΛ

is said to be feasible if ω(x)ω(y) = 0 or ω(x) = ω(y) 6= 0 for all adjacent
x, y ∈ Λ. For a feasible boundary condition ω ∈ Ω and activity λ > 0, the
finite volume Gibbs distribution in Λ ⊂⊂ V is defined by

µω
Λ,λ(σ) =

1

Zω
Λ,λ

1{σ∗ω:feasible}

∏

x∈Λ

λ1{σ(x)6=0} (σ ∈ ΩΛ).

The set of Gibbs states is denoted by G(λ, q).
Let us consider the multitype Widom-Rowlinson model on Z

2. For ω ∈
Ω and S ⊂ Z

2, we call S an occupied sea if S is an infinite cluster in
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{x ∈ Z
2;ω(x) 6= 0} and each Λ ⊂⊂ Z

2 is surrounded by a circuit in S. We
define an even occupied (∗)sea S by an infinite (∗)cluster in {x = (x1, x2) ∈
Z

2;x1 + x2 is even and ω(x) 6= 0} and each finite region is surrounded by a
(∗)circuit in S. Similarly, we define an odd empty (∗)sea.

Theorem 3.8.5 ([21]). If q exceeds some q0 (for example, we can take
q0 = 2 · 1085), then there exist λc(q) ∈ (q/5, 5q) and ε(q) ∈ (0, 1/3) with
ε(q)→ 0 as q →∞ such that the following statements hold.

(i) (colored phases) When λ > λc(q), there are q different translation-
invariant extremal Gibbs measures µa(a ∈ {1, · · · q}) ∈ G(λ, q). With µa-
probability one, there is an occupied sea with color a, to which the origin
belongs with µa-probability ≥ 1− ε(q).

(ii) (staggered phases) When q0/q ≤ λ < λc(q), there exist two different
extremal Gibbs states µeven and µodd ∈ G(λ, q). These are invariant under
even translations and µodd is an one-step translation of µeven. There are
an even occupied (∗)sea and an odd empty (∗)sea µeven-a.s. With µeven-
probability ≥ 1 − ε(q), (0, 0) belongs to the even occupied (∗)sea and (1, 0)
belongs to the odd empty (∗)sea. Each occupied cluster is finite µeven-a.s.
and its color is independent uniformly distributed.

(iii) (first-order phase transition) At λ = λc, q+2 different Gibbs states
µeven, µodd, µa(a ∈ {1, · · · q}) ∈ G(λ, q) coexist.

A problem for this model is determining the minimum q such that stag-
gered phases appear. In [42], it is conjectured that q = 4 for Z

2. In [48], it
is mentioned that second-order phase transition occurs when q = 2 and this
can be proved by using Theorem 3.2.9. Unfortunately, details are not clear.

We mentioned the non-monotonic behaviour of the Widom-Rowlinson
model and staggered phases for large q. These are related to lack of mono-
tonicity in site random-cluster models. The site random-cluster model cor-
responding to the multitype Widom-Rowlinson model is

R0
Λ,λ(ξ) =

1

Z̃0
Λ,λ

∏

x∈Λ

λξ(x) · qk(ξ,Λ) (ξ ∈ {0, 1}Λ),

where k(ξ,Λ) denotes the number of (1)cluster in Λ on ξ. For large q, many
(1)clusters appear with high probability. Because of hard-core interactions,
staggered phases can appear. If activity is large, then colored phases ap-
pear.
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on Sierpiński carpet lattices, Prob. Theory Relat. Fields 125 447-456,
(2003).

[58] Sykes, M.F. and Essam, J.W. ; Exact critical percolation probabilities
for site and bond problems in two dimensions, J. Math. Phys. 5 1117-
1127, (1964).

[59] Vezzani, A. ; Spontaneous magnetization of the Ising model on Sier-
pinski carpet fractal, a rigorous result, J. Phys. A: Math. Gen. 36
1593-1604, (2003).

[60] Widom, B. and Rowlinson, J.S. ; New model for the study of liquid-
vapor phase transitions, J. Chem. Phys. 52 1670-1684, (1970).

[61] Williams, D. ; Probability with martingales, (Cambridge University
Press, 1991).

[62] Wang, J. ; Long time behavior of random motions in large interacting
systems, Ph.D thesis, (Kobe University, 2000)

67



[63] Wu, X.Y. ; Uniqueness of infinite open cluster for high-density percola-
tion on lattice Sierpinski carpet, Acta Math. Sinica, English Series 17
141-146, (2001).

[64] Yang, W.S. and Zhang, Y. ; A note on differentiability of the cluster
density for independent percolation in high dimensions, J. Stat. Phys.
66 1123-1138, (1992).

[65] Zhang, Y. ; A martingale approach in the study of percolation clusters
on the Zd lattice, J. Theor. Prob. 14 165-187, (2001).

[66] Zhang, Y. ; A power law for the free energy in two dimensional perco-
lation, arXiv math.PR/0301160, (2003).

68


	TakeiHyoushi
	Takei

