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Preface

Y .-P. Gunji says, " Time is the other name of life.” (Gunji 2004): where ”time”
does not mean a parameter as a master clock for a system but means ”flow of
structural change” of the system. In this dissertation, statuses of the above
“time” and "life” are replaced by that of ”emergence” and ”robustness”, which
are explored as the introduction of our view. Although this text has an aspect
of article on complex systems science, one must see that philosophical and
ontological problems are dealt with in this text based on the viewpoint of
internal measurement (Matsuno 1989).

This doctoral dissertation consists of five chapters and one appendix.

In Chapter 1, our problem establishment is presented via forms of physics
and the problems of emergence, autonomy and robustness in complex systems
science.

In Chapter 2, the basic terms of category theory are surveyed, and a dy-
namical system is expressed via the terms of category.

In Chapter 3 and Chapter 4, our motivation is concretely developed via
forms of discrete dynamical systems, such as coupled map systems of logistic
maps (Chapter 3) or Henon maps (Chapter 4). Diagrams of category theory is
incorporated to reify the discussion in Chapter 1 and to extend each dynamical
system. Chapter 3, Chapter 4 and Appendix A of this dissertation are the
following articles which were partially added and altered:

e Chapter 3:
Moto Kamiura and Yukio-Pegio Gunji,
Robust and Ubiquitous On-Off Intermittency in Active Coupling.
Physica D 218(2006)122-130.

e Chapter 4 and Appendix A:
Moto Kamiura, Kohei Nakajima and Yukio-Pegio Gunji,
Generative Pointer: Dynamical System with a Fluctuant Parameter Mo-
tivated by Origin of Fraction.
Physca D (submitted).

Finally, deconstructionalistic significance of this dissertation is reaffirmed
in Conclusion.
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Chapter 1

Introduction

In this chapter, our problem establishment is presented via forms of physics
and the problems of emergence, autonomy and robustness in complex systems
science. In the following chapters, some dynamical systems are extended based
on this discussion.

1.1 Emergence, Autonomy and Robustness

A concept of emergence has been spread across various disciplines. It usu-
ally means the phenomenon such that advanced and complicated order / new
behavior are generated. When the subject of research is dealt with as a sys-
tem, local interaction between the system components or integration of many
autonomous elements is regarded as the causes of the order / behavior. In
this sense, emergence is regarded as a property of the particular systems and
emergent systems are separated from non-emergent systems.

In the study of multi-agent systems and/or multi-degree of freedom dy-
namical systems, the emergence is regarded as behavior that is not observed
on the constituent parts on the system but is generated on the whole system.
In this sense, the distinction of "the part and the whole” means that of the
spatial scales. We call it narrowly-defined emergence.

By contrast, we emphasize the aspect of ”emergence” depending on obser-
vation. In our viewpoint, the emergence is regarded as just generating new
things and is not dealt with as the feature of the spatial scale. We call it
broadly-defined emergence or just emergence.

Emergence is not a property of the particular systems but is found under
the relation between the systems and their environment / observers. For ex-
ample, suppose a system that outputs a sequence of signals. As the example
of the signals, one can take utterances of human beings, electric bits patterns
or proteins in cells, etc. These signals are received and interpreted by the
observers such as human beings, computers or DNA, etc. If an observer of the

7



8 CHAPTER 1. INTRODUCTION

2 Conclusive Rule
A

Observer

Dynamic Change
of the Rule

Figure 1.1: Difference between error and emregence. Unexpected outputs are
regarded not as the errors but as the emergence when they are accepted by
the system observers.

system presumes that the system outputs the signals according to a conclusive
rule, deviated signals from the presumed rule are regarded as just errors (i.e.
fluctuations in terms of physics). By contrast, If the observer presumes that
the system has autonomy, the deviating signals are regarded not as errors but
as the consequence of the autonomy. Such unexpected outputs are regarded
not as the errors but as the emergence when they are accepted by the system
observers (Figure 1.1). Thus emergent phenomena are connected to autonomy
via observers.

The autonomy of the system is found by the observer that accepts the
change of the rules on the system. The emergence is the unexpected outputs
with the change of the rules. Therefore, the autonomy and the emergence are
based on the same phenomenon, and correspond to the aspect of the system
and the events occurring on the system, respectively. In such a viewpoint, we
can no longer divide the system from the observer. !

li.e. if the picture of emergence is based on the dynamic change of the presupposed rule,
the cause of emergence can not boil down to only system or to only observer. Such a change
of rule is the ceaseless process, such that final decision of the rule is postponed, and such
that the rule is determined ”for the time being”.

However, we must note the following with the above: i.e. if a pair of system and observer,
[system-observer|system, is simply introduced into the model, one can suppose a meta-
observer for the [sysem-observer]system who has more complete knowledge / information
(Figure 1.2). Moreover, one can suppose ”a set of complete knowledge” as a limit of such
a process, [-- - [[system-observer]system-observer]|system-- - -]. This supposition means that
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Figure 1.2: (See footnote 1): If a pair of system and observer, [system-
observer|system, is simply introduced into the model, one can suppose a meta-
observer for the [sysem-observer|system who has more complete knowledge /
information. This infinite regress is coincided with the frame problem (Mc-
Carthy and Hayes 1969; Dennet 1984; McCarthy 1990).

When mathematical models are constructed from such an aspect, the ac-
ceptance of the unexpected outcomes can be formalized as indefinite domains
and/or ranges of functions and as dynamic and structural change of the func-
tions. In the chapter thesis, we propse two models based on the two points.

1.2 Indefiniteness in the Form of Physics

Let us paraphrase the above viewpoint in terms of physics.

In conventional science, if one analyzes a physical system, he replaces in-
tensity with extensive quantities. For example, given a Newtonian equation
mv = F, one replaces the force (i.e. intensity) F with an extensive quantity
such as —kx since he cannot directly deal with the intensity. Such replacement
is a means to deal with the intensity analytically. If the intensity and the ex-
tensive quantity have an one-to-one correspondence between them, you have
only to deal with the extensive quantity. Conventional quantitative science is

there is an ultimate rule of the system and that only real observers can not know the rule.
If we suppose the set of complete knowledge, there are not "new events” or ”emergence” in
principle.

In contrast, if we accept the concept of emergence, we must also accept incompleteness /
indefiniteness of the systems. In other words, introduction of the concept of system observers
means acceptance of incompleteness / indefiniteness of the systems.



10 CHAPTER 1. INTRODUCTION

based on this viewpoint, and fixed experimental environment is necessary for
such an one-to-one correspondence.

Matsuno showed that a conventional viewpoint of physics restricts an un-
derstanding of a concept of emergence that is found on complex systems such
as biological or economic systems, and he proposed a concept of internal mea-
surement (Matsuno 1989). Internal measurement is explained as a motion
that carries on canceling conflicts between particles with local perspective and
correspond to a process of transformation from intensity into an extensive
quantity. The extensive quantity satisfies each physical law in hindsight. He
emphasizes the indefiniteness of the determination of the boundary conditions
in the process of the internal measurement. In the following, we amplify the
implications.

Generally, a model for a physical system is constructed based on several
hypothesis and experimental facts. Specified experimental environment is nec-
essary to keep reproducibility and ability to control the system. And repro-
ducibility and control ability are necessary to fit a mathematical form to the
system. When the system is modeled in a mathematical form, we obtain sets
of data rechaptering behavior of the system. The model that is empirically
constructed is regarded as a real rule to control the system.

Modeling the system in a specified mathematical form needs actively ignor-
ing unexpected influence that is not included in the model. For example, if one
hooks his foot on an experimental setup (i.e. unexpected influence), he works
over the experiment to obtain correct results. He does not rewrite the model
but does the experiment again. Such unexpected influence is the same kind of
the frame problem on artificial intelligence (McCarthy and Hayes 1969; Dennet
1984; McCarthy 1990). Ignoring unexpected influence means separating the
system from the indefiniteness, and means expressing the model of the system
by a closed form. This simple example shows that the system is constructed,
is indicated and is described in the open environment.

On the other hand, reproducibility and control ability are incompatible
with emergence. If deviation of the data is observed in the system under
the reproducibility and the control ability, we conclude that the deviation is
derived from fluctuation or improper experimental conditions and the rules
that administer the system are invariable; i.e. the system is regarded as a
machine that works by the rules. By contrast, if the deviation of the data
is regarded as not fluctuation but a result of change of the rules, we find
emergence by the system itself.

The change of the rules corresponds to rewriting the model of the system;
i.e. the frame problem and the emergence are two sides of a coin. If we suppose
the invariable rules and the fluctuation in the system, unexpected change of
the system means the frame problem. By contrast, if we suppose the variable
rules in the system, the unexpected change means the emergence. The concept
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of emergence obviously is not properties of particular systems but lies between
the system and its observer that assumes the specified rules.

The frame problem and the emergence are two sides of a coin. If we suppose
the invariable rules and the fluctuation in the system, unexpected change of
the system means the frame problem. By contrast, if we suppose the variable
rules in the system, the unexpected change means the emergence. The concept
of emergence obviously is not properties of particular systems but lies between
the system and its environment that assumes the specified rules.

Our viewpoint can be generalize as heterarchy on the system and the envi-
ronment. A concept of heterarchy was chaptered by McCulloch (1945). and is
related to emergence and robustness (jen 2003; Kamiura and Gunji 2006). A
heterarchical system is generally characterized by a hierarchical system with
interaction between its layers or with mixture of them.

In the chapter thesis, we studied this problem using category theory and
a dynamical system. On a viewpoint of a dynamical system, dynamic change
of the rule corresponds to change of the vector field/the time evolution oper-
ator of the dynamical system. Thus, when we try to understand a concept
of emergence on the dynamical system, one of the most important aim is a
formalization of dynamic change of the time evolution operator. Such change
of the operator is equal to transformation of a manifold on a phase space.






Chapter 2

Mathematical Preliminary

To discuss the view of the previous chapter more concretely, we use dynamical
systems and category theory (Maclane 1971=1997; Awodey 2006). In the
present thesis, a dynamical system is expressed in terms of category theory.
On the study of complex systems, the viewpoint of dynamical systems has
given the outstanding knowledge. Moreover, category theory contributes to
bringing out the status of the models and that of the variables.

2.1 Category Theory

In this section, we survey terms of category theory that is useful for an expan-
sion of a dynamical system.

Definition 2.1 (category) A category consists of the following data:
e Objects: A, B,C,---
e Arrows: f,g,h,---

e For each arrow f there are given objects:

dom(f), cod(f)

called the domain and codomain of f. We write:
f:A—>B
to indicate that A = dom(f) and B = cod(f).
e Given arrows f: A— B and g: B — C, i.e. with:

cod(f) = dom(g)

13



14 CHAPTER 2. MATHEMATICAL PRELIMINARY

there is given an arrow:

gof:A—C
called the composite of f and g.
e For each object A there is given an arrow:
idy : A— A
called the identity arrow of A.
These data are required to satisfy the following laws:

e Associativity:
ho(gof)=(hog)of
forall f:A—>B,g:B—C,h:C — D.
e Unit:
foidy=f=idgof
forall f: A — B.

