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Introduction

This thesis is research on constant mean curvature (CMC) surfaces in the
three-dimensional space forms, R®, S® and H®. These three space forms are the
unique complete simply-connected three dimensional Riemann manifolds of constant
sectional curvature 0, 1 and —1, respectively.

Constant mean curvature surfaces are of interest to us because they have a clear
physical interpretation as models for soap films. Let us consider a smooth surface
f immersed in one of the three-dimensional space forms R, S® or H3. Defining H
to be the mean curvature of f, we say that f is a constant mean curvature surface

FIGURE 1. Delaunay surfaces in R®, S® and H®.



2 INTRODUCTION

if H is constant on f. Soap films have the property of attaining the least area
with respect to the fixed volumes they bound, and are examples of CMC surfaces.
Mathematically, H being constant implies that compact portions of the surface f
are critical values for boundary-preserving, volume-preserving variations.

The sphere is a simple example of a closed CMC surface. For a long time, there
were no known closed CMC immersions apart from the sphere, and Hopf asked if
such surfaces could exist. It was plausible to believe there were no other surfaces,
because:

(i) Hopf showed that the only genus-zero closed CMC surfaces in R® are
spheres.

(i) Alexandrov showed that the only embedded closed CMC surfaces in R?
are spheres.

However, Wente [67] showed existence of closed immersed CMC tori in 1984, an-
swering Hopf’s question and leading to renewed interest in the field. Triggered
by Wente’s work, Pinkall, Sterling, and Bobenko found effective ways to construct
CMC surfaces that include all CMC tori [49], [5], [6].
"~ The works just mentioned are also indirect triggers of the work by Dorfmeister,
Pedit and Wu [21]. And in turn, [21] is the primary basis upon which the work
in this thesis is founded. The method in {21] is close in philosophy to Enneper-
Weierstraf representation for minimal surfaces, so before saying more about [21],
let us first mention that representation. Minimal surfaces are the special case of
CMC surfaces with H = 0, and physically can be interpreted as CMC surfaces that
do not trap pockets of air (unlike the sphere).

The classical Enneper-Weierstraf representation. The classical Enneper-Weierstraf3
representation for minimal surfaces in R® can be formulated as follows:

z

Re [ (5701 ¢"), 40+ 9. fo) dz
Z0

where f (resp. g) is a holomorphic (resp. meromorphic) function on a simply-

connected domain ® C C, and zy is some base point on ®. By this Enneper-

Weierstrafl representation, minimal surfaces have been intensively studied using

complex function theory.

The generalized Weierstraf representation. On the other hand, for non-minimal
CMC surfaces such a representation formula had not been known, i.e. a formula us-
ing holomorphic and meromorphic functions. In the late 1990’s, Dorfmeister, Pedit
and Wu formulated a “generalized Weierstrafl representation” for harmonic maps
into k-symmetric spaces. It is well known that the GauBl map of a CMC surface
in R? is a harmonic map [52]. Therefore the generalized Weierstral representation
formula holds for CMC surfaces, and it is an analogue to the Enneper-Weierstraf
representation for minimal surfaces.

Let us now describe the method of Dorfmeister, Pedit and Wu in more detail.
According to {21] one can construct every non-spherical CMC-immersion of mean
curvature H # 0 from a simply connected domain ® C C into R® in four steps as
follows:
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Step 1: Choose any holomorphic 2x 2-matrix differential form n = A4(z, A\)dz
of which the diagonal elements are even functions of A € C*, and the off-
diagonal elements are odd functions of A € C*, and the powers of X are

> —1. Assume detA_; # 0, where A_; is the coefficient matrix of the
A1 term of 7.

Step 2: Solve the ODE dC = Cn.

Step 3: Perform an Iwasawa splitting: C = FW,, where F = F(z,%, ) is
unitary for all z € ®, A € S, and W, has a Fourier expansion relative
to A without negative exponents.

THEOREM 0.1. ([21]) F is, for every fized A € S, a frame of some
immersion of constant mean curvature H # 0.

Step 4: Form ¥y (2) = — 55 {(LF) F~1 + 1F (§ %) F~'} (the Sym-Bobenko-
Formula). Then ¥ is a CM C-immersion of mean curvature H # 0 from
D to R® = su(2). Moreover, every CMC-immersion of mean curvature
H # 0 different from a Riemann sphere S? can be obtained this way.

Obviously, the procedure outlined above leads invariably to a CM C-immersion. The
only variable input parameters are the choice of n and the initial condition for C.
If one has a certain CMC-immersion in mind, then if n is chosen “right”, one can
choose the initial condition C'(zg,A) = Id, where zo € D is some fixed “base point”.
In general, however, one does not know precisely what 7 to choose. Therefore, one
chooses i “of reasonable shape” and makes additional “adjustments” via the initial
condition of C, to finally construct an immersion with specifically desired properties
[16], [15]. We call 1) defined in Step 1 “holomorphic potentials”.

At any rate, the choice of 7 is important. It has been known since [21] that one
can replace the holomorphic differential form 77 by some meromorphic differential
form £ of the form £ = A~ 1¢, where f is meromorphic on . Moreover, if the initial
condition at some base point zg € D is C(z9,A) = Id, then there is a bijective
relation between the “normalized potentials” ¢ = /\_lé and the CMC-immersions
(# S? and H # 0) from D into R3.

For non-compact M it has been shown in {16], [15] that the CMC-immersions
from M to R® can be obtained by the generalized Weierstrafl representation outlined
above from a holomorphic potential 77 on M, which is invariant under the funda-
mental group m1{M) = Aut(D), i.e., from a holomorphic differential (1, 0)-form
well-defined on M.

Global behavior of CMC surfaces. We mentioned, just above, a convenient
property in the case that M is non-compact, that is, that 5 can be chosen to be
well-defined on M. This well-definedness of n is useful for studying the global
behavior of CMC surfaces, so let us assume that M is non-compact, and then now
move to the global study of CMC surfaces. (We remark that if M is compact, then
1 is not a holomorphic differential on M, but rather a meromorphic differential
on M, but this is not immediately relevant to the present discussion.) In Step 3.
solving the initial value problem

(01) dC = 077 5 C(Z()) = Co
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yields a solution C and corresponding monodromy representation depending on
X. Let M; be a monodromy matrix corresponding to some deck transformation
5 € m(M). If the monodromy matrices My satisfy, for all deck transformations
§ € m (M), the following three conditions

(02) M(Stgl € SU2>
(0.3) M|y, = £1d,
(0.4) dyMsly, =0,

then the resulting associated family @y, defined in Step 4 factors through the fun-
damental group 7 (M) at Ao and we thus have a CMC immersion f : M — R3.
In Equation (0.4) and throughout this work we denote by d_ the derivative with
respect to the subscript, which we omit in the case of the exterior derivative on
the Riemann surface, as in (0.1). Condition (0.3) removes the rotational periods
while (0.4) removes the translational periods, and both can be ensured by prop-
erties on 7. The condition (0.2) is harder to satisfy and makes use of varying the
initial condition Cy. These three conditions have been used in a number of papers,
starting with the work of Dorfmeister and Haak [16] and later by the author and
others while investigating CMC immersions of the n-punctured Riemann sphere,
the so called n-Noids [36], [39] and [55]. (Another separate approach to studying
embedded CMC 3-Noids can be found in the work of Grofle-Brauckmann, Kusner
and Sullivan [26].)
Therefore we have the first aim of the present thesis as follows:

o The global existence of constant mean curvature surfaces in 3-dimensional
space forms via generalized Weierstrafl representation.

Bianchi and Darboux transformations. One of the central topics in 19’th cen-
tury differential geometry was the transformation theory of surfaces. The best
known example is perhaps the Bicklund transformation for constant negative curva-
ture (CNC) surfaces in Euclidean 3-space R*. Originally, a line congruence through
a surface was said to be a Bdcklund transformation if there is another focal surface
such that the congruence is tangent to both focal surfaces and the normal direc-
tions of the two focal surfaces keep a constant angle to each other. The existence
of a Bicklund transformation characterizes the negative constancy of Gaussian cur-
vature. Thus, there does not exist a line congruence with Béacklund property for
surfaces of constant positive curvature (CPC).

Instead of line congruences with the Bécklund property, L. Bianchi [2] consid-
ered complexified line congruences for CPC surfaces. By two appropriate successive
complex line congruences, Bianchi obtained a real CPC surface from a seed CPC
surface. This transformation of a CPC surface is referred to as a Bianchi-Backlund
transformation (see Definition 2.1). The Bianchi-Bécklund transform of a real line—
which is regarded as a degenerate surface—is the surface of Sievert [56].

In [59], I. Sterling and H. Wente studied Bianchi-Béicklund transformations of
constant mean curvature (CMC) surfaces. Their starting point was that each CMC
surface corresponds to a CPC surface (Bonnet transform, or parallel surface). In
particular, they constructed iterated Bianchi-Bicklund transforms of the circular
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cylinder. The resulting CMC surfaces are called multi-bubbletons when they are
periodic.

One of the fundamental properties of CMC surfaces is that such surfaces are
isothermic. Namely, on a region free of umbilics in a CMC surface, there exists an
isothermal-curvature line coordinate system. Such a coordinate system is tradition-
ally called isothermic.

In the field of conformal geometry, transformations of isothermic surfaces in
terms of “sphere-congruences” were studied intensively in the 19’th century. Trans-
formations of isothermic surfaces defined by sphere-congruences which preserve the
principal directions are called Darbouz transformations (see Definition 3.1).

It is known that the hyperbolic sine-Gordon equation, which is the GauBl equa-
tion of a CMC surface, is an integrable PDE. One of the most important features
of integrable PDE’s is that they have Soliton solutions, which are obtained by a
“Backlund transformation”. However the relation between this “Backlund trans-
formation” and the classical Bicklund transformation via tangent line congruences
as mentioned above has not yet been clarified.

Thus we have the second aim of the present thesis as follows:

e Characterizations of transformations of constant mean curvature surfaces
in 3-dimensional space forms.

Organization of this thesis. Chapter 1, Chapter 3, Chapter 4 and Chapter 5
relate to the first aim, and Chapter 1 and Chapter 2 relate to the second aim. More
precisely, the present thesis is organized as follows:

Chapter 1.

Chapter 1 is based on the paper [40]. The bubbletons are CMC surfaces made
from Backlund transformations (in Bianchi’s sense) of round cylinders. They are
shaped like cylinders with attached bubbles, thus they are called bubbletons [59],
[65]. The parallel constant positive Gaussian curvature surfaces of bubbletons are
well known, and as they were first found by Sievert [56], they are called Sievert
surfaces. Bubbletons in R® have been closely examined by Kilian, Sterling and
Wente [34], [59], [65].

In Chapter 1, analogous to Delaunay surfaces in R® we define Delaunay sur-
faces in S°® and H® (see Definition 3.1 in Section 3.1). Using loop group techniques
applied to harmonic maps (via the generalized Weierstrass representation), we rep-
resent these Delaunay surfaces in space forms. We then define bubbletons based
on Delaunay surfaces in space forms by a simple type dressing action, like those of
Terng and Uhlenbeck [61], on loop groups (see Definition 4.1 in Section 4.1). Then
we solve the period problems for these Delaunay bubbletons and additionally find
explicit immersion formulas for those bubbletons in space forms based on round
cylinders. In the case of R®, this was originally done in [34], [59], [65]. Furthermore
we prove that the cylinder bubbletons produced here (by the DPW method) are
the same as those produced in [59] in the case of R®, and that the parallel CMC
surface of a round cylinder bubbleton is congruent to the starting bubbleton, in any
of the three space forms. Recently, Mahler [44] interpreted the simple type dressing
as the Bianchi Bicklund transformation in the case of R®.
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FIGURE 2. CMC bubbletons in R?, S® and H®. The R® bubbleton
was first described in [65].

So what is new in Chapter 1 is the following:
(i) We show existence of round cylinder bubbletons and Delaunay bubbletons
in all three space forms.
(ii) We give explicit parametrizations for round cylinder bubbletons in all
three space forms.
(iii) We show the equivalence of Bianchi-Backlund transformation and simple
type dressing for round cylinders in R®.
The first two of these three items are new results for the cases of S® and H3, and
the third item is a new result in R3.
Chapter 2.

Chapter 2 is based on the paper [41]. U. Hertrich-Jeromin and F. Pedit [30] gave
a modern approach to Darboux transformation theory via quaternionic calculus. In
particular, they showed that Bianchi-Bicklund transformations of a CMC surface
are Darboux transformations such that a positive multiple of the parallel CMC
surface (Darboux transformations of positive type, in short). They conjectured
that Darboux transformations of a CMC surface such that a negative multiple
of the parallel CMC surface (Darboux transformations of negative type) are not
Bianchi-Bécklund transformations.

In Chapter 2, we shall answer the Jeromin-Pedit conjecture negatively, i.e. Dar-
boux transformations of negative type can be realized as Bianchi-Backlund transfor-
mations. To show this result, we introduce a new parameter into Bianchi-Backlund
transformations for CMC surfaces. With this new parameter, we call it an “imagi-
nary Bianchi-Béacklund transformation” (see Definition 2.1), and it is equivalent to
a Darboux transformation of negative type. As a consequence of our reformulation,
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we shall prove the equivalence of the following transformations on CMC surfaces:
Bianchi-Bécklund transformations and Darboux transformations.

Chapter 3.

Chapter 3 is based on the paper [36]. To prove the existence of a non-simply-
connected CMC surface via the generalized Welerstrafl representation, one has to
solve period problems and study the monodromy representation of the solution of
the ODE as mentioned in (0.2)- (0.4). To show existence of new non-simply con-
nected examples, we provide sufficient conditions which ensure that the conditions
(0.2)-(0.4) hold, and apply these methods to when the underlying domain is the
n—punctured sphere for n = 2, 3. Here the punctures correspond to ends of the
surface, where the coefficient matrix of the ODE has poles.

Cylinders, the case of two ends, have been studied via the generalized Weierstrafl
representation in [16], [34] and [38]. While several classes with various end behavior
are now known, the moduli space of all CMC cylinders is not yet well understood.
The only classification result was obtained for CMC cylinders of revolution by
Delaunay [24] in 1841 - the resulting surfaces are the well known Delaunay surfaces.
When an end of a CMC surface converges to a Delaunay surface, we call this
a Delaunay end. We show how the pole structure at the punctures determines
the geometry of the ends of the surface and prove that simple poles can generate
Delaunay ends.

Trinoids, the case n = 3, constitute the next simplest topology. In analogy to
Delaunay surfaces, there are CMC surfaces with three Delaunay ends [32]. These
have recently been studied in [22], [26], [38] and [55]. We shall build on these results
and construct CMC trinoids with Delaunay ends via the generalized Weierstrafl
representation in all three space forms.

Chapter 4.

Chapter 4 is based on the paper [37]. The purpose of this chapter is to show
the existence of new CMC surfaces by exhibiting Weierstrafl data (M, n, Co, 20)
that fulfill the above requirements (0.2)—(0.4) and to initiate the study of higher
genus surfaces via loop group techniques. Briefly summarizing the contents of this
chapter, after providing some general sufficient conditions on Weierstrafl data to
satisfy the condition (0.2), (0.3) and (0.4), we apply these results to prove existence
of new examples of CMC surfaces:
(i) of any positive genus and a single end,
(i1) of genus 1 with two ends,
(iii) which are doubly-periodic with infinitely many ends asymptotic to De-
launay ends.
Although the last mentioned surfaces (iii) are immersions of genus zero domains
with infinitely many punctures, they have natural quotient surfaces with positive
genus.

Chapter 5.

Chapter 5 is based on the paper [18]. In the procedure of the generalized
Weierstrafl representation, it is known that the potentials and CMC surfaces do not
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have a one-to-one correspondence to each other, i.e. the potentials are not uniquely
determined for a given CMC surface. Several types of potentials are known, for
example, “normalized potentials”, “holomorphic potentials” as mentioned before
[13], [16] and “meromorphic potentials” [18].

In Chapter 5 we present a new type of potential, which does exist for every
CMC-immersion, from ® to R?, where ® is the universal cover of some Riemann
surface M, and which is always invariant under at least one generator of the funda-
mental group m; (M) of M. As an application we present a “coarse” classification
of all CMC-cylinders. (We would like to note that in some special cases the above
mentioned new type of potentials has already been used [34], [55].)

FIGURE 3. Equilateral trinoids in R?*, S$® and H?.

Visualization of graphics.

As noted before, R® (resp. S*, H?) is the unique complete simply-connected
three-dimensional Riemannian manifold with constant sectional curvature 0 (resp.
1, —1). R’ is the standard flat Euclidean three-space. S* is the unit three-sphere
in R* with the metric induced by R*. To define H?® we shall use the Lorentz space
R3:L:

H? = {(t,2,y,2) € R** |22 + o> = =1, t )
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with the metric induced by R®!, where R*! is the four-dimensional Lorentz space
{(t,z,y,2)|t,z,y,z € R}
with the Lorentz metric
((t1, 21,91, 21), (B2, T2, Y2, 22)) = T1@2 + Y1y2 + 2122 — tata

To visualize surfaces in S® and H?3, we use specific projections. In the case
of S3, we stereographically project S* from its north pole to the space R® U {oo}.
In the case of H?, we use the Poincare model, which is stereographic projection
of the Minkowski model in Lorentz space from the point (0,0,0, —1) to the 3-ball
{(0,z,y,2) € R® |22 +y> + 22 < 1} 2 {p= (z,y,2) € R®||p| < 1}.
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CHAPTER 1

Bubbletons in 3-dimensional space forms

1. Lax pairs for CMC surfaces in space forms

1.1. Surfaces in space forms. Let ¥ be a simply connected surface with confor-
mal coordinate z = z + iy defined on ¥, and let f : ¥ — M? be a CMC conformal
immersion, where M? is either R® or $* or H®. We write f = f(z, z) as a function
of both z and z to emphasize that f is not holomorphic in z.

Each of the three space forms lies isometrically in a vector space V: M3 =
RcV=R M=8cV=R,,or M®=H3CV =R Let () be the
inner product associated to V', which is the Euclidean inner product in the first two
cases, and the Lorentz inner product in the third case. Then the space form metric
for each of R®, S% and H? is the one induced from the metric of the associated
vector space V. Since M?® C V is an embedding, we may also view f as a C*™ map
into V,

f:2 5> M3CV | where Vis R or R* or R*! .

The derivatives f, = 0, f and f, = 0, f are vectors in the tangent space Ty )V of
V at f(z,z). Because V is a vector space, f, and f, can be viewed as lying in V
itself. We will also use f, = (1/2)(fz —if,) and fz = (1/2)(f; +if,), defined in the
complex extension Vg = {v; +ivz|v1,v2 € V} of V. The inner product of V extends
to a bilinear form (v1 + tv2, vy +iva) = {(v1,v1) + 21{vy, v2) + {v2, v2) (which we also
denote by (-, -) although it is not actually a true inner product on V). Note that f
is conformal if and only if

(1.1) (for f2) = (fz, f2) = 0, (fe, fz) = 2™,

where the right-most equation defines the function u: ¥ — R
In each space form, a unit normal vector N = N(2,2) € Ty, 5V =V of f is
defined by the properties

(i) (N,N) =1,
(ii) N € Tf(ZYE)MB’ and
The mean curvature of f is then given by
1
(1.2) H= 28—2u(fzz,N> .
We also define the Hopf differential
(13) Q:<fzzvN>d22 .

15
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1.2. The vector spaces V' in terms of quaternions. Define the matrices

—i 0 0 1 0 i 10
(G 8) () w0 0) e )

We can think of H = spang{icgqg,io1,i02,403} as the quaternions because it has the
quaternionic algebraic structure.

The R® case. When M?® =V = R?, we associate M3 with the imaginary quater-
nions Im H = spang{io1,ioy,ic3} € H by the map

(1.4) (.’1)1,1’2,5173) —)$1%O’1+.’L’2%O’2+Z’3%03 .

Then for X,Y € Im H, the inner product inherited from R® is

(1.5) (X,Y) = -2 -trace(XY) = 2 - trace(XY™) ,

where Y* = Y?*. Also, any oriented orthonormal basis {X,Y,Z} of vectors of
M? = Im H satisfies

(1.6) X=F <%al) Fl Y=F (%@> F', zZ=F (%ag) F

for some F' € SU(2), and this F' is unique up to sign. In other words, rotations S of
R? fixing the origin are represented in the quaternionic representation Im H of R
by matrices F' € SU(2). And the image of F under Im H — SO(3) is the rotation
S.

The S3 case. When M? = 5% and V = R*, we associate V with H by the map

(1.7) (z1,%9,23,%s) — T1000 + T2ioy + T3102 + T4103

so points (1,2, r3,24) € V = R? are matrices of the form

a b
(1.8) X = (—5 a) ,
where a = 77 + iz4 and b = z3 + 1z>. That is, they are matrices X that satisfy
(1.9) X =02Xo> .

The inner product on H inherited from V is
(1.10) (X,Y) =(1/2) - trace(XY™)

where Y* = Y. Note that this inner product is the same as in (1.5), up to a factor
of 4, and this factor of 4 appears only because we include a factor of 1/2 in (1.4)
but not in (1.7).

The H? case. When M3 = H? and V = R®!, we can associate V with the set
of self-adjoint 2 x 2 matrices {X € Mat(2,C)|X* = X} by the map

(1.11) (zo,21,22,23) € R®' 5 X = xgiog + 2101 + T209 + 303 .
One can check that 02 X*0s = X! det X and that the inner product inherited from
Vis ’
(X)Y) = (-1/2)trace(Xo2Y ') ,
for self-adjoint matrices X,Y. Thus (X, X) = — det X.
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1.3. The Lax Pair in the space forms. Let f be a conformal immersion, as in
Section 1.1. Because f is a surface in M® = R® (resp. S°, H®), p and H and Q
satisfy the following Gauss and Codazzi equations for R® (resp. S®, or H?), and
the Fy (resp. Fi, Fh, or F1), which correspond to the moving frame of a surface f
by the map (1.4) (resp. (1.7), (1.11)), satisfies the following Lax pair equations.

(1.12) dpi,z — Q0™ 4+ 4Hpe® =0, Q; =2H,e*
and

(1.13) Fp.=FRUy, Fi:=FV

with

1 e —2Hie* )1 1 — iz —Qe kA
1.14) Uy = - V. = —
( ) Ui 2 (Qe_“/\_l —Hz ) > TR <2Hk+1€“)\ Bz ’

where Hy, is H (resp. H — (—1)*, H — (=1)*) in the case of R® (resp. S°, H?),
with k € {1,2}. (k will be 2 only in the S case.)

For H constant, we see that the Gauss and Codazzi equations for M?® remain
satisfied when Q is replaced by A™2Q for any A € S' = {p € C||p| = 1}. Hence,
up to rigid motions, there is a unique surface f with metric determined by p and
with mean curvature H and Hopf differential A=2Q. (We use the notation fi to
state that f depends on JA; it does not denote the derivative 9y f.) The surfaces
fx for A € St form a one-parameter family called the associate family of f. The
parameter X is called the speciral parameter and is essential to the DPW method.
From [48], we have the following facts. When the ambient space is R®, the parallel
surfaces of f are

Hhe=NH+tN , teR

When the ambient space is §2, the parallel surfaces of fy are
fre =cos(t)fx +sin(t)N , te R
When the ambient space is H?, the parallel surfaces of fy are

fa,e = cosh(t) fa +sinh(()N , teR.

3

There are special values of ¢ for which the parallel surfaces fy, also have CMC
surfaces. In the case of R® (resp. S%, H?), this is true when the parallel surface is

f; = f/\,l/(2H) (resp. f; - f)\,arccot(H)afj\( = f)\,arccoth(H))-

The R® case. In the case of R, by applying a homothety if necessary, we may
assume H = 1/2. We have the following theorem, proven in [6] and [36] using
different notations, with the notations here matching those of [21], [13]. We also
include information on the parallel surfaces f5 here.

THEOREM 1.1. Let u and Q solve the Gauss-Codazzi equations
(1.15) duy: —QQe ?* +e* =0, Q:=0,
and let F(z,Z,A) be a solution of the system
(1.16) F,=FU, F;=FV
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1 —us —Qe U\

- 2 e“/\ Uz

such that F(z,2,)) € SU(2) for all A € S* and F(z,z,\) is complex analytic in .
Define

with

1 . __pu)—1
(1.17) U= <Qe_uu*/\_1 e“A ) V=

—U,

N

(118) f)\ = I:%ZFU;gFl - Z)\(a)\F) 'F_1:| s N = %ZFO'gF_l .
A=1
(1.19) fx=f-2N, N*=-N .
Then fx and fY are of the form
(120) r- 501+S'502+t' 50’3 and 7% - 5(71 + s - 50’2"{“7: - 503 s

where r,s,t,7*,s* and t* are real-valued, and (r,s,t) and (r*,s*,t*) are both con-
formal parametrizations of CMC with H = 1/2 surfaces in R®, parametrized by z.
fx and f5 are parallel surfaces. Also, p and Q satisfy et = e gnd Q = Q, where
uand Q are defined as in (1.1) and (1.3). Furthermore, with u* and Q* defined by
2e° = (f5 ,, %) and Q* = (f} .., N™), we have e =e 2 Q)? and Q* = Q.
Conversely, for every conformal CMC immersion with H = 1/2 into R®, there
exists a system (1.16)-(1.17) and solution F producing the immersion via (1.18).

The S3 case. Consider a conformal CMC immersion f : ¥ - M3 =853 CV =
R*, with (-,-) as in (1.10). Similar to the R® case, we have the following theorem,
proven in [6] and [36] using different notations.

THEOREM 1.2. Let u and Q solve (1.15) and let F(z,Z, ) be a solution of the
system (1.16)-(1.17) such that F(z,2,)A) € SU(2) for all A € S* and F(z,z,)\) is
complez analytic in \. Define Fy = F(z,Z,A = &™) and F» = F(z,2,\ = ) for
some fized 1,72 € R, and set

i(v1—v2)
(1.21) fo= FLAF;' | N=iF Ao3Fy ", where A = <e 02 eiﬁ?’f )) ,

(1.22) fx = cos(y2—7)f +sin(ya —711)N , N* =sin(ya —7)f —cos(y2—7)N .
Then fx and f; are conformal CMC immersions with H = cot(y2 —11) into S3. £
and f; are parallel surfaces. Also, u and Q satisfy e = sin’(yy — 1) - €2*/4 and
Q = sin(ys —71) - Q, where p and Q are defined as in (1.1) and (1.3). Furthermore,
with p* and Q* defined by 2¢*° = (f;.,f5;) and Q" = (f .., N*), we have
e =gin’(yy — m1) - |Q[%e72%/4 and Q* =sin(y2 — 1) - Q.

Conversely, for every conformal CMC immersion with H = cot(y2 — v1) into
53, there exists a system (1.16)-(1.17) and solution F' producing the immersion via
(1.21).

The H® case. Let f : & — M? = H3 ¢ V = &*! be a conformal CMC
immersion with H > 1 in H®. Again, similar to the R® and S® cases, we have the
following theorem, proven in [6] and [36] with different notations.
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THEOREM 1.3. Let u and Q solve (1.15) and let F = F(z,%,\ = e¥/?e*¥), for
some fized g, € R (with g # 0), be a solution of the system (1.16)-(1.17) such that
F(z,z,X) € SU(2) for all A € S and F(z,%,)) is complex analytic in X\. We set
ed/? 0

(1.23) IN=FAF* | N=FAosF" ,where A= ( 0 e—/2

),F*:Ft.

(1.24) fx =cosh(—q)f +sinh(—¢)N , N~ =sinh(—q)f — cosh(—¢)N .

Then fx and f; are CMC conformal immersions with H = coth(—gq) > 1 into H>.
fr and f} are parallel surfaces. Also, p and Q satisfy e** = sinh®(—q) - €®*/4 and
Q = sinh(—q) - Q, where u and Q are defined as in (1.1) and (1.3). Furthermore,
with p* and Q* defined by 2e**" = (fxzfrz) and Q" = (f} .., N*), we have
e’ = sinh®(—¢q) - |Q?¢"%*/4 and Q* = sinh(—¢) - Q.

Conwversely, for every CMC conformal immersion with H = coth(—q) into H3,
there ezists a system (1.16)-(1.17) and solution F producing the immersion via
(1.23).

REMARK 1.4. The parallel surface f; can have singular points. At points where
the Hopf differential Q of the original CMC surface fy is zero, then the metric of
fx is degenerate.