Definition 2.2 (functor) A functor
F:C—D

between categories C and D is a mapping of objects to objects and arrows to
arrows, in such a way that:

e F(f: A= B)=F(f): F(A) - F(B)
® F(gof)=F(g)oF(f)
L] F(ZdA) = idF(A)
Note every category C has an identity functor 1¢ : C — C.

Definition 2.3 (coproduct) Suppose a category C and an index set A. A
coproduct [] C; is defined as an object with arrows {¢; : C; — [[ C;}sea such
that it satisfies the following condition: given g; : C; — A, there is an unique
arrow h : [[C; — A such that ho; = g; is commutateive for each 7 € A. Also
h is expressed by [i;]ien : [[Ci — A.

Definition 2.4 (coequalizer) A coequalizer of arrows g,h : A — B in a
category C is defined by an allow e : B — X such that it satisfies the following
two conditions: i) eo g = e o h ; ii) For an arbitrary arrow €' : B — X' that
satisfies ¢ o g = €’ o h, there is an unique arrow k£ : X — X' such that it
satisfies koe =¢'.
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Definition 2.5 (cocone) Given a category C, its diagram C’ and its set
of vertexes V', a cocone of C' is an object X with a family of arrows v =
{vi : C; = X}iey (expressed by v : C' — X) that satisfies the following: For
arbitrary arrows g : C; — C; on C, v satisfies v; 0 g = 1.

Definition 2.6 (colimit) Given a category C and its diagram C’, a colimit
of C'is a cocone i : C' — M that satisfies the following: For arbitrary cocone
v:C'— X of C', there is an unique arrow k : M — X such that ko py=v.

Definition 2.7 (pullback) In any category C, pullback of arrows g : A — C
and h : B — C is a pair of arrows p; : P — A and p, : P — B, that satisfies
the following i) and ii): i) g o p; = h o py, ii) Given any 2; : Z — A and
2y 1 Z — B with go 2, = h o 29, there is a unique map u : Z — P with
z1 =pi1ou and zo = py o u.

Remark 2.8 A x¢ B that is a subobject of A x B with projections 7 :
AxB—Aandmy: Ax B — Bisapullbackofg: A—-Cand h: B— C,
where A X¢ B = {(a,b)|a € A,b € B,g(a) = h(b)}.

Definition 2.9 (slice category) A slice category C/X of a category C over
an object X € C consists of the following objects and arrows: objects are all
arrows v; € C such that cod(v;) = X, and an arrow g from v; : C; — X to
vj:C; —+ X is g : C; — C; in C such that v; 0 g = v;.

Remark 2.10 (composition functor) Composition induces a functor. For
any slice category C/A with objects {y; : C; — A} and arrows g : C; — Cj,
an arrow k : A — B induces a slice category C/B with objects {v; = k o y; :
C; — B} and arrows g : C; — C; and a functor K : C/A — C/B such that
K(w;) = kou; =v; and K(g) = g.

Remark 2.11 (pullback functor) Pullback induces a functor. For k : A —
B in a category C with pullbacks, there is a functor K* : C/B — C/A defined
by (v; : C; — B) — (u} : C; xg A — A) where ] is the pullback of v; along k.

2.2 Category of a Dynamical System

A dynamical system can be expressed via the terms of category theory (Louie
1985). We can see the following two facts: a set of trajectories of a dynamical
system is the colimit of the category of the dynamical system; Hamiltonian
is a cocone if the dynamical system is Hamiltonian system. Therefore, the
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motion and the energy as micro-level of the system and macro-level of that are
connected via a composition functor between the two slice category induced
by them.

Definition 2.12 (dynamical system and its category) Suppose a topo-
logical space D and a continuous map f: D x R — D. For each ¢t € R, a map
ft : D — D is defined by fi(z) = f(x,t) (xr € D). If a family of the maps
{fi }1er satisfies the following conditions i) and ii), then (D, f) is called a con-
tinuous dynamical system on D: i) fio fy = fip for all t,t' € R; ii) fo = idp.
The map f; means a time evolution operator of the dynamical system. And
for each z € D, Gz = { fi(z)|t € R} is called a trajectory or an orbit through
x.

The composition i) satisfies associative law, thus we obtain a category of
the dynamical system D that has the phase space D as its object and the map
ft as its arrow. D is obviously a subcategory of Top, thus a functor F' :D
— Top is defined by an inclusion mapping.

We use the following lemma to construct a colimit of a dynamical system.

Lemma 2.13 Given a map g : S — S’ and a surjective map h : S — S”, the
following two condition are equivalent.

1. For z,y € S, h(z) = h(y) = g(x) = g(y).

2. There is a unique map ¢’ : S” — S’ such that ¢ = ¢' o h.

s—sg

P
Ve
h i
/ g

SII

Proof (2. =1, h(z) = h(y) = ¢'(h(z)) = ¢'(h(y)) = 9(z) = g(y). his a
surjective map, thus an arbitrary element in S” is expressed by h(z) (z € 5)
and its image of ¢’ is ¢'(h(x)) = g(z). The fact is independent of x, thus ¢’ is
unique.

(1. = 2.) hinduces a injection h : S/R;, — S" and h = hor (7 : S — S/Ry,
is a canonical mapping). A is a surjection, thus A is a bijection.
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By the condition 1., g induces a map g : S/R, — S' and g = gow. If ¢’ is
defined by ¢’ = go h™', we obtain g = gom = goh ' oh = g oh (ie. the
condition 2.).

We construct a colimit of a dynamical system D using the coproduct and
the coequalizer in D.

Construction 2.14 (colimit of diagram for a dynamical system) Sup-
pose a category of a Hamiltonian dynamical system D with constant energy.
For arbitrary ¢ € [0,00) C R, objects in D are dom(f;) = D; and cod(f;) = D;.
An arbitrary vertex of the diagram of D is represented by Dy. D is a subcate-
gory of Top, thus there are coproducts [[ D; and [[ Dy, in Top. For canonical
injections ¢; : D; — [[D; and ¢; : D; — ][ Dy, there is an unique arrow
¢ : [ D; — [] Dy such that ¢ o t; = ¢; because of a definition of a coproduct.
Again, for v; : D; = [[ D;, tj : Dj = [[ Dy and ¢; o f; : D; — [] Dy, there is
an unique arrow ¢ : [[ D; — [[ Dy such that ¢ o¢; = ¢ o f;. ¢ and ¢ stand
for ¢ = [Li]ie{dom(ft)} and ¢ = [lfj © ft]je{cod(ft)},tER-

Moreover, a quotient space || Dx/ ~ is induced from the equivalence re-
lation 7; ~ 7445 & s € R(zyys = fo(zy)). Therefore, we obtain G :=
[IDk/ ~> Gz := {zi|zr = fi(z0),z0 € Dy, t € [0,00) C R}. A surjection
n: [ Dx — G;zy — Gz satisfies no ¢ = no 1.

Given a cocone G’ with v : D — @', it induces an unique arrow 7’ :
[1 Dy — G’ such that ' o v; = v, po; =v and p=1n' o ¢ =1 o1 because of
the definition of coproduct. And there is an unique arrow k£ : G — G’ because
of Lemma 2.11 (note that 7 is a surjection). Therefore, 7 is a coequalizer of ¢
and ¥ and G with y = n o is a colimit of D.

The above facts are expressed by the following diagram:

D; (2.1)

[1D; 4 LI Dk 7 G

P |
LiT Tbj \ Ik
e ! Y

Dj G’

The colimit G corresponds to a set of trajectories.

We show static structure between a micro-level layer (i.e. a set of the vectors
on the phase space) and a macro-level layer (i.e. the energy conservation law)
in a Hamiltonian dynamical system.
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Suppose a Hamiltonian of a n-dimensional system with constant energy
H(p,q) = E. A category of the Hamiltonian dynamical system D con51sts of

objects D 3 (p, q) and allows {f; = e *': D — D} where £L =", (gi 6?)1 -

gH 36 ) is a Liouville operator. We obtain a colimit G of a diagram D’ of D by
p; 9qi

the construction 2.12. If H(p,q) = E then H(fi(p,q)) = E for arbitrary ¢,
thus a set of energy values € = {E|E € [0,00) C R} with arrows {H : D — €}
is a cocone of D'.

Two slice categories D/G and D/€ are induced from D, G and €. A
composition functor K : D/G — D/€ is induced from k£ : G — €& that
uniquely exists.

D D f D , (2.2)
| N Y
B/ D \# p D — H D
AN, A |/

And the pullback of H along k induces a functor K* : D/¢€ — D/G. it is
expressed by the following diagram:

D Xe G (23)

{ftﬂdG} \
TG D Xe G
G

Thus a consistency between the micro-level layer and the macro-level layer
in the Hamiltonian dynamical system is expressed by K : D/G — D/€ and
K*:D/¢ - D/G.




Chapter 3

Active Coupling

On-off intermittency is an aperiodic switching between synchronized chaos and
non-synchronized chaos, and is observed near the edge of chaos on a bifurcation
diagram of coupling strength. Therefore, its occurrence needs to tune param-
eters of the system sensitively. In this chapter, a concept of observational
heterarchy is reviewed with a simple model and characters of on-off intermit-
tency derived from active coupling systems (ACS) are investigated. Generally,
on-off intermittency results from fluctuation of the local transverse Lyapunov
exponent. ACS can retain such a character of the Lyapunov exponent by the
time evolution of the maps, so on-off intermittency occurs on wider parameter
regions. These are concrete approaches to the notion of robustness that is
regarded as persistence different from stability on dynamical systems.

3.1 Introduction

Intermittency is observed in various nonlinear dynamical systems. Three types
of intermittency concerning the transition between periodic oscillation and
aperiodic it are distinguished and are called Type I, II, III intermittemcy
(Pomeau and Manneville, 1980). Crisis-induced intermittency caused by the
collision of the chaotic attractor is studied by Grebogi et al (1982). Moreover,
intermittency found out by Yamada and Fujisaka (1985;1986) is observed on
a coupled map system composed of chaotic oscillators and it is called type
B intermittency or intermittency caused by chaotic modulation. The same
kind of phenomena called on-off intermittency by Platt et al.(1993), and the
statistic features are discussed by Heagy et al.(1994). On-off intermittency is
an aperiodic switching between synchronized chaos (laminar phase) and non-
synchronized chaos (burst phase). On-off intermittency occurs near the edge
of chaos on a bifurcation diagram of coupling strength, is applied to a chaos
neural network, and is related to information processing[21].