2. The DPW recipe

We saw in Section 1 that finding CMC surfaces with H # 0 in R* and CMC
surfaces in S® and CMC surfaces with H > 1in H? is equivalent to finding integrable
Lax pairs of the form (1.16)-(1.17) and their solutions F. Then the surfaces are
found by using the Sym-Bobenko type formulas (1.18), (1.21) and (1.23). So to
prove that the DPW recipe finds all of these types of surfaces, it is sufficient to
prove that the DPW recipe produces all integrable Lax pairs of the form (1.16)-
(1.17) and all their solutions F'. Here we describe how these Lax pairs and solutions
F are found by the DPW method in [21].

2.1. The loop groups and Iwasawa splitting. Let C, := {A € C| |{A\| =r} be
the circle of radius r with r € (0,1], and let D, := {A € C| |\ < r} be the open
disk of radius r. We denote the closure of D, by D, := {A€ C| |\ < r}.

DEFINITION 2.1. For any r € (0,1] C R, we define the following loop algebra
and loop groups:

(i) The twisted sl(2,C) r-loop algebra is
Apsl(2,C) = {A . Cr S5 51(2,0) | A(=2) = 05A(N)os } .
(i1) The twisted SL(2,C) r-lnop group is

A, SL(2,C) = {¢s . Cr 95 8L(2,0) | ¢(-N) = 036(N)os } :
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(ii1) The twisted SU(2) r-loop group is

A-SU(2) = {F € A, SL(2,C) |[F(\) ' = F(A™Y)", and
F(X) extends holomorphically to Dy, \D, }.
When r = 1, we abbreviate A1 SU(2) to ASU(2), and in this case the

condition that F' extends holomorphically to Dy, \ D, is vacuous.
(iv) The twisted plus r-loop group with RT is

A, +SL(2,C) = {B € A, SL(2,C) | B()\) extends holomorphically to D,
0 )
and B|y=¢ = <g ,0_1> with p>01} .

When r = 1, we abbreviate A, 1SL{2,C) to AL SL(2,C). Here we defined
A4 .SL(2,C) such that Ay ,SL(2,C) N A, SU(2) = Id.

We will give A,.SL(2,C) an H*-topology for a fixed s > 1/2 and take its com-
pletion. Then, A,SL{2,C) is a complex Banach Lie group and its elements have
Fourier expansions in the loop parameter A. We quote the following result from
[21].

LeEMMA 2.1. (Iwasawa decomposition) For any r € (0, 1], we have the follow-
ing globally defined real-analytic diffeomorphism from A, SL(2,C) to A, SU(2) x
A4 »SL(2,C) : For any ¢ € A.SL(2,C), there exist unique ' € A, SU(2) and
Be Ay SL(2,C) so that
¢=FB.

We call this rIwasawa splitting of ¢. When r = 1, we call it simply Iwasawa
splitting. Because the diffeomorphism is real-analytic, if ¢ depends real-analytically
(resp. smoothly) on some parameter z, then F' and B do as well.

2.2. The DPW method. We now describe the DPW method. Let
(2.1) £=A(z,Ndz, A(z,\) € Asl(2,C) , A e C\ {0},

where A := A(z,\) is holomorphic in both z and A for z € ¥. Furthermore, we
assume that 4 has a pole of order at most 1 at A = 0, and the upper-right and lower-
left entries of A have poles of order exactly 1 at A = 0. We call £ a holomorphic
potential.

Let ¢ be the solution to

dp=¢¢, ¢(z.)=1d
for some base point z, € X. Then ¢ is holomorphic in z € ¥ and A € C*, and
¢ € ASL(2,C) .
By Lemma 2.1 above, we can perform an Iwasawa splitting, and write the result as
(2.2) ¢=FB.

From [22], we have the following proposition.
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PROPOSITION 2.2. Up to a conformal change of the coordinate z, F is a solution
to a Lax pair of the form (1.16)-(1.17), and then the Sym-Bobenko formula (1.18) or
(1.21) or (1.23) produces a conformal CMC immersion in the corresponding space
form R, §3 or H3.

Also from [22], conversely the conformal CMC immersion has a holomorphic
potential, as the next proposition shows.

PROPOSITION 2.3. For any solution F' € ASU(2), defined for all z € ¥ and
all A € C\ {0} with F(z.) =1d, to a Laz pair of type (1.16)-(1.17), there exists a
holomorphic potential £ = Adz with A as in (2.1) and a solution ¢ € ASL(2,C) of
d¢ = ¢€ so that ¢ Twasawa splits into ¢ = F'B for some B € AL SL(2,C).

2.3. Dressing. Let ¥ be a simply connected surface and let ¢ be a solution to
d¢ = ¢& with ¢(z.) = Id on £, where £ is defined as in Equation (2.1). If we define

p=hy-9o,
for hy = hy(X) € Ay, SL(2,C) depending only on A, then this multiplication on
the left by hy is called a dressing.

Note that qg satisfies dqg = qAbf, because h, is independent of 2. Hence the
dressing h. does not change the potential £, and changes only the resulting surface.
To see how the surface is changed by h4, one must Iwasawa split h F into hy F' =
FB, and then F € ASU(2) is the frame for the changed surface. This change in

the frame from F to F is nontrivial to understand in general, hence the change in
the surface is also nontrivial to understand.

2.4. Period problems. Let ¥ be a connected Riemann surface with universal
cover ¥ and let A denote the group of deck transformations. Let £ be a holomorphic
potential as in Equation (2.1) and ¢ be a solution of d¢ = ¢£. We assume 7§ = £
for any 7 € A. For each 7 € A, we define the monodromy matrix M, of ¢ by
M (A) = (¢oT) 97"

From [16], we have the following theorem.

THEOREM 2.4. Let M, be the monodromy matriz of a solution @, with respect
to some deck transformation 7 € A of £. Then M, is unitarizable via dressing for
some 7 € (0,1] if and only if, for all A € S,

(2.3) trace(M,) € (=2,2) or M, = +id .

We introduce the following theorem to solve the period problems in R?*, S% or
H3, respectively, as in [36].

THEOREM 2.5. Let M, be as in Theorem 2.4. Assume M, € A,SU(2), so M,
is also the monodromy matriz of F' about 7, where F is as in (2.2). Let f be one of
the Sym-Bobenko formulas (1.18) or (1.21) or (1.23) for F, respectively. Then

o R® case: for = f holds if and only if
(2.4) M;|x=1 = +id and OyM,|x=1 =0,
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o 53 case: foT = f holds if and only if

(25) MT|A:ei'71 = MT|A:e"“12 - :I:Id 3
o H?® case: for = f holds if and only if
(26) MTl)‘:eq/zeiw = +id .

3. Surfaces of Revolution

3.1. Delaunay surfaces via DPW. Delaunay surfaces are periodic surfaces of
revolution in R* and are described via DPW in detail in [34]. The generalization
of Delaunay surfaces, which are rotational W-hypersurfaces of o;-type in H™*!
and S™*1, are studied in [58]. We also give a description here. First we give the
definition of Delaunay surfaces in space forms.

DEFINITION 3.1. Let f : £ = §*\ p1,p2 = R® (resp. S, H®) be a CMC
immersion. Then f is a Delaunay surface in R® (resp. S3, H3) if f is a surface of
revolution in R® (resp. S®, H®), i.e. a surface of revolution about a fized geodesic
line in R® (resp. S°, H?).

Using stereographic projection and a Moebius transformation, we may assume
Y =C = C\{0}. Define

_ dz _ l sATH 4+ tA
(3.1) €= D? ,  where D = (s)\—!—t/\_l 1 ) ,
with [,s,t € R.
One solution of d¢ = ¢¢€ is
(3.2) p=exp(lnz-D) .

This ¢ can be split (this is not r-Iwasawa splitting) in the following way:
¢p=FB,, Fi=exp(iD), By =exp(lnp-D),
where z = pe?, with p = |z| and § = arg(z). We note that F} € A, SU(2).
Since D? = X?Id, where X = /12 + (s + t)2 + st(A — A~1)2, we see that
(3.3) P cos(8X) + 4l X tsin(0X) X 'sin(X)(sA™! +1tA)

' 7 WX tsin(8X)(sA +tA71)  cos(X) — il X tsin(8X)) °
B — cosh(Inp- X) + X !sinh(lnp- X) X ~tsinh(lnp - X)(sA™! +tX)

1 X~ lsinh(Inp- X)(sA + A1) cosh(lnp - X) —IXtsinh(lnp- X)) -
We can now r-Iwasawa split By, i.e. By = Fy - B, where F» € A,SU(2) and
Be A, SL(2,C). We define F = Fy - Fy. Thus ¢ = F'B is the r-Iwasawa splitting
of ¢ (for any choice of r € (0, 1]).

Because F5 and B depend only on |z| = p and F; depends only on 8, we have
that, under the rotation of the domain

z = RBO(Z) = ez ,heR,

the following transformations occur:

F — My,F and B — B, where My, = exp(ioD) .
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We note that My, € A, SU(2), and that My, is of the same explicit form as F} in
(3.3), but evaluated at § = 6;. When 8 = 27, we have
(34) MT = Mgﬂ— .

Clearly M is the monodromy matrix of the generating counterclockwise deck trans-
formation 7 € A of the universal cover of C\ {0}.
Now we consider the closing conditions in each of the three space forms:

e When M3 = R®, My, must satisfy (2.4) for A = 1, so that the surface
will close about the deck transformation 7. This is satisfied if

(3.5) P+ (s+t)?=1/4,

so we impose this condition when M3 = R3.
e When M? = §3 M, must satisfy (2.5), so that the surface will close
about 7. With A; = € and Ay = e™%7, (2.5) is satisfied if
(3.6) 2+ (s +1t) —4stsin?(y) = 1/4,

so we impose this when M3 = §3.
e When M3 = H® M,, must satisfy (2.6), so that the surface will close
about 7. With A = ¢/2 € RT, (2.6) is satisfied if

(3.7) P (s+1t) +4st sinh2(%) =1/4,

so we impose this when M3 = H3.

With these conditions, Delaunay surfaces are produced in R, S® and H®, and
this can be seen as follows:

In the case of R®, under the mapping z — Ry, (z), we have that f as in (1.18)
changes as

(3.8) f = Mo, fMyH —i(OxMp,)|x=1 M, " .
One can check that Equation (3.8) represents a rotation of angle 8y about the line
{&-(=s—t,0,1) +2(s — 1) - (20,0,25 + 2t) jz € R} ,

hence f is a surface of revolution, and thus a Delaunay surface in R3.
In the case of S, under the mapping z — Ry, (2), f as in (1.21) changes by

(3.9) F = (Mog|xmems) f (Mg, rzeiv) -

One can check that Equation (3.9) represents a rotation of angle 8 about the
geodesic line

(3.10) {(z1,22,0,24) € S*| sin(y)(s — t)z1 + rz2 — cos(y)(s + t)z4 = 0} .

So we have a surface of revolution in this case also (since the geodesic line (3.10)
does not depend on 6,), and hence a Delaunay surface in S3.
In the case of H?, under the mapping z — Ry, (z), f as in (1.23) changes by

(3.11) F = (Mg |xeear) f (Mo, reearz) -
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One can check that Equation (3.11) represents a rotation of angle 8y about the
geodesic line

(3.12)  {(z1,0,23,70) € H* | sinh(q)(s — t)zo — rz1 + cosh(g)(s + t)z3 = 0} .

Therefore f is a surface of revolution (since the geodesic line (3.12) does not depend
on ), and hence a Delaunay surface in H®.
We summarize this in the following theorem.

THEOREM 3.1. The holomorphic potential £ defined in Equation (3.1) with the
condition (3.5) (resp. (3.6), (3.7)) produces a Delaunay surface in R® (resp. S3,
H3).

Which Delaunay surface one gets depends on the choice of 7, s and t. An
unduloid is produced when st > 0. A nodoid is produced when st < 0, and for the
limiting singular case of a sphere, st = 0. A cylinder is produced when s = ¢ and
{ = 0. In the next subsection, we will show that we can explicitly compute f in the
case of cylinders.

3.2. Cylinders via DPW. We choose [ = 0 and s = ¢ for D in Equation (3.1).

Thus € is
— -1 0 s %
E=(A +/\)<S 0) S
By (3.5), (3.6) and (3.7), s = 1/4 or s = 1/(4cos(7y)) or s = 1/(4cosh(q/2)) in the
respective space form. Furthermore, the ¢ in Equation (3.2) is

b = exp <Iogz (S g) (1 /\))

_ fcosh(s(A7! + A)logz) sinh(s(A™! + A)logz)
- (sinh(s(x\_1 + A logz) cosh(s(A7! + A)log z)) ’

which has the explicit r-Iwasawa splitting

¢ =FB, where B =exp ()\(logz + log 2) (2 8)) and

F =exp ((A‘llogz — Alog z) (2 8)) ,
for any r € (0,1].

Inserting this F into equations (1.18), (1.21), and (1.23), one can explicitly
compute the parametrizations for the surfaces and see that cylinders are produced.
In the case of .52, the cylinder wraps around onto itself to become of torus, since
the geodesic lines in S? are closed loops.

In the case of R®, from Section 4.4 in [17] Delaunay surfaces are obtained from
the dressing of cylinders. Similar arguments show the following results for S* and
H3.

THEOREM 3.2. Delaunay surfaces in S* (resp. H®) are obtained from the dress-
ing of cylinders in S® (resp. H?).
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FIGURE 1. A Delaunay bubbleton in R*. (A cylinder bubbleton in
R3 is shown in Figure 1.) This figure was made by Y. Morikawa.

4. Bubbletons

4.1. Bubbletons via DPW. Let ¥ be the universal cover of the Riemann surface
C*. Let ¢(z,A) be a solution of dp = ¢£ on ¥ with some initial condition ¢(z., A)
at z = 2, and let ¢ = F - B be the r-Iwasawa splitting of ¢, where £ is as in
(3.1). Choose D/z € A,sl(2,C) for some r € (0, 1] satisfying either (3.5) or (3.6)
or (3.7), depending on the ambient space form. Let f be as in the Sym-Bobenko
formula (1.18) or (1.21) or (1.23), respectively, made from the extended frame F.
By Theorem 3.1, f is well defined on C*.

Consider the dressing ¢ — ¢ = h - ¢, where h is the matrix

/ 1/\—2&2>\2 0
(4.1) b= - ,aeC.
[ a\2_q2

\ 0 V i—a?x?
Let ¢ = F- B be the r-Iwasawa splitting of é and let f be the Sym-Bobenko formula
(1.18) or (1.21) or (1.23), respectively, made from the extended frame . We note
that if [a| < 7 or r~! < |a|, then h € A, SU(2). So the surface f differs from f by
only a rigid motion. Therefore we assume r < |a| < 1. We note that in general f
is not well defined on C*.

DEFINITION 4.1. Let f : C* — M3 and f : £ — M3, where M3 is R® (resp.
S or H?), be CMC immersions derived from the above solutions ¢ and ¢. Let M,
be the monodromy matriz of ¢ defined in Equation (3.4). Then f is a bubbleton of
the Delaunay surface f in R® (resp. S3, H®) if AM, A~ € A, SU(2).

LEMMA 4.1. The bubbleton f satisfies the closing condition (2.4) or (2.5) or
(2.6), so is defined on C*.
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PRrROOF. In the R® case, we show that since M,| =1 = *id and \M;|x= =0
are satisfied, thus (hM,h~1)|x=1 = £id and O (hMh~1)[x=1 = 0 are also satisfied.
This follows from the following computations:

(ARM-h™Y) |2y = hla=1 (£id) h™Haoy = tid
oy (hMTh_l) }A:I =

((8Ah) MTh_l) I)\:l + (h (ax\MT) h—l) ‘)\:1 - (hMT (h‘l (Oxh) h_l)) |A:1 =0
The H® and S2 cases are similar, in fact they are even simpler, because no derivatives
with respect to A are involved. O

REMARK 4.2. We saw in Lemma 4.1 that Definition 4.1 implies the bubbleton
18 topologically a cylinder.

LEMMA 4.3. hRM b7t is in A,.SU(2) if and only if M, is a lower triangular
matriz at A\ = a and an upper triangular matriz at A = +a .

.~ PROOF. Let m;; be the entries of M,. We have
1—a2A2
hM,h~Y = (Az 7 N —o? m”) .

—
1_g2xz M2t ma2

Thus hM,h~" is in A,.SU(2) if and only if £35% m12(A) and 22285ma () are

holomorphic on 7 < |A] < r~1. This happens if and only if M; is a lower triangular
matrix at A = =a and an upper triangular matrix at A = +a . ]

THEOREM 4.4. There exist round cylinder bubbleton and Delaunay bubbleton
surfaces for all three space forms.

ProoF. The monodromy matrix M, is

A = (cos(2nX) + X 1sin(2rX)  iX Vsin(2rX)(sAT! + t))
TTNiX! sin(QWX)(s)\—}—tA_l) cos(2rX) —qlx-1 Sin(QTrX) s

where

X = %—a—i—st()\—/\*l)? ,
and
R3 case: a = 0
S3 case: a = —4stsin®(vy)
H? case: a = 4stsinh®(g/2)
M, is in A, SU(2) for all r € (0,1] and satisfies the closing conditions. We take

Vo+4—+/46 1 /k?-1
(42) a= —%‘f € RUIR\ {0,+1,+i} with §= — ( . +a) :
s
k* > max{-16st —4a+ 1,—4a+ 1,4} and k€ N .
We can immediately compute Mijs=+a,+a- = —id. We can choose r so that «

satisfies 7 < Ja] < 1. Thus Lemma 4.3 and Definition 4.1 imply existence of
bubbletons of cylinders and Delaunay surfaces. W]
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4.2. Computing the change of frame for the simple type dressing. Now we
consider the explicit Iwasawa factorization of h¢ with the simple type dressing
h defined in Equation (4.1). This will lead to an explicit parametrization of the
bubbletons of round cylinders in all three space forms. In this section, we allow &
to be a general potential. Let X be a Riemann surface with coordinate z. Let ¢
be a solution of d¢ = ¢& on ¥ with some initial condition ¢(z.,A) at z. and let
¢ = F - B be the r-Iwasawa splitting of ¢, where £ € A,sl(2,C) and r € (0,1]. We
assume 7 < |a| < 1, for the same reason as in Section 4.1.

We consider C? with the standard inner product {-,-), and e;, e forming the

orthonormal basis
(1 {0
en=1\,) =1y

of C2. We define two subspaces Vi, V5 spanned by specific vectors v;, v, in C2:

Vi = {a'vl )Ul = <)\_1§_1B> ,a € (C},

oy a1
’U-22< AC;& B),(IEC},

Flace = (A B) . FeASU®)

VQZ{(I"UQ

where

C D

We now define projections w1, 7, 71, 72 and linear combinations h, h of these
projections.

mp = orthogonal projection to the span of e;
(4.3) my = orthogonal projection to the span of e5 |
ho =7+ [

{ 71 = projection to V] parallel to V5

(4.4) Ty = projection to V parallel to Vi,
A e
where
/\2 _ a2 N
[= 1@ @cC

Note that in general m; and 7 are non-orthogonal projections.
We have the following two lemmas, the first of which is obvious.

LEMMA 4.5.
mom =m ,monm=0,m07 =0,m0my =7y .
Floffy =7 ,f1 oMy =0,Fp0f; =0,7y 07y =7y .

LEMMA 4.6.
Al = f1/2771 +f_1/2772 , Bl = Jc1/27~Tl +f_1/27~r2
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PROOF. _
(FY %m0 + f12m) o (F2m + £71%m)
=mom+ f lmom+ fryom + T oM

=7 + 7 =1id,

by Lemma 4.5. Similarly (f/?m; + f~3/2m5) o (f71/%m + f'/2m3) = id. Replacing
m by 71 and w2 by 72, we get the analogous result for L. O

LEMMA 4.7. In terms of the basis e1,e2, we can write 7;,7; (j = 1,2) in the

following matrx forms:
_f1 0 {0 0
m=lo o)0 ™70 1)

. 1 AP Xa"'AB
T TAR + o 2B \N 6T AB o] 7% B?)
. 1 la|72|B]>  -Xa"'AB
T TUAR 1o 2B \-ATaTTAB AP

PRrOOF. The matrix forms for 7; and - are evident. Regarding 7 and 72, we
have 7; - w; = w;di; ,Yw; € Vi (1,5 = 1,2), where &;; is the Kronecker ¢ function,

and so for
T = <z1> e C?,
T2
we have
. Az, + Aa 1Bz, A
T = T 7555 —1-—1n H
|42 + |a|2|B? \N""a"' B
~ A 'a 1Bz + Azs /2o~ 'B
g - T =
2T AR el 2 BP A

Cl

Thus 7; and 73 have matrix forms as in the lemma.

We now define a matrix C € A, SU(2):

(4 _) = 1 eie ) )\ewT
) - ITIQ 1 _)\—le—iﬂT e—i0 ’
AB (1+a?)

where T = and 6 = arg (]A|2 - z_—|B|2) + arg ( —a2)

alAl? — a|BJ?

THEOREM 4.8. Let ¢ be a solution of dp = ¢£ on X with some initial condition
d(z«,A) € A SL(2,C) at 2., and let $ = FB be the r-Iwasawa splitting of ¢.
We consider the dressing ¢ — h-¢. Then h¢ = (RFh='C~')(ChB) is r-Iwasawa
splitting of he, i.e. RFR™'C~ € A, SU(2) and ChB € A,, SL(2,C), where h, h,C
are as in (4.3), (4.4) and (4.3).
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PROOF. C is already in A,SU(2), so we first show hFh™' € A,SU(2). F
satisfies the reality condition F(A™1) = (F~'(X))*. We show that h and h also
satisfy the same reality condition:

AT = S
()" = (Fm + F ) ma)
= O "m0

B IO RAr

R = F0 Y PG + 0 PR
(71 0)" = (280 + 1) PR
= FOTY TR 4 F O R0

Thus we have shown the reality condition for h and h. F is holomorphic on
r < |A| < r~'. h, h are holomorphic on r < |\ < r~! with singularities only
at A = #a,+a"'. Thus we need only check that hFh™! has no singularities at
A= za,+a .
hFh—1 _ ((f_1/27n +f1/2772) F (fl/Qﬁ,l +f_1/27?2))]
A=ta, a1
= (7T1F77r1 + froFiy + f‘l’/’rlF’fFQ + 7T2F77F2)

A=za,ra-?

|)\:ia,i&“1
The only possible singularities in this sum of four terms can occur in fwy F'7; when
A =+a"! and in f7'm F#s when A = £a. But the reality condition of F and a
calculation shows that in fact such singularities do not occur.

Finally we show ChB € A ,SL(2,C). B is in A,,SL(2,C), so we need only
check that Ch is in A, ,SL(2,C). We can easily see Ch € A,SL(2,C) and is holo-
morphic on 0 < |A] < r and continuous on 0 < |A| < r, and a direct computation

shows that
i _{,m 0
Ch‘A:O - (0 p1—1> )
lo| AR + |ef|B2 4
h = R
R A=A al[AR + ol B ©
Thus the theorem is proven. a

Theorem 4.8 has the following corollary:

COROLLARY 4.9. We have explicit parametrizations for round cylinder bub-
bletons in all three space forms using the r-Iwasawa splitting in Theorem 4.8, the
extended frame in Section 3.2 and the Sym-Bobenko formulas (1.18), (1.21) and
(1.23).

REMARK 4.10. Let £ = Zj>_1 /\jAjdz be a holomorphic potential on X and let
¢ be a solution of dp = ¢& with some initial condition ¢(z.,A) € A.SL(2,C) at z,.
Let ¢ = F - B be r-Iwasawa splitting and let f be as in the Sym-Bobenko formula
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(1.18) or (1.21) or (1.23), respectively, made from the extended frame F. Then the
conformal factor of the metric 4e*#dzdz of f is (see [34])

(4.6) 4e’* = 16€%¢®|a_,|* = 16€%p*|a_1|*

where a_, s the upper right entry of A_1, Blx=0 = (8 pgl) and e = 1 (resp.
€ = sin((y2 — 11)/2), € = sinh(—q/2)) in the case of R® (resp. S*, H*).

4.3. Equivalence of the simple type dressing and Bianchi’s Backlund transfor-
mation on the round cylinder. In this section we prove the equivalence of the simple
type dressing (4.1) and Bianchi’s Backlund transformation in R®, when applied to a
cylinder. (The latter is a bubbleton surface in the sense of [59].) We show that the
metric, Hopf differential and mean curvature of Bianchi’s Backlund transformation
of a round cylinder are the same as those resulting from the simple type dressing of
(4.1) with real a. For general CMC surfaces in R®, Burstall [9] has proven the equiv-
alence of the simple type dressing (4.1) for « either real or pure imaginary and the
Darboux transformation. Hertrich-Jeromin and Pedit [30] have proven that any of
Bianchi’s Bicklund transformations of a CMC surface is a Darboux transformation
of the surface, but not the converse.

In the S® and H?® cases, we have not seen a notion of Bianchi’s Béacklund
transformation. So we do not prove the equivalence for the S* and H? cases.

First we introduce the metric, Hopf differential and mean curvature of Bianchi’s
Bicklund transformation using [59]. Using the notation in [59], we can write the
first and second fundamental forms and the principal curvatures of a CMC surface
as follows:

ds? = e®*dwdiw
IT = e* (sinh (u) dz? + cosh (u) dy?) ,
ki  =e ¥sinh(u), kg =e “cosh(u)
where w = z + iy. The Gauss equation becomes
4.7) 2Uyg + sinh(2u) =0

In particular, in the round cylinder case we have © = 0. We do the Bécklund
transformation on the cylinder, and using Bianchi’s Permutability formula ({59)),
we have the new solution u; satisfying the Gauss equation (4.7):

ury cos (y cosh (61))
tanh (7) = tanh (6,) cosh (zsinh (B;)) ’

where 31 € R. Under Bianchi’s Biacklund transformation, the mean curvature and
the Hopf differential do not change. So the mean curvature and the Hopf differential
of the bubbleton are H = 1/2 and Q = (—1/4)dw?.

We consider the change of coordinate log z = w. Thus we have the following:

ur\ cos (Im (log z) cosh (51))
t‘imh (—2—) = tanh (5) cosh (Re (log z) sinh (51)) ’
H=1/2,

1 2
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THEOREM 4.11. Bianchi’s Bdacklund transformation of the round cylinder and
the simple type dressing with real o of the round cylinder are the same surface.

Proor. Using Corollary 4.9, and Equations (4.6), (1.2) and (1.3), the simple
type dressing by h has the following conformal factor for the metric 4e**dzdz, and
the following mean curvature and Hopf differential:

4e** = 16e™|a_; > = 16p*|a_; >

o AP + el BPYY
1o (o s raoime) oo

16 a~ ! cosh(X)|* + af sinh(X)|? 2|a 2
B al cosh(X)|? + a~!|sinh(X)|2 -
H=1/2
L. s
Q=%
where X = ng;—‘“og—f and a_; = 1/(4z). Then tanh(u;/2) = &5 implies

that

ﬂ) _ (a7 —a) (| cosh(X)|* — | sinh(X)|?)

2 (a=! + a) (| cosh(X)|? + | sinh{X)|?)

Using addition properties for the hyperbolic sine and cosine functions, we can
rewrite the equation as follows:

u\ _ (a7! —a)cosh (X - X)
7) " (a7 + @) cosh (X + X)

tanh (

tanh (

We have X + X = Re(logz)("‘_;‘a) and X — X = iIm(logz)("—;J). Thus the
equation finally becomes

tanh (Y1) = (w;_—a) COSh(iIm(Ing) a_;+a)
an (7)_ (f—;ﬂ) cosh (Re(Ing) o

_ sinh (B1) cos (Im (log z) cosh (51))

~ cosh (B1) cosh (Re (log z) sinh (5;))
where we set "_;+a = cosh(f) and a_;_" = sinh(8;). Therefore both trans-
formations give the same metric, mean curvature and Hopf differential. So the
fundamental theorem of surface theory implies that the two transformations of the

round cylinder are the same. g

4.4. Parallel surfaces of the bubbletons. In this section, we prove that the par-
allel surfaces of the round cylinder bubbletons are the same surface as the original
bubbletons.

THEOREM 4.12. The parallel surface of a round cyiinder bubbleton is the same
surface as the original cylinder bubbleton, up to a rigid motion, in any of the three
space forms R, S% and H3.
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Proor. Using Corollary 4.9 and Equations (4.6), (1.2) and (1.3), we can de-
scribe the conformal factor for the metric 4e*#dzdZ, mean curvature H and Hopf
differential Q of the round cylinder bubbletons as follows:

o AR +alBP\?
— =] la-1]”
alAl2 + a7t B)?
H=b,
1 2
Q:——Eedz ,

4e = 16€%e™|a_1|* = 16€* (

where A = cosh(giﬂo—gz_—alog—z), B = sinh(il&—i_"—log—z), and e = 1, a_y =
1/(4z) and b = 1/2 (resp. € = sin(—2v),a_1 = 1/(4zcos(v)) and b = cot(~~), or
¢ = sinh(—q),a_; = 1/(4zcosh(g/2)) and b = coth(—q/2)) in the case of R® (resp.
S3, or H?), and where a € R as in (4.2).

Using Theorem 1.1, Theorem 1.2 and Theorem 1.3, we can also describe the
conformal factor for the metric 4e2#’ dzdz, mean curvature H* and Hopf differential
Q* of the bubbleton parallel surface as follows:

alAP + o7 |BJ? 2| E
—_ 1 |a-
a A2 + a|BJ? A
H*=1b ,
* 1 2

Q = —-zlziﬁdz -
We consider the conformal change of the coordinate z — zexp(ajgz_l) on the
parallel surface. Under this change, the mean curvature and Hopf differential do
not change. For the metric, |A|> and {B|? change to |B|? and |A|?, respectively,
thus the conformal factor 4e?*” of the metric changes to

—1) 412 2\ 2

o " |Al*+a|B

1662 | | | | |a_112 :482[,L
alAl2 + a1 BJ?

Thus both surfaces have the same metric, mean curvature and Hopf differential

up to this change of coordinate. Hence the fundamental theorem of surface theory

—_

impiies the two surfaces are the same. G

4e2*" = 16€%e % |a_y| = 16€> <

REMARK 4.13. The parallel surface of a Delaunay bubbleton in general is not
the same surface as the original Delaunay bubbleton. For example, if the bubbles of
Delaunay bubbleton attach at a neck of the Delaunay surface, then the bubbles of
the parallel Delaunay bubbleton attach at a bulge of the Delaunay surface.



CHAPTER 2

Characterizations of Bianchi-Backlund transformations
of constant mean curvature surfaces

1. Bianchi-Backlund transformations for CPC surfaces

Let T be a simply connected domain in R?, and let f. : & — R be a constant
positive gaussian curvature CPC immersion with K = +1 parametrized by lines of
curvature such that

_ 272 ) o 2 7,2
(1) { I = cosh(u)?dz? + sinh(u)*dy

II = —sinh(u)cosh(u)(dz? +dy?)
where u : ¥ — R is a solution of the sinh-Gordon (Gauss) equation
Awu = —sinh(u) cosh(u) .

We consider a complex tangential line congruence of a CPC surface f, in the
sense of Bianchi [2] (page 492):

(1.2) 2 = fo + Mcospe; + sinpes)

where [e1, €2, e3] is an orthonormal frame of f., A is a nonzero complex constant
and ¢ : ¥ — C is a complex valued function. We denote by (e},e},e3)? the
orthonormal frame of f}. We now impose the following two conditions for the real
two dimensional surface f2 in C3:
(i) The vector f) — f. is tangent to both surfaces, i.c. (f) — fu,€3) =
(f} — fx,e3) = 0, where (-,-) is the C-bilinear extension of the standard
inner product of R,
(ii) The normal vectors ez and e} have constant angle at corresponding points,
i.e. (e3,e3) = ¢, where c is a some constant complex number.

To determine A and p, we compute the Frenet equations of the CPC surface
f« as follows:

F, = AF
(13) F,=BF °
where
0 —u, —sinhu 0 Ug V]
(1.4) A= Uy 0 0 , B=| —ug 0 -~ coshu
sinh u 0 0 0 coshu 0

33



34 2. BIANCHI-BACKLUND TRANSFORMATION OF CMC SURFACES

and F = (e1,e2,e3)! = (fx,z/ coshu, fs,/sinhu,e; x e3)!. We can compute the

new orthonormal frame (€7, e3,e3) of f2 as follows:

el 1 0 0 cosp sing 0\ [e
(1.5) e | =0 coso sino ] | —sing cosp 0] |es
€} 0 —sino coso 0 0 1/ \es

We note that the right-hand 3 by 3 matrix represents a rotation around es, and
the left-hand 3 by 3 matrix represents a rotation around cos e, + sin pes, which
is the direction vector of the tangential line congruence defined in Equation (1.2).
Thus ¢ is an angle between the normal vector for f, and the normal vector for f2.
Therefore o is constant by condition (ii). Constancy of ¢ and condition (i), i.e.
(df},e3) = 0, imply that

(1.6) sino sinp 4 — sing cos B + cosoC =0

where A = (coshu + Auy sin p)dr — Aug sinpdy — Asinpdyp, B = —Auy, cos pdr +
(sinhu + Aug cosp)dy + Acospdyp and C = —Asinhucos pdr — Acoshusinpdy. A
calculation shows that

1
(1.7) (cota)? + w="1
We set the parameters cote = —icosh 3, 1/ = sinh 8 and ¢ = if3. Then we can
rewrite Equation (1.2) as follows:

(1.8) f2 = f8 = f. + 1/ sinh(B)(cosh(fg)er + isinh(fs)es) ,

where £ is a non-zero complex constant and 8z : £ — Cis a complex valued function.
From now on we will use the notation f? = f} and [e?,eg,eg] = [e}, e3,€3).
Then, from Equation (1.6), we have the following differential equations for 85
with parameter 3:
(1.9) { 2(85 —u), = €7sinh(fp+u)
) 205 +u); = —e Psinh(fs—u)

where 8, = (8, — 18,).
REMARK 1.1. The solutions g of the differential equation (1.9), which arc

produced by Bianchi-Bdcklund transformations, satisfy the sinh-Gordon equation
Aeg = - sinh(95) COSh(Gﬂ).

We again consider a Bianchi-Backlund transformation of the surface f2 defined
in Equation (1.8) and define a new surface as follows:

(1.10) F88" = f8 1 1/sinh(8*)(cosh(fs p- )€ +isinh(fs 5-)eh) |
where é/;’ g+ is a solution of the following differential equation:

{ 2(08,8- —6p). = € sinh(fs5- + )

1.11 - -
( ) 205 +05): = —e B sinh(8g 3+ — 63)

Again we note that dg g is a solution of the complex sinh-Gordon equation Abg e =
- Sinh(QQ’g*) COSh(QB,B* )
Then we have the so-called Bianchi-permutability theorem:
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THEOREM 1.2. (Bianchi [2], page 494) Let f. be a CPC surface with K = +1
and a frame [e1,es, e3] such that the first and second fundamental forms are as
in Equation (1.1). Let 8 (resp. 83+) be a solution of Equation (1.9) with some
initial condition (z9,y0) € R? and a complex parameter 3 (resp. 5*), and let 9}3”3.
(resp. GAB*,B) be a solution of Equation (1.11) with complezx parameter §* (resp. B3).
Further, let f,fﬁ (resp. f£5 ) be the surface defined by Equation (1.10). Then we
have the following:

(112) =0
Schematically,
N
u\ /ﬁ
BN,

where 4 = 91375* = fg+ 5. Furthermore, we can obtain a solution 4 = ég,g* = HAB*,B
of the sinh-Gordon equation, in terms of u, 8, 03+, B and 3*, via the superposition
formula:

(1.13) tanh (%—“) ~ tanh (5 “25*) vanh (L ‘2"ﬂ*> ,

where 4 = HAB,Bt = éﬁ*ﬂ.

From now on, we will use the notation fn = ff’ﬁ* = f878_ In general, fN is a
surface in C*. To find a real surface, we consider the following ansatz:

(1.14) g =-4 .

Then from Equation (1.9), we can show 3. = 7i —83. Finally we have the following
theorem:

THEOREM 1.3. (Bianchi (2], page 496) Let f. be a CPC surface with K = +1
and frame [e1, ez, e3] such that the first and second fundamental forms are as in
Equation (1.1). Let 8g be a solution of Equation (1.9) with some initial condition
(z0,%0) € R? and a nonzero complex parameter 3. Let 3* be a parameter defined
in Equation (1.14), and let 83 = mi — 83 be a solution of Equation (1.9) with the
same initial condition (xo,yo) € R?. Futher, let fA,{ be the twice successive Bianchi-
Backlund transformation defined by the above procedure. Then f,; is a real CPC
surface with K = +1, and fA,c = f. + Aca, where

sinh(2 Re B)

(1.15) A=~ | sinh(8)2[cosh(2 Re 8) + cosh(2Re f3)]
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(1.16) a, = [ cosh(fz) cosh(B) — cosh(fs) cosh(B)]e1
+ i[— cosh(B) sinh(fg) + cosh(B) sinh(Bg)]e2
— sinh(2Refg)es

2. Bianchi-Biacklund transformations for CMC surfaces

We now consider the Bianchi-Backlund transformation of a CMC surface. Let
f = f« +e3 be the parallel surface of a CPC surface f., where e3 is the unit normal
of f.. It is well known that f is a surface with constant mean curvature = 1/2,
and with unit normal » = —e3, and that (xz,y) are isothermic coordinates of f, i.e.
the first and second fundamental forms are as follows:

(2.1) I e*(sinh(u)dz?® + cosh(u)dy?)

Analogous to the Bianchi-Backlund transformation of a CPC surface, we have the

following:

THEOREM 2.1. Let f = f.. + e3 be a parallel CMC surface with H = 1/2 of a
CPC surface f., and let 05, B, 83« and 3* be the functions and parameters defined
in Theorem 1.3. Then f = f + g is a real CMC surface with H = 1/2, where

(2.2) g = |cschp|?sech(Re(8 + 3)) {sinh(2 Re 8) cos(Im (6 + f))e;
— sinh(2Re 8) sin(Im(8 + 3))e2
+[cos(2Im 3) cosh(Re(8 + B8)) — cosh(Re(d — 5))]es}

where cschz = 1/sinhz and sechz = 1/ coshz.

{I = e?(dz® + dy?)

Proor. We can compute the normal é3 of f. by using Equation (1.5). Then
we can rewrite the new CPC surface f., = f. + Axa, as follows:

(23) fm+63 (fn+63)+('_63+A an+é3)
We set f f,i +é3, f= f,i + e3. Then A a, — ez + é3 is g defined as in Equation
(2.2). And clearly f and f define CMC surfaces. O

Naturally, from the above theorem, we can define a Bianchi-Backlund transfor-
mation of a CMC surface:

DEFINITION 2.1. Let f andf be as in Theorem 2.1 with paremeter either § € R
and B8 = B1 +in /2 with 81 € R. Then f is called a Bianchi-Bicklund transform of
the CMC surface f. In particular, we call f defined by the parameter 8 € R (resp.
B = B1 +in/2 with 8, € R) a real Bianchi-Backlund transform of a CMC surface
(resp. imaginary Bianchi-Backlund transform of a CMC surface).

In Figure 1, a new surface, which is an imaginary Bianchi-Backlund transforma-
tion of a nodoidal Delaunay surface, is again topologically a cylinder, i.e. the surface
is well-defined on S?\ {p1,p2}. In the case of a real Bianchi-Bécklund transforma-
tion of a nodoidal Delaunay surface, for any parameter 8 € R and (zo,y0) € R?,
the surface cannot be well-defined on S?\ {p1,p=}.
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FiGure 1. Imaginary Bianchi-Bicklund transformation of a
nodoidal Delaunay surface. Figures are constructed using the
CMC-Lab program [53].

3. The equivalence of Bianchi-Béicklund transformations, Darboux
transformations and the simple type dressings of CMC surfaces

In this section we prove the equivalence of three transformations on CMC sur-
faces: Bianchi-Backlund transformations (Definition 2.1), Darboux transformations
and the simple type dressings. These transformations arise from different contexts:
the Bianchi-Backlund transformation is defined by complex tangential line congru-
ence, the Darboux transformation is defined by sphere congruence, and the simple
type dressing is defined by loop group actions.

From [30], we recall the definition of a Darboux transformation of a CMC
surface.

DEFINITION 3.1. (Hertrich-Jeromin, Pedit [30] page 316) If a congruence of
2-spheres is enveloped by two isothermic surfaces, the correspondence between its
two envelopes being conformal and curvature line preserving, the surfaces are said
to form a Darboux pair. Each of the two surfaces is called a Darboux transform of
the other.

Here we identify R® with the imaginary part Im H of the quaternion algebra
H (see [30]). Then, also from [30], we have necessary and sufficient conditions for
above definitions to be satisfied.

THEOREM 3.1. (Hertrich-Jeromin, Pedit (30]) Let f be a CMC surface with
mean curvature H, and let f¢ = f + —};n be the parallel CMC surface of f, where
n is the unit normal vector of f. Let r € RUIR\ {0} be a parameter and let € be a
solution of the following Riccati equation with some initial condition (zy,1y;) € R?:

3.1 d€ = r°¢(dfe)¢ — df .

Then f = f + £ provides a Darbouz transform of f. Converseoly, every Darbouz
transform f of f is obtained this way. In particular, we call f defined by r € R\ {0}
(resp. T € iR \ {0}) a Darbouz transform of positive (resp. negative) type.
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Bianchi-Backlund Darboux simple type
real BB positive DB | a € iR with (I1,12)
imaginary BB | negative DB | a € R with (I1,{2)
TABLE 1. Classification table. Imaginary BB is the new transformation.

REMARK 3.2. We consider the distantce between Hf and Hf°. Then a com-
putation shows that

(32) H(F [ = 1Hg—nl? =1+ 5 >0,

where n and r% are defined in Theorem 3.1. Therefore we have the condition for r:
(3.3) r2>0 or r2< —-H? .
Then we have the following theorem:

THEOREM 3.3. (Hertrich-Jeromin, Pedit [30]) Any Bianchi-Backlund transfor-
mation of @ CMC surface is a Darbouz transformation.

The converse of Theorem 3.3 was not proven in [30]. Furthermore, Hertrich-
Jeromin and Pedit conjectured that Darboux transformations of negative type are
not Bianchi-Backlund transformations.

The simple type dressings on CMC surfaces arise from integrable systems (see
[9]). Roughly speaking, the simple type dressing is a loop group action to obtain
the new extended frame of a new CMC surface from a known extended frame of a
CMC surface. From [9], the equivalence of Darboux transformations and the simple
type dressings of a CMC surface is known.

THEOREM 3.4. (Burstall [9]) Any transformation of a CMC surface is a Dar-
bouz transformation if and only if it is a simple type dressing.

Now we prove the main theorem in this paper:

THEOREM 3.5. Let f be a CMC surface with H = 1/2 in R® parametrized
by isothermic coordinates, i.e. the first and second fundamental forms are as in
Equation (2.1). Then the following are all the same:

(i) the collection of all Bianchi-Bicklund transformations,
(i) the collection of all Darbouz transformations,
(iil) the collection of all simple type dressings.

PRrOOF. By the previous theorem, we need only show the equivalence of (1)
and (2). From now on we identify R® with Im H, thus the immersion f into R® is
considered as an immersion into Im H. Let g be the matrix valued function defined
by Equation (2.2). and let f¢ = f + 2n be the prallel surface of f. We set £ = g.
Using a quaternionic calculation, e.g. a-b = —(a,b) + a x b with a,0 € Im K, and
the differential equation (1.9) and the Frenet equations (1.3) of the CMC surface
f, we can show the following equation: when using a parameter 8 € R, i.e. a real
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Bianchi-Bécklund transformation, we have

i 2 =
SO e(afeye -~ df

When using a parameter § = 8y + in/2 with 5 € R, i.e. a imaginary Bianchi-
Béacklund transformations, we have

cosh(B1)? ., -
MO e(afere —ar
Clearly Equation (3.4) (resp. Equation (3.5)) is a Darboux transformation of posi-
tive (resp. negative) type. Therefore all Darboux transformations can be obtained
in this way. d

REMARK 3.6. In Theorem 3.5, we considered CMC surfaces with H = 1/2.
Thus Equation (3.3) implies that r? > 0 or r> < —1/4. This condition can be sat-
isfied by the coefficient sinh(8)? /4 in Equation (3.4) or the coefficient — cosh(B)? /4
in Equation (3.5).

(3.4) d¢ =

(3.5) dé =

REMARK 3.7. The Darboux transform in Definition 3.1 comes in a real three
parameter family depending on v € R\ {0} or r € iR\ {0} and (z1,11) € R2.
These parameters correspond to the parameters § € R\ {0} or 8 = 81 +in/2 with
B1 € R\ {0} and (x0,v0) € R? of the Bianchi-Bicklund transform in Theorem 2.1
(and also to the a € iR\ {0} or a € R\ {0} and L = (l1,12) € R? in the simple
type dressing (see [9])).






CHAPTER 3

Constant mean curvature surfaces with Delaunay ends in
3-dimensional space forms

1. Conformal immersions into three dimensional space forms

1.1. Preliminaries and notation. Let M be a Riemann surface and G a matrix
Lie group with Lie algebra (g, [, ]). For a, 8 € Q'(M,g) smooth 1-forms on M
with values in g, we define the g—valued 2-form [a A B](X,Y) = [a(X),8(Y)] —
[a(Y),B8(X)], X, Y € TM. Let Ly : h — gh be left multiplication in G, and
6 : TG — g,vy + (dLg-1)gvy the (left) Maurer-Cartan form. It satisfies the
Maurer—-Cartan equation

(1.1) 2d6 + 6 A 6] = 0.

For a map F' : M — G, the pullback a = F*6 also satisfies (1.1). The Maurer—
Cartan Lemma asserts that if N is a connected and simply connected smooth
manifold, then every solution a € (N, g) of (1.1) integrates to a smooth map
F: N — G with a = F>0.

We complexify the tangent bundle TM and decompose TM® = T'M & T"M
into (1,0) and (0,1) tangent spaces and write d = d + . Dually, we decompose

O (M, g%) = ' (M, ¢°) © Q" (M, g%,
and accordingly split Q' (M, g%) 3 w = ' +w" into (1,0) part w' and (0,1) part
w". We set the x—operator on (' (M, g%) to

. 7 -1
*W = =W W .

1.2. Euclidean three space. We fix the following basis of sl;(C) as

b e (§ Y8 )7

and will denote by (-, -) the bilinear extension of the Ad-invariant inner product of
suy to suS = sl (C) such that (e, €) = 1. We further have

(6—7 6—) = <€+: €+> = 07 6*4 = —€4,

1.3
(13) [e, -] = 2ie_, [e4, €] = 2ie, and [e_, e, ] = ie.

We identify Euclidean three space R® with the matrix Lie algebra su,. The double
cover of the isometry group under this identification is SU, x su,. Let T aenote
the stabiliser of € € su, under the adjoint action of SU, on su,. We shall view the
two-sphere as S? = SU,/T.

41
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LEMMA 1.1. The mean curvature H of a conformal immersion f : M — su, is
given by 2d x df = H [df A df].

Proor. Let U C M be an open simply connected set with coordinate z : U —
C. Writing df' = f.dz and df" = f:dz, conformality is equivalent to (f., f.) =
(f=, fz) = 0 and the existence of a function v € C°°(U, R ) such that 2(f., fz) = v*.
Let N : U — SU,/T be the Gauss map with lift F : U — SU, such that N = Fe F~!
and df = vF(e_dz + e, dz)F~1. The mean curvature is H = 2v~2(f,;, N) and the
Hopf differential is Q dz? with Q = (f.., N). Hence [df Adf] = 2iv?Ndz Adz. Then
a = F~1dF is given by
(14) a= £ ((-v’Hdz — 2Qdz)ie_ + (2Qdz + v’ Hdz)ie; — (v.dz — vzdZ)ie) .

2

This allows us to compute d * df = iv>HNdz A dZ and proves the claim. O

The Maurer-Cartan equation 2da+ [ A @] = 0 decomposes into €4 components

(1.5) v’ H; =2Q,, v’ H, = 2Q;,
called the Codazzi equations, and into an € component
(1.6) vl — v s + $0PH? -0 2|QP =0,

the Gauss equation. For u = 2logv, (1.6) reads u,z + Se*H? — 2e7*|Q}* = 0.

1.3. The three sphere. We identify the three-sphere S C R* with S% 22 SU, x
SU,/ D, where D is the diagonal. The double cover of the isometry group SO(4) is
SU, x SU, via the action X — FXG™!. Let (-,-) denote the bilinear extension of
the Fuclidean inner product of R* to C* under this identification.

LEMMA 1.2. Let f : M — S3 be a conformal immersion and w = f~'df. The
mean curvature H of f is given by 2d*w = H [w A w].

Proor. Let U C M be an open simply connected set with coordinate z : U —
C. Writing df’ = f.dz and df"” = f:dz, conformality is equivalent to (f., f;) =
(f=, f=) = 0 and the existence of a function v € C*°(U, R ) such that 2(f., fz) = v
By left invariance, (w', w') = (df’, df'), so conformality is (w', w') = 0. Take
a smooth lift, that is, a pair of smooth maps F, G : U — SU, such that f =
FG™',df = vF(e_dz +€,d2)G™ ' and N = FeG™!. Setting a = F!dF, B =
G~1dG, a computation gives

o= (—Lv(H +i)dz —v1Qdz)ie B = (—3v(H —i)dz — v Qdz)ie_

(1.7) +(v'Qdz + Lv(H — i)dz)ie, +(1Qdz + Lv(H + t)dz)ie,
—(3v7 (v2dz — vzdZ))ie, —(3v7 (v.dz — vzdz))ie.

Using w = G(a— B)G™! we obtain d+xw = iv? HG ¢ G~'dz Adz. On the other hand,

[w A w] = 202G e G~1dz A dz, proving the claim. O

The Codazzi-equations are the same as in (1.5), while the Gauss equation
becomes

(1.8) v — v 0s + J0P(H + 1) —07?Q) = 0.
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1.4. Hyperbolic three space. We identify hyperbolic three-space H® with the
symmetric space SL,(C)/SU, embedded in the real 4-space of Hermitian symmetric
matrices as [g] < gg~, where g* denotes the complex conjugate transpose of g.
The double cover of the isometry group SO(3,1) of H? is SL,(C) via the action
X FXF*.

LEMMA 1.3. For a conformal immersion f : M — H?® and w = f~'df, the
mean curvature H is given by 2d*w =i H [w Aw].

ProOF. Let U C M be an open simply connected set with coordinate z : U —
C. Writing df’ = f.dz and df" = f:dZz, conformality is equivalent to {f., f.) =
(fz, fz) = 0 and the existence of a function v € C*° (U, R*) such that 2(f., f:) = v
Take a smooth lift F : U — SL,(C) such that f = FF~*, df = vF(e_dz — e, dZ)F*,
and N = —Fie F* for the normal. Setting a = F~*dF, a computation gives
a=(3v(H+1)dz +v7'Qd2)e_ + (v Qdz + Jv(H — 1)d2)e,

(1.9) — (Ao (v, dz - v.dz))ie.

Then w = F* 1(a + a*)F* together with a + o™ = v(e_dz — e,.dz) gives [wAw] =
—2iv2F*~Y ¢ F*dz A dZ. On the other hand, d xw = V2 HF*"1 e F*dz A dZ. O

The Codazzi equations are the same as in (1.5), while the Gauss equation
becomes
(1.10) v vz —v oz + 2P (H? - 1) —0T%Q) = 0.

A direct consequence of the Codazzi equation is that when the mean curvature is
constant, the Hopf differential is holomorphic. If (v, H, Q) is a solution of a Gauss
equation, then so is (v, H,A7!'Q) for all |A] = 1. Since the invariants (v, H, Q)
determine an immersion up to isometries, a CMC surface comes in an S'-family, the
associated famaily.

2. Loop groups

We introduce various loop groups, state the Iwasawa decomposition and recall
the dressing action [10] in our context. For expository accounts consult [1], [27] and
[51].

For each real 0 < » < 1, the circle, open disk (interior) and open annulus are
denoted respectively by

Cr={NeC:|A=r}, L={AeC:|A<rjandA, ={AeC:r<|[A\<1/r}.
The 7-loop group of SL,(C) are the smooth maps of C, into SL,(C):
ASL,(C) = C*(C,, SLy(Q)).

The Lie algebras of these groups are A,sl,(C) = C*(C,,sl,(C)). We will use the
following two subgroups of A,SL,(C):

(i) For e, defined in (1.2) let
B={BeSL(C) : tr(B) >0 and AdB(ey) = peq, pe R}
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and define the positive r-loops

AFSL,(C) = {B € A.SL,(C) : B extends analytically to
B : I, - SL,(C)and B(0) € B}.

—t
(ii) For F : A, — SL,(C) define F* : A, — SLy(C) by F* : A = F(1/A), and
denote the r-unitary loops by

A®SL,(C) = {F € A,SL;(C) : F extends analytically to
F: A, = SLy(C) and F* = F~1} .

Note that F € A®SL,(C) implies F|g € SU,. For r = 1 we omit the sub-
script. Replacing SL,(C) by GL,(C), we define the analogous loop Lie subgroups
of A,GLy(C). In this case, the subgroup B C GL;(C) consists of matrices with
det B > 0, trB > 0 and Ad B(ey) = pey for some positive real number p, and
ARGL,(C) consists of F € A,GL,(C) that extend analytically to F' : 4, — GL,(C)
and satisfy F* = det(F) F~!. Corresponding to all the above subgroups, we anal-
ogously define Lie subalgebras of A,.gl,(C).

2.1. Iwasawa decomposition. Multiplication ARSL,(C)x AF SL,(C) — A,SL,(C)
is a real-analytic diffeomorphism onto [46] (with respect to the natural smooth man-
ifold structure, as in [47] and Chapter 3 of [51}). The unique splitting of an element
® € A,SL,(C)

¢ = FB,
with F € ABSL,(C) and B € AJSL,(C), will be called Iwasawa (or r-Iwasawa)
decomposition. Since BNSU, = {Id}, also AXSL,(C) N A} SL,(C) = {Id}. The nor-
malization B(0) € B is a choice to ensure uniqueness of the Iwasawa factorization.
We call F the r-unitary part of ®.

2.2. Dressing action. The dressing action of A;SL,(C) on A®SL,(C) is the com-
position of left multiplication and Iwasawa decomposition. For h € AFSL;(C) and
F € AXSL,(C) let
(2.1) hF = (h#,F) B
be the Iwasawa decomposition in A,SL,(C) with h#,.F € ABSL,(C). We say h#,F
was obtained by r-dressing I’ by h.

3. Holomorphic potentials

Replacing @ — A7!Q in the Maurer—Cartan forms (1.4), (1.7) and (1.9) gives
Asl,(C)-valued 1-forms of the form

(3.1) ay= () +xa)e_ + (M lah +ab) ey + (af +af)e
Then 2day + [ax A ay] = 0 decouples into €_, €4 and € components
(3.2) . Adof + 2iday A af = 2ia) Aaf — dof,
(3.3) A ldad, + 200" ah A o = 2iah A ol — dad,

(3.4) dog +ia] Aoy = iah A af — da.
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As the left sides of (3.2) and (3.3) are A dependent while their right sides are not,
both sides of (3.2) and (3.3) must be identically zero. Maps Fy : M — AESL,(C)
for which Fy 'dF) is of the form (3.1) will be called r-unitary frames. Define

Fr(M) = {Fy: M — AZSL,(C) : F is an r-unitary frame} .

If Fy, € F.(M) then ay = F/\"ldF,\ is sup-valued for A € S! and hence &} = af,
a) = o4 and @i = of. In the following Lemma we recall a method from [21] that
generates r-unitary frames. Define

A0, (C) = {5 €AsL(C) :£=S N, > 1,6 €Cw e+}
and denote the holomorphic 1-forms on M with values in A 's(,(C) by
A QM) = {€ € Q(M, A, s1,(C) : d6 =0} .

LEMMA 3.1. Let M be a simply connected Riemann surface and £ € A, Q(M)
and ® be the solution of d® = O£ with initial condition &g € A,SL,(C) at z0 € M.
Then the map F obtained by Iwasawa decomposing ® = F'B pointwise on M is an
r-unitary frame.