In a modeling of a complex system, such as life, economics, etc., it is neces-

19



20 CHAPTER 3. ACTIVE COUPLING

sary to tune parameters for relevant behavior of the model. Complex behavior
that is neither stable nor chaotic is characterized by class IV cellular automata
or dynamical systems at the edge of chaos, for example, and it appears at phase
transition points of parameters of their systems. Since the parameter region
leading to such behavior is generally narrow, the following question arises: Is
such complex behavior exceptional event in nature? Are the characters of this
world fragile things based on delicate parameters? For these problems, im-
portance of robustness that is a different notion from stability of a dynamical
system is addressed recently (Jen, 2003). The concepts of trajectory stability
and structural stability are known in a dynamical system. In contrast, ro-
bustness that is not defined strictly is regarded as feature persistence against
dynamical change of the system structures, and as a concept that is relevant
to a notion of heterarchy presented by McCulloch (1945). Generally, a het-
erarchical system is characterized by a hierarchical system with interaction
between various layers.

The generalized heterarchy concept is called observational heterarchy (Gunji
and Kamiura, 2004; 2006). This point of view is consistent with a notion of
internal measurement (Matsuno, 1985; Gunji et al, ). If heterarchy is con-
ceptually extended to observational heterarchy, heterarchical structures are
found not only in particular systems but also in the systems with observation
ubiquitously.

Through the application of our method based on the notion of observational
heterarchy to a coupled map system, the maps of the coupling system can also
evolve and the parameter region giving the intermittency is extended. In other
words, the intermittency occurs against the dynamical change of the maps and
disturbance of the parameter. Therefore, we think that our system based on
observational heterarchy gives a concrete example of robustness.

Technical process of this chapter is the following: First, two heterarchical
layers are arranged mathematically and observational heterarchy is expressed
as a pair of these layers. Secondly, the form of observational heterarchy is
applied to a coupled map system composed of nonlinear oscillators for appraisal
of our concept and it is called active coupling system (ACS) to distinguish
from the conventional coupled map systems. The system applied observational
heterarchy has time evolution of the maps. Thirdly, Statistical features of on-
off intermittency given by ACS are estimated.
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3.2 Mathematical Form of Observational Het-
erarchy

3.2.1 Formalization of Heterarchical Layers by Cate-
gory Theory

The concept of heterarchy is proposed in a context of the topology of nervous
nets that shows what value is not magnitude of any one kind (McCulloch,
1945). Generally, a heterarchical system consists of two (or plural) layers
and interaction between them. In hierarchical system, one layer depends on
the other layer. By contrast, heterarchical system can switch the dependence
relations of each layer (Figure 3.1 (a)).

Now we survey the heterarchy concept through an example (de May, 1982).
Suppose a hypothetical program reading a document (Figure 3.1 (b)). A doc-
ument is resolved into sentences, phrases, words and letters for reading it. A
sentence is composed of letters, so the sentence transaction layer depends on
the letter transaction layer. If this hierarchical structure is fixed, the transac-
tion is stopped when one letter cannot be deciphered. In contrast, a heterar-
chical system can read the document by making up for the letter through using
the contexts. The proper switching between these layers produces robustness
of the transaction.

(a) (b)
Ex.)

Document with unreadable
Layer 2 © letter/word by blotches etc. ( D} word  sentence

System Dependence Hﬂ
Relation . : letter word
Layer 1 Heterarchy

Hierarchy Heterarchy Proper switching between these layers
— Robust Reading (?)

il ‘|
D

Figure 3.1: (a) Hierarchicy and heterarchy. (b) An example of heterarchical
system reading a document (de May, 1982). If this hierarchical structure is
fixed, the transaction is stopped when one letter cannot be deciphered. In
contrast, a heterarchical system can read the document by making up for the
letter through using the contexts. The proper switching between these layers
produces robustness of the transaction.

Such an example is lucid and useful. In fact, however, the distinction
between these layers is fuzzy and the meaning or usage of a word is opened
to dynamical change. It is necessary to broaden our horizons not only for



22 CHAPTER 3. ACTIVE COUPLING

the switching between solid layers but also for the dynamical change of the
layers themselves derived from interaction between them. In the following, we
expand the concept of heterarcy and propose observational heterarchy. For
the expansion of the concept and the application to coupled map systems,
mathematical forms in terms of category theory are introduced.

Definition 2.1 (slice category) Given a category C, a slice category C/A
is defined by the following; an object is an arrow ¢ : C' — A in C satisfying
cod(y)) = A and an arrow is an arrow i : C' — C satisfying ¢ o i = ¢/, with
YO — A

A slice category is one of the categories containing arrows as its objects.
Since a system can be generally regarded as a set of functions, a slice category
is fit for a description of such a system. In this chapter, observing a system is
defined as constructing an equivalence between two slice category.

Construction 2.2 For an arbitrary slice category C/A, we can construct the
subcategory D4 C C/A with epic arrows ¢ : C — A as its objects. And an
arrow f : A — B induces a slice category Dg C C/B’ with ¢ = foyp: C — B’
as its object where B’ = Im(f) C B and a mapping F' : D4 — Dpr; ¢ — fo1).
Then F maps an arrow ¢ € D 4 such that 1 oi = 1’ to ¢ € Dp such that ¢oi =
¢'. Since one can check the preservation of identity arrows and composition,
F'is a functor.

It is trivial that F' : D4 — Dpg is an onto mapping. Moreover, if f is
bijective, F' is an one-to-one mapping ( F(¢) = F({') & foyp = fo)' =
¥ = 1" ). Then we can construct a mapping F ! : Dy — Dy;¢+— flo ¢
that is a functor as well as F'. In this case, F' shows the equivalence D4 = Dp.

For a category C and an arrow f € C we introduce L1 = (C, f) and L2
= (Dy4, Dp, F) as hierarchical/heterarchical layers. If F' is an one-to-one and
onto mapping, then L2 satisfies the form of ovservation D4 = Dpg. These
layers, L1 and L2, are given as the mathematical framework of observational
heterarchy.

Lemma 2.3 A mapping R : Hom; (A, B) — Homs(D4,Dg); f — F can
be defined and is an one-to-one mapping.
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Proof Suppose R(f) = F;1+— fot and R(f') = F';¢ +— f' 0. Then,

Vf, ' € Homy; (A, B)(R(f) = R(f"))

since 9 is epic. Therefor R is an one-to-one mapping.

Arrows and functors are generally separated as operations differing in log-
ical status. Such a distinction is represented as F'(v) and f o 1), for example.
On L1 and L2, f is separated from F' on the surface. But f is necessarily
confused with ' when a concrete operation of F' is executed. The confusion
of the functor F' with the arrow f is expressed by the following;

F(y)=foy (3-2)

where the left hand and the righgt hand of the equation show the operations
of L2 and L1. And if f : A — B is bijection, we obtain

F(¢)=f""0o¢ (3-3)

and such a confusion is consistent.

In the expression of hierarchical/heterarchical layers, L1 and L2, we can
paraphrase the previous example about a document reading: if f is not bijec-
tive, the transaction is switched from F' on L2 that requires an equivalence
between D 4 and Dp to f on L1. For the situation, we define a pseudo-inverse
map f* instead of f~1.

Definition 2.4 (pseudo-inverse map) Givenamapg: A — B, the inverse
image of y € Im(g) = B’ C B is induced from g: g7 *({y}) = {z|z € 4, ¢g(z) =
y € B'}. One can pick up an element z, € g~'({y}) for all of y € B’. Then, a
map

g :B' = Ay xy

is induced. It is called pseudo-inverse map of g and expressed by g* (cf. Figure
3.2).
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Picked out x, for g *

A B N A g {(»)
PN —/J} g )

“ N ol 18 )
X3 X3

Figure 3.2: An example of pseudo-inverse map ¢g* of a map g. The value of
g*(y1) can arbitrarily select from the inverse image ¢ ' ({y1}) = {z1, 72} of g.
The value of ¢g*(y;) selected from {x1, 22} randomly, time evolution of ACS is
defined.

g* satisfies the following properties: g¢* is not unique for g; gg* = idp and
g*g # id; By a proper restriction g| A’ = goj where j is an injection j : A’ — A
and A’ C A, g|A' o g* = idp and g* o g| A" = idu; If ¢ is a bijection, g* results
the inverse map g ' : B — A; If ¢g is a continuous function, A is a set of
continuous real number and g(A) has any local minimum and local maximum
in {z|z € A,¢g7'({min(g(A))}) < =z < g7'({max(g(A))})}, ¢g* is necessarily
discontinuous.

In the following section, we express dynamical change of the heterarchcal
layers by defining an equivalence-like operation derived from a pseudo-inverse
map.

3.2.2 Internal Perspective and Observational Heterar-
chy

As one of the important topic in the science of complex systems, there is a
concept of an agent that have a perspective from the inside of a system[?][28].
Since the agent with the internal perspective cannot look out over the whole
system, disturbance beyond its expectations is inevitable on their observation.
But the system features persist against the disturbance. Therefore, the con-
cepts of heterarchy and internal measurement share the same motivations. It
is necessary to express such disturbance or indetermination on the framework
of observational heterarchy.

Suppose the layers L1 and L2 in the previous section. We express obser-
vation of the internal perspective by the following equivalence-like operations
F and F*: Given an arrow f : A — B that is not monic but epic and is per-
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Time

Evolution
—>
Functor
D,

F
—
< —1
QLN
A System

Observation
with Disturbance

Arrow V

Figure 3.3: The concept of observational heterarchy based on the form of cat-
egory theory. Each layer, L1 or L2, is constructed by a commutative diagram
with arrows or functors and observation in the system is expressed by an equiv-
alence between D4 and Dpg. If there is disturbance on the observation, the
corresponding functor is regarded as an operator for time evolution of L2.

mitted approximation f & f where f: A — B is a bijection, a pseudo-inverse
map f* : B — A is induced. f* is not unique for f and there is the family
of the arrows {f(t)}teN satisfying ff = idp and f f # id4 where N is a

set of infinite natural numbers. Then functors F:Dy— Dg¢p — f 1 and
F() Dg — Dywy; ¢ — f o ¢ can be constructed where A Im(f( )) C A.

The facts that f is not monic and there are infinite f* parallel What observation
of the internal perspective involves the disturbance and the indetermination.

If f = f is a bijection, then ' = F : Dy — Dp;1) — fotp and Fjj) = F~*:
Dp — Dya;¢ — flo¢. Hence F and F(t) show the equivalence DA >~ Dp

in the approximation f = f. On the other hand, if we strictly deal with f
that is not monic, then the identity functor F! o F = Ip, is replaced with
ﬁ’(’;) oF:D 4 — Dy that can be regarded as an operator of time evolution.
Therefore, the ovservation of the agent with the internal perspective makes the
agent itself change (i.e. the heterarchical layer L2 changes). In other word, the
external observation does not influence the system but the internal observation
derives the dynamical change of the system.