PRrROOF. Expand B = Y B;M,j > 0 and define « = F~'dF. Then a =
B¢B™! — dBB™!. Now o = B¢(B™! — dB’B™! and o’ = —dB"B™!, so the
A™1 coefficient of &' can only come from AdBg(é-1). If we set £_; = aey for
a € Q'(M,C), then AdBy({~1) = paey for some function p : M — R;. So
equation (3.1) will hold if o’ has no e_ component. But o = —dB"”"B~! and thus
the A coefficient comes from —dB{ By *, which has no e_ component. This proves
the claim. W]

4. The Sym-Bobenko Formulas

Given an r-unitary frame, an immersion can be obtained by formulas first found
by Sym [60] for pseudo-spherical surfaces in R® and extended by Bobenko [6] to
CMC immersions in the three space forms. Our formulas differ from these, since we
work in untwisted loop groups. Let 9y = 9/0A.

THEOREM 4.1. Let M be a simply connected Riemann surface and Fy € F.(M)
an r-unitary frame for some r € (0,1].
(i) Let H € R*. Then for each A € C1, the map f: M x C; — R® defined by

(4.1) fa=—2AH YO\ Fy)Fy

is a (possibly branched) conformal immersion M — R® with constant mean curva-
ture H.
(ii) Let p € C1, p # 1. Then for each A € Cy, the map f: M x C; — S? defined by

(4-2) fA:Fu,\FA_l

is a (possibly branched) conformal CMC immersion into S® with H = i(14+u)/(1—pu).
(iii) For s € [r,1) and any X € Cs, the map f: M x Cs — H? defined by

(4.3) fr=FRFy
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is a (possibly branched) conformal cMC immersion of M into H* with H = (1 +
s?)/(1 - s?).
PrOOF. (i) Expand a) = Fy 'dF) as in (3.1). Differentiating (4.1) gives
df = 2iH 'F\(Atab ey — Aaf e )Fy L
Hence (df;,df}) = 0 by (1.3), proving conformality.

Branch points occur when AdF)(A~ta) €4 — Aaf €_) vanishes. Clearly fy takes
values in su, for |A| = 1. Further, [dfy A dfa] = (8i/H?)a{ A a4 AdF)\(e). Using
(3.2) and (3.3) we obtain d x dfy = (4i/H) o} A a5AdFy\(¢). By Lemma (1.1}, this
proves (i).

(ii) Write ay = Fy 'dF) as in (3.1). Then for wy = f5 1df\ we obtain

wr = AdFy(au — ay) = AdFy (A7 (p™! — Dajer + Alp — L)aje_) .
Thus {w), w}) = 0 by (1.3), proving conformality. Further, using (3.2) and (3.3)
gives dxwy = (u— p~ ol Ao AdFy(€) while [wx Awy] = —2¢(1 — p™ ) (1 — p)ab A
o AdFy(e). Using Lemma 1.2 yields the formula for H.

(iii) Let wy = f;lde. Since F) satisfles F* = F~1, we have F;t = Fl_/lX and

—t T — —t
dfx = Falon —ay5)Fx = (A= A ) Fa(afe — aze )Py,

proving conformality (df}, dfy) = 0 by (1.3). Further [wx Awy] = 2i(A — ATH( -
A Hay Aaf AdF, 5 (€) while dxwy = AA-AT'A"Hay A AdF) /5 (€). Using Lemma
1.3 yields the formula for H and concludes the proof of the theorem. O

5. The generalized Weierstrafy representation

Summarizing the above, by combining Lemma 3.1 and Theorem 4.1, cCMC sur-
faces can be constructed in the following three steps: Let £ € A, Q(M), 2o € M and
b, € ATSLQ(C)

1. Solve the initial value problem

(5.1) d® = &¢, ®(2) = o

to obtain a unique holomorphic frame ® : M — A,SL,(C).
2. Iwasawa decompose ® = F' B pointwise on M to obtain a unique F € F,.(M).
3. Insert F into one of the Sym-Bobenko formulas (4.1), (4.2) or (4.3).

We call a triple (&, ®¢, 20) Weierstrafl data. A potential £ € A, Q(M) has an
expansion, with closed forms a, b € (V'(M, C), of the form

(5.2) E=bB+0N)e. + (A ta+0(1))er + O(1)e.

The metric of the resulting cMC immersions is a nowhere vanishing multiple of
|a|?>. The Hopf differential of the resulting CMC immersion is a constant multiple
of the quadratic differential ab. To avoid branch points in examples we choose a
closed form a € (M, C*) and prescribe the umbilics as the roots of a closed form
be Q(M,C).

If the initial condition ®¢ € A,GL,(C), then & : M — A,GL,(C). The corre-
sponding Iwasawa decomposition [51] of A,GL,(C) yields a unique map F': M —
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FIGURE 1. Smyth surfaces in R3, §% and H3.

AZGL,(C) and the Sym-Bobenko formulas (4.1), (4.2) and (4.3) must be modified
and become, respectively,

(5.3) fa==200H ((OWFA)FY — tr((OnFa) Fyy HId)
(5.4) fr= \/det(F,\F;/\l)FMF)\‘l and
(5.5) = ‘detF)‘]_lF,\F;t.

The map (¢, ®o, 20) — Fr(M) is surjective [21]. Injectivity fails, since the gauge
group

(5.6) Gr(M) ={g: M — A}SL,(C) holomorphic }

acts by right multiplication on the fibers of this map: Indeed, on the holomorphic
potential level, the gauge action A.Q(M) x G.(M) — A.Q(M) is

(5.7) Eg=g""¢g+g 'dg.

By Proposition 2.9 of [10], the dressing action (2.1) descends to F,(#) and
in the context of the generalized Weierstraf representation is the variation of the
initial condition in (5.1) by left multiplication of A,SL,(C) or A,GL,(C).
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Examples. We give the Weierstrafl data for well known simply connected sur-
faces.
e Spheres. The triple (A\"leydz,1d,0) yields F = (1+22)"/2(Id+2zX e +2)he_),
which inserted into (4.1), (4.2) or (4.3) yields round spheres in R?, S* or H3.
o Smyth surfaces. Define £ = (A le, — cz¥e¢_)dz on M = C, for ¢ € C* and
k € Nu {0}. Then (£, 1d,0) yields surfaces with intrinsic rotational symmetry [7],
called Smyth surfaces [57]. In the R® case, they are proper and complete [62], and
their asymptotics are investigated in [6]. In Figure 1 we display Smyth surfaces in
R?, S% and H® with ¢ = £ and k = 1. When the target space is R® (respectively
S3, H3), we chose Ag = 1 (respectively p = A\y2 = —1, Ag = 8/25). In all three
target spaces, $o = Id and zo = 0.

For viewing surfaces in S®, we stereographically project S® from its north pole to
R® U {oo}. For surfaces in H?, we use the Poincare model, which is stereographic
projection of the Minkowski model in Lorentz space from the point (0,0,0,—-1) to
the 3-ball of points (0,z,y,z) € R>! such that z? + y? + 2? < 1, equivalent to the
3-ball of points (z,y, z) € R® such that 2% +y? + 2% < 1. The graphics are produced
by the fourth author’s cmclab [53].

6. Invariant potentials & Monodromy

Let M be a connected Riemann surface with universal cover M — M and let A
denote the group of deck transformations. Let £ € A,.Q(M) be a potential on M.
Then v*€ = £ for all vy € A. Let & : M — A,SL,(C) be a solution of the differential
equation d® = ®¢. Writing v*® = ® oy for v € A, we define x(v) € A,.SL:(C)
by x(v) = (y"®)®~!. The matrix x(v) is called the monodromy matrix of &
with respect to v. If ¥ : M — A,SL,(C) is another solution of d® = ®¢ and
x(v) = (y*¥) ¥~1, then there exists a constant C € A,SL,(C) such that ¥ = C'®.
Hence ¥(y) = Cx(y)C™! and different solutions give rise to mutually conjugate
monodromy matrices.

A choice of base point %, € M and initial condition ®, € A,SL,(C) gives
the monodromy representation x : A — A,.SL,(C) of a holomorphic potential £ €
A.Q(M). Henceforth, when we speak of the monodromy representation, or simply
monodromy, we tacitly assume that it is induced by an underlying triple (£, ®o, Zo).
Note that the invariance v*¢ = £ for all v € A is equivalent to dy = 0, ensuring
that the monodromy is z—independent and thus well defined. It is shown in [16]
that ¢MC immersions of open Riemann surfaces M can always be generated by such
invariant holomorphic potentials.

If ® = FB is the pointwise Iwasawa decomposition of ® : M — A,SL,(C),
then we shall need to study the monodromy of F to control the periodicity of the
resulting CMC immersion given by (4.1), (4.2) or (4.3). A priori, we are not assured
that the quantity H(y) = (y*F)F~! is z-independent for all v € A. When x is
ABSL,(C)-valued for all v € A, then by uniqueness of the Iwasawa decomposition,
one sees that Y = H. Assuming H is z-independent, there are well known closing
conditions for the cMC immersions, first formulated in [15] for the target R3.
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THE/OVREM 6.1. Let M be a Riemann surface with universal cover M, and let
F € F.(M) be an r-unitary frame on M with monodromy H : A — A2SL,(C).
(1) Let fx be as in (4.1) and Mg € Cy. Then v*fr, = fa, for all v € A if and only
if H(y)ly, = £Id and O H(v)|y, = 0 for all v € A.
(ii) Let fx be as in (4.2) and p, Ao € C1. Then v fr, = fa, for all v € A if and
only if H(v)|y, = H(Mlu, = £1d for all v € A.

(iil) Let fx be as in (4.3) for s € [r,1) and Ao € Cs. Thenv*fo, = fa, forally € A
if and only if H(7)|,, = £Id for all v € A.

Proor. The above closing conditions (i) - (iii) are immediate consequences of
the Sym-Bobenko formulas (4.1), (4.2) and (4.3). O

The closing conditions in Theorem 6.1 are invariant under conjugation. Fur-
thermore, Theorem 6.1 also holds when (4.1), (4.2) or (4.3) are replaced respectively
by (5.3), (5.4) or (5.5), and F' and H take values in AXGL,(C).

7. Cylinders and Delaunay surfaces

We apply the preceeding ideas and derive Weierstrafl data for cMC cylinders
in the three dimensional space forms. The domain will be the Riemann surface
M = C*. Hence the group of deck transformations is generated by

(7.1) 7 :logz v logz + 2mi .

7.1. Round cylinders. Define £ = (A~lae, —ae_)z"'dz, a € R. Then (£, 1d,1)
yields the unitary frame

F = exp (log z(A"aey. — ae_) — log Z(ae; — Aae-))

with monodromy H(7) = exp (2mia((1 + A )er — (1 + Ne_)).

When the target is R® we choose A\g = 1 and a = 1/4; for S* we choose
Mm=e® p=e* for§cRanda=1/(2v/2+ 2cosh); for H* we choose Ay = e?
for ¢ € R* and a = 1/(2/2 + 2coshg). In each case, the appropriate condition of
Theorem 6.1 holds and thus the resulting maps f», given by the corresponding Sym-
Bobenko formula are conformal ¢MC immersions defined on C*. Inserting F' into
equations (4.1), (4.2) or (4.3) yields explicit parametrizations of round cylinders.
In S3, each cylinder becomes a covering of a torus, since its geodesic axis in S? is
closed. Round cylinders are members of the family of Delaunay surfaces to which
we turn next.

7.2. Delaunay surfaces. Delaunay surfaces are ¢cMC surfaces of revolution. In
the Euclidean case, these surfaces are described via the generalized Weierstrafl rep-
resentation in detail in [35]. Analogous arguments to those in [35] show that the
Weierstral data beiow generate aiso Delaunay surfaces in 5° and H®. Aiterna-
tively, since we compute Delaunay frames in section 11, one can explicitly verify
this. For more details on Delaunay surfaces in the space forms we refer to {42], [43]
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and (58], to name just a few references. We give the Weierstraf} data here: Define
fora,beC ceR

(7.2) A =ice+ (aXt +blep — (@\+ ble_.

Then (271Adz,1d, 1) gives ® = exp(Alogz) with unitary monodromy exp{(2miA).
The closing conditions (i) - (iii) of Theorem 6.1 are respectively:
e For R%, we choose A\g = 1 and a, b € C, ¢ € R so that

(7.3) & +la+b?=1/4and ab € R

e For 53, we choose \g = e, p =€ for0 € (0,2 CRanda,beC c€ Rso
that

(7.4) ¢ + la +b|? — 4absin?(6/2) = 1/4 and ab € R.
e For H3, we choose A\g = e9 for ¢ € R* and a, b € C, ¢ € R so that
(7.5) ¢® + |a + b|? + 4absinh®(g/2) = 1/4 and ab € R.

EXAMPLE 7.1. Figure 1 depicts Delaunay surfaces in R®, S° and H®. These are
obtained from Weierstraff data (27*Adz, 1d, 1) with ¢ = 0 and the following data:
R:a=4b=T1and ho =1; 5% a=.077, b= 442579 and p = \;> = ™/2;
H3:a=1/(2V34), b= /2/17 and X¢ = 1/4.

7.3. Weights. Let v be an oriented loop about an annular end of a cMC surface
in R% or S® or H®, and let Q be an immersed disk with boundary . Let 7 be the
unit conormal of the surface along v and let v be the unit normal of @, the signs
of both of them determined by the orientation of v, and let H denote the mean
curvature. Then the fluz of the end with respect to a Killing vector field Y (in R?
or S% or H3) is

(7.6) w(Y):%(L(n,Y)—QH/Q(u,Y)).

When the end is asymptotic to a Delaunay surface with axis £ and Y is the Killing
vector field associated to unit translation along the direction of ¢, we abbreviate
w(Y) to w and say that w is the weight of the end. This weight w changes sign
when the orientation of 7 is reversed, but otherwise is independent of the choices
of v and Q and hence a homology invariant [43], [42]. (Since the mean curvature
in [43] and [42] is defined as the sum of the principal curvatures, rather than the
average, we must replace H by 2H in the formulas for the weights there.)

As the unitary Delaunay frame has the simple form F|g = exp(iAargz) for
z € 8%, the image of S* under the resulting immersion is a geodesic circle which
can be explicitly computed. Also, one can explicitly compute the normal vector to
the surface along the image of S!, allowing us to compute the weights of Delaunay
surfaces:
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LEMMA 7.1. The weights of Delaunay surfaces in R, S® and H® generated by
Weierstrafl data (27 Adz, Id, 1) are given respectively by the following quantities:
_ 16ab
\H|’
16ab
7.7 W= ———,
(7.7) H?+1
16ab
H>—1

PROOF. Because & = exp(logz A) € ARSL,(C) when |z| = 1, by uniqueness of
the Iwasawa factorization, also F' = exp(log z A) on S!. Thus by the Sym-Bobenko
formulas for the cMC immersion f and by the formulas for the normal N in the
proofs of Lemmas 1.1, 1.2 and 1.3, we also know f and N explicitly for z € S!.
Hence, defining v to be the counterclockwise loop about the circle f({|z| = 1}),
and choosing Q to be the totally geodesic disk with boundary v, we can explicitly
compute the weight (7.6). In the case of R, the computation is as follows: To
simplify the computations, we may assume without loss of generality that a, b € R
and ¢ = 0, and that both b and H are positive, see [35]. Then

F(ze S',A=1) =Re(v2)Id + i Im(v/2) (e — €_),
F(z € SY|,_, = —2ia Im(V2)(e4 +€_),
and the resulting immersion (4.1) and normal are given by
fz€ S, A=1) = ~da H™ Im(v/2) (Re(v3)(ex +e-) + Im(v/2) ),
N(z e 8, A=1) =2(Re*(Vz) — 1) e — 2Re(vz) Im(v/2)(e; +€_).

It follows that the circular disk @ with boundary v has radius 2{a/H| and normal
v =i(e; —e_). Furthermore, ¥ = v, and n = v or n = —v when a > 0 respectively

a < 0~ Ihell
(‘;41 16(1 l(i(lb

COROLLARY 7.2. The weights of Delaunay surfaces in R®, S% or H® are subject
to the following bounds, respectively:

a

w < —,
~ |H|
(7.8) (VHE 1+ |H|) <w<2(VH?+1-|H]),
w < 2(|H| - H? - 1).

Proo¥. For the R® case, by (7.3) it follows that |a|?> + [b]* + 2ab < } and so
4ab < . Thus w < !17[ by the first equation of (7.7). The argumienis are similar
for the other two space forms, using (7.4) and (7.5) and the formulas for the mean
curvature in Theorem 4.1. O
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An unduloid (respectively nodoid, twice punctured round sphere, round cylin-
der) is produced when ab > 0 (respectively ab < 0, ab =0, ¢ = 0 and |a| = |b]).

8. Asymptotics for Delaunay Ends

We give a sketch of how we prove that a surface has a Delaunay end and
defer the technical proof to section 12. We must first define some norms: Let
X(A) : E — gl,(C) for E C C and define the operator norm || X||g by

| X||g := sup |X|, where | X|:= max /(Xw, Xw)
\EE weC;|w|=1

with (-,-) the bilinear extension of the standard R? inner product. This is a multi-
plicative norm and is equivalent to the Euclidean norm on matrices in gl,(C).

To show that some associated family g, has a Delaunay end for A = Xg, say at
a puncture z = 0, we compare it to an associated family of Delaunay surfaces fP
and show that
lim; 0 ga — [l =0 for the targets R®, S3,

(8.1) lim o |ga, — fRlIfI7P =0 for the target H>.

Assume the immersions f/{), g are generated by unitary frames F) and G respec-
tively. Using the Sym-Bobenko formulas (4.1) (4.3) (4.2), the convergence in (8.1)
is equivalent to

R case B oA (FY G G
(8.2) % case : \GuA(G;ua‘—G;;EM)F;w i=xe
z—0

|
H? case : ‘FXF,\t}

6 (e R -G R B

Sufficient conditions for (8.2) to hold are: ||0x(Fy 'Gi)llc, — 0 as z = 0 for R?;
|FT Gy — 1d]je, = 0 as z — 0 for $3; ||[Fy'Gx — 1d||¢,,,, — 0 as z — 0 for H®.

REMARK 8.1. We prove only a weaker “relative” convergence in the H® case.
Since |Ao| # 1 in this case, |F\| and |G| do not remain uniformly bounded on C)y,),
as they will for the other two targets, restricting us to the weaker result in H*. Here
is only one of several places where |\o| # 1 makes the H® case signifigantly different
from the other two cases.

While the extended unitary frame of a Delaunay surface can be computed, see
section 11, these conditions above remain hard to check since G is generally not
explicitly known. If the unitary frames are somehow related, one can say more. A
sufficient condition for this to be the case is if the potentials are related as follows:
Let A be as in (7.2) and assume that g\ and f)l? are generated by potentials 7
respectively Az~ 'dz, and that n = Az~ 1dz + 9 with ¥ holomorphic in a neighbour-
hood U of z = 0. If we write z* = exp(Alogz), then we modify in Lemma 8.2
a well-known resiilt from the theory of regular singular points which asserts that
there exists a solution of d¥ = ¥y of the form

(8.3) U=2z"P
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with a map P = P(z, A) that is holomorphic in U and P(0, A) = Id.

LEMMA 8.2. Let U be an open neighbourhood of ze € C, U* = U \ {2} and
€ (0,1). Suppose that £ € A QU™*) for all v € (p,1/p) has a simple pole at z,
and the following expansion in z at ze:

E=A(z—2) tdz + Zéj(/\)(z —z)dz,

320

where A = A(\) and Ao are as in Subsection 7.2 and either (7.3) or (7.4) or (7.5)
holds. Then there exists an o € (p,1) and an open set V with z, € V C U and a
map P:V — A.SL,(C) for allr € (ro,1)U(1,1/r0) such that P = I+ O((z — z.)})
at z. and

(8.4) (A(z — z.)"dz).P =¢.

Furthermore, P is holomorphic in A,, except at a finite number of points in Cy. In
the case that &()\) = 0 and R < min(|A\o|*!) and that Ao and A are chosen so that
(7.5) holds, then ro can be chosen strictly less than min(|Ao|%!).

PROOF. As this result is well known (see [17], for example), we merely outline
the proof. Setting P = 3,5, Pi(z — z)* yields the recursive equations

B
|
-

(8.5) kP — [Py, €a] =) Pib—j, k21, R =Id

<,
Il
o

The solvability for all P follows from the fact that the difference of the two eigen-
values of A over C} is an integer at only isolated points. The series for P converges
by standard ODE arguments, see [29], [22].

In fact, P is defined and holomorphic in A and det P = 1, for any nonzero
A # Mg+, where

Ap = % < T —4T+2j:\/(’“;1 —4T+2) —4) keN
with Y =0 or Y = sin?(8/2) or T = — sinh?(g/2) for R® or S® or H?, respectively.
Defining P = {Ag + : [Ar,+| < 1}, then 7o can be chosen to be the maximum norm
of elements in P.
When & = 0, then, with & = 1 in Equation (8.5), we find that P, = 0, and hence
P is nonsingular at A; +. Since Xg is in the set {A; +, A}, the final statement of
the lemma follows. O

Returning to the asymptotics, let us put Lemma 8.2 to work. Let ¥ be the
special solution in (8.3). If ¥ = G B and z* = Fp Bp are the pointwise r-Iwasawa
decompositions in U* = U \ {0} for r close to 1, then (8.3) vields an r-Iwasawa
splitting

(8.6) BnPBp' = F5'G B Bp'.
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Since Iwasawa splitting is an analytic diffeomorphism that preserves C' convergence
(see [51]), it suffices to show

(8.7) lim ||BpPB5* —1d|lc, =0, lim ||6x(BoPBp')|lc, =0
z—0 z—0

to conclude that

(88) lim ||F5'G ~1d[[a, =0, lim [|95(F5*G)lla, = 0.

Then if g € A,, the convergence in (8.1) is shown. (The H? case is more difficult,
because then Ag € A,, but we remedy this in Theorem 8.3 and its proof in section
12.)

The convergence in (8.7) can be analysed since we know enough about the
map P(z, A) and we explicitly know Bp from Theorem 11.1. This is the essential
idea behind the following asymptotics result, which we state and prove for general
solutions ¥ of d¥ = ¥ in A.GL,(C).

THEOREM 8.3. Let U be an open neighborhood of z. € C, and A as in (7.2)
with ab # 0. Let

E= Az —z) Mz + > 6N (z — 2.) dz € A, Q).
Jjz0

Let P be as in Lemma 8.2 satisfying (8.4). Suppose r < 1 is chosen so that P
is nonsingular on A, \ C1. Let G be the r-unitary frame obtained from r-Iwasawa
splitting a solution ¥ € A,GLy(C) of d¥ = ¥ £ that is defined on A, with det(¥) # 0
on A, \ Ci, and let F' be the r-unitary frame obtained from splitting ¥ P
Suppose that the monodromy matrices of F and G around z. both satisfy the
appropriate closing condition of Theorem 6.1. Denoting by f and g the correspond-
ing CMC immersions (5.3) (5.4) (5.5) for the appropriate spaceform, we conclude in
each of the following cases (i) — (iil) below that f is an end of a Delaunay surface
and
(8.9) lim [lg = fllgrgy = 0 for B and 8°,  lim ”Ti—;ﬁ’{”f}@i = 0 for H®,
for any r sufficiently close to 1. Furthermore, there ezxists a small radius £ ball
B (o) about Ao such that

(8.10) lim ”F’lG — IdHBe(/\o) = lim Ha)\(F_lG)“BS()‘O) =0.
Z—rZe Z—>Ze
(i) For the R® case assume that (7.3) and choose \g = 1. Suppose that the R3 weight
associated to A satisfies
(8.11) w > —3/|H| .

(ii) For the 5% case, assume that A satisfies (7.4) and A2 = p = €* for some
§ € (0.Z] C R. - Suppose that the S° weight associated to A and the S° mean

2
curvature H = — cot 8 satisfy

(8.12) w>6(H—-VH +1).
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(iii) For the H® case, assume that A satisfies (7.5) and Ao = e? for some ¢ < 0. In
addition we require that

(8.13) [A4,&]=0

holds for all X € Cy. Suppose there exists an s € (0,|Xo]) so that ¥ € A, GL,(C)
for all 7 € (s,1). Suppose that the H® weight associated to A and the H® mean
curvature H = — coth g satisfy

(8.14) w>6(vVH2—1—-H).

REMARK 8.4. In the case of H3, we have |Ao| < 7, in which case it is not clear
that F, G, f and g are even definable at Ao. However, the conditions in case (iii)
of the theorem imply that they indeed are defined, as we will see in the proof of this
theorem.

The inequalities (8.11), (8.12) and (8.14) seem to be essential, since numerical
experiments suggest they are precisely the interval of weights for which the corre-
sponding Delaunay surfaces are not bifurcating in the sense of Mazzeo and Pacard
[45].

We prove Theorem 8.3 in section 12, and first discuss examples to which this
result applies. We present cylinders with one Delaunay end and an arbitrary number
of umbilics and then turn our attention to trinoids with Delaunay ends in section
9.

8.1. Perturbed Delaunay surfaces. The period problem for the cylinders we
describe here was solved for the R® case in [38], but the asymptotics question is
resolved here. Let M = C* and £ = Az~ 'dz with A as in (7.2). Assume that A
and Ao satisfy (7.3) or (7.4) or (7.5) for the respective target. Let n € A,.Q(C).
By Theorem 8.2, there is a solution of d® = ®(¢ + 1) of the form ® = 24P with
entire P : C — A,SLy(C) for some r € (0,1) arbitrarily close to 1. By (8.5), we
may assume Py = Id. For 7 as in (7.1), the monodromy of & is x(7) = exp(2ntA) €
AESL,(C), because 7P = P. So the monodromy of the unitary part F' of ® under
r-Iwasawa decomposition satisfies H(7) = x(7), and, by (7.3) (7.4) (7.5), the closing
conditions (i), (ii) and (iil) of Theorem 6.1 are satisfied. This yields the existence of
many types of CMC cylinders in R®, H®, and S®. When the target is H>, we must
further ensure that F' is nonsingular at Ag = €¢ = A; + or Ay —. Choosing ¢ = 1d
and z, = 0 in Theorem 8.3, and retaining all other notations of Theorem 8.3 we
arrive at the following:

COROLLARY 8.5. When A satisfies (8.11) or (8.12) and the target is R* or S®
respectively, the CMC surface obtained from ® = exp(Alog z) P has an asymptotically
Delaunay end at z = 0. If A satisfies (8.14) and additionally [A, &) = 0, then this
is also true for the target H>.

One example of such a ¢MC surface, looking like a Smyth surface with a De-
launay end added 1o its head, can be produced with the potential £ = Az~ ~dz +
azFe_dz, for any a € C* and k € N. See Figure 2 (see also [34] and [38] when
the target space is R®). We note that ¢ is asymptotically the same as the potential
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FIGURE 2. Perturbed Delaunay surfaces in R®, S® and H?.

for the Smyth surfaces at z = oco. Furthermore, §& = 0 and so Corollary 8.5 is
applicable for all three target space forms, implying that all these surfaces have an
asymptotically Delaunay end at z = 0.

EXAMPLE 8.1. Figure 2 displays perturbed Delaunay surfaces in R®, S% and
H?3. These surfaces have three umbilics and are generated by triples (Az7'dz +
azfe_dz, P(z = 1), 1) with « = -1/5, ¢ = 0, k = 2 and in R3: a = 9/20,
b=1/20 and Ao = 1; in S3: a = 0.077, b = 0.442579 and p = X\, = €™/, in H3:
a=1/(2v34), b= +/2/17 and Ao = 1/4. The initial condition P(1) is obtained by
solving the corresponding equation (8.5).

9. Trinoids in R®, S® and H*

To construct trinoids, we find a family of potentials defined on the thrice punc-
tured Riemann sphere and dressing elements that unitarize their monodromy repre-
sentations. First we choose a potential whose monodromy representation is point-
wise unitarizable on C7, and then apply Theorem 9.4 to construct a dressing thart
closes the resulting cMcC surface. Then we show that the conditions of Theorem 8.3
are satisfied, ensuring that the ends of the surface are asymptotically Delaunay.



9. TRINOIDS IN R% $3 AND H? 57

This family of trinoids is a three-parameter family of surfaces for each choice
of target space and each choice of constant mean curvature, parametrized by the
three end-weights.

Normalization: We make the following normalizations, for each of the target
spaces:

R3: Ag=1] 8%: e n{-% <arc(A\) <0}, p=Arg2 | H®: X €(0,1) inRT

For S® and H?, the mean curvature H is determined as in Theorem 4.1. For
R®, H can be any positive real number. We next extend a result of [55] to S* and
H3.