And the previous fact is inconsistent with the demand that the operation
F on L2 must be an equivalence of slice categories, but

FyoF(ip) = fiyofor (3.4)
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as well as Eq.(3.2)-(3.3) and the operation on the right hand of Eq.(3.2) is
consistent on L1. Apparently the aspect of internal observation is paradoxi-
cal, although actual operations never deadlock over the observation. i.e. the
stipulated rule is broken on L2 but not on L1.

Regarding ¢ € IV as discrete time, we can construct the time evolution of 1

such that; ¢y = f); Yy = [y = fiyfboys ¢e = foa = Fiyea =
Pa); o) = fin @@ = finow) = fio fhw-

Note f and ¢ is invariant over the time. In this chapter, f(*t) is constructed
by picking up an element of f~'({y}) = {z|z € A, f(z) = y € B} randomly.
The N of { f(’;)}teN can be infinite natural number formally but it is finite
natural number in the experiments. And in previous paper[?][17], the time
evolution of ¢ and ¢ is formalized by a diagram of a pullback functor. The
present model is simplified by the use of a composition instead of the pullback,
but it is based on the same concept.

As a result, we obtain a system that keeps changing via two heterarchical
layers and confusing them in the present section (cf. Figure 3.3).

3.3 Application to Coupled Map System

3.3.1 Active Coupling System

In this section, observational heterarchy is applied to a coupled map system
for an appraisal of the concept.

Suppose C/A D Dy > ¢ : [0.0,1.0] — [0.0,1.0], C/B D> Dy > ¢ :
[0.0,1.0] — [0.0,c] as ¢(z) = fo(x) and f : [0.0,1.0] — [0.0,¢] where
¢ € [0.0,1.0] is a constant. Selecting the bijection f(z) = ¢z for f, we compose
a conventional coupled map system such as the following;

()= (G guin o) 9

where x; and y; are states at time ¢ and c is utilized as the coupling strength.
Eq.(3.5) is modified based on the concept of observational heterarchy such

as the following;
( Tesn ) _ ( (1 = ) () + by (we) ) (5.a)

Yit1 (1 = )Yy () + by ()
burry =  Fiu = f (5.0)
Yory = fianbery = S Mo (5.¢)

where the second and third equations reveal the time evolution of maps and

f :1]0.0,1.0] — [0.0,c|]. Eq.(5.a~c) are called Active Coupling system (ACS)
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@ ®)
©

27

Figure 3.4: The graphs of the maps applied to ACS. Each square is the coordi-
nate of (z,y) € [0,1]x[0,1]. (a) y = f(z) = cx+0.1csin(157x) cos(4mx). The
horizontal broken line expresses y = c. (b) y = fj,(z). The vertical broken

line expresses y =

1

Cc

- (©) y=9¢"(z) =V (2). (d) y =29 (z).



28 CHAPTER 3. ACTIVE COUPLING

so as to distinguish it from the conventional coupling system (Eq.(3.5)). If
f(2) =2 f(z) = cz, then ACS results in Eq.(3.5).
The following are applied to each system in this chapter;

boy(e) = ¥() = dz(l-x) (3.7)
) —h(z)  (h(z) <0)
flz) = { h(z) 0 <h(z) <¢) (38)

(
2c— h(z) (c< h(z))
)

where we experimented on the following h(z);

h(z) = cz + 0.1csin(107z2). (3.9)

The pseudo-inverse map f* for these f becomes discontinuous map and cannot
be determined uniquely. The graphs of f, f5, ¥ and ¢ = #© are shown in
Figure 3.4 . Time evolution of the map ;) is derived from random selections
of f§, from {f; }icr. For making f,), we divided dom(f) = [0.0,1.0] into 102,
10® or 10 intervals and y = f(*t) () was constructed by linear approximation

in each interval. If the wavelength of the disturbance in f is long enough for
the intervals, every calculation is not influenced in kind.

And in addition, we obtain the following ACS composed of asymmetrical
maps without inconsistency for every previous definition;

1\ (- C)_&;)i@b(xt) + Jilb(yt)
( Yt+1 ) B ( (1 —c)f(*j,)fqp(yt) + foo(z) ) (3.10)

where {j|j € I} and {j'[j' € I' = I,I' C I}. In the present experiments,
[f¢yy is fitted into f(;) in the probability of 98% when |z; — y;| < 107" and else

Ty = F6ny
Active coupling is different from the conventional coupling in terms of the
two parts, f and f(’;). For comparison, we conducted a control experiment as,

Go)=(Gomihes) e

3.3.2 Lyapunov Analysis

On-off intermittency generally results from fluctuation of the local transverse
Lyapunov exponent, that can be also analized in the ACS as well as the con-
ventional coupling system (Eq.(3.5)). In Eq.(3.5) or Eq.(5), the synchronized
state z; = x; = y; in time ¢ is expressed by the following;

(F)-(hdred). oo
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Therefore, 0z; = z; — x) satisfies the following;

5&HE<&MJ):<ﬂ—dW@O—MﬁH+M@0—Mﬁ%>‘

OYt+1 (1 =¥ (w) — v(@)} + {(ze) — 8(27)
(3.13)
If §z; is small, the linear approximation ¥ (x;) — (z?) = (29 +dz;) —p(2)) ~
Y (29)dx, is permitted, and then one obtains
§xery = ( (1 = )y (27)0m; + ¢'(a7) Oy )
. (1 = )¢ (27)0ys + ¢' (a7) 6t
- (O s ()
¢'(at) (- CW( ) 0y
= K(z29)x;. (3.14)
The transformation of the bases (e, e,) — (e, e, ) induces the following;
0xy = Odxrey + 0yrey = vy (t)e) + vy (t)er (3.15)

vi(t+ e, = K(z)vi(t)er = {(1 — )¢ («) — ¢'(2))}vi(t)er  (3.16)
where

(es,€,) = (( (1) > : < (1) >),(e||,eL) = (( é ) : ( _@ )) (3.17)

Therefore, the local transverse Lyapunov exponent is

vi(t+1 , ,
) i L 5 170 P ) IR T
v (t)]
and the transverse Lyapunov exponent is
|mt+1 = o0y At
(1) = Jim 5 2} S Xl - e - 9.
(3.19)
If the maps have time evolution,
=
() = Jim =3 In|(1 = oy (a) — 6y ()
t=0
1 o~ d d
_ . * 0 0
= Jim 3> In|(1 =) 7 (fipf(ad)) = g (F(ed)
~ b 1S Afy (47) df (p}) dip (a9) _ df (p}) dib(a)
= lim-» In|(1-¢) -
to0 ¢ £ dg dp dx dp dx

t—00

~ im %Zln (1= &)su@) — 1] [ (a2)| (3.20)
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z dft,y ()
where p = ¥(z), ¢ = f(p), ¢'(z) = LD 5(g) = ==, and note ¢y =

P(0)-

For Eq.(3.10) the local transverse Lyapunov exponent is

|(1 = ¢) (sj6m¢ — 55063) — (6 — Oy) | |9/ ()]

AiL(t)=In 3.21
L( ) |5xt _ 5yt| ( )
* 0
where s; = f(j;;qt). dz; and 0y, are entangled in A (¢) because of the difference

3.4 Results

Eq.(3.9) is used as h(z) in the following results but we obtain the qualitatively
same results in statistics when 0.1csin(107z) is replaced with 0.15¢sin(107z),
0.1esin(127z) or 0.1esin(157z) cos(4nz).

Figure 3.5 show bifurcation diagrams with coupling strength c. Each result
of the conventional coupling (Eq.(3.5)), ACS with the symmetrical f* (Eq.(4)),
ACS with the asymmetrical f(*;.) and f(*j,) (Eq.(3.10)) and the control experi-
ment (Eq.(3.11)) are shown in (a)-(d) where h(z) = cz + 0.1csin(107z), and
the values of x; — y; with 4000 < ¢t < 4200 were uesed to construct the dia-
grams. In conventional coupling, the edge of chaos appear just in ¢ = 0.25 and
¢ = 0.75 and on-off intermittency is observed only near the critical parame-
ters. By contrast, the intermittency of ACS is observed in the wide parameter
region, i.e. in 0.0 < ¢ < 1.2 and 3.5 < ¢ < 7.8 of the symmetrical ACS, and in
0.0 < ¢ < 0.8 of the asymmetrical ACS.

And, although the control experiment shows the feature of systems depends
on the form of f (i.e.h(x)) in the region of large ¢, ACS keep that feature against
the replacement of f by such as the previous h(z).

Figure 3.6 show frequency of alternations from burst phase to laminar phase
in 10000 < ¢ < 20000 where the correspondence of (a)-(d) is the same as in the
Figure 3.5. The state is regarded as burst phase if |z; — y;| > J, and the state
is regarded as laminar phase if |z; — y;| < § where § = 10™* is a reasonable
threshold. The alternations is counted if |x; 1 —y; 1| > 6 and |zy —y;| < 0 are
satisfied. Although the differance of chaotic state and intermittent state is not
distinctive in the bifurcation diagrams, Figure 3.6 show that the parameter
regions with on-off intermittency is clearly extended in ACS.

Figure 3.7 shows transverse Lyapunov exponent in each model where the
correspondence of (a)-(d) is the same as in the Figure 3.5. It is checked that
the values of the Lyapunov exponent is saturated by 1000 steps, therefore these
diagrams show the values in ¢ = 2000. On-off intermittency is observed near
the transition point since the intermittency results from fluctuation of the local
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Figure 3.5: The bifurcation diagrams of the values of z;—y; in 4000 < ¢ < 4200.
h(z) = cx + 0.1csin(107z) is used in the following (b)-(d). (a) Conventional
coupling, Eq.(4). (b) Active coupling with symmetrical f*, Eq.(4). (c) Active
coupling with asymmetrical f(*]) and ﬂ?,), Eq.(9). (d) Control experiment,
Eq.(10).
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Figure 3.6: Frequency of alternation from burst phase to laminar phase in
10000 <t < 20000. The parameter regions with on-off intermittency is clearly
extended in ACS. The correspondence of (a)-(d) is the same as in the Figure
3.5.
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Figure 3.8: A typical on-off intermittency of time series of z; — y; in 18000 <
t < 20000 in an Asymmetrical ACS (Eq.(9)) with ¢ = 0.10 where h(x)
cx + 0.1csin(107z).

transverse Lyapunov exponent near zero value. We can find the correlation
with their bifurcation diagrams.

Figure 3.8 is a typical on-off intermittency of time series of z; — ¥; in
18000 < ¢ < 20000 in an Asymmetrical ACS (Eq.(3.10)) with ¢ = 0.10 where
h(z) = cx + 0.1csin(107z).

It is known that on-off intermittency satisfies (i) Pr(r) oc 72 and (ii) ()
¢! as its statistical properties[20] where 7 is the continuous time of laminar
phases, Pr(7) is its probability, € is deviation from critical onset parameter and
(7) is the mean of the laminar continuous time. In ACS, power laws similar to
(i) are observed but they do not always satisfy —32 of the slope. For example,
ACS with symmetrical f*, h(z) = cz + 0.1¢sin(1072) and ¢ = 0.1 shows the
slope —% onl <7 <30and —3 on 30 <7 <100, and ACS with asymmetrical
f*, h(z) = cz + 0.1esin(157z) cos(4mz) and ¢ = 0.15 shows the slope —1.1 on
1 < 7 <100. Figure 3.9 show graphs of the power laws and the data of time
series for 2 x 10° steps by 100 times were used to construct the distribution.
And the law (ii) is not satisfied in ACS.
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Figure 3.9: Power laws of Pr(7). The data of time series for 2 x 10° steps by
100 times were used to construct the distribution. (a) ACS with symmetrical

fro h(z)

5 h(2)

cz 4+ 0.1csin(107z) and ¢
onl <7< 30and -3 on 30 < 7
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<

0.1.
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(b) ACS with asymmetrical

The lines show the slope —%

onl <7 <20and —3 on 20 < 7 < 100. (c) ACS with symmetrical f*,
h(z) = cz + 0.1csin(157z) cos(4nz) and ¢ = 0.1. The line shows the slope

—3. (d) ACS with asymmetrical f*, h(z) = cz + 0.1csin(15mz) cos(4mz) and
¢ = 0.15. The line shows the slope —1.1.
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3.5 Conclusion

This world as a complex system is neither chaotic nor static absolutely but
with mingled them. To express such an aspect, intermittency and the system
bringing it may be useful. However, this phenomenon is fragile against the
parameter change as the perturbation from the outside of the system since it
is necessary to set the parameters of the system sensitively for its occurrence.
The structural stability is known as a persistence against the perturbation and
it is particular feature with each dynamical system. But, in science of complex
systems, it is important to understand the coexistence of the flexible change
of the system structures and the feature persistence of the system, and such
an aspect is regarded as robustness. On the other hand, heterarchy concept
is related to the robustness and the flexibility. In this chapter, heterarchy is
extended to observational heterarchy that is a structure of the system modeling
internal perspective. The mathematical formalization of this concept leads
to the dynamical change of maps. Moreover, such maps with structural time
evolution was applied to coupled map system. As a result, on-off intermittency
occurs in wide parameter region of the system. It means the coexistence of the
changeable map and the occurrence of intermittency against the parameter
shift. The result shows ubiquitous intermittency featuring not stability but
robustness.

An essence of observational heterarchy is coexistence of the layers that is
different each other but reveal the identical system. Supposing an external
perspective for the system enables their layers to be consistent, but it does not
permit time evolution of the system structure. In our sense, an internal per-
spective is expressed by confusion of their different layers. If a static picture
of the system is required, the expression is just a paradox or an inconsis-
tency. However, the confusion induces evolvability of the system by modifying
a part of the condition. Mathematically, it is expressed by the use of an
non-commutative operator as a commutative operator in approximation. We
think such a method is helpful in the study for complex systems that inherits
structural evolvability.



Chapter 4

Generative Pointer

The concept of a generative pointer suggests an extended subobject classi-
fier with local identity (i.e. an incomplete indication or identification), and
its introduction is motivated by a generalization of the emergence process of
rational numbers. Generative pointers induce heterarchical structure in dy-
namical systems. Generally, although intermittency observed in time series
of dynamical systems is sensitive with respect to parameter shifts, ubiquitous
on-off intermittency is observed for a wide range of parameter values when
a generative pointer is applied to a Henon map, which implies robustness to
parameter shifts. The concept of structural stability or trajectory stability of
dynamical systems is based on the specific invariable map, but robustness, in
contrast with stability, is based on the dynamic change of the map. Thus, in
our view, the robustness does not conflict with the emergence, but coincides
with it.

4.1 Introduction

4.1.1 Emergence, Autonomy and Robustness

General system theory reveals that not only physical substances but also struc-
tures of phenomena with common aspects can be the subject of research (von
Bertalanffy 1968). This viewpoint is one of the origins of the concept of dynam-
ical systems and complex systems, etc. System theory expresses the concept
of emergence as hierarchy (Checkland 1981).

It is important to study the concepts of autonomy, evolution, emergence
and robustness for complex systems such as biological systems or economic sys-
tems. Evolutionary models and/or emergence phenomena have been studied
actively within the discipline of dynamical systems (ex. Nicolis and Prigogine
1989). In this regard, the mechanism of each dynamical system is characterized
by the topology of the phase space (Rosen 1970). These models presuppose

37
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the invariance of the global structure (i.e. the vector field) describing the local
motion (i.e. the 1-parameter transformation group).

In contrast, Conrad, Matsuno and Gunji et al. have emphasized the co-
operative and interactive hierarchy between the local motion and the global
structure, and have discussed concepts such as evolutionary computation (Con-
rad 1999) and internal measurement (Matsuno 1985; Gunji et al. 1997). These
concepts make use of heterarchical structures (McCulloch 1945). Heterarchy is
an extended hierarchy with dynamic interaction between the layers, and is de-
scribed as the meta-structure carrying the robustness of systems (Jen 2003). It
is important to formalize the system with a local perspective and the dynamic
changes in system structure more explicitly. In this chapter, the framework of
dynamical systems is extended, and the hierarchical structure of the system
and its environment is introduced into the models.

In our view, emergence is not a property of particular systems but is intrin-
sic to the relation between the systems and their environment / observers. For
example, assume a system that outputs a sequence of signals. As examples of
signals, one can take human communicative utterances, electric bit patterns in
computers, proteins in cells, etc. These signals are received and interpreted by
the observers, such as human beings, computers or DNA, etc. If an observer of
the system presumes that the system outputs the signals according to a partic-
ular rule, signals deviating from the presumed rule are regarded as mere errors
(i.e. fluctuations in terms of physics). In contrast, if the observer presumes
that the system is autonomous, the deviating signals are regarded not as errors
but as outcomes of the autonomy. Such unexpected outputs are regarded not
as errors but as emergence when they are perceived by the observers of the
system. Thus, emergent phenomena are connected to autonomy through the
observers.

The autonomy of the system is discovered by the observer who is monitor-
ing the changes in the rules of the system. The emergence is the unexpected
outcomes generated by changes in those rules. Therefore, the autonomy and
the emergence are based on the same phenomenon, and correspond to the
aspects of the system and the events occurring in the system, respectively.
In this light, we can no longer divide the system from the viewpoint of the
observer. When a mathematical model is constructed on the basis of such
aspects, the acceptance of the unexpected outcomes can be formalized as in-
definite domains and/or ranges of functions and as structural changes of the
functions.

We have studied the general formalization of the dynamic complementary
relation using the framework of information theory (Gunji et al. 2003; 2006)
and/or dynamical system theory (Gunji and Kamiura 2004a,b; 2006; Kamiura
and Gunji 2006a,b). For example, we studied a coupled map system based on a
heterarchical structure (i.e. Active Coupling System; ACS) (Kamiura and Gu-
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nij 2006¢). On-off intermittency was discovered by Fujisaka and Yamada (1985;
1986), has been named (Platt et al. 1993), and its statistical features have been
explored (Heagy et al. 1994). Moreover, it has been applied to chaotic neu-
ral networks and been related to information processing (Inoue et al. 1991).
Using the category theory (MacLane 1971=1997; Louie 1985; Awodey 2006),
we define the concept of heterarchy as an extended isomorphism between two
comma categories in order to discuss the issue of robustness mathematically.
ACS has non-monotonic and time evolutional maps derived from the extended
functors. Consequently, the values of the transverse Lyapunov exponent of
ACS converge to zero despite the fluctuations in the coupling parameter. In
other words, on-off intermittency is a critical feature of the specific coupling
parameter in Fujisaka-Yamada systems, which occurs ubiquitously for all pa-
rameter values. We can evaluate this as the robustness of the phenomenon.
Moreover, if this scheme is applied to 1-dimensional logistic map, the map also
shows on-off intermittemcy (Nakajima and Shinkai submitted).

In this chapter, the origin of rational numbers is shown as a hypothetical
process by using the equivalence between the category of pointed sets and that
of partial maps. The forms of pointed sets and partial maps are connected to
indicating states of a dynamical system in phase space. Indicating a singleton
(or a state in phase space) is formalized by a generative pointer, which is an
extension of the concept of subobject classifiers. Generative pointers induce
structural changes in dynamical systems.

When generating positive rational numbers from natural numbers, we need
to note the maps that become an identity only on a subset when they are
composed. In the composition, the difference set of the subset with the identity
must map to a base point. The outside region (i.e. the difference set) indicated
by the base point is used for fractions.

The concept of subobject classifiers is a formalization of the process of spec-
ifying a point or a subset, and is extended to generative pointers. Indicating
the outside region by a base point is connected to indicating a point by the
generative pointer. This concept is applied to the phase space of the dynamical
system, and, consequently, dynamic change of the parameter of the system is
induced. In this chapter, the Henon map is extended by virtue of generative
pointers. We call the system the extended Henon map based on Generative
Pointers (HGP) system.

In the sense of conventional dynamical systems, the equation system gives
the vector field (i.e. the global structure of the phase space). When a state
is given in phase space, the state has time evolution that is consistent with
the global structure. Since the global vector field determines the local time
evolution, the one-directional dependence relation from global structure to
local motion is hierarchical. In contrast, in HGP, the global structure is virtual
and temporal since the equation is inevitably constructed locally. Dynamic
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changes in the global structure are induced by indicating the local state, and
one step of the time evolution is defined in the global phase space. We can
find a heterarchical structural dependency between the global structure and
the local motion. As a result, HGP shows intermittency for a wide range of
parameter values, as well as ACS.

Generally, intermittency is observed at a critical point between a fixed
point (or periodic solution) and a chaotic solution, and hence it is sensitive
with respect to parameter shifts. On the contrary, in HGP, the on-off inter-
mittency occurs in for a wide range of parameter regions, which determines
the coexistence of the changeable map and the occurrence of intermittency
against parameter shifts. The result shows ubiquitous intermittency featuring
robustness instead of stability.

4.1.2 From Natural Numbers to Rational Numbers

One of the most fundamental examples of emergence can be found in the rela-
tion between the division of natural numbers N and positive rational numbers
Qt. The operation, such that a natural number is multiplied by 3, is expressed
by the map f3 : N — N : n +— 3n. There is no problem if division, as the
inverse of multiplication, is defined by g3 : Im(f;) — N : 3n — n. How-
ever, a new sign expressing ”a fraction” is required when the domain of the
map gs is defined not by Im(f3) but by N. For example, when g3 is applied
to 2 € N\Im(f3), a "new number”, 2/3, is required since g3(2) ¢ N, where
A\B = {z € A|z ¢ B} is the difference set of B in A. Moreover, if we regard
this concept as something which did not exist a priori but has been generated
historically, we can see the emergence of positive rational numbers Q" when
arbitrary natural numbers are substituted for the top and bottom blanks ()
of the division sign ” %”.