THEOREM 9.1. Let M = C\ {0, 1}. Let H and Ao be as in the normalization
above. For k € {0, 1, oo}, let vy € R\ {0} satisfy and define vi(ho + Ny’ £2) < 4

1 1 v _
9.1) w(\) = —2——5\/1—Zk((/\o+/\01)—(/\+)\‘1)).
With my = vi(+1) and ny = ve(=1) and {3, 5, k} = {0, 1, oo}, suppose that
Inol + |n1f + {neo| < 1
il < |nj| + [

(9.2) Imo| + {m1| + |meo| < 1

for the ambient spaces S°, H?
Ima| < |my| + [m]

|v;] < |v;| + |vk| for the ambient space R®.
Let
_ 0 A ldz
&= <)\(/\+)\_1-—)\0——)\51)Q/dz 0 ) ’
with
B Veo2? 4+ (V1 — Vg — Voo )2 + Vo
Q= 16z%(z — 1)2
Then & generates a conformal CMC immersion f : M — R® (respectively S®, H®)
with three asymptotically Delaunay ends having weights wy = cvg, Wy = CU1, Weo =
CVoo, where c is respectively 1/H, 1/v/H? +1, 1/vVH? — 1.

We defer the proof of Theorem 9.1 to the end of this section, and first discuss
examples and prerequisite technicalities.

dz?.

REMARK 9.2. Note that Q in Theorem 9.1 is proportional to the Hopf differen-
tial (by a z-independent constant), and that the condition vy (Mo + A\g' —2) < 4 is
redundant when the target space is R® or H®.

The following lemma is required for proving Theorem 9.1. The lemma shows
tnat & can be gauged to a form with a simple pole that is asymprtovicaily equal 1o a
potential for a Delaunay surface, at any given end. Furthermore, the constant term
of the potential becomes zero, which ensures that (8.13) holds for the H* case.
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LEMMA 9.3. Let £ be a trinoid potential as in Theorem 9.1. Then for each end
p € {0, 1, 0o} there exists a gauge on a punctured neighborhood V '\ {p} of p, which
is nonsingular on I, so that in some conformal coordinate ( with ((p) = 0, the
expansion of £.g 1s

-1 d
9.3) 9= (b AT ”) —f +O(Q)dG; a, beE R,

where O((') denotes a holomorphic term that is zero at { = 0.

Proor. We consider the end z = 0; the calculation at the other ends is analo-
gous. Let = L — vo(X). There exist a, b € R with |a| > [b] so that p¢* = u? for
@ =aX"! +b. With

Vo + V1 — Voo
k= ——F7——,
21)()

let

(04) g ) = (Zlo/ z“q/2> <—1§A A?p) (I‘” : <e0_‘11 (1)) Z>

On a small punctured neighborhood V' \ {0} of z = 0, g : (V\ {0}) x I; —
SL,(C)/{*Id} is a nonsingular analytic map such that g(z, 0) is upper triangular.
(This is sufficient to guarantee that gauging by g has no effect in the Sym-Bobenko
formulas.} A calculation shows that the expansion of {.g at z = 0 is

(9.5) t.g= Az dz + kAdz + O(2)dz, A= <£* ‘g) .
In the coordinate ( = z — k22, the expansion of £.g at ( = 01is £.9 = A(dC +
0(¢)dc. m

9.1. Pointwise unitarisation. Let us denote the ends by (zp, 21, 200) = (0,1, 00).
Let ®(z, A\) : M x C* — SL,(C) be a holomorphic solution of d® = ®£ for some
trinoid potential £. Let H be the monodromy representation of . Let 7; be the
deck transformation associated to a once-wrapped counterclockwise loop about the
end z;, and let H; = H(r;) : C° — SL,(C) be the monodromy of 7;. Note that
HoH1Hoo = 1d.

Fix some A\; € C;. Assume that each H;(A1) is individually conjugate to a
matrix in SU,, that is, either —1 < ¢;(A1) < 1 or H; (A1) = £Id, where 2t; = tr(H;).
The three matrices H; (A1) are then simultaneously unitarisable, that is, there exists
a C € GL,(C) so that CH;(A1)C~* € SU, for j = 0,1, 00, if and only if, see for
example [25], [64],

(1—t5 — 8] — tos + 2tot1te0) [,, > 0.

Let Ty C {(vo, ¥1,¥00) € R®} be the set with tetrahedral boundary defined by

(9.6) Vop+ v +Vee <1 and v <y + 1y

for all distinct {%,7,k} = {0,1,00} and v; € R. Let T be the orbit of Ty by the
action of the group generated by the transformations vy — v + 1 and vy = —vi.
The inequalities (9.6) are the case n = 3 of Biswas’ inequalities for n punctures
[3], and are the spherical triangle inequalities in a 2-sphere of radius 1/(27). For
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a triangle with side lengths 1 in such a sphere, v + 11 + Vo < 1 means that the
triangle is never bigger than the maximal triangle, and v; < v; 4+ v is the triangle
inequality.

Define v; by t; = cos(2nrv;) for v; € R. The matrices 7, (A;) are simultaneously
unitarisable if and only if, see for instance [3], [55] or [64],

(9.7) (vo,11, Voo ), €T .

Furthermore, Hp, H1 and Hoo do not all commute at Aq if (1/0, V1,Ve0)|a, 18 DOt in
the boundary 9T of T' [64].

9.2. Global unitarisation. We cite a result from [55], which implies that once
the monodromies of a trinoid are simultaneously pointwise unitarised, they can be
simultaneously unitarised globally by a loop element. A similar result can be found
n [22].

THEOREM 9.4. [55] (Gluing theorem) Let Hy,...,H, : C* = SLy(C) and S be a
finite set of points in Cy such that

(i) there exist a j and k so that [H;, Hg] 0 on C1\ S, and
(il) Hi,...,Hn are simultaneously unitarisable pointwise on Cy \ S.

Then there ezists anr € (0,1) and o C : I, - Myy2(C) so that

(i) {det(C) =0} N A, is a finite subset of Cy,
(ii) C € AfGL,(C) for all s € (0,1),
(ili) CH;C' € ARGL,(C) forall j=1,..,n

EXAMPLE 9.1. Ezamples of equilateral trinoids in R?, S® and H? are displayed
in Figure 8. The values (end-weight, H, Xog) are respectively (%,1,1), (%,0, —1)
and (%7, %, %(4 — /7). For these graphics, we computed appropriate dressing
matrices according to Theorem 9.4 to close the surfaces.

LEMMA 9.5. Let € be as in Theorem 9.1, and ®(z, A) : M xC > SLy(C)
a holomorphic solution of d® = ®£. Then the monodromy representation H of ®
satisfies the assumptions (i) and (i) of the gluing theorem 9.4. Furthermore, the
inequalities (9.2) imply that the lower bounds on the weights (8.11) and (8.12) and
(8.14) hold.

PRrROOF. We first compute the eigenvalues of Hy. For the gauge g and new
coordinate ¢ in Lemma 9.3 at the end zx, one solution of d® = ®(£.g) is & = &g
with monodromies —Hj, for each 7¢. Since £.¢ has a simple pole at z;, Lemma 8.2
implies that —Hy is conjugate to exp(2miAy), where Ay = Res,, £.9. Hence the
eigenvalues of Hy are exp(£27iv).

We now show that the curve

(ro(N), 1(N), veo(A)) € TN [-1/2,1/2® Cc R®
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for all A € C, if and only if the inequalities (9.2) are satisfied. One direction is
clear. To prove the other direction, assume equations (9.2) are satisfied. Define

pr =3 —3sV1i—wz, ke{0,1, 00}
f=lpol +ip1] + |pool

fi:_lpi|+lpj|+|pk|, {i’ > k}:{()’ L, OO}:
forz el := [’\°+’\4° 1"2, ’\°+>‘£ 1+2]. All three terms of f are increasing when x > 0
and decreasing when x < 0, so the first two inequalities in (9.2) imply that f <1
on I. Hence || + |v2] + |v3] €1 on Ch.

In the case 0 < vg < vy or v, < vy < 0, fo is increasing, so |ng| < |n1| + [Noo|
implies f1 is non-negative on Z. Hence |vp| < |11} + |vso] on Ch.

It is easy to prove the following fact: The function py/po extends to a smooth
function at = 0, and, if v1 > vg, then |p1/po] is strictly increasing.

In the case vy > vy, the above fact implies that fo/|po| is non-increasing. Fur-
ther, |no| < |n1| + |neo| implies that fo/|po] is non-negative at the upper endpoint
of Z, so fo/|pol, and hence fo, is non-negative on Z. Hence |pp| < |v1| + |veo| on Cy.

In the case vy < v1, the above fact implies that that fo/|po| is non-decreasing.
But (fo/lpo])(0) = —1 + |va/w1| + |va/v1] > 0, so fo/|po| is non-negative on Z.
Hence |11} < |vo} + |v3] on Cy. Symmetric arguments for the other cases imply that
(vo, V1, Voo) € TN [—1/2,1/2]? for all A € C;.

To prove the first part of the lemma, suppose the inequalities (9.2) hold. Be-
cause (vg, V1, Veo) € T'N[—1/2,1/2], Equation (9.6) holds, and so Ho, Hi, Hoo are
simultaneously unitarizable on C;\S, where S is the finite set {A € C; such that (vy,11,v) €
OT}. Assumption (i) of Theorem 9.4 holds on C; \ S as well.

To prove the final sentence of the lemma, we note that ny > —1/2 and my >
—1/2 imply that vy > —12/(Xo + A" + 2) in all three space forms, and that
vg > —12/(Ao + Ay ' — 2) in S3. Thus the weights wy satisfy

wy > —3/H in R,
(9.8) 6(VH2+1+H)>w, > -6(VH2+1—-H)in S*,
wy > —6(H —/H?2 —1) in H?,

where ¢ is defined as in Theorem 9.1. We must show that the inequalities in (9.8)
are strict. If vy attains its lower bound in (9.8), then |n1| + |neo| = 1/2 and vo < 1
and vg < vso. Therefore fu/|po| is an increasing function which is zero at the upper
endpoint of Z, and so |mg| > |m1| + |mwl, contradicting one of the inequalities in
(9.2). All other cases of equality in (9.8) can be dealt with similarly. O

REMARK 9.6. When the target space is S°, there exists a A € Cy so that vi()\) =
0 for all k = 0,1,00 and thus |v;| < |v;| + |vk| automatically holds in S®, if all the
other inequalities_in (9.2) hold. However, |v;| < |vj| + |vx| will not hold in general
when the target is H3, since then there ezist trinoids that satisfy (9.2) but not
lus] < |v;]+ vkl Ao € (0,1) with Xo + Ay = 10 and vo = —3/5 and vi = veo = 1/4
in Theorem 9.1 is such an example.
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Proof of Theorem 9.1: Let ®(z, A) : MxC - SL,(C) be a solution of d® = ®&.
By Lemma 9.5 and the gluing theorem 9.4, there exists an r-dressing matrix C for r
close to 1 which unitarizes the monodromy representation. We have that v, (Xg) = 0
for k = 0, 1, 0o, which is equivalent to the conditions in Theorem 6.1 for R?*, §3
and H°3 respectively, for the dressed monodromy representation. (In the case of R?,
one must also use that O\vgl|y = 0.)

In the case of H?, with F and B the r-Iwasawa factors of ®, F' extends holo-
morphically to Ag and det F, # 0. This is because ¥ = C®B~! and C, &, B are
all nonsingular at Ag. Thus we are able to apply the Sym-Bobenko formula (5.5)
in the case of H2. In the other space forms, Ay € C1, so F' is clearly nonsingular at
Ao-

We conclude that the resulting CMC immersion satisfies 77 fy, = f, for all
T € A, for all three space forms.

Finally, to show that each end z; is asymptotic to an end of a Delaunay surface,
we note that all the conditions of Theorem 8.3 are satisfied for £.¢ in the coordinate
¢, where g and ( are as in Lemma 9.3: Ag equals A; 1 or A; _, the commutativity
condition (8.13) holds by the choice of g, and the lower bounds on the weights
(8.11), (8.12), (8.14) hold by Lemma 9.5. a

10. Dressed n-noids

We come to a brief discussion of examples of dressed cylinders and trinoids by
the simple factors of Terng and Uhlenbeck [61]. A simple factor is determined by a
choice of a line in C? and a complex number, and by suitably choosing this data, the
dressed surface will retain its topology. We show how to obtain dressed cylinders
and trinoids in all three space forms, building on results obtained in [39].

10.1. Simple factors. Let 7, : C2 — L be the hermitian projection onto a line
L € CP!. For o € C, simple factors [61] are loops of the form

a—A
(10.1) VLo =Mt Ty T
To obtain elements of A}SL,(C), we write
(10.2) (det¥,a(0) 29 o(0) = QR

with @ € SU,, R € B. A simple factor of A}SL,(C) with r < |a] is a loop of the
form

(10.3) hia = (detyra) 2 Q L0
with ¢ o and @ defined as in (10.1) respectively (10.2). By construction
(10.4) hio € ARSL,(C)

for s > |a|. By Proposition 4.2 in [61] dressing by simple factors is explicit: In
fact. for F'(z,)) € F.(M) and r € (0,1) and hy , a simple factor with @ € C and
r < |a] < 1, we have

(10.5) hie #: F = b o Fhil, with L' = F(z,a) L.
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FIGURE 3. Bubbletons in R*, S® and H3.

The proof of this may be found in [39], where furthermore, the following result is
obtained:

THEOREM 10.1. [39] Let F € F.(M) with monodromy H(X) : A — AXSL,(C).
Assume there exists a € C, r < |a| < 1 such that H(c) is reducible and let L € CP!
such that

(10.6) H@) L=L
for all T € A. Then hy o#,F has monodromy
(10.7) hi, oM b

10.2. Bubbletons. Let & = 2# with A as in (7.2) be the holomorphic frame
of a Delaunay surface and )¢ (and p in the S® case) such that (7.3) or (7.4) or
(7.5) hold. As the monodromy of ® is unitary, it coincides with the monodromy of
the unitary Delaunay frame F with respect to the deck transformation (7.1) and is
given by H = exp(2wiA). Now let a € C be a solution of

. 20— 2-0++(2+0)?%?-4=0,
where § = (ab)~1(k*/4 — ¢® — |a + bJ?), for k € Z such that « ¢ C;. Using
the closing conditions (7.3), (7.4) and (7.5) for Delaunay surfaces, we see that
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6= (k> —1)(4ab)~' + T, where T = 0 or ¥ = —4sin*(4/2) or T = 4sinh?(¢/2) for
the target space R® or §% or H®, respectively. Then exp(2mi A(a)) = %Id, so for the
line L = {1: 0] € CP* and the simple factor hy ,, the dressed frame F= heo#r F
with r < |} has monodromy Ay, o exp(27iA) h;jl and satisfies one of the conditions
(i), (ii) or (iii) of Theorem 6.1 since exp(27iA) does. Hence the resulting surfaces
are again CMC cylinders. A computation shows that ja] < A\¢ < |a™!| when the
target space is H3, so A\g € A, in the H® case, and so det Fy, # 0, allowing us to
apply the generalized Sym-Bobenko formula (5.5).

These ideas where used in [34] to construct bubbletons in R® and have recently
been utilised in [39] to dress cMC m-noids. In [59], bubbletons in R® with ends
asymptotic to round cylinders were explicitly constructed. In [65] and [50] less
explicit constructions of bubbletons in R*® with Delaunay ends where obtained.
One can easily show that for the surfaces in [59] the ends are asymptotic to round
cylinders, but it was unproven that dressing a Delaunay frame with an appropriate
hy,o gives a surface with asymptotically Delaunay ends. We prove this in Theorem
10.3. (Note that one cannot apply part (i) of Theorem 8.3, since r < |a| may not
be sufficiently close to 1.)

REMARK 10.2. Let L ={1:0] and ai,...,0n € C, a; # o for i # j as above,
and define h = H?:I hir,a;- By similar arguments as above, dressing with h produces
multibubbletons.

When the initial surface is a round cylinder, one can find explicit parametri-
sations for the resulting bubbletons (and multibubbletons) in all three space forms
[40). When the target space is R®, these explicit parametrisations coincide with
those in [59], which were produced by Bianchi’s Backlund transformation of a round
cylinder. This can also be seen by combining results of [30] and [9].

EXAMPLE 10.1. The ezamples in Figure 3 are generated by triples (Az7'dz, by a, 1)

where A is as in (7.2) with ¢ = 0, L = [1 : 0] and the following data: R®: a = b =
1/4, o = 1, a = 7+ 2V12; S%: a = b = 1/3, u = \y? = exp(2itan~*(3V/7)),
a=(T+3V3)/2; H*: a=b=1/6, Ao = (T—3V5)/2, a = 17 — 12¢/2.
In {39 it was shown that trinoids and symmetric n-noids in ®° can be dressed by
simple factors. The potentials we use in Theorem 9.1 for constructing trinoids in
R®, H? and S® are in a slightly more general form than in [39], and are identical
when the target space is R®. In the more general form, the only difference in the
potentials is the change in the constant Ag + /\51 (=2, < 2and > 2 for R, §3
and H3, respectively.). This change has little effect on the computations in [39],
and only deforms the infinite discrete set of values of A where the monodromy
is reducible. Then Lemma 3.2 of [39] can be applied verbatim, and we conclude
existence of trinoids dressed by simple factors in S® and H? as well.

ExaMPLE 10.2. In Figure 4 we display three equilateral trinoids dressed by
suitable simple factors. For the R® model, the potential in Theorem 9.1 has entries
Vo = V1 = Vo = 8/9 and Ao = 1. The S5° model is displayed with the front bubble
cut away to show the trinoidal structure. The potential data is vo = v1 = v = 16/9
and Mg = i. For the H® surface, in the potential we take vo = vi = Voo = 1/2 and
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FIGURE 4. Dressed equilateral trinoids in R®, S3 and H3.

Ao = 1/4. For each picture, the dressing was computed to close the surface, and
then the resulting surface was further dressed by a simple factor, having the effect
of adding two bubbles to each surface at its center.

It was not shown in [39] that dressing by simple factors preserves the asymp-
totic behaviour of a Delaunay end of a surface. We prove that any asymptotically
Delaunay end, which is dressed by simple factors to another closed end, gives again
an asymptotically Delaunay end. This result applies to all examples in [39] and to
the bubbletons in this section, as well as to dressed trinoids in all three target space
forms R®, S% and H3.

10.3. Asymptotics of dressed cMC surfaces. For the line L = [ag : by} € CP?,
the projections 7z, and 73 have the following matrix forms:

1 lao}? aobo) it 1 ( lbol>  —aobo
10.8 =——— | _ = _ .
( ) L |a0|%+ [b0|2 (aobo |b0|2 , T la0|2 T lbolg —agbo laolz
We set
(10.9) A={aclf:|af?< %25 and 1/4 - Y + o tab(1 — a)? > 0} ,
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where a, b € R with |a| > |b] > 0 satisfy equations (7.3) or (7.4) or (7.5) with ¢ = 0,
and Y =0 or T = —4absin?(#) or T = 4absinh?(g/2) for the target space R® or S*
or H®. (Note that by switching a and b if necessary, we may assume without loss
of generality that |b] < |a|.) In the following theorem, we denote by

(10.10) U ={z€eC:0<|z] <&}

an open punctured disk in a Riemann surface M, where z is a centered coordinate
about a point p € M. Let v : [0, 1] — U be a simple closed curve and denote by
é the corresponding deck transformation of the universal cover of .. Denoting a
small radius € ball about Ag by B.(X¢), we have the following:

THEOREM 10.3. Let G € Fr(U.) such that lim,_,o ||[FF'G —1d||g,(xs) = O for
some extended unitary Delaunay frame F (producing a Delaunay surface at Ao)
in any of the three targets. Assume that G has reducible monodromy with respect
to v at some a € A\ {Xo} with invariant subspace L € CP' and let hy o be the
corresponding simple factor. Let fy, be the cMC surface obtained from hy o#,G
with r < |a|. Then fy, converges to an end of a Delaunay surface as z — 0 in the
sense of (8.9).

We defer the proof of Theorem 10.3 to section 12, and give a corollary here:

COROLLARY 10.4. All of the dressed Delaunay surfaces and dressed trinoids
in all three space forms described in this section, as well as the dressed symmetric
n-noids in R® in [39], have asymptotically Delaunay ends in the sense of (8.9).

PROOF. We need only show that the conditions regarding o and the conver-
gence of F~!'G in Theorem 10.3 are satisfied. Although the condition of reducible
monodromy about 7y at some a € 2 in Theorem 10.3 appears restrictive, it is in
fact satisfied by all of these surfaces. The condition lim; o [|[F~'G — Id||g, (x,) = 0
is trivial for the dressed Delaunay surfaces, because in that case F' = (. This
condition lim._,o [|F71G — Idliz, (n,) = 0 holds for dressed trinoids and symmetric
n-noids, by equation (8.10) in Theorem 8.3. O

11. The Delaunay Extended Frame

We compute the extended unitary frame F' of a Delaunay surface in terms of
elliptic functions. We restrict to the case that A is off-diagonal in Theorems 11.1
and 11.4, but return to the more general form for A in Corollary 11.5.

THEOREM 11.1. Let & : C — A,SL,(C) be defined by & = exp((z + iy)A),
with A given as in (7.2) where a, b € R* and ¢ = 0. The r-Twasawa factorization
@ = FB jor any r € (0, 1] is given by

(11.1) F =®exp(—fA)B;', B = Bjexp(fA),
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and the functions v = v(z), f = £(z) and the matrices By, By satisfy

v = — (v — 4a?) (v? — 4b7), v(0) = 2,

£ /z 2dt
(11.2) T Jo 1+ (4ab))—102(t)’
_ (2v(b+al) —v' _ —1/2
BO = ( 0 dab) +’U2) , Bl = (det Bg) Bo.

PrROOF. Choose H € R* and set Q = —2abH'A7!. Let v be the nonconstant
solution of (11.2) when |a| # |b| or the constant solution v = 2b when |a| = |b|, and
set vi = H™202. Let © = ©1dz + O.dy, where :

0, = 0 —v,'Q — v H
t= ’U;lQ* + %U]H 0
6, —i A —v7'Q+ v H
2 - Q" + %le %vl_l'ui )

Let F and B be as in (11.1). We will show that that F € AXSL,(C) and B ¢
ASL,y(C). A calculation shows that B satisfies the gauge equation

(11.3) dB + ©B = BA(dz +idy), B(0, A) =1d,

or equivalently, ©3B ~iBA = 0 and B’ 4+ (©; +102)B = 0 with B(0, X) = Id. Since
O, + iO, is smooth on C with holomorphic parameter A on C, the same is true of
B. Since ©; + 10, is tracefree and B(0, A) = Id, then det B = 1. Also,

- x 'U’
B(z, 0) = 1/ 2 (1 8 [y o8l ~ W) :
v 0 55
which is upper-triangular with diagonal elements in R*. Hence B : C — ASSL,(C)
is smooth. From ® = F B it follows that F : C — A,.SL;(C) is smooth. Equivalently
to equation (11.3), F satisfies F~'dF = © with F(0, A) = Id. The symmetry
©* = —0O together with F(0, \) = Id imply that F satisfies F* = F~!'. Hence
F : C — ARSL,(C) is smooth. O

REMARK 11.2. The functions v and f have explicit forms in terms of elliptic
functions (we follow the notational conventions of the Mathematica programming
language here). For example, when 0 < |b| < |a|, we have

, iKY\ b 2b
(11.4) v(z) =2b-sn (2“1 <m - %) ’E) "~ dn(2az, 1 - b?/a?)’

where sn, dn are Jacobi elliptic functions and K = K (b%/a?) is the quarter-period
of sn(z,b%/a?).

COROLLARY 11.3. The unitary frame of any Delaunay surface up to isometry
can be written as Fp : C — AXSL,(C) with

(11.5) Fp = exp <(m +iy — £(z)) (b D ‘”_; * b)) B

for suitable a, b € R and £ and By as in (11.2).
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PROOF. A Delaunay surface is determined up to rigid motion by its weight w.
There exist a, b € R satisfying (7.7) and (7.3), (7.4) or (7.5) with ¢ = 0. The claim
now follows from Theorem 11.1. a

The associated family of surfaces obtained from Fp has constant mean curvature
H,VH? —1,V/H? + 1 respectively in R®, S® and H*. One can verify that v? is the
conformat factor and @ dz? the Hopf differential using Equations (1.4}, (1.7) and
(1.9).

11.1. Growth Estimates. The following results, which compute the growth rate
of the gauge B that gauges the Delaunay Maurer-Cartan form to the Delaunay
potential, will be used to prove Theorem 8.3 to show that the ¢MC immersion
resulting from a perturbation of a Delaunay potential is asymptotic to the base
Delaunay immersion.

We will use the following estimate on exp(fA) for A € si,(C) as in Theorem
11.1, with g = p()) an eigenvalue of A:

(11.6) |exp(£A)] < max(JId £ u~" Al) exp(| Re £]),

which is computable using exp(fA) = Jexp(fu)(Id + p*A) + %exp(—fu)(ld —
-1
utA).

THEOREM 11.4. With B and A as in Theorem 11.1, let u(\) be an eigenvalue
of A and let

(11.7) ¢ = max |u(})].

Then there exists an X € RT and ¢ : {0 < |\| < 1} = R* such that for all |z] > X
and all X € {0 < |A| < 1}, we have

(11.8) |B(z, M) < co(A) exp(e]z]).

PRrROOF. We compute the growth rate of B using its periodicity properties. Let
p € R* be the period of the function v of Theorem 11.1. For any =z € R there
exist zop € [0, p) and n € Z such that © = z¢ + np. Then v(zo + np) = v(zo),
flzg +np) = f(xs) + nf(p) and B(zqa + np) = B(xp) exp(nfpA) and consequently

(11.9) B(z) = B(=o) exp((z — zo)f(p)/pA).

Let d be the point in the set {—a/b, —b/a}NI;, and assume first that A € I, \ {0, d}.
Equation (11.9) and formula (11.6) yield the estimate

(11.10)  |B(z)| < |B(zo)| exp(|Re uf(p)/pl |z — zo|) < co exp(| Re puf(p)/pl |z]),

where co = cicacs, €1 = Sup, ep, ) |B(%0)], 2 = max|ld £ p7'A| and ¢z =
el Reuf(p)|

Next we compute the upper bound of | Re uf(p)/p| on I,. Since M = exp(f(p)A),
then f(p)A is defined on I; modulo the additive quantity miu=!A4. Let J = [0, d]
be the closed interval. Then p is single-valued on I, \ J, so uf(p) is defined on
[, \ J modulo the additive quantity mi. Hence A = Re uf(p)/p is well-defined ou
I, \ J. Moreover, h is a harmonic function, since it is locally the real part of a
holomorphic function. A calculation shows that h = g for |A] = 1, and h = 0 on
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J. The harmonicity of h then implies that |h| < ¢ for all A € I;. This bound,
together with the estimate (11.10), yields the estimate (11.8) for all z € R and all
e I\ {0, d}.

In the exceptional case A\; € {0, d}, fA is nilpotent at A;, so B(z, A;) has linear
growth in |z|. Define ¢; (A1) = 1. Since ¢ > 0, and because exponential growth
eventually supersedes linear growth, there exists an X € Rt such that (11.8) holds
at Ay for all |z > X. O

This next result extends Theorem 11.4 to the case when ¢ # 0 in (7.2).

COROLLARY 11.5. Let ® : C — A,SL,(C) be defined by ® = exp((z + iy)A),
with
_ é ax~l +b " -
A_-<b+d)\ _: ) where a, b € C* and ab, ¢ € R.
Let ® = FB be the Iwasawa factorization of ®, and let u(\) be an eigenvelue of A
and ¢ as in (11.7). Then there exists an X € RT and ¢ : {0 < |A| < 1} = RT such
that for all |z| > X and all X € {0 < |A| < 1} the inequality (11.8) holds.

Proor. To prove the inequality, we first show that there exists a # € R and a
g such that the following two properties hold:

ei()

(i) gD € AFSL,(C) with D = <0

of z + 1y.
(i) g~'Ag = A, where A := <

691'9), and g and D are independent

S0 @ +b
b+ah 0
Choose &, b € R* such that & + |af*> + |b]* = @® + b? and ab = ab and so that
la/bl > 1if |a/b] > 1, respectively |a/b] < 1if |a/b] < 1. If |a/b| > 1, define g by

) for some a, beR.