Needless to say, rational numbers are constructed as an equivalence class of
ordered pairs of integers (a, b) with b # 0, and are induced by the equivalence
relation (a,b) ~ (¢,d) <= ad = bc. We need to consider the relationship
between the emergence on the division sign and such a formal construction of
the rational numbers.

To discuss this issue, we used an equivalence of categories, Par = Sets,,
based on functors, F' : Par — Sets, and G : Sets, — Par, where Par is a
category of partial maps and Sets, is a category of pointed sets (cf. Appendix
A). Assume sets A, B, its partial set U C A, amap f : A — B and its partial
map |f| : U — B. Par has the sets as objects and the partial maps as arrows.
In the partial map |f|, a difference set A\U (i.e. the outside of the partial
set U) is hidden or is painted out by black. By the functor F', such "being
painted out” is connected to the map f, = F'(|f|), which is an arrow in Sets,

and f,(A\U) = {x}.
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(2)

f3 (Multiplication)
-

<7
£ 3(?) (Division)

Figure 4.1: (a) The operation such that a natural number is multiplied by 3 is
expressed by the map f3 : N — N : n + 3n. There is no problem if division,
as the inverse of multiplication, is defined by g3 : Im(f;) — N : 3n — n.
However, a new sign expressing a ”fraction” is required when the domain of
the map g3 is defined not by Im(f;) but by N. (b) The replacement of the
point * with the fraction sign ” %” reveals the replacement of the operand (x)
with the operator (2). The point * is an element on the pointed set N, but

57 is o map in Hom(N x N, Q).

Applying Im(f;), N and Qt to the above U, A and B, we can regard the
map g3 as the arrow g3, : N, — N, in Sets,:

g3.(z) = { g3(z) (if xz € Im(f3) = {3njn € N} C N)
3+ * (if x € N,\Im(f3) ={3n+1jn € N} U{3n+2|n € N})

In this sense, by hiding or painting out the fractions by the point %, we can
deal with only Im(f3) = {3n|n € N} as the domain of g3 (Figure 4.1).

Now, we use the expressions such as "hide” or ”paint out” since we know
the concepts of division and rational numbers. However, if we focus on the
emergence of fractions, we can suppose that the fractions are not hidden by
the point * but the concept of the region of the numbers is extended from
natural numbers to rational numbers by replacing the sign ”%” with the sign
» B (Figure 4.1 (b)). In other words, the replacement of the point * with the
fraction sign ”-2-” reveals the replacement of the operand (*) with the operator
(Z)- The point * is an element on the pointed set N, but "5 is a map in
Hom(N x N,Q™).

Although we do not insist that the process of the replacement of the signs is
a historical fact, we consider that it is effective to model the emergent process
through such mixture of operands and operators.

At the end of this section, we introduce a term, Local Identity, so as to use

it in the following section.
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Definition 1 (Local Identity) For topological spaces A and B such that the
measure M(A N B) # 0 (i.e. AN B is neither empty nor singleton), and for
the subspace U such that U C AN B and the measure M(U) # 0, if a map
Lidy : A — B is defined by

' B (if x € U)
Lidy(z) = { f(z) (@Gf z € A\D),

then we call the map Lidy local identity on U, where f : A\U — B is an
arbitrary map.

Again, assume the multiplication map f; : N — N. It naturally induces
the map f3, : N, — N, which is defined by

_J f(x) (if zeN)
fou(2) = { L (f ze ).

We obtain the following compositions of f3, and gs,:

93« Of3*($) = { * Elf T E {’2})

and

z (if z € Im(f3))
«  (if z € N.\Im(f3)).

The maps ¢, © f3, and f3, o g3, are local identities.

fac 0 93*(35) = {

4.2 Generative Pointers and their Application
in Dynamical Systems

In order to strengthen the above viewpoint of emergence, we introduce the
concept of a generative pointer. In connection with dynamical systems, this
concept describes structural changes of the time evolution operator of the
system.

4.2.1 Parameter with Time Evolution

Suppose a dynamical system (D, pa;) on discrete time where D is the phase
space of the system and {pa;}asez is the 1-parameter transformation group.
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Conventionally, the time evolution of the system is expressed by z;a; =
oae(ry) or war : D — D i xy — Ty, 6. the time evolution operator
was is independent of the time ¢. In addition, dynamical systems can have
some parameters other than the time ¢, such as angular frequency in the case
of harmonic oscillators. Furthermore, if the dynamical system has a parameter
(3, the time evolution is expressed by:

T+ At = @At(ﬂ) (xt) or @At(ﬂ) D — Dz = Typpre

On the other hand, we assume a time evolution operator dependent on the
time ¢, i.e. it is expressed by go% : Dy — Dypiag 0 o — Tin and it accounts
for the structural changes occurring in the system with the passing of time.
If the time interval At is defined exactly, the operator can be expressed by
©® without the need for At. In particular, if the structural changes in the
system are constructed by changes in the parameter (3;, the time evolution is
expressed by:

Tty At = SO(t) (fUt) = 90(515)(331&) or SO(t) = @(ﬂt) i Dy = Dyiag i Ty = Tppase

Using the above notations, we construct a concrete structural change of the
dynamical system.

4.2.2 Characteristic Functions and Subobject Classifiers

In this section, we consider the form of indication of a point (i.e. an element
in a set). In set theory, separating a subset B C A from the difference set
A\B on a set A is formalized by a characteristic function. The characteristic
function of a subset B is the two-valued function mp : A — {0,1} on A with
the following values for any z € A

mB(x):{ 0 (if z € B)

1 (otherwise).

{0} C {0, 1} represents the simplest non-trivial subset. An arbitrary subset
B C A can be mapped onto this simplest subset by mg. This map produces a
pullback square:

— {0} (4.1)

p S
A—"£40,1}.

One says that the monomorphism (the typical subset) s is a subobject classifier
for the category of sets, Sets. If the subset A is a one-point set {a}, the
subobject classifier corresponds to indicating the specific state a.
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In general, a subobject classifier in a category is defined in the following
way.

Definition 2 (Subobject Classifier) Given a category C with a terminal
object 1, a subobject classifier s : 1 — {2 is a monomorphism with the following
property: for each monomorphism p : B — A, there is an unique morphism
mp : A —  such that the following diagram commutes:

L

PT Is
A-">Q

where ¢+ : B — 1 is uniquely defined.

In Sets, 2 is {0, 1} since mp must be uniquely defined.

4.2.3 Pointer

In section 4.1.2, we considered the replacement of the operand with the opera-
tor by virtue of an example from the origin of fractions (i.e. dynamic change of
the domains and ranges). In this section, we modify the characteristic function
to connect the indication of a point to the dynamic change of the domains and
ranges.

Again, assume a conventional dynamical system (D, ¢(3)). Given the state
x¢ € D at the time ¢, the system and the state induce the following partial
map:

[p(B)]  {ze} = {zes1} : 2 = T (4.2)

where the singleton {z;} = X; (¢ € N) is a subspace of D.

On the other hand, {z;} induces the natural monomorphism p; : {z;} —
D : x; — x;. Now, given a map r : {x} — I : * — rg, there is an isomorphism
my : D — I such that the following diagram is a pullback:

T—L>{*} Ty ——> % (4.3)

]

D" Ty — To.

where I is an open topological space (—1,1) and rg is such that —1 < ry < 1.
Note that the map m; is not unique in the above case. In the diagram of the
subobject classifier, I is defined in such a way as to uniquely determine my,
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however, in the above diagram (4.3), I is defined by (—1,1) first, and then m;
is chosen such that the diagram commutes.

Next, we restrict the kind of the maps m; to get back the uniqueness, i.e.
we define the map by:

2
my(a)(xy) = - arctan a;r; (4.4)

where a; is a parameter and it is defined in such a way that the diagram
(4.3) commutes, i.e. the uniqueness of the map m; is replaced by that of the
parameter a;. Note that the above my(a;) : D — I is a naturally isomorphic,
continuous, smooth and odd function (i.e. preserving the positive and negative
signs) if D is an open topological space (—oo, 00).

Since the my(a;) or m; is defined as the isomorphism, there is an inverse
map m; ' and the following diagrams commute:

)Tt —> {5} Ty —> % (4.5)

]

D<~——1 Ty <——Tp

Consequently, the inclusion p; satisfies the composition m; ' or ot = p,. We
call the map p; with the above commutative diagram a pointer.

Returning to the diagram of the subobject classifier (4.1) on Sets, let us
consider the significance of the pointer p;.

In diagram (4.1), the map s is given by:

s:{*x}—={0,1}:x—0

where the singleton {0} is replaced by {x}, although this is not essential.
Moreover, in (4.1), the characteristic function mp : A — {0,1} is determined
via sand p: B — A.

Now, suppose we replace the map s by

s {x} = {0,1}: x> 1

after the above determination of mg. The pullback for the map s’ and mp is
the difference set A\ B with the inclusion p' : A\B — A:

A\B — {x} (4.6)

A—"5{0,1},

i.e. the replacement of s by s’ induces the indication of A\B, which means
that the outside of the subset B is chosen.
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In addition, in the pointer diagram defined above, if the map
re{x}—=1I:x—rg

is replaced by
i {x} = T x>y,

then a new pullback X] for 7' and m; is induced as follows:

piI Ir’ I [
DLI $£|—>7'1.

This means that a new point X; = {z}} on D is chosen by picking up the
value r; on I. In our construction, m; is given by (4.4), and since it is an
isomorphism, we obtain the value of {z}}:
! -1 1 ™
Ty =my; (r1) = — tan —74. (4.8)
Qy 2
By replacing 7 with 7/, the pointer p; is replaced with p}, and, furthermore,
x} (i.e. the outside of {x;}) is chosen. The m; governs the indication of the
point on D.

4.2.4 Generative Pointer

Next, we introduce the following map m! : I — D:
ml(r) := Dec[m; *(r)] (4.9)

where Dec is an operation such that Dec|a] is the number of the decimal part of
areal number a. In this definition, the map m! has the image Im(m!) = I C D.

The maps m; and mg induce my, and mg*, which are morphisms on pointed
sets. If my(r) : D, — I, and mg* (r) : I, = D, are defined by

() = { my(z) (if x € I)
b x (if =€ D\I)

and

mj(r) =

{ mi(r) (if r € Up,)
x (it re L\Up,)

where Uy, := my(I), then we obtain

z (if z€1)
*

mg* o My (T) = { (if z € D,\I)
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[m*(r)

Figure 4.2: The graph of the function mg.
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and

i B r (lf re Umt)
Mgy © mt*(r) - { * (lf re I*\Umt)

Thus, mg* o My, and my, o mg* are local identities as well as the compositions
of the multiplication and the division, g3, o f3, and f3, o ¢34, in the previous
section.

The map mg induces the following diagram:

— {*} Ty % (4.10)
] I
D<— Ty <—T1

where X, = {Z,} is determined by
515 = mg (Tl)a

and the map p; : {7} — D : z; — T; is a natural monomorphism. We call the
map p; with the above diagram a generative pointer.

4.2.5 Dynamic Change of a Parameter

Again, consider the extension of natural numbers to rational numbers. N is
expanded to the Cartesian product N x N and then N x N is mapped onto the
equivalence class N x N/ ~= Q*, where ~ indicates the equivalence relation
(a,b) ~ (¢,d) <= ad = bc. Emulating this procedure, we construct the time
evolution of the parameter # in dynamical systems.

In section 4.2.2, we obtained the partial map on the dynamical system,
(4.2):

[p(B)]  {z:} = {zes1} 2 = B0

Given these data and ry € I, from definition (4.4) we obtain m; and my; such
that the following diagram is commutative:

p—*"® . p (4.11)
Restrict
Xl O

ptw:t\ %lomt+1 ptOk A OmMg41

I To )
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ie. rog = my(xy) and ro = myp1 (Tey1)-
Moreover, given the map 7’ : {*} — I : * — rq, "the tentative states” ,
and 7y, are defined by the generative pointers:

Fo=mi(r) =mior'(s), Feer = miy(r) = mi,, 07 (%)

where r; € I\{ro} is chosen randomly. The parameter  is changed to ﬁt SO
as to satisfy the following condition:

Tro1 = 0(B) (@), (4.12)

i.e. the new value Et of the parameter is determined in such a way that the
following diagrams commute:

D-——————-- D Tk — A > T+l (4.13)

Note that the top triangle diagrams must commute only on r; € I, while
m§+1(r) # ¢(3,) oml(r) is accepted on 7 € I\{r}.
Using [, the time evolution of the parameter is defined by

Biy1 = Bo + 557:

where (3; is the value of the parameter at time ¢, and § < [, is a constant num-
ber. Consequently, we obtain the dynamic change of the parameter through
this procedure.

4.2.6 Application to Henon Map

Let us experiment with the generative pointer on a concrete dynamical system.
Suppose a 2-dimensional dynamical system, ¥ : D x D — D x D : (x4, y;) —
(441, Ysr1) where D = (—o00,00). Now we choose a Henon map for this system:

<$t+1>:qj<$t>:<1—a$?+/@yt) (4.14)
Yt+1 Yt T ’ .

Specifically, in a system with time evolution of the parameter 3, it is expressed

by
($t+1):\Il<$t):<1—ax%+ﬁtyt>_ (4.15)
Y1 Yt Tt
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The Henon map induces a binary operation ¥(5;) : D x D — D : {(zy,y;) —
Z¢11, that is,
Ty = P(8) (m, y) = 1 — oz} + B (4.16)

where (3, in ¥(5;) is explicitly expressed in a way that allows it to be emphasized
as the parameter. Moreover, if the value of y; = z;_; is fixed, an unary
operation g, ,, : D — D : x; — ;11 is induced by the binary operation g,:

Tt41 = wﬁt,yt(ajt)' (417)

Following the generative pointer procedure, let us construct ;.

[Step 1] Given a random number r, € I = (—1,1), the parameters a; and
a;+1 of my and my . are set so as to satisfy the following equations:

my(zy) = — arctanapxy =y and  myyq (T441) = — arctan agp1 T = 14,
T T
(4.18)
i.e. a; and ayy; are given by
1 T 1 7
a; = —tan—r; and a;; = — tan —7y. (4.19)
Ty 2 Tt+1

[Step 2] For the above a;, a1 and the random number r; € I\{r;}, z; and
T4y are defined as

T, = my(ry) = @ tan 57‘2 and Zpq = mgﬂ(ré) = e tan zré. (4.20)

For these two values, ﬁt is chosen such that the following condition is satisfied:

-:i‘/t—kl = Qﬁg,gt (.f’i'/t) <~ §t+1 =1- O!i? + ﬂtj?]t (421)
where J; = %1 = ml_,(r1_,) = i tan §r;_, is the value given in the previous

step in this calculation process. Consiquently, under the condition that 7, # 0,
B is given by

~ T 72 -1
o= Tt ;xt . (4.22)
t

[Step 3] Using the above value of ﬁt, B411 1s defined by

Biy1 = Bo + 53:5 (4.23)

where § < fy is a small constant. If {Z;1;}ici—1,01) = {Te4itie{-1,0,1), then
By = Bo, and hence Bi11 = (14 6)6y ~ fo.
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The above procedure is illustrated by the following diagrams:

lo(B)]

[Step 1] L G R — [Setp?2]  Fr- - F.

pt% A omg41 :'N \/:
t Mit1
/ H_

T T
T’I

4.3 Results

In this section, the numerical results are shown for the extended Henon map
system defined in the previous section, which we call the HGP system.

As control experiments, we use a conventional Henon map and a Henon
map with the parameter 8 with added Gaussian noises:

( Ti1 ) _ ( 1 — axf + (o + Ra)y: ) (4.25)

Yit+1 Ty

where R is a Gaussian noise with a mean (Rg) = 0 and a standard deviation
ORg = 102,

Figure 4.3 shows the typical time series of z; of the HGP. The parameters
are set in a conventional Henon map, a fixed point is observed for o = 0.2 and
Bo = 0.3. On the other hand, in HGP, on-off intermittency is observed instead
for the same parameter values (Figure 4.3 (al)-(a2)). Since intermittent mo-
tion is not clearly visible on z; (Figure 4.3 (b1)-(b2)) for other values of «, we
observe values of ¢; that are defined by

@ = [(Be) (s, y:) — V(Bo) (w, ye) | = (B — Bo)ys| = |5Btyt|- (4.26)

The values of ¢, show on-off intermittency (Figure 4.3 (c1)-(c2)).

Figure 4.4 shows the trajectory of the HGP in phase space for 0 < ¢ < 10%.
The parameters are set to o = 0.2 and fy = 0.3, as in Figure 4.4 (al)-(a2).

Figure 4.5 gives the bifurcation diagrams on (a) conventional Henon maps,
(b) HGP and (c) Henon maps with Gaussian noises. Each diagram shows the
values of x; for 1000 < ¢ < 4000 along with the parameter 0.0 < o < 1.5. For
the left and right figures, the initial parameter g3, is Gy = 0.0 and 5y, = 0.3,
respectively. Generally, intermittency is observed at a critical point between a
fixed point (or periodic solution) and a chaotic solution, and thus it is sensitive
towards parameter shifts. Contrastingly, in the HGP, the on-off intermittency
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Figure 4.3: (al)-(b2) are the typical time series of z; of the HGP: (al) o = 0.2,
Bo = 0.3 and 0 < ¢ < 5000. (a2) a = 0.2, By = 0.3 and 1000 < ¢ < 1100.
(bl) @ = 1.2, fy = 0.3 and 0 < ¢t < 1000. (b2) o = 1.2, By = 0.3 and
700 < ¢t < 800. (cl)-(c2) are the typical time series of ¢; derived from that of
(b1): (c1) @ =12, fp = 0.3 and 0 < ¢ < 1000. (c2) o = 1.2, By = 0.3 and
85 <t < 200.
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Figure 4.4: The trajectory of the HGP in phase space for 0 < t < 10* . The
parameters are set to a = 0.2 and [y = 0.3.

occurs within wide regions of a: within 0 < o < 0.74 for §y = 0.0 and within
0 < a < 0.36 for By = 0.3 (Figure 4.5 (b)). This points to the coexistence
of changeable maps and the occurrence of intermittency with respect to pa-
rameter shifts. The results show ubiquitous intermittency featuring robustness
instead of stability. The irregular bursts of the intermittency form a bifurca-
tion which is clearly different from the Gaussian noise with constant variance
(Figure 4.5 (c)). Moreover, as will hereinafter be described in detail, in the
time series of HGP, the value of z; inevitably diverges after some time. If the
divergence occurs sooner than 1000 steps in the time series, a blank region is
formed on the bifurcation diagram. Consequently, the bifurcation diagrams of
HGP have a window-like structure in the whole parameter region.

Figure 4.6 show the graphs of the magnitude of the fluctuation of g, |3, —
Bo| = |68,], versus the probability of that, Pr(|8, — Bo|) = Pr(|63,]), on the
HGP, where 3y = 0.3 and (a) @ = 0.2 (b) @ = 1.2. Note that the graph is
double logarithmic. These data consist of 100 trials and each trial is observed
until ¢ = 10%. The initial state (z,yp) is chosen at random for each cycle.
From Figure 4.3 (c1)-(c2), we know the on-off intermittency of HGP is derived
from |63,] x |y;| (i.e. the multiplication of the fluctuation of 3 and the state of
HGP). In addition, Pr(|63,]) follows a power law. As a result, we can see that
|03;| scales up and down the state in phase space.

In HGP, catastrophe (i.e. divergence of the value of z;) inevitably occurs
at some time. We call the time until the divergence occurs the lifetime of the
system, T'. Figure 4.7 shows the graph of the lifetime of HGP, 7', versus the
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the left and right figures, the initial parameter §, is given by Gy = 0.0 and

Bo = 0.3 respectively.
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Figure 4.6: The magnitude of fluctuation of 3, |8, — 5|, versus the probability
of that, Pr(|8; — fo|), on the HGP, where 3y = 0.3 and (a) « = 0.2 (b) o = 1.2.
Note that the graph is double logarithmic. These data consist of 100 trials,
and each trial is observed until ¢ = 10*. The initial state (xo,yo) is chosen
randomly for each cycle.

probability of that, Pr(7). In this case, the parameters of HGP are set to
a = 0.2 and By = 0.3, and the divergence point is defined by the threshold
|z;| > 10°. The data consist of 2 x 10* trials and each trial is observed until
t = 4 x 10%. Note that the graph is single logarithmic, i.e. the graph is
exponential and the system has a decay time constant 7 = 8023.

Why does such divergence occur? Figure 4.6 show Pr(|63;]) < 107% such
that the fluctuation of 3 is \5§t| > 0.1, and hence big fluctuations occur rarely
during the lifetime. If a fluctuation of +0.1 for 3 is attributed to the con-
ventional Henon map, the Henon map has fixed points for 0.2 — 0.1 = 0.1 <
0 <03=02+40.1 and o = 0.3, and the above divergence does not occur.
Moreover, mg is a bounded map on (—1,1), thus it is not the direct cause of
the divergence. It is non-trivial that the time series of the HGP diverge by
about 8000 steps on the features of Henon maps and mg. The divergence of
the time series may be derived from the conglomerate of the Henon map and
the generative pointer. The statistics and the structure of the system will be

analyzed in a separate chapter.