. i
(11.11) g:= - _ (ajf’\’\ ~ 35/\> .
@@+b\(a+bdr) N N @
If |a/b] < 1, define g by
. 1 ax+b &
(11.12) g:= ( 0 a,\+b> .

(@ + b)(@h + b)

With the proper choice of 4, we have the two above properties.

Let & = exp((z + iy)A), and let & = FB be its Iwasawa decomposition. By
Theorem 11.4, B satisfies the growth rate (11.8). We will use B to show that B
also satisfies (11.8).

The gauge g can be explicitly decomposed into g = UR, where U € ARSL,(C)
and R : Cr — gl,{C) and [R, A] = 0. In fact, when g takes the form in (11.11), then

row(@+ AR + (a + bA)R" RN
B —ER*A (@+ bR+ (@+ AR
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and )
. (RR"+G)Id-¢A
\/QG(SRSR* +6-&)

= exp (671210g(3)4) ,

where

R=1/(@a+b\)(a+b\), &= (@\™?!+b)ar+b),
VG + {a+ b\ (@+bA-1) — ¢
V2(6 + RR~ — &) '
Furthermore, &~1/21og § can be algebraically decomposed into
&2 1ogF = (67 log§)u + (672 logF)o + (677 log §)+,

where (6712 10g &), satisfies (67/21ogF), = —(6"/2logF): and

(672 10g F)4 |a=o is zero and (6~1/21og F) is independent of X. Although R is
single-valued in A, 671/2log § can be multiple valued, with values in C U {00}/,
where

T = 2RR*(RR* +6)) /2 and § =

Q= {27ik&™V? |k e 7).
In other words, different values of &~'/2logF can differ by terms of the form
2mik&~ /2 for k € Z. Since 2mikG~ V2 = —(27ikG~Y/?)* we conclude that
(672 1og F)o and (672 log F). are single-valued, and that exp((&~'/2log F), A)
is single-valued although (&~!/?log ), might not be. Thus we have the single-
valued decomposition

R= R, Ro R4,

where R, = exp((6~/2log F)uA) € AZSL,(C), Ro = exp((&~/?log§)oA) is con-
stant, and Ry = exp((6~1/2log §)+ A) € AfSL,(C), and R, Ry and Ry all com-
mute with A. Since

Ro® = exp((z + & + iy)A) = Flesets - Blesets
with £ = (612 1og §)o, we have
& = (URyFlzs21:D) (D Blosara DYD 'Ry D)(gD) ",

where UR, F|; 45D € ARSLy(C) and D 'B|y—z4+4D, D" Ry D, gD € A#SL,(C).
Thus

B = D_IB|Z—>Z+ER+9_17
and so B satisfies the same growth rate (11.8) as B, since D and R, and g are all
independent of z+iy. When g takes the form in (11.12), the argument is similar. O

12. Delaunay Asymptotics

We conciude by proving Theorems 8.3 and 10.3 and begin with two technical
results, which are proven in [55] for the target space k3. The proofs for the targets
S? and H? are analogous and thus omitted.
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LEMMA 12.1. Let A be as in (7.2) satisfying ab # 0. Let Ay (and also p in
the case of S°) be as in Subsection 7.2, and suppose that (7.3) or (7.4) or (7.5) is
satisfied (with |Xo| < 1) for the respective target space R® or S or H3.

Let s € (0,]Xo]) and let C : Ay — gl,(C) be an analytic map, where detC = 0
only at a finite number of points py, ..., px € C1, and suppose that C exp(2riA)C ™! €
AZSL,(C).

Then there exists a p € (0,1) such that for every r € (p,1), the CMC immersion
from C\{z.} to R® or S3 or H? produced by (5.3) or (5.4) or (5.5) respectively from
the unitary part of the r-Twasawa splitting of C(z — z.)? is an end of a Delaunay
surface with the same weight as the Delaunay surface produced from (z — ze) A

LEMMA 12.2. Let A, Ao, s and C (and u in the case of S®) be as in Lemma
12.1. Then there exists a p € (0,1) such that, for every r € (p,1), there exist
a U € ARGL,(C) and an R : A, = gl,(C) so that C = UR and [R,A] = 0.
Furthermore, A :== UAU™" is also of the Delaunay potential form in (7.2), and has
the same weight as A, and satisfies (7.3) or (7.4) or (7.3) at Ao if A does.

Proof of Theorem 8.3: The proof of (i) can be found in [55], where it is shown that
one can assume & = 0, ensuring that P is nonsingular at A; 4. In that proof in [55],
condition (8.11) implies that P has no singularities on C;. Thus P is nonsingular on
A, with s as in Lemma 12.1. Since ® := ¥ - P! = C(z ~ 2)* for some C = C(}),
and since C is finite wherever P is nonsingular, C is finite on A;. Then Lemma
12.1 implies that f is a portion (containing one end) of a Delaunay surface in R®
with the same weight w. Therefore, g has an asymptotically Delaunay end at z. of
weight w, in the sense of (8.9).

(ii) The proof is almost analogous to (i), since Ao and g still lie in C;. Just like
in the R? case, using condition (8.12) and Lemma 12.1, f is an end of a Delaunay
surface in S with weight w, and g has an asymptotically Delaunay end at z.
of weight w. There are only two parts of the proof in [55] of the R® Delaunay
asymptotics theorem that require minor modifications in order to prove (ii):

A. The weight condition in equation (8.12) must be computed by taking into
account that 4 now satisfies (7.4) rather than (7.3).

B. It follows from hm, ., ||F~'G — Id|lc, = 0 that (8.9) holds. When the
target space is S° rather than R®, a slightly different computation is required:
Given A, u € C1, both G;lF,\ and G;;F“,\ converge to Id as z — 0. Hence both
a = det(F\G, ') and 8 = det(Gu,\F;Al) converge to 1 as z —» 0. Then g — f as
z — 0 follows from (5.4) by rewriting

0x = fr = Gur (G By = VaB G A Fin ) Fi' [ det(GaGLd).

(iii) The case of Delaunay asymptotics in H* requires a significantly different
proof, using the explicit Delaunay frame computed in Corollary 11.3, because now
X € C1. Let £, ¥, G, F, P and ab # 0 all be as in Theorem 8.3, with r-Iwasawa
splittings ® := WP~ ! = F Bp, ¥ = GB.

Step 1: Changing & to zero. Recall from (8.13) that we now assume [A4, & ] =
0 for all A € C;. This condition is included for the following technical reason:
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In the proofs of Delaunay asymptotics for R® in [22], [34] and [55] first a gauge
transformation and a conformal change of parameter z fixing z, is applied to achieve
£ = 0, and hence £ = A(z — 2z,)"1dz + O((z — 2¢)!)dz. To accomplish this gauging,
the condition that det A # —1/4 in I := I, \ {0} for r < 1 and r close to 1 is used.
However, det A = —1/4 does occur in I} when Ay € C;. To avoid this problem,
we include the condition (8.13), and then a mere conformal change of parameter
z fixing z, can force £ = 0. Hence §; = P = 0. So P is defined at Ay = Ay -,
and there exists a positive s < |Ag| such that P is nonsingular on 4,. We cannot
weaken (8.13) to the assumption that [ A, &1 = 0 at only Ao, since then one can
still find examples where P; becomes singular at A\g. (In fact, the trinoid potentials
in section 9 all satisfy condition (8.13), regardless of the target.)

Step 2: F, G, f, g are well defined. Now G and F are defined and nonsingular
for all A € Uy¢(,,1)Cr, because ¥, P, B and Bp are. In particular, this is so at Ao,
and so f and g are defined. (See Remark 8.4.)

Step 3: Sufficient conditions for convergence. As in the asymptotics theorem
n [55], there exists a p > s such that equation (8.8) (with Fp replaced by F') holds
for all r € (p,1). It will suffice to strengthen this to

(12.1) lim |[F7'G ~dc =0, lim |B\(FT'G)llc =0

where C = {A\|s < |A] < 1}. Then (8.9) will hold at Ao = €%, by an argument
analogous to part B in the proof of (ii).

Step 4: f is a Delaunay surface. Since d® = ®A(z — z,) " dz, we have & =
C(z = z,)? for some C = C()), where C is singular at the same points as P.
Condition (8.14) and & = 0 imply that P is nonsingular on A,, so C is as well.
Then Lemma 12.1 implies that f is an end of a Delaunay surface in H® with weight
w.

Step 5: Showing (12.1). Let C = C,C; be the r-Iwasawa decomposition of C.
By Lemma 12.2, there exists a p € (s,1) such that for all r € (p,1), there exist a
U € ARGL,(C) and an R : A, — gl,(C) commuting with A such that C; = UR
and so that A := UAU™? has the form in (7.2). A and A have the same weight w,
and A satisfies (7.5) at Ao. It follows that

& =Cyu(z - ze)AC+.

Consider the r-Iwasawa decomposition (z — z.)* = FyBy for r € (p,1). It follows
that C, Fy = F and By Cy = Bp. To show (12.1), we first show that

(12.2) lim ||BpPBp' —1d||c = 0, lim {|0x(BpPB5")|lec = 0.
ZrZe Z—Ze

By Corollary 11.5, there exists an X € RT and a function ¢o(\) such that log|z —
z.| < —& implies
[Bo(z, M) < co(A) |z = ze|™°
for all A € T;, where ¢ = maxyec, |#(A)] with x()) an eigenvalue of A and A.
Since C.. € AFGL,(C) is independent of z, we have that (7 _! is universally
bounded on I, and so By and Bp have the same growth rate as z — z.. Thus

|BoPBp' —1d||c <||Bplle 1P —1d|lc ||Bp'llc &~ |z — ze[* %
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asymptotically. The weight conditions on w in equation (8.14) imply that ¢ < 1,
proving the first half of (12.2).

As BDPBB1 is holomorphic in A, shifting s to be slightly larger but still in
(0, |Xo|) and applying the Cauchy integral formula, we also have that

lim [19x(BoPBpleni, = 0.

Thus (12.2) holds. This C* convergence of BDPBB1 to Id with respect to A suffices
to conclude that the s-unitary part of BDPBB1 converges to Id on C, U Cy /5 (see
[51]). Then the maximum modulus principle for holomorphic functions implies that
the s-unitary part of BDPBB1 C'-converges to Id on A, and in particular on C.
Since B DPBBl is nonsingular on A;N I, {-Iwasawa decomposition is the same
for all £ € [s,1). Thus the s-unitary part of BDPBB1 is equal to the r-unitary part
F~1G of BDPBBI, and thus (12.1) holds. Hence g has an asymptotically Delaunay
end at 2z, of weight w in the sense of (8.9). This concludes the proof of Theorem
8.3. m]

Proof of Theorem 10.3: We use the explicit form of the unitary frame of a Delaunay
surface, computed in Theorem 11.1. After a rigid motion we may assume that
F = UFp, with Fp as in (11.5) and U € AFSL,(C). Let fP be the immersion

obtained from the frame hy, oUFphy!, where hq, will be defined below after some

prerequisite functions are defined. We will show that fP is a Delaunay surface at
the end of this proof (Step 3). We recall from equation (10.5) that f,, has extended
frame hy o #,G = hL,aGhz,l,a. Define z, y by logz = —(z + iy) and let Ay be as in
Section 7.2.

Step 1: Reducing the convergence fy, — fﬁ asz — 0 to hyv o = hoo. Asin the

proof of Theorem 8.3, it suffices to show that [|[Id— (ke o G hi 4) (he,a UFphg)i B, (00) =
0 for some sufficiently small € > 0. (This suffices because the Cauchy integral for-
mula will additionally give Ha,\((hL:,aG_lh{’z)(hL,aUFDhgol))HBe/z()\o) — 0.) Set-
ting

L" = U(a) bz, o) L,
we consider, for A € B.(Ag),

[d = (hr oG R ) (hr,aUFphs))| < |hy ol Id = GT U Fp| [hpty|
+ |71, oG U Fphgty | 1d = huahi! |
+ |hi, oG U Fphit o 11d = hus o h |-
Note that |hy o| is bounded, because a ¢ B, (Ao) for small e. By assumption,
Jim ||1d - G U Fp||5. () = 0-

Writing L” = G-1U Fp L/, we conclude that limy—yo0 [[1d — her ahit 415, (r0) = O-
It thus only remains to show that hy» o converges to the map ho, defined below.
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Step 2: Showing hr» o — hoo as z — 0. Using equation (11.5), we write

(12.3)
1 ( 20(b+ aN)C —0'C + (4abA + v?)(aX ™! + b)X_IS)

Fo = L \20(b+aX)(aXA+ b XIS  —v'(ar + D)X 1S + (4ab + v?)C

where £ = \/2v(b + a))(4ab) + v2), C = cosh ((z + iy — £)X), S = sinh ((z + iy — £)X),
X = /1/4 =Y + XA~1ab(1 — X)%, and a,b are defined in equation (7.3) or (7.4) or
(7.5), and Y = 0 or ¥ = —4absin?(8) or Y = 4absinh®(g/2) for the target spaces

R3, S% or H? respectively. We set

(12.4) Fply_, = (_’g* f*) .

The upper-left entry of Fp defined from equation (12.3) with A = « has no zeroes
near £ = o0, so .4 has no zeroes near z = co. Thus from equation (10.8), the entries
of Y o (equation (10.1)) can be written as rational functions of B/ A, B*/ A, A*/ A
and their complex conjugates, with coefficients independent of z. Thus the entries
of hyr o are rational in terms of B/ A, B*/ A, A*/A and their complex conjugates,
with coefficients independent of z. We show that B/A respectively B*/ A4, A*/A
converge to the following periodic functions Py respectively P, P3 as x — oo:

—v' + (4aba + v*)(aat + b) X 1

12. P =
(12.5) ! 2v(b + aq) ’
_ 2v(b+aa)(aa + b)) X!
(12.6) Py = 2u(b + aa) ’
v'(aa + b) X1 + daba + v?
2. Py=- 2
(12.7) 3 2v(b + aq) ’

where X, denotes the value of X at A = a. We show only that B/A converges to
P,. (To show convergence of B*/ A and A*/A to P> respectively Ps is similar.) We
have

—v' + (daba + v (aa™t + B)X 1S, /C

B
A 2u(b + aa)

5 1 —1l—exp(—2(z+iy—fa)Xa)
_ —v' + (daba + v*)(aa™t + b) X 1+exp(—2(z+i§—fa)Xa)

2v(b + aa)

where C,, S, and f, denote the values of C, S respectively f at A = «. It thus
suffices to show

(12.8) lim Re((z + iy — o) Xa) = o0,
00
to conclude that B/A converges to P,. When |a| = |b|, then the function as in

(11.4) is constant v = 2b, and (12.8) is clear. When |a| > |b], because a € %,
Re((z+iy —fa)Xa) = (z —fa )Xo Now v is not constant, and since |« < [0/a| and
dn(2az,1 — b*/a?) € (0, 1}, it follows that 8, (z — f,) X, is positive and uniformly
bounded away from zero for all z € R. Thus (12.8) holds.
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We set hoo to be hyn o with B/ A (respectively B*/ A, A*/A) replaced by P (re-
spectively Ps, P3) in equation (12.5) (respectively (12.6), (12.7)). Thus lim; o0 ||Id—
hur ahsd 1B, (xe) = 0 Therefore f, = f5 as z — oo in the sense of (8.9).

Step 3: Showing that f® is a Delaunay surface. (We show only the R® case, as
the arguments for S® and H? are similar.) The immersion f* has frame h;, o U Fphg
and hy o U affects a rigid motion of the surface generated by the frame FphZ}!, and
hoo on the right is independent of y, hence vertical translation of the domain is
equivalent to rotating the surface about a fixed line. Thus fP is a Delaunay sur-
face. More rigorously, we consider the translation of the domain

To:z+iy—~z+i(y+0), foreR.
As g = (he,oU) 71 (fP + 200H 1 (Or(he,aU)) (he,oU) ™) (hr,aU) is a rigid motion
of fP, we conclude that fDl,\o:1 is a Delaunay surface if g{, _, is. Defining 4 as
in (7.2) with a, b € R and ¢ = 0, we have
nngy ¥ b =T (BN ORI (oA,
' = [exp(i0A) g exp(—ifA) — 20AH (8 exp(ifA)) exp(—ifA)] o

since hs is independent of the variable y. Equation (12.9) represents a rotation of
gl,, by the angle 6 about a fixed axis (independent of #). Hence g|,  is a surface of
revolution and so fP is a Delaunay surface. This concludes the proof of Theorem
10.3. O



CHAPTER 4

Constant mean curvature surfaces of any positive genus

1. Preliminary results

We denote an annular neighbourhood of the unit circle S* for some real r € (0, 1]
by A, = {AeC:r <|A\ <1/r}. It is common abuse to call a map M : A, —
SL,(C) unitary if M|, € SU,.

DEFINITION 1.1. We shall call a map M : A, — SL,(C) unitarisable on A for
some s € [r, 1] if there exists a map h : A; - GL,(C) for some s € [r, 1] such that
hMh™!: Ay — SLy(C) is unitary.

We use the following notation for diagonal and off-diagonal 2 x 2 matrices:
diaglu, v] = (¥ 9), off[u, v] = (0 ¥).

In preparation for Theorems 2.1 and 3.1 we first provide some technical results.
The next lemma gives conditions on a matrix which ensure that after unitarisation,
it satisfies the closing conditions at Ao = e**°.

LemMA 1.1. Let J C R be an open interval, and let M : J — SL,(C), U : J —
SU, be smooth maps with ttM = ttU. If M(xq) = £1d and d, M (zo) is nilpotent
for xo € J, then U(zp) = £1d and d,U(zo) = 0.

PROOF. Since trU(zg) = £2 and U(xzg) € SU,, we have U(zo) = £Id. Let 7 =
strM = strU. We differentiate the Cayley-Hamilton equations M* — 27M = U~ —
27U = —Id twice and evaluate at g to get £d, M (z0)° = d27(z0)Id = +d, U(zo)>.
So d, M (zy) nilpotent implies d,U(xzg) is also nilpotent. Since U € SU,, we have
d,U € su,, and so nilpotency implies d,U(xp) = 0. ]

Lemma 1.2 computes the derivatives of a solution to a linear ODE with respect
to a parameter. From this the series expansion of the trace of the monodromy with
respect to the parameter can be computed, and hence the trace can be estimated
in a small interval, as we will see in Lemma 1.4. See [16] for a related theorem.

LEMMA 1.2. Let ¥ be a simply connected Riemann surface with coordinate z.
Let Alz, z) : xR = gl,{(C) be analytic in z and smooth in x and B(z) : R — gl,(C)
be smooth. Let X (z,z) : L xR — gl,(C) be the solution of the initial value problem

(1.1) (d.X)(z,z) = X(z, 2)A(z, ), X(z0,z) = B(x).

75
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Let Xi(2) : ¥ — gl,(C), for integers k > 0, be the solutions to the sequence of
initial value problems

k!
(d:Xk) (2) = N Z mXi(Z)Aj(Z)7 X (z0) = B,
4,j72>0,i+j=k
where A;(z) := (dLA) (z, zo) and By := (diB) (o). Then
(1.2) (X X) (z, o) = Xi(2).
Proor. Differentiate (1.1) repeatedly with respect to z. O
In the following, let ¥ be a connected Riemann surface with universal cover 5y
and A its group of deck transformations. We denote the holomorphic 1-forms on X
by (%, C).
In the next Lemma we show that a certain class of potentials always ensures

the closing conditions (0.3) and (0.4). Such potentials will be used in later examples
(Theorems 2.1 and 3.1) to show the existence of new CMC surfaces.

LEMMA 1.3. Let f, g€ (2, C) and t = A1 (A - 1)? and

(1.3) A= (2 ];t> .
Let wy € S and X be the solution to the initial value problem
(1.4) dX =X A, X(wo, t)=1d.
Let v € A and M(t) := X (v(wo), t). Suppose that
¥(wa)
(15) [ =0
wo

Then M(1) =1d and d\M(1) = 0, where M(\) = M(t).

ProoF. Note that X{w, 0) =Id + off[ 0, fqu; g]. Hence X (v(wyg), 0) =1d, and
so M(1) = Id. Then with 2z = wp, € = A, €™ = Xy =1, B(z) = Id, A as in
(1.3) and z fixed to y(wo) in (1.2), it follows that A;(z) is identically zero, and
Lemma 1.2 implies that (dyxM)(1) = 0. O

The next lemma will be used in the proofs of Theorems 2.1 and 3.1 to show
that certain monodromy groups can be unitarised.

LEMMA 1.4. Take the same notations and conditions as in Lemma 1.3, with t
replaced by ct for some constant ¢ € R\ {0}. Suppose that T(ct) = StrM(ct) is real
for all t € [—4,0] and that

(1.6) LiL+I: <0,

where

oo [ v [0 L) e [0 01)
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Then for 7(\, ¢) = 7(ct) = T(c A" (A — 1)?) there exists a cg > 0 such that for all
lc| € (0, co) we have

|7\, €)] < 1 for all X € S*\ {1}.

Proor. Let X be the solution of equation (1.4) with f replaced by cf, and
write X;; = X;;(w, t, ¢) for the entries of X. Defining X;; = ﬁXﬁ(’y(wo), 0, ¢),
Lemma 1.2 implies

b= [ ) 5= [
= [ = [ S)

Note that the Xij are independent of ¢. Considering the first two derivatives of
det X = 1 with respect to ¢t and evaluating at ¢ = 0 and w = v(wy) yields

(de7) (0,¢) =0, (dzﬂ') (0, ¢) = X12X21 — X11Xpp = X12X;1 + XZQQ .

Note that the first of these two equations implies Xu = —Xgo, which is used in
the second of these two equations. Equation (1.6) implies that X12Xo1 + X22 <0,
and so the second derivative with respect to ¢t of 7 is negative, and 7 attains a
maximum of 1 at ¢t = 0. Thus there exists a ko > 0 such that |ct| € (0, ko] implies
|7(ct)] € [0, 1). Let ¢o = ko/4. Then for all ¢ such that {¢| € (0,¢0) and for all

€ [—4,0], we have |T(ct)| € [0,1) and the lemma follows. O

Applying Lemma 1.2, similarly to the proofs of Lemmas 1.3 and 1.4, we obtain

COROLLARY 1.5. With notations and conditions as in Lemmas 1.5 and 1.4, we
have d3 M (1) = 2(diag[ — L1, I1 | + off[Ip, L2 ]).

2. Singly-punctured cMcC surfaces of arbitrary genus

We construct a family of cMC immersions of a singly-punctured genus g Rie-
mann surface into R® with umbilics, for any positive g. The closing problem is
solved by imposing syminetries so that the monodromy group can be showu to be
unitarisable.

THEOREM 2.1. Let n > 2 be an even integer. Let 3 be the singly-punctured
hyperelliptic genus n/2 Riemann surface defined by & = {(z, w) € C? |w? = 2(1 —

z™)}. Let
_ 0 A1 (A =1)2w1dz .
£= <d(z”_1w) 0 , ce k.
Then for c sufficiently close to zero, ¢ induces a conformal CMC immersion & — R
with order 2n dihedral symmetry.

PROOF. Choose a basepoint (zo, wo) € % in the fibre of (0, 0) €  and let & be
the solution to the initial value problem (5.1) with &5 = ®(zp, wo) = Ia. We must
show that there exists a unitariser for the monodromy of ® and verify the closing
conditions.
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FIGURE 1. The three figures on the left are parts of a cMC singly-
punctured torus, as in Theorem 2.1 with n = 2. The left-most
image shows the torus with a neighborhood of the end removed.
The surface has 90° rotation symmetry and reflection symmetry.
The second image shows one-fourth of the surface, which extends
to the full surface (again with a neighborhood of the end removed)
by these symmetries. The third image is a skeletal portion of the
surface. The Hopf differential has a pole of order 6 at the end.
The right-most figure is a ¢MC doubly-punctured torus, as in The-
orem 3.1, and the image here shows a skeleton of this torus (with
a doubly-punctured disk containing the ends removed).

With o = exp(wi/n), for k € {0,...,n — 1} let  : [0, 1] — Z be the curve
from (0, 0) to (a*, 0) and back to (0, 0) along the straight line in the z-plane from
0 to a?*, defined by

2s0%%, (—a)* |\/23(1 —ongn) ) 0<s<1/2

201 — s)a?*, —(—a)* [\/2(1 B Y § Ty RS ) ) 1/2<s< 1.

Y (s) =

Let 44 be the lifted curves originating at (zo, wo) and Mg (A) := ®(§%(1), A). Then
My, ..., M,_1 generate the monodromy group of ®, since ¥ has only one puncture
at (z, w) = (00, c0), and the monodromy about the puncture is N = H;:;é M.
Lemma 1.3 then implies

(2.1) Mp(1)=1d, dMi(1)=0, ke{0,...,n—1}.

Hence we also have N(1) = Id, dyN(1) = 0. It remains to show that there exists a
unitariser for the monodromy group. For this, we compute the monodromy group’s
symmetries. We define the following maps on X:

(2.2) oz, w) = (a’z, aw) , p(z, w) = (2, —w) and 8(z, w) = (Z, W) .
Then for g, = diag[v/a ', va] and g, = diag[ —i, i] we have
o =g, €90, pPE =g, Eg, and 07E(1/X) = E(N),

where expressions like o*¢ denote o*£((z, w), A) = &(o(z, w), A). Since (0, 0) is
a fixed point of o, p and 6, we define the lifts &, p, 8 that map (0, 0) to (20, wo).
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Then using ®(zp, wo) = Id, we obtain
=g 0g,, pO=g,'0g,, 6-2(1/N)=2()).
Hence the monodromy group has the following symmetries:

MY =g Mgt ke f0,...,n—1},
(2.3) MO"1 = g,,_lMo 9
My =M, forall AeSt.

Note that the third of these symmetries also follows from the facts that A=} (A—1)2 €
R for all A € St and v(s) € R? for all s € [0,1]. Denoting the entries of My by
M;;, the third symmetry in (2.3) implies that the M;; are all real, and the second
symmetry in (2.3) implies that M;; = Mas, for all A € S, In particular, tr(Mp) is
real for all A € S!. The integrals I; in equation (1.6) are then

2
Iy = 20/ lw™'dz, I =0, andl= =« / 2"d(z" Hwl) ,
5 nJy

for the curve 4(s) = (s,]|y/s(1 —s7)|) € &, s € [0,1]. Using the formula, valid for
Ren > 0, Rer > 0 and Res > 0,

r—1 g s—1 y = F(%)P(S)
/:;Z (1 )y T nl(Z4s)’

where I'(¢) = [;° y*~te~¥dy is the Euler gamma function, we get

8mc?(2n — 1) cot(&
Ll + 17 = — in 0.
e T L T B - 1)

Hence by Lemma 1.4, with 7(X, ¢) = 1tr(My(\)), there exists a co > 0 such that
for all ¢ satisfying |c} € (0, cg),

(2.4) I7(A, e)l < 1forall A e S\ {1},

and 7(1, ¢) = 1. Then 7 = Mj; = M3 € R has modulus at most 1 for all A € St
Thus —MasMs; = 1— M2 > 0on S, so
M
’U:Z—lZOOHSl.
12
Furthermore, v is finite and strictly positive on S*\ {1}, by (2.4).
Let us now consider the behavior of v at A = 1. By (2.1), we know that

Mia|a=1 = Mai|a=1 = daMis|a=1 = daMai|a=1 =0.

Applying Corollary 1.5, we have di Mi2|x=1 = 2y and d3Mai|x=1 = 2I>. Since
I, = 0 and fols + {7 < 0, we conclude that iy and I> are botn nonzero, so Mqs and
M1 both have zeroes of order exactly two at A = 1. Hence v is nonzero and finite
at A = 1. Thus v is a strictly positive finite function on all of S, and therefore /v
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can be globally and smoothly defined on S*. Then by the first symmetry of (2.3),
the diagonal unitariser is given by

2= (T o)

which simultaneously unitarizes My, ..., M,_1 on S, i.e. hM;h~! € SU, for all
X € SL. Therefore the monodromy group of A® is unitarized on all of S'.

By Equation (2.1) and Lemma 1.1, the monodromy group AM,;h™" still satisfies
the closing conditions (0.3) and (0.4) at A = 1. Hence the resulting CMC immersion
is well-defined on X.

Since the coefficient cw™'dz of the A~! term of the upper-right entry of the
potential £ has no zeros or poles on the singly-punctured Riemann surface X, the
CMC immersion is unbranched, see [16}, Theorem 3.1.

We now consider the symmetries of the CMC immersion resulting from ~A®. Since
(0, 0) is fixed by the map o and h is independent of (z,w) and [k, g,] = 0 and also
6*® = g7 1®g,, we have that (6%)*(h®) = g, *(h®)g%, where 6* is the composition
of ¢ with itself k times.

Let h® = F'B be the Iwasawa decomposition with respect to S* (Theorem 8.1.1
[51]), pointwise on Y. Since 9;¥Fg* is unitary and g, *Bg! positive, the unitary
part of (6%)*(h,®) is g7*Fgk. The symmetry (6*)*F = g;*Fg% descends to the
immersion via the Sym-Bobenko formula [5], see also [36] section 4, and results in
a rotation of angle k7 /n about an axis independent of k. Hence the surface has an
order 2n rotational symmetry.

To show dihedral symmetry, we now need only show that the surface has at
least one reflective symmetry across a plane parallel to the common axis of the ro-
tational symmetries. We will show that the map 8(z,w) = (Z, W) is such a reflective
symmetry, by showing that the immersion generated by F' via the Sym-Bobenko
formula [5], and denoted by f, satisfies

0*f=—F.

Because £|y = £|x-1, we have ®(z,w,\) = ®(z,w, A™") and consequently

®(z,0, 1) = 8(z, @, A1) = 0 B(A-1) = B(z,w, \).

This further implies that ®(vo(s),\) = ®(70(s),A) and so M(\) = M(}), and in
turn h(X) = h(}A), since 8*vo(s) = Yo(s). Thus

AN ®(Z, @, ) = h(\)®(z,w, \)
)

and consequently F(Z,w,)) B(z,@,\) = F(z,w,\) B(z,w,)). Uniqueness of the
Z,w

Iwasawa decomposition yields F(Z,@,\) = F(z,w, ) and implies *f = —f. a

REMARK 2.2. Note that the end of any surface in Theorem 2.1 is not asymptot-
ically Delaunay, because the order of the Hopf differential there is strictly less than
—2. This is also implied by {43], since Delaunay ends have non-zero weight, but the
balancing formula implies that the single end of any surface in Theorem 2.1 must
have zero weight.
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3. CMC immersions of a doubly-punctured torus

In this section, we construct immersions of a doubly-punctured genus 1 Riemann
surface into R® with umbilics.

THEOREM 3.1. Let T = {[z] € C/T'|z € C} be the square torus, where T is the
2-dimensional lattice generated by 2w; € Rt and 2wy = 2iw;. Let w3 = wi + wa.
On the twice-punctured torus £ = T \ {|ws/2], [~w3/2]}, let £ be the potential

B 0 AT = 1)2 .
§= <p””(z+w3/2)+p””(z—w3/2) 0 -dz; ce R,

where p is the Weierstrass p-function with respect to T satisfying (p')? = 4p(p?—1)
and ' denotes the derivative with respect to z. Then for ¢ sufficiently close to zero,
¢ induces a conformal CMC immersion ¥ — R® with order 4 dihedral symmetry.

REMARK 3.2. Note that p"" = 120p° — T2p. Then, since p(—2) = p(z) and
p(iz) = —p(z), it follows that also "' (—z) = p""(z) and p""(iz) = —p""(2).
These properties will be used in the following proof. One other particular property
that we will need is, defining

Z‘(z) — plll(z +w3/2) + plll(z _ w3/2) _ soIII(UJB/Q) - p”/(_w3/2)
=" (2 +w3/2) + " (z — w3/2),

that the integral fOQL‘“

—
This integral is real because of the relations (Z(w; £ 2))? = (Z(z)),
can check that it is positive for any choice of wy > 0.

(Z(2))?dz > O along the real azis from 0 to 2w, is positive.

and then one

Proor. Choose a basepoint wg € S in the fibre of zo = 0 € C, and let ® be
the solution to the initial value problem d® = ®¢, ®(wp) = Id. Let v, = v, (s) € C
be the straight-line curve from zg to 2wy (k € {1, 2}) defined by vx(s) = 2sw; for
s € [0,1]. Let 6, = 81(s) € C for s € [0,1] be a curve from 2o around w3/2 in
the counterclockwise direction and back to zy lying in a small neighborhood of the
straight line from zp to w3/2, and let 6 = d2(s) = —61(s) be the curve from zg
around —ws/2 in the counterclockwise direction and back to zo that is the reflection
ot 9, through the point zg.

Let My = Mg()\) be the respective global monodromies of ¢ over the torus
along i, and let Ay = Ag(A) be the monodromies of ¢ about the two punctures of
Y along & (k € {1, 2}). Then My, M,, A, A> generate the monodromy group of
.

This proof follows the same strategy as the proof of Theorem 2.1. First, we
note that all the generating elements M,, Ma, A;, A2 of the monodromy group of @
satisfy the closing conditions (0.3) and (0.4). This follows from Lemma 1.3, since
the lower-left entry in £ is the derivative with respect to z of a function that is well-
defined on ¥ and hence Equation (1.5) will be satisfied. Our main effort again goes
into showing that there exists an initial condition that unitarises the monodromy
zroup of ®. To accomplish this, we first compute the symmetries of the monodromy
group and define the following transformations of ¥:

U(Z):Z+w3a p(Z):iZ+w1, 9(2):Z+w1.



82 4. CMC SURFACES OF ANY POSITIVE GENUS

Then with g = diag| 1/, \/E], the potential £ has the symmetries
otE=¢, pE=g ' Eg, and 0°E(1/N) = €.

Hence 6*® = V,®, p*® = V,®g and 6*®(1/2) = V3® for some z-independent
Vs, V, and V4. Since zp = 0 is a fixed point of the two maps

oz 2z, o 'phizeiz

(we interpret these compositions as being applied in order from rightmost first to
leftmost last), and since ®(zp) = Id, we have V2V 71 = g2 and VpV, V' = g7L.
It follows that
Ml_l = g_2Mlg2 3 A2 = g_2A192 3
(3.1) - -
Ma(1/X) =g~ ' Mi(N)g, Ai(1/A) =g'A(Ng.

The first and third equations in (3.1) imply that also M, ! = g=2Mag?.
Because the potential is real-valued along the curve v; when A € S!, we conclude

that M, is a real-valued matrix for all A € S*. This fact, combined with the first
equation in (3.1), implies that M; has the form

M, = (Ch bl) ,
Ci aj)

where a; = a;(\) = a,(1/X), b1 = by(A) = bi(1/A) and ¢; = c1(A) = a1 (1/)).
Furthermore, the fourth equation in (3.1) implies

as b
A = (Ci di) ,  where

(32) ag(l/)\) = dg()\) y bQ(l//\) = —-Zbg()\) y 62(1/)\) = iCQ()\) .
From this it is clear that 71 = 1trM; and 72 = trA; are real for all A € S*.

We will now show that M, and A; are simultaneously unitarizable for small
lcl. Toward this goal, we first apply Lemma 1.4 to show that for small |¢| we have
iT1 (M) < Lfor all A € S*\ {1}: We take ¥ and £ as in Theorem 3.1 and take f = dz
and g = (p""(z +w3/2) + """ (2 — w3/2))dz and the curve v = v,. Then, in Lemma
1.4, we have Iy = 2w; > 0 and I; = 0. To compute I, integration by parts yields

n=-[ <f (/g)) = - [ @@y,

where Z(z) is as defined in Remark 3.2. Then by Remark 3.2, we have I; < 0. Thus
the conditions of Lemma 1.4 hold and we conclude that for all ¢ € R sufficiently
close to 0, we have

(3.3) . |7\ <1 for all A € ST\ {1} .
From (3.3) and the fact that byc; = a7 — 1 € R on S?, we have
(34) (blcl)hzl =0 and (b101)|§1\{1} <0.
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Thus we can define a function
1

Th
that is finite and nonzero on S$'\ {1}. Furthermore, by (3.4) and the fact that
b1 € R on S!, we conclude that

(3.5) 0<v<oo

for all A € S\ {1}. Similar to the arguments in proving Theorem 2.1, Corollary
1.5 implies that b, and c¢; both have zeroes of order exactly two, hence v is nonzero
and finite at A = 1 as well. It follows that /v > 0, representing the positive fourth
root of v, is globally and smoothly defined on S!. We define

(3.6) h= (%5 ({,/g)_l).

Because bi¢y < 0 and /v > 0, the conjugate hM1h~! € SU, for (A = 1.
The image of the path v26; under the map p is homotopic to the path v *4;.
Hence A, My and A M| L are conjugate and so have the same trace. Hence

tr(Ay (My — M7 1)) = boc1 (1 +1) +eobi(1—i) =0
It follows that
(37) Ccoby +iciby = 0.

In (3.7), either both be and ¢z are identically zero, or neither of them are identically
zero. If by and co are identically zero, then A; is diagonal and A; € SU, for all
A € S!. Hence we have succeeded in simultaneously unitarizing both M; and A; on
S! by conjugating by h. We may then proceed to the final paragraph of this proof,
which gives the concluding argument for proving Theorem 3.1. Therefore, without
loss of generality, let us assume that neither by nor ¢, is identically zero.

Under the assumption that b2 and ¢ are not identically zero, by (3.7) we also
have

__al/A) e/
b (A) ba(A)
Furthermore, (3.2) and (3.5) then imply that b2 = r1(1 +4) and ¢3 = r2(1 —4) with
r1,72 € R and r;{'r2 < 0, on S'. These facts together show that also the conjugate
hA1h~! € SU, for |A] = 1.

Thus we have simultaneously unitarised M; and A4, on S*. Since ¢ € SU,
and commutes with h, conjugation by h also unitarizes M, and As, so the full
monodromy group is unitarized on S*. Now, like in the proof of Theorem 2.1, using
Iwasawa splitting on S' and noting that the monodromy of h & still satisfies (0.3)
and (0.4), we conclude that the resulting cMmcC surface given by the Sym-Bobenko
formula is defined on . Finally, analogous to the arguments at the end of the proof
of Theorem 2.1, the order 4 dihedral symmetry of the resulting ¢MC immersions
can be shown, and since the cocfficient edz of the A™! term of the upper-right entiy
of the potential £ has no zeros or poles on the twice-punctured Riemann surface X,
the resulting cMC immersion is unbranched [16]. This completes the proof. a
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4. Doubly-periodic cMC surfaces in R® with ends that are asymptotically
Delaunay

In this section, we provide a third class of Weierstrafl data for which the mon-
odromy can be unitarised. The potential is of interest to us because, although the
monodromy can be unitarised, the monodromy does not satisfy (0.3) at A\g = 1.
The relaxing of this closing condition is what allows the resulting CMC immersions
to extend to doubly-periodic surfaces (when n = 3,4, 6 in the theorem).

THEOREM 4.1. Let n > 3 be an integer, and define the Riemann surface ¥ =
(C\P)U{oo} with P ={z € C|z" =1}. Let

10 B 0 Atz
By ¢=logzmd: 0 )

where

(4.2) v()\):w(l_/\)Q_*_%Q)\’ we[——&z o)_

16n2 (n—2)%’

Let wo € X be in the fibre of zo = 0 € ¥ and let ® be the solution of d® = &,
®(wo) = Id. Then there exists an initial condition that unitarises the monodromy
of ®.

FIGURE 2. cMmcC surfaces with 3-, 4-, 5- and 6-fold symmetry (the
CMC immersions f in (4.5) produced from Theorem 4.1) in the up-
per row. In the case of 3-, 4- and 6-fold symmetry, doubly periodic
cMcC surfaces can be constructed by reflection in planes perpendic-
ular to the plane of this page. The annulur ends of each surface
are nodoidal with equal weights and parallel same-directed axes.

PROOF. Let a = exp(wi/n), and define the closed polygonal loop 7o : [0,1] =
as follows:

4tat for 0<t<1/4,

) @-4)at+8t—-2 for 1/4<t<1/2,

Yolt) = 6 — 8t + (4t — 2)a for 1/2<t<3/4,
(4 — 4t)a for 3/4<t<1.

Then define the loops
%8 = ¥yot), j=1,2,..,n—-1.
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Let M; be the monodromy of @ along ;. Then My, M, ..., M,_; generate the
monodromy group of ®. Under the transformation p : z — a?z of £, we have
p & = g &g, where g = diag[a™!, a]. Because p(z0) = 29 and ®(z9) = Id, we
have M; = g7 Mog’.

Changing variables to Z = 1/z and gauging (£ = £.g = g7* &g+ g tdg) by
g = diag[z7!, 7], we have

_2—1 _A—l
§.9= <—'u!/\)n22"_2 ~—1 > dz .
(Z+—1)2 2
Then one solution of d® = & - (£.§) is & = exp (( 1 9) log 2) P(2, ), where P(z, )
is well-defined and holomorphic with respect to Z and is nonsingular at Z = 0.
Furthermore, P(%,)) is defined for all A € S'. (This follows from a well-known
result in the theory of ordinary differential equations, see [36] section 8.) It fol-
lows that the monodromy of ¢ along the loop ~,—1...7170 (here again composi-
tion of these loops is from rightmost first to leftmost last) encircling z = oo is
(Mo)(9~*Mog)...(g1 " Mpg™~ ') = Id. Thus (Mpg~!)" = —~1d. Hence the eigenval-

ues of Mpg~! are constant and are n-th roots of —1. Since

&.B B
=1 = (d~D D) !

z 2
B:a\"/z"—l/ (:/gn—l) d, D=a '3z —1,
0

we have that M; is upper-triangular at A = 1 and the upper-left (resp. lower-right)

entry of its diagonal is a~2 (resp. a?). So the eigenvalues of Myg~! are the same

as the eigenvalues of g~ !:

with

4.3 eigenvalues of g!) = (eigenvalues of Myg~!) = o™ .
g

Now we determine the eigenvalues of My for general A:
For g = diag[ vz — 1, /%] we have

dz
z—1

ea=A T ro-10, 4= (5 L),

2
in a neighborhood of z = 1. Applying Lemma 9.1 in [36], we have that one solution
of db = & - (£.9) is = exp (4 log(z — 1)) - P(z,\), where P(z,\) is holomorphic
and well-defined at z = 1. Furthermore, P(z, \) is defined for any A € S! at which
the difference of the eigenvalues of A is not an integer. Hence P(z,)) is defined on
S* minus a finite set of points.

Hence one solution of d® = ¢ is & = <i>§_1. Therefore any solution of dd® =
®¢ has monodromy along v that is conjugate to — exp(27iA). In particular, the
eigenvalues of My are — exp(xim/1 + 4A~1v(})), and so

(4.4) (eigenvalues of Mp) = —exp (iw 1+ %@) .
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We now show that My and g can be simultaneously unitarised at every point in
S where P(z,)) is defined: We define the half-traces t1 = (1/2)tr(g™}), t» =
(1/2)tr(Mog™?) and t3 = (1/2)tr(Mo). Then, since Mo g~" (Mog™")™" = Id, the
condition for simultaneous unitarizability [25], see also [4], of My and ¢g~* and
(Mog™)"!is
1—t2 — 13 — 13+ 2t1tt3 > 0.

By Equations (4.3) and (4.4), this condition holds for all A € S! (where P(z,)) is
defined) if and only if

—cos (20221 028 € foos (2),1]
and this in turn holds if and only if w € [ﬁ, 0], as in Equation (4.2).

It follows that the full monodromy group can be unitarized at all but a finite
number of points in S!.

Note that if My and g~! commute for all A € S?, then My must be diagonal,
and hence Mg()\) € SU, for all A € S'. In this case, Lemma 4.1 is then clearly true,
so without loss of generality we may assume that [Mo, g~!] # 0. Thus we can apply
the gluing theorem [55] (see also [36]) to conclude there exists an initial condition
h such that the monodromy group of h® is unitary. 0

EXAMPLE 4.1. Nowlet n, P, £, £ and w be as in Theorem 4.1. Let D = {z €
C||z| < 1} be the closed unit disk in C. Let h = h()) be the unitariser of the
monodromy of the solution ® of d® = ® & given by Theorem 4.1. Let

(4.5) f:D\P >R

be the cMC immersion generated by the data (X, €, h, 0). By the gluing theorem
[55], the immersion f via the Sym-Bobenko formula [5], in (4.5) is defined when
using r-Iwasawa splitting [46] for r < 1 and r sufficiently close to 1. Then, up to
a rigid motion and homothety of R®, we find numerically that f has the following
properties (see Figure 2):

e the image of f has order n dihedral symmetry,

o the boundary of the image of f consists of n complete planar geodesics

that are congruent to each other, each lieing in o different plane

{($1,$2,I3) c R 'cos(Q—Zz) 1 + sin (2—:1)3:2 = 1}

for 3=0,1,...,n—1,

e f hasn ends at the punctures in P, and the image of each end is asymp-
totic to a (w(n — 2)/n)-angle arc of a Delaunay nodoid,

o the azes of the asymptotically Delaunay ends are all vertical (i.e. parallel
to the line {(0,0,73) € R®}) and the third coordinate z3 of f satisfies
lim,ep, :p %3 = 00 for allp € P.

e Ifn € {3, 4, 6}, the complete surface built by reflection across boundary
planar geodesics is doubly periodic; in particular, it is invariant with re-
spect to two independent translations of R® parallel to the plane {(z1,22,0) €
R3}.
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REMARK 4.2. In the cases n = 3, 4, 6, the image f(D\ P) can be repeatedly
reflected to produce a doubly-periodic surface with closed ends. By the asymptotics
theorem [55], the annular ends are asymptotically Delaunay with negative weight w.

5. Open problems

(i) Can one prove that the surfaces in Theorems 2.1 and 3.1 are complete and
properly immersed? Could one further prove the asymptotic behavior of
their ends? In particular, are the ends of the examples in Theorem 2.1
asymptotic to ends of 2n-legged Smyth surfaces?

(ii) By techniques like those used here, can one prove existence of a CMC sur-
face with finite topology and asymptotically Delaunay ends and positive
genus?






CHAPTER 5

Coarse classification of constant mean curvature
cylinders

1. Basic definitions and results

1.1. Loop groups: In this chapter we introduce a loop group, a loop algebra
and two splitting theorems. Let C, := {A € C| |A\| = r} be the circle of radius r
with r € (0,1], and let D, := {X € C| |A] < r} be the open disk of radius r. We
denote the closure of D, by D, :={A € C| |A| <r}. Also,let A, ={AeC| r<
|Al < 1/r}. This is an open annulus containing S'. Let A, denote the closure of

-
Furthermore, let E, = {A € C| r < |\|} be the exterior of the circle C,. For
any r € (0,1] C R, we consider the twisted loop algebra and loop group:

Arsl(2,C)p ={a:C, = sl(2,C) | ais continous and a(—A) = gza(\)os } ,
ASL(2,C), ={9:Cr = SL(2,C) | gis continous and g(-\) = o39(A)os } ,
where o3 = (é ~01)-
We need to define special subgroups of ASL(2,C),. First we consider the
twisted SU(2) r-loop group:
ASU2), = {F(\) € A, SL(2,C), | F()\) € SU(2), for all A € S,
F()\) extends holomorphically toA,} .
Note that the definition of A,.SU(2), implies that F is continuous on A, and holo-
morphic on A4,. Next, we define the twisted “plus r-loop group” and “minus r-loop
group”:
Aj’BSL(2,(C)U = {W, € A,SL(2,C), | Wi()\) extends holomorphically
to D, and B(0) € B} ,

AL pSL(2,C) = {Wy € A,SL(2,C), | Wi ()) extends holomorphically
to B, and B(x) € B} ,
where B is a group of diagonal matrices in SL(2,C). If B = {Id} we write the sub-

script = insteaa of B, if B = {all diagonal matrices } we abbreviate AZBSL(Q, Oo
and A, 5SL(2,C), by AYSL(2,C), and A;SL(2,C), respectively. From now on

we will use the subscript B as above only if BN SU(2) = {Id} holds, in particular

89
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if B is the group of all diagonal matrices with positive real entries. When r = 1,
we always omit the 1. In order to make the above groups and algebras complex
Banach Lie groups and Lie algebras, we restrict the occurring matrix coefficients to
the “Wiener algebra” (see [31], page 5)

(1.1) A:{f(/\):anA":CT—)C; Z|fnl<oo}.
neEL nez
We will assume from here on that all matrix coeflicients are contained in the Wiener
algebra A. It is well known that the Wiener algebra is a Banach algebra relative
to the norm [|f{| = 3" |fxl, and that A consists of continous functions. Moreover,
with coefficients in A4, the loop groups and loop algebras defined above are Banach
Lie groups and Banach Lie algebras.
From [21], we quote the following two splitting Theorems:

THEOREM 1.1. (Birkhoff decomposition) For any r € (0, 1], we have the disjoint
UNLON

ASL(2,0), = JA;SL(2,0), - wn - AFSL(2,0),

where wy, = (’\on )\9,, ) if n = 2k and (_f_n )‘On> ifn = 2k+ 1. The loops, for which

n =0, form an open dense subset of A,SL(2,C),, and the multiplication map
A;,SL(2,C), x AFSL(2,0), — ASL(2,0),
1s an analytic diffeomorphism onto its image.

THEOREM 1.2. (Iwasawa decomposition) For any r € (0,1] and each B of
diagonal matrices of SL(2,C), which satisfies U(1) - B = {all diagonal matrices}
and SU(1) N B = {1d}, the multiplication map

ASU(2), % A;L’BSL(Q,(C),, = ASL(2,C),
is a real analytic diffeomorphism onto.

1.2. Holomorphic and normalized potentials: Let ¥y : ® — R3, X € S!, be
the associated family of (conformal) constant mean curvature H = 1/2 immersions,
where © = disk in C or ® = C. Moreover, let F(z,)) : D - ASU(2),, A € S*, be

the extended framing of ¥y (see [13]). It is well known (see also the introduction)
that ¥, can be obtained from F by the Sym-Bobenko-Formula

d i
. =—|—=F-F !4 -1
(1.2) N (dt + 5 FosF ) ,

where we have set A = et
Next we quote Lemma 4.5 in [21].

THEOREM 1.3. (Existence of holomorphic potentials) Let @, : ® — R3 be a
CMC-immersion with H = 1/2, and let F € A,.SU(2), be the extended framing of
@, . Then there exists a holomorphic 1-form n on ® of the form:

(1.3) n(z,A) = Y n(z)Ndz

iz-1
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where Y n;(z)N € Asl(2,C),, such that a holomorphic solution C € A,.SL(2,C),
of dC = Cn has an Iwasawa splitting C = F - W, , that is, with F as given above
and with W, € AT 5SL(2,C),.

We call any holomorphic solution C € A,.SL(2,C), to dC = Cr, n as above,
a holomorphic extended framing. Also from Theorem 4.10 in [21], we have the
following;:

THEOREM 1.4. (Existence of normalized potentials) We retain the assumptions
of Theorem 1.3. Then there exists a meromorphic 1-form & on D of the form.:

(1.4) £(z,0) = A~ (Q(}f g) dz

where f is a nonvanishing meromorphic function and Q is a holomorphic function
such that there exists a meromorphic solution g— € A.SL(2,C), to dg- = g_&
with Twasawa splitting g_ = Fgy, that is, with F as given above and with g, €
Aj’BSL(Q,(C)U.

1.3. Dressing and Symmetries: Let F be the set of extended framings of CM C-
immersions. For F(z,z,A) € F and h, € AJSL(2,C), we define
(1.5) h’+()\)F(z72,/\) = (h+#F)(2727/\)g+(Z>2’)‘) >
where (hy#F)(z,Z,A) is the unitary part of the unique Iwasawa decomposition in
A.SL(2,C), and g, its positive part. Let Fiq be the set of normalized extended
framings with base point zo € D i.e., F € F14 if and only if F'(2q,Zp, A) = Id. Then
hi(A) = hy (M) F (20,20, A) = (hy #F) (20, 20, A)g+ (20, Z0, A) implies h #F (20, Zo, A)
Id. Thus h;#F is again in F1g. We will say that h #F is obtained from F by
dressing with h.

We will also define the dressing on the level of holomorphic extended framings.
Let C be the solution of dC' = Cn in Theorem 1.3 with some initial condition
C(z0,A) = 1d, then we define

C=hi(N)-C-hI' ),

where hy(\) € ATSL(2,C),. We will say that C is obtained from C by dressing
with k. To see how the surface is changed by dressing with A4, one needs to per-
form an Iwasawa decomposition of hy F = FW.., where C = F - W, is the Iwasawa
splitting of C. Then F € A,SU(2), is the frame for a new CMC-immersion. This
change in the frame from F to F is nontrivial. Moreover, also the associated change
on the surface level is nontrivial.

1.4. Invariant potentials and the monodromy problem: In this subsection, we
will consider the construction of CM C-immersions with H = 1/2 from surfaces with
nontrivial fundamental group. The essential point in the construction of CMC-
immersion here is the “Monodromy problem”. Before we state the definition of a
monodromy matrix, we recall [17].

PROPOSITION 1.5. Let M =\ D be a connected Riemann surface with uni-
versal cover ® and Fuchsian group T' and ¥ : M — R® a CMC-immersion. Let
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W, denote the associated family of ¥ and F and C an extended framing and a holo-
morphic extended framing respectively. Then for every v € T there exists some
X+ € ASU(2), such that v*C = xy(\)CG4 and v*F = x,(M\)Fk(z,z) for some
Gy € ATSL(2,C) and k € U(1).

More generally we have the following definition.

DEFINITION 1.6. Let M = T'\D be a connected Riemann surface with universal
cover® and Fuchsian group T. Let i or £ be a holomorphic potential or a normalized
potential on D as in Theorem 1.8 or Theorem 1.4, and let C be a solution to dC =
CnordC = CE. And let F be the unitary part of the Iwesawa splitting of C = FW_,
and let v € T be some deck transformation. A matriz M, € A.SL(2,C), (resp.
A-SU(2),) is called a monodromy matriz for v and C (resp. F) if v*C = M, CG .
(resp. v*F = M,Fk), for some G4 € ASLY(2,C), (resp. k € U(1)).

REMARK 1.7. Here the k defined above is the change of coordinate of a CMC
surface. Note that:

(i) If M is C, then from [14], without loss of generality we can assume k = 1d.
(i) Moreover, if M is non-compact, then for the same argument above, we
also can assume k = Id.
(iii) Actually k is irrelevant for the resulting CMC surface, since k goes away
in the Sym-Bobenko-Formula.

It will be particularly convenient to have G4 = Id. We have the following
necessary and sufficient condition for such a monodromy.

PROPOSITION 1.8. Let M =T\ D be a connected Riemann surface with univer-
sal cover © and Fuchsian group I'. Let n be a holomorphic or normalized potential
on® and C be a solution of dC = Cn. Then n satisfies v*n = n for some v € I if
and only if there exists a monodromy M., of C such that v*C = M,C.

Proor. “=" Let C be the solution to dC = Cr, and let y*C' be the solution to
d(y*C) = (v C)(v™n) = (v*C)n with (v*C)(20,A) = M, € A,SL(2,C),. Then the
uniqueness of the solutions to ODE’s implies v*C = M.,C (see [11}). The converse
statement is clear. O

We now introduce the notion of a “meromorphic potential” on a Riemann sur-
face M, which is locally equivalent to the notion of a “holomorphic potential” as
described in Theorem 1.3. These two notions are, however, globally different, i.e.,
in general holomorphic potentials are only well defined on a universal cover of M,
while meromorphic potentials as defined below are always well defined on M.

THEOREM 1.9. (Existence of meromorphic potentials) Let M = T\ D be a
connected Riemann surface with Fuchsian group . And let ¥y : M — R® be a
CMC immersion with H = 1/2, and let F € A,SU(2), be the extended frame of
W, . Then there éxists a meromorphic 1-form 1 on M of the form:

(1.6) n(zN) = Y ni(z)XNdz |

i>=1
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satisfying
(1.7) v'n=mn forallv €T
such that there exists a meromorphic solution C € A.SL(2,C), to dC = Cn with
Iwasawa splitting C = F - W, that is, with F as given above and with W, €
A:BSL(Q,(C)(,.