4.4 Conclusion

In this chapter, we introduced the concept of generative pointers, which are
extended subobject classifiers with local identity (i.e. an incomplete indication
or identification). In a dynamical system, specifying a point or subspace in
phase space corresponds to setting the boundary condition which is fulfilled
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Figure 4.7: The lifetime of HGP, T, versus the probability of that, Pr(7"). The
parameters of HGP are set to a = 0.2 and 3y = 0.3. The divergence point is
defined by the threshold |z;| > 10°. The data consist of 2 x 10* trials, and each
trial is observed until £ = 4 x 10%. Note that the graph is single logarithmic, i.e.
the graph is exponential and the system has a decay time constant 7 = 8023.
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outside of the dynamical system. The system and its environment are con-
glomerated through the incomplete identification, and the dynamic changes in
the system are derived. Such an extended process of the system is motivated
by a generalization of the process of emergence of rational numbers. We re-
gard the concept of emergence as the process of perception of the system from
outside.

Generally, intermittency is observed at a critical point between a fixed point
(or periodic solution) and a chaotic solution on the bifurcation diagram, and
as such it is sensitive with respect to parameter shifts. In contrast, when this
line of thought is applied to a Henon map, ubiquitous on-off intermittency is
observed for a wide parameter region, which points to robustness with respect
to parameter shifts. The concept of structural stability or trajectory stability
of dynamical systems is based on the specific invariable map, but robustness,
as distinguished from stability, is based on the dynamic change of the map.
Thus, in our view, the robustness does not conflict with the emergence but
coincides with it.

Moreover, the divergence of the time series of HGP suggests death or ex-
tinction in the biological systems. It does not conflict with the claim on the
robustness, since the robustness is not the persistence of the bounded motion
of the time series but rather the persistence of the intermittency against pa-
rameter shifts. In this regard, emergent systems ubiquitously reach complexity
and die after some time.

In the sense of conventional dynamical systems, the intermittency occurs
at the phase transition points, and the measure of that is zero or sufficiently
smaller than that of the usable parameter region. This fact implies the scarcity
of life phenomena. Generally, dynamical systems have a closed form on a 1-
parameter transformation group, and this fact is based on the vector field as
the global structure.

In contrast, the generative pointer corresponds to the connection between
the system and its environment, and the local identity corresponds to the
incompleteness of that connection. The heterarchical coexistence of the system
and the environment induces the dynamic change of the system structure,
and derives the ubiquitous complex motion (i.e. the on-off intermittency).
Moreover, on-off intermittency can be useful in engineering (Inoue et al. 1991),
which implies that our method has the practical advantage of saving the trouble
to tune the parameter for the intermittency.






Conclusion

How can our studies be characterized in science ? Mathematics have been
motivated by the description of physical phenomena for a long time. In con-
ventional sense, theoretical biology and complex systems science are based on
the view of such mathematics or physics: i.e. mathematics based on physics is
applied to biological systems. In contrast, we emphasize the probability, such
that mathematics motivated by ontological aspects of ”bios” is constructed:
where ”bios” does not always mean a biological system. If we suppose incon-
sistency / incompleteness / indefiniteness for systems, such as life, economics,
computers, proteins, etc, these are regarded as bio-like phenomena, since such
inconsistency derives ”time”: where ”"time” does not mean a parameter as a
master clock, but means emergence as dynamic change with robustness. As
two sides of the same coin, if we do not suppose such inconsistency for the
systems, these are regarded as machine-like phenomena. Therefore, the dif-
ference between ”bios” and ”"machine” is not difference of categories including
the objects but that of way for understanding of the objects.

When we accept such inconsistency, we can no longer completely affirm the
concept of prediction or that of theoretical explanation. Are theoretical con-
structions confined to predictions for experimental outcomes or to explanations
for that 7

It can be generalized that how to use of theories or models is that of
languages. For example, Japanese has multiple usages, such as legal use as
judicial order system, explanatory use on encyclopedias and expressive use
for poems or for literature, etc. However, Japanese usages are not restricted
to their usages, and have been expanded even to accessories such as art of
calligraphy on scroll pictures.

Usages of mathematical models are not also restricted a priori. This fact
shows our usages of languages (usages of models) are made as customs: i.e.
a mathematical model is specific language game on Wittgenstein’s language
game (Wittgenstein 1953). Although we can indicate such an aspect of math-
ematical models, effective action is not such indication but actually playing
the ”"games”. T am interpreting Protocomputing and Ontological Measurement
(Gunji 2004) as the above.

Expansion of usage of language is not based on formal guarantee but is
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based on keeping using such an expansion. The fact that Japanese is used as
accessories is not realized by being written in list of usages, but is realized by
existence of human that uses it as accessories.

Predictions or explanations are only part of intellectual activity. We em-
phasize theoretical constructions as a momentum of actuality.

Dialogue and monologue. Although text is written on one’s own, monologue
is not closed world. It is something to old self, to future self or to others who
have not met yet. Monologue is dialogue which destination has not been
determined. Therefore, it can make time and can be opened to future.



Appendix A

Partial Maps and Pointed Sets

In this appendix, we show an equivalence relation between the category of par-
tial maps and the category of pointed sets. In section 4.1.2, using the frame-
work of the equivalence relation, we generalized the example of the emergence
of rational numbers.

Let Par be the category of sets and partial maps. An Arrow

f:A—>B

is a map |f|: Uy — B for some U; C A. Identities in Par are the same as
those in Sets, i.e. id, is the total identitiy function on A. The composite of
f:A— Bandg: B — Cis given as follows: Let Ugop) := f~'(U,;) C A, and
lg o f| : Ugosy — C' is the horizontal composite indicated in the second line
from the top in the following diagram, in which the square is a pullback.

SR
fil(Ug) —U, LC

g
%
Utgos)

It is easy to see that composition is associative and that the identities are
units.

The category of pointed sets, Sets,, has as objects sets A equipped with
a distinguished ”point” a € A, i.e. pairs: (A,a) with a € A. Arrows are
maps that preserve the point, i.e. an arrow f : (4,a) — (B,b) is a function
f: A — B such that f(a) = b.

Lemma A.1 The map F': Par — Sets, such that it satisfies the following
properties 1. and 2. is a functor.
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1. For objects, given A € Par, F'(A) € Sets, is defined by:
A, = (AU {x}, %)
where * is a new point for addition of A.

2. For arrows, given f: A — B, F(f) : A. — B, is defined by:

f(z) (ifz € Uy)
fulw) = { * (ifz € Ai\Uf)

where A,\Uy is the difference set of Uy for A,.

Note that f,(x4) = *p for the definition since %4 ¢ A and consequently
* A ¢ Uf.

Proof We have only to check the preservation of the identity and the com-
position.

1. (Identity) From the above definitions of F;

F(idA)(z) = (ida).(2) = { o) € g

*B

where A, \A = {x4}, s0 (id4)«(x4) = *p, and therefore F(id,) = ida,.
2. (Composition) For arrows in Par, f : A — B and g : B — C, which are

defined by the partial maps |f| : A D Uy — B and |g| : BD U, = C,
F(go f) is defined by:

oo o) =(oo 0= { 157 (i Etnd
On the other hand, for F(g) o F(f) = g« o fs,

if z€Uppy, geo fu(z) =9 =
if z€A\Ups, g0 fi(@) = g:(fu(2)) = gu(¥B) = *c

Therefore, we obtain F(go f) = F(g) o F(f)-

For 1. and 2., the map F' is functorial.
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Lemma A.2 If the map G : Sets, — Par is defined on an object (4, a) by
G(A4,a) = A\{a}, and for an arrow f: (A,a) = (B,b)( < f: A — B with
(f(a) = b)),

G(f) : A\{a} — B\{b}

is the map f with domain Ug(s) = A\f~'(b), and the map G is a functor.

Sets, Par

(4,0)—L=(B,b) =S A\fb) = U~ B\(B)

T

A\{a}

Proof

1. (Identity) ida(a) = a, thus id(a,.) = ida. Generally, G(f) is defined by
f with the domain Uy = A\f~1(b), and thus G (id(4,,)) = G(id4) is ids
with the domain Uy, = A\id;'(a) = A\{a}. Therefore, G(id(aq)) =

2. (Composition) For arrows in Sets,, f: (4,a) — (B,b) and g : (B,b) —
(C, ),
G(go f)(@)=go f(z) (z€A\(gof) ' (c))

On the other hand, G(f) is f with the domain A\ f~*(b) and G(g) is g
with the domain B\ f~!(c). By the definition of composition in Par,

G(g) o G(f)(x) = go f(z) (z€ [T (Uaw)).

One domain is equal to the other:

7 Ua) = [7H(B\g(0) = [T B\ (g7 (c)) = A\(g 0 f) ' (c)

Note that f~}(B) = A and f~1(¢7'(c)) = (go f)"(0).
Therefore, we obtain G(g o f) = G(g) o G(f).

For 1. and 2., the map G is functorial.
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Proposition A.3 (Par = Sets,) The categories Par and Sets, are equiv-
alent. In other words, There are natural isomorphisms G o F' = idp,. and
F oG = idgets, where F': Par — Sets, and GG : Sets, — Par are the functors

indicated in the above lemma 4.1 and 4.2.

Proof

1. The natural transformation € : idpar — G o F' is the identity on Par,
since we are merely adding a new point and then removing it through
G o F. This situation is illustrated by the following diagram:

€Uf:ide

o Uy G o F(Uy)
incl.
Gok _
I A _ pp— G o F(A)
/ idpar / GoF(f)
B B— 27", G o F(B)

Note that G o F(A) = G(A.) = A\{*a} = A4, Go F(f) = G(f.)
and G o F(Uf) = UG(f*) = A*\f*_l(*B) = A*\(A*\Uf) = Uf. Thus,
G o F(f) = f, and therefore G o F' = idp,, is satisfied.

2. For an arbitrary object (A, a) € Sets,, we obtain:

FoG((4,a)) = F(A\{a}) = ((A\{a}) U {*4}, ¥4).

Although (A,a) and F o G((A4,a)) are not equal because a # x, F o
G((A,a)) is the object such that a € A is replaced by *4.

For an arbitrary arrow f: (A4,a) — (B,b), we obtain:

_ _ ) (G(N)(@) (ifz € Ugyp = A\F1(D))
FoG(f)(z) = (G(f))«(z) = { B (ifz € ((f&){a}) U {+a)\Us(p)

where (G(f)) : A\{a} — B\{b} is an arrow in Par with the domain
Uc(ry = A\f71(b). Note that:

(A{aHU{xa)\Us(s) = (A{aHU{aD\ANS (1)) = f (0)U{*a}\{a}-

Thus, the natural transformation 7 : idgets, — F o G is naturally iso-
morphic:

_ )z (ifx € A\{a}) 1, )z (iffz € A\{a})
n4(7) —{ 4 (fzefa)) @ —{ o (ifz € {x4}).
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Therefore, F' o G = idgets,- This situation is illustrated by the following

diagram:
(4,0) (4,0) — ™~ F o G(4)
GoF
=
[ f] —
idpar
(B, b) (B, b) " . FoG(B)

For 1. and 2., the equivalence Par = Sets, is satisfied.
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