Proor. We follow the proof of Theorem 3.2 in [16]. We would like to find
a Wi € AfSL(2,C), such that C = FW, is meromorphic and satisfies v*C =
X~(A)C for v € T'. By Lemma 4.5 in [21], there exists W, : ® — ATSL(2,C), such
that . _

C=FW,:D - ASL(2,C),

is holomorphic. Hence ‘
(1.8) 7 C =Py Ws) = X2 (NFk(y'Wa) = x5 (NCWS k(v W)

where Py = W;lk(fy*WJr) is holomorphic. Since k satisfies the cocycle condition
(see Theorem 2.3 in [14]), Py = Py (v, z) satisfies the cocycle condition

(1.9) Py(vam, 2) = Pi(y2,2) Pr(m,722) -
From Theorem 12 in [28], P} can be represented in the form
(1.10) Py =xa(z,A) (va (2, N) ,

where o : ® — SL(2,C)/+xId is meromorphic. Moreover if M is non-compact,
then a can be chosen holomorphic (see Corollary 4 in [28]). Let a = aya_ be the

Birkhoff decomposition of a. Equation (1.10) now implies that v*a— = a_ and
Y ot = P7loy. Thus P = £ai(v*all), and we set

Cz,\)=C-a; .
Then C satisfies v*C = C. ]

REMARK 1.10. As pointed out in the proof above, and as known from [16], if
M is a non-compact Riemann surface M, then there exists a holomorphic 1-form,
not only a meromorphic 1-form, for every CMC-imunersion from M to R?, i.e.,
there exists a holomorphic potential on M for every CMC-immersion from M to
R3.

In general, the monodromy matrix M, in Definition 1.6 is not uniquely deter-
mined. We have the two possibilities: either the associated family of an immersion
¥, has umbilic points or the associated family of an immersion ¥, does not have
umbilic points. If ¥, has umbilic points, then the monodromy matrix M, considered
in Definition 1.6 is uniquely determined up to a sign, because the isotropy group of
¥, consists of +1d only. If ¥, does not have umbilic points, then the monodromy
matrix M., considered in Definition 1.6 is not uniquely determined, because the
isotropy group is (in general) not trivial. If we take an element By of the isotropy
group, then M, B_ is also a monodromy matrix in the sense of Definition 1.6.

However, if 7 is an invariant potential on M, meromorphic or holomorphic,
then for v € I' the matrix M, satisfying v*C = M,C is uniquely determined and
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v — M, is a group homomorphism. We are still interested in the more general
definition given in Definition 1.6, since in general M., may not be unitary on S,
while M., B, is unitary on S* for some B in the isotropy group (see e.g. [15]). For
more detail on this issue we refer to [17).

As pointed out just above, the monodromy matrix M, obtained in Proposi-
tion 1.8 is, in general, not unitary on S*. However, in order to construct CMC-
immersions on M = '\ © we need unitary monodromy (together with the closing
conditions). If M,B, is unitary, we can continue with the construction of an im-
mersion defined on M. If there is no B, in the isotropy group such that M,B,
is unitary, then one can try to find at least some dressing transformation, which
changes the given monodromy matrix M, B into a unitary monodromy matrix.

Let 0 <7 < 1and M : A, — SI(2,C) be holomorphic. Then M is called
s—unitarizable for 0 < r < s < 1 if there exists some h € A;SL(2,C), such that
hMAh™! € A,SU(2),. If M is just defined on the unit circle, then M is called
unitarizable if and only if there exists some h € ASL(2,C), such that hMh™* €
ASU(2),.

THEOREM 1.11. ([16]) Let M be an element of A,SL(2,C),. Then M is uni-
tarizable via dressing for some s € (r,1] if and only if, for all X € S*,

(1.11) Tr(M) € (=2,2) or M = =Id .

As a corollary of the above theorem, for a monodromy matrix of C defined in
Proposition 1.8, we have the necessary and sufficient condition for being unitariz-
able:

COROLLARY 1.12. We retain the assumptions of Proposition 1.8. Then there
exists ho (\) € AT SL(2,C), such that C = hy (NC is a solution of dC = Cn and a
monodromy matriz of C is M,, = h+M~,h;1 € A.SU(2), if and only if M., satisfies
the condition (1.11).

Note, if a monodromy matrix for a holomorphic extended framing is unitary,
then after Iwasawa splitting, the extended framing admits the same monodromy
matrix. By the Sym-Bobenko-Formula this yields an immersion ¥y satisfying
VW, = R(A)¥\(z), where R(A) is a rigid motion.

We let M., € ASU(2), be a monodromy matrix of F. Then we obtain the
following necessary and sufficient condition for the closing of a surface Wx=», with
respect to y.

THEOREM 1.13. We retain the assumptions of Proposition 1.8. Furthermore, if
M., € A.SU(2), then M, is also a monodromy matriz for F' with respect to vy, where
F is the unitary part of the Iwasawa splitting of C = FW_,. Let ¥y be defined from
F via the Sym-Bobenko-Formula (1.2), then v*¥n—), = ¥r=», for some Ag € S*
holds if and only if

(1.12) - M,(A)==Id and M, (X)) =0.

2. CMC-immersions and two complex variables
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2.1. Double loop groups and the Iwasawa decomposition: In the context of
Wu’s-Formula [68], it turned out that the extended framings F(z,2,A) of some
CMC-immersion are restrictions of meromorphic maps F(z,w, ), defined on D x®,
where © =disk in C or C and D is the complex conjugate domain of ®. Also for the
main result of this paper (Theorem 4.8) it will be useful to consider meromorphic
extensions to two complex variables.

To explain this in detail one needs to consider double loop groups. Following
[23], but interchanging “+” and “—” and “R”and “r”, we set

H=A.SL(2,C), x AgSL(2,0), , -
where 0 < r < R. Moreover
Ho =ASL(2,C), x ARSL(2,C),
H+,* = A;":*SL(Z(C)U X AI_{SL(2)(C)0 )
H- ={(q1, g2) € H; g1 and g2 extend holomorphically to A, and g1]a. = g2]a4, }
We quote Theorem 2.6 in [23].
THEOREM 2.1. We have the disjoint union
o0
H=|JH w.Hs ,
n=0

where w, = (1d, (% ,%.)) ifn =2k ond (14, (_2. %)) ifn=2k+1. The

loops, for which n = 0, form an open dense subset of H, and the multiplication map
H_ x H+,* —H

is an analytic diffeomorphism onto its image.

We would like to point out that the proof of the theorem above is almost
verbatim the proof given in the basic splitting paper [1]. Below we show how this
implies the well-known r-Iwasawa decomposition Theorem 1.2 (see also [20]):
Proof of Theorem 1.2. Let g € A,.SL(2,C),. Consider the map

A.SL(2,C); = ASL(2,C)p x ARSL(2,0), , g+ <9(A)’ (mt)_l> ’

where R = 1/r, |A] = r and |u| = R. From Theorem 2.1 above we infer that one
can write

—t

(2.1) <g(/\), (s07m) )_1> = (o, U ad, w) (), 10 w)
Spelling this out we obtain

(2.2) g\ = UDMRD ()

2.3 (qm) " = v P W )



96 5. CLASSIFICATION OF CMC CYLINDERS

where U™ and U denote the boundary values of U on C, and Cg respectively.
The second equation is equivalent with

(2.4) s/ = (UG ) (W) (1))
Replacing p by 1/X we obtain
(2.5) g(\) = (U<R>(1/X)‘)_1 (W'f)—1 <h£’*>(1/X)t>_1

A comparsion with Equation (2.2) shows
-1 1

(2.6) (U<R>(1 /i)t) UM = (W‘t)_l (h(_R)(l//_\)t) (hﬁ’(A))

Equation (2.6) is the Birkhoff decomposition of a self-adjoint loop

g(A) = (U(R)(l/j\)t) U (X). Therefore W = Id, and the right hand side loop of
Equation (2.6) is defined on C U {oo}. Hence ¢()) is constant. Since ¢(A) is also a
positive definite matrix, we obtain ¢(A) = k, where k is a A independent diagonal
matrix with entries kg,ko“l > 0. We set U = Uk, where k is the ) indepen-

_ 4y 1
dent diagonal matrix with entries vko, vko ', We have (g(/\), (g(l/ﬂ)t) ) =

(U(T), [j(R)) (Id, Id) (I}‘lh(f)(/\), I::"lh(_R)(,u)). Moreover, from Equation (2.6)

~ ~—————‘—-Tt
we obtain UM ()\) = (U(R)(l/)\) ) . If r = 1, the claim follows. Assume now

r < 1. Since U™ and U™ are the boundary values of a holomorphic function U
in 7 < |A\] < 1/r, we can restrict the equation above to the unit circle and obtain

-1
U\ = (U’()\) ) , whence U()) is unitary on S*.

2.2. CMO-potentials in the double loop group picture: In this subsection, since
the extended framing F(z,z,)) of a CMC surface is defined on the unit circle
Al =1, weuse r = R =1. Let C = C(z,A) = FW, be a holomorphic extended
framing of some CMC-immersion. Using the embedding discussed in the last section
we consider

(2.7) C— (C, (ét)_l)

If 5 = 5(z, A) denotes the Maurer-Cartan-Form of C, n = C~*dC, then the Maurer-
Cartan-Form of the image under the map (2.7) is given by

—t
(2:8) (nz %), =nGEN)
We would like to point out

29) { n(z,)) = Yoy mk(2)Ak

t—

—n(z,A) = Yo —m(z) A*




2. CMC-IMMERSIONS AND TWO COMPLEX VARIABLES 97

2.3. Extended framings in two complex variables: In this subsection, we con-
sider a procedure that is converse to the construction discussed in the previous
section. To motivate the approach below we rephrase the second equation of (2.9)
as

(2.10) (w, 1) = —n(w, R

where w = Z and p = 1/X. Thus
1

(2.11) )= Y ()™
m=—0oQ
- -1
where 7, (w) = —n_m(u_))t. Using the equations above and setting R = (Ct) we
obtain
dC = Cn, C(zp,A) =1d
(2.12) { dR = Rr, R(%.)) =1Id

where and z and Zy are the base points chosen in ® and ® respectively.

We now consider a more general setting, i.e., w, g and 7(w, u) are independent
of z, A and n(z,A) and zp € D, wy € D are arbitary, but fixed. Let’s start from the
potential:

(213) 0= ((=,N), T(w,w) = (2 OIS Tm(w)u"‘) ,

k=-—1 m=-—00

where z € D, w € D, A € C, |A\| =7, p € C and |y} = R and 7, and 7,
are holomorphic differential 1-forms. Let C and R denote the solutions to the
differential equations

(2.14) {dc = COn, Clz,))=1d

dR = Rr, R(wo,pu)=1d ~

where zo € D and wg € ®. We consider the generalized Iwasawa decomposition of
Theorem 2.1.

In view of the initial conditions and the fact that the big cell in the double loop
group is open, we can assume W = Id, if (z,w) is sufficiently close to (zp, wo). Thus
(2.16) c=U"v, , R=UWBV_

and U = U(z,w, A) is meromorphic in two complex variables z and w (see [33]).

2.4. Meromorphic extensions of extended framings: In this section, we show
that extended framings have unique meromorphic extensions. This follows essen-
tially from the previous two sections.

THEOREM 2.2. Let F(z,2,\), = € @ be a extended framing of any CMC-
immersion. Then there ezists a A independent diagonal matriz l(z,2) € SL(2,0),
and F(z,z,A)l(z, Z) has a meromorphic extension U(z,w,\) to D X D.



98 5. CLASSIFICATION OF CMC CYLINDERS

PrOOF. Let F = F(z,%,\) be the extended framing of some CMC-immersion.
Let C(z,\) = F(z,z,\)W+(z,%,A) be a holomorphic extended framing. We note
-1 _
that [A| = 1. Set R{w, ) = (C(u”), )\)t) , where w € ® is independent of z. Then
the pair (C(z,A), R(w,))) corresponds to a potential (n, 7) as considered in the
previous section,

n(z,\) =C7'dC , 1(w,\) =R R .

We thus obtain C(z,)) and R(w, ) as the solutions to dC = Cn, z € D, and
dR = R7, w € D, where we also use C(zp,A) = Id and R(wo = Zo,A) = Id. Asin
the previous section we obtain (using the unique generalized Iwasawa decomposition
of Theorem 2.1, i.e., H_ x Hy . = H)

C(z,A) = Ulz,w,)Vi(z,w,\)
(2.17) {R(w,/\) — Ul IV (zw )
Therefore
(2.18) U(z,w,\) = Clz, WV, (z,w,\)"!

= R(w,)V_(z,w, )™ .

e\ —1
Substituting C(z, \) = F(z, 2, AW (2,2, \) and R(w,\) = (C(m, /\)t) -
J T §
F(w,w, ) <W+(1D,w,/\)t) , we obtain

U(z,w, ) = F(z,2, \Wi(z,z,\)Vi(z,w,A)7!

(2.19) — F(ww ) (mt)—l Vo(z,w,A\)"! .

For w = %, Equations (2.19) imply that
S |
(2200 Wiz WVilez 07 = (WaEa N ) Vezz )™

The left hand side is in AtSL(2,C), and the right hand side is in A~SL(2,C),,
-1
thus W+V+_1 = (W;) V! =1(z, %), where l is a X independent diagonal matrix

with entries lp, [; ' > 0. We note that I(z, 2)* = V_"})(z, z) by Equation (2.20), where
V_ o is the first coefficient matrix of the expansion of V_(z, z, A) with respect to A.
From Equation (2.19), we have

(2.21) U(z,2,)) = F(z,2,M)l(z,2) .

Therefore F(z,z,\)l(z, Z) has a meromorphic extension U(z,w, A) to D x D. O
REMARK 2.3. In general, there will be many meromorphic extensions of F'-1 to

DxD. However, if U and T both are such meromorphic extensions to ® xD and also

satisfy Equation (2.17), then U = T, since the generalized Iwasawa decomposition
of Theorem 2.1 is unique.

The meromorphic extension U(z,w, A) constructed in the proof will be called
“the unique meromorphic extension ” of F - .
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REMARK 2.4. In view of the Sym-Bobenko-Formula for CMC-immersions it is
tempting to consider the 1-parameter family of complex surfaces (with singularities)

?

dt

where U{z,w, A) is the meromorphic extension of the extended framing F(z, 2, A)l(z, z).
Even for arbitary potentials (n(z)dz, 7(w)dw), we expect these immersions to be of
great interest to the theory of integrable surface equations. We plan to pursue this
topic in a separate publication [19)].

(2.22) @, = <£U(z,w, A -Uz,w, A"+ Ulz,w, A) - %agU(z,w,/\)_1>

A=eit

3. Natural potentials for CM C-immersions

3.1. Existence of skew-hermitian potentials: In this section we consider a new
type of potentials, so-called “skew-hermitian potentials”, derived from a CMC-
immersion from M = I' \ D to R®. These potentials are meromorphic 1-forms on
9. From Equations (2.17), we obtain the equation:

(3.1) C(z,A\) =U(z,w,\) - Vi(z,w,\) ,

where (z,w) € © x D are independent variables and U(z,w, ) is the unique mero-
morphic extension of the extended framing F'(z,z, A\)l(z, zZ). We note that in Equa-
tion (3.1) we can replace w by any function of z and Z. First we set w = z, then the
entries of U(z, 2z, ) = C(z,\)Vy(2,2,A)! are meromorphic functions with respect
to z. Thus, U(z,z, ) can be considered as a meromorphic extended framing, which
is obtained from C by gauging with some V. ~'. Moreover, for z € RN D, we have
F(z,z,)l(z,2) = U(z,z,A). Therefore

a=F'dF = WUt — (dl) -1

_ Uit lgulz . llo/lo 0
(3.2) = <10_2qu u22) < 0 /i) for ze RND.

where u;;, {i,7} = {1,2} are the entries of U7'dU and ! = diag(lo,l;'). We note
that 1§/l is the half of the logarithmic derivative of [, and I3 can be extended to
all (z,w) € D x D (see the proof of Theorem 2.2). Therefore the right hand side of
Equation (3.2) can be extended to all z € . Clearly U(z, 2z, A\)l(z,z)! is a unitary
matrix for z € RND. We denote by ¢ the unique extension of a, which is obtained
by choosing the natural meromorphic extension of 3.2 via the unique meromorphic
extension of Ul™!. Therefore we have proved the following.

THEOREM 3.1. (Existence of skew-hermitian potentials) Let M =T\ D be a
connected Riemann surface with universal cover ® and Fuchsian group I'. Assume
that ¥ : M — R® is an immersion of constant mean curvature H = 1/2 with
associoted family ¥y : © — R®. Then ¥, can be derived from a meromorphic
1-form ¢ on ® such that

(3.3) ((z,0) = A7 (2) + Gol2) + AG(2) .

where each (;,5 = —1,0,1, is a meromorphic 1-form on ® and ( is skew-hermitian
for z€e RND.
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Potentials of the form just stated will be called skew-hermitian potentials.

REMARK 3.2. We note that Theorem 3.1 implies that the Maurer-Cartan form
a = F~YdF of some extended framing F' has a unique meromorphic extension, while
the extended framing F may not have a unique meromorphic extension.

3.2. Periods of skew-hermitian potentials: We have shown in Theorem 2.2 that
F(z,%,)) has, up to a Aindependent diagonal factor, a meromorphic extension
U(z,w, ) to D x D. Moreover, the square of this diagonal factor has a meromorphic
extension to D x D as well. Hence if a is the Maurer-Cartan form of the extended
coordinate framing of some CMC-immersion, then a(z,Z,A) has a meromorphic
extension 6 (z,w,A). We set w = z, then the corresponding skew-hermitian potential
C=C(z,w=2z,\)is

2,2 = -1 0 h(z) 0 —Wf) -
(3.4) (2, ,/\)-{/\ <% 0 )+<o+/\<_h(z) »6() dz |

where h(z) = exp(1/2u(z,w))|w=» = l3(z, z) with Iy defined in the proof of Theorem
2.2, which is the unique extension of the square root of the conformal factor eu(z:%)
of a CMC-immersion. We note that h(z) is real for z € D NR. And @ is the
coefficient of the Hopf differential of the CMC immersion and

R 0 )

0 -—-}I(’LLZ(Z,'U]) ——uw(Z,w))|w:z

COROLLARY 3.3. Ifu has real coefficients, i.e., if u(z, z) = u(Z, z), then {s(2,2) =

Clearly if the fundamental group I' = w1 (M) contains the real translation
z = z + p, then the conformal factor e*(*2) and the coefficient @ of the Hopf
differential of the CMC-immersion are periodic with period p.

COROLLARY 3.4. If the fundamental group I’ = w1 (M) contains the real trans-
lation z = z + p, p € R, then the corresponding skew-hermitian potential  defined
in Equation (3.4) is periodic with period p.

3.3. Uniqueness of skew-hermitian potentials: We know that normalized poten-
tials are uniquely determined while holomorphic potentials are not (see Introduction
and [21]). It is thus natural to ask whether the new type of potential defined above
is uniquely determined by a given CMC-immersion. From Section 3.2, we will
consider the skew-hermitian potentials defined in Equation (3.4). The following
theorem implies that the skew-hermitian potential is almost uniquely determined
by a CMC-immersion.

THEOREM 3.5. Let { = A™Y(_1 + o+ A1, A € St be a skew-hermitian potential
defined in Equation (3.4). Assume that the same assumptions hold for (. Then (
andé induce the same CMC-immersion if and only zfé = LEICLO +LaldL0, where
Lo(z) = £1d or Lo(z) = diag(+i, F4).
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PROOF. “=" Since { and f are meromorphic potentials for the same immersion,
we know that the solutions to dC' = C'¢ and dC = C( satisfy the relation

C=CL, ,

where L. € ATSL(2,C), is meromorphic in z € D and holomorphic for A € C\ {0}.
For z € RND we know that L, (z, ) is unitary. Hence (L+(z, /\)t) ' = Li(z,\)
for z € RN®. Therefore, L, (z,\) = Lo(z) is independent of A for z € RND, and
C = CLg implies ¢ = Ly *¢Lo+ Ly *dLg for z € RND, where Lo = diag(lo, l5 *) and
|lo] = 1. Moreover iL(Z), which is an entry of ¢ defined by Equation (3.4), is real for
z € DNR, and thus Ly = +1Id or L, = diag(+i, F¢), and by analytic continuation,
L, = £1d or diag(+¢, Fi) for all z € D.

“e” Let Ly = +Id or diag(+i, Ti). We set C = CLg, { = C~1dC and ¢ = C~1dC.
We consider the Iwasawa decomposition of C' = (FU) (U_1W+L0), where C =

FW, is the Iwasawa decomposition of C and U e UQl). U goes away in the
Sym-Bobenko-Formula, thus FU and F define the same CMC surface. a

4. CMC-cylinders

4.1. Necessary and sufficient condition for CMC surfaces with a period: In
this section, we consider CMC-cylinders. These are homeomorphic to $?\ {p1,p2},
where p; and ps are different, but otherwise arbitary, points in §2. Using a Mé&bius
transformation, we can move these two points to the north pole and the south
pole of S2, and using stereographic projection from the north pole we can assume
that every CMC-cylinder is an immersion from M = C \ {0} to R®*. Then using
a change of coordinates we can assume that every CMC-cylinder is an immersion
from M = C/pZ, where p is a real number. Since the fundamental group of a CMC-
cylinder is generated by a single period, p € R, we can, by Corollary 3.4, assume
that the corresponding skew-hermitian potential is well defined on M = C/pZ.

PROPOSITION 4.1. Let { = X711 + (o + A(1, A € S, be a meromorphic
potential on © = C such that ( is skew-hermitian for z € R. Let C(z,\) be the
unique solution to dC = C(, C(0, ) = Id. Assume ( is periodic with period p € R.
Then the CMC surface associated with { for A = 1 has the translation by p € R in
its fundamental group if and only if the unitary monodromy matriz C(p, \) satisfies
the closing conditions (1.12) for A = 1. ’

ProOF. Let C be the solution to dC = C{, C(0,A) = Id, where 0 € ® = C.
Since ( is skew-hermitian for z € R we obtain that C(z,A) € A,.SU(2), for z € R.
Since ( is periodic with period p we have C'(p+ z,A) = x(A)C(z, A) by Proposition
1.8. The initial condition C(0,\) = Id implies x(A) = C(p,A). Since p is a real
number, x{()) is a unitary matrix, and thus x(A\) = C(p,A) is also a monodromy
matrix for F(z,Zz,A), which is the unitary part of the Iwasawa decomposition of
C(z.2) = F(z,z, )W, (2,2, A). The claim now follows from Theorem 1.13. O

COROLLARY 4.2. We retain the assumptions of Proposition 4.1. Then, for a
eylinder, C(z,1) and F(z,%,1) are periodic with period p.
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Now we will give the definition of a frame periodic surface.

DEFINITION 4.3. We call a surface frame periodic for A = A\g € S! if the frame
F(z,2,A = Xo) € SU(2) of a CMC-immersion W=y, is periodic with period p.

COROLLARY 4.4. We retain the assumptions of Proposition 4.1. Then a surface
is frame periodic at X = Ao € S if and only if C(z, Ao) is periodic.

4.2. Frame periodic CMC-immersions: To illustrate the discussion above, we
consider the construction of a frame periodic surface from a skew-hermitian peri-
odic potential. It turns out that it is easy to modify the “generalized Weierstrass
representation” ([21]) so that the first closing condition for a monodromy matrix
is trivially satisfied, i.e., M|y=1 = £Id. To motivate our approach, assume first
that ¢ is the skew-hermitian potential as in Equation (3.4) associated with a frame
periodic surface. Let C be the solution to dC' = C(, C(0,A) = Id. Then C(p, A) is
a unitary monodromy matrix and Co(z) = C(z, A\ = 1) is periodic.

We use this last fact as a starting point for a “sufficiently nice potential”. By
the remark just made, every frame periodic CMC surface can be obtained in this
way. Let’s start, conversely, from a meromorphic and periodic matrix Cp(z) of the
form

ag(2) bo(z)>
4.1 C =
“1) oz} <—b0(5) ao(2)
where ao(z),bo(z) are periodic functions of period p € R satisfying det Co(z) =
ao(z)ag(Z) + bo(2)bo(Z) = 1. In particular Cp is unitary for z € R. Set

Gz = 5 Co
(4.2) _ v(z)  k(z)
To\=k(® -v(2)/) "’
where v and & are periodic 1-forms of period p € R and v(2) = —v(z). We take

meromorphic 1-forms h(z) and g(z) on C, which are periodic of period p, and satisfy

k(z) = h(z) — g(z) for z € C. Set
(4.3)

[ (8 29)+ (4 B ()

Then {(z,X = 1) = {p(z) and ¢ is meromorphic for z € © and skew-hermitian for
z € R Therefore ( satisfies the assumptions of Proposition 4.1. Let C = C(z, \)
denote the solution to dC = C¢, C(0,)) = Id. Our construction implies C(z,1) =
Co(z), whence the first closing condition is satisfied, i.e., x(1) = £Id. Therefore we
have shown

THEOREM 4.5. Let Co(z) be given by Equation (4.1) and assume Cy(z) is pe-
riodic with period p. Set (o = Cy'dCy and define ( by Equation (4.3). Then
satisfies the assumptions of Proposition 4.1 and defines a frame periodic CMC-
immersion. Moreover, every frame periodic CMC-immersion can be obtained this
way.
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FiGURE 1. New example of a CMC-cylinder. Figures are con-
structed using [53].

REMARK 4.6. The construction of ¢ from (o carried out above shows that there
is a lot of freedom. Actually, different choices of h and g yield by and large different
surfaces.

4.3. Second closing conditions: Finally, we consider CMC-cylinders. By the
discussion of the last section it only remains to consider the second closing condition,
le, OhM|y=1 = 0, where M is the monodromy matrix defined in the sense of
Definition 1.6. There is a nice trick reducing the second closing condition to the
vanishing of some integral [34], [38].

ProposITION 4.7. If Co{z) is as in Equation (4.1) and if ¢ is defined as in
Equation (4.3). Then ( satisfies the assumptions of Proposition 4.1 and the first
closing condition, i.e., M|y=1 = =xId, is satisfied. The second closing condition,
i.e., O\M|r=1 = 0, is satisfied if and only if

P
(4.4) /0 {CoO\C|A=1C5 }dw =0 .

We summarize the discussion of the last few sections:

THEOREM 4.8. The construction outlined in Section 4.2 and 4.3 produccs all
frame periodic CMC-immersions. Moreover, the construction above also produces
all CMC-cylinders.

4.4. New examples of CMC-cylinders: Below we illustrate how the theory pre-
sented above can be applied to concrete constructions of CMC-cylinders. Let Cy

be the following matrix:
Ch — cos(z)  sin(z)
0~ \—sin(z) cos(z)

Clearly Cj is holomorphic in C, periodic with period 27 and unitary for z € R.
Then for the Maurer-Cartan form ¢y, (s = C;'dCy of Cy, we obtain:

0 1
So= <—1 0)
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We decompose 1 = h(z) — g(z) = 1/2e#*05(2) 4 1/2(2 — % s(2)) as in Section
4.2, and we introduce A according to Equation (4.3). Then we obtain the periodic
skew-hermitian potential

0 R(z)AY = g(2)A
A) = —
=N <g(z)x1 — h(Z)A 0 ’
where h(z) = 1/2e%<05(2) | g(z) = —1/2(2 — e"# () and k is some real number.
To determine k, we evaluate Equation (4.4).
2
—1 _ 0 271']2(]{7)
(4.5) ) {CO(ACIA:lC’O }dw = <27TJ2(]€) O y

where J>(z) is the Bessel function of the first kind (see [8]). If we choose k such that
Ja(k) = 0. Then we obtain an example of a CMC-cylinder. In Figure 1, we have
the CMC-cylinder corresponding to two different values of k. In the left picture in
Figure 1, we use k£ = 5.13, the square domain 0 < z < 27 and —0.4 <y < 04. In
the right picture in Figure 1, we use k = 8.41, the square domain 0 < z < 27 and
-0.1 <y < 0.1, where z = z + y.

REMARK 4.9. (i) In [34], [38], many ezamples are given starting from
skew-hermitian potentials. However a comparsion of the Hopf differentials
of these surfaces with the example above shows that the surface given above
is different from the ezamples given in [34] and [38] and therefore yields
a new example of a CMC-cylinder.

(il) The main result of this paper shows how one can construct CMC-cylinders
from skew-hermitian matrices, and even better, from matrices of type Cy.
Theorem 8.5 shows that different potentials yield (by and large) differ-
ent immersions. A fine classification of CMC-cylinders would be highly
desirable.
